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Abstract: We show that, in functional data classification problems, perfect asymp-

totic classification is often possible, making use of the intrinsic very high dimensional

nature of functional data. This performance is often achieved by linear methods,

which are optimal in important cases. These results point to a marked contrast

between classification for functional data and its counterpart in conventional multi-

variate analysis, where dimension is kept fixed as sample size diverges. In the latter

setting, linear methods can sometimes be quite inefficient, and there are no prospects

for asymptotically perfect classification, except in pathological cases where, for ex-

ample, a variance vanishes. By way of contrast, in finite samples of functional data,

good performance can be achieved by truncated versions of linear methods. Trunca-

tion can be implemented by partial least-squares or projection onto a finite number

of principal components, using, in both cases, cross-validation to determine the trun-

cation point. We establish consistency of the cross-validation procedure.

Keywords: Bayes classifier, centroid-method classifier, cross-validation, dimension

reduction, error rate, Gaussian process, linear model, projection.

1 Introduction

We present a new viewpoint for interpreting and solving classification problems in-

volving functional data, and we argue that those problems have unusual, and fasci-

nating, properties that set them apart from their finite-dimensional counterparts. In

particular we show that, in many quite standard settings, the performance of simple

classifiers constructed from training samples becomes perfect as the sizes of those

samples diverge. That is, the classifiers can be constructed so that the probability of

correctly classifying a new data function converges to 1 as the training sample sizes

increase. That property never holds for finite dimensional data, except in pathologi-

cal cases where, for example, one or more of the variances vanish. In important cases
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we demonstrate that, unlike their low-dimensional counterparts, basic linear methods

(e.g. the centroid-based classifier and linear discriminant analysis) are optimal in a

range of functional data problems. We discuss the relationship between our findings

and the very good practical performance of dimension reduced methods based on

partial least-squares or on carefully chosen principal component projections.

The perfect asymptotic classification property holds in a variety of settings, in-

cluding those where the standard deviations of high-order principal component scores

are of the same order as, or smaller than, the sizes of the corresponding mean compo-

nents. That context is far from pathological; for example, it holds for mathematical

models that are routinely used in simulation studies for functional data. The theo-

retical foundation for these findings is an intriguing dichotomy of properties, and is

as interesting as the findings themselves. It can be summarised as follows.

Consider the simple, common centroid-based classifier and apply it, in the context

of infinite training samples, to classify a new data function X into one of two groups.

We do this by projecting X onto the real line as the point
∫
I ψX, where I denotes

the support of X and the function ψ determines the projection. We choose ψ to

minimise classification error in the resulting one-dimensional classification problem.

If the ψ that minimises error is well defined then it is not possible to achieve per-

fect classification, although in Gaussian cases the univariate classifier has minimum

classification error among all possible approaches. On the other hand, if the problem

of choosing the best ψ does not have a well defined solution, it is because much of

the important information for classification lies arbitrarily far out in the tails of the

principal component expansion of X. This might seem to be a theoretical blind alley,

leading nowhere of practical value. However, it can actually be exploited in prac-

tice by choosing a projection ψ which, for as many finite-order terms as empirically

feasible, accurately captures properties of the infinite expansion.

Reflecting this dichotomy, in cases where perfect classification is impossible it is

often feasible to capture virtually all of the classification information in the data using

relatively low-order terms in the principal component expansion. In the context of

perfect classification, however, we must venture further into the expansion in order

to find the information that is necessary for good classification decisions. This issue

calls to mind a remark made by Cox (1968), in the context of prediction rather than

classification. Arguing that a conventional principal component approach might give
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poor results, Cox noted that “A difficulty seems to be that there is no logical reason

why the dependent variable should not be closely tied to the least important principal

component.” (See Cook, 2007, for discussion.) This difficulty arises in the second part

of the dichotomy referred to above, but it can be addressed successfully and results in

practical, adaptive classifiers with asymptotically perfect classification performance,

as training sample sizes diverge.

There is a sizeable literature on methods for classifying functional data. It in-

cludes methodology suggested by James and Hastie (2001), Preda et al. (2007) and

Shin (2008), who suggested linear discriminant analysis; Ferraty and Vieu (2003),

who constructed classifiers based on kernel estimators of prior probabilities; James

and Sugar (2003), who introduced clustering methods for functional data; Hall et

al. (2001), Glendinning and Herbert (2003), Huang and Zheng (2006) and Song et

al. (2008), who used classifiers based on principal component analysis; Vilar and

Pertega (2004), who developed a classifier based on a distance measure; Biau et

al. (2005) and Fromont and Tuleau (2006), who proposed methodology founded on a

functional data version of the nearest neighbour classification rule; Leng and Müller

(2006) and Chamroukhi et al. (2010), who introduced model-based classifiers; López-

Pintado and Romo (2006) and Cuevas et al. (2007), who suggested classifiers based on

the notion of data depth; Rossi and Villa (2006), who developed methodology founded

on the support vector machine; Wang et al. (2007) and Berlinet et al. (2008), who em-

ployed wavelet methods; Epifanio (2008), who developed classifiers based on shape

descriptors; Tian and James (2010), who suggested a classifier founded on projec-

tions; and Araki (2009), who proposed a Bayesian approach. See also Ramsay and

Silverman’s (2005) general introduction to functional data analysis.

2 Model, theory and methodology

2.1 Model

Suppose we observe independent and identically distributed data pairs (Xi, Ii), where

Xi is a random function defined on a compact interval I, and Ii is a class label, or

indicator function, taking only the values 0 or 1. In effect the population from which

we sample is a mixture of sub-populations Π0 and Π1, say, corresponding to Ii = 0
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and 1, respectively. To reflect that fact we write Xki, where 1 ≤ i ≤ nk, for the

ith function among X1, . . . , Xn for which the corresponding class label equals k, with

k = 0 or 1 and n0 + n1 = n. Finally, let π be the probability that a new data curve

X comes from sub-population Π0.

Throughout section 2 we study properties of classifiers in cases where the functions

drawn from populations Π0 and Π1 have uniformly bounded covariance, and differ

only in location. (More general cases are discussed in section 4.2.) In particular, no

matter whether X is drawn from Π0 or Π1 its covariance is

cov{X(u), X(v)} = K(u, v) =
∞∑
j=1

θj ϕj(u)ϕj(v) , (2.1)

say, where θ1 ≥ θ2 ≥ . . .. The far right-hand side of (2.1) represents the standard prin-

cipal component expansion of the covariance in terms of nonzero eigenvalues θj, and

the respective orthonormal eigenfunctions ϕj, of the linear transformation K defined

by K(ψ)(v) =
∫
I ψ(v)K(u, v) du. This dual use of the notation K is conventional,

and serves to connect the transformation K to its “kernel,” the function K.

