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Abstract

We consider kernel density estimation when the observations are contaminated by

measurement errors. It is well known that the success of kernel estimators depends

heavily on the choice of a smoothing parameter called the bandwidth. A number of

data-driven bandwidth selectors exist in the literature, but they are all global. Such

techniques are appropriate when the density is relatively simple, but local band-

width selectors can be more attractive in more complex settings. We suggest several

data-driven local bandwidth selectors and illustrate via simulations the significant

improvement they can bring over a global bandwidth.

Keywords: contaminated data; data-driven bandwidth; EBBS; errors-in-variables;

kernel smoothing; measurement errors; plug-in; smoothing parameter.

1 Introduction

Nonparametric estimation of a density from data observed with additive measurement

errors has received a lot of attention in the last two decades. In this problem the goal

is to estimate the density fX of a random variable X from observations on a random

variable W contaminated by additive measurement errors. One of the most popular

methods for estimating a density from such data is the deconvolution kernel method

of Carroll and Hall (1988) and Stefanski and Carroll (1990). See also Fan (1991a,b).
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It is well known that the performance of this estimator depends crucially on the choice

of a smoothing parameter h called the bandwidth. Several procedures of bandwidth

selection for the deconvolution estimator have been developed in the literature, but

these methods are global, which means that a single bandwidth is used to construct

the estimator of fX(x) at every point x.

In the error-free context (i.e. when the data are observed without measurement

errors), a global bandwidth is appropriate for estimating simple densities, but when

the target density fX has various local features, the results can be improved by using

a local bandwidth h(x) which depends on x. Since the deconvolution problem is

notoriously very hard, this sort of improvement would be particularly attractive in

the measurement error context. To our knowledge, this problem has not been studied

before in the deconvolution context. Techniques for choosing a local bandwidth in

the standard error-free kernel density estimation problem have been suggested by

various authors, including Sheather (1983, 1986), Brockmann et al. (1993), Schucany

(1995), Hazelton (1996), Fan et al. (1996) and Farmen and Marron (1999). However,

these methods are difficult to adapt to the error case as either they are based on an

explicit form of the optimal bandwidth, which is not available in the error context,

or they require estimation of pointwise quantities, which is considerably harder in

the error setting. The EBBS technique developed by Ruppert (1997) in the context

of error-free regression is less standard, but it seems more attractive to adapt to

the error case, since it does not suffer from these drawbacks. We develop an EBBS

local bandwidth selector for the deconvolution problem and suggest two other local

bandwidth selectors: an integrated plug-in approach and a local SIMEX (SIMulation

EXtrapolation) procedure.

This paper is organized as follows. In section 2 we define the model and estimators.

We develop data-driven local bandwidth selectors in section 3. In section 4 we describe

the implementation of the procedures and define variants of the methods developed in

section 3. We present results of our extensive comparative simulation study in section

5. Finally, section 6 summarizes the important conclusions from our simulation study.

All proofs are deferred to the appendix, and additional simulation results are provided

in Achilleos and Delaigle (2011).
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2 Model and estimators

Suppose we want to estimate the density fX of a random variable X but only observe

an i.i.d. sample W1, . . . ,Wn of contaminated observations generated by the model

W = X + U and X ⊥⊥ U, (2.1)

where U ∼ fU represents a measurement error and is such that E(U) = 0 and

var(U) = σ2
U < ∞. Throughout this work we assume, as is commonly done in the

literature, that the error density fU is known. When this density is unknown, it

can be easily estimated from replicated data without affecting first order asymptotic

properties of estimators. See for example Delaigle et al. (2008). The literature on

deconvolution is large; see for example Butucea and Matias (2005), Hall and Qiu

(2005), Carroll et al. (2006), Holzmann et al. (2007), Staudenmayer et al. (2008),

Hazelton and Turlach (2009), Meister (2009) and Wang et al. (2010) for recent related

work. For kernel deconvolution in the presence of boundary points, which we do not

consider in this work, see Delaigle and Gijbels (2006) and Zhang and Karunamuni

(2009).

Let h > 0 denote a smoothing parameter called the bandwidth, K a smooth and

symmetric function called the kernel, and let ϕK(t) =
∫
eitxK(x) dx and ϕU(t) =

E(eiUt). The deconvolution kernel density estimator of fX , developed by Carroll and

Hall (1988) and Stefanski and Carroll (1990), is defined by

f̂X(x;h) =
1

nh

n∑
i=1

KU

(x−Wi

h

)
, (2.2)

where

KU(v) =
1

2π

∫
e−itv ϕK(t)

ϕU(t/h)
dt.

Our goal is to develop data-driven methods for selecting the bandwidth h in

practice. Techniques already exist in the literature. They include the cross-validation

method of Stefanski and Carroll (1990) (see also Hesse, 1999), the plug-in approach

of Delaigle and Gijbels (2002, 2004a), and the bootstrap approach of Delaigle and

Gijbels (2004b). However, these methods construct a global bandwidth, that is, they

focus on the case where the same bandwidth h is used at all points x. We wish to

develop local bandwidth selectors, where the bandwidth h = h(x) depends on x.
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A theoretical optimal local bandwidth at x is a bandwidth that minimizes a dis-

tance between fX(x) and its estimator f̂X(x;h). In this paper, we use the Mean

Squared Error (MSE) distance, defined by

MSE(x;h) = E

[{
f̂X(x;h)− fX(x)

}2
]
,

and define the theoretical optimal local bandwidth by

hMSE(x) = argminhMSE(x;h).

Of course, the MSE depends on the unknown fX and in practice, hMSE(x) has to

be estimated. We construct such an estimator in section 3.3. In the global setting,

bandwidths based on asymptotic expressions of the integrated MSE, rather than

integrated MSE itself, are often very competitive. Since, a priori, the same can be

expected in the local case, in section 3 we also construct bandwidth selectors based

on the asymptotically dominating part of the MSE, the Asymptotic Mean Squared

Error (AMSE). Let µK,j =
∫
ujK(u) du and recall that a kernel K is of order k if

µK,0 = 1, µK,j = 0 for j = 1, . . . , k− 1, and µK,k = c, where c ̸= 0 is a finite constant.

We make the following assumptions.

Condition A:

(A1) ϕU(t) ̸= 0 for all t;

(A2) h → 0 and nh → ∞ as n → ∞;

(A3) K is of order k and is such that
∫
|u|k+1K(u) du < ∞, supt|ϕK(t)/ϕU(t/h)| <

∞,
∫
|ϕK(t)/ϕU(t/h)| dt < ∞;

(A4)
∫
|ϕX | < ∞ and fX is k + 1 times differentiable, and ∥f (j)

X ∥∞ < ∞ for j =

0, . . . , k + 1.

Under these conditions, the AMSE of f̂X at x is given by

AMSE(x;h) = ABias2(x;h) + AVar(x;h)

=
h2k

(k!)2
µ2
K,k

{
f
(k)
X (x)

}2
+

1

nh2

∫ {
KU

(x− w

h

)}2

fW (w) dw, (2.3)

where ABias and AVar denote, respectively, the asymptotic bias and variance of

f̂X , and ABias2 and AVar are equal to, respectively, the first and second terms of
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(2.3). See for example Stefanski and Carroll (1990). The asymptotically optimal

local bandwidth is defined by

hAMSE(x) = argminhAMSE(x;h). (2.4)

In the sequel, to simplify notation, we denote h(x) by h (i.e. we do not indicate the

dependence on x) unless the context is unclear.

