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1.1 Introduction

In this chapter, we consider nonparametric estimation of the density fX of a
variable X which is observed with an independent additive noise U of known
distribution. This problem has received a lot of attention in the literature, and
the most popular estimator is the deconvolution kernel density estimator. In
this chapter, we introduce this estimator and study some of its theoretical and
practical properties. We also discuss some extensions and related problems.
Alternative nonparametric procedures of density deconvolution are discussed
in Chapter 11 (Kang and Qiu, 2021) and the case where the error distribution
is unknown is studied in Chapter 12 (Delaigle and Van Keilegom, 2021). The
regression case is discussed in Chapter 14 (Apanasovich and Liang, 2021).

This chapter is organised as follows. We introduce the classical measure-
ment error model in Section 1.2 and the deconvolution kernel density estimator
in Section 1.3. In Section 1.4 we discuss some of its L2 theoretical properties.
These depend heavily on the smoothness of the error distribution, and we
introduce two types of errors usually considered in the literature: ordinary
smooth and supersmooth errors. We compute the mean integrated squared
error of the estimator for the two types of errors and study its rates of con-
vergence for various levels of smoothness of the density fX . Computing the
deconvolution kernel density estimator in practice requires to choose a ker-
nel function and a smoothing parameter called bandwidth. We discuss the
impact of those choices in Section 1.5, where we also present some of the
numerical issues that can be encountered when computing the deconvolution
kernel density estimator. The choice of the bandwidth is particularly impor-
tant: in order for the estimator to work well, the bandwidth must be selected
in a carefully designed data-driven way. We dedicate Section 1.6 to several
data-driven procedures of bandwidth selection. Finally, we discuss generalisa-
tions of the classical problem in Section 1.7 to the cases where the data are
dependent or multivariate, where the measurement errors are not identically
distributed and the characteristic function of the errors vanishes at some iso-
lated points. We also show that in some cases, it is possible to compute the
estimator using a simple analytic formula.

1.2 Model and data

In the classical measurement error problem, we are interested in a variable
X but can only observe independent and identically distribution (i.i.d.) data
X∗1 , . . . , X

∗
n from a noisy version X∗ of X. The variable X∗ comes from the
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classical measurement error model

X∗ = X + U , (1.1)

where U represents a measurement error independent of X, and which has
density fU . There are many applications where it is reasonable to assume
that the noisy data come from (1.1), but often the model holds after trans-
formation. For example, (1.1) is often employed for measured food con-
sumption in nutrition studies. In those studies, food intake is often ob-
tained from 24 hour recalls, where individuals report their food intake of
the last 24 hours. It is common to assume that the model at (1.1) holds for
X∗ = log(reported intake from 24 hour recalls). There, X is the logarithm of
the usual intake, which can be roughly described as the average intake of an
individual over a long period of time. In this chapter, we follow the literature
on nonparametric deconvolution and ignore such transformations; that is, we
assume that the data come directly from (1.1). For comprehensive reviews of
the measurement error problem and techniques in the parametric context, see
Carroll et al. (2006) and Buonaccorsi (2010).

Throughout this chapter we assume that the error density fU is known
and is an even function. It is possible to deal with the case where fU is
unknown, as long as it can be estimated nonparametrically, either from a
sample from fU (Diggle and Hall, 1993; Neumann, 1997), from replicated
noisy measurements of all or some of the individuals (Delaigle et al., 2008),
or even without additional data but under some conditions that permit its
identifiability (Delaigle and Hall, 2016); it will be the topic of Chapter 12
(Delaigle and Van Keilegom, 2021), where we will also discuss parametric and
semiparametric procedures for estimating fU .

1.3 Deconvolution kernel density estimator

In measurement error problems, it is often of interest to estimate the density
fX of X from data X∗1 , . . . , X

∗
n coming from (1.1). For example, if X represents

the usual intake of a nutrient, knowing its density can help understand the food
consumption of individuals in a population. The most popular nonparametric
estimator of fX in this context is the deconvolution kernel density estimator
of Stefanski and Carroll (1990) and Carroll and Hall (1988). It is constructed
by noting that under (1.1), we have

ϕX∗ = ϕX ϕU ,

where throughout this chapter we use ϕT (t) = E(eiT t) to denote the charac-
teristic function of a variable T or the Fourier transform

∫
eitxT (x) dx of an

absolutely integrable function T , and i denotes the complex number such that
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i2 = −1. Therefore, if ϕU (t) 6= 0 for all t ∈ R, then ϕX = ϕ∗X/ϕU , and by the
Fourier inversion theorem, we deduce that

fX(x) =
1

2π

∫
e−itxϕX(t) dt =

1

2π

∫
e−itx

ϕ∗X(t)

ϕU (t)
dt . (1.2)

Since fU is known, then ϕU is known and the only unknown in the second
integral at (1.2) is ϕ∗X(t), which can be easily estimated by the empirical

characteristic function ϕ̂X∗(t) = n−1
∑n
j=1 e

itX∗
j . It is tempting to construct

an estimator of fX(x) by plugging ϕ̂X∗ into that integral. However, ϕ̂X∗(t)
is very unreliable in the tails, i.e., for large |t|, whereas ϕU (t) → 0 as |t| →
∞; as a result, ϕ̂∗X(t)/ϕU (t) is not integrable. To overcome these unreliable
tail fluctuations, Stefanski and Carroll (1990) and Carroll and Hall (1988)
introduced a weight function w(t), which is such that w(t) is close to one
when ϕ̂∗X(t) is reliable, and close to zero elsewhere. Specifically, they took

f̂X(x) =
1

2π

∫
e−itx

ϕ̂∗X(t)w(t)

ϕU (t)
dt ,

where w(t) = ϕK(ht), with a smoothing parameter h > 0, called bandwidth,
and a univariate smooth function K that integrates to 1, called kernel.

Thus, the deconvolution kernel density estimator of Stefanski and Carroll
(1990) and Carroll and Hall (1988) is defined by

f̂X(x;h) =
1

2π

∫
e−itxϕ̂∗X(t)

ϕK(ht)

ϕU (t)
dt (1.3)

=
1

nh

n∑
j=1

KU

(x−X∗j
h

)
, (1.4)

where the deconvolution kernel KU is defined by

KU (x) =
1

2π

∫
e−itx

ϕK(t)

ϕU (t/h)
dt . (1.5)

The following conditions guarantee that this estimator is well defined :

ϕU (t) 6= 0 for all t ; (1.6)∫
|ϕX(t)| dt <∞; (1.7)

sup
t∈R
|ϕK(t)/ϕU (t/h)| <∞ and

∫
|ϕK(t)/ϕU (t/h)| dt <∞ . (1.8)

Liu and Taylor (1989) discussed a variant of this estimator where they
truncated the domain of the integral at (1.5) to an interval [−Mn,Mn], where
Mn → ∞ as n → ∞. However, such truncation is not needed when ϕK is
compactly supported (something very common in the deconvolution problem,
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see Section 1.5.2), in which case their estimator reduces to the deconvolution
kernel density estimator. Even when ϕK is not compactly supported, the ad-
vantage of using two parameters (h and Mn) is unclear, as reflected by the
numerical results in Liu and Taylor (1990), who found that better results
were often obtained by taking h = 0 when Mn was positive. Another variant
of the deconvolution kernel estimator that is consistent under the L1 norm
was introduced by Devroye (1989), and Zhang (1990) studied a closely related
problem of estimation of mixing densities.

Although in principle the weight function w(t) above could take various
forms, taking w(t) = ϕK(ht) has several useful interpretations. First, when
U ≡ 0, that is when there are no errors and ϕU (t) = 1 for all t, this estimator
reduces to the standard kernel density estimator; indeed, in that case (1.3)

reduces to f̂X(x;h) = f̂∗X(x;h), where

f̂∗X(x;h) =
1

2π

∫
e−itxϕ̂∗X(t)ϕK(ht) dt =

1

nh

n∑
j=1

K
(x−X∗j

h

)
(1.9)

is the standard kernel density estimator of f∗X(x). Second, by Fourier inversion
of (1.9), we have ϕf̂∗

X(·;h)(t) = ϕ̂∗X(t)ϕK(ht). Comparing with (1.3), we see

that the deconvolution kernel estimator at (1.3) is nothing but the estimator of
fX(x) obtained by replacing ϕX∗ in the second integral at (1.2) by the Fourier
transform of the kernel density estimator of fX∗ . See also Delaigle (2014) for
a discussion of main principles of deconvolution, including a description of
the general unbiased score technique for deconvolution that also leads to the
estimator at (1.4).

1.4 Overview of some theoretical properties

In this section we review some of the most important theoretical properties of
the deconvolution kernel density estimator. As we shall see, they depend heav-
ily on the smoothness of the error distribution. In Section 1.4.1 we introduce
two types of error distributions (ordinary smooth and supersmooth) typically
encountered in the deconvolution literature. We describe the mean integrated
squared error (MISE) of the estimator in Section 1.4.2 and its asymptotic
expression in Section 1.4.3. As we shall see, standard convergence based on
the this asymptotic expression is often slow. However, such rates are devel-
oped under the assumption that fX only has a finite number of derivatives.
In Section 1.4.4 we will see that by studying the MISE of the estimator in
the Fourier domain, it is possible to show that if fX is infinitely differentiable
then the convergence rates are considerably faster. Finally, in Section 1.4.5 we
mention some other useful theoretical properties that have been established
in the literature.
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While we will mention some of the important conditions, in this section,
to keep the text readable, we will not list all the technical conditions required
to write the results we present. We refer to the original papers and to Meister
(2009a) for a deep and rigourous account of theoretical properties.

