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Abstract: We show that, in the functional data context, by appropriately exploiting
the functional nature of the data, it is possible to cluster the observations asymp-
totically perfectly. We demonstrate that this level of performance can sometimes be
achieved by the k-means algorithm as long as the data are projected on a carefully
chosen finite dimensional space. In general, the notion of ideal cluster is not clearly
defined. We derive our results in the setting where the data come from two popula-
tions whose distributions differ at least in terms of means, and where an ideal cluster
corresponds to one of these two populations. We propose an iterative algorithm to
choose the projection functions in a way that optimises clustering performance, where,
to avoid peculiar solutions, we use a weighted least-squares criterion. We apply our
iterative clustering procedure on simulated and real data, where we show that it works
well.
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1 Introduction

We consider the two-population functional data clustering problem, where the goal

is to cluster, into two groups, curves X1, . . . , Xn supported on an interval I, in such

a way that data from a same cluster are more similar than data from the other

cluster. Recently, in the related functional data classification problem, Delaigle and

Hall (2012) have introduced the notion of asymptotically perfect classification. There,

they proved that in the two-population functional classification problem, as training

sample size increases, it is possible to classify new data correctly with probability
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tending to one, even in non pathological cases, as long as the curves are projected on

a carefully chosen space of dimension one.

We extend the idea of asymptotically perfect performance to the more theoretically

challenging functional data clustering problem. Unlike the classification context, we

do not have at our disposal a training sample of data from each of the clusters,

which, in practice too, makes the problem more complicated than its classification

counterpart. For example, we shall see that even in cases where we have an analytic

formula for a projection that guarantees good performance, we cannot compute it

explicitly in practice and need to use instead an iterative procedure. As pointed out

by Hennig (2015), there is no unique way to define a perfect cluster. For example,

in some applications, it can be reasonable to define ideal clusters directly from the

data. Another common approach is based on the assumption that the data come

from populations with distinct distributions, and a cluster corresponds to one of the

populations; this is the one we use in this paper. Specifically, suppose that a clustering

algorithm has partitioned the set X = {X1, . . . , Xn} of all data into two disjoint parts,

X1 and X2, and that a detailed analysis of the origins of the data shows that there

exist just two populations, or sub-populations, Π1 and Π2, which differ at least in

terms of their means.

We say that the clustering algorithm is asymptotically perfect if, with probability

converging to 1 as the total sample size diverges, it asymptotically correctly ascribes

the data in any given Πj to a unique cluster, Xj say. The latter property means that

the proportion of data in Πj that are ascribed to Xj by the algorithm converges to 1

as the sample size increases. We establish this property in the case where the two

populations differ only in terms of means, where we show that this level of performance

is achieved by applying a weighted version of the standard k-means algorithm to a

carefully chosen univariate projection of the data; we derive an analytic formula for

this projection. Roughly speaking, asymptotically perfect clustering is possible in

cases where the difference between the means µ1 and µ2 of the two populations is
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large relative to the variability of the data. More specifically, the accumulation over

j = 1, 2, . . ., of the square of the projection of µ1−µ2 on the univariate space generated

by the jth eigenfunction of the covariance operator, divided by the corresponding jth

eigenvalue, is so large that it is possible to project the data from the two populations

on two univariate tight clusters that are infinitely apart from each other. We extend

our theoretical results to other distributional settings and to the case of more than two

populations that can be clustered hierarchically. In these more complex situations,

we might need more than one projection function, and these functions are usually

defined only implicitly. We introduce a data-driven way of choosing them.

2 Methodology for clustering

2.1 k-means algorithms for functional data

Let X = {X1, . . . , Xn} denote a random sample of random functions, each distributed

as the generic function X and supported on the interval I. Recall that the goal of

a clustering algorithm is to cluster the set X in two disjoint parts X1 and X2. For

k = 1, 2, we let Xki denote the ith curve that is classified in the kth group. In this

notation, Xk = {Xk1, . . . , Xknk
} where n1 + n2 = n.

We focus on the k-means algorithm, which is one of the most popular techniques.

When the observations are p-vectors Vki, the k-means algorithm chooses the two

partitions so as to minimise
2∑

k=1

nk∑
i=1

‖Vki − V̄k‖2, (2.1)

where V̄k = n−1
k

∑nk

i=1 Vki and ‖(u1, . . . , up)‖ = (
∑

j u
2
j)

1/2 is the conventional square

norm for a p-vector.

In the functional data context, this algorithm can be applied in several ways. A

first possibility is to replace the norm of vectors by the L2 norm of functions or one

of their derivatives. Specifically, this version of the algorithm forms the partitions so

as to minimise
∑2

k=1

∑nk

i=1

∫
{X(ν)

ki (t) − X̄(ν)
k (t)}2 dt, where ν is a positive integer to
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be chosen by the experimenter, and X̄
(ν)
k = n−1

k

∑nk

i=1X
(ν)
ki ; see for example Tarpey

and Kinateder (2003) and Ferraty and Vieu (2006).

This approach is simple to implement, but it is well known that applying k-means

to the whole functions is often not the best strategy because these typically contain

too much noise. A more commonly used technique consists in applying k-means to

the vectors Vki of dimension, say p, obtained by projecting the curves Xki onto a

space of finite dimension p. A common way to project a function X onto such a space

is to express X as a linear combination of orthonormal functions ψ1, ψ2, . . . , that is

X =
∑∞

j=1 αjψj, where αj = X(ψj) ≡
∫
I X(t)ψj(t) dt, then truncate the infinite sum

to p terms (often, but not always, the first p), and take V to be the p-vector of the

corresponding coefficients αj, for example V = (α1, . . . , αp).

Often the ψj’s are taken to be elements of a predetermined basis such as the B-

spline basis, a Fourier basis, a wavelet basis or the principal component basis. See for

example Abraham et al. (2003), Serban and Wasserman (2005), Auder et al. (2012)

and Antoniadis et al. (2013). Sometimes k-means is used only as a preliminary

clustering procedure, which is then refined at a second stage. See Chiou and Li (2007),

where the preliminary clustering is applied with the ψj’s being eigenfunctions.

A problem when the ψj’s are taken to be elements of a predetermined basis is

that they are not chosen in a way that tries to optimise clustering performance, and

as a result the coefficients αj do not necessarily carry the most relevant information

for clustering the functions. In a first attempt to overcome this difficulty, Delaigle et

al. (2012) suggested projecting each Xi onto a vector Vi =
(
Xi(t1), . . . , Xi(tp)

)
, where

the points t1, . . . , tp were selected from the data, so as to try and maximise clustering

performance. In Gattone and Rocci (2012) the authors suggested approximating the

ψj’s and the Xi’s by linear combinations of basis functions φ1, . . . , φq, with q large,

and then selecting the p ψj’s (p ≤ q) so as to optimise clustering, under a smoothness

penalty for the cluster means X̄k. These two approaches are good steps forward in

choosing projections so as to optimise clustering performance. In the next section,
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motivated by theoretical considerations, we introduce a weighted version of the k-

means algorithm which guarantees good, indeed sometimes asymptotically perfect,

theoretical properties in the functional setting. We shall see in section 4 that it also

performs very well in practice.

2.2 A modified k-means algorithm for functional data

Write ψ1, . . . , ψp for a given, linearly independent sequence of functions defined on

I, let Xi(ψj) =
∫
I ψj Xi be the projection of Xi onto the real line in the “direction”

determined by ψj, put ~ψ = (ψ1, . . . , ψp) and let Xi(~ψ) =
(
Xi(ψ1), . . . , Xi(ψp)

)
, a p-

vector. We propose a weighted version of k-means clustering applied to the p-vectors

Xi(~ψ), to determine first the functions ψ1, . . . , ψp and then the clusters. Here and

below the integer p is fixed; see section 4.1 for how to choose it in practice.

The k-means algorithm is usually applied by minimising a measure of the tight-

ness of clusters. In the standard version of k-means for p-vectors used at (2.1), if

our clustering algorithm has partitioned X into two disjoint parts X1 and X2 as in

section 2.1, then cluster tightness is measured by

T2

(
X1,X2

∣∣ ~ψ) =
1

n

2∑
k=1

nk∑
i=1

∥∥Xki

(
~ψ
)
− X̄k

(
~ψ
)∥∥2

, (2.2)

where Xki(~ψ) = (
∫
I ψ1Xki, . . . ,

∫
I ψpXki) and X̄k(~ψ) = n−1

k

∑
1≤i≤nk

Xki(~ψ).

The goal of the k-means clustering approach is to find the clustering that produces

the minimum, T2(~ψ), of T2(X1,X2 | ~ψ):

T2

(
~ψ
)

= min
X1,X2

T2

(
X1,X2

∣∣ ~ψ) . (2.3)

Here, the minimum is taken over all sequences of two disjoint, nonempty sets X1 and

X2 whose union is X . However, the tightness measure at (2.2) can be misleading if it is

used to compare different vectors ~ψ of functions. This is because, if Xi is smooth and

ψj is a highly oscillating function, the value of
∫
I ψj Xi can be made arbitrarily small

simply by increasing the frequency, without violating a standardisation condition such
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as ‖ψj‖ = 1. For example, if ψj(t) = c sin(jt) for a constant c > 0, and Xi has a

bounded derivative on I, then
∫
I ψj Xi → 0 as j diverges. Therefore T2(X1,X2 | ~ψ)

can be rendered small simply by choosing the functions ψj to have high frequency

oscillations, without materially affecting cluster tightness.

This concern suggests that, in the functional data context, a modification of the

definition at (2.2) is needed, where the components of each Xi(~ψ) are standardised for

scale before being used to calculate T2(X1,X2 | ~ψ). Without taking scale into account,

T2 can be small simply because most Xki(~ψ)’s are small, and not just because they

are close to X̄k(~ψ). With this in mind, we define

X̄(ψj) = n−1

n∑
i=1

Xi(ψj) , σ̂(ψj)
2 =

1

n

n∑
i=1

{Xi(ψj)− X̄(ψj)}2 .

As before we partition X into two disjoint, nonempty sets X1 and X2, with Xk =

{Xk1, . . . , Xknk
} where n1+n2 = n, but we propose measuring the tightness of clusters

differently. Specifically, we use the following analogue of T2(X1,X2 | ~ψ) to characterise

cluster tightness:

T̂2

(
X1,X2

∣∣ ~ψ) =

p∑
j=1

1

σ̂(ψj)2

1

n

2∑
k=1

nk∑
i=1

{Xki(ψj)− X̄k(ψj)}2 , (2.4)

where Xki(ψj) =
∫
I ψj Xki and X̄k(ψj) = n−1

k

∑
1≤i≤nk

Xki(ψj). In section 3 we

shall prove that this weighted version of k-means gives particularly good clustering

performance, and can even provide asymptotically perfect clustering.

