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Abstract

The notion of probability density for a random function is not as straightforward as

in finite-dimensional cases. While a probability density function generally does not

exist for functional data, we show that it is possible to develop the notion of density

when functional data are considered in the space determined by the eigenfunctions

of principal component analysis. This leads to a transparent and meaningful sur-

rogate for density, defined in terms of the average value of the logarithms of the

densities of the distributions of principal components, for a given dimension. This

density approximation is estimable readily from data. It accurately represents, in

a monotone way, key features of small-ball approximations to density. Our results

on estimators of the densities of principal component scores are also of independent

interest; they reveal interesting shape differences that have not previously been con-

sidered. The statistical implications of these results and properties are identified

and discussed, and practical ramifications are illustrated in numerical work.
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1. Introduction

The concept of probability density for a random function is becoming increasingly

important in functional data analysis. For example, it underpins discussion of the

mode of the distribution of a random function, addressed in particular by Gasser et

al. (1998), Hall and Heckman (2002) and Dabo-Niang et al. (2004a,b, 2006). Non-

parametric or structure-free methods for curve estimation, from functional data,

involve the concept of density, not least because they generally are based on es-

timators of Nadaraya-Watson type, which require division by an estimator of a

small-ball probability. See, for example, Ferraty et al. (2002a,b, 2007a,b), Ferraty

and Vieu (2002, 2003, 2004, 2006a,b) and Niang (2002). There is of course a more

general, and very large, methodology for functional data analysis, accessible via the

monographs by Ramsay and Silverman (2002, 2005).

In this paper we take up directly the notions of the density and mode of the

distribution of a random function. We argue that, while a density function is

generally not well defined in this context, it is possible to define a meaningful

concept of density for a specific scale or resolution level, which is intrinsically linked

to a particular dimension in a principal component representation. The challenge is

to determine the dimension. We give an argument which leads directly from scale

to dimension, through a simple approximation to a small-ball probability at a given

scale.

The density approximation suggests a simple and appealing definition of mode,

and leads directly to an empirical approximation to density for a given dimension.

Likewise, the approximation also enables two functions to be compared on the ba-

sis of their “relative likelihoods,” i.e. the heights of the density at the respective

functions, although we shall not explore that feature in the present paper. We de-

velop theoretical arguments describing both the approximation and the estimation

of principal component score densities, and we give numerical illustrations of our

conclusions.

Our empirical methods involve estimating the densities of principal component

scores, using approximations to those scores based on estimators of eigenvalues and

eigenfunctions. This problem is itself of intrinsic interest, not least because princi-

pal component score densities reveal interesting shape differences. Our theoretical

results describe properties of density estimators in this context.



2

The problem of determining the intrinsic dimension of the distribution of a ran-

dom function, for given scale, is related to that of estimating the effective dimension

of a sample of p-vectors when the sample size, n, is much less than p. Indeed, the

connection between very high-dimensional data problems, and problems involving

functional data, is drawn explicitly by Leng and Müller’s (2006) “stringing” method,

which permits a random function to be computed from a long data vector. Leng and

Müller suggest that the effective dimension of the transformed data be computed

using principal component methods, which also underpin our analysis.

This paper is organised as follows. In section 2 we define a notion of density

(the “log-density”) that can be used in the functional data context, and from there

we define a modal function which can be used to measure central tendency. The log-

density depends on the densities of the principal component scores, and in section

3 we show how to estimate these densities, and study theoretical properties of these

estimators. In section 4 we provide theoretical arguments that justify the use of

log-density in the functional data context. In section 5 we use our estimators of

the surrogate density, of the densities of the principal components scores and of

the modal curve, to analyse an Australian rainfall dataset. We also illustrate the

methods on some simulated data. The proofs of the main results are gathered in

section 6.

2. Main results and their implications

2.1. Decomposition into principal components. As a prelude to summarising our

main results we briefly revise important properties of functional principal compo-

nent decomposition. See Besse and Ramsay (1986), Ramsay and Dalzell (1991),

Rice and Silverman (1991) and Silverman (1995, 1996) for early work on this topic.

Let X be a random function supported on a compact interval I. If the covariance

function of X is positive definite, it admits a spectral decomposition:

K(s, t) ≡ cov{X(s), X(t)} =

∞∑

j=1

θj ψj(s)ψj(t) , (2.1)

where the expansion converges in L2 on I2, and θ1 ≥ θ2 ≥ . . . are the eigenvalues,

with respective orthonormal eigenvectors ψj , of the linear operator with kernel K.

The functions ψ1, ψ2, . . . form a basis for the space of all square-integrable

functions on I, and, in particular we can write, for X and any square-integrable
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function x on I,

X =

∞∑

j=1

θ
1/2
j Xj ψj , x =

∞∑

j=1

θ
1/2
j xj ψj ,

where the quantities Xj = θ
−1/2
j

∫
I
X ψj and xj = θ

−1/2
j

∫
I
xψj are the principal

component scores (sometimes referred to as the principal components) correspond-

ing to functions X and x. If E(X) = 0 then the above decomposition of X is

termed the Karhunen-Loève expansion, or generalised Fourier expansion. The Xj’s

are always uncorrelated (this follows from orthogonality of the ψj ’s), and we shall

assume that they are independent. This is exactly correct if X is a Gaussian pro-

cess, and it is almost always assumed to be the case in empirical or numerical work.

In such cases, as here, independence is often interpreted pragmatically; it captures

the main features of a population, allows relatively penetrating theoretical analysis,

and motivates simple, practical methodology, such as the estimators explored in

section 5 below. Particularly in the infinite-dimensional setting of functional data

analysis, it seems impossible to use effectively general models for random variables

that are uncorrelated but not independent. Such an approach leads to cumbersome

methods and does not seem to allow useful insight into theoretical properties.