1.4.1 Error type

The rate of convergence of f̂X to fX depends on the smoothness of the error
distribution, which is characterised by the rate of decay of its characteris-
tic function in the tails. Following the terminology in Fan (1991a,b,c), one
typically distinguishes between two classes of errors called supersmooth and
ordinary smooth. An error U is supersmooth of order β if, for some constants
β0 ≤ β1, 0 < d0 ≤ d1, β > 0 and γ > 0,

d0|t|β0 exp(−|t|β/γ) ≤ |ϕU (t)| ≤ d1|t|β1 exp(−|t|β/γ) for large |t| ; (1.10)

for example, normal and Cauchy distributions are supersmooth. As noted by
Butucea and Tsybakov (2008a,b), most densities in this class that are well
known and can be expressed in a closed form are such that β ≤ 2.

An error U is ordinary smooth of order β if, for some constants 0 < d0 ≤ d1
and β > 0,

d0|t|−β ≤ |ϕU (t)| ≤ d1|t|−β for large |t| ; (1.11)

for example, a Laplace distribution is ordinary smooth.
We will see that supersmooth errors make the deconvolution problem much

more difficult than ordinary smooth errors.

1.4.2 Mean integrated squared error

Theoretical properties of f̂X are usually assessed via the mean integrated
square error defined by

MISE(h) =

∫
Bias2{f̂X(x;h)} dx+

∫
var{f̂X(x;h)} dx ,

where we follow the usual approach in the literature and omit the dependence
on the kernel K in the notation.

It follows from the conditional unbiased score property

E
{
KU (x−X∗j )

∣∣Xj

}
= E

{
K(x−Xj)

}
which is at the heart of the deconvolution kernel technique (Stefanski and
Carroll, 1990; Delaigle, 2014) that the bias of the deconvolution kernel density
estimator is the same as that of the error-free kernel density estimator:

Bias{f̂X(x;h)} = E{f̂X(x;h)} − fX(x) = Kh ∗ fX(x)− fX(x) ,

where Kh(x) = K(x/h)/h and f ∗ g(x) =
∫
f(x − u)g(u) du denotes the
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convolution product of two functions f and g. In particular, the MISE of the
deconvolution kernel estimator computed from the contaminated X∗j ’s differs
from that of the standard kernel density estimator computed from the error-
free Xj ’s only through its variance.

The integrated variance of the deconvolution kernel density estimator is
equal to (Stefanski and Carroll, 1990; Stefanski, 1990)∫

var{f̂X(x;h)} dx =
1

2πnh

∫
|ϕK(t)|2

|ϕU (t/h)|2
dt− n−1

∫
(Kh ∗ fX)2(x) dx .

More formally, Stefanski and Carroll (1990) showed that under Conditions
(1.6) to (1.8) and if K is integrable, we have

MISE(h) =
1

2πnh

∫
|ϕK(t)|2

|ϕU (t/h)|2
dt+ (1− n−1)

∫
(Kh ∗ fX)2(x) dx

+

∫
f2X(x) dx− 2

∫
Kh ∗ fX(x)fX(x) dx .

1.4.3 Asymptotic mean integrated squared error

As in the error-free case, the MISE is difficult to interpret, and it is standard
to analyse instead its asymptotically dominating part. For this, it is useful to
recall that a kth order kernel K is a kernel whose moments satisfy

µK,j =

∫
xjK(x) dx =


1 for j = 0

0 for j = 1, . . . , k − 1

c for j = k ,

where c 6= 0 is a finite constant. As usual with kernel density estimation,
K is almost always chosen to be symmetric around zero, so that k is even
(indeed, for k odd we could not have µK,k = c 6= 0). Using a Taylor expansion,
Stefanski and Carroll (1990) showed that under (1.6) to (1.8), if K is a kth
order kernel such that

∫
|xk+1K(x)| dx < ∞, fX has k + 1 continuous and

bounded derivatives, f
(k)
X is square integrable and h → 0 and nh → ∞ as

n→∞, then MISE(h) = AMISE(h) +O(n−1) + o(h2k), where

AMISE(h) =
h2k

(k!)2
µ2
K,k

∫
{f (k)X (x)}2 dx+

1

2πnh

∫
|ϕK(t)|2

|ϕU (t/h)|2
dt . (1.12)

We learn from this expression that the rate of convergence of f̂X to fX
depends on the smoothness of fX and the smoothness of the error distribution;
see Carroll and Hall (1988), Stefanski and Carroll (1990) and Fan (1991b,c)
for detailed calculations and asymptotic results. In particular, those authors
have shown that, under sufficient conditions, in the ordinary smooth error
case at (1.11),

∫
|ϕK(t)|2|ϕU (t/h)|−2 dt ∼ h−2β , so that AMISE(h) ∼ c1h2k +
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c2/(nh
2β+1), where c1 and c2 are positive constants. Thus, in the ordinary

smooth error case, if we use a kth order kernel and fX is smooth enough,
the estimator f̂X converges the fastest by taking h ∼ n−1/(2β+2k+1), which
results in MISE(h) ∼ AMISE(h) ∼ n−2k/(2β+2k+1). Fan (1991c) showed that,
under sufficient smoothness conditions, these rates are optimal. Fan (1991a)
also established asymptotic normality of the estimator.

Things are more involved in the supersmooth error case at (1.10), where the
fast decay of ϕU in its tails makes it difficult to find kernels for which the inte-
gral

∫
|ϕK(t)|2|ϕU (t/h)|−2 dt exists, except if we take kernels for which ϕK is

compactly supported; the choice of the kernel will be discussed in Section 1.5.2.
Furthermore, it is difficult to obtain an explicit expression for the integrated
variance term, for which we typically only have upper bounds. Despite these
complications, following Fan (1991a,b,c), it is possible to find bandwidths for
which the rate of the AMISE(h) is the smallest possible. Specifically, if we
choose K such that ϕK is supported on [−B,B] for some 0 < B < ∞, then
we have

∫
|ϕK(t)|2|ϕU (t/h)|−2 dt = O{h2β0 exp(2|B/h|β/γ)}, which is of or-

der O
{
nd

−β−1(log n)(−2β0+1)/β
}

, if we take h = dB(2/γ)1/β(log n)−1/β , with
d > 1. With the same choice of h, the integrated squared bias term is of exact
order (log n)−2k/β , so that MISE(h) ∼ AMISE(h) ∼ (log n)−2k/β , since the
integrated variance term is negligible compared to the integrated bias term.

Despite the pessimistic very slow convergence rates in the supersmooth
case, deconvolution in practice works reasonably well even if the error is super-
smooth. This has partly to do with the fact that these traditional asymptotic
results do not take the variance of the errors into account, whereas these play
an important role in the success of a deconvolution procedure. To take the
magnitude of the error variance into account, several authors have developed
a double asymptotic procedure where the error variance is assumed to tend to
zero as n→∞. See for example Fan (1992), Carroll and Hall (2004), Delaigle
(2008), Van Es and Gugushvili (2010) and Chapter 12 (Delaigle and Van Kei-
legom, 2021). Fan (1991c) showed that if fX has a finite number of continuous
derivatives, these rates are optimal. However, if fX is very smooth, then using
a finite order kernel can give rise to considerably suboptimal results, as we
show in Section 1.4.4.

1.4.4 Fourier domain and supersmooth distributions of X

The asymptotic analysis in Section 1.4.3 and the rates of convergence discussed
there only exploit the fact that fX has a finite number, k, of derivatives.
However, many densities have an infinite number of derivatives; for those, the
convergence rate of the estimator, and that of alternative estimators (Pensky
et al., 1999) is considerably faster if we use a so-called infinite order kernel.
Specifically, convergence rates can be much faster if, as in Butucea (2004b)
and Butucea and Tsybakov (2008a,b), fX is such that

(2π)−1
∫
|ϕX(t)|2 exp(2α|t|βX ) dt ≤ L , (1.13)
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with L > 0, α > 0 and where βX > 0 are finite constants.
To understand why, using Parseval’s identity, we express the MISE in the

Fourier domain as (Stefanski, 1990)

MISE(h) =
1

2πnh

∫
|ϕK(t)|2

|ϕU (t/h)|2
dt+

(1− n−1)

2π

∫
|ϕX(t)|2|ϕK(ht)|2 dt

+
1

2π

∫
|ϕX(t)|2 dt− 1

π

∫
|ϕX(t)|2ϕK(ht) dt . (1.14)

In the particular case of the sinc kernel K defined by ϕK(t) = I{|t| ≤ 1},
where I{·} is the indicator function (see Section 1.5.2 for a detailed discussion
of kernels), this reduces to

MISE(h) =
1

2πnh

∫ 1

−1

1

|ϕU (t/h)|2
dt+

1

2π

∫
|t|>1/h

|ϕX(t)|2 dt+O(n−1) .

Now, using (1.13), we have

1

2π

∫
|t|>1/h

|ϕX(t)|2 dt =
1

2π

∫
|t|>1/h

|ϕX(t)|2 exp(2α|t|βX ) exp(−2α|t|βX ) dt

≤e
−2αh−βX

2π

∫
|t|>1/h

|ϕX(t)|2 exp(2α|t|βX ) dt

≤L exp(−2αh−βX ) .