Remark 1. In the error-free case, it has been proved that, for many densities, there

are some points x at which there is a nonzero bandwidth h(x) for which the bias at

x vanishes. See for example Hazelton (1998) and Sain (2003). In such cases, it

can happen that, at those particular points x, hAMSE(x)/hMSE(x) ̸→ 1. Since the

bias of the deconvolution kernel density estimator is exactly equal to the bias of the

error-free kernel density estimator, then such bias annihilating bandwidths exist in

the deconvolution setting too. However, as in the error-free case, as far as practice

is concerned, the existence of such bandwidths is not very important; see Hazelton

(1998) and Sain (2003).

3 Local bandwidth selection

In this section we develop three local bandwidth selectors based on the AMSE (sec-

tions 3.1 and 3.2) or on the MSE (section 3.3).

3.1 Empirical Bias Bandwidth selection

To estimate hAMSE(x) at (2.4), we need to estimate ABias and AVar and deduce an

estimator ÂMSE of the AMSE at (2.3). Then we can estimate hAMSE(x) by

ĥAMSE(x) = argminhÂMSE(x;h).

Estimating the variance part is not difficult. As in Fan (1991a), we can take

ÂVar(x;h) = (n2h2)−1

n∑
i=1

{
KU

(x−Wi

h

)}2

, (3.5)
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which is unbiased. We will see later that this simple variance estimator works well in

practice. The bias part is considerably more complex to estimate and standard ap-

proaches which work well in the global case (e.g. the plug-in method) do not perform

well in the local context (see the discussion in section 3.2). Therefore, alternative less

standard procedures have to be developed.

To estimate ABias, we first consider adapting to our density deconvolution con-

text, the Empirical Bias Bandwidth Selector (EBBS) approach developed by Ruppert

(1997) in the error-free regression context. Let m(x) be a regression curve, m̂(x;h) be

a local polynomial estimator of m, and let µm(x) be the mean of the asymptotic dis-

tribution of m̂(x;h). Then it is possible to show that µm(x) = m(x)+hℓB(x)+ o(hℓ)

for some ℓ > 0, where B is a function which depends on m but not on h. Clearly,

this relation resembles a regression model, where the dependent variable is m̂(x;h)

and the independent variable is hℓ. For a range of bandwidths h0, Ruppert (1997)

suggests estimating the bias B(x) of m̂(x;h0) by the least-squares estimator of the

slope of a linear regression model based on the data (hℓ
1, m̂(x;h1)), . . . , (h

ℓ
T , m̂(x;hT )),

where h1, . . . , hT is a grid of bandwidths around h0 (a more sophisticated polynomial

approach is considered in Ruppert (1997), but for simplicity we only discuss this

linear version).

To adapt the EBBS procedure to the deconvolution density context, note that

under Condition A, we have E{f̂X(x;h)} = fX(x) + hkB(x) + o(hk), where B(x) =

f
(k)
X (x)µK,k/(k!). That is,

f̂X(x;h) = fX(x) + hkB(x) + o(hk) + ϵ, (3.6)

where ϵ = f̂X(x;h) − E{f̂X(x;h)} and E(ϵ) = 0. Therefore, for small h, the model

at (3.6) is approximately a linear regression model where the dependent variable is

f̂X(x;h) and the fixed covariate is hk. As in the regression case of Ruppert (1997),

this suggests estimating B(x) by the least-squares estimator of the slope of this linear

model. Replacing sums in the least-squares estimator by integrals, which is simpler to

write and to analyse theoretically, we suggest estimating the bias of the deconvolution
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kernel density estimator f̂X(x;h0) by hk
0B̂(x), where

B̂(x) =
(
I0

∫
I
hkf̂X(x;h) dh− Ik

∫
I
f̂X(x;h) dh

)
/
(
I2kI0 − I2k

)
, (3.7)

where Ij =
∫
I h

j dh and I is a compact interval of the form [ah∗, bh∗], with a and

b some positive finite constants and h∗ > 0. To the best of our knowledge, this

approach is new in the error-free context too. The following lemmas, which describe

the asymptotic bias and variance of the estimator B̂(x), will help us choose a, b and

h∗.

Lemma 1. Assume condition A and suppose that fX has k+3 continuous and bounded

derivatives and |K| has k+3 finite absolute moments. Then, if we take I = [ah∗, bh∗],

where a < 1 and b > 1 are some finite constants and h∗ → 0 as n → ∞,

E{B̂(x)} = B(x) + h2
∗ C1 f

(k+2)
X (x)

µK,k+2

(k + 2)!
+ o(h2

∗),

where C1 is a finite constant defined in the proof of the lemma.

Lemma 2. Assume condition A and suppose that ||ϕ′
K ||∞ < ∞, ||ϕ′

U ||∞ < ∞ and∫ (
|t|β+ |t|β−1)

{
|ϕ′

K(t)|+ |ϕK(t)|
}
dt < ∞. Assume too that, for some constants c > 0

and β > 1,

lim
t→+∞

tβϕU(t) = c and lim
t→+∞

tβ+1ϕ′
U(t) = −cβ. (3.8)

Then, if we take I = [ah∗, bh∗], where a < 1 and b > 1 are some finite constants,

h∗ → 0 and nh2β+2k+1
∗ → ∞ as n → ∞, we have

var{B̂(x)} =
C2

nh2β+2k+1
∗

fW (x)

c2
+ o(n−1h−2β−2k−1

∗ ),

where C2 is a finite constant defined in the proof of the lemma.

From these two lemmas we see that in order to get the fastest convergence rates

for B̂(x), we should take h∗ ≍ n−1/(2β+2k+5). When k = 2, this choice corresponds to

the optimal order of the bandwidth for estimating f
(k)
X by a deconvolution kernel esti-

mator (of course, this is not surprising since estimating B is equivalent to estimating

f
(k)
X ). On the other hand, let h0 be a bandwidth which is candidate for being the

local bandwidth h(x) to estimate fX(x). In theory, a good candidate should satisfy
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h0 ≍ n−1/(2β+2k+1), since this is the order of the optimal bandwidth for estimating

fX(x). Hence, asymptotically, the bandwidths in I should be an order of magnitude

larger than h0. However, Ruppert (1997) noted that, in practice, if the target curve

changes rapidly, which is where a local bandwidth can be useful, then better results

can usually be obtained if I contains h0. Our extensive simulation results indicated

that, in the deconvolution density context too, for finite samples it was preferable

to take a small enough so that ah∗ < h0. This does not necessarily contradict the

asymptotic theory since in finite sample, where n is fixed, h∗ and h0 are both con-

stants. Rather, the asymptotic results can be used as a guide to help us choose the

interval I appropriately. In particular, since the practice leads us to take ah∗ < h0,

and the theory indicates that the interval I should also contain larger bandwidths,

this suggests to take the interval I wider for small h0 than for large h0. These con-

siderations motivate the practical implementation of the method described in section

4.