2.2. Log-density function. Many descriptive and predictive functional data analyses

lean heavily on properties of the space of principal component scores. For example,

it is common to describe properties of a sample of curves in terms of the shapes of

the eigenfunctions corresponding to the largest eigenvalues obtained by functional

principal component analysis. Similarly, it seems natural to define density for func-

tional data in terms of the densities fj of the principal component scores Xj , for

example via the product of the densities fj corresponding to the largest eigenvalues.

The notion of log-density, which we shall define below, fills this role.

For h > 0, let p(x | h) = P (‖X − x‖ ≤ h) where ‖X − x‖ denotes the L2

distance between X and x. We shall show in section 4 that

log p(x | h) = C1(r, θ) +
r∑

j=1

log fj(xj) + o(r) , (2.2)

where r = r(h) diverges to infinity as h decreases to zero, fj is the density of the

jth principal component score, xj is the version of that score for the function x, and

both r and the constant C1 depend on h and on the infinite eigenvalue sequence,
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θ say. (Neither r nor C1 depends on x or on the distributions of the principal

component scores.) The term
∑

j≤r log fj(xj) in (2.2) typically diverges at rate r

as r is increased, and in particular it is generally not equal to o(r).

Result (2.2) implies that, for appropriate eigenvalue sequences,

the log-density ℓ(x | r) = r−1
∑

j≤r log fj(xj) captures the variation,

with x, of the logarithm of the small-ball probability p(x | h), up to and in-

cluding terms of order r, and in particular gives rise to a remainder of stric-

tly smaller order than r.

(2.3)

(We have divided by r only to ensure that ℓ(x | r) remains bounded as r increases,

which makes it easier to discuss in theoretical terms. Of course, division by r does

not alter the main features of ℓ.) More explicitly, we shall prove in section 4 that

p(x | h) = C2(r, θ) exp{r ℓ(x | r) + o(r)} , (2.4)

where C2(r, θ) = (hπ1/2)r Γ( 1
2
r+ 1)−1

∏
j≤r θ

−1/2
j does not depend on x. That is,

p(x | h) =
(hπ1/2)r

Γ( 1
2
r + 1)

{ r∏

j=1

θ
−1/2
j fj(xj)

}
exp{o(r)} . (2.5)

One implication of the approximation at (2.4) is that it allows us to extract a

function of x, namely the log-density ℓ(x | r), which captures the first-order effect

that x has on p(x | h). In other words, the log-density describes the main differences

in sizes of small-ball probabilities for different values of x. Moreover, up to terms

that are negligible relative to those captured by the log-density log p(x | h), ℓ(x | r)
is a monotone increasing function of p(x | h). Therefore, while ℓ(x | r) cannot, in

general, be employed to compare densities for different random function distribu-

tions, it can be used as the basis for comparing density at different points x for

the same random function distribution and for dimension r. Another implication of

(2.4), which we shall derive in the Appendix, is that a probability density function

for X does not exist.

The principal component scores Xj and xj are related to the squared L2 dis-

tance between X and x by the formula

‖X − x‖2 =

∞∑

j=1

θj (Xj − xj)
2 . (2.6)
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Although the xj ’s are obviously linked to the eigenvalues θj , in terms of the way

these two quantities influence the distance of X − x from zero (see (2.6)), it can be

seen from (2.5) that the θj’s and xj ’s are largely disconnected in terms of the way

they influence the probability that X − x is only a small distance from zero. In

particular, we could arbitrarily permute the densities f1, . . . , fr without influencing

anything other than the o(r) term on the right-hand side of (2.5). Additionally, (2.4)

makes it clear that the densities of the principal component scores are important

only through their aggregate, defined by ℓ(x | r) in (2.3), and are of relatively little

individual relevance.

2.3. Defining the mode. The log-density can be used to define a notion of central

tendency in a population of curves. In the literature, central tendency is sometimes

measured by the mean function. While this quantity is very easy to calculate, and it

is close to its analogous definition in finite dimensional settings, it is well known that

it is generally unsatisfactory as a measure of “average” in the context of functional

data, since it tends to average out most of the fluctuations. For example, when

applied to non-registered data, or to data which cannot be perfectly aligned, the

averaging process often results in a mean curve that does not share typical properties

(such as oscillations) of the population of curves.

As an alternative, we propose representing central tendency by the “modal

function”

xmode =

∞∑

j=1

θ
1/2
j mj ψj , (2.7)

which, for each j, has the jth principal component score xj equal to the mode mj

of fj . In a finite sample, xmode can be estimated by

x̂mode =

T∑

j=1

θ̂
1/2
j m̂j ψ̂j , (2.8)

where ψ̂j and θ̂j are estimators of ψj and θj, m̂j is the mode of f̂j, f̂j an estimator

of fj , and T is a truncation point which grows with the sample size.

Of course, in the case of functional data as well as multivariate data, we could

also use the median to measure central tendency. In the context of a random

function X , the median curve can be defined (analogously to the spatial median)

to be the function x that minimises E‖X − x‖ (note that the theoretical mean
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minimizes E‖X − x‖2). In practice, this median function can be estimated from

the data by an iterative algorithm described in Gervini (2008). It can be shown

through experimentation that the median is not as susceptible to the problem of

averaging fluctuations as the mean, but often more susceptible than the mode. For

instance, in problems where the population consists of two or more well separated

sub-populations, the mean and the median can represent a function that is central

in a strict mathematical sense, but not representative of any function in any sub-

population; whereas the modal function will often represent the most likely function

in one of the sub-populations, and therefore be less abstract and more interpretable

than the mean or the mode. Nevertheless, in important cases (for example, when

X is a Gaussian process) the mean, median and mode are identical.

3. Estimation of density of principal components, and log-

density estimation

3.1. Empirical estimation of the density of principal component scores. In this

section we show how to estimate the densities fj of the principal component scores.

This result will be used to provide an estimator of the log-density ℓ, but it is of

intrinsic interest, since having access to the densities fj can also be very useful

for descriptive analysis of functional data. The fj ’s contain indeed valuable addi-

tional information about the structure of the population, compared to just the θj ’s

and ψj ’s.