On the other hand, we know from Section 1.4.3 that
∫
|ϕU (t/h)|−2 dt =

O{h2β0 exp(2h−β/γ)} if U is supersmooth of order β, and
∫
|ϕU (t/h)|−2 dt ∼

h−2β if U is ordinary smooth of order β. Thus, if U is ordinary smooth of
order β then

MISE(h) ≤ L exp(−2αh−βX ) + c1h
−2β−1n−1 +O(n−1) ,

with c1 > 0 a constant; taking h = {log n/(2α)}−1/βX as in Butucea
(2004b), we deduce that MISE(h) = O(n−1) + O

{
n−1(log n)(2β+1)/βX

}
=

O
{
n−1(log n)(2β+1)/βX

}
, which is only slightly slower than the parametric

n−1 rate, and faster than the rate n−2k/(2β+2k+1) obtained when assuming
only that fX has k smooth derivatives.

If U is supersmooth of order β, then we have

MISE(h) ≤ L exp(−2αh−βX ) + c1n
−1h2β0−1 exp(2h−β/γ) +O(n−1) . (1.15)

In that case too, Butucea and Tsybakov (2008a,b) showed that it is possible
to choose a more precise bandwidth than the one suggested in Section 1.4.3,
such that the rates are faster than the slow logarithmic rates obtained when
assuming only that fX has k smooth derivatives. Indeed, if we take h ≤
d(log n)−1/βX for some constant d > 0, then the first term of (1.15) is of order
n−a for some a > 0, and if we take h = d(2/γ)1/β(log n)−1/β with d > 1,
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then we have seen in the previous section that the second term of (1.15) is

of order O
{
nd

−β−1(log n)(−2β0+1)/β
}

. Thus, if β ≤ βX , then by taking h =

d(2/γ)1/β(log n)−1/β with d > 1, the estimator converges at polynomial rates.
The case where βX < β was studied by Butucea and Tsybakov (2008a,b), who
proposed a more precise choice of h. They showed that, using that bandwidth,
the bias contribution dominates the variance contribution, and that again the
rate is faster than the one obtained when assuming that fX has only a finite
number k of derivatives.

1.4.5 Further reading

Stefanski (1990) established strong uniform consistency of the estimator, and
Liu and Taylor (1989) established strong uniform consistency for their trun-
cated estimator. Devroye (1989) established L1 consistency of his modified
kernel estimator and Song (2010) studied moderate deviations in the ordinary
smooth error case. Asymptotic normality for supersmooth errors of order β
was studied by Van Es and Uh (2004, 2005), who noted that, when considering
pointwise properties of the estimator, the case where β < 1 behaves differently
from that where β > 1; see also Butucea and Tsybakov (2008a) for a similar
remark and Holzmann and Boysen (2006) for the asymptotic distribution of
the integrated squared error of the estimator in the supersmooth error case,
which corrects a result from Butucea (2004a). Finally, Zu (2015) established
asymptotic normality with a logarithmic chi-square error.

1.5 Computing the estimator in practice

In practice, some care needs to be taken when computing the deconvolution
kernel density estimator. First, computing the estimator requires the choice
of a bandwidth and a kernel. We discuss these issues in Sections 1.5.1 and
1.5.2. Second, often the estimator has no analytic expression and needs to be
computed numerically; we discuss issues related to this in Section 1.5.3.

1.5.1 Importance of the bandwidth

As in the error-free case, the choice of the bandwidth h is crucial for the
empirical success of f̂X : a too small h will result in a too variable, wiggly,
estimator, and a too large h will result in a biased, oversmoothed, estimator.
In theory, the best choice of h is the one that minimises the distance between
fX and f̂X . There are many ways to choose such a distance. For example,
a distance can be global (distance between the whole curves fX and f̂X),

or local (distance between fX(x) and f̂X(x) at each x of interest). The two
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most popular global distances are the MISE or its asymptotic approximation
AMISE, and the most popular local distance is the mean squared error

MSE(x;h) = E
[
{f̂X(x;h)− fX(x)}2

]
= Bias2{f̂X(x;h)}+ var{f̂X(x;h)} .

or its asymptotic version AMSE(x;h).
We choose h by minimising a global distance when we intend to use the

same bandwidth h at each x where we compute the estimator f̂X ; such a band-
width is called a global bandwidth. For example, the MISE and the AMISE
bandwidths are defined by, respectively,

hMISE = argminhMISE(h) , hAMISE = argminhAMISE(h) .

We choose h by minimising a local distance if we wish to use a different
bandwidth h(x) at each x; such a bandwidth is called a local bandwidth. For
example, the MSE and the AMSE bandwidths are defined by, respectively,

hMSE(x) = argminhMSE(x;h) , hAMISE(x) = argminhAMSE(x;h) .

A local bandwidth is preferable when fX has sharp features (e.g., is very
wiggly) in some parts of its domain and is very smooth (e.g., non wiggly) else-
where. There, ideally h should be smaller in wiggly areas and larger elsewhere.

In practice, we cannot compute any of those theoretically optimal band-
widths since they all depend on the unknown fX that we are trying to esti-
mate. In Section 1.6 we will discuss various methods that have been developed
in the literature for approximating them in practice.

1.5.2 Importance of the kernel

As in standard kernel density estimation problems without measurement er-
rors, the choice of the kernel function K is less important than the choice
of the bandwidth h. However, in order for the estimator at (1.3) to work
well in practice, the kernel K needs to be a smooth and unimodal function
that integrates to 1 (so that f̂X integrates to 1 too). Moreover, in order for
the estimator at (1.3) to be well defined, the integral at (1.5) needs to exist.
Therefore, K has to be such that ϕK(t) tends to zero faster than ϕU (t/h)
as |t| → ∞, which often makes it impossible to use kernels that are fre-
quently used in the error-free case such as the Epanechnikov kernel, defined
by K(x) = 3/4 (1−x2) · I{|x| ≤ 1}, or the standard normal kernel, defined by
K = φ, the standard normal density.

To understand why standard kernels such as the Epanechnikov kernel can
often not be used in the error case, note that the Fourier transform of the
Epanechnikov kernel is given by ϕK(t) = 3(sin t− t cos t)/t3, which, for large
|t|, behaves like |t|−2. Thus, for ordinary smooth errors satisfying (1.11), we
can only guarantee that the integral at (1.5) exists if β ≤ 1, which is not even
satisfied by Laplace errors, for which β in (1.11) is equal to 2. It is easy to see
that this integral cannot exist in the supersmooth error case.
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On the other hand, the standard normal kernel can be used with ordinary
smooths at (1.11). Indeed, in this case we have ϕK(t) = exp(−t2/2), which
tends to zero much faster than |t|−β , so that the integral at (1.5) exists. An
advantage of this kernel in this case is that its associated KU has an explicit
(analytic) formula, and so do various quantities required to compute a data-
driven bandwidth. For supersmooth errors at (1.10) however, with this kernel,
the integral at (1.5) exists only if β < 2, or if β = 2 and h > γ−1/2. This is only
possible for n small, since the estimator at (1.3) is only consistent if h→ 0 as
n→∞. Therefore, this kernel is not used for supersmooth errors.

To guarantee that the integral at (1.5) exists for both supersmooth and
ordinary smooth errors, it is common to use kernels whose Fourier transform
is compactly supported. Two kernels are commonly employed: the sinc kernel
K1(x) = sin(x)/(πx), whose Fourier transform is equal to ϕK(t) = I{|t| ≤ 1}
and the kernel K2, defined through its characteristic function by ϕK2(t) =
(1 − t2)3I{|t| ≤ 1}. A drawback of these kernels is that often they do not
produce an analytic formula for KU , which has to be computed by numerical
integration; see Section 1.5.3.

While the sinc kernel K1 is not absolutely integrable, it has the advantage
that it is an infinite order kernel: it automatically adapts to the smoothness of
fX , which, in simple terms, is the number of smooth and bounded derivatives
that fX has. As in the error-free case, this means that, with this kernel, the
deconvolution kernel density estimator of fX tends to have a smaller bias and
is able to better capture sharp features of fX , sometimes much better than
finite order kernels; see Section 1.4.4. However, this typically comes at the
cost of pronounced unattractive negative wiggles in the tail of the estimator.

Lütkenöner (2015) proposed a family of kernels whose Fourier transform
is of the form

ϕK(t) = {cos(πt/2)}κI{|t| ≤ 1} ,

where κ ≥ 0. For example, when κ = 0, ϕK(t) = I{|t| ≤ 1} corresponds
to the sinc kernel, which does not have a single finite moment. When κ ≥ 2
(resp., κ ≥ 4), the corresponding kernels have at least 2 (resp., at least 4)
finite moments. Lütkenöner (2015) showed that the advantage of using these
kernels is that in the normal error case where U ∼ N(0, σ2), for κ > 0, we can
write KU explicitly as

KU (x) =
1

2k

κ∑
k=0

(
κ

k

)
K0

{
x− (κ/2− k)π

}
,

where K0 corresponds to KU for the sinc kernel:

K0(x) =
−λ√
2π
e1/(2λ

2)I
[

exp(−i|x|)w{(iλ|x| − 1/λ)/
√

2}
]
,

with I denoting the imaginary part, i2 = −1, λ = h/σ and w(z) =

e−z
2

erfc(−iz), with erfc the complementary error function. As pointed by
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Lütkenöner (2015), w is known as the Faddeeva function and there exist effi-
cient algorithms to evaluate it numerically.