With this version of tightness, the goal of the k-means algorithm is to produce an

analogue of T2(~ψ) at (2.3):

T̂2

(
~ψ
)

= min
X1,X2

T̂2

(
X1,X2

∣∣ ~ψ) . (2.5)

In order to ensure good clustering performance, we optimise over ~ψ by taking

~̂ψ = argmin
~ψ∈Qn

T̂2

(
~ψ
)
, (2.6)
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where Qn denotes a class of orthogonal functions which is permitted to become

steadily more complex as sample size grows. For example, one approach to approx-

imating members of the class L2(I) of square integrable functions on I is to use a

complete orthonormal sequence χ1, χ2, . . . in the class. Then any ψ ∈ L2(I) can be

expressed as the L2 limit as r →∞ of approximations of the form

ψ(r)(x) =
r∑
j=1

dj χj(x) , (2.7)

where d1, d2, . . . is a sequence of real numbers that are elements of a potentially

growing set Dn, and are such that
∑

j d
2
j < ∞. We shall discuss the choice of the

functions χj in section 4.1.

In practice, k-means is usually applied through iterative algorithms, the most

popular of which is probably Lloyd’s algorithm (Lloyd 1957, 1982), which is what

we used in our numerical work. This algorithm starts by creating an initial partition

of the data into two clusters. Then, at each iteration, it partitions the space into

a centroidal Voronoi tessellation of IRp, generated by the centres of the clusters. A

variety of other approaches are possible. See Telgarsky and Vattani (2010), who argue

that an algorithm suggested by Hartigan (1975) is particularly competitive. See also

Brusco and Steinley (2007). These algorithms often provide good clustering, although

they are sensitive to the initial partition so that they are often applied with several

initial random partitions.

3 Theoretical interpretation of clustering method-

ology

We study theoretical properties of our suggested algorithm. First, in section 3.1, we

establish the asymptotic limit of the empirical criterion T̂2, uniformly over the func-

tions ψj and the partitions of IRp. Then, in section 3.2, we establish the asymptotically

near perfect clustering property in the particular case where the populations differ
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only in terms of means. We extend these results to a more general heteroscedastic

setting in section 5.1, and to the case of more than two populations in section 5.2.

3.1 Asymptotic limit of T̂2
(
X1,X2 | ~ψ

)
at (2.4)

In this section we derive the limit of T̂2

(
X1,X2 | ~ψ

)
at (2.4), as n → ∞. This

sort of limiting results exist in the multivariate case (see Pollard, 1981), but es-

tablishing them in the functional data case requires different arguments because

of the intrinsically different nature of the data. Let X denote a generic Xi, put

X(~ψ) =
(
X(ψ1), . . . , X(ψp)

)
, x = (x1, . . . , xp) and let

σ(ψj)
2 = var{X(ψj)} . (3.1)

Write F ( · | ~ψ) for the distribution function of X(~ψ), take ~R = (R1,R2) to be a

partition of IRp into two disjoint regions for each of which π
(
~ψ,Rk

)
≡ P

{
X
(
~ψ
)
∈

Rk

}
> 0, let µkj(~ψ) = π(~ψ,Rk)

−1
∫
Rk
xj dF (x | ~ψ) and put

t2
(
~ψ
∣∣ ~R) =

p∑
j=1

1

σ(ψj)2

2∑
k=1

∫
Rk

{
xj − µkj

(
~ψ
)}2

dF
(
x
∣∣ ~ψ) . (3.2)

We can interpret T̂2

(
X1,X2 | ~ψ

)
, defined at (2.4), as an empirical approximation

to t2(~ψ |R1,R2) when the region Rk contains Xk, for k = 1, 2. More particularly, if

we put Xk = X ∩Rk for k = 1, 2 then, for fixed ~ψ and ~R, we have T̂2

(
X1,X2

∣∣ ~ψ) P−→

t2
(
~ψ
∣∣ ~R) as n→∞.

In Theorem 1, below, we shall show that this convergence is uniform in ~ψ ∈ Qn

and ~R ∈ Vp,n, where Qn is a set of functions ψ on I for which

‖ψ‖ = 1 for all ψ ∈ Qn , #Qn ≤ an , (3.3)

with # denoting the number of elements of a set and an denoting a sequence of

positive numbers diverging to infinity, and, motivated by the fact that the optimal

clustering found through minimisation of (2.5) is a centroidal Voronoi tessellation of
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IRp (see Hasegawa et al., 1993 and Du et al., 1999), Vp,n is a set of Voronoi tessellation

partitions of IRp into two cells, satisfying

#Vp,n ≤ bn , (3.4)

where bn denotes a sequence of positive numbers diverging to infinity; see (3.10)

below for bounds on an and bn. (Here and throughout the paper, when referring to

Voronoi tessalations, these are constructed with the weighted distance as in (2.4).)

In particular, ~̂ψ at (2.6) can be viewed as an empirical approximation to a vector of

projections into IRp that minimises the dispersion measure given by t2.

It is notationally convenient to represent a partition as a sequence ~R = (R1,R2)

but to establish the theorem, if one partition is in Vp,n then we assume without loss of

generality that its permutation (R2,R1) is too. Moreover, we ask that, for a constant

πmin > 0 not depending on n,

inf
ψ1,...,ψp∈Qn

inf
~R∈Vp,n

inf
k=1,2

π(~ψ,Rk) ≥ πmin . (3.5)

That is, the cells in the Voronoi tessellation do not get too small, in the sense that

the probability that X(~ψ) lies in any particular cell is bounded away from zero.

Let X1(ψj |Rk), . . . , Xn(ψj |Rk) be independent and identically distributed with

the distribution ofX(ψj), conditional onX(~ψ) ∈ Rk. Since all clustering steps involve

empirical centring and scaling then we may suppose, without loss of generality, that

E(X) = 0 and E‖X‖2 = 1. For a general random variable R satisfying E|R| < ∞,

we write (1− E)R = R− E(R). We assume that, for each ε > 0,

max
`=1,2

sup
ψ1,...,ψp∈Qn

max
1≤j≤p

sup
~R∈Vp,n

sup
k=1,2

P

{∣∣∣∣ 1n
n∑
i=1

(1− E)Xi(ψj |Rk)
`

∣∣∣∣ > εσ(ψj)
2

}
= O

[
exp

{
− C(ε)nc

}]
, (3.6)

sup
ψ∈Qn

P

{∣∣∣∣ 1n
n∑
i=1

∫
I
ψXi

∣∣∣∣ > εσ(ψ)2

}
= O

[
exp

{
− C(ε)nc

}]
, (3.7)

sup
ψ∈Qn

P

{∣∣∣∣ 1n
n∑
i=1

(1− E)

(∫
I
ψXi

)2∣∣∣∣ > εσ(ψ)4

}
= O

[
exp

{
− C(ε)nc

}]
, (3.8)
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inf
ψ∈Qn

σ(ψ)4 ≥ C(ε)n−(1−c) , (3.9)

where, here and below, C(ε) denotes a generic positive constant depending on ε but

not on n, and 0 < c < 1. Conditions (3.6)–(3.8) assert moderate deviation bounds for

the probabilities on the respective left-hand sides. There we ask that the probabilities

be exponentially small, but cases where the right-hand sides of (3.6)–(3.8) decrease at

a polynomial rather than exponential rate can also be treated using our arguments.

See Appendix A.4 for an illustration of these conditions.

Theorem 1. If (3.5)–(3.9) hold, and the “growth rates” an and bn are sufficiently

low to ensure that, for all C > 0,

apn bn exp
(
− C nc

)
→ 0 (3.10)

as n→∞, then as n diverges, and for all ε > 0,

P

{
sup

ψ1,...,ψp∈Qn

sup
~R∈Vp,n

∣∣∣T̂2

(
X1,X2

∣∣ ~ψ)− t2(~ψ ∣∣ ~R)∣∣∣ > ε

}
→ 0 . (3.11)

If the p-vector X(~ψ) has a well-defined probability density f( · | ~ψ) that is con-

tinuous and positive everywhere in IRp, then the minimum, t2(~ψ), of t2(~ψ | ~R) over

choices of the partition ~R of IRp is achieved for a partition (R0
1,R0

2) that is a cen-

troidal Voronoi tessellation of IRp. (See Schreiber, 1998, among others, for discussion

of Voronoi tessellations in the context of k-means clustering.) In particular, each R0
k

is a polygonal prism in IRp; its centroid, defined in the sense of mean with respect to

the density f( · | ~ψ), is the point µk(~ψ) = (µk1(~ψ), . . . , µkp(~ψ)). (The assumption that

f( · | ~ψ) exists and is continuous and positive, can be relaxed, although at the cost of

treating issues such as contiguity of the support of f( · | ~ψ).)

Let C1(~ψ) and C2(~ψ) denote the convex hulls of X1 and X2, where (X1,X2) is the

partition of X that minimises T̂2(X1,X2 | ~ψ). If R0
1 and R0

2 are uniquely defined up to

permutations then a permutation (depending on the dataset X ) of C1(~ψ) and C2(~ψ),

converges in probability, as n → ∞, to R0
1 and R0

2, in the following sense: for any
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fixed, closed p-sphere S in IRp, there exists a permutation of C1 ∩ S and C2 ∩ S that

converges in probability, as a sequence of random sets, to R0
1 ∩ S and R0

2 ∩ S.

3.2 Asymptotically near perfect clustering when the popu-
lations differ only in terms of means

In this section we introduce the notion of “asymptotically perfect clustering,” where,

in the case p = 1, minimising the asymptotic version t2(~ψ | ~R) at (3.2) of T̂2(X1,X2 | ~ψ)

at (2.4), with respect to both ~ψ and ~R, can lead to regions R1 and R2 each of

which contains asymptotically all of the data from just one of the populations, and

asymptotically none of the data from the other population. Here “asymptotically all”

and “asymptotically none” are interpreted in the sense that the proportions of data

converge to 1 and 0, respectively, along any sequence of values of ~ψ and ~R for which

t2(~ψ | ~R) converges to its minimum.

We shall simplify our discussion by assuming that the populations differ only in

location (see section 5.1 for more general heteroscedastic settings). In this simple case,

we can derive explicit results and a simple analytic formula for the unique function

ψ to use. We assume that there are two sub-populations, Π1 and Π2 (see section 5.2

for K > 2 populations), and that the data from the kth can be represented as

Xki = νk + Zki , 1 ≤ i ≤ nk , (3.12)

where :

The functions Zki are all distributed as the fixed random function Z, say,
with E(Z) = 0; the location terms νk, for k = 1, 2 are fixed; and the
populations Π1 and Π2 arise in respective proportions ρ1 and ρ2, where
ρ1 + ρ2 = 1 and each ρk > 0.

(3.13)

In (3.13) the random function Z is “fixed” in the sense that its distribution does not

depend on k or i. In view of (3.13), a generic Xi can be represented as

X =
2∑

k=1

νk Ik + Z , (3.14)
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where the zero-one variables I1 and I2 are independent of Z, P (Ik = 1) = 1−P (Ik =

0) = ρk, and P (I1 I2 = 0) = 1.

We shall show that in this setting it is possible to have t2(~ψ | ~R) → 0, along

a sequence of values of ~ψ and ~R. To see how to define explicitly a function ψ

that results in asymptotically perfect clustering, write κ(u, v) = cov{Z(u), Z(v)}

for the covariance function of Z, and let κ(u, v) =
∑∞

j=1 θj φj(u)φj(v) denote the

spectral decomposition of κ. Here θj and φj are eigenvalues and eigenfunctions,

respectively, of the transformation, also denoted by κ, that takes a function ψ to

κ(ψ) defined by κ(ψ)(u) =
∫
κ(u, v)ψ(v) dv. (The dual usage of κ in this setting

is common; the context disambiguates notion.) We can write νk =
∑∞

j=1 νkj φj and

Zki =
∑∞

j=1 θ
1/2
j Zkij φj, where νkj =

∫
I νk φj and Zkij = θ

−1/2
j

∫
I Zki φj is the jth

principal component score of Zki.