Starting from independent data X[1], . . . , X[n] on X , compute

K̂(s, t) =
1

n

n∑

i=1

{X[i](s) − X̄(s)} {X[i](t) − X̄(t)} =
∞∑

j=1

θ̂j ψ̂j(s) ψ̂j(t) , (3.1)

where X̄ = n−1
∑

i X[i], the expansion in (3.1) is the empirical analogue of that

at (2.1), and the terms are ordered so that θ̂1 ≥ θ̂2 ≥ . . . Thus, we are centring

the data at the sample mean, rather than at the true mean which is of course

unknown. We interpret θ̂j and ψ̂j as estimators of the eigenvalues θj and eigen-

functions ψj , respectively. (We use square-bracketed subscripts so as not to con-

fuse the ith data value X[i] with the ith principal component score, Xi, of X .)

See, for example, Ramsay and Silverman (2005, Chapters 8–10). Then we cal-

culate approximations X̂[ij] = θ̂
−1/2
j

∫
I
(X[i] − X̄) ψ̂j to the principal components

X[ij] = θ
−1/2
j

∫
I
(X[i] − EX[i])ψj . We define too x̂j = θ̂

−1/2
j

∫
I
(x − X̄) ψ̂j, an

estimator of xj = θ
−1/2
j

∫
I
(x−EX)ψj.
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An estimator f̂j of the probability density function fj of θ
−1/2
j (Xj −EXj) can

be computed using standard kernel methods:

f̂j(u) =
1

nh

n∑

i=1

W

(
X̂[ij] − u

h

)
, (3.2)

where h denotes a bandwidth and W is a kernel function. For an introduction to

kernel density estimation see, for example, Silverman (1986) and Wand and Jones

(1995). The value of h could be chosen using standard methods for random data,

reflecting the fact that X̂[ij], for 1 ≤ i ≤ n, is an approximation to the independent

sequence X[ij], 1 ≤ i ≤ n.

Provided the jth eigenvalue θj is not equal to either θj−1 or θj+1, the esti-

mators θ̂j and ψ̂j are root-n consistent for θj and ψj (modulo a change of sign

of ψj), respectively, and so x̂j = xj +Op(n
−1/2). Note too that X̄ cancels from the

numerator inside the kernel in the definition of f̂j(x̂j), and in fact,

f̂j(x̂j) =
1

nh

n∑

i=1

W

{∫
I
(X[i] − x) ψ̂j

h θ̂
1/2
j

}
. (3.3)

In section 3.2 below we show that this estimator is first-order equivalent to its

“ideal” counterpart,

f̄j(xj) =
1

nh

n∑

i=1

W

{∫
I
(X[i] − x)ψj

h θ
1/2
j

}
, (3.4)

which we would use if we knew θj and ψj. Properties of f̄j(xj), as an estimator of

fj(xj), can be worked out using standard arguments. In particular, f̄j(xj) has vari-

ance and bias asymptotic to w fj(xj)/(nh) and 1
2 w2 f

′′
j (xj) h

2, respectively, where

w =
∫
W 2 and w2 =

∫
u2W (u) du.

Our estimator of the log-density ℓ(x | r), in (2.3), is given by

ℓ̂(x̂ | r) =
1

r

r∑

j=1

log f̂j(x̂j) . (3.5)

An attractive feature of ℓ̂(x̂ | r) is the ease with which it can be computed for a

range of values of r.

3.2. Theoretical properties. Here we show that the estimators at (3.3) and (3.4) are

uniformly first-order equivalent. Since the variance and bias of f̄j(xj) are generally



8

of exact orders h2 and (nh)−1, respectively, then first-order equivalence is attained

if f̂j − f̄j = op{(nh)−1/2+h2}. Result (3.10) below is a strong form of this property.

The conditions we impose are the following:

for each C > 0 and some δ > 0, sup
t∈I

E
{
|X(t)

∣∣C}
<∞

and sup
s,t∈I : s 6=t

E
[{

|s− t|−δ |X(s)−X(t)|
}C

]
<∞ ;

(3.6)

for each integer r ≥ 1, θ−r
k E{

∫
I
(X−EX)ψk}2r is boun-

ded uniformly in k;
(3.7)

there are no ties among the j + 1 largest eigenvalues; (3.8)

the density fj of the jth principal component score is bounded and has

a bounded derivative; the kernel W is a symmetric, compactly sup-

ported probability density with two bounded derivatives; for some δ > 0,

h = h(n) = O(n−δ) and n1−δ h3 is bounded away from zero as n→ ∞.

(3.9)

Note that the assumptions on h in (3.9) permit a bandwidth of conventional size,

i.e. h ∼ const. n−1/5 for any positive constant. The theorem remains valid if W

is the standard normal density, but more generally, infinitely supported kernels

require assumptions about the rate at which their tails decrease. The use of in-

finitely supported kernels would alleviate difficulties that might arise when calcu-

lating log f̂j(u). However, the main features of the log-density ℓ (e.g. its modes)

are identical to those of its exponentiated form. Therefore, in practice, to describe

the main properties of a sample of curves it is not necessary to calculate logarithms,

and we can simply work with the product of the estimated densities f̂j.

Given a square-integrable function x defined on I, put ‖x‖2 =
∫
I
x(t)2 dt. For

each c > 0, let S(c) denote the set of x such that ‖x‖ ≤ c. Recall that f̂j(x̂j) and

f̄j(xj) can be interpreted as functionals of x, and are defined by (3.3) and (3.4),

respectively.

Theorem 1. If (3.6)–(3.9) hold then, for all c > 0,

sup
x∈S(c)

∣∣f̂j(x̂j) − f̄j(xj)
∣∣ = o

{
(nh)−1/2

}
. (3.10)

For the sake of brevity the proof of Theorem 1 is omitted. It can be found in

a longer version of this paper (Delaigle and Hall, 2008).