Let Ek denote the expectation operator, which we shall apply to a general func-

tional of X under the constraint that X comes from Πk. We assume that:

E0(X) = 0, E1(X) = µ, and the covariance K is strictly positive definite

and uniformly bounded. (2.2)

Strict positive definiteness of K is equivalent to asserting that each θj in (2.1) is

strictly positive. Uniform boundedness implies that
∑

j θj <∞. We write

µ =
∞∑
j=1

µj ϕj (2.3)

for the generalised Fourier decomposition of µ with respect to the basis ϕ1, ϕ2, . . ..

Note that our assumption that only one of the two means, rather than both, is nonzero

does not materially influence the results in the following section. Indeed, looking at

the case of two different means is operationally equivalent to taking one to be zero

and the other to equal the difference of means.

2.2 Centroid classifier

For k = 0 and 1, let X̄k(t) = n−1
k

∑nk

j=1Xkj(t), and let X be a new data function that

we wish to assign to one of the two populations. The centroid classifier assigns X to
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Π0 or Π1 according as the statistic T (X) = D2(X, X̄1) − D2(X, X̄0), is positive or

negative, respectively, where D denotes a distance measure between two functions.

When π = P (X ∈ Π0) is known, T (X) is often replaced by T (X) + c, where c is

an adjustment for unequal prior probabilities; see Remark 1 below. In this paper we

assume that π is unknown and take c = 0.

In Theorems 2.1 and 2.2 below we show that, when the distance is given by

D(X, X̄k) =
∣∣⟨X,ψ⟩ − ⟨X̄k, ψ⟩

∣∣, where ⟨X,ψ⟩ =
∫
I Xψ and ψ is a function defined

on I, the centroid classifier enjoys optimality properties. Note that this approach

amounts to projecting the data onto a space of dimension 1 determined by a function

ψ defined on I. Equipped with this particular distance, if E1(X) = µ and E0(X) = 0,

then, as n0 and n1 diverge,

T (X) =
(
⟨X,ψ⟩ − ⟨X̄1, ψ⟩

)2 − (
⟨X,ψ⟩ − ⟨X̄0, ψ⟩

)2
(2.4)

converges to

T 0(X) =
(
⟨X,ψ⟩ − ⟨µ, ψ⟩

)2 − ⟨X,ψ⟩2 . (2.5)

In Theorem 2.1 we study the error of this asymptotic classifier T 0, and derive the

function ψ that guarantees optimal classification in the Gaussian case. In Theorem

2.2 we show that the same function can give perfect classification in important non-

Gaussian settings. In particular, these two theorems explain theoretically why, in

practice, despite their lack of sophistication, linear classifiers can perform very well

in the case of functional data.

We need the following notation (here, X is drawn from Π0 or Π1):

Q =

∫
I
ψ (X − EX) , ν = ⟨µ, ψ⟩ =

∫
I
ψ µ , (2.6)

σ2 ≡ var(Q) , ψ(r) =
r∑

j=1

θ−1
j µj ϕj . (2.7)

The proof of Theorem 2.1 is given in section A.1; Theorem 2.2 can be proved similarly.

Theorem 2.1. Assume that the data are Gaussian and (2.2) holds. Then, no matter

what the value of the prior probability π:

(a) The probability of misclassification for the classifier T 0 equals err = 1−Φ(ν/2σ).

(b) The minimum value, err0, of this error is given by err0 = 1−Φ{1
2
(
∑

j≥1 θ
−1
j µ2

j)
1/2}.

If
∑

j≥1 θ
−2
j µ2

j <∞, err0 is the classification error for the classifier T 0 computed with
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ψ = ψ(∞). Otherwise, err0 is achieved as the limit of classification errors for the clas-

sifier T 0 computed at the sequence (ψ(r))r≥1 of functions ψ.

(c) If
∑

j≥1 θ
−1
j µ2

j = ∞ then err0 = 0 and there is perfect classification.

(d) In this problem, no classifier can give better results than those described above, in

the following sense: if
∑

j≥1 θ
−1
j µ2

j = ∞, then, in the case of infinite training samples

the error rate of an optimal classifier, based on a likelihood ratio test for functional

data, also equals err0. If
∑

j≥1 θ
−2
j µ2

j < ∞, and if T 0, at (2.5), is replaced by its

version for known π (see Remark 1), then the optimal error rate also equals err0.

Theorem 2.2. If the data are not Gaussian, then if the populations Π0 and Π1 have

prior probabilities π and 1−π, respectively, and if (2.2) holds, then: (a) The probabil-

ity of misclassification for the classifier T 0 equals err = π P (R > ν/2σ)+(1−π)P (R <

−ν/2σ), where R = Q/σ has zero mean and unit variance. (b) If
∑

j≥1 θ
−1
j µ2

j = ∞
then, choosing ψ = ψ(r) and letting r diverge, the probability of misclassification for

the classifier T 0 tends to err0 = 0, and there is perfect classification.

Note that in Theorem 2.2 we discuss only the perfect classification property, since

this theorem treats general distributions. Indeed, since (in non-Gaussian cases) prop-

erties of the classifier depend intimately on those distributions via Q, then the general

case seems not to admit an elementary, insightful derivation of the optimal ψ.

Theorem 2.1 provides detailed information about the dichotomy discussed in sec-

tion 1. It implies that when
∑

j≥1 θ
−2
j µ2

j < ∞, perfect classification is not pos-

sible but the centroid method is optimal in Gaussian cases. Here, the function ψ

that guarantees optimality is well defined, and is given by ψ(∞) =
∑∞

j=1 θ
−1
j µj ϕj.

Taking ψ = ψ(∞), the classifier assigns X to Π0 or Π1 according as the statistic

−2
∑∞

j=1 θ
−1
j µjXj +

∑∞
j=1 θ

−1
j µ2

j is positive or negative, respectively. This rule is

analogous to that for the Bayes classifier employed in finite dimensional classification

problems, and our results are a natural extension of the optimality property of the

multivariate Bayes classifier. In this case, this rule is also equivalent to the linear

discriminant method studied by James and Hastie (2001) and Preda et al. (2007).

The most interesting result is that when
∑

j≥1 θ
−2
j µ2

j = ∞, since this case ex-

ploits the functional nature of the data and can result in perfect classification. This

contrasts with earlier work on related functional linear regression problems, where

this case is usually considered to be degenerate; see section 2.3 for discussion. When
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∑
j≥1 θ

−1
j µ2

j = ∞, no rescaled version of ψ(r) converges to a nondegenerate limit

in L2, but perfect classification can be obtained as n diverges.

We should stress that perfect classification holds if and only if
∑

j≥1 θ
−1
j µ2

j = ∞,

and that optimal classification is achieved for a particular ψ = ψ(∞) if and only

if
∑

j≥1 θ
−2
j µ2

j < ∞. The relationship between these two conditions divides the

classification problem into three parts — one, where
∑

j≥1 θ
−2
j µ2

j < ∞ and op-

timal classification is imperfect but is achieved using a single ψ; another, where∑
j≥1 θ

−2
j µ2

j = ∞ but
∑

j≥1 θ
−1
j µ2

j < ∞, and optimal classification is imperfect

but is achieved only along the sequence ψ(r), which does not converge; and a third,

where
∑

j≥1 θ
−1
j µ2

j = ∞ and perfect classification is achieved, but only along the

non-convergent series ψ(r).