Recalling (2.7), define ψ(r) =
∑r

j=1 αj φj. Then it is easy to see that E{Xki(ψ
(r))} =∑r

j=1 νkj αj and var{X1i(ψ
(r))} = var{X2i(ψ

(r))} =
∑r

j=1 θj α
2
j , and a calculus of

variations argument shows that, over all vectors ψ having the form
∑

j≤r βj φj for

constants βj, the ratio |E{X1i(ψ)} − E{X2i(ψ)}|/[var{Xki(ψ)}]1/2 is maximised by

taking αj = const. θ−1
j (ν1j − ν2j), where const. denotes a strictly positive constant.

With this definition of αj, and letting

cr =
r∑
j=1

θ−1
j (ν1j − ν2j)

2 , (3.15)

we also find that

const.−1
∣∣E{X1i

(
ψ(r)

)
−X2i

(
ψ(r)

)}∣∣ = const.−2 var
{
Xki

(
ψ(r)

)}
= cr . (3.16)

An important feature of (3.16) is that if cr diverges to infinity as r increases, then

the standard deviation of Xki(ψ
(r)) becomes negligibly small relative to the difference

between the means of the two groups, and so for k = 1, 2, data points in the sample X

that come from Πk are readily identified as a tight cluster around the point
∫
I ψ

(r) νk,

if we project data in the direction ψ(r). This property remains true if we standardise
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ψ(r) so that ‖ψ(r)‖ = 1. It is intuitively clear that if cr, at (3.15), tends to infinity

as r → ∞, then, as r → ∞, it is possible to cluster the data perfectly. The next

theorem establishes this rigourously.

Theorem 2. Assume the homoscedastic mixture model defined by (3.12) and (3.13),

with κ strictly positive definite and uniformly bounded, and let ψ(r) =
∑r

j=1 θ
−1
j (ν1j−

ν2j)φj. Then if E(Z4
1ij) = E(Z4

2ij) ≡ κ4 <∞ and

∞∑
j=1

(ν1j − ν2j)
2 θ−1

j =∞ (3.17)

holds, the clustering algorithm is asymptotically perfect, in the sense that, if R1

and R2 denote the regions found by minimising (3.2), there exists a permutation

(k(1), k(2)) of the pair (1, 2) such that, for ` = 1, 2,

lim
r→∞

P{X
(
ψ(r)

)
∈ Rk(`) | I` = 1} = 1 . (3.18)

As noted by Delaigle and Hall (2012) in their functional classification context,

asymptotically perfect performance does not usually hold in the multivariate case,

except in pathological instances. By contrast, as already highlighted by Delaigle and

Hall (2012), condition (3.17) can be satisfied in more standard cases, for example

when, for j large, the eigenvalues θj and the difference of the mean coefficients ν1j

and ν2j are such that θj = O{(ν1j − ν2j)
2}. This makes the clustering problem for

functional data unique and particularly interesting.

4 Numerical properties

4.1 Empirical choice of the functions ψj

There are many ways to choose the space Qn at (2.6) in which we seek the functions

ψ1, . . . , ψp. Except in the setting of Theorem 2, in general we do not have an explicit

expression for the functions ψj that should be used for projecting the data, nor for

the number, p, of functions that we should use. In practice, where n is finite we
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suggest taking each ψj to be a linear combination of r basis functions, as in (2.7).

Specifically, for j = 1, . . . , p, we take ψj =
∑r

i=1 dj,i χi, where χ1, . . . , χr are the first

r elements of a basis and the dj,i’s are coefficients to be determined.

In the functional data literature, when choosing bases it is common to use a

spline basis, the principal component basis or a Fourier basis. If sample size was

infinite, this choice would not matter much. In practice however, we only have a

finite number of observations, which implies that we cannot take r too large. In

turn, this implies that, in order to capture the main differences between the two

populations, we need to choose the basis functions χj carefully. Because its elements

are gradually more localised as frequency increases, we suggest using the Haar basis

(see Härdle et al., 2012), or its unbalanced version (Fryzlewicz, 2007), which captures

both global and increasingly local trends, and thus offers a good balance between

localising and over-localising. It can often capture details without the need for r

being too large.

To compute the ψj’s explicitly, we need to choose the dj,i’s and p in a way that

ensures good clustering performance. We suggest choosing p and the dj,i’s iteratively;

in principle we could also choose r iteratively, but choosing both r and the dj,i’s

adaptively is somewhat redundant as we can reduce r artificially simply by setting

all the dj,i’s to zero for appropriate values of j. Therefore, a good alternative and

computationally less demanding approach is to fix r to be a large value, and choose

only the dj,i’s adaptively. Motivated by this, in our numerical work we took r = 16

(we tried larger values but found this took much more time while not improving the

results significantly).

For a fixed value of p, we need find the dj,i’s that minimise T̂2 at (2.5) by applying

Lloyd’s algorithm iteratively to a set of dj,i’s, under the constraint that the ψj’s are

orthogonal. This problem is too difficult to be solved in a reasonable amount of time

and so we use a greedy algorithm to search for the dj,i’s. Note that these form a set

of p orthnormal vectors in a space of dimension r, that is p vectors located on an
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r dimensional unit sphere. Our greedy algorithm iteratively examines a very large

collection of p orthogonal vectors on this sphere by starting with an arbitrary set of p

orthonormal vectors, and iteratively rotating and reflecting them in two dimensional

subspaces. See Appendix B.1 for details. As in Delaigle et al. (2012), we choose the

number, p, of projections using a measure of tightness of the clusters, defined by

Tp =
2∑

k=1

∑
Xi∈Ck(p)

∥∥Xi − X̄k

∥∥2
, (4.1)

where Ck(p) denotes the kth cluster of the partition obtained when using p projection

functions, X̄k = {#Ck(p)}−1
∑n

i=1Xi I{Xi ∈ Ck(p)}, #Ck(p) denotes the number of

observations in cluster Ck(p), and on this occasion, ‖ · ‖ is the L2 norm of functions.

Specifically, to choose a reasonable value, p∗, of p, we consider increasing values of p

(i.e. p = 1, 2, . . .) until Tp starts increasing, or decreases by a too small amount. This

can be achieved by choosing p∗ = infp
{
p : Tp − Tp+1 ≤ ρT1

}
where, as in Delaigle et

al. (2012), ρ denotes a pre-determined small proportion, for example ρ = 0.05, 0.1 or

0.2. As in the classification context of Delaigle et al. (2012), for most methods our

numerical investigations indicated that those values of ρ all gave similar results; see

section 4.2 for more details about our practical implementation.

4.2 Numerical results

We compared our clustering algorithm, computed as in section 4.1 with the Haar

basis and denoted below by DHPha, with seven other clustering methods, on both

simulated (section 4.2.1) and real (section 4.2.2) data. Our main Matlab code is avail-

able at http://researchers.ms.unimelb.edu.au/~aurored/Proj_Kmeans.m; it re-

quires the code available at http://researchers.ms.unimelb.edu.au/~aurored/

Scaled_Kmeans.m.

We first considered four commonly used or recently developed approaches: L2f,

the standard k-means algorithm applied to the full curves equipped with the func-

tional L2 distance, as described in the third paragraph of section 2.1; DHB, the
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clustering method in Delaigle et al. (2012); L2pc, the standard k-means algorithm

based on (2.1), where Vji =
∫
Xi(t)φ̂M,j(t) dt, with φ̂M,j the jth empirical eigenfunc-

tion computed from the data from mixed population (i.e. from the data coming from

both Π1 and Π2); and GR, the RFRKMn method of Gattone and Rocci (2012) (we

used the authors’ code, where, as discussed in their section 2.2, we took p = 1).

Then, to illustrate the fact that the way we construct the functions ψj for our

new method (see section 4.1) is important, we considered two alternative ways of

computing the ψj’s: DHPpc and DHPdb, where we applied the k-means algorithm

based on (2.4) with each ψk defined like ψ at (2.7), but instead of the Haar basis as

in section 4.1, we took, respectively, χj = φ̂M,j and χj equal to the jth element of the

Daubechies DB2 wavelet basis (see Härdle et al., 2012). Finally, we also considered our

procedure with the Unbalanced Haar basis (DHPubh) adapted from Fryzlewicz (2007)

to our setting, replacing his criterion for choosing a breakpoint of a single curve (see

his section 4) by the sum of that criterion over all the data curves.

For all methods except L2f and GR, we used the tightness-based criterion de-

scribed below (4.1) to choose the number p of projection functions. For the DHPpc

method, since the first few eigenfunctions of the pooled covariance function are often

not a very good choice for the basis functions, in order to work reasonably well, the

DHPpc method tends to need higher values of p than the other approaches, so that

for this method ρ = 0.05 works the best (this is what we used in our numerical work

for this method). For all other methods, our numerical investigations indicated that

ρ = 0.2 worked slightly better, which is what we used in our numerical work.

Theorem 2 suggests that, in some cases, our method needs only p = 1 function

ψ, and that we can chose this function as ψ = ψ(r) =
∑r

j=1 θ
−1
j (ν1j − ν2j)φj. We

compared the iterative procedure DHPha described in section 4.1 with the one where,

instead of computing the ψj’s iteratively, we projected the data onto an estimator of

the function ψ(r), which we obtained by replacing the θj’s, the φj’s and the νkj’s by

their empirical estimators computed from the data clustered in two groups at the last
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step of the above mentioned iterative procedure. Here, we chose r by minimising the

tightness T̂2 at (2.5) with respect to r. We obtained almost exactly the same results

(not reported here) as with the above iterative procedure, which suggests that the

latter is effective.

4.2.1 Simulated data

We applied the eight clustering algorithms to datasets coming from two populations

Π1 and Π2, where, as in Delaigle and Hall (2012), for k = 1, 2 and i = 1, . . . , nk, the

ith observation from the kth population was generated from the model

Xki(t) =
40∑
j=1

(
θ

1/2
j Zkij + µjk

)
φj(t)

on a grid of 128 equispaced points t in I = [0, 1], where the Zkij’s were independent

standard normal random variables and, for each j, φj(t) =
√

2 sin(πjt). We considered

three versions of this model, referred to below as models (i), (ii) and (iii), and which

were chosen so as to make the clustering problem reasonably challenging: (i) θj = j−2

for j = 1, . . . , 40, µjk = 0 for k = 1, 2 and j > 6,
(
µ11, µ21, µ31, µ41, µ51, µ61

)
=(

0,−0.30, 0.60,−0.30, 0.60,−0.30
)
, and

(
µ12, µ22, µ32, µ42, µ52, µ62

)
=
(
0,−0.45, 0.45,

−0.09, 0.84, 0.60
)
. (ii) for j = 1, . . . , 40, θj = exp[−{2.1 − (j − 1)/20}2] µj1 = 0 and

µj2 = 0.2625 (−1)j+1I{1 ≤ j ≤ 3}. (iii) for j = 1, . . . , 40, θj = j−2 µj1 = 0 and

µj2 = 0.75(−1)j+1I
{

1 ≤ j ≤ 3
}

.