3.3. Joint density estimation. Part of the simplicity of the log-density estimator, at

(3.5), is that it involves only the marginal principal component score density estima-

tors, f̂j, and not estimators of the joint densities of those scores. Of course, this is a
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consequence of the assumption that the scores are independent, but without that as-

sumption the working statistician would be faced with not only a substantially more

complicated density approximation, but the need to estimate joint densities. The

latter problem is itself very challenging, unless sample size is large, since the accu-

racy of nonparametric density estimators decreases rapidly as dimension increases.

Therefore the estimators that are produced under the assumption of independence

enjoy a simplicity that is, in many cases, a prerequisite for practical implementation.

4. Theoretical studies leading to results (2.3)–(2.5)

4.1. Assumptions. Let X and x be, respectively, a random and a fixed function

on I, and let X1, X2, . . . and x1, x2, . . . be their scores, defined in section 2.1. For

simplicity we assume that E(X) = 0, but if this condition does not hold then the

mean of X can be incorporated into xj by adding a term E(Xj). For each j, let

fj be the density of Xj, and note that, by definition of the scores, the Xj’s are

uncorrelated and have mean zero and variance 1; in this work we assume that they

are independent. See the last sentence of section 2.1 for discussion of this condition.

For j = 1, 2, . . ., let Wj = Xj − xj and let gj denote the probability density

of Wj . Thus, W1,W2, . . . are independent random variables and, for all real w,

gj(w) = fj(w + xj). For a given sequence of xj ’s we assume that

sup
j≥1

E(W 2
j ) <∞ . (4.1)

and that the sequence θ1 ≥ θ2 ≥ . . . of eigenvalues associated with the covariance

of the function X are positive numbers such that

∞∑

j=1

θj <∞ . (4.2)

Note that, by (4.1) and (4.2), the series
∑

j θj W
2
j converges with probability 1.

Suppose too that each gj is differentiable at the origin, with gj(0) 6= 0, and

define ρj = g′j(0)/gj(0). We shall assume that the densities gj admit Taylor expan-

sions about the origin. In particular, we ask that, for each λ > 0, there exist a finite

constant A(λ) > 0 such that

sup
j≥1

|ρj| <∞ , sup
j≥1

sup
|wj |≤λ

w−2
j

∣∣gj(wj) gj(0)−1 − (1 + ρj wj)
∣∣ ≤ A(λ) . (4.3)
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To understand the type of conditions this requires of the fj ’s and xj ’s, assume

that the densities fj all have two bounded derivatives, and that for each λ > 0,

inf
j≥1

inf
|u|≤λ

fj(u) > 0 , sup
|u|≤λ

{|f ′
j(u)| + |f ′′

j (u)|} <∞ . (4.4)

For example, (4.4) holds if the principal components of X are identically distributed

with a density that has a bounded second derivative and does not vanish on the

real line. Then, (4.3) holds with gj(w) = fj(w + xj), for any bounded sequence of

real numbers xj . The case of an unbounded sequence xj can also be treated, but

rather than the more general conditions imposed above, it requires assumptions and

arguments that are related to specific density types. Therefore we shall not develop

that case here.

4.2. Approximation of the small ball probability. Our first result, Theorem 2 below,

will underpin our approximations to the value of

p(x | h) = p(h) = P

( ∞∑

j=1

θj W
2
j ≤ h2

)
(4.5)

as h ↓ 0. (To derive (4.5) we used (2.6).)

Given h and λ satisfying 0 < h ≤ λ θ
1/2
1 , we shall suppose that r = r(h) ≥ 1

has been chosen such that

θ−1
r h2 ≤ λ2 . (4.6)

Define S = h−2
∑

j≥r+1 θj W
2
j and let G = G( · | h, r) denote the distribution

function of S. Our first approximation to p(h), at (4.5), is given by q(h), described

in the following theorem. The proof of the theorem is given in section 6.

Theorem 2. Assume (4.1)–(4.3), and that r is chosen so that (4.6) holds. Then,

p(h) = exp
{
ω(h, λ)λ2

}
q(h) , (4.7),

where

q(h) =
(hπ1/2)r

Γ( 1
2
r + 1)

{ r∏

j=1

θ
−1/2
j fj(xj)

}∫ 1

0

(1 − t)r/2 dG(t) , (4.8)

|ω(h, λ)| ≤ B(λ) and the function B(λ) > 0 is nondecreasing in λ and does not

depend on h or r.

Next we apply Theorem 2 to develop more specific approximations to p(h), for

small h. Our results depend on the rate of convergence of the sequence θj to zero,
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and we consider two cases. We shall say that a sequence is “superexponential” if

θk+1/θk → 0 as k → ∞ , (4.9)

or equivalently, if θ−1
k

∑
j≥k+1 θj → 0. More generally, we shall say that the se-

quence is “exponential” if

θ−1
k

∞∑

j=k+1

θj is bounded as k → ∞ . (4.10)

When the eigenvalues converge to zero at a slower rate, nonparametric methods,

where the notion of a functional-data density is typically employed, have much lower

performance and so are less attractive and less likely to be used.

We also need to define the effective dimension, r = r(h), for a given value

of scale, h. In the superexponential setting, if for some s the value of h2/θs is

“sufficiently close to 1” then we should take r = s, but otherwise we should take r

to be the unique integer for which θr+1 < h2 < θr. More specifically,

there exists a sequence of positive constants c1, c2, . . ., depending on the

eigenvalue sequence θ1, θ2, . . . and diverging to infinity, such that, if (for

a given h) there exists s ≥ 1 such that | log(h2/θs)| ≤ cs, then we take

r = r(h) to be the infimum of such values; and if no such s exists then we

take r to be the value for which θr+1 < h2 < θr.

(4.11)

In the case of an exponential sequence we define

r = r(h, λ) = argmax
{
j : θ−1

j h2 ≤ λ2
}
, (4.12)

and, for j = 1, 2, we let δj(s, λ) denote a quantity which satisfies

lim
λ→∞

lim sup
s→∞

δj(s, λ) = 0 . (4.13)

Put Θj = −1
2 log θj and φj = log fj(xj). The proof of the next theorem is given in

section 6. The first part of (4.14) below is identical to (2.5).