In view of the preceding discussion one might be tempted to construct a test that

sheds light on which of the three different regimes discussed above obtains. However,

it is perhaps more appropriate to construct several classifiers, one or more of which

is sensitive to which regime pertains, while the others are more conventional. The

error rates of these classifiers can be estimated, and the results used to guide the final

approach.

Remark 1. When π is known, the centroid method can be adjusted to take the

probabilities of each population into account. In this case, T 0(X) at (2.5) is replaced

by T 0(X) =
(
⟨X,ψ⟩ − ⟨µ, ψ⟩

)2 − ⟨X,ψ⟩2 − 2 log{(1 − π)/π} . However, in most

situations π is unknown and is either taken equal to 1
2
, leading to formula (2.5) for

T 0, or is estimated by the proportion n0/n of observations in the sample coming

from Π0.

2.3 Empirical choice of ψ: truncation and partial least squares

First approach. In practice we can calculate only finite sums, and therefore, even if

ψ(∞) is well defined, we can use only truncated versions of it. One obvious possibility

is to apply the centroid classifier with ψ(r), where r is finite. Of course, in practice

θj, ϕj and µj are unknown, and are estimated from the data. We take θ̂j and ϕ̂j to

be the estimators obtained by empirical principal component analysis of the entire

dataset (taking there each subpopulation to be centered at its empirical mean), and

µ̂j =
∫
I µ̂ϕ̂j, with µ̂(t) = n−1

1

∑n1

i=1X1i(t)−n−1
0

∑n0

i=1X0i(t). Then, for r = 1, . . . , n we
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deduce empirical versions ψ̂(r)(t) =
∑r

j=1 θ̂
−1
j µ̂jϕ̂j(t) of ψ

(r)(t). We suggest choosing

r by minimising a cross-validation (CV) estimator of classification error.

To appreciate how this is done, let C(X |ψ) denote the index of the population to

which a new function X is allocated by the classifier using the projection based on

a function ψ, and let Pk denote probability measure under the assumption that X

comes from Πk. The error rate of C is defined by

err(ψ) = π P0{C(X |ψ) = 1}+ (1− π)P1{C(X |ψ) = 0} . (2.8)

To estimate error rate we randomly create B partitions of the training sample, as in,

for example, Hastie et al. (2009). For b = 1, . . . , B, each partition splits the sample

into two subsamples, {X∗
1b, . . . , X

∗
mb}, where m = [n/K] and {X∗

m+1,b, . . . , X
∗
nb}, with

{X∗
1b, . . . , X

∗
nb} denoting a random permutation of the n = n0 + n1 observations from

training sample. Then we estimate the classification error by taking an average of B

leave-m-out CV estimators. More precisely, we take

r = argmin1≤j≤nêrr(ψ̂
(j)), (2.9)

where êrr is the empirical error,

êrr(ψ) =
1

B(n−m)

B∑
b=1

n∑
i=m+1

1∑
k=0

I{Ck,−b(X
∗
ib |ψ) = 1− k,X∗

ib ∈ Πk} , (2.10)

with Ck,−b denoting the version of C constructed by omitting {X∗
m+1,b, . . . , X

∗
n,b} from

the training sample; and the indicator function I is defined by I(E) = 1 if the event

E holds, and I(E) = 0 otherwise.

Second approach. An alternative approach can be constructed if we note the connec-

tion between our problem and linear regression. Let Y = I(X ∈ Π1), and let Φr be

the space generated by ϕ1, . . . , ϕr. It is not difficult to prove that

argminβ∈Φr
E
{
Y − EY −

∫
I
β(X − EX)

}2

= αrψ
(r), (2.11)

where αr is a constant. In other words, ψ(r) is, up to a constant multiple, equal to the

slope of the best approximation (in the mean squared sense) to Y by a linear function

of X, where the slope function is restricted to lie in Φr. Since the centroid classifier is

invariant to changes of scale of ψ, it gives the same results whether ψ is equal to ψ(r)
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or to the slope β ∈ Φr. Note that, when
∑

j≥1 θ
−2
j µ2

j <∞, the minimisation problem

at (2.11) is well defined for r → ∞, and the well defined solution, in L2(I), is that

of a standard linear regression problem. On the other hand, when
∑

j≥1 θ
−2
j µ2

j = ∞
the limit of ψ(r) as r → ∞ is not well defined. This implies that we cannot define

a standard unrestricted linear regression model for the relation between Y and X,

and in the literature it has been noted that, in this case, the least squares criterion

provides inconsistent estimators of the regression function; see for example Preda

and Saporta (2002). While this is true, it does not cause difficulty for classification

in either theory or practice; see sections 2.2 and 3.

The connection with linear regression suggests that we could choose ψ in practice

using iterative partial least squares (PLS); see Preda and Saporta (2003) and Preda et

al. (2007). Here we compare the asymptotic form of PLS, which we refer to as APLS,

with the asymptotic approach based on ψ(r). At step r, APLS approximates Y by Y =

EY +
∫
I βr (X−EX)+fr , where βr(t) =

∑r
j=1 cjWj(t), with theWjs orthogonal and

each of norm 1, and with fr denoting the residual of the approximation. The function

W1 is chosen to maximise cov(Y,
∫
I W1X), and, given the jth subspace generated by

W1, . . . ,Wj−1, Wj is chosen to maximise the covariance of
∫
I WjX and the part of Y

that is left to explain, that is fj−1. See section A.2 for details.

Like ψ(r), the function βr provides an approximation to Y − EY of the form∫
I β (X − EX), but at each step r, βr is chosen within the r dimensional space

generated by W1, . . . ,Wr, which explains the majority of the covariance of X and Y .

By comparison, the space Φr is the r dimensional space that explains the largest part

of the empirical covariance of X. Clearly, since PLS tries to capture as much of the

linear relation between X and Y as possible, then in general the r-dimensional space

generated by PLS is better suited for classification than the space Φ(r). In practice, if

the main differences between the means of Π0 and Π1 come from µj with j relatively

small, then the two approaches will give very similar results. The importance of PLS

becomes clearer in cases where the most important differences between the means of

the two populations come mostly from components µj for large j, see our numerical

investigation in section 3. We give details of the iterative PLS algorithm in section

A.2, which provides a finite sample version β̂r of βr. We suggest choosing r for PLS

by minimising the empirical error at (2.10), with ψ there replaced by β̂r.
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3 Numerical properties

3.1 Classifiers considered in our numerical work

Based on the asymptotic arguments developed in the previous sections, we suggest

applying the centroid classifier using either ψ = ψ̂(r) or ψ = β̂r, with r chosen by CV

as described in section 2.3. We implemented both methods, and in each case took

B = 200 and K = 5. To reduce the amount of computation, and rule out the most

noisy eigenfunctions, we restricted our search to r ≤ n/2. As usual with smoothing

parameter selection via CV, the empirical criterion êrr typically has several local

minima, and the global minimum is not necessarily the best one. In these cases we

kept only the two smallest values of r corresponding to a local minimum of êrr, and

chose a global minimum among those two. For general considerations about taking

the second left-most minimisers of CV criteria, see Hall and Marron (1991).