Typical curves from each group for each case, as well as their empirical group

means, are depicted in Figures 5 to 7 in Appendix B.2. In both cases, we generated

100 data sets, where each time we considered nk = 30, 50 and 100. To assess the

effectiveness of each clustering method, we computed the average purity function and

the average adjusted rand index over the 100 simulated data sets, where those two

indices are defined as follows in the case of K clusters. For a given data set and for

k = 1, . . . , K, let X 0
k denote the set of observations coming from population Πk, and

for each clustering algorithm, let Xk denote the set of observations clustered in cluster
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Table 1: 100×purities and 100×adjusted rand indices averaged over 100 samples
generated from models (i) to (iii) for several group sizes nk and clustering methods.

Methods
Model nk DHPha DHPubh DHPdb DHPpc L2f L2pc DHB GR

Purities
(i) 30 74.0 77.0 74.0 82.1 56.3 55.7 56.7 63.7

50 78.9 78.9 81.6 89.2 55.3 54.9 56.5 64.7
100 85.0 89.9 85.7 91.5 53.8 53.4 54.6 65.2

(ii) 30 79.8 76.8 59.7 55.5 55.3 55.3 54.9 56.2
50 82.1 77.4 56.7 54.2 54.8 54.6 54.3 54.9
100 88.8 87.6 56.9 53.0 53.0 52.7 52.9 53.1

(iii) 30 75.6 78.8 68.9 75.2 69.5 69.1 71.1 74.9
50 81.6 82.4 68.7 74.5 69.7 69.1 71.0 74.9
100 84.5 88.5 69.9 84.8 69.7 69.3 70.7 75.6

Adjusted rand indices
(i) 30 38.3 43.5 30.5 58.0 0.79 0.35 1.11 7.78

50 49.4 49.8 45.8 74.8 0.72 0.52 1.65 9.59
100 66.1 76.7 55.2 80.8 0.40 0.22 0.85 9.55

(ii) 30 39.7 35.0 4.19 0.26 -2e-4 6e-4 -0.10 0.65
50 46.2 37.6 2.01 0.18 0.39 0.30 0.14 0.46
100 61.5 58.2 2.33 4e-4 1e-4 -8e-4 -8e-5 9e-4

(iii) 30 32.8 39.5 17.4 31.8 16.2 14.9 20.3 25.8
50 45.1 46.9 17.6 31.9 16.4 15.1 20.5 25.4
100 51.6 60.1 18.5 52.0 15.8 15.0 19.0 26.3

k by that algorithm. The purity function (see e.g. Manning et al. 2008) is defined by

purity
(
X 0

1 , . . . ,X 0
K ,X1, . . . ,XK

)
=

1

n

K∑
j=1

max
1≤k≤K

∣∣X 0
k ∩ Xj

∣∣ .
It takes values between 0 and 1; the larger the purity, the more effective the clustering

algorithm is. The adjusted rand index is more complicated and we refer to Hubert

and Arabie (1985) for a definition. It is often considered to be a better measure of

the quality of clusters than purity. Its maximum value is also one, when the X 0
k ’s and

the Xk’s are in perfect match, and the larger the index, the better the match, but it

can also take negative values when the partitions are close to being created randomly.
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The results, which are summarised in Table 1, indicate that, overall, our DHPha

method and its unbalanced version DHPubh worked very well (they were among the

best methods for each model), whereas the other methods worked well in some cases,

but performed very poorly in others. Our DHPha and DHPubh approaches improved

significantly as the group sizes nk increased, which reflects the fact that, as the nk’s

increase, our procedure chooses the projection functions ψj so as to optimise clustering

performance. The improvement was rather modest or non existent for the other

competing approaches, except for DHPpc and DHPdb, the alternative versions of our

method, in models (i) and (iii). The relatively poor performance of DHPpc and

DHPdb in model (ii) highlights the importance of the choice of the basis functions χj.

For example, in this case, since the first few eigenfunctions correspond to θj large,

they are not a good choice for a basis, since the main differences between the µj’s

correspond to θj small.

4.2.2 Real data sets

Next we applied the eight clustering methods to four real data sets. The first dataset

we considered was described in Kalivas (1997). It consists of a set of moisture and

protein levels and near infrared spectra of 100 wheat samples measured at 700 wave-

lengths. As usual with spectra curves, we took the Xi’s to be the derivatives of

spectra, estimated via spline smoothing as in Ferraty and Vieu (2006). See Figure 9

in Appendix B.2 for a graphical representation of the curves.

We applied the eight clustering methods introduced in section 4.2, and then, for

each method, we created a scatterplot of protein versus moisture level (see Figure 1),

using different symbols to represent the observations clustered in each group: the

blue circles were all clustered in one group, and the red triangles in the other. We

can see that the clusters created by our DHPha procedure (equal to DHPdb and al-

most equal to DHPubh in this example) are such that all the data for which moisture

level was less than 14% were clustered in a group and those with moisture level
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Figure 1: Scatterplots of moisture and protein levels for the wheat data (the blue
circles correspond to one cluster and the red triangles to the other) for clusters created
using, from left to right and top to bottom, DHPha, DHPubh, DHPdb, DHPpc, L2f,
L2pc, DHB, GR.

higher than 15% were clustered in another group (no curve had a moisture level

in the interval [14, 15]). These results are particularly interesting when consider-

ing properties of wheat. Specifically, wheat with low moisture level can be stored

more safely than wheat with high moisture level, so that moisture level is often used

as a quality factor for wheat. In Canada, wheat with moisture level lower than

14.5% can be sold as straight grade seeds; see Jayas et al. (1994), page 347, and

http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/crop1204.

The clusters created by L2f and DHB correspond roughly to high and low protein

levels, whereas the other methods created clusters that do not seem to correspond to

specific groups based on neither the protein nor the moisture levels.

For our second example we used the Australian rainfall data described in Delaigle

and Hall (2010), and available at http://rda.ucar.edu/datasets/ds482.1. The

data, depcited in Figure 9 in Appendix B.2, concern 191 rainfall curves Xi(t) collected

at Australian weather stations, where Xi(t) represents the average rainfall at time t ∈
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Figure 2: Clusters of rainfall stations in Australia for four methods. From left to right
and top to bottom: DHPha, DHPubh, DHPdb, DHPpc. The numbers in the legend are
the numbers k1, . . . , k` corresponding to the clusters χk1,...,k` created by each method.
The four symbols correspond to the four clusters created for K = 4.

[1, 365], taken over the years were the ith station has been operating, and smoothed

using a local polynomial smoother.

In Delaigle and Hall (2010), these data were classified (manually by the authors)

into northern and southern weather stations, depending on their location on the map

of Australia. Here our goal is to cluster the data automatically into 2, 3, 4 or 5 groups

using each of the eight methods used earlier, and see which clusters are created by

each method (the extension of our method to more than two groups, using hierarchical

clustering, is discussed in section 5.2).
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Figure 3: Clusters of rainfall stations in Australia for four methods. From left to
right and top to bottom: L2f, L2pc, DHB, GR. The numbers in the legend are the
numbers k1, . . . , k` corresponding to the clusters χk1,...,k` created by each method. The
four symbols correspond to the four clusters created for K = 4.

For each method, to createK > 2 clusters using hierarchical clustering, we proceed

iteratively as follows. At the first step, we create 2 clusters. At step k, where we

have created k+ 1 clusters, we apply again the clustering method to each of the k+ 1

clusters, which we divide in two clusters. Then, among the resulting k + 1 possible

cluster configurations of k+2 clusters, we keep the one that gives the smallest tightness

where, for a given configuration of k + 2 clusters C1, . . . , Ck+2, tightness is computed

as
∑k+2

`=1

∑
Xi∈C`

∥∥Xi−X̄`

∥∥2
. For each method, we repeat this procedure until we have

reached the maximum number (here 5) of clusters we wish to consider. We denote

by χk1,k2,...,k` , with k1, . . . , k` = 1, 2, a cluster obtained by clustering group χk1 into
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two groups, χk1,1 and χk1,2 followed by clustering group χk1,k2 into two groups,. . . ,

followed by clustering group χk1,k2,...,k`−1
into two groups.

Figures 2 and 3 depict the clusters obtained in this way for all eight methods,

displayed on a map of Australia. The five clusters are displayed in different colours;

we also display the four clusters created for K = 4 by using a different symbol for

each of those four clusters. We also display the values of k1, . . . , k` for each cluster,

so that the clusters obtained for K = 2 and K = 3 can be deduced from these

figures. For example, for our DHPha method, for K = 5 we obtained the clusters

χ2, χ1,1, χ1,2,1, χ1,2,2,1 and χ1,2,2,2. The clusters for K = 4 are χ2, χ1,1, χ1,2,1 and

χ1,2,2 = χ1,2,2,1 ∪ χ1,2,2,2, those for K = 3 are χ2, χ1,1 and χ1,2 = χ1,2,1 ∪ χ1,2,2, and

those for K = 2 are χ1 = χ1,2 ∪ χ1,1 and χ2.

It can be seen that, overall, our method DHPha, and, a bit less clearly, DHPubh,

DHPdb and DHPPC, clustered the stations into groups that are geographically sepa-

rated. The other clustering methods produced clusters which seem less easy to inter-

pret on a map of Australia, with stations from various geographical locations spread

over several clusters, although there might be some other logical interpretation of the

clusters created by those methods.

Our third example comes from Kalivas (1997). The dataset consists of spectra

of 60 gasoline samples (see Figure 9 in Appendix B.2) and their octane values. We

applied all eight clustering methods to these data and the clusters created by our

method correspond, with a purity of 91%, to the gasoline samples that have octane

level below 87 (group 1) and octane level greater or equal to 87 (group 2). These

results are quite interesting because in the standard octane rating from the US gov-

ernment, gasoline with octane level below 87 is considered of not good enough quality

for vehicle use; see https://www.fueleconomy.gov/feg/octane.shtml. The other

methods created clusters which do not seem to be very connected to the octane level.

See Figure 4, where we depict the clusters created by each method according to the

octane level.
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Figure 4: Two clusters of gasoline samples depicted according to their octane value,
for eight clustering methods. For each method, the circles (resp., crosses) show the
octane value of individuals clustered in group 1 (resp., group 2).

Finally, for our fourth illustration, we used the Berkeley growth data of Tudden-

ham and Snyder (1954), described in Ramsay and Silverman (2005). As indicated in

the introduction, the notion of a perfect cluster is not uniquely defined, and in real

examples there may be several insightful ways to cluster the data. In this example,

there exists a natural way of clustering the data, which consist of height measure-

ments of n1 = 39 girls (population Π1) and n2 = 54 boys (population Π2), taken at

31 time points t between age 1 and 18, which we turned into continuous curves Xi(t),

t ∈ I = [1, 18], via local polynomial smoothing. We used gender as a benchmark for

the “true clusters”, to measure the quality of the various clustering methods. How-

ever, this is merely for illustration purposes, as unlike for the simulated examples, we

do not know what the “ideal clusters” should be nor whether these are even uniquely

defined. The curves from each group, as well as the group means, are depicted in

Figure 10 in Appendix B.2. The purities and adjusted rand indices obtained for each

method are provided in Table 2. Considering boys and girls as the true clusters, our

DHPha and DHPubh procedures worked particularly well; their performance was not

nearly approached by any of the six competing procedures.