In the case without measurement errors, an optimal kernel of order k
is sometimes defined to be a kernel of order k that minimises the MISE of
the standard kernel estimator. Since that problem is degenerate (it does not
have a unique solution), Granovsky et al. (1995) and Granovsky and Müller
(1991, 1989) proposed to choose the kth order kernel that minimises the MISE
and satisfies a number of additional side constraints, such as having k − 2
sign changes. Delaigle and Hall (2006) argued that these side constraints are
not appropriate in the case with measurement errors, where kernels chosen
in that way result in much poorer practical performance, compared to the
kernels discussed above. They also showed that the choice of the kernel is
much more important in the error case than in the error-free case, in that it
influences much more the value of the MISE and the practical performance of
the estimator.

1.5.3 Computing the estimator in practice

In general, computing the deconvolution kernel density estimator is not
straightforward as it requires computing an inverse Fourier transform through
KU , which often does not have an analytic formula.

In some cases, it is possible to express the deconvolution kernel den-
sity estimator analytically without going through the Fourier domain. For
example, in the case where U is a Laplace(σ) random variable, we have
ϕU (t) = 1/(1 + σ2t2), so that

KU (x) =
1

2π

∫
e−itxϕK(t) dt+

σ2

h2
· 1

2π

∫
e−itxt2ϕK(t) dt = K(x)− σ

2

h2
K ′′(x) .

Thus, the deconvolution kernel density estimator can be expressed as

f̂X(x;h) = f̂X∗(x;h)− σ2f̂ ′′X∗(x;h) . (1.16)

where f̂X∗(x;h) is the standard kernel density estimator at (1.9) and f̂ ′′X∗(x;h)
is its second derivative with respect to x; see Section 1.7.1 for other examples.

In those simple cases, we can use a standard kernel of the same type as
those used in the error-free case, for example the standard normal kernel,
and the deconvolution kernel density estimator can be computed using this
simple analytic formula. It is important to note that if we choose kernels
with a compactly supported Fourier transform equal to a polynomial on its
domain (e.g., K1 or K2 introduced in Section 1.5.2), then even if KU has
an analytic expression such as the one derived above, that expression often
cannot be used directly as it can cause dramatic cancellation. For a detailed
discussion of this issue, see Delaigle and Gijbels (2007), who also proposed a
solution to this problem. However, if we bypass completely the computation
of KU and compute f̂X directly, then we can avoid such problems; for example
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in the Laplace case we can avoid this problem if we compute f̂X∗(x;h) and

f̂ ′′X∗(x;h), and then take f̂X(x;h) = f̂X∗(x;h)− σ2f̂ ′′X∗(x;h).
More generally, and especially in the supersmooth error case, there is often

no analytic formula for KU and f̂X has to be computed numerically. If we
use (1.4) to compute f̂X , at each x we need to evaluate n integrals (one
for each version of KU in (1.4)). Delaigle and Gijbels (2007) have shown
that computing KU numerically is also quite difficult. Indeed, the periodic
oscillations inside the integral at (1.5) can cause the integral to be poorly
approximated if standard fast iterative integration algorithms are employed,
such as the Romberg method. While a more accurate approximation can be
obtained by the fast Fourier transform or the trapezoidal rule on a fine grid,
the calculation of KU can be bypassed entirely if we compute f̂X numerically
through the formula at (1.3). The latter only requires to evaluate one integral

numerically for each x at which we compute f̂X .
As noted in Section 1.5.2 for the sinc kernel, the deconvolution kernel

density estimator typically has some negative wiggles in the tail, although
these vanish as n→∞ (recall that the estimator is consistent). More generally,
even if we use a kernel K that is a density, the deconvolution kernel KU is
typically not a density (it integrates to 1 but has negative wiggles, whose
magnitude increases to as h decreases and/or σ2 increases). In the error-free

case, it is sometimes advocated that a density estimator f̂ that takes negative
values should be truncated to zero and rescaled to integrate to 1 (Hall and
Murison, 1993), that is, take

f̃(x) = max{f̂(x), 0}
/∫

max{f̂(y), 0} dy .

However, since KU often has big negative wiggles, the negative wiggles in the
tails of f̂X in the error case can be much larger than those in the error-free
case. Therefore, rescaling the estimator as above is not necessarily a good
idea: as f̂X (with its negative wiggles) integrates to 1, rescaled its truncated
version will often introduce a large bias. Instead, in the error case, it is often
more appropriate to take

f̃X(x;h) = max{f̂X(x;h), 0} ,

without rescaling, even though this often implies that f̃X is not a density since
it does not integrate exactly to 1.

1.6 Bandwidth selection in practice

In Section 1.5.1 we highlighted the importance of the choice of h for the empiri-
cal success of the estimator f̂X . There we defined some theoretical bandwidths
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that result in good practical performance, but none of them can be computed
in practice since they all depend on the unknown fX . In this section, we dis-
cuss several strategies for approximating those bandwidths from the data. As
we shall see, some (e.g. cross-validation, bootstrap and SIMEX) are based on
the MISE, and others (e.g. plug-in) are based on asymptotic expressions such
as the AMISE at (1.12).

It is important to note that the AMISE at (1.12) relies on the kernel to
have a finite number k of moments, and fX to be at least k times differentiable.
Therefore, techniques based on the AMISE cannot be employed for the sinc
kernel. We will see that the cross-validation, the bootstrap and the SIMEX
bandwidths can all be used with the sinc kernel. Most of the techniques dis-
cussed in this section are available in the R package deconvolve (Delaigle
et al., 2020), while Matlab codes are available on Delaigle’s webpage.

1.6.1 Cross-validation bandwidth

The first data-driven procedure for selecting h in practice was proposed by
Stefanski and Carroll (1990). It was originally developed for normal errors but
it can be applied more generally (Hesse, 1999). As in the standard error-free
case, it is designed to provide an estimator of the bandwidth that minimises
the integrated squared error ISE(h) =

∫
{f̂X(x)− fX(x)}2 dx, or equivalently,

which minimises

ISE(h)−
∫
{fX(x)}2 dx =

∫
{f̂X(x)}2 dx− 2

∫
f̂X(x)fX(x) dx . (1.17)

In the Fourier domain, the first term on the right hand side of
(1.17) can be expressed as (2π)−1

∫
|ϕK(ht)|2|ϕ̂X∗(t)|2|ϕU (t)|−2 dt. Stefan-

ski and Carroll (1990) showed that the second term has the same ex-
pectation as a cross-validation quantity that can be rewritten as {π(n −
1)}−1

∫
ϕK(−ht){n|ϕ̂X∗(t)|2−1}|ϕU (t)|−2 dt. Motivated by this, they defined

the cross-validation bandwidth by

ĥCV = argminhCV(h) , (1.18)

where CV(h) is the cross-validation criterion defined by

CV(h) =
1

2π

∫
|ϕK(ht)|2|ϕ̂X∗(t)|2 − 2(n− 1)−1ϕK(−ht){n|ϕ̂X∗(t)|2 − 1}

|ϕU (t)|2
dt .

Theoretical properties of this bandwidth were studied by Hesse (1999)
and Youndjé and Wells (2002) in the ordinary smooth error case; the authors
showed that an advantage of the cross-validation bandwidth is that it relies
on very few smoothness assumptions, unlike the plug-in technique introduced
in the next section. However, in practice the CV bandwidth has a tendency
to select too small bandwidths, which is useful for capturing sharp features
such as sharp peaks, but it often comes at the price of an estimator that is too
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variable. Moreover, as in the error-free case, the cross-validation bandwidth is
not always uniquely defined, and in that case it is not clear which local solution
of (1.18) should be chosen; Delaigle and Gijbels (2004b) recommended to
choose among them the smallest bandwidth for which the estimator appears
visually smooth enough, or if this is not possible, to choose the largest solution.

In the particular case of the sinc kernel, CV simplifies into

CV(h) =
1

2π(n− 1)

∫ 1/h

−1/h

2− (n+ 1)|ϕ̂X∗(t)|2

|ϕU (t)|2
dt (1.19)

so that

CV′(h) =
1

π(n− 1)h2
(n+ 1)|ϕ̂X∗(1/h)|2 − 2

|ϕU (1/h)|2
.

Since ĥCV is a solution of CV′(h) = 0, in this case it can be found by solving
|ϕ̂X∗(1/h)|2 = 2/(n + 1). Interestingly, as pointed by Stefanski and Carroll
(1990), since the bandwidth chosen by cross-validation does not depend on
the error distribution, we see that in this case, it is the same for estimating
fX and for estimating fX∗ . As we will see later, this is generally not true for
the approaches based on a finite order kernel.

As shown by Stefanski and Carroll (1990) the CV bandwidth can be
viewed as an estimator of the bandwidth hMISE that minimises the MISE.
For example, in the case of the sinc kernel, using (1.14) and recalling that
ϕX = ϕX∗/ϕU , we have

MISE(h) =
1

2πn

∫ 1/h

−1/h

1− (n+ 1)|ϕX∗(t)|2

|ϕU (t)|2
dt+

1

2π

∫
|ϕX(t)|2 dt . (1.20)

(Note that the last term does not depend on h). Therefore,

MISE′(h) =
1

πnh2
(n+ 1)|ϕX∗(1/h)|2 − 1

|ϕU (1/h)|2
.