We compared these two procedures with an approach also used in practice, where

the centroid-based method is applied to a multivariate projection (
∫
I Xϕ̂1, . . . ,

∫
I Xϕ̂p),

using p empirical principal component scores. We chose p by minimising the p-variate

projection version of (2.10). We also considered a more sophisticated nonparametric

classifier suggested by Ferraty and Vieu (2006), based on the model Y = g(
∫
I βX)+ϵ,

where g is an unknown regression curve and Y = I{X ∈ Π1}. The classifier assigns

X to Π0 if ĝ(
∫
I β̂rX) < 1

2
, and to Π1 otherwise, where ĝ is a nonparametric estimator

of g and β̂r is the curve obtained by an rth stage PLS. We implemented this classifier

using the function funopare.knn.gcv of Ferraty and Vieu (2006), where we chose r

by a CV estimator of the error rate for this classifier. We denote the fully empiri-

cal centroid classifiers based on ψ̂(r), β̂r and (ϕ̂1, . . . , ϕ̂p) by, respectively, CENTPC1,

CENTPLS and CENTPCp. We denote the nonparametric classifier by NP.

3.2 Simulated examples

In this section we illustrate several properties of the centroid classifier. In all our

examples we generated n curves from two populations, Π0 and Π1, of respective sizes

n0 = n/2 and n1 = n/2. For i = 1, . . . , nk, where k = 0, 1, we took Xki(t) =∑40
j=1(θ

1/2
j Zjk + µjk)ϕj(t). Here the Zjks were independent standard normal random

variables, or independent exponential exp(1) variables centered to zero. In each case
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Figure 1: Sample of size nk = 15 from population Πk, for k = 0 (left) and k = 1 (middle),

and empirical mean curves from the two samples (right). First row: Example 2, second

row: Example 3.

we took ϕj(t) =
√
2 sin(πjt), let t ∈ I = [0, 1] and generated the data on a discrete

grid of 100 equispaced points in I. We chose the µjks and θjs depending on the

property of the classifier that we wanted to illustrate (see below). In each case we

generated M = 200 samples. For each sample we constructed the data-driven version

of each classifier, and then tested the practical performance of the resulting classifier

by assigning to Π0 or Π1 each of B = 200 randomly generated test data (100 from

Π0 and 100 from Π1). For each m = 1, . . . ,M , and each classifier, we calculated

the percentage Pm of the B test curves that were misclassified. Below, to assess the

performance of the classifiers, we show means and standard deviations of these M

values of Pm.

Perfect classification when the mean differences arise early in the sequence (µj)j≥1.

Our first illustration, Example 1, is constructed to show that near perfect classification

is possible in practice and in realistic settings. For j = 1, . . . , 40, we took θj = j−2;

for k = 0, 1 and j > 6 we let µjk = 0, and we set the other components equal to

(µ10, µ20, µ30, µ40, µ50, µ60) = (0,−0.5, 1,−0.5, 1,−0.5), (µ11, µ21, µ31, µ41, µ51, µ61) =

(0,−0.75, 0.75,−0.15, 1.4, 0.1). The Zjks were independent centered exp(1) variables.

Next, in Example 2, to show that the method also works when the variances of the

two populations differ, we took the same setting as in Example 1 but, for the data of
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Table 1: Percentage of misclassified observations in the simulated examples: Mean of

Pm (stdev of Pm) calculated from M = 200 Monte Carlo simulations.

Data n CENTPC1 CENTPLS CENTPCp

Example 1 30 4.45 (4.31) 3.13 (1.84) 13.6 (8.62)

50 3.13 (2.26) 2.73 (1.41) 10.7 (7.43)

Example 2 30 6.51 (5.45) 4.98 (2.76) 17.4 (9.73)

50 4.84 (4.32) 3.56 (2.00) 14.6 (8.33)

Example 3 30 50.0 (3.64) 3.64 (3.85) 50.0 (3.41)

50 49.6 (3.70) 0.14 (0.30) 49.7 (3.72)

population Π0, we replaced θj by θj0 = 1.5 θj. In Figure 1, we show 15 typical curves

from Π0 and 15 curves Π1, as well as the two empirical mean curves X̄0(t) and X̄1(t)

calculated from these data. As can be seen from this graph, the curves are quite

variable, and the empirical means are not dramatically different. However, in both

cases (Examples 1 and 2),
∑

j µ
2
jθ

−1
j is large, where θj is the jth largest eigenvalue

of the pooled centered data, and µj is the projection, on the jth eigenfunction, of

the difference between the mean curves from Π0 and Π1. As predicted by the theory,

CENTPC1 and CENTPLS work nearly perfectly in these cases; see Table 1, where

we show means and standard deviations of the percentage Pm of misclassified data.

Clearly, CENTPCp does not compete with these approaches.

Superiority of PLS. Our Example 3 illustrates the superiority of PLS in cases where

the most important mean differences do not come from the first few components

µj. For j = 1, . . . , 40, we took θj = exp{−{2.1 − (j − 1)/20}2}, µj0 = 0 and

µj1 = 0.75 ·(−1)j+1 ·I{j ≤ 3}. The Zjks were independent standard normal variables.

In this case the largest θjs are for j close to 40, whereas the µjs are all zero, except

for the first three (note that, to avoid having to redefine the functions ϕj, we did not

index the θjs in decreasing order). Even though the θjs do not decay very fast to

zero, it is clear that CENTPC1 will encounter difficulties in practice, as in order to

work well this method needs to estimate reasonably well the principal components

corresponding to the smallest 38th to 40th eigenvalues. That is possible only if the

sample size is much larger than 40. This difficulty experienced by the PC approach

is partly a consequence of the eigenvalues being spaced rather closely together, as

well as of the common challenge that PC methods face when one is estimating rel-

atively high order components. On the other hand, PLS is able to quickly focus on

the important components for classification, and as a result, CENTPLS gives near

12
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Figure 2: Wheat derivative curves when the protein level is less (left) or greater (middle)

than 15. Right: a typical test sample projected on ψ̂(r) when n = 30.

perfect classification. As predicted by our theory, the classification problem is much

easier when the mean differences come from components that correspond to small

eigenvalues θj. However, only the PLS approach is able to pick up those differences

in practice, by focusing on basis functions which explain at most the linear relation

between Y and X.