Overall, we conclude from our simulated and real data examples that our DHPha

and DHPubh methods seem to provide clusters that are able to capture important

24



Table 2: 100×purities and 100×adjusted rand indices (Arand) for eight clustering
methods applied to the Berkeley data.

Method
DHPha DHPubh DHPDB DHPpc L2f L2pc DHB GR

Purities 90.3 92.5 74.2 86.0 64.5 64.5 60.2 64.5
Arand 64.7 71.9 22.5 51.4 7.42 7.42 3.07 7.42

differences between groups of individuals. In most of the cases we considered, the

clusters they created were easier to interpret than those created by other methods.

5 Extensions

5.1 Heteroscedastic case

Asymptotically perfect clustering is possible in broader settings than those discussed

earlier. However, in more general cases it is usually not possible to find an analytic

formula for the functions ψj that maximise the ratio between the differences of the

projected means and the standard deviations. This makes the results more implicit

and less elegant than those in Theorem 2, but the lack of analytic formulae is irrelevant

in practice since we choose the ψj’s, and the number of them, in a data-driven way.

In this section, we extend our main result to the case where the data come from

two populations Π1 and Π2, and the data from the kth population can be written as

Xki = νk + Zki , (5.1)

where the covariance function of Zki is equal to κk, where, κ1 and κ2 may differ, and,

for a given k, the Zki’s are identically distributed with mean zero. Let κ denote covari-

ance function of the mixed centered population, and let κ(u, v) =
∑∞

j=1 θjφj(u)φj(v)

and κk(u, v) =
∑∞

j=1 θkjφkj(u)φkj(v), k = 1, 2, denote the spectral decompositions of

κ and κk. For k = 1, 2, write νk =
∑∞

j=1 νkjφj and Zki =
∑∞

j=1 θ
1/2
kj Zkij φkj, where

νkj =
∫
I νk φj and Zkij = θ

−1/2
kj

∫
I Zki φkj .

For any integer r > 0, let ψ(r) =
∑r

j=1 αjφj. For k = 1, 2, we have νk(ψ
(r)) ≡

E{Xki(ψ
(r))} =

∑r
j=1 νkjαj and σ2

k(ψ
(r)) ≡ Var

{
Xki(ψ

(r))
}

=
∑∞

j=1 θkj (
∑r

`=1 α`δk`j)
2
,
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where we used the notation δk`j =
∫
I φkjφ`. The following result shows conditions on

the αj’s under which asymptotically perfect clustering is possible.

Theorem 3. Assume the heteroscedastic mixture model defined by (5.1) and (3.13),

and let ψ(r) =
∑r

j=1 αj φj. Then if supk,j=1,2,... E(Z4
kij) <∞ and

lim
r→∞
|ν1(ψ(r))− ν2(ψ(r))|/max

{
σ1(ψ(r)), σ2(ψ(r))

}
=∞ , (5.2)

sup
r∈N

max
{σ1(ψ(r))

σ2(ψ(r))
,
σ2(ψ(r))

σ1(ψ(r))

}
< C <∞ (5.3)

hold, the clustering algorithm is asymptotically perfect, in the sense that, if R1 and R2

denote the regions found by minimising (3.2), there exists a permutation (k(1), k(2))

of the pair (1, 2) such that, for ` = 1, 2,

lim
r→∞

P{X
(
ψ(r)

)
∈ Rk(`) | I` = 1} = 1 . (5.4)

Condition (5.2) is similar to condition (3.17); it requires that the ratio between

the mean difference and the standard deviation diverges to infinity. Condition (5.3)

is a technical assumption. It assumes that no population is much more spread around

its mean than the other.

5.2 More than two clusters

All the results we have presented so far assumed that the data could be clustered into

K = 2 groups. In particular, note from Theorem 2 that the theoretical function ψ(r)

used to project the data is a scaled squared distance between the means of the two

populations, and it is not clear how to extend this concept of binary comparison to

more than two populations. One exception is the case where we can reasonably assume

that the data follow a binary hierarchical structure, that is, where we can apply

hierarchical clustering. In that case, we can partition the data into K > 2 groups

by sequentially applying our binary clustering procedure. As usual with hierarchical

clustering, some caution is required when applying this technique as the weaknesses
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of that clustering approach carry over from the multivariate case to the functional

case. See our discussion in section 6.

There, once the sample X has been split in two clusters X1 and X2 using the

methodology introduced in the previous sections, our clustering procedure can be

applied to the clusters Xk, k = 1, 2, which are then partitioned into two clusters Xk,1
and Xk,2. This process can be iterated several times, i.e., applying again the same

procedure, each cluster Xk,j, k, j = 1, 2, can be further split into two clusters Xk,j,1
and Xk,j,2, and those new clusters can themselves be split in two clusters, etc. At each

step, when a cluster is split in two, only the data from that cluster are used when

applying our procedure.

As noted by Hastie et al. (2009), often the clusters created at each splitting level

are shown, in the hope that some of those clusters can help the experimenter uncover

interesting properties of their data. In the multivariate setting, there have been some

attempts at developing procedures which can automatically detect which subclusters

are “true clusters”, but most of them are quite informal and require subjective choices

of tuning parameters which do not work universally well. See Everit et al. (2011) for

a discussion on these and related issues. The difficulty of choosing which clusters are

“true clusters” is also closely related to the fact that the notion of “true cluster” is not

clearly determined in real applications, as noted in the abstract and the introduction.

Since the theoretical properties of clusters obtained by repeatedly dividing clus-

ters are similar, in this section we derive properties obtained only at the first splitting

level, where the clusters X1 and X2 are each divided in two clusters. That is, we con-

sider the case where the data come from four different populations Πk, k = 1, . . . , 4.

For k = 1, . . . , 4, we assume that the data from Πk can be represented as at (3.12),

where, to simplify our discussion, we assume that the Zki’s have the same covariance;

the heteroscedastic case can be treated as in section 5.1. Specifically we assume that

For k = 1, . . . , 4, the functions Zki are all distributed as the random function
Z with E(Z) = 0; the location terms νk are fixed; and the populations Πk

arise in respective proportions ρk, where
∑4

k=1 ρk = 1 and each ρk > 0.

(5.5)
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Our goal in this section is to show that under appropriate regularity conditions, if

hierarchical clustering is performed, at each split into two clusters, it is possible to find

a direction such that, if the data are projected along that direction then: at the first

stage of the clustering algorithm, the cluster X1 (resp., X2) asymptotically corresponds

to Π1∪Π2 (resp., Π3∪Π4); at the second stage of the clustering algorithm, X1 (resp.,

X2) is split in two clusters X1,1 and X1,2 (resp., X2,1 and X2,2), which asymptotically

correspond to Π1 and Π2 (resp., Π3 and Π4).

The spectral decomposition of the covariance function κ of Z can be expressed

as κ(u, v) =
∑∞

j=1 θjφj(u)φj(v). Next, let ν12 = (ρ1ν1 + ρ2ν2)/(ρ1 + ρ2) (resp., ν34 =

(ρ3ν3 + ρ4ν4)/(ρ3 + ρ4) denote the mean of the pooled Π1 and Π2 (resp., Π3 and

Π4). For k = 1, . . . , 4 write νk =
∑∞

j=1 νk,jφj and Zki =
∑∞

j=1 θ
1/2
j Zkij φj, where

νk,j =
∫
I νk φj and Zkij = θ

−1/2
j

∫
I Zki φj, and for (k, `) = (1, 2) and (3, 4), write

νk` =
∑∞

j=1 νk`,jφj where νk`,j =
∫
I νk` φj and let σ2

[k,r] = σ2
[`,r] =

∑r
j=1(νk,j−ν`,j)2θ−1

j .

Finally, for (k, `) = (1, 2) and (3, 4), let µ
(r)
[k`] =

∑r
j=1 θ

−1
j (νk,j − ν`,j)(ν12,j − ν34,j) and

σ2
[r] =

∑r
j=1(ν12,j − ν34,j)

2θ−1
j .

The following theorem can be proved in the same way as Theorem 2. It shows

one scenario for K = 4 where asymptotically perfect clustering is possible, as long as

we recompute the function ψ(r) each time a cluster is split in two subclusters. The

conditions can be satisfied in cases similar to the homoscedastic case whereK = 2. See

section 6 for a discussion about more general cases and weaknesses of the hierarchical

approach.

Theorem 4. Assume the model defined by (3.12) and (5.5) and that κ4 := E(Z4
k1) =

. . . = E(Z4
k4) <∞.

(i) Let ψ(r) =
∑r

j=1 θ
−1
j (ν12,j − ν34,j)φj. If

∑∞
j=1(ν12,j − ν34,j)

2θ−1
j = ∞ holds and∣∣µ(r)

[12]

∣∣ +
∣∣µ(r)

[34]

∣∣ < mini=1,...,4

√
ρi/2 × Cσ2

[r] for all r, where C is a constant such that

C(3 + mini=1,...,4

√
ρi/2) ≤ 1, and if R1 and R2 denote the regions found by min-

imising (3.2), there exists a permutation (k(1), k(2)) of the pair (1, 2) such that, for

` = 1, 3, limr→∞ P{X
(
ψ(r)

)
∈ Rk(`) | I` = 1 or I`+1 = 1} = 1.
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Table 3: 100×purities and 100×adjusted rand indices averaged over 100 samples
generated from the hierarchical example, with group sizes nk = 30, 50 and 100 and
for eight clustering methods.

Methods
nk DHPha DHPubh DHPdb DHPpc L2f L2pc DHB GR

Purities
30 77.7 81.2 71.6 60.8 43.0 42.4 45.5 42.4
50 83.1 84.9 74.8 65.7 42.0 42.4 45.0 41.5
100 92.5 90.0 75.5 72.4 40.9 41.2 44.1 40.6

Adjusted rand indices
30 56.0 63.3 42.9 29.5 0.02 0.02 0.04 0.02
50 66.0 70.4 48.5 38.9 0.02 0.02 0.04 0.01
100 82.9 79.9 50.7 50.8 0.02 0.02 0.04 0.01

(ii) For (k, k′) = (1, 2) and (k, k′) = (3, 4), let ψ
(r)
kk′ =

∑r
j=1 θ

−1
j (νk,j − νk′,j)φj. If∑∞

j=1(νk,j − νk′,j)2 θ−1
j = ∞ holds, and if R11 and R12 (resp., R21 and R22) denote

the regions found by minimising (3.2) using only the data clustered in R1 (resp.,

R2), there exists a permutation (k(1), k(2)) of the pair (1, 2) such that, for ` = 1, 2,

limr→∞ P{X
(
ψ

(r)
12

)
∈ R1k(`) | I` = 1} = 1, and, for ` = 3, 4, limr→∞ P{X

(
ψ

(r)
34

)
∈

R2k(`) | I` = 1} = 1.

Note that, in Theorem 4, for simplicity, we assume that the Zki’s have the same

covariance function for all four populations. This assumption could be eased as in

Theorem 3 as long as conditions similar to the one at (5.3) are assumed to ensure that

one of the projected populations is not much more widespread than the other. Like-

wise, Theorem 4 deals only with a scenario where the populations are well clustered

when projected using a single function, but in many other cases, several projection

functions would be needed to achieve good clustering performance.