Since hMISE satisfies MISE′(h) = 0, in the particular case of the sinc kernel,
hMISE is a solution of |ϕX∗(1/h)|2 = 1/(n+ 1). This equation uniquely iden-
tifies h under some conditions (Stefanski and Carroll, 1990) and is the same
as the equation for finding the CV bandwidth given above, except that the
unknown ϕX∗ is replaced by its estimator ϕ̂X∗ , and −2 is replaced here by
−1 (this is to remove some of the bias of the estimator |ϕ̂X∗ |2 of |ϕX∗ |2).

1.6.2 Plug-in and normal reference bandwidths

When we can reasonably assume that the density fX has at least k smooth
derivatives, and we use a kth order kernel, with k even, instead of using the
cross-validation bandwidth we can use instead the plug-in (PI) bandwidth
(Delaigle and Gijbels, 2004b). As in the error-free case, this bandwidth is
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quite popular because it often works well in practice and is much faster to
compute than the cross-validation bandwidth. We also discuss another band-
width called the normal reference bandwidth, which is even simpler to compute
but usually gives rather poor practical performance.

The plug-in bandwidth is obtained by plugging, in the AMISE expression,
a kernel estimator of the unknown quantity, and then minimise the resulting
estimator of the AMISE with respect to h. Specifically, recalling the AMISE

expression from (1.12), the only unknown is θk ≡
∫
{f (k)X (x)}2 dx, which is

estimated by θ̂k ≡
∫
{f̂ (k)X (x;hk)}2 dx, where

f̂
(k)
X (x;hk) =

1

nhk+1
k

n∑
j=1

K
(k)
U

(x−X∗j
hk

)
=

1

2π

∫
(−it)ke−itx ϕ̂

∗
X(t)ϕK(hkt)

ϕU (t)
dt

is the kth derivative of f̂X(x;hk) at (1.4) computed with a bandwidth hk (De-

laigle and Gijbels, 2002) and K
(k)
U (x) = (2π)−1

∫
(−it)ke−itxϕK(t)/ϕU (t/h) dt

is the kth derivative ofKU . As mentioned earlier, the kernelK is almost always
taken to be symmetric so that its order k is even; in that case, (−i)k = (−1)k/2.

Using Parseval’s identity, θ̂k can be expressed as

θ̂k = (2π)−1
∫
t2k|ϕ̂∗X(t)|2|ϕK(hkt)|2|ϕU (t)|−2 dt ,

which leads to the following estimator ÂMISE(h) of AMISE(h):

µ2
K,k

(k!)2
h2k

2πh2k+1
k

∫
t2k
|ϕ̂∗X(t/hk)|2|ϕK(t)|2

|ϕU (t/hk)|2
dt+

1

2πnh

∫
|ϕK(t)|2

|ϕU (t/h)|2
dt .

Then, the bandwidth is chosen by minimising ÂMISE(h) with respect to h.
If the error density is unknown and estimated from data as in Chapter 12
(Delaigle and Van Keilegom, 2021), what often works well in practice is to
replace ϕU in this expression by its estimator ϕ̂U .

To compute ÂMISE(h), we need to choose the bandwidth hk used to com-

pute θ̂k. Here, hk should be chosen to estimate θk the best way possible.
Delaigle and Gijbels (2002, 2004b) suggest choosing hk to minimise (an es-

timator of) the mean squared error (MSE) of θ̂k, and doing this typically
results in hk different from h. For example, it leads to hk ∼ n−1/(2β+3k+1)

if U is ordinary smooth of order β, whereas we saw in Section 1.4.3 that the
bandwidth h that minimises the MISE of f̂X is of order h ∼ n−1/(2β+2k+1).
Thus, in this case case, hk is an order of magnitude larger than h.

If the error is supersmooth of order β, Delaigle and Gijbels (2002) showed
that if ϕK is supported on [−B,B], the optimal convergence rate for esti-
mating θk is obtained by taking h = dB(2/γ)1/β(log n)−1/β with d > 1. This
is also the bandwidth found in Section 1.4.3 for computing fX at the best
possible rate. Thus in theory, in the supermsooth error case we could take
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hk = h = dB(2/γ)1/β(log n)−1/β with d > 1. However, the value of d influ-
ences the practical success of the estimator and it is not clear how to choose
d. Instead, as in the ordinary smooth error case, taking h and hk to minimise
an estimator of the AMISE of f̂X and of the MSE of θ̂k, respectively, often
gives good results; see Delaigle and Gijbels (2004b).

The MSE of θ̂k, used to choose hk, also contains some unknowns that
need to be estimated from the data. This is done via an iterative process;
see Delaigle and Gijbels (2002, 2004b). The plug-in bandwidth often per-
forms significantly better than the CV bandwidth, which tends to be too
small. An exception to this is when the fX has very sharp features, in which
case its deconvolution kernel density estimator with the PI bandwidth tends
to oversmooth those features, whereas the estimator computed with the CV
bandwidth is often able to capture them better.

As in the error-free case, we can also compute a quick and dirty band-
width called the normal reference bandwidth (Delaigle and Gijbels, 2004b).
It consists in estimating θk by pretending that fX is a normal density,
that is, in estimating θk by θ̂k = (2k)!/{(2σ̂X)2k+1k!

√
π}, where σ̂2

X =
max{1/n, σ̂2

X∗ − var(U)} is an estimator of the variance of X, with σ̂2
X∗ the

empirical variance of the X∗i ’s. The normal reference bandwidth is obtained
by minimising the resulting estimator of AMISE(h). Since it is obtained un-
der the assumption that fX is normal, it is often too large and makes the
estimator of fX oversmoothed. Delaigle and Gijbels (2004b) also developed
an alternative plug-in bandwidth called the solve-the-equation bandwidth but
found it had little practical advantage compared to their main plug-in band-
width introduced above.

In practice, since we usually do not know how smooth fX is, it is common
to take k = 2 and use a second order kernel. As in the error-free case, even if
we had the information that fX had more than 2 derivatives using a kernel of
order k > 2 would produce more wiggly estimators, although it would capture
sharp features better (taking k larger means taking h smaller and thus having
a smaller bias but a larger variance). See also our discussion about the sinc
kernel in Section 1.6.1. Note that the sinc kernel does not have a finite number
k of moments and cannot be used with the plug-in or the normal reference
bandwidths.

1.6.3 Bootstrap bandwidth

Delaigle and Gijbels (2004a) proposed a bootstrap bandwidth that directly
attempts to minimise an estimator of the MISE. Recalling the expression at
(1.14), and noting that

∫
|ϕX(t)|2 dt does not depend on h, they propose to

choose h by minimising

MISE∗2(h) =
1

2πnh

∫
|ϕK(t)|2

|ϕU (t/h)|2
dt+

(1− n−1)

2π

∫
|ϕ̂X,h̃(t)|2|ϕK(ht)|2 dt
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− 1

π

∫
|ϕ̂X,h̃(t)|2ϕK(ht) dt ,

where ϕ̂X,h̃(t) = ϕ̂X∗(t)ϕK(h̃t)/ϕU (t) is the Fourier transform of the decon-

volution kernel density estimator at (1.3), computed with a bandwidth h̃.
Although Delaigle and Gijbels (2004a) originally motivated this approach by
bootstrap ideas, it does not require to generate any bootstrap sample. The
bandwidth h̃ is generally not taken to be equal to h, and in the case of a kernel
of a finite order k, Delaigle and Gijbels (2004a) suggested choosing h̃ equal
to the bandwidth hk used to compute the plug-in bandwidth introduced in
Section 1.6.2. In their numerical investigation, Delaigle and Gijbels (2004b)
found that the bootstrap bandwidth was often outperformed by the plug-in
bandwidth.

In the particular case of the sinc kernel, if we take h̃ ≥ h, we have

MISE∗2(h) =
1

2πn

∫ 1/h

−1/h

1− (n+ 1)|ϕ̂X∗(t)|2

|ϕU (t)|2
dt ,

which is an estimator of the first term of (1.20) (recall that the second term
of (1.20) does not depend on h), where |ϕX∗(t)|2 is estimated by |ϕ̂X∗(t)|2.
This is almost identical to the cross-validation criterion at (1.19), with 2 there
replaced by 1 here; see our discussion about this in the last paragraph of
Section 1.6.1.

1.6.4 SIMEX bandwidth

The procedures introduced above are all targeted at the estimation of the den-
sity fX . Delaigle and Hall (2008) introduced a more general SIMEX (simula-
tion extrapolation) procedure that can be applied in a wide class of deconvolu-
tion problems. Their procedure applies to the bandwidth selection context, the
SIMEX procedure developed by Cook and Stefanski (1994) and Stefanski and
Cook (1995). A preliminary version of the SIMEX bandwidth, that used only
one level of simulated data, was proposed by Delaigle and Meister (2007) in
a heteroscedastic errors-in-variables regression context. The two-level SIMEX
described here was proposed by Delaigle and Hall (2008). In this section we
assume that the error density fU is known; see Delaigle and Hall (2008) for
a variant of the SIMEX bandwidth in the case where fU is unknown but
replicated data are available.