3.3 Real-data examples

We applied our method to three real-data examples. The first two datasets show that

very good performance can be achieved in practice by the centroid classifier. The last

one is an example where the differences between the two populations are difficult to

capture. In each case we had a sample of N = N0 + N1 observations (N0 from Π0

and N1 from Π1), which we split randomly, M = 200 times, into a training sample

of size n, with n = 30, 50 and 100, and a test sample of size N − n. In each case

we constructed M times the four empirical classifiers, described in section 3.1, from

the training data, and used them to classify the test data. We then calculated, for

each case and each classifier, the correspondingM values of the percentage Pm of test

observations that were misclassified.

Our first example illustrates the perfect classification property. The data consist of

near infrared spectra of 100 wheat samples with known protein content, and measured

from 1100nm to 2500nm in 2nm intervals. See Kalivas (1997) for a description.

We used the protein content to separate the data into two populations Π0 (protein

content less than 15) and Π1 (protein content greater than 15) of sizes N0 = 41 and

N1 = 59. As usual with chemometrics data, we worked with the derivative curves

of the spectra, which we estimated with splines as in Ferraty and Vieu (2006). The

13
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Figure 3: Rainfall curves for Australian northern (left) and southern (middle) weather

stations, and misclassified curves for a typical test sample when n = 100 (right).

Table 2: Percentage of misclassified observations: Mean of Pm (stdev of Pm) calculated

from M = 200 randomly chosen test samples.

Data n CENTPC1 CENTPLS NP CENTPCp

Wheat 30 0.89 (2.49) 0.46 (1.24) 0.49 (1.29) 15.0 (5.24)

50 0.22 (1.09) 0.06 (0.63) 0.01 (0.14) 14.4 (5.52)

Rain 30 10.6 (3.09) 10.4 (3.24) 10.6 (3.62) 12.9 (3.04)

50 10.3 (2.90) 9.80 (3.06) 9.32 (3.60) 13.3 (2.63)

100 9.45 (3.02) 8.98 (2.96) 8.34 (3.33) 13.3 (3.32)

Phoneme 30 22.5 (3.59) 24.2 (5.37) 24.4 (5.31) 23.7 (2.37)

50 20.8 (2.08) 21.5 (3.02) 21.9 (2.91) 23.4 (1.80)

100 20.0 (1.09) 20.1 (1.12) 20.1 (1.37) 23.4 (1.36)

data for the two groups are plotted in Figure 2. In this example we can get near

perfect classification using the centroid classifier, when the data are projected onto

the right function. In Figure 2 we show, for a typical training sample of size n = 30,

the test data projected onto the empirical function ψ̂(r). In this sample the projected

data from the two groups are perfectly separated. Means and standard deviations of

the percentage Pm of misclassified observations are shown in Table 2. On average for

these data, CENTPC1 and CENTPLS gave near perfect classification since the mean

percentage of misclassification was less than 1%, even for training samples of size

n = 30. Unsurprisingly in this case, the nonparametric classifier gave essentially the

same results as these two methods (although slightly worse for n = 30 and slightly

better for n = 50). The p-dimensional centroid classifier CENTPCp misclassified a

much higher proportion of the data.

In the second example we consider the N = 191 rainfall curves from N0 = 43

northern (Π0) and N1 = 148 southern (Π1) Australian weather stations, used by De-

laigle and Hall (2010) and available at http://dss.ucar.edu/datasets/ds482.1.

Here each curve Xik(t) represents rainfall at time t, where t ∈ [0, 365] denotes the

14
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Figure 4: Phoneme curves for the sound “ao” (left) and found the sound “aa” (right).

period that had passed, in a given year, at the time of measurement. The raw data

were observed daily and, as in Delaigle and Hall (2010), for each station we averaged

the rainfall over the years for which the station had been operating, using a local

linear smoother. The data curves are shown in Figure 3. In this dataset perfect clas-

sification is not possible because some of the stations geographically located in the

North have a rainfall pattern typical of the South, and vice-versa; and others have

an almost flat rainfall curve. This is illustrated in Figure 3 as well, where we show,

for a training sample of size n = 50, the misclassified northern and southern curves

out of the 141 test curves. Table 2 depicts means and standard deviations of the per-

centage Pm of misclassified observations for each method and various training sample

sizes n. The numbers reveal a low misclassification rate of 10% or less when using

CENTPC1 or CENTPLS, but a higher classification error for the CENTPCp approach.

In this example too, as suggested by the theory, the improvement obtained by the

nonparametric classifier NP was minor: the mean of Pm decreased slightly, but its

standard deviation increased.

In the third example we analysed the digitised speech phoneme data described

in Hastie et al. (2009) and available at www-stat.stanford.edu /ElemStatLearn.

The dataset contains log-periodograms constructed from 32 msec long recordings of

males pronouncing five different phonemes. We took Π0 and Π1 to be the population

of, respectively, the phonemes “aa” as in “dark” and “ao” as in “water”, whose log-

periodograms are hard to distinguish from one another, see Figure 4. Here, N0 = 695

and N1 = 1022, and each Xik(t) was observed at 256 equispaced frequencies t. We

made the curves continuous by passing a local linear smoother through the points,

and kept only the least noisy part by truncating them to the interval I = [1, 50]. The

means and standard deviations of the percentages of misclassified curves are shown

in Table 2. Here, for CENTPC1 and CENTPLS, the percentage of misclassification is

15



higher (about 23% for n = 30 and 20% for n = 100), and further from zero than in

the previous examples. However, despite its much higher level of sophistication, the

nonparametric classifier does not do any better than these simple classifiers.

4 Further theoretical properties

4.1 Theoretical properties of empirically chosen ψ

In this section, for simplicity we establish theoretical properties of the leave-one-out

CV estimator of classification error. Similar methods and results apply in the case

of multi-fold CV. Likewise, to keep the proofs relatively short and transparent we

prove the results when CV is used to select r in ψ(r), and when the search for r is

restricted to integers less than a certain number R̂ (see below), which prevents us

from having to impose stringent restrictions on the eigenvalue spacings θj − θj+1.

However, if we were able to rely on the differences θj − θj+1 being no smaller than

a specified function of j then we could define R̂ differently, in particular taking it

larger. In practice, as in more conventional problems where CV is used, we found

that better results were obtained when restricting to the first two local minima of the

CV criterion. Justification can be given as in Hall and Marron (1990).

Let T0r be the version of the classifier T 0, defined at (2.5), when ψ = ψ(r). We

assume that:

(a) for some η ∈ (0, 1], (n0+n1)
η = O{min(n0, n1)}; (b) for k = 0 and 1,

supt∈T Ek{|X(t)|C} < ∞, where C ≥ 4 depends on η; (c) no ties exist

among the eigenvalues θj; and (d) for k = 0, 1, Pk{supr≥1 |T0r(X)| ≤ c}
converges to zero as c→ 0.

(4.1)

Let R̂+1 = inf{j ≥ 1 : θ̂j − θ̂j+1 < ηn}, where ηn denotes a sequence of constants

decreasing to zero but such that n1/5 ηn → ∞ as n → ∞. In the theorem below,

where we write êrr(ψ̂(r)) for the leave-one-out CV estimator of err(ψ(r)), we show

that this approach is consistent if r is constrained to lie in the range 1 ≤ r ≤ R̂. The

proof is given in section A.1.