To illustrate our procedure in this setting, we generated data from three popula-

tions. For k = 1, 2, 3 and i = 1, . . . , nk, the ith observation from the kth population

was generated as Xki(t) =
∑40

j=1

(
θ

1/2
j Zkij + µjk

)
φj(t) for 128 equispaced points t in
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I = [0, 1]; the Zkij’s were independent standard normal random variables and we took

φj(t) =
√

2 sin(πjt), θj = j−3, (µ11, µ21, µ31, µ41, µ51, µ61) = (0, 0.2, 0.1,−0.2, 0.08, 0.18),

(µ12, µ22, µ32, µ42, µ52, µ62) = (0.2, 0.1,−0.1, 0.2,−0.04, 0.16), (µ13, µ23, µ33, µ43, µ53, µ63)

= (−0.22,−0.31, 0.4,−0.08− 0.02,−0.25) and µjk = 0 for j > 6.

Then we applied hierarchical clustering with the eight methods introduced in

section 4.2.1. Each time, we first created two clusters, and then applied again bi-

nary clustering to both clusters. That is, we split cluster 1 in two clusters, thereby

obtaining three clusters. Then, instead, we split cluster 2 in two clusters, thereby

obtaining another configuration of three clusters. To choose which of the two con-

figurations of three clusters was the most likely, we chose the one that minimised

tightness
∑3

`=1

∑
Xi∈C`

∥∥Xi − X̄`

∥∥2
, where, for a given configuration, C` denotes the

`th cluster. The purities and adjusted rand indices are presented in Table 3 for each

method. These numbers indicate that on average our DHPha and DHPubh methods

outperformed the other methods.

6 Discussion: more than two clusters

As discussed at the beginning of section 5.2, near perfect clustering performance is

only possible when the data can be reasonably clustered by hierarchical clustering. In

particular, as in the standard multivariate case, hierarchical clustering has difficulty

handling groups of very different sizes or very large groups, which can be incorrectly

split into parts that are merged with other clusters.

Theorem 4 considers one of the scenarios where our method is ensured to give

good clustering performance in the K = 4 population context. Note that µ
(r)
[k`] is the

difference between the means of populations Πk and Π` projected via the function

ψ(r), and σ2
[r] is equal to the difference between the means of the pooled Π1 and Π2

and the pooled Π3 and Π4 projected via the function ψ(r). Therefore, in Theorem 4,

the condition
∣∣µ(r)

[12]

∣∣+ ∣∣µ(r)
[34]

∣∣ < mini=1,...,4

√
ρi/2×Cσ2

[r] ensures that, after projection

via ψ(r), the difference between the pooled means of Π1 and Π2, and of Π3 and Π4,
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is sufficiently large compared to the difference between the means of Π1 and Π2, and

to that between the means of Π3 and Π4. Moreover, the condition
∑∞

j=1(ν12,j −

ν34,j)
2θ−1
j = ∞ means that together, populations Π1 and Π2 form a tight cluster

around their pooled mean, which is infinitely apart from the cluster created by Π3

and Π4. This prevents situations where a projected population would overlap with

other populations, in which case near perfect clustering would not be possible.

Other scenarios or values of K can be handled similarly, each time requiring

that at any binary splitting step of the procedure, when projected via the function

ψ(r) (whose formula depends on the scenario considered) the populations involved

are separated into two clearly distinct clusters, each of which contains one or more

entire populations. This also implies that several configurations of K clusters need

to be investigated and compared in order to decide which one is the most suitable.

Indeed, in cases where, at a given binary splitting step, the two new clusters contain

an unequal number of populations, one of the two clusters will need to be split

subsequently more often than the other. If, at any stage of the procedure, there

is one population that does not belong very distinctly to one of the clusters only,

then there are risks that this population will be split between two different clusters,

a situation which is irreversible at later stages of the iterative procedure. Also, even

if the entire populations can be aggregated into well distinct clusters, if the sample is

such that the group sizes are very different, then the algorithm may fail.
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A Technical arguments

A.1 Proof of Theorem 1

Let

Skj
(
~ψ
)

=
1

nk

nk∑
i=1

(1− E)
{
Xki(ψj)− µkj

(
~ψ
)}2

,
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and observe that

1

nk

nk∑
i=1

{Xki(ψj)− X̄k(ψj)}2

=
1

nk

nk∑
i=1

{
Xki(ψj)− µkj

(
~ψ
)}2 −

{
X̄k(ψj)− µkj

(
~ψ
)}2

.

Therefore, by (2.4),

T̂2

(
X1,X2

∣∣ ~ψ) =

p∑
j=1

1

σ̂(ψj)2

1

n

2∑
k=1

nk

[
Skj
(
~ψ
)

+ E
{
Xk1(ψj)− µkj

(
~ψ
)}2

−
{
X̄k(ψj)− µkj

(
~ψ
)}2
]
.

Note too that, by (3.2),

t2
(
~ψ
∣∣ ~R) =

p∑
j=1

1

σ(ψj)2

2∑
k=1

π
(
~ψ,Rk

)
E
{
Xk1(ψj)− µkj

(
~ψ
)}2

,

where Xk1(ψj) denotes a random variable with the distribution of X(ψj) conditional

on X(~ψ) ∈ Rk. Hence,∣∣∣T̂2

(
X1,X2

∣∣ ~ψ)− t2(~ψ ∣∣ ~R)∣∣∣
≤

p∑
j=1

1

σ̂(ψj)2

1

n

2∑
k=1

nk

[∣∣Skj(~ψ)∣∣+
{
X̄k(ψj)− µkj

(
~ψ
)}2
]

+

p∑
j=1

∣∣∣ 1

σ̂(ψj)2
− 1

σ(ψj)2

∣∣∣ 2∑
k=1

nk
n
E
{
Xk1(ψj)− µkj

(
~ψ
)}2

+

p∑
j=1

1

σ(ψj)2

2∑
k=1

∣∣∣nk
n
− π

(
~ψ,Rk

)∣∣∣E{Xk1(ψj)− µkj
(
~ψ
)}2

. (A.1)

Since E‖X‖2 ≤ 1 then, in view of (3.5),

E
{
Xk1(ψj)− µkj

(
~ψ
)}2 ≤ E{Xk1(ψj)}2

=
1

π(~ψ,Rk)
E
[
X(ψj)

2 · I
{
X(~ψ) ∈ Rk}

]
≤ 1

π(~ψ,Rk)
E
[
‖X‖2‖ψj‖2 · I

{
X(~ψ) ∈ Rk}

]
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≤ 1

π(~ψ,Rk)
E‖X‖2 ≤ π−1

min .

This property and (A.1) imply that∣∣∣T̂2

(
X1,X2

∣∣ ~ψ)− t2(~ψ ∣∣ ~R)∣∣∣
≤

p∑
j=1

{∣∣∣∣ 1

σ̂(ψj)2
− 1

σ(ψj)2

∣∣∣∣+
1

σ(ψj)2

}

× 1

n

2∑
k=1

nk

[∣∣Skj(~ψ)∣∣+
{
X̄k(ψj)− µkj

(
~ψ
)}2
]

+

p∑
j=1

∣∣∣∣ 1

σ̂(ψj)2
− 1

σ(ψj)2

∣∣∣∣ π−1
min

+

p∑
j=1

π−1
min

σ(ψj)2

2∑
k=1

∣∣∣nk
n
− π

(
~ψ,Rk

)∣∣∣ . (A.2)

The fourth series in (A.2) is relatively easy to bound, as follows. First, note that

for the definition of Rk given below (3.2),

the random integers n1 and n2, where nk denotes the number of functions
Xi, for 1 ≤ i ≤ n, that satisfy Xi(~ψ) ∈ Rk, jointly have a multinomial

distribution with parameters n and π1 and π2, where πk = π(~ψ,Rk).

(A.3)

Result (A.3), assumption (3.9) and large deviation properties of the binomial

distribution (Hoeffding’s inequality) imply that, for all ε > 0, there exist constants

C1 = C1(ε), C2 = C2(ε) > 0 such that

max
k=1,2

P
{∣∣n−1 nk − π(~ψ,Rk)

∣∣ > σ(ψj)
2 ε
}

≤ 2 exp
{
− C1 nσ(ψj)

4
}
≤ 2 exp

(
− C2 n

c
)
,

uniformly in ψ1, . . . , ψp ∈ Qn and ~R ∈ Vp,n. Therefore,

P

{ p∑
j=1

π−1
min

σ(ψj)2

2∑
k=1

∣∣∣nk
n
− π

(
~ψ,Rk

)∣∣∣ > ε

}
= O

[
exp

{
− C(ε)nc

}]
, (A.4)

uniformly in the same sense, where we interpret C(ε) as a generic constant.
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Next we bound the first factor in the third series on the right-hand side of (A.2).

Note that, since E‖X‖2 = 1 and ‖ψ‖ = 1 for ψ ∈ Qn, we have σ(ψ)2 ≤ 1. Therefore,

if ψ ∈ Qn and ε = 4 δ2, where 0 < δ ≤ 1
2
, then

P
{∣∣σ̂(ψ)−2 − σ(ψ)−2

∣∣ > ε
}

= P
{∣∣σ̂(ψ)2 − σ(ψ)2

∣∣ > ε σ̂(ψ)2 σ(ψ)2
}

≤ P
[∣∣σ̂(ψ)2 − σ(ψ)2

∣∣ > ε
{
σ(ψ)4 − σ(ψ)2

∣∣σ̂(ψ)2 − σ(ψ)2
∣∣}]

= P
{∣∣σ̂(ψ)2 − σ(ψ)2

∣∣ > εσ(ψ)4

1 + ε σ(ψ)2

}
≤ P

{∣∣σ̂(ψ)2 − σ(ψ)2
∣∣ > 1

2
ε σ(ψ)4

}
≤ P

{∣∣∣∣∣ 1n
n∑
i=1

(1− E)

(∫
I
ψXi

)2
∣∣∣∣∣ > δ2 σ(ψ)4

}

+ P

{∣∣∣∣ 1n
n∑
i=1

∫
I
ψXi

∣∣∣∣ > δ σ(ψ)2

}
= O

[
exp

{
− C(ε)nc

}]
, (A.5)

where the identity holds uniformly in ψ ∈ Qn and ~R ∈ Vp,n and follows from (3.7)

and (3.8).