Theorem 3. Assume (4.1)–(4.3). In the superexponential case, for r as at (4.11),

p(h) =
(hπ1/2)r

Γ( 1
2 r + 1)

exp{o(r)}
{ r∏

j=1

θ
−1/2
j fj(xj)

}

= exp

[
1
2 r

{
log

(
2πeh2

)
− log r + o(1)

}
+

r∑

j=1

(Θj + φj)

] (4.14)
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as h→ 0, and when θj is exponential, for r as at (4.12),

p(h) =
(hπ1/2)r

Γ( 1
2
r + 1)

exp{r δ1(r, λ)}
{ r∏

j=1

θ
−1/2
j fj(xj)

}

= exp

[
1
2 r

{
log

(
2πeh2

)
− log r + δ2(r, λ)

}
+

r∑

j=1

(Θj + φj)

]
,

(4.15)

where δ1(r, λ) and δ2(r, λ) satisfy (4.13).

Theorem 3 shows that, for appropriate eigenvalue sequences, the approxima-

tions given at (2.4) and (2.5) hold. These approximations are appropriate when the

eigenvalue sequence θj decreases to zero at an exponential rate, which is the most

important case from a practical viewpoint.

4.3. Other implications of the theorems. The integer r = r(h) represents the

dimension in which we make an approximation to the small-ball probability p(x | h)
at scale, or resolution level, h. In particular, (2.3) links the notion of density to

dimension rather than, as is more commonly the case, to small-ball radius. In

theoretical terms the connection is expressed through simple formulae such as (2.4)

or (2.5). From an empirical viewpoint, (2.3) suggests that, rather than attempt to

estimate small-ball probabilities for different values of h, so as to get a good idea

of the way in which the notion of density changes as scale becomes finer, we can

instead estimate the values of ℓ(x | r) for different values of r.

Note that ℓ(x | r) can be interpreted for increasing finite values of r, but

ℓ(x |∞), which we might define by taking the limit as r → ∞ in (2.3), does not

necessarily exist. In particular, we could change any finite number of the densities

fj without altering the definition of density on an infinitesimal scale. Therefore,

density on an infinitesimal scale, i.e. as h → 0 or as r → ∞, is not identifiable,

unless we assume a model which asserts sufficiently close connections between early

densities and principal component scores, and later ones.

An example where ℓ(x |∞) is often well defined arises when x is taken to be the

modal function xmode at (2.7). In that case, in order for the value of the log-density

ℓ(x | r) to be well defined as r → ∞, it is necessary only that r−1
∑

j log fj(mj)

converge. In particular, this condition is satisfied trivially if all the distributions of

principal component scores are identical.

More generally, the value of r can be interpreted as the dimension of the scale
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space when the unit of scale is h. The need to take scale, or resolution level, into

account when discussing the density of a random function reflects the importance

of scale in other settings. For example, Chaudhuri and Marron (1999, 2000) and

Godtliebsen et al. (2002) took a scale-space view of function estimation, noting

that the viewpoint was already commonly used in areas such as imaging. There,

the authors argue that one can learn different properties of the population at each

scale, where larger scales explain the overall structure of the population, and finer

scales help understand the finer structure.

For a given scale h, the results of Theorem 2, and in particular (4.11) and (4.12),

indicate that the effective dimension r satisfies

h2 ≈ θr . (4.16)

Property (4.16) implies that, if we are considering two distinct random function

distributions for which the respective eigenvalue sequences decrease at different

rates, then, for a sufficiently small value of scale, h, the corresponding dimension,

r, is greater in the case of the random function with the less rapidly decreasing

eigenvalue sequence. Of course, this makes intuitive sense.

One could determine the value of r empirically by using relatively conventional

methods for dimension estimation. See, for example, Horn (1965), Velicer (1976),

Zwick and Velicer (1986), Peres-Neto et al. (2005) and Hall and Vial (2006). Al-

ternatively we could simply estimate ℓ(x | r) for an increasing sequence of values

of r, accessing in this way information about how density changes as we increase

dimension, and learning different properties of the population for each r. Theoreti-

cal properties of empirical principal components are discussed by, for example, Hall

and Hosseini-Nasab (2006, 2009).

5. Numerical studies

5.1. Australian Rainfall Data. We applied our density and mode estimation meth-

ods to an Australian rainfall dataset, available at http://dss.ucar.edu/datasets

/ds482.1 and analysed by Lavery et al. (1992). The data consist of daily rainfall

measurements between January 1840 and December 1990, at each of 191 Australian

weather stations. The functionX(t) represents the rainfall at time t, where t denotes

the period that has passed, in a given year, at the time of measurement. Rainfall at
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time t was averaged over the years for which the station had been operating, with

the aid of a local polynomial smoother passed through discrete observations. One

weather station (the 190th station) was removed from the collection of 191 since its

rainfall pattern was very different from those for all other stations. Figure 1 depicts

the yearly rainfall curves of the remaining 190 stations. On the left we show those

stations (usually located in the north) which exhibit a “tropical” pattern, i.e. those

where most rain fell in mid to late summer; and on the right we show the stations

(usually in the south) where the majority of rain came in cooler months.

Table 1: Proportion of variance explained by the first j principal components, for

j = 1, . . . , 10 in the Australian rainfall data example.

j 1 2 3 4 5 6 7 8 9 10
0.7380 0.9510 0.9811 0.9915 0.9957 0.9974 0.9984 0.9989 0.9992 0.9995
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Figure 1. Australian rainfall data at weather stations which get the most rainfall

during the summer months (left) or during the winter months (right).