Remark 2. Since our goal with the theory is only to provide some insight into the

method, Lemma 2 only studies the variance in the case where the errors Ui are or-

dinary smooth, that is, where the characteristic function ϕU(t) behaves like |t|−β in

the tails. It would be possible to also study the behaviour of the variance in the su-

persmooth case, where, for t large, ϕU(t) behaves like a exp(−|t|β) for some β > 0.

However this would not be very useful for practice since, as usual in deconvolution

problems, the message would be that the bias is negligible compared to the variance,

and that the latter tends to zero at a logarithmic rate. We consider supersmooth errors

in our numerical investigation in section 5.

Remark 3. In section 4.3 we will discuss a variant of this approach and of the

approach of section 3.2, where the so-called diagonal terms are left out of the squared

bias.

3.2 Integrated plug-in approach

Since one of the most effective methods of global bandwidth selection is the plug-in

procedure, it seems natural to consider a plug-in approach in the local context too.
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Assume that

supt|tkϕK(t)/ϕU(t/h)| < ∞ and

∫
|tkϕK(t)/ϕU(t/h)| dt < ∞. (3.9)

Then a plug-in estimator of the asymptotic squared bias of f̂X could be defined

by replacing f
(k)
X (x) in (2.3) by f̂

(k)
X (x; g), the kth derivative of f̂X(x; g) with the

bandwidth g = g(x) chosen to minimise the MSE of f̂
(k)
X (x; g). However, unlike in the

global setting, this MSE depends in a complex way on several unknown pointwise fX-

related quantities, which makes this approach unattractive. In particular, choosing

for each x a bandwidth g(x) can turn out to work rather poorly in practice. See Hall

(1993) for a more thorough description of the problems associated with a local plug-in

procedure in the simpler error-free case.

Inspired by the EBBS procedure, in order to reduce the effect of a particular local

bandwidth g(x), we suggest taking an average over a range of bandwidth values. More

precisely, we suggest estimating f
(k)
X (x) by

f̃
(k)
X (x) = I−1

0

∫
I
f̂
(k)
X (x;h) dh ,

where Ij and I are defined in section 3.1. We call this method “integrated plug-in”

(IPI).

The following lemmas describe the asymptotic bias and variance of the estimator

f̃
(k)
X (x).

Lemma 3. Under the conditions of Lemma 1, if (3.9) holds, then for I = [ah∗, bh∗],

where a < 1 and b > 1 are some finite constants and h∗ → 0 as n → ∞, we have

E{f̃ (k)
X (x)} = f

(k)
X (x) +O(h2

∗). Moreover, if fX has 2k + 1 bounded derivatives, then

E{f̃ (k)
X (x)} = f

(k)
X (x) + C3h

k
∗f

(2k)
X (x)

µK,k

k!
+ o(hk

∗),

where C3 is a finite constant defined in the proof of the lemma.

Lemma 4. Assume condition A and suppose that ||ϕ′
K ||∞ < ∞, ||ϕ′

U ||∞ < ∞ and∫ (
|t|β + |t|β−1)

{
|tkϕ′

K(t)|+ |tk−1ϕK(t)|+ |tkϕK(t)|
}
dt < ∞. Then if (3.8) and (3.9)

hold, we have

var{f̃ (k)
X (x)} = C4I

−2
0

fW (x)

nh2k+2β+1
∗

,

where C4 is a finite constant defined in the proof of the lemma.
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Comparing these two lemmas with Lemmas 1 and 2, we see that the conditions

on fX and the rates coincide if we use a kernel of order k = 2. For higher order

kernels, the bias of the IPI method is of smaller order if the density has enough

derivatives, but in this case the same rate could be obtained by EBBS by using a

higher order kernel. In practice anyway, it is often recommended to work with second

order kernels to avoid too high variability in the estimator and to avoid assuming

too many unverifiable conditions on the unknown density. As in the EBBS case, the

lemmas suggest that the bandwidths in I should be an order of magnitude larger

than candidate local bandwidths h0, but in finite samples better results are obtained

if h0 ∈ I. As in the EBBS case, the theory also suggests that wider intervals be

employed for smaller values of h0. The detailed implementation of our procedure is

described in section 4.

3.3 Local SIMEX bandwidth selection

Instead of constructing estimators of the asymptotic optimal bandwidth, we could

also try to estimate the bandwidth hMSE(x). However, this requires to estimate the

MSE, which is not easy to do. One possibility for doing this would be to use the

SIMEX ideas developed recently by Delaigle and Hall (2008) in the errors-in-variable

regression context. SIMEX is a general technique originally suggested by Cook and

Stefanski (1994) and Stefanski and Cook (1995) for parametric curve estimation in

errors-in-variables contexts. The idea is to learn the mechanism of contamination by

adding extra errors to the data, examining the effect on the quantities of interest (in

our case the local bandwidth), and extrapolating back to the original data.

These ideas can be applied as follows. Let D(x;h) =
{
fX(x)− f̂X(x;h)

}2
denote

the squared error at x when using the bandwidth h. If we knew fX , we would choose

the local bandwidth h(x) at x to minimize D(x;h). Since fX is unknown, we consider

versions of D(x;h) that we can calculate, using data contaminated by more errors.

As in any SIMEX procedure our first step is to generate data which contain more

errors than the original data. We take them as follows:

1. Generate U∗
1 , . . . , U

∗
n and U∗∗

1 , . . . , U∗∗
n independent of the data W1, . . .Wn and
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having the distribution of U ;

2. Put W ∗
i = Wi + U∗

i and W ∗∗
i = W ∗

i + U∗∗
i , for 1 ≤ i ≤ n;

Next, let fW (resp. fW ∗) denote the density of W (resp. W∗), and let f̂W (x;h)

(resp. f̂W ∗(x;h)) denote the deconvolution kernel density estimator of fW (resp. fW ∗)

constructed from the contaminated data W ∗
1 , . . . ,W

∗
n (resp. W ∗∗

1 , . . . ,W ∗∗
n ). Define

D∗(x;h) =
{
fW (x)− f̂W (x;h)

}2
and D∗∗(x;h) =

{
fW ∗(x)− f̂W ∗(x;h)

}2
.

Let h∗(x) and h∗∗(x) be the bandwidths which minimise D∗(x;h) and D∗∗(x;h) with

respect to h. Since W ∗∗ measures W ∗ in the same way that W ∗ measures W , and

W measures X, we can expect the relationship between h(x) and h∗(x) to be similar

to that between h∗(x) and h∗∗(x). As in Delaigle and Hall (2008), this suggests

approximating h(x) by
{
h∗(x)

}2
/h∗∗(x). Note that since h∗(x) and h∗∗(x) converge

to zero at the same rate as h(x), the ratio
{
h∗(x)

}2
/h∗∗(x) converges to zero at the

same rate as h(x).