Observe too that

P
{∣∣Skj(~ψ)∣∣ > 3π−1

minε
}

= P

[∣∣∣∣ 1

nk

nk∑
i=1

(1− E)
{
Xki(ψj)

2 − 2µkj
(
~ψ
)
Xki(ψj) + µkj

(
~ψ
)2
}∣∣∣∣ > 3ε

πmin

]

≤ P

{∣∣∣∣ 1

nk

nk∑
i=1

(1− E)Xki(ψj)
2

∣∣∣∣ > ε

πmin

}

+ P

{∣∣∣∣µkj
(
~ψ
)

nk

nk∑
i=1

(1− E)Xki(ψj)

∣∣∣∣ > ε

πmin

}
. (A.6)

To bound the second probability on the far right-hand side of (A.6) we observe

that

∣∣µkj(~ψ)∣∣ =
1

π(~ψ,Rk)

∣∣∣E[X(ψj) · I
{
X(~ψ) ∈ Rk}

]∣∣∣
≤ 1

π(~ψ,Rk)
E
[
|X(ψj)| · I

{
X(~ψ) ∈ Rk}

]
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≤ 1

π(~ψ,Rk)

{
E
[
X(ψj)

2 · I
{
X(~ψ) ∈ Rk}

]}1/2

≤ 1

π(~ψ,Rk)

{
E
[
‖X‖2‖ψj‖2 · I

{
X(~ψ) ∈ Rk}

]}1/2

≤ 1

π(~ψ,Rk)

(
E‖X‖2

)1/2 ≤ π−1
min ,

where we used (3.5), and the fact that ‖ψj‖ = 1 for ψj ∈ Qn, as prescribed by (3.3),

and E‖X‖2 = 1. Therefore, for any ε > 0,

P

{∣∣∣∣µkj
(
~ψ
)

nk

nk∑
i=1

(1− E)Xki(ψj)

∣∣∣∣ > ε

πmin

}
≤ P

{∣∣∣∣ 1

nk

nk∑
i=1

(1− E)Xki(ψj)

∣∣∣∣ > ε

}
,

(A.7)

and more simply,

P
{∣∣X̄k(ψj)− µkj

(
~ψ
)∣∣2 > ε2

}
= P

{∣∣∣∣ 1

nk

nk∑
i=1

(1− E)Xki(ψj)

∣∣∣∣ > ε

}
. (A.8)

Replacing ε by ε σ(ψj)
2 in (A.6) and (A.7), and by ε σ(ψj) in (A.8), we deduce from

(3.6) and (A.6)–(A.8) that

P
[∣∣Skj(~ψ)∣∣+

{
X̄k(ψj)− µkj

(
~ψ
)}2

> 3π−1
minεσ(ψj)

2 + ε2σ(ψj)
2
]

≤
2∑
`=1

(3− `)P
{∣∣∣∣ 1

nk

nk∑
i=1

(1− E)Xki(ψj)
`

∣∣∣∣ > εσ(ψj)
2

}
= O

[
exp

{
− C(ε)nc

}]
, (A.9)

uniformly in ψ1, . . . , ψp ∈ Qn and ~R ∈ Vp,n. (Note that σ(ψj) ≤ 1.)

Recall from (A.3) that nk, a random variable, has the binomial Bi{n, π(~ψ,Rk)}

distribution. From this property, using (3.5) and Hoeffding’s inequality, it can be

shown that

max
k=1,2

P
(
|nk − πk n| > 1

2
πk n

)
≤ exp(−C3 n) ,

where C3 > 0.

Combining this property, (A.2), (A.4), (A.5) and (A.9) we deduce that for each

ε > 0,

P
{∣∣∣T̂2

(
X1,X2

∣∣ ~ψ)− t2(~ψ ∣∣ ~R)∣∣∣ > ε
}

= O
[

exp
{
− C(ε)nc

}]
, (A.10)
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uniformly in ψ1, . . . , ψp ∈ Qn and ~R ∈ Vp,n. Result (3.11) follows from (3.3), (3.5),

(3.6) and (A.10).

A.2 Proof of Theorem 2

For each j, let ν̃j = ν1j − ν2j, and without loss of generality, assume that ν2 = 0.

To simplify the notation, we do not explicitly indicate the dependence of ψ on r, so

that we let ψ = ψ(r). Let µ2 = E{X2i(ψ)} = 0 and µ1 = E{X1i(ψ)}. We deduce

from the calculations preceding the theorem that µ1 =
∑r

j=1 θ
−1
j ν2

1j =
∑r

j=1 θ
−1
j ν̃2

j

and var
{
X2i(ψ)

}
= var

{
X1i(ψ)

}
=
∑r

j=1 θ
−1
j ν̃2

j = µ1.

Letting f denote the density function of X2i(ψ), the density function of X1i(ψ)

is equal to f(x − µ1) and the density function of X(ψ) can be written as g(x) =

ρ1f(x − µ1) + ρ2f(x). When p = 1 with ψ = ψ(r), it can be proved that finding the

regions R1 and R2 minimising (3.2) is equivalent to finding

(x̄1, x̄2) = arg min
t1,t2

∫
min
i=1,2
‖x− ti‖2g(x) dx, (A.11)

and then taking R1 and R2 to be determined by (−∞, (x̄1 + x̄2)/2] and ((x̄1 +

x̄2)/2,∞). Without loss of generality, x̄1 < x̄2, so that R1 = (−∞, (x̄1 + x̄2)/2] and

R2 = ((x̄1 + x̄2)/2,∞). For i = 1, 2, let Ei and Pi denote the expectation and the

probability conditional on being in the ith population, respectively.

We start by deriving two results which will be useful in the sequel. First, we derive

an upper bound for the minimum value of the objective function on the right hand

side of (A.11), as follows:∫
min
i=1,2
‖x− x̄i‖2g(x) dx ≤

∫
min
i=1,2
‖x− µi‖2g(x) dx

=

∫
min
i=1,2
‖x− µi‖2ρ1f(x− µ1) dx+

∫
min
i=1,2
‖x− µi‖2ρ2f(x) dx

≤
∫
‖x− µ1‖2ρ1f(x− µ1) dx+

∫
‖x− µ2‖2ρ2f(x) dx

= ρ1

∫
‖x− µ1‖2f(x− µ1) dx+ ρ2

∫
‖x‖2f(x) dx
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=

∫
‖x‖2f(x) dx

= µ1 . (A.12)

Second, recalling that E(Z4
2ij) = κ4, we note that

E
{
X2i(ψ)4

}
= E

( r∑
j=1

ν̃j

θ
1/2
j

Z2ij

)4

=
r∑
j=1

ν̃4
j

θ2
j

EZ4
2ij + 3

r∑
j 6=k=1

ν̃2
j ν̃

2
k

θjθk
EZ2

2ijEZ2
2ik

=
r∑
j=1

ν̃4
j

θ2
j

κ4 + 3
r∑

j 6=k=1

ν̃2
j ν̃

2
k

θjθk
≤ 3κ4

( r∑
j=1

ν̃4
j

θ2
j

+
r∑

j 6=k=1

ν̃2
j ν̃

2
k

θjθk

)
= 3κ4µ

2
1 .

In the next paragraphs, we construct balls A1 and A2 which are such that all

the individuals in those balls are correctly clustered as long as r is large enough.

Then, we prove that as r →∞, the probability that these two balls contain the entire

population tends to 1. Together, these two results prove the theorem. Note that, since

we project the data on a space of dimension p = 1, the balls are in fact intervals, but

we use the terminology “balls” because it makes it simpler to refer to the center and

the radius of the balls.

For j = 1, 2, we let Aj denote the ball of center µj with radius c1µ1, where c1 is a

positive constant that will be determined later. Since µ2 = 0, we have, for j = 1, 2,∫
Aj

‖x− µj‖2f(x− µj) dx =

∫
A2

‖x‖2f(x) dx = E2

{
‖X2(ψ)− µ2‖21A2

}
= µ1 − E2

{
‖X2(ψ)− µ2‖21Ac

2

}
≥ µ1 −

(
E2‖X2(ψ)− µ2‖4

)1/2(
E21Ac

2

)1/2

≥ µ1 − 2
√
κ4µ1 × P2

(
X2(ψ) ∈ Ac2

)1/2
(A.13)

≥ µ1 − 2
√
κ4µ1 ×

(E2‖X2(ψ)− µ2‖2

c2
1µ

2
1

)1/2

≥ µ1 −
2
√
κ4

c1

µ
1/2
1 . (A.14)

Let k ≥ 2 be a positive integer, and for j = 1, 2, let Aj,k be the ball of center µj

with radius kc1µ1. Assume that there exists j ∈ {1, 2} such that neither x̄1 nor x̄2
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belong to the ball Aj,k. For x ∈ Aj, ‖x− µj‖ ≤ c1µ1 and for any i ∈ {1, 2},

‖x− x̄i‖ ≥ ‖x̄i − µj‖ − ‖x− µj‖ ≥ kc1µ1 − c1µ1 = (k − 1)c1µ1 ≥ (k − 1)‖x− µj‖ .

Therefore, using (A.19)∫
min
i=1,2
‖x− x̄i‖2g(x) dx ≥

∫
Aj

min
i=1,2
‖x− x̄i‖2g(x) dx ≥

∫
Aj

(k − 1)2‖x− µj‖2g(x) dx

≥
∫
Aj

(k − 1)2‖x− µj‖2ρjf(x− µj) dx

≥ (k − 1)2ρj

(
µ1 −

2
√
κ4

c1

µ
1/2
1

)
.

Choose k such that (k − 1)2 mini=1,2 ρi > 2 and c1 = (5k)−1. Then the balls Aj,k

are disjoint, and when r is sufficiently large so that
√
µ1 > 20k

√
κ4,∫

min
i=1,2
‖x− x̄i‖2g(x) dx ≥ (k − 1)2ρj

(
µ1 −

2
√
κ4

c1

µ
1/2
1

)
≥ 2
(
µ1 − 10k

√
κ4µ

1/2
1

)
> 2
(
µ1 −

1

2
µ

1/2
1 µ

1/2
1

)
> µ1 ,

which contradicts (A.12). Thus, each ball Aj,k must contain one x̄i, and since the balls

are disjoint, they must contain exactly one x̄i.

Without loss of generality, assume that x̄i ∈ Ai,k for i = 1, 2. Then ‖x̄i − µi‖ ≤

kc1µ1. Let Bi be the ball center at x̄i with radius (k + 1)c1µ1. Then Bi contains Ai.

Now, for any x ∈ B1, we have

‖x− x̄2‖ ≥ ‖x− µ2‖ − ‖µ2 − x̄2‖ ≥ ‖x− µ2‖ − kc1µ1 ≥ ‖µ1 − µ2‖ − ‖x− µ1‖ − kc1µ1

≥ ‖µ1 − µ2‖ − ‖x− x̄1‖ − ‖x̄1 − µ1‖ − kc1µ1 ≥ µ1 − (3k + 1)c1µ1

≥ (k + 1)c1µ1 ≥ ‖x− x̄1‖ .

Thus, if x ∈ B1, then x belongs to R1. The same argument applies to the case x ∈ B2.

Hence, for i = 1, 2, Bi belongs to the Ri. Since Bi contains Ai, all the points in Ai are

correctly clustered. Thus, all the points of population Πi which are wrongly clustered,

must lie in the set Aci . Hence, the error rate of clustering, which is equal to

ρ2 P{X
(
ψ(r)) ∈ R1 | I2 = 1}+ ρ1 P{X

(
ψ(r)) ∈ R2 | I1 = 1}
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is bounded by
2∑
i=1

Pi
(
Aci
)
≤ 2

E2‖X2(ψ)− µ2‖2

c2
1µ

2
1

=
2

c2
1µ1

,

which tends to zero as r →∞.

A.3 Proof of Theorem 3

For each j, let ν̃j = ν1j − ν2j, and without loss of generality, assume that ν2 = 0.

To simplify the notation, we do not explicitly indicate the dependence of ψ on r,

so that we let ψ = ψ(r). Let µ2 = E{X2i(ψ)} = 0 and µ1 = E{X1i(ψ)}. Recall

from the calculations before the theorem that µ1 =
∑r

j=1 αjν1j =
∑r

j=1 αj ν̃j and

σ2
k(ψ) = Var

{
Xki(ψ)

}
=
∑∞

j=1 θkj (
∑r

i=1 αiδkij)
2
. For simplicity, write σ2

k(ψ) as σ2
k.