Theorem 4.1. If (2.1), (2.2) and (4.1) hold, and if n0/n = π, then, as n increases,

R̂ → ∞ and

max
1≤r≤R̂

∣∣êrr(ψ̂(r)
)
− err

(
ψ(r)

)∣∣ → 0 , (4.2)
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where in both cases the convergence is in probability.

4.2 Classification when the population covariances differ

The results of section 2 can be extended to more general situations, where the popu-

lations may not differ only in terms of means. In this section we adapt our theory to

such cases. The method is implemented as discussed in section 2, and the results of

section 2.3 remain valid.

Assume that a random function X drawn from population Πk (resp., from Π,

the mixture of the two centered populations) has bounded covariance function Kk

(resp. K), for k = 0, 1. In analogy with (2.1), let

Kk(u, v) =
∞∑
j=1

θkj ϕkj(u)ϕkj(v) , K(u, v) =
∞∑
j=1

θj ϕj(u)ϕj(v), (4.3)

respectively, denote the standard principal component expansion of Kk (resp. K)

where θkj and ϕkj (resp. θj and ϕj) are nonzero eigenvalues, and the respective eigen-

functions, of the linear operator Kk (resp. K) with kernel equal to the function Kk

(resp. K), and k = 0 or 1. Reflecting (2.3), express the mean µ in terms of the basis

ϕ1, ϕ2, . . .: µ =
∑∞

j=1 µj ϕj.

Let ψ denote a function on I; define T (X), and its large-sample limit T 0(X), as at

(2.4) and (2.5), respectively; and determine that X comes from Π0 if T
0(X) > 0, and

from Π1 otherwise. Recall that Ek and Pk denote expectation and probability measure

under the hypothesis that X comes from Πk. We impose the following condition:

(i) E0(X) = 0 and E1(X) = µ, (ii) the covariance functions K, K0

and K1 are strictly positive definite and bounded, (iii) ∥µ∥ < ∞,

(iv) (
∑

1≤j≤r θ
−1
j µ2

j)
2/(

∑∞
j=1 θℓj

{∑
1≤m≤r θ

−1
m µm

∫
ϕm(u)ϕℓj(u) du

}2
)

→ ∞ as r → ∞, for ℓ = 0 and 1.

(4.4)

Assumption (4.4)(ii) implies that the eigenvalues θ and θkj in (4.3) and (4.3)

are all strictly positive. Parts (i)–(iii) of (4.4) involve only standard assumptions in

functional data analysis, and part (iv) holds in many cases too. The following result

is derived in section A.1.

Theorem 4.2. Assume (4.4)(i)–(iii), and suppose too that the populations Π0 and Π1

have prior probabilities π and 1−π, respectively. Then: (a) The probability of misclas-

sification, when using the centroid classifier T 0 based on ψ = ψr =
∑

1≤j≤r θ
−1
j µjϕj,
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equals

πP
{
R0 ≥

∑
1≤j≤r

θ−1
j µ2

j/(2α0)
}
+ (1− π)P

{
R1 >

∑
1≤j≤r

θ−1
j µ2

j/(2α1)
}

where, for ℓ = 0 and 1, the random variables Rℓ have zero mean and unit variance,

and α2
ℓ =

∑∞
j=1 θℓj

{ ∫
ψ(u)ϕℓj(u) du

}2
. (b) If (4.4)(iv) is satisfied then we obtain

perfect classification, in the sense that, as we proceed along the sequence (ψr)r, we

have πP0

{
T 0(X) < 0

}
+ (1− π)P1

{
T 0(X) > 0

}
→ 0.

The theorem implies, for example, that if two populations share the same eigen-

functions and differ only through their eigenvalues, then the classification error is

small if
∑

1≤j≤r θ
−1
j µ2

j is large, and converges to zero as r → ∞ if the series diverges.

This result is similar to that in the case where the two populations have the same

covariance function.

The centroid-method classifier is designed to detect differences between the pop-

ulations Π0 and Π1 that occur in location rather than scale. In order to focus them

more sharply on location the definitions of T (X) and T 0(X), in section 2.2, could

incorporate adjustments for scale. However, in principle, differences in scale can be

valuable, and by not adjusting for them the classifier may gain a little extra power

when scale differences are significant.

5 Conclusion

Our theoretical study has revealed an intriguing dichotomy between two cases arising

in functional classification problems. In the first case, asymptotically perfect classifi-

cation is not possible, and properties of linear classifiers are simple extensions of their

finite dimensional counterparts. In particular, the centroid classifier is equivalent

to classification based on prediction by linear regression. In the second case, where

asymptotically perfect classification is possible, the centroid classifier can give perfect

classification when the data are projected onto a diverging sequence of functions ψ(r),

with r increasing. Here, the standard linear regression model is not well defined, but

asymptotically perfect classification can be obtained by considering a sequence of lin-

ear models in subspaces of dimension r, where we let r diverge. We have shown that

these findings explain why, in the functional data context, simple linear classifiers
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often perform very well. The two main contenders have been shown to be classifiers

based on principal components (PC) and PLS, with PLS having advantages in cases

where PC methods would require a large number of terms.

A Appendix: Theoretical details

A.1 Proofs

Proof of Theorem 2.1. (a). If X is drawn from Π0 then T
0(X) =

(
Q−

∫
I ψ µ

)2−Q2 =

ν2−2 ν Q , where Q, µ and ν were defined at (2.6) and (2.7). Writing N for a random

variable with the normal N(0, 1) distribution, and Φ for the distribution function

of N , we see that the probability that the classifier mistakenly assigns X to Π1,

when X is actually drawn from Π0, is given by: P0

(
T 0 ≤ 0

)
= P

(
ν2 − 2 ν σ N <

0
)
= 1 − Φ(ν/2σ) , provided that ν ̸= 0 (Pk is defined at Page 8). This is also the

probability of incorrect classification if X is drawn from Π1. Result (a) follows from

the fact that P0

(
T 0 ≤ 0

)
= P1

(
T 0 > 0

)
.

(b)–(c). No matter whether X comes from Π0 or Π1, X − EkX, with k = 0 or 1,

has the distribution of Z, where Z is a zero-mean Gaussian process with covariance

function K. Using the spectral decomposition of K at (2.1) we can express Z in its

Karhunen-Loève expansion:

Z =
∞∑
j=1

θ
1/2
j Zj ϕj , (A.1)

where the variables Z1, Z2, . . . are independent and identically distributed as normal

N(0, 1). Assume first that
∞∑
j=1

θ−2
j µ2

j <∞ . (A.2)

We seek to find the function ψ(t) =
∑∞

j=1 λj ϕj(t) that minimises classification error.