The main idea of SIMEX is as follows: suppose we want to estimate a
curve, g say, that depends on a variable X that we cannot observe directly.
For example, in the density estimation problem, g = fX and in the regression
estimation problem, g(x) = E(Y |X = x), where Y is a dependent variable. In-
stead of observing a sample X1, . . . , Xn ∼ fX , we observe X∗1 , . . . , X

∗
n coming

from the classical measurement error model at (1.1). Let ĝ denote a nonpara-
metric estimator of g based on the contaminated X∗i , which requires the choice
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of one or several smoothing parameters, and let ĝEF denote the a nonpara-
metric estimator of g that we would use if we could observe the Xi’s (here EF
stands for error-free). For example, in the density estimation case, ĝ could be

the deconvolution kernel density estimator f̂X introduced earlier, which re-
quires the choice of a bandwidth h, and ĝEF could be the standard error-free
kernel density estimator computed from the Xi’s. In the errors-in-variables
regression case, ĝ could be the local constant errors-in-variables estimator of
Fan and Truong (1993) computed from a sample of (X∗i , Yi)’s distributed as
(X∗, Y ), or the more general local polynomial errors-in-variables estimator of
Delaigle et al. (2009), both of which require the choice of a bandwidth h and,
optionally, of a ridge parameter ρ; ĝEF could be the standard error-free local
polynomial estimator of g computed from a sample of (Xi, Yi)’s distributed
as (X,Y ).

Let H denote the smoothing parameters required to compute ĝ ≡ ĝ(·;H).
For example, in the density estimation problem, H = h, the bandwidth. In
the regression estimation problem, H = (h, ρ). If we were able to compute ĝ
and ĝEF , an approach we could take to choose H would be to choose

Ĥ = argminHD{ĝ(·; , H), ĝEF } , (1.21)

where D denotes a distance, for example, a weighted integrated squared error

D(ĝ, ĝEF ) =

∫
{ĝ(x;H)− ĝEF (x)}2w(x) ,

with w a weight function of our choice. In general, such a procedure is justified
because the convergence rate of ĝEF to g is faster than that of ĝ to g, so that
choosing H that minimises the distance above is asymptotically equivalent to
choosing H that minimises D{ĝ(·; , H), g}. In the density case, we can take
w(x) = 1; in the regression case, since nonparametric regression estimators
are not able to estimate a regression curve well at the tails of the distribution
of the explanatory variable, we can take w(x) = 1[a,b](x) with a and b some
finite values, for example, a lower and an upper quantile of X.

Of course, we cannot compute (1.21) in practice since we do not observe
the Xi’s and so we cannot compute ĝEF . The idea of SIMEX is to simulate
artificial data which mimic the data we cannot observe, and use them to
approximate the bandwidth Ĥ at (1.21). To do this, first we simulate data
X∗∗1 , . . . , X∗∗n and X∗∗∗1 , . . . , X∗∗∗n from the following two error models:

X∗∗i = X∗i + U∗i , X
∗∗∗
i = X∗∗i + U∗∗i , (1.22)

where U∗i ∼ fU and U∗∗i ∼ fU are independent. Let g∗ and g∗∗ denote the
versions of g with X replaced by X∗ and X∗∗i , respectively. For example,
in the density case, g∗ = fX∗ and g∗∗ = fX∗∗ and in the regression case,
g∗(x) = E(Y |X∗ = x) and g∗∗(x) = E(Y |X∗∗ = x). Since we observe the X∗i ’s
and we generate the U∗i ’s and the U∗∗i ’s, then in the two error models at (1.22),
we observe the contaminated variables X∗∗i and X∗∗∗i , as well as their non



Deconvolution kernel density estimation 21

contaminated version X∗i and X∗∗i , respectively. Therefore, we can compute
the deconvolution estimators ĝ∗ and ĝ∗∗ of g∗ and g∗∗, based on the X∗∗i ’s and
the X∗∗∗i ’s, respectively, but we can also compute the standard estimators ĝ∗EF
and ĝ∗∗EF of g∗ and g∗∗, based on the X∗i ’s and X∗∗i ’s, respectively. Therefore,
we are able to compute the versions of (1.21) that correspond to those more
contaminated data. That is, we can compute

Ĥ∗ = argminHD{ĝ∗(·; , H), ĝ∗EF } , Ĥ∗∗ = argminHD{ĝ∗∗(·; , H), ĝ∗∗EF } .

Of course, such Ĥ∗ and Ĥ∗∗ depend heavily on the particular X∗∗i ’s and
X∗∗∗i ’s generated at (1.22). To reduce this dependence, we simulate repeated,
say B, samples X∗∗b,1, . . . , X

∗∗
b,n and X∗∗∗b,1 , . . . , X

∗∗∗
b,n in the same way as at (1.22),

for b = 1, . . . , B, and take

Ĥ∗ = argminHB
−1

B∑
b=1

D{ĝ∗b (·; , H), ĝ∗EF } ,

Ĥ∗∗ = argminHB
−1

B∑
b=1

D{ĝ∗∗b (·; , H), ĝ∗∗b,EF } ,

where we used the index b to indicate that an estimator was computed from
the bth sample; ĝ∗EF does not have an index b since only one sample from X∗

is available.
Next, since X∗∗∗ (resp., X∗∗) measures X∗∗ (resp., X∗) in the same way

as X∗ measures X, it is reasonable to think that when H is a single param-
eter (typically a bandwidth), the relationship between Ĥ∗∗ and Ĥ∗ approxi-
mates reasonably well the relationship between Ĥ∗ and Ĥ. This suggests that
Ĥ/Ĥ∗ ≈ Ĥ∗/Ĥ∗∗, which suggests approximating Ĥ by

Ĥ ≈ (Ĥ∗)2/Ĥ∗∗ .

In the case where H is multivariate, the approximation needs to be done with
more thought as the relationship between the various components of H may
be important. For example, in the regression case where H = (h, ρ), the values
of h and ρ influence each other; see Delaigle and Hall (2008).

In general, since the errors used in the models at (1.22) have the same dis-
tribution as the Ui’s, then when H = h is a bandwidth, the SIMEX bandwidth
ĥ converges to zero at the same speed as the optimal bandwidth corresponding
to the distance used at (1.21). For example, for the deconvolution kernel den-
sity estimator, in the ordinary smooth error case, if hMISE ∼ c1n−1/(2β+2k+1),
then ĥ ∼ c2n

−1/(2β+2k+1), but in general c2 6= c1. That is, the SIMEX band-
width is not a consistent estimator of the optimal bandwidth. However, in
general too, c2 is good approximation of c1. This is contrast with the band-
widths introduced in the previous sections, which were consistent estimators
of an optimal bandwidth. In cases where it is possible to compute a consis-
tent estimator of the optimal bandwidth, it is often preferable to use such a
consistent estimator, and dedicate SIMEX to more complex problems where
such a bandwidth cannot be computed easily enough.
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1.6.5 Further reading

In the case where the error density fU is unknown and estimated from direct
data generated from fU , and K is the sinc kernel, Diggle and Hall (1993) and
Barry and Diggle (1995) proposed regression-based practical bandwidths.

Achilleos and Delaigle (2012) developed a local Empirical Bias Bandwidth
Selector (EBBS) and a local integrated plug-in approach, both based on es-

timating the asymptotically dominating part of the MSE of f̂X (the AMSE).
They also proposed a local SIMEX approach based on the MSE. They showed
that their plug-in and EBBS methods give good practical results and perform
considerably better than global bandwidths in cases where fX has sharp fea-
tures, without degrading much the quality of estimators (compared to using
a global bandwidth) when fX is very smooth. R codes for those bandwidths
are available on Delaigle’s webpage.

1.7 Generalisations

Over the last three decades, a lot of effort has been dedicated to various
problems related to nonparametric kernel density deconvolution, so much that
it is not possible to present them all here, and we discuss only a few extensions.
In Section 1.7.1, we show that in some cases, it is possible to perform the
deconvolution explicitly without having to go through the Fourier domain.
In Section 1.7.2, we discuss the case where the characteristic function of the
errors vanishes and in Section 1.7.3 we discuss that where the errors are not
identically distributed. In Section 1.7.4 we discuss multivariate extensions. We
conclude with Section 1.7.5, where we briefly summarise some other related
work developed in the literature.

1.7.1 Settings with analytic inversion formulae

One of the difficulties of estimating a density from data measured with classical
errors is that it involves a complex inversion process. Often, this deconvolution
process can only be written analytically in the Fourier domain, as reflected
by the Fourier approach taken by the deconvolution kernel density estimator.
However, in some cases, it is possible to express fX analytically in terms of
fX∗ and thus to deconvolve without going through Fourier transforms.

Van Es and Kok (1998) considered two such particular cases. The first
is when U = λ1E1 + . . . + λmEm, where the Ej ’s are independent standard
exponential random variables, m is a known positive integer and the λj ’s
are known constants; the second is when U = λ1L1 + . . . + λmLm, where
the Lj ’s are independent standard Laplace random variables and the λj ’s
are known constants. They showed that in the exponential case we can write
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FX(x) = FX∗(x) +
∑m
j=1 ejf

(j−1)
X∗ (x) and fX(x) = fX∗(x) +

∑m
j=1 ejf

(j)
X∗(x),

where ej =
∑

1≤i1<···<ij≤m λi1 · · ·λij ; in the Laplace case we have FX(x) =

FX∗(x)+
∑m
j=1(−1)j`jf

(2j−1)
X∗ (x) and fX(x) = fX∗(x)+

∑m
j=1(−1)j`jf

(2j)
X∗ (x),

where `j =
∑

1≤i1<···<ij≤m λ
2
i1
· · ·λ2ij . Therefore, in the exponential we can

estimate FX(x) and fX(x) by

F̂X(x) = F̂X∗(x) +

m∑
j=1

ej f̂
(j−1)
X∗ (x) , f̂X(x) = f̂X∗(x) +

m∑
j=1

ej f̂
(j)
X∗(x) ,

and in the Laplace case we can take

F̂X(x) = F̂X∗(x)+

m∑
j=1

(−1)j`j f̂
(2j−1)
X∗ (x), f̂X(x) = f̂X∗(x)+

m∑
j=1

(−1)j`j f̂
(2j)
X∗ (x),

where F̂X∗ is a standard error-free kernel estimator of FX∗ and f̂
(j)
X∗ is the jth

derivative of the standard kernel density estimator of fX∗ , all constructed from
the X∗i ’s. In the Laplace case, the estimator is identical to the deconvolution
kernel density estimator (see our example at (1.16) in Section 1.5.3). However,
in the exponential case, the deconvolution kernel density estimator does not
exist because ϕU has some zeros; see Section 1.7.2.