Table 1 indicates that the values of θ̂j decrease very quickly, and so it seems

reasonable to use only the first few principal components to describe the data. In

Figure 2 we plot the first four estimated principal component basis functions and

the corresponding densities f̂j of the standardised principal components scores. One

interpretation of the first two principal component functions is that they capture,

respectively, two key features of the data — peak rainfalls around days 35 and

215; and peak rainfalls around days 30 and 180. In each case, the first class of

weather station generally corresponds to towns with a tropical or semi-tropical

climate, and the second to towns with a mid-latitude climate. Taken together, these

two principal components capture the dichotomy between the two main latitude-

determined climate zones in Australia, together with the subtler effect of rainfall

peaks that occur separately in either winter or summer, but where the peaks within

either class can nevertheless differ by months.
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We have chosen the signs of the first two principal component functions so that

the first has its minimum in late winter, whereas the minimum of the second is in

late summer. However, this feature could easily be altered by a sign change; the

signs of principal component functions are not determined. The densities of each

of the first three principal component scores are skewed. Of course, the direction of

skewness is tied to the sign of the principal component function, which is arbitrary.

The skewness is one aspect of the distinct non-Gaussian nature of the rainfall curves.

The densities of higher-order principal component scores are less asymmetric; we

plot only the fourth.
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Figure 2. Plots of the first four principal component basis functions (row 1) and the

corresponding estimates of densities of principal component scores, f̂j (row 2). In

each row, the graphs from left to right are for decreasing values of θ̂j.

Figure 3 shows the estimated mean and modal functions of the rainfall data,

where the modal function was calculated as at (2.8) and therefore depended on the

number, T , of components used. Of course, since x̂mode at (2.8) estimates the mode

of the centered data, we have added the mean function to each modal curve. (The

mean function is represented by the heavy, unbroken curve in Figure 3.) It is clear

from that figure that changing T from 1 to 5 alters the modal function significantly,

but the effect of changing T from 6 to higher values is almost indistinguishable

by eye. The mean curve appears to be strongly influenced by the few stations

that have high rainfall, but the modal curve is noticeably more robust. The figure

also shows the median curve, which we calculated using the algorithm described

in Gervini (2008). The median lies between the mean and the mode, a property
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which is known to hold for many univariate distributions (see Haldane, 1942; Hall,

1980) but has not been studied previously for functional data. In this example the

median has similarities with the modal curve, but it is still a bit high due to the

influence of the tropical weather stations, especially in the summer months. These

features make the median curve less appealing then the modal curve, which looks

more typical of curves for a majority of towns with mid-latitude climates.
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Figure 3. Curves representing the mean and mode, respectively, of Australian rain-

fall data, using T = 1, 2, 3, 4 or 5 (first panel) or T = 6, 7, 8, 9 or 10 (second panel).

The annotation “mode j” indicates x̂mode at (2.8) in the case T = j. On the right

panel we also show the median curve.

Figure 4 shows a contour plot of 2 exp{ℓ̂(x̂ | 2)} = f̂1(x̂1)f̂2(x̂2), i.e. the esti-

mated surrogate density for r = 2, together with the values f̂1(X̂[i1])f̂2(X̂[i2]), for

i = 1, . . . , n, represented by pink crosses. The colors range from blue for low density

values, to yellow for high density values.
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Figure 4. Contour plot of the estimated surface 2 exp{ℓ̂(x̂ | 2)} = f̂1(x̂1)f̂2(x̂2) for

the Australian rainfall data. The pink crosses represent the values of f̂1(X̂[i1])f̂2(X̂[i2])

for i = 1, . . . , n, where X[ij] is the jth centred and scaled principal component score
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of the ith data curve.

We cannot visualise the estimated density ℓ̂(x̂ | r) at higher resolution levels (i.e.

for r ≥ 3) by showing a surface curve. To see the effect that increasing r has on

ℓ̂(x̂ | r), we calculated this density for r = 1, . . . , 10 and for x = X[1], . . . , X[n] (i.e. for

each data curve), and then, for each r, classified the n data curves into several groups

according to the value of ℓ̂(X̂[i] | r), using the same colour code as Figure 4, i.e. using

colours ranging from blue for the lowest values of ℓ̂(· | r), to yellow for the largest

values. We show in Figure 5 the groups of curves obtained for r = 2 and r = 10. We

see that, overall, the curves of low (respectively, moderate or high) density for r = 2

correspond to the curves of low (respectively, moderate or high) density for r = 10.

In other words, the density at resolution r = 2 already reflects the main features

of the data. The blue curves roughly correspond to the stations for which rainfall

varies the most over the year; these stations are very heterogeneous and thus have

low density. At the other end of the spectrum, the yellow curves correspond to the

stations with the flattest yearly rainfall; these stations are quite homogeneous and,

logically, they have the highest density. The green curves correspond to a moderate

rainfall change over the year and have moderate density values.
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Figure 5. Plots of the 190 rain data curves. In each row, the furthest left graph

shows all the curves and the other graphs show, from left to right, groups of curves

for indices i that correspond to increasing values of ℓ̂(X[i] | r). The top row depicts

results when r = 2, whereas the bottom row corresponds to r = 10. For r = 2 we

use the colour code corresponding to Figure 4, and for r = 10 we use a similar code

corresponding to the estimator of ℓ̂(X[i] | 10).
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5.2. Simulated examples. As discussed at the end of section 2.1, in the setting

of functional data analysis it can be quite difficult to undertake meaningful infer-

ence without the simplifying condition of independence of the principal component

scores Xj . In particular, without that assumption, to represent the joint density

of X1, . . . , Xr we would need to replace
∏

1≤j≤r fj(xj), a product of univariate

functions, by a more complex r-variate function f1,...,r(x1, . . . , xr). However, the

difficulty of estimating the latter increases rapidly with dimension. Therefore, un-

less samples sizes are particularly large, the quality of multivariate nonparamet-

ric estimators can be so poor that greater insight about the population is gained

from estimators under the simplifying independence assumption. To illustrate this

fact, we generated B = 500 samples of size n = 100 from the distribution of

X(t) =
∑

1≤j≤10 θ
1/2
j Xj ψj(t), where t ∈ [0, 1], the Xj ’s were uncorrelated de-

pendent random variables generated according to Xj = c TVj where the Vjs were

independent and identically distributed, T was a uniform U [1, 2] variable, common

to all js, and c = {var(TVj)}−1/2. We took ψj(t) =
√

2 cos(πjt), and Vj and θj were

chosen from one of four models: (i) Vj ∼ χ2(8) − 8, θj = j−3; (ii) Vj ∼ χ2(8) − 8,

θj = j−2; (iii) Vj ∼ N(0, 1), θj = j−3; (iv) Vj ∼ N(0, 1), θj = j−2, where “∼”

means “is distributed as.”