From (A.1) and the definition of Q, µ and ν, we can write Q =
∑∞

j=1 λj θ
1/2
j Zj,

ν =
∑∞

j=1 λj µj and σ2 =
∑∞

j=1 λ
2
j θj. To minimise the error it suffices to maximise

ν2/σ2 = (
∑r

j=1 λj µj)
2/

∑r
j=1 λ

2
j θj with respect to the λjs, that is, to take λk =

c · θ−1
k µk, for any finite constant c, (the error rate does not depend on c). Hence the

minimum error is achieved by taking ψ = ψ(∞). By (A.2) we have that ψ = ψ(∞) ∈
L2(I). With this ψ, the probability of misclassification is at its minimum and equals

1− Φ{1
2
(
∑

j≥1 θ
−1
j µ2

j)
1/2}.
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If
∑∞

j=1 θ
−2
j µ2

j = ∞ then ψ(∞) is not in L2(I), but for each 0 < r < ∞, ψ(r)

defined at (2.7) is in L2(I). Taking ψ = ψ(r), the probability of misclassification is

given by 1−Φ{1
2
(
∑r

j=1 θ
−1
j µ2

j)
1/2}, which converges to err0 as r → ∞. In particular,

when
∑∞

j=1 θ
−1
j µ2

j = ∞, err0 = 0.

(d). For simplicity, assume that π = 1
2
. Under the Gaussian process model in

section 2.2, with n0 = n1 = ∞, we wish to classify a random function X that can

have either the distribution of Z defined at (A.1), or that of

Z + µ =
∞∑
j=1

θ
1/2
j (Zj + θ

−1/2
j µj)ϕj . (A.3)

Distinguishing between the hypotheses represented by the models at (A.1) and (A.3) is

equivalent to testing the null hypothesis H0 that the members of a sequence ζ1, ζ2, . . .

of independent normal random variables all have the N(0, 1) distribution, versus the

alternative H1 that they have respective N(θ
−1/2
j µj, 1) distributions. The optimal

test is based on the likelihood ratio, and is equivalent to deciding in favour of H1 if

and only if

lim
r→∞

{ r∑
j=1

(
ζj − θ

−1/2
j µj

)2 − r∑
j=1

ζ2j

}
< 0 ,

or equivalently, if and only if ν2− 2 ν Q ≤ 0, where ν and Q are as at (2.6) when ψ =

ψ(r) is as defined at (2.7), and in particular Q is normal N(0, σ2). Therefore, applying

the likelihood ratio test is equivalent to applying the centroid-based classifier.

Proof of Theorem 4.1. It is straightforward to show that R̂ → ∞, and so we derive

only (4.2). The classifier C, applied to an observation x, asserts that C(x |ψ) = 0 if

and only if T (x) > 0, where T is defined at (2.4). The analogue C0 of C, employing

infinite training samples, asserts that C0(x |ψ) = 0 if and only if T 0(x) > 0, where

T 0 is defined at (2.5). Using ψ̂(r) and ψ(r) to construct T (x) and T 0(x), respectively,

and denoting the results by Tr and T0r respectively, we have:

Tr(x) =
⟨
X̄1 − X̄0, ψ̂

(r)
⟩ (⟨

X̄1 + X̄0, ψ̂
(r)
⟩
− 2 ⟨x, ψ̂(r)

⟩)
, (A.4)

T0r(x) =
⟨
µ1 − µ0, ψ

(r)
⟩ (⟨

µ1 + µ0, ψ
(r)
⟩
− 2

⟨
x, ψ(r)

⟩)
, (A.5)

and moreover,∣∣⟨X̄1 ± X̄0, ψ̂
(r)
⟩
−
⟨
µ1 ± µ0, ψ

(r)
⟩∣∣ = ∣∣⟨µ1 ± µ0, Dr⟩+

⟨
D±, ψ

(r)
⟩
+ ⟨D±, Dr⟩

∣∣ , (A.6)
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where Dr = ψ̂(r) − ψ(r) and D± = X̄1 − µ1 ± (X̄0 − µ0).

Since, by (4.1)(b), E(∥X∥2) <∞, then∫
I
D2

± = Op(n
−1
)
, (A.7)

and we shall prove shortly that

max
1≤r≤R̂

∫
I
D2

r = op(1) , n−1/2 max
1≤r≤R̂

∥∥ψ(r)
∥∥ = op(1) . (A.8)

Results (A.4)–(A.8), and again the property E(∥X∥2) < ∞, imply that for each

C1 > 0,

sup
x : ∥x∥≤C1

max
1≤r≤R̂

|Tr(x)− T0r(x)| = op(1) . (A.9)

Let X be a new function from Πk, independent of the data. It follows from (A.9),

and the assumption in (4.1)(d) that Pk{supr≥1 |T0r(X)| ≤ c} → 0 as c→ 0, that

P
{
Tr(X) and T0r(X) have the same sign for all 1 ≤ r ≤ R̂

}
→ 1 .

Equivalently, the probability that the classifiers C(X | ψ̂(r)) and C0(X |ψ(r)) give the

same results for each r in the range 1 ≤ r ≤ R̂ converges to 1.

A similar argument can be used to prove that, if we define C(i)(X | ψ̂(r,i)) to be the

version of C(X | ψ̂(r)) defined not in terms of Tr but its analogue T
(i)
r , based on the

training data from which Xi (in either of the training samples) has been excluded,

then the probability that C(i)(Xi | ψ̂(r,i)) and C0(Xi |ψ(r)) give the same results for

each r in the range 1 ≤ r ≤ R̂, uniformly in data functions Xi from the training

data, converges to 1. (In particular, (4.1)(b) can be used to prove that removing a

single observation from the training data alters the value of |Tr(x)−T0r(x)| by op(1),
uniformly over all indices of the removed observation, as well as uniformly over x for

which ∥x∥ ≤ C1, and uniformly over 1 ≤ r ≤ R̂.)

Finally we derive (A.8). Observe that

Dr =
r∑

j=1

( µ̂1j

θ̂j
ϕ̂j − θ−1

j µ1j ϕj

)
=

r∑
j=1

(
θ̂−1
j µ̂1j − θ−1

j µ1j

)
ϕ̂j +

r∑
j=1

θ−1
j µ1j (ϕ̂j − ϕj

)
,

1
2

∫
I
D2

r ≤
r∑

j=1

(
θ̂−1
j µ̂1j − θ−1

j µ1j

)2
+ ∥µ1∥2

r∑
j=1

θ−2
j ∥ϕ̂j − ϕj∥2 ,∣∣∣θ̂−1

j µ̂1j − θ−1
j µ1j

∣∣∣ ≤ θ̂−1
j |µ̂1j − µ1j|+ θ−1

j θ̂−1
j |µ1j| |θ̂j − θj|
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≤ θ̂−1
j

∣∣∣∣ ∫
I
(X̄1 − µ1) ϕ̂j +

∫
I
µ1 (ϕ̂j − ϕj)

∣∣∣∣+ θ−1
j θ̂−1

j |µ1j| |θ̂j − θj| ,

and hence,

A1

r∑
j=1

(
θ̂−1
j µ̂1j − θ−1

j µ1j

)2
≤ ∥X̄1 − µ1∥2

r∑
j=1

θ̂−2
j + ∥µ1∥2

r∑
j=1

θ̂−2
j ∥ϕ̂j − ϕj∥2

+ ∥µ1∥2
r∑

j=1

(θj θ̂j)
−2(θ̂j − θj)

2 ,

where, here and below, A1, A2 and A3 will denote absolute constants. Therefore,

A2

∫
I
D2

r ≤ ∥X̄1 − µ1∥2
r∑

j=1

θ̂−2
j + ∥µ1∥2

r∑
j=1

∥ϕ̂j − ϕj∥2

min(θ2j , θ̂
2
j )

+ ∥µ1∥2
r∑

j=1

(θ̂j − θj)
2

(θj θ̂j)2
.