Although we can not calculate D∗(x;h) and D∗∗(x;h), and thus h∗(x) and h∗∗(x),

exactly, we can construct very good estimators of these quantities. Indeed, since we

have access to the data W1, . . . ,Wn and W ∗
1 , . . . ,W

∗
n , we can construct standard

“error-free” kernel estimators of fW and fW ∗ , defined by

f̂W,EF(x) =
1

ng1

n∑
j=1

K
(x−Wj

g1

)
and f̂W ∗,EF(x) =

1

ng2

n∑
j=1

K
(x−W ∗

j

g2

)
,

where K is a kernel and g1 and g2 are bandwidths (calculated using, e.g., the plug-in

method of Sheather and Jones, 1991). Since the estimation error of these estimators

is negligible compared to that of deconvolution estimators, we can estimate D∗(x;h)

and D∗∗(x;h) by D̂∗(x;h) =
{
f̂W,EF(x) − f̂W (x;h)

}2
and D̂∗∗(x;h) =

{
f̂W ∗,EF(x) −

f̂W ∗(x;h)
}2
. Let ĥ∗(x) = argminhD̂

∗(x;h) and ĥ∗∗(x) = argminhD̂
∗∗(x;h). Our local

SIMEX estimator of the local bandwidth h(x) is defined by ĥ(x) = {ĥ∗(x)}2/ĥ∗∗(x).

To avoid too strong dependence on the SIMEX samplesW ∗
1 , . . . ,W

∗
n andW ∗∗

1 , . . . ,W ∗∗
n ,

we proceed as in Delaigle and Hall (2008) and generate B such samples W ∗
b1
, . . . ,W ∗

b,n

and W ∗∗
b,1, . . . ,W

∗∗
b,n, for b = 1, . . . , B. Then we take the average of the B correspond-

ing estimators of D∗ and D∗. That is, in the procedure described above, we replace

11



D̂∗(x;h) and D̂∗∗(x;h) by

D̄∗(x;h) =
1

B

B∑
b=1

D̂∗
b (x;h) and D̄∗∗(x;h) =

1

B

B∑
b=1

D̂∗∗
b (x;h),

where D̂∗
b (x;h) and D̂∗∗

b (x;h) denote the version of D̂∗(x;h) and D̂∗∗(x;h) calculated

from the bth sample.

4 Details of implementation

In this section we give details of our implementation of the various local bandwidth

selectors. First, note that in practice it is reasonable to expect that for most points x,

the optimal local bandwidth at x will lie in the interval [hPI/4, 2hPI], where hPI denotes

the global plug-in bandwidth selector of Delaigle and Gijbels (2004a). Therefore,

when searching for a local bandwidth, we restrict our attention to that interval. More

precisely, we search for our local bandwidth on a discrete grid H = {h1, . . . , hM},

where hj+1 = CjhPI/4, with C = 1.1 and where M is such that hM−1 < 2hPI ≤ hM .

Such geometric grids of points are frequently used in practice (see e.g. Fan and

Gijbels, 1996, page 122). Similarly, Ruppert (1997) takes an equally spaced grid of

bandwidths on the log scale.

This is the default construction of H that we suggest using. In general, replacing

hPI/4 by a smaller value such as hPI/10 significantly worsens the results and produces

too wiggly estimators. On the other hand, we can replace 2hPI by a value as large as

10hPI without affecting the results significantly, but this increases the computational

time. Of course, we can’t exclude the possibility that, in some cases, for some points

x, our method could work better with wider intervals. Nevertheless, since the interval

[hPI/4, 2hPI] contains the global PI bandwidth, we can expect to get reasonable results

in the majority of cases (remember that hPI estimates the global optimal bandwidth).

4.1 Main methods

For the local SIMEX bandwidth selector, the only quantity we need to choose is the

number B of SIMEX samples. To keep the computational time reasonable, we took
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B = 15 as in Delaigle and Hall (2008). In general, taking B larger does not affect the

results much, but it can significantly increase the computational time.

We implemented the EBBS and the IPI methods as follows: for all h0 ∈ H:

1. Estimate the variance of f̂X(x;h0) by ÂVar(x;h0) defined at (3.5);

2. Construct the interval I as follows:

I =


[
h0C

−α1 , h0 C
α2
]

if h0 ∈ [hPI/4, 2hPI/3)[
h0C

−β1 , h0C
β2
]

if h0 ∈ [2hPI/3, 2hPI];
(4.10)

3. (a) For the EBBS method, calculate B̂(x) with I defined in step 2;

(b) For the IPI method, calculate f̃
(k)
X (x) with I defined in step 2;

4. (a) For the EBBS method, estimate AMSE(x;h0) by

ÂMSE(x;h0) = ÂVar(x;h0) + h2k
0 B̂2(x);

(b) For the IPI method, estimate AMSE(x;h0) by

ÂMSE(x;h0) = ÂVar(x;h0) + h2k
0

µ2
K,k

(k!)2
{f̃ (k)

X (x)}2;

Then, estimate hAMSE(x) by ĥAMSE(x) = first local minimiser of ÂMSE(x;h0) where

the minimum is searched over h0 ∈ H. The motivation for taking the first local

minimum of ÂMSE(x;h0) instead of the global minimum is the same as in Ruppert

(1997) and comes from the fact that as h0 increases, B̂(x) becomes more and more

biased, thereby producing less meaningful results. Guided by our theoretical results,

an extensive simulation study led us to set the parameters used in the definition of

the interval I, at (4.10), equal to α1 = 6, α2 = 3, β1 = 3 and β2 = 1. We found this

choice to work well for the various densities we considered, even though these had

very different scales and features. This is the default choice we recommend to use in

practice. It is clear from the definition of the αj’s and the βj’s that these parameters

are closely connected to the value of C used to construct the geometric grid H. The

values we suggest here are appropriate for C = 1.1, our default choice. If the user

changes the value of C, then the values of αj and βj have to be modified accordingly.

In general, for all three methods, the final local bandwidth ĥ(x) tends to be

somewhat rough as a function of x. Hence, as in Ruppert (1997), we smooth the
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local bandwidth, using a triangular function. At a fixed point x, the smoothed version

h̄(x) is constructed by taking a weighted average of the bandwidths ĥ(y) for all y’s

in a neighborhood of x. We use the smoothing scheme of Ruppert (1997), page 1054,

where we take span equal to 0.05 times the length of the grid G of x-values defined

below (at page 19). As in Ruppert (1997), we can not guarantee that this is always

the best choice, but we found that it worked well in all cases that we tried. See

Ruppert (1997) for more details and recommendations.

4.2 Discrete version

In practice, when a grid of equispaced bandwidths is used, our integral version of

EBBS is essentially equivalent to the discrete least-squares version employed by Rup-

pert (1997). However, the two methods differ a little when using a geometric grid.