Another particular case was considered by Groeneboom and Jongbloed
(2003), who studied the case where U follows a uniform distribution on [0, 1]
and fX is supported on [0,∞) (the extension to a uniform [0, b] error distri-
bution is straightforward and obtained by simple rescaling). In that case,

fX∗(x) = FX(x)− FX(x− 1) , (1.23)

a relationship that can be exploited to construct a nonparametric maximum
likelihood estimator (NPMLE) F̂X of FX . This estimator is uniquely defined;
it can only assign masses to points in the set {X∗i , . . . , X∗n}. From there, a

continuous estimator of fX(x) can be obtained by taking f̂X(x) =
∫
Kh(x −

y) dF̂X(y) dy. As usual with kernel estimators, if fX is not continuous at 0,

then f̂X suffers from boundary problems which can be corrected by standard
boundary correction techniques.

These authors discussed an alternative kernel smoothing approach for es-
timating fX . Its construction is based on a recursive application of the rela-
tionship FX(x) = FX(x − 1) + fX∗(x), which follows from (1.23). Together
with the fact that for all x ∈ R, FX(x− j) = 0 when j > x, it leads to

FX(x) =

∞∑
j=0

fX∗(x− j) and fX(x) =

∞∑
j=0

f ′X∗(x− j) , (1.24)

where the second equality is obtained by differentiation of the first. This sug-
gests estimating fX(x) by f̂X(x) =

∑∞
j=0 f̂

′
X∗(x− j), where f̂ ′X∗ denotes the
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first derivative of the standard kernel density estimator of fX∗ (or a boundary
corrected version if fX is not continuous as 0). Here too we cannot apply the
deconvolution kernel density estimator since we have ϕU (t) = (eit − 1)/(it),
and thus ϕU (t) = 0 for t = 2kπ, for all k ∈ Z0; see Section 1.7.2.

Delaigle and Meister (2011) considered a more general setting than the
uniform case. Assuming that the distribution of X has a finite left endpoint
a, they considered error distributions whose characteristic function ϕU has
periodic isolated zeros, namely, where zeros of ϕU can only be of the form
t = kλ for a fixed λ, where k ∈ Z0. For example, the ordinary smooth error
case can be generalised by allowing ϕU to satisfy

|ϕU (t)| ≥ d0| sin(tπ/λ)|ν |t|−β for large |t| (1.25)

and the supersmooth error case can be generalised by allowing ϕU to satisfy

|ϕU (t)| ≥ d0| sin(tπ/λ)|ν |t|β0 exp(−|t|β/γ) for large |t| . (1.26)

This includes symmetric uniform distributions, their self convolutions, and
their convolution with ordinary smooth or supersmooth distributions.

For such error distributions, we cannot estimate ϕX(t) by ϕ̂X∗(t)/ϕU (t)
for all t since ϕU has zeros. To overcome this difficulty, instead of directly
estimating ϕX(t), Delaigle and Meister (2011) considered estimating first

ϕp(t) ≡
{

exp(2itπ/λ)− 1
}ν
ϕX(t) .

The term {exp(2itπ/λ) − 1}ν is introduced to compensate for the term
| sin(tπ/λ)|ν term at (1.25) and (1.26). It is such that limt→kλ | exp(2itπ/λ)−
1|ν | sin(tπ/λ)|−ν is finite, so that dividing by ϕU no longer causes difficulties.
In particular we can estimate ϕp(t) by

ϕ̂p(t) =

{{
exp(2itπ/λ)− 1

}ν
ϕ̂X∗(t)/ϕU (t) if t 6= kλ, k ∈ Z0

ck if t = kλ, k ∈ Z0 ,

where ck = limt→kλ ϕ̂p(t) if it exists and 0 otherwise.
To deduce an estimator of fX , let p(x) = (2π)−1

∫
eitxϕp(t) dt. If fX is

supported on [a,∞) with a finite, then for all J ≥ λ(x− a)/(2π) we can write

fX(x) =
∑J
k=0 ηk p(x − 2kπ/λ), where (η0, . . . , ηJ) = (1, 0, . . . , 0)Γ−1 and Γ

is an upper triangular matrix whose component (j, k), above the diagonal, is
equal to

(
ν
k−j
)
(−1)ν−k+j . Letting p̂(x) = (2π)−1

∫
eitxϕK(ht)ϕ̂p(t) dt with K

a kernel and h a bandwidth, and taking J = J(x) = dλ(x−a)/(2π)e, or taking
J = dλ(b− a)/(2π)e if fX is supported on [a, b] with b finite, we can estimate
fX(x) by

f̂X(x) =

J∑
k=0

ηk p̂(x− 2kπ/λ) · I{a ≤ x <∞} .

Delaigle and Meister (2011) showed that this estimator can be expressed in a
form very similar to the deconvolution kernel density estimator.
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1.7.2 When the Fourier transform vanishes

As we discussed in Section 1.7.1, since it involves dividing by ϕU (t), the de-
convolution kernel density estimator cannot be used when ϕU (t) vanishes at
some t. Since compactly supported distributions have a characteristic func-
tion that vanishes at some points, there are many important cases where this
estimator cannot be used. In Section 1.7.1 we discussed simple alternative
procedures that can be used in particular cases where fX can be expressed
analytically in terms of fX∗ without the need to work in the Fourier domain.
In this section we discuss other procedures that can be used even when no
such analytic expressions are available.

Devroye (1989) was one of the first to consider this problem. He showed
that if ϕU vanishes on a set of measure zero, we can still construct a consis-
tent estimator of fX . He proposed to modify the deconvolution kernel density
estimator by replacing ϕ−1U (t) at (1.3) by ϕ−1U (t) · I{|ϕU (t)| ≤ ρ}, for some
small parameter ρ > 0. In other words, he proposed to remove, from the in-
tegration domain, the regions where |ϕU | is too small. Instead of removing
these regions from the integration domain, Meister (2007) proposed to replace
ϕ̂X∗(t)/ϕU (t) in those regions by using a polynomial approximation obtained
from nearby points.

In the same context where ϕU has isolated zeros, Hall and Meister (2007)
proposed to use a ridge procedure, where they replace ϕU by a ridge function
when |ϕU | gets too small. Using the fact that ϕX∗(t) = ϕX(t)ϕU (t) can be
expressed as ϕX∗(t)ϕU (−t) = ϕX(t)|ϕU (t)|2, we could estimate ϕX(t) by

ϕ̂X(t) =
ϕ̂X∗(t)ϕU (−t)

max{|ϕU (t)|, ρ(t)}2
,

where ρ(t) > 0 is a ridge function that prevents the denominator from getting
too close to zero. The advantage of multiplying the numerator and the denom-
inator by ϕU (−t) before ridging is that unlike ϕU (t), |ϕU (t)| is guaranteed to
be nonnegative, so that ρ(t) can be restricted to be positive.

More generally, they write ϕX∗(t)ϕU (−t)|ϕU (t)|r = ϕX(t)|ϕU (t)|r+2 for
some r ≥ 0 and propose to estimate ϕX(t) by

ϕ̂X(t) =
ϕ̂X∗(t)ϕU (−t)|ϕU (t)|r

max{|ϕU (t)|, ρ(t)}r+2
.

Then assuming that |ϕU (t)|r+1 is integrable, they estimate fX(x) by

f̂X(x) =
1

2π

∫
e−itx

ϕ̂X∗(t)ϕU (−t)|ϕU (t)|r

max{|ϕU (t)|, ρ(t)}r+2
dt .

Since the integral exists for all x, this approach does not require a kernel
function, although Hall and Meister (2007) showed that the estimator can
actually be expressed in a kernel form. See Hall and Meister (2007) for how to
choose the ridge function ρ(t) in practice using cross-validation. They studied
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the convergence rates of this estimator under various settings and showed that
in some cases, those rates are the same as when ϕU does not vanish anywhere
(i.e., the same as those from Section 1.4). However, for errors as at (1.25),
those rates are slower whereas the method proposed by Delaigle and Meister
(2011) (see Section 1.7.1) has the same rates as when ϕU does not vanish
anywhere.

Meister and Neumann (2010) considered the case where ϕU has some zeros
and some replicated contaminated measurements are observed. Exploiting the
replicates, they were able to propose yet another procedure.

1.7.3 Heteroscedatic errors

Delaigle and Meister (2008) considered the density estimation problem in
cases where the errors are not identically distributed. There, the observa-
tions X∗1 , . . . , X

∗
n are independent and for i = 1, . . . , n, X∗i = Xi + Ui where

Xi and Ui are independent, Xi ∼ fX for all i, but Ui ∼ fUi , where the
fUi ’s are not necessarily identical. In that case, for j = 1, . . . , n we have
ϕX∗

j
(t) = ϕX(t)ϕUj (t) so that

∑n
j=1 ϕX∗

j
(t) = ϕX(t)

∑n
j=1 ϕUj (t). Using

Fourier inversion, if
∑n
j=1 ϕUj never vanishes we have

fX(x) =
1

2π

∫
e−itx

∑n
j=1 ϕX∗

j
(t)∑n

j=1 ϕUj (t)
dt .