(A.10)

Hall and Hosseini-Nasab (2006) noted that

|θ̂j − θj| ≤ ∆̂ , ∥ϕ̂j − ϕj∥ ≤ 81/2 ∆̂ δ−1
j ,

where ∆̂2 =
∫
I

∫
I(K̂ −K)2 and δj = mink≤j (θk − θk+1). Therefore, by (A.10).

A3

∫
I
D2

r ≤
(
∥X̄1 − µ1∥2+∥µ1∥2 ∆̂2

) r∑
j=1

(θj θ̂j)
−2 + ∥µ1∥2 ∆̂2

r∑
j=1

{
δj min(θj, θ̂j)

}−2
.

(A.11)

Now,

R̂ ≤
∞∑
j=1

I
(
θ̂j − θ̂j+1 ≥ ηn

)
≤

∞∑
j=1

η−1
n

(
θ̂j − θ̂j+1

)
I
(
θ̂j − θ̂j+1 ≥ ηn

)
≤ η−1

n θ̂1 ,

and if j ≤ R̂ and ∆̂ ≤ 1
2
ηn then θ̂j ≥ ηn and θj ≥ θ̂j − ∆ ≥ 1

2
ηn. Therefore, if

∆̂ ≤ 1
2
ηn then

R̂∑
j=1

(
θj θ̂j

)−2 ≤ η−1
n θ̂1 ·

(
ηn · 1

2
ηn
)−2

= 4 η−5
n θ̂1 , (A.12)

R̂∑
j=1

{
θj min

(
θj, θ̂j

)}−2 ≤ η−1
n θ̂1 ·

(
1
2
η2n
)−2

= 4 η−5
n θ̂1 . (A.13)

Furthermore, by assumption on ηn, n
−1/5 = o(ηn); and since supt∈T Ek{|X(t)|}4 <∞

for k = 1, 2, by (4.1)(b); then ∆̂ = Op(n
−1/2) and ∥X̄1 − µ1∥ = Op(n

−1/2). It follows
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that P (∆̂ ≤ 1
2
ηn) → 1. These properties and (A.11)–(A.13) imply the first part

of (A.8). The second part of (A.8) follows more simply:

n−1 max
1≤r≤R̂

∥∥ψ(r)
∥∥2

= n−1 max
1≤r≤R̂

r∑
j=1

θ−2
j µ2

1j ≤ n−1
(
1
2
ηn
)−2 ∥µ1∥2 → 0 ,

since n1/5 ηn → ∞. (The inequality holds when ∆̂ ≤ 1
2
ηn.)

Proof of Theorem 4.2. Define ψr =
∑r

j=1 θ
−1
j µj ϕj . If X is from Π0 then T 0(X) =(

⟨X,ψr⟩−⟨µ, ψr⟩
)2−⟨X,ψr⟩2 = ⟨µ, ψr⟩2−2α0 ⟨µ, ψr⟩R0 , where the random variable

R0 satisfies E(R0) = 0 and E(R2
0) = 1, and α2

0 =
∑∞

j=1 θ0j
{ ∫

ψr ϕ0j

}2 ≥ 0. Simi-

larly, if X is from Π1 then T 0(X) =
(
⟨X,ψr⟩ − ⟨µ, ψr⟩

)2 − ⟨X,ψr⟩2 = −⟨µ, ψr⟩2 −
2α1 ⟨µ, ψr⟩R1 , where 0 ≤ α2

1 =
∑∞

j=1 θ1j {
∫
ψr ϕ1j}2 and the random variable R1

satisfies E(R1) = 0 and E(R2
1) = 1. Therefore,

err(ψr) = π P0

(
T 0 ≤ 0

)
+ (1− π)P1

(
T 0 > 0

)
= π P

{
R0 ≥ ⟨µ, ψr⟩/(2α0)

}
+ (1− π)P

{
−R1 > ⟨µ, ψr⟩/(2α1)

}
≤ 4{πα2

0 + (1− π)α2
1}/⟨µ, ψr⟩2,

where we used Markov’s inequality. In the particular case where (4.4)(iv) holds we

deduce that err(ψr) → 0 as r → ∞.

A.2 Details of PLS algorithm

The iterative PLS procedures constructs successive approximations (for ℓ = 1, . . . , r

with r > 0 some finite number) to X(t) and Y in the form

Xi(t) = X̄(t) +
∑
1≤j≤ℓ

TijPj(t) + Eiℓ(t) and Yi = Ȳ +
∑
1≤j≤ℓ

Tij cj + fiℓ , (A.14)

Eiℓ(t) = Xi(t)− X̄(t)−
∑
1≤j≤ℓ

TijPj(t) and fiℓ = Yi − Ȳ −
∑
1≤j≤ℓ

Tij cj , (A.15)

where Tij =
∫
I Wj(t){Xi(t) − X̄(t)} dt for some function Wj(t), and with Eiℓ and

fiℓ the residuals. At step r, PLS provides a linear approximation to Yi through Yi =

α̂r+
∫
I β̂r(t)Xi(t)+fiq, with α̂r = Ȳ −

∑r
j=1

∫
I cjWj(t)X̄(t) and β̂r(t) =

∑r
j=1 cjWj(t).

Wj, Pj and cj are constructed iteratively as follows. First, choose the function W1

that satisfies ∥W1∥ = 1 and maximises the covariance of Yi and Ti1 =
∫
I W1Xi.

Write (A.14) for ℓ = 1, where P1(t) (respectively c1) is the LS estimator of the
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slope of the linear regression of Xi (respectively Yi), on Ti1. Then, more generally,

given an orthonormal sequence W1, . . . ,Wj−1, choose Wj, subject to ∥Wj∥ = 1 and∫
I Wj Wk = 0 for 1 ≤ k ≤ j−1, to maximise the covariance of fi,j−1 and

∫
I Wj Ei,j−1 =∫

I Wj Xi = Tij. Then Pj(t) (respectively cj) is the LS estimator of the slope of the

intercept-free linear regression of Eij (respectively fij), on Tij.
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