For comparison, in our simulation study, we also implemented discrete versions of the

EBBS and the IPI procedures in a way similar to Ruppert (1997). More precisely, in

his implementation, to estimate the bias corresponding to a bandwidth h0 = hj ∈ H,

Ruppert (1997) uses a geometric grid {hj+k}J2k=−J1
of neighboring points of hj, where

J1 and J2 are two fixed numbers (of course, this is only done for bandwidths hj that

have J1 neighbours to the left and J2 neighbours to the right). Instead of our integrals

Ii, Ruppert (1997) uses sums Li =
∑J2

ℓ=−J1
hi
j+ℓ. We implemented a similar discrete

version of our procedures as follows. For j = 1 + J1, . . . ,M − J2:

1. Same as step 1 of section 4.1, replacing there h0 by hj;

2. (a) For EBBS, estimate B(x) by B̂(x;hj) =
{
L0

∑J2
ℓ=−J1

hk
j+ℓf̂X(x;hj+ℓ) −

Lk

∑J2
ℓ=−J1

f̂X(x;hj+ℓ)
}
/(L2kL0 − L2

k) ·

(b) For IPI, estimate by f
(k)
X (x;hj) by f̃

(k)
X (x;hj) = L−1

0

∑J2
ℓ=−J1

f̂
(k)
X (x;hj+ℓ);

3. Same as step 4 of section 4.1, replacing there h0 by hj;

The local bandwidth ĥ(x) for estimating fX(x) is defined by the first local mini-

mum of ÂMSE(h) among all h ∈ {h1+J1 , . . . , hM−J2}. Then, we smooth the local

bandwidth as described at the end of section 4.1. We took J1 = 6 and J2 = 3 for
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h0 ∈ [hPI/4, 2hPI/3), and J1 = 3 and J2 = 1 when h0 ∈ [2hPI/3, 2hPI], which corre-

sponds to the method employed in section 4.1. Like there, by definition, the values

of J1 and J2 are strongly connected to the value of C and the values we suggest here

are appropriate for our default choice C = 1.1, and if another value of C is used then

J1 and J2 have to be modified accordingly.

4.3 Leaving the diagonal terms out

When taking the square of nonparametric estimators, it often happens that some

terms essentially contribute to bias. These terms are often referred to as diagonal

terms, and diagonals-out versions of estimators are sometimes considered as more

attractive. See for example Hall and Marron (1987). As we shall see below, a sim-

ilar phenomenon occurs with the IPI and the EBBS approaches when estimating

{f (k)
X (x)}2, which is required to estimate the squared bias.

For the method of section 3.2, {f (k)
X (x)}2 is estimated by {f̃ (k)

X (x)}2 =
∑n

j,ℓ=1 Tj,ℓ =

D +
∑

j ̸=ℓ Tj,ℓ, where

Tj,ℓ = I−2
0 n−2

∫
I

∫
I
(hg)−k−1K

(k)
U

(x−Wj

h

)
K

(k)
U

(x−Wℓ

g

)
dh dg,

D =
∑n

j=1 Tj,j, and the Tj,j’s are the diagonal terms. Using techniques similar to those

employed in Lemmas 3 and 4, it can be proved that
∑

j ̸=ℓ E(Tj,ℓ) = {f (k)
X (x)}2 +Rn,

where the bias term Rn is of order o(1) and depends on derivatives of fX . On the other

hand, E[D(x)] ∼ const.n−1h−2k−2β−1
∗ fW (x), where 0 < const. < ∞ is a constant, so

that this term has no opportunity to compensate for the dominant part of Rn. As

in Hall and Marron (1987), this motivates considering a diagonals-out variant of the

estimator, defined by

I−2
0 n−1(n− 1)−1

n∑
j=1

∑
ℓ ̸=j

∫
I

∫
I
(hg)−k−1 K

(k)
U

(x−Wj

h

)
K

(k)
U

(x−Wℓ

g

)
dh dg.

Similarly, a variant of the EBBS method can be obtained by leaving the diagonal

terms out of B̂2(x). Here we replace B̂2(x) by B̃2(x) = N/D2 where D = I2kI0 − I2k ,

N = I20

∫
I

∫
I
hkgkf̃Xhg(x) dh dg+I2k

∫
I

∫
I
f̃Xhg(x) dh dg−2I0Ik

∫
I

∫
I
hkf̃Xhg(x) dh dg,
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and

f̃Xhg(x) =
1

n(n− 1)hg

n∑
j=1

∑
k ̸=j

KU

(x−Wj

h

)
KU

(x−Wk

g

)
.

These diagonals-out estimators have the same convergence rates as the estimators

of the previous sections, and we study their numerical merit in section 5.

5 Simulations

5.1 Methods compared

We implemented the following local bandwidth selectors: integral versions of EBBS

(EBBSI) and of IPI (IPII) as in section 4.1, discrete versions of EBBS (EBBSD)

and of IPI (IPID) as in section 4.2, diagonals-out versions of the discrete selectors

(EBBSD1 and IPID1) and integral selectors (EBBSI1 and IPII1), and local SIMEX

procedure (LSIMEX). In most cases, the diagonals-out versions worked better than

the diagonals-in, and thus we do not show the results of the latter. We compared

the performance of our local bandwidth selectors with the global plug-in bandwidth

(GPI) of Delaigle and Gijbels (2002, 2004a), which, as in the error-free case, is a very

good global bandwidth. For illustration, we also implemented a global version of our

SIMEX bandwidth selector, which we denote by GSIMEX. The procedure is exactly

the same as in section 3.3 except that we replace the local distances D̂∗(x;h) and

D̂∗∗(x;h) by estimators of the Asymptotic Mean Integrated Squared Errors of the

deconvolution estimators f̂W and f̂W ∗ . That is, we replace D̂∗(x;h) and D̂∗∗(x;h) by

ÂMISE(f̂W ) = (2πnh)−1

∫
|ϕK(t)|2|ϕU(t/h)|−2 dt+

h2k

(k!)2
µ2
K,kR̂(f

(2)
W ) (5.11)

and

ÂMISE(f̂W ∗) = (2πnh)−1

∫
|ϕK(t)|2|ϕU(t/h)|−2 dt+

h2k

(k!)2
µ2
K,kR̂(f

(2)
W ∗), (5.12)

where, for any square integrable function p, we used the notation R(p) =
∫
p2(v) dv,

and where R̂(f
(2)
W ) and R̂(f

(2)
W ∗) denote the estimators of Jones and Sheather (1991)

constructed from the data Wi and W ∗
i , respectively. For a derivation of the AMISE

of the deconvolution kernel estimator, see for example Stefanski and Carroll (1990).

Of course, in the GSIMEX approach the same bandwidth was used at all points x.
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5.2 Simulation settings

We considered the following eight densities:

1. Comb density:
∑5

l=0(2
5−l/63)N

[
{65− 96(0.5)l}/21, (32

63
)2/22l

]
;

2. Gammas and a Normal Mixture: 0.3G(10) + 0.4N(40, 25) + 0.3G(70);

3. Mixture of three Normals: 0.5N(0, 0.25) + 0.3N(1.5, 0.01) + 0.2N(−1, 0.025);

4. Beta and Normal mixture density: 0.35B(2, 2)+0.3N(4, 0.252)+0.35N(−3, 1);

5. Gamma Mixture: 0.4G(5) + 0.6G(13);

6. Kurtotic density: (2/3)N(0, 1) + (1/3)N(0, 0.12);

7. Bimodal Normal mixture: 0.5N(−3, 1) + 0.5N(2, 1);

8. Standard Normal: N(0, 1).

Densities 1, 6, 7 and 8 are taken form Marron and Wand (1992) and density 5 is

taken from Delaigle and Gijbels (2004a). Some of these densities involve various com-

plex features, such as several modes of various sizes and shapes. For these densities,

we can expect that our local bandwidths will be beneficial. Other densities are much

simpler and for them we do not expect any gain by using a local bandwidth, but we

want to check that using a local bandwidth is not going to deteriorate the results too

much.