Letting f2 denote the density function of X2i(ψ), and f1(x − µ1) be the density

function of X1i(ψ), the density function of X(ψ) can be written as g(x) = ρ1f1(x −

µ1)+ρ2f2(x). As in the homoscedastic case, finding the regionsR1 andR2 minimising

(3.2) is equivalent to finding

(x̄1, x̄2) = arg min
t1,t2

∫
min
i=1,2
‖x− ti‖2g(x) dx , (A.15)

and then taking R1 and R2 to be determined by (−∞, (x̄1 + x̄2)/2] and ((x̄1 +

x̄2)/2,∞). Without loss of generality, x̄1 < x̄2, so that R1 = (−∞, (x̄1 + x̄2)/2] and

R2 = ((x̄1 + x̄2)/2,∞). For i = 1, 2, let Ei and Pi denote the expectation and the

probability conditional on being in the ith population, respectively.

Similarly to the homoscedastic case, we have∫
min
i=1,2
‖x− x̄i‖2g(x) dx ≤ ρ1

∫
‖x− µ1‖2f1(x− µ1) dx+ ρ2

∫
‖x‖2f2(x) dx

= ρ1σ
2
1 + ρ2σ

2
2 . (A.16)

Second, recalling that E(Z4
kij) ≤ κ4 and letting ρkj = θ

1/2
kj

∑r
i=1 αiδkij, we have, for

` = 1, 2,

E
[
{X`i(ψ)− µ`(ψ)}4

]
= E

[{ ∞∑
j=1

Z`ijθ
1/2
`j

( r∑
i=1

αiδ`ij

)}4
]

= E
( ∞∑
j=1

Z`ijρ`j

)4
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=
∞∑
j=1

ρ4
`jEZ4

`ij + 3
∞∑

j 6=k=1

ρ2
`jρ

2
`kEZ2

`ijEZ2
`ik

≤ 3κ4

( ∞∑
j=1

ρ4
`j +

∞∑
j 6=k=1

ρ2
`jρ

2
`k

)
= 3κ4

( ∞∑
j=1

ρ2
`j

)2

= 3κ4σ
4
` .

In the next paragraphs, we construct balls A1 and A2 which are such that all the

individuals in those balls are correctly clustered as long as r is large enough. Then, we

prove that as r →∞, the probability that these two balls contain the entire projected

population tends to 1. Together, these two results prove the theorem.

For j = 1, 2, we let A` denote the ball of center µ` with radius c1µ1, where c1 is a

positive constant that will be determined later. We have, for ` = 1, 2,∫
A`

‖x− µ`‖2f`(x− µ`) dx = E`
{
‖X`(ψ)− µ`‖21A`

}
= σ2

` − E`
{
‖X`(ψ)− µ`‖21Ac

`

}
≥ σ2

` −
(
E`‖X`(ψ)− µ`‖4

)1/2(
E`1Ac

`

)1/2

≥ σ2
` − 2

√
κ4σ

2
` × P`

(
X`(ψ) ∈ Ac`

)1/2
(A.17)

≥ σ2
` − 2

√
κ4σ

2
` ×

(E`‖X`(ψ)− µ`‖2

c2
1µ

2
1

)1/2

≥ σ2
` −

2
√
κ4

c1

× σ3
`

µ1

(A.18)

= σ2
`

{
1−

2
√
κ4σ`

c1µ1

}
. (A.19)

Let k ≥ 2 be a positive integer, and for ` = 1, 2, let A`,k be the ball of center

µ` with radius kc1µ1. Assume that there exists ` ∈ {1, 2} such that neither x̄1 nor

x̄2 belong to the ball A`,k. For x ∈ A`, ‖x − µ`‖ ≤ c1µ1 and for any i ∈ {1, 2}, as

in the homoscedastic case we have ‖x − x̄i‖ ≥ (k − 1)‖x − µ`‖. Therefore, as in the

homoscedastic case and using (A.19)∫
min
i=1,2
‖x− x̄i‖2g(x) dx ≥

∫
A`

(k − 1)2‖x− µ`‖2ρ`f`(x− µ`) dx
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≥ (k − 1)2ρ`σ
2
`

{
1− 2

√
κ4σ`

c1µ1

}
.

Choose k such that (k−1)2 mini=1,2 ρi > 2C2 and c1 = (5k)−1. Then the balls Aj,k

are disjoint, and when r is sufficiently large so that µ1 > 20k
√
κ4σ`,∫

min
i=1,2
‖x− x̄i‖2g(x) dx ≥ (k − 1)2ρ`σ

2
`

{
1− 2

√
κ4σ`

c1µ1

}
≥ 2C2σ2

`

{
1− 10k

√
κ4σ`

µ1

}
> C2σ2

` > max
{
σ2

1, σ
2
2

}
≥ ρ1σ

2
1 + ρ2σ

2
2 ,

which contradicts (A.16). Thus, each ball Aj,k must contain one x̄i, and since the balls

are disjoint, they must contain exactly one x̄i.

The rest of the proof is similar to the homoscedastic case, leading to the error rate

of clustering, which is bounded by

2∑
i=1

Pi
(
Aci
)
≤

2∑
i=1

Ei‖Xi(ψ)− µi‖2

c2
1µ

2
i

=
σ2

1 + σ2
2

c2
1µ

2
1

,

which tends to zero as r →∞.

A.4 Illustration of the conditions used in Theorem 1

To illustrate condition (3.10), let Qn denote the set of functions ψ ∈ L2(I) having the

form ψ(r) at (2.7) where each dj ∈ Dn and Dn contains no more than nC1 elements,

for some C1 > 0, and including zero. Then we can take an, at (3.3), to be given by

an = nC1r = exp(C1 r log n). Unless a function ψ ∈ L2(I) has a particularly slowly

converging expansion in terms of the basis functions χj, the construction in terms

of a polynomial grid given in this paragraph ensures that ψ is approximated, in an

L2 sense, at a polynomial rate by functions in Qn. This can often be extended to

approximations in the supremum metric, if the suprema of the absolute values of the

functions χj and their first derivative diverge at no faster than a polynomial rate in j.

Let Vp,n be a set of bn = nC2 scaled centroidal Voronoi tessellations, where C2 > 0

is a constant. Then, the left-hand side of (3.10) is bounded above by

exp(pC1 r log n)nC2 exp
(
− C nc

)
,
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which converges to zero if r = o(nc/ log n). The latter condition is therefore sufficient

to ensure (3.10). Condition (3.5) can be ensured by discarding tessellations for which

at least one region Rk fails to contain at least a given fixed proportion of points in

the dataset.

To illustrate conditions (3.6)–(3.9), take for example X to be a Gaussian process,

or a mixture of Gaussian processes, such that

inf
ψ∈Qn

σ(ψ)2 ≥ n−c1 ,

where 0 < c1 <
1
8
. Then (3.6)–(3.9) hold with c = 1

2
− 4 c1. (Equation (3.8) is the

determining factor here.)

B Additional numerical results

B.1 Details for computing the dj,i’s used in section 4.1

Recall from section 4.1 that, for j = 1, . . . , p, we compute the jth projection function

ψj as ψj =
∑r

i=1 dj,i χi, where χi denotes the ith element of the Haar basis. Recall too

that, for each j 6= j′, we want the functions ψj and ψj′ to be orthonormal. Therefore,

we need to choose the coefficients dj,i and dj′,i′ so that

r∑
i,i′=1

dj,idj′,i′

∫
I
χi(t)χi′(t) dt = 0 . (B.1)

Let dj = (dj,1, . . . , dj,r)
>. Since the χi’s are orthonormal, (B.1) is equivalent to

d>j dj′ = 1{j = j
′}. In other words, the dj’s need to be orthonormal vectors in

Rr. Searching for all possible combinations of orthonormal vectors in Rr would be too

computationally intensive, and so instead we suggest using a greedy algorithm, which

iteratively updates the components of the vectors dj two by two, through consecutive

rotations and reflections while maintaining orthonormality. The following notations

will be useful. Recall that dj ∈ Rr, and note that each of the r dimensions corre-

sponds to an axis. For k = 0, . . . , 90, let αk = 2πk/180 and, for two of the r axis,
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say i and i′, let Rαk,i,i′ denote the rotation of angle αk on the plane determined by

the ith and i′th axes. Finally, let Ri;i′ denote the reflection about the ith axis in the

plane determined by the ith and i′th axes. To compute the dj’s:

1. Start with p arbitrarily chosen orthonormal vectors dj =
(
dj,1, . . . , dj,r

)>
, j =

1, . . . , p.

2. For i = 1, . . . , r − 1

for i′ = i+ 1, . . . , r

For j = 1, . . . , p and k = 1, . . . , 90, let (δk,0j,1 , δ
k,0
j,2 ) be the pair obtained by

applying to (dj,i, dj,i′) the rotation Rαk,i,i′ , and let (δk,1j,1 , δ
k,1
j,2 ) be the pair

obtained by applying Ri,i′ to (δk,0j,1 , δ
k,0
j,2 ). Let

∆ =
{

(δk,tj,1 , δ
k,t
j,2)pj=1, 1 ≤ k ≤ 90, t = 0, 1

}
denote the set of all possible p-pairs created by these rotations and re-

flections. Update the value of (dj,i, dj,i′)
p
j=1 by taking

(dj,i, dj,i′)
p
j=1 = argmin(aj0,aj1)pj=1∈∆T̂2(~ψa) ,

where ~ψa = (ψa,1, . . . , ψa,p)
>, and, for j = 1, . . . , p, ψa,j =

∑r
i=1 d

a
j,i χi

with (daj,i, d
a
j,i′) = (aj0, aj1) and, for ` 6∈ {i, i′}, daj,` = dj,`.

3. Repeat step 2 once.

B.2 Graphs of simulated and real data

In Figures 5 to 7, we depict a random sample of 50 curves from Π1 and of 50 curves

from Π2, as well as their empirical means, where the curves are drawn from, respec-

tively, models (i) to (iii) introduced in section 4.2.1. Figure 8 shows a random sample

of 50 curves from Π1, 50 curves from Π2 and 50 curves from Π3, as well as their em-

pirical means, where the curves are drawn from the hierarchical example introduced

in section 5.2.

In Figure 9, we depict all the curves from the wheat, rainfall and octane data. In
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Figure 5: 50 curves from model (i) coming from population Π1 (left) or Π2 (middle),
and empirical mean curves from the two groups (right).
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Figure 6: 50 curves from model (ii) coming from population Π1 (left) or Π2 (middle),
and empirical mean curves from the two groups (right).

Figure 10 we display the curves from Π1, the curves from Π2, as well as their empirical

means, for the Berkeley growth data.
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Figure 7: 50 curves from model (iii) coming from population Π1 (left) or Π2 (middle),
and empirical mean curves from the two groups (right).
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Figure 8: 50 curves from the hierarchical example coming from population Π1 (top
left), Π2 (top right), Π3 (bottom left), and empirical mean curves from the three
groups (bottom right).
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Figure 9: Wheat spectra data (left) Australian rainfall data (middle), Octane spectra
curves (right).
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Figure 10: Berkeley growth dataset: height measurements of 39 boys (left) and 54
girls (middle) from age 1 to 18, and mean curves from each group (right).
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