In each case we calculated the estimator of the modal function, xmode. We

compared x̂mode at (2.8), where each fj was estimated by a univariate kernel density

estimator with plug-in bandwidth using the functions kde and hpi in Duong, Wand

and Chacón’s R package ks, with the estimator x̃mode =
∑

1≤j≤T θ̂
1/2
j m̃j ψ̂j , where

(m̃1, . . . , m̃T ) was the mode of a T−variate kernel density estimator with plug-in

bandwidth, calculated using the functions kde and Hpi in the R package ks.
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Figure 6. MSE of the estimators x̂mode and x̃mode for T = 1, 2, 3 or 4. In the

graphs we use multi to denote x̃mode. The graphs show, from left to right, the

results of models (i) to (iv).

In each case we calculated MSE(t) = B−1
∑

1≤b≤B {ŷb(t) − xmode(t)}2 for
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ŷb = x̂b,mode and ŷ = x̃b,mode, where the index b indicates that the estimator was

calculated from the bth sample. In Figure 6 we present the MSEs of both estimators

of xmode for T = 1, 2, 3 and 4. The estimator x̂b,mode performed better than x̃b,mode

in all cases. Indeed, the quality of x̃b,mode deteriorated very quickly as T increased,

due to greater bias and increased stochastic error; both these difficulties reflect the

curse of dimensionality. For models (i) and (ii), the best results were obtained by

x̂b,mode with T = 3 or 4, whereas for models (iii) and (iv), the best results were for

x̂b,mode with T = 1. This reflects the fact that for models (i) and (ii), truncating

the sum at T < 10 in the definition of xmode introduced a systematic bias, whereas

in models (iii) and (iv), each mj = 0 and thus truncating the sum at T < 10 did

not produce any bias.

6. Technical arguments

6.1. Proof of Theorem 2. Define S1 =
∑

j≤r θj W
2
j , S = h−2

∑
j≥r+1 θj W

2
j ,

ht = (1 − t)1/2 h and

pr(h) = P
(
S1 ≤ h2

)
=

∫
∑

j≤r
θj w2

j
≤h2

{ r∏

j=1

gj(wj)

}
dw1 . . . dwr . (6.1)

Let G = G( · | h, r) denote the distribution function of S. In this notation,

p(h) = P
(
S1 + h2 S ≤ h2

)
=

∫ 1

0

P
(
S1 ≤ h2

t

)
dG(t) =

∫ 1

0

pr(ht) dG(t) . (6.2)

Property (4.3) implies that

r∏

j=1

gj(wj) =

{ r∏

j=1

gj(0)

}
exp

{ r∑

j=1

ρj wj +O

( r∑

j=1

|wj |2
)}

, (6.3)

uniformly in w1, . . . , wr such that

sup
1≤j≤r

|wj | ≤ λ . (6.4)

If (4.6) holds then so too does (6.4), provided
∑

j≤r θj w
2
j ≤ h2. Therefore, by (6.1)

and (6.3),

pr(ht) = hr

{ r∏

j=1

gj(0)

}∫
∑

j≤r
θj w2

j
≤1−t

exp

{
h

r∑

j=1

ρj wj + h2 a(w)

}
dw , (6.5)
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where w = (w1, . . . , wr), the function a does not depend on t, and, for a constant

C1 > 0,

|a(w)| ≤ C1

r∑

j=1

|wj |2 , (6.6)

uniformly in w for which
r∑

j=1

θj w
2
j ≤ 1 . (6.7)

The constant C1 depends on λ, of which it is a nondecreasing function.

If (4.6) and (6.7) hold then

h2
r∑

j=1

w2
j ≤ λ2 θr

r∑

j=1

w2
j ≤ λ2

r∑

j=1

θj w
2
j ≤ λ2 . (6.8)

These properties, (6.5) and (6.6) imply that, for a constant C2 > 0,

h2 |a(w)| ≤ C2 λ
2 , (6.9)

uniformly in w for which (6.7) holds. Here, C2 = C2(λ) is a nondecreasing function

of λ.

Let

I =

∫
∑

j≤r
θj w2

j
≤1−t

dw = vr (1 − t)r/2
r∏

j=1

θ
−1/2
j , (6.10)

where

vr =
πr/2

Γ( 1
2 r + 1)

(6.11)

denotes the content of the r-variate unit sphere. The second identity in (6.10)

follows from the fact that, in view of the first identity, I equals the content of the

ellipsoid having the equation
∑

j≤r θj w
2
j = 1 − t.

Results (6.5) and (6.9) imply that

pr(ht) = hr

{ r∏

j=1

gj(0)

}
exp

{
ω1(t | h, λ)λ2

}
J , (6.12)

where, here and in (6.16) below, the function ωj satisfies

sup
0≤t≤1

|ωj(t | h, λ)| ≤ C3 (6.13)
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uniformly in h and λ such that (4.6) holds for some r ≥ 1, the constant C3 > 0

depends only on C2 and the upper bound in (4.3) to supj |ρj|, and

J =

∫
∑

j≤r
θj w2

j
≤1−t

exp

(
h

r∑

j=1

ρj wj

)
dw = I +

∞∑

i=1

h2i

(2i)!
Ii , (6.14)

with

Ii =

∫
∑

j≤r
θj w2

j
≤1−t

( r∑

j=1

ρj wj

)2i

dw .