We used the second order (k = 2) kernel K with characteristic function ϕK =

(1−t2)31[−1,1], which is often used in deconvolution methods. See for example Delaigle

and Hall (2006). We considered Laplace errors (which are ordinary smooth) and

normal errors (which are supersmooth). The error variance was controlled by the

noise to signal ratio, denoted by NSR, and defined by NSR = var(U)/ var(X). We

estimated each density from each of 100 randomly generated samples of size 100,

250 or 500 contaminated by either Laplace or Normal errors such that the NSR

was either 10% or 25%. To calculate KU , note that in the normal case, there is no

analytic expression and we need to use numerical integration especially adapted to the

calculation of Fourier transforms. In the Laplace case, there is an analytic expression

for KU , but it can not be used near zero. For details about these issues and how to

address them in practice, see Delaigle and Gijbels (2007).
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Figure 1: Boxplots of log(ASE(hGPI)/ASE(ĥ)) indicating the efficiency gain over the GPI

method calculated from the 100 replications for, from left to right, densities 1 to 4. The

boxes show 1: EBBSD1, 2: EBBSI1, 3: IPID1, 4: IPII1, 5: LSIMEX, 6: GSIMEX. Row 1:

n = 100 and Laplace with NSR 10%; row 2: n = 250 and Laplace errors with NSR 25%.
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Figure 2: Boxplots of log ASE(hGPI)/ASE(ĥ) over the 100 replications for, from left to

right, densities 1 to 4. The boxes show 1: EBBSD1, 2: EBBSI1, 3: IPID1, 4: IPII1, 5:

LSIMEX, 6: GSIMEX. Row 1: n = 100 and normal errors with NSR 10%; row 2: n = 250

and normal errors with NSR 25%.
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Figure 3: Quartile estimators for density 4 when n = 100 and measurement errors are

Laplace with 10% NSR; Dotted line: 1st quartile estimator, Dashed line: Median estimator,

Dotted-dashed line: 3rd quartile estimator. From left to right, row 1: EBBSD1, EBBSI1,

IPID1;row 2: IPII1, LSIMEX, GPI.

We estimated each density on a grid G of nG = 80 equally spaced points (different

for each density). We assessed the quality of each density estimator by calculating

the Averaged Squared Error, defined by:

ASE(f̂X,d) =
1

nG

nG∑
i=1

[
fX(xi)− f̂X

{
xi;h(xi)

}]2
.

In each graph of figures 3 to 5 below, we show the target curve (in solid line), and

three estimators. These three estimators, which we will refer to as “the quartile

estimators”, are those which correspond to the first, second and third quartiles of the

100 values of ASE (remember that we generate 100 samples each time). We show

only a summary of the results, but the other results were similar. They are available

in Achilleos and Delaigle (2011). All codes were written in R.

In figures 1 and 2, we show, for densities 1 to 4, boxplots of the log of the ratio

ASE(hGPI)/ASE(ĥ) over the 100 replications, where hGPI denotes the GPI bandwidth

and ĥ is one of our new procedures. A value larger than 0 means that the local

bandwidth gave a smaller ASE than hGPI (and thus worked better). Figure 1 is for

Laplace errors with NSR = 10% and n = 100, and with NSR = 25% and n = 250.
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Figure 2 shows the results for normal errors with either NSR = 10% and n = 100

or NSR = 25% with n = 250. The other combinations of n and NSR are shown in

Achilleos and Delaigle (2011). Clearly, for these four densities all local bandwidth

selectors significantly outperformed the two global approaches, but the LSIMEX did

not compete with the other four local procedures. The GSIMEX method did not seem

to be particularly useful compared to the GPI. The EBBSD1 and IPID1 bandwidths

performed slightly better than the EBBSI1 and IPII1 selectors.

Next we show the quartile estimators for the EBBSD1, EBBSI1, IPID1, IPII1,

LSIMEX and GPI methods, for densities 2, 3 and 4, various sample sizes, and for

Laplace or Normal errors. Figure 3 shows that GPI failed to capture the refined

features of density 4. The local bandwidth selectors all performed much better, but

as already indicated by the boxplots in the previous figures, the LSIMEX method

did not work nearly as well as the other four methods. The same conclusions can be

drawn for figures 4 and 5. We can not show the results for all the cases that we tried,

but of course, as usual, the results improved as the sample size increased or as the

NSR decreased, and normal errors were harder to deal with than Laplace errors.

Boxplots of the log of the ratio ASE(hGPI)/ASE(ĥ) over 100 replications for den-

sities 5 to 8 are shown in figure 6 for Laplace errors with NSR = 10% and n = 100,

and with NSR = 25% and n = 250. Here, the local bandwidth selectors performed

comparably with, but did not improve, the global methods for the simpler densities

5, 7 and 8, but they clearly improved results for density 6. Unsurprisingly, our other

simulation results showed that, for simpler densities like densities 7 and 8, the local

bandwidth selectors gave more variable estimators than the global approaches, and

that the latter worked slightly better. Nevertheless, the small loss incurred by local

bandwidths in simple cases such as these is negligible compared to the significant gain

in more complex cases.
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Figure 4: Quartile estimators for density 3 when n = 250 and measurement errors are

Laplace with 25% NSR; Dotted line: 1st quartile estimator, Dashed line: Median estimator,

Dotted-dashed line: 3rd quartile estimator. From left to right, row 1: EBBSD1, EBBSI1,

IPID1;row 2: IPII1, LSIMEX, GPI.
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Figure 5: Quartile estimators for density 2 when n = 100 and measurement errors are

Normal with 10% NSR; Dotted line: 1st quartile estimator, Dashed line: Median estimator,

Dotted-dashed line: 3rd quartile estimator. From left to right, row 1: EBBSD1, EBBSI1,

IPID1;row 2: IPII1, LSIMEX, GPI.
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Figure 6: Boxplots of log(ASE(hGPI)/ASE(ĥ)) indicating the efficiency gain over the GPI

method calculated from the 100 replications for, from left to right, densities 5 to 8. The

boxes show 1: EBBSD1, 2: EBBSI1, 3: IPID1, 4: IPII1, 5: LSIMEX, 6: GSIMEX. Row 1:

n = 100 and Laplace with NSR 10%; row 2: n = 250 and Laplace errors with NSR 25%.

6 Conclusions

We have proposed several local bandwidth selectors for the errors-in-variables density

estimation problem. We have illustrated the significant improvement they can bring

over global bandwidths when the density to estimate has various local features, with-

out significantly worsening performance in other cases. Of all the local bandwidth

selectors we suggested, we found that the EBBSD1, EBBSI1, IPID1 and IPII1 meth-

ods performed the best, with, depending on the cases, one working better than the

other.

Acknowledgement

Delaigle’s research was supported by grants from the Australian Research Council

and by a QEII Fellowship. We thank two referees for valuable comments that helped

improve the manuscript.

References

22



Achilleos, A. and Delaigle, A. (2011). Supplementary file for the paper “Local bandwidth

selectors for deconvolution kernel density estimation”. Available at

http://www.ms.unimelb.edu.au/~aurored.

Brockmann, M., Gasser, T. and Herrmann, E. (1993). Locally adaptive bandwidth choice

for kernel regression estimators. J. Amer. Statist. Assoc., 88, 1302–1309.

Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the de-

convolution density in a semiparametric convolution model. Bernoulli, 11, 309–340.

Carroll, R.J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density.

J. Amer. Statist. Assoc., 83, 1184–1186.

Carroll, R.J., Ruppert, D., Stefanski, L. and Crainiceanu, C. (2006). Measurement Error

in Nonlinear Models: A modern prospective. Second edition. Chapman and Hall CRC

Press.

Cook, J.R. and Stefanski, L. (1994). Simulation-Extrapolation estimation in parametric

measurement error models. J. Amer. Statist. Assoc., 89, 1314–1328

Delaigle, A. and Gijbels, I. (2002). Estimation of integrated squared density derivatives

from a contaminated sample. J. Roy. Statist. Soc., Ser. B, 64, 869–886.

Delaigle, A. and Gijbels, I. (2004a). Practical bandwidth selection in deconvolution kernel

density estimation. Comp. Statist. Data Anal., 45, 249–267.

Delaigle, A. and Gijbels, I. (2004b). Bootstrap bandwidth selection in kernel density esti-

mation from a contaminated sample. Ann. Inst. Statist. Math., 56, 19–47.

Delaigle, A. and Gijbels, I. (2006). Estimation of boundary and discontinuity points in

deconvolution problems. Statistica Sinica, 16, 773–788.

Delaigle, A. and Gijbels, I. (2007). Frequent problems in calculating integrals and opti-

mizing objective functions: a case study in density deconvolution. Statist. Comput.,

17, 349–355.

Delaigle, A. and Hall, P. (2006). On the optimal kernel choice for deconvolution. Statist.

Probab. Lett., 76, 1594–1602.

Delaigle, A. and Hall, P. (2008). Using SIMEX for smoothing-parameter choice in errors-

in-variables problems. J. Amer. Statist. Assoc., 103, 280–287.

Delaigle, A., Hall, P. and Meister, A. (2008). On Deconvolution with repeated measure-

ments. Ann. Statist., 36, 665-685.

Fan, J. (1991a). Asymptotic normality for deconvolution kernel density estimators. Sankhya

A, 53, 97–110.

Fan, J. (1991b). On the optimal rates of convergence for nonparametric deconvolution

problems. Ann. Statist., 19, 1257–1272.

Fan, J., Hall, P., Martin, M. and Patil, P. (1996). On local smoothing of nonparametric

curve estimators. J. Amer. Statist. Assoc., 91, 258–266.

23



Farmen, M., and Marron, J.S. (1999). An assessment of finite sample performance of

adaptative methods in density estimation. Comp. Statist. Data Anal., 30, 143–168.

Hall, P. (1993). On plug-in rules for local smoothing of density estimators. Ann. Statist.,

21, 694–710.

Hall, P. and Marron, J.S. (1987). Estimation of integrated squared density derivatives.

Statist. Probab. Lett., 6, 109-115.

Hall, P. and Qiu, P.H. (2005). Discrete-transform approach to deconvolution problems.

Biometrika, 92, 135–148.

Hazelton, M.L. (1996). Bandwidth selection for local density estimators. Scand. J.

Statist., 23, 221–232.

Hazelton, M.L. (1998). Bias annihilating bandwidths for kernel density estimation at a

point. Statist. Probab. Lett., 38, 305–309.

Hazelton, M.L. and Turlach, B.A. (2009). Nonparametric density deconvolution by weighted

kernel estimators. Statist. Computing, 19, 217–228.

Hesse, C.H. (1999). Data-driven deconvolution. J. Nonparam. Statist., 10, 343–373.

Holzmann, H., Bissantz, N., Munk, A. (2007). Density testing in a contaminated sample.

J. Multivar. Anal., 98, 57–75.

Jones, M. C. and Sheather, S. J. (1991). Using non stochastic terms to advantage in kernel-

based estimation of integrated squared density derivatives Statist. Probab. Lett., 6,

511–514.

Marron, J.S. and Wand, M.P. (1992). Exact mean integrated squared error. Ann. Statist.,

20, 712–736.

Meister, A. (2009). On testing for local monotonicity in deconvolution problems. Statist.

Probab. Lett., 79, 312–319.

Ruppert, D. (1997). Empirical Bias Bandwidths for Local polynomial nonparametric re-

gression and density estimation. J. Amer. Statist. Assoc., 92, 1049–1062.

Sain, S. R. (2003). A new characterization and estimation of the zero-bias bandwidth.

Aust. N. Z. J Statist., 45, 29–42

Schucany, W.R. (1995). Adaptive bandwidth selection for kernel regression. J. Amer.

Statist. Assoc., 90, 535–540.

Sheather, S. (1983). A data-based algorithm for choosing the window width when esti-

mating the density at a point. Comp. Statist. Data Anal., 1, 229–238.

Sheather, S.J. (1986). An improved data-based algorithm for choosing the window width

when estimating the density at a point. Comp. Statist. Data Anal., 4, 61–65.

Sheather, S.J. and Jones, M.C. (1991). A reliable data-based bandwidth selection method

for kernel density estimation. J. Roy. Statist. Soc., Ser. B, 53, 683–690.

Staudenmayer J., Ruppert, D., Buonaccorsi, J.R. (2008). Density estimation in the pres-

ence of heteroscedastic measurement error. J. Amer. Statist. Assoc., 103, 726–736.

24



Stefanski, L. and Carroll, R.J. (1990). Deconvoluting kernel density estimators. Statistics,

21, 169–184.

Stefanski, L. and Cook, J.R. (1995). Simulation-extrapolation: the measurement error

jackknife. J. Amer. Statist. Assoc., 90, 1247–1256.

Wang, X.F., Fan, Z.Z., Wang, B. (2010). Estimating smooth distribution function in the

presence of heteroscedastic measurement errors. Comp. Statist. Data Anal., 54,

25–36.

Zhang, S.P. and Karunamuni, R.J. (2009). Deconvolution boundary kernel method in

nonparametric density estimation. J. Statist. Plan. Infer., 139, 2269–2283.

A Proofs

Proof of Lemma 1. Let Ak = (bk − ak)/k. For ℓ = 0, 2, we have

E
{∫

I
hℓf̂X(x;h) dh

}
=

∫
I
hℓE

{
f̂X(x;h)

}
dh

=fX(x)

∫
I
hℓ + f

(k)
X (x)

µK,k

k!