Odd-indexed terms have cancelled from (6.14) through symmetry.

When calculating Ii using term-by-term expansion of the quantity within par-

entheses, only products of the form (ρj1 wj1) . . . (ρj2i
wj2i

), where each distinct index

among j1, . . . , j2i appears an even number of times, make a nonzero contribution.

Therefore,

h2i Ii ≤
∫
∑

j≤r
θj w2

j
≤1−t

(
h2

r∑

j=1

ρ2
j w

2
j

)i

dw

≤ (ρ λ)2i

∫
∑

j≤r
θj w2

j
≤1−t

dw = (ρ λ)2i I , (6.15)

where ρ = supj |ρj | and, since (4.6) and (6.7) hold, we used the bound at (6.8).

Using the bound (6.15) in (6.14) we deduce that J = exp{ω2(t | h, λ)λ2} I, where

ω2 satisfies (6.13). This result and (6.12) imply that

pr(ht) = hr

{ r∏

j=1

gj(0)

}
exp

{
ω3(t | h, λ)λ2

}
I . (6.16)

The theorem follows on combining (6.2), (6.10), (6.11), (6.13) and (6.16).

6.2. Proof of Theorem 3. To derive (4.14) we treat two complementary cases, which,

if we consider convergence of h to zero along subsequences, cover all instances:

(a) there exists a sequence of integers r = r(h) diverging to infinity such that, as h

converges along a subsequence, h2 ≍ θr (that is, h2/θr is bounded away from zero

and infinity as h→ 0); and (b) along a subsequence, and for r = r(h) diverging to

infinity, h2/θr → 0 and h2/θr+1 → ∞. In case (a) we take λ2 to be an upper bound

to h2/θr, and note that the superexponential condition (4.9) implies that S → 0 in

probability. From the latter property it follows that

1

r
log

{∫ 1

0

(1 − t)r/2 dG(t)

}
→ 0 . (6.17)
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In case (b) we choose λ to be a function of h, decreasing to zero as h→ 0, in such

a manner that h2 θ−1
r λ−2 → 0 and h2 θ−1

r+1 λ
2 → ∞. The first of these properties

ensures that (4.6) holds, and the second that S → 0 in probability, so that, once

again, (6.17) obtains. Hence, in either case, results (4.8) and (4.7), and Stirling’s

formula, imply (4.14). More generally, case (a) can be extended to that where

| log(h2/θr)| ≤ cr, provided the sequence c1, c2, . . . diverges sufficiently slowly. This

is the constant sequence used in the definition of r(h) in (4.11).

To connect these results to the statement of (4.14) in Theorem 3, suppose that

(4.14) fails in that context. Then we can find a sequence h1, h2, . . ., decreasing

to zero, such that the term written as o(1) on the far right-hand side of (4.14)

is actually bounded away from zero. Let s = s(h) denote the integer for which

| log(h2/θs)| is minimised. If, for all sufficiently large k, | log(h2
k/θs(hk))| ≤ cs(hk),

then r(hk) = s(hk) (by the definition of r(h) in (4.11)) and the result stated in the

second-last sentence of the previous paragraph establishes (4.14). Hence, by passing

to a sub-subsequence if necessary, we may assume that | log(h2
k/θs(hk))| > cs(hk) for

all sufficiently large k, in which case (again using the definition of r(h)) θr(hk)+1 <

h2
k < θr(hk) for all large k, and both h2

k/θr(hk) → 0 and h2
k/θr(hk)+1 → ∞. However,

it then follows from case (b) in the previous paragraph that (4.14) holds. Therefore

(4.14) must hold in the context of Theorem 3.

To prove (4.15), define r as at (4.12) and note that θ−1
r h2 ≤ λ2 and θ−1

r+1 h
2 >

λ2. The first of these properties ensures (4.6), and so permits us to apply Theorem 2,

and the second guarantees that, with C1 = supj≥1 E(W 2
j ) and C2 denoting the

upper bound to θ−1
k

∑
j≥k+1 θj in (4.10), we have

E(S) ≤ C1 h
−2

∑

j≥r+1

θj < C1 λ
−2 θ−1

r+1

∑

j≥r+1

θj ≤ C1 λ
−2 (1 + C2) .

Therefore, given ǫ1 > 0 we can choose λ so large that P (S > ǫ1) < ǫ1, and hence,

given ǫ2 > 0 we can select λ sufficiently large, but fixed, to ensure that, for all

sufficiently small h,

∣∣∣∣ log

{∫ 1

0

(1 − t)r/2 dG(t)

}∣∣∣∣ ≤ ǫ2 r . (6.18)

Results (4.8), (4.7), (6.18) and Stirling’s formula imply (4.14).
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Appendix: Non-existence of probability density function for
functional data.

If X is a random vector of finite length then we generally define the probability

density, f(x), ofX at the point x, as the limit as h decreases to zero of the probability

that X lies in the ball of radius h centred at x, divided by the Lebesgue measure

of that ball. For example, in Euclidean space of dimension r,

f(x) = lim
h↓0

(
hr vr

)−1
P (‖X − x‖ ≤ h) , (A.1)

where ‖ · ‖ denotes Euclidean distance in IRr, and vr represents the content of the

r-dimensional unit sphere. It might be expected that a formula analogous to (A.1),

with the divisor hr vr replaced by a different function of h, would be appropriate
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for estimating the probability density of a random function X . However, in general

it is not.

To appreciate why, let X be a random function and x a fixed function, and note

that if there were to exist a function, α(h) say, such that the probability density

f(x) = lim
h↓0

{
α(h)}−1 P (‖X − x‖ ≤ h)

were well defined, then for all x we would have

log f(x) = lim
h↓0

[
− log

{
α(h)} + logP (‖X − x‖ ≤ h)

]
,

and thus logP (‖X − x‖ ≤ h) = C1 + log f(x) + o(1), where C1 = log
{
α(h)} does

not depend on x, and f(x) does not depend on h. However, (2.2) shows that this is

not possible.