∫
I
hℓ+k dh

+ f
(k+2)
X (x)

µK,k+2

(k + 2)!

∫
I
hℓ+k+2 dh+ o

(∫
I
hℓ+k+2 dh

)
=fX(x)h

ℓ+1
∗ Aℓ+1 + f

(k)
X (x)

µK,k

k!
hℓ+k+1
∗ Aℓ+k+1

+ f
(k+2)
X (x)

µK,k+2

(k + 2)!
hℓ+k+3
∗ Aℓ+k+3 + o(hℓ+k+3

∗ ).

Therefore,

E
{∫

I
hkf̂X(x;h) dh

∫
I
dh−

∫
I
f̂X(x;h) dh

∫
I
hk dh

}
=fX(x)h

k+2
∗ Ak+1A1 + f

(k)
X (x)

µK,k

k!
h2k+2
∗ A2k+1A1

+ f
(k+2)
X (x)

µK,k+2

(k + 2)!
h2k+4
∗ A2k+3A1 + o(h2k+4

∗ )− fX(x)h
k+2
∗ A1Ak+1

− f
(k)
X (x)

µK,k

k!
h2k+2
∗ A2

k+1 − f
(k+2)
X (x)

µK,k+2

(k + 2)!
h2k+4
∗ Ak+3Ak+1 + o(h2k+4

∗ )

=f
(k)
X (x)

µK,k

k!
h2k+2
∗

(
A2k+1A1 − A2

k+1

)
+ f

(k+2)
X (x)

µK,k+2

(k + 2)!
h2k+4
∗

(
A2k+3A1 − Ak+3Ak+1

)
+ o(h2k+4

∗ ),

and the result follows from the definition of B̂(x), if we take C1 = (A2k+3A1 −
Ak+3Ak+1)/(A2k+1A1 − A2

k+1).
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Proof of Lemma 2. Let Ak = (bk − ak)/k. We have

var
{∫

I
hkf̂X(x;h) dh

∫
I
dh−

∫
I
f̂X(x;h) dh

∫
I
hk dh

}
= var

( 1
n

n∑
j=1

Tj

)
=

1

n
var(T1),

where

Tj =

∫
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hk−1KU

(x−Wj

h

)
dh

∫
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∫
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h−1KU
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h
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dh
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hk dh.

Let

E1(h, g) = E
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h

)
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g

)}
.

We have

var(T1) =
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hk dh
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− 2
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I
hk−1g−1E1(h, g) dh dg

∫
I
dh

∫
I
hk dh+O(h2k+2

∗ ).

Now for any integers ℓ1 and ℓ2, we have∫
I

∫
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hℓ1gℓ2E1(h, g) dh dg
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∫
I

∫
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(x− w
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(x− w

g
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fW (w) dw dh dg
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h2β−1
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∫ b
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∫ b
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∫
uj1+β+1vj2+β+1|t|2βϕK(tu)ϕK(tv) dt du dv,

and where we used Lemma 7. Therefore,

var(T1) ∼h2k−2β+3
∗ fW (x)c−2
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2
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The result follows by taking C2 =
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Ak−1,k−1A

2
1+A−1,−1A

2
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Proof of Lemma 3. We have

E
{∫
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f̂
(k)
X (x;h) dh

}
=

∫
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dh+O(h2

∗),

where we used a first order Taylor expansion. If fX has 2k+1 continuous and bounded

derivatives then we can go further in the Taylor expansion and replace the last term

of the expression above by f
(k)
X (x)

∫
I dh + f

(2k)
X (x)µK,k/(k!)

∫
I h

k dh + o(hk+1
∗ ). This

proves the result if we define C3 = Ak+1A
−1
1 with Ak = (bk − ak)/k.

Proof of Lemma 4. We have
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=n−1

∫
I

∫
I

∫
h−k−1g−k−1K

(k)
U
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h

)
K

(k)
U

(x− w

g

)
fW (w) dw dh dg
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)
K

(k)
U

(x− w

vh∗

)
fW (w) dw du dv
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a
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a
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(uv)β|t|2β+2kϕK(tu)ϕK(tv) dt du dv,

where we used Lemma 7. The result follows from the definition of f̃
(k)
X (x) if we take

C4 = (2π)−1
∫ b

a

∫ b

a

∫
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Lemma 5. Suppose that K is symmetric and is such that ||ϕK ||∞ < ∞, ||ϕ′
K ||∞ < ∞,

ϕU(t) ̸= 0 for all t, ||ϕ′
U ||∞ < ∞ and

∫ [
|t|β + |t|β−1]

[
|tkϕ′

K(t)| + |tk−1ϕK(t) · 1{k ≥
1}|+ |tkϕK(t)|

]
dt < ∞. Then, if (3.8) holds, we have

h2β|K(k)
U (x)|2 ≤ cmin(1, |x|−2).

Proof of Lemma 5. See Lemma 3.1 of Fan (1991a).

Lemma 6. Suppose that K is symmetric and satisfies ||ϕK ||∞ < ∞, ϕU(t) ̸= 0 for

all t,
∫
|t|β+k|ϕK(t)| dt < ∞. Then, if (3.8) holds, we have, for k even,

lim
n→∞

hβK
(k)
U (x) =(−i)k

1

2πc

∫
e−itx|t|β+kϕK(t) dt,

Proof of Lemma 6. See Fan (1991a), page 105, but replacing there tβ by |t|β.

Lemma 7. Let u and v be two finite and strictly positive constants, and assume

that the conditions of the above two lemmas are satisfied for k even and let Kn(x) =

h2βK
(k)
U (x/u)K

(k)
U (x/v) and g a bounded function. Then we have at any continuity

point x of g

lim
n→∞

∫
Kn(y)g(x− hy) dy =

g(x)

c2
(uv)β+k+1

2π

∫
|t|2β+2kϕK(tu)ϕK(tv) dt (1.13)

with c as in (3.8).

Proof of Lemma 7. It follows from Lemma 6 that

lim
n→∞

Kn(x) =
1

4π2c2

∫
e−itx/u|t|β+kϕK(t) dt

∫
e−itx/v|t|β+kϕK(t) dt.
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We also have, from Lemma 5 that

sup
n

|Kn(x)| ≤ K∗(x)

where K∗(x) = Cmin(1, |x|−2) is such that
∫
K∗(x) dx < ∞ and limx→∞ |xK∗(x)| =

0, and C denotes a generic finite constant. Therefore, from Lemma 2.1 of Fan (1991a),

we have, at any point x of continuity of g

lim
n→∞

∫
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U
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)
K
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U
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)
g(y) dy
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n→∞

∫
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=
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c2

∫ ( 1

2π

∫
e−itx/u|t|β+kϕK(t) dt

)( 1

2π

∫
e−isx/v|s|β+kϕK(s) ds

)
dx

=
g(x)

c2
(uv)β+k+1

∫ ( 1

2π

∫
e−itx|t|β+kϕK(tu) dt

)( 1

2π

∫
e−isx|s|β+kϕK(sv) ds

)
dx

=
g(x)

c2
(uv)β+k+1

2π

∫
|t|2β+2kϕK(tu)ϕK(tv) dt.
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