Mimicking the deconvolution kernel estimation procedure at (1.3), this sug-
gests that we could estimate fX(x) by

f̂X(x) =
1

2π

∫
e−itx

ϕ̂X∗(t)ϕK(ht)

n−1
∑n
j=1 ϕUj (t)

dt ,

where ϕ̂X∗(t) = n−1
∑n
j=1 e

itX∗
j and with K and h as in Section 1.3.

While this approach is simple, Delaigle and Meister (2008) showed that
faster convergence rates can be obtained by exploiting the relationship
ϕX∗

j
(t)ϕUj (−t) = ϕX(t)|ϕUj (t)|2. Then if

∑n
j=1 |ϕUj (t)|2 6= 0 for all t ∈ R,

fX(x) =
1

2π

∫
e−itx

∑n
j=1 ϕX∗

j
(t)ϕUj (−t)∑n

j=1 |ϕUj (t)|2
dt ,

which suggests estimating fX(x) by

f̂X(x) =
1

2π

∫
e−itx

∑n
j=1 e

itX∗
j ϕUj (−t)∑n

j=1 |ϕUj (t)|2
ϕK(ht) dt .

They generalised their procedure to the case where the error densities are
unknown but the noisy observations are replicated; see Section 12.2 in Delaigle
and Van Keilegom (2021). McIntyre and Stefanski (2011) also considered this
problem in the case where the Uij ’s are normally distributed. Hesse (1995,
1996) considered a related setting where only a fraction of the observations
are contaminated by errors and the others are observed without noise.
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1.7.4 Multivariate and dependent cases

In Masry (1991), the observations are a univariate sample X∗1 , . . . , X
∗
n from

the classical error model at (1.1), but the Xi’s and the Ui’s are allowed the
have a dependence structure, whereas the Xi’s remain independent of the Ui’s.
For T = X and Tj = Xj , T = X∗ and Tj = X∗j , and T = U and Tj = Uj ,
with j = 1, . . . , p, let fT and ϕT denote, respectively, the density and the
characteristic function of T = (T1, . . . , Tp), where p < n. For simplicity we
omit the explicit dependence on p and all vectors in this section are assumed
to be of size p. Assuming that the process {Xi}∞i=−∞ is stationary, the goal
in Masry (1991) is to estimate fX from the univariate data X∗1 , . . . , X

∗
n.

Masry (1991) generalised the deconvolution kernel estimator to this p-
variate case, as follows. Since ϕX∗(t) = ϕX(t)ϕU(t), if ϕU(t) 6= 0 for all t
and all integrals below are well defined, by Fourier inversion we have

fX(x) =
1

(2π)p

∫
e−it·xϕX∗(t)/ϕU(t) dt ,

where t · x =
∑p
j=1 tjxj . This suggests extending the deconvolution kernel

density estimator to the p-variate case by taking

f̂X(x) =
1

(2π)p

∫
e−it·xϕK(th)

ϕ̂X∗(t)

ϕU(t)
dt ,

where K is a p-variate kernel function, h > 0 is a bandwidth, and ϕ̂X∗(t) =

(n− p+ 1)−1
∑n−p+1
j=1 eitX

∗
j , with X∗j = (X∗j , . . . , X

∗
j+p−1). Letting KU(x) =

(2π)−p
∫
e−it·xϕK(t)/ϕU(t/h) dt, we can express this estimator as

f̂X(x) =
1

(n− p+ 1)hp

n−p+1∑
j=1

KU

(x−X∗j
h

)
.

This definition uses a single bandwidth h, but as in the error-free case, we
could also define a more general version with a p-variate bandwidth matrix.

Masry (1991) studied L2 properties of this estimator and derived a number
of technical results that are useful for more general deconvolution problems.
Asymptotic normality, strong consistency and further properties were derived
in Masry (1993a,b, 2003) in the particular case where the Uk’s are i.i.d. In
that case, if ϕU denotes the common characteristic function of the Uk’s, and
we take ϕK(t) =

∏p
k=1 ϕK(tk) where K is a univariate kernel, we can write

f̂X(x) =
1

(n− p+ 1)hp

n−p+1∑
j=1

p−1∏
k=0

KU

(xj −X∗j+k
h

)
,

with KU at (1.5). In a related work where p = 1, Kulik (2008) studied prop-
erties of the deconvolution kernel density and distribution estimators in the
case where the Xi’s are dependent and the errors are ordinary smooth, and
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showed that the order of the bandwidth and central limit theorems can be
influenced by the strength of the dependence.

Youndjé and Wells (2008) considered a related multivariate density estima-
tion problem. There, the observations are i.i.d. p-vectors X∗1, . . . ,X

∗
n, where

for i = 1, . . . , n, X∗i = Xi + Ui and the p-variate Xi’s are independent of
the p-variate Ui’s. This setting is different from the one above since here, for
Ti = Xi and Tij = Xij , Ti = X∗i and Tij = X∗ij , and Ti = Ui and Tij = Uij ,
with j = 1, . . . , p, the Ti’s are defined by Ti = (Ti1, . . . , Tip), so that the Ti’s
are independent; for i = 1, . . . , n and T = X, X∗ and U, we use fT and ϕT

to denote, respectively, the density and the characteristic function of Ti. An
estimator of fX can essentially be constructed as above but with a different
estimator of ϕX∗ . Specifically, we take ϕ̂X∗(t) = n−1

∑n
j=1 e

itX∗
j and estimate

fX(x) by

f̂X(x) =
1

(2π)p

∫
e−it·xϕK(th)ϕ̂X∗(t)/ϕU(t) dt =

1

nhp

n∑
j=1

KU

(x−X∗j
h

)
,

with KU as above. In the particular case where the Uij ’s are i.i.d. and we take
ϕK(t) =

∏p
j=1 ϕK(tj), this estimator simplifies into

f̂X(x) =
1

nhp

n∑
j=1

p∏
k=1

KU

(xk −X∗jk
h

)
,

with KU at (1.5).

1.7.5 Further reading

Hall and Lahiri (2008) considered the estimation of a cumulative distribution
function, its moments and its quantiles, when the contaminated data come
from the classical error model. Minimax properties of the distribution estima-
tion problem were studied by Dattner et al. (2011) in the ordinary smooth
error case; the quantile estimation problem was also considered by Dattner
et al. (2016).

Rachdi and Sabre (2000) considered the problem of mode estimation of a
density in the nonparametric deconvolution problem. Zhang and Karunamuni
(2000) and Zhang and Karunamuni (2009) considered deconvolution kernel
density estimation in the case where fX has a compact support, and Hall
and Simar (2002), Goldenshluger and Tsybakov (2004), Delaigle and Gijbels
(2006a,b), Meister (2006), Aarts et al. (2007) and Kneip et al. (2015) proposed
ways to estimate the boundary of this support.

Holzmann et al. (2007) and Butucea et al. (2009) considered general tests of
hypothesis on the density fX ; Meister (2009b) considered tests of local mono-
tonicity and Carroll et al. (2011) considered estimating and testing shape-
constrained nonparametric density and regression with measurement errors.
Their tilting technique consists in assigning weights pi to each X∗i , such that
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pi ≥ 0 and
∑n
i=1 pi = 1 (whereas the standard deconvolution kernel estimator

assigns the same weight 1/n to each observation), where the pi’s are chosen
so that the density estimator satisfies the desired shape constraint. In a re-
lated work, Hazelton and Turlach (2009) proposed a weighted kernel density

estimator f̂X which assigns positive weights pi to each observation, but uses
a standard kernel K instead of the deconvolution kernel KU . To choose the
weights, they proposed to minimise the L2 distance between the standard
kernel density estimator of fX∗ computed from the X∗i ’s and f̂X∗ = f̂X ∗ fU .
They also proposed a multivariate version of their procedure.

Hazelton and Turlach (2010) considered a semiparametric kernel estima-
tor that avoids the use of a deconvolution technique by incorporating some
parametric information in the construction; they extended their technique to
the multivariate case. Delaigle and Hall (2014) considered a parametrically
assisted version of the deconvolution kernel density estimator, where some a
priori parametric information is included in the estimation technique. Potgi-
eter (2020) considered a related deconvolution problem in the case where we
can reasonably assume that X has a generalised skew-symmetric distribution.

Some related work was also developed for other variants of the classical
measurement error model. This includes Delaigle (2007), who considered ker-
nel density estimation of a density contaminated by classical and Berkson
errors, and Camirand Lemyre et al. (ress), who considered the kernel decon-
volution problem with excess zeros. There, the interest is in a continuous
random variable, typically representing the long term intake X of a nutrient,
and the measured variables are either equal to a contaminated version X∗ of
X, if the measurement was taken on a consumption day, or to zero if the ob-
served individual did not eat the nutrient on the day where the measurement
was taken.
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Lütkenöner, B. (2015). A family of kernels and their associated deconvolving
kernels for normally distributed measurement errors. Journal of Statistical
Computation and Simulation 85 (12), 2347–2363.



36 Bibliography

Masry, E. (1991). Multivariate probability density deconvolution for station-
ary random processes. IEEE Transactions on Information Theory 37 (4),
1105–1115.

Masry, E. (1993a). Asymptotic normality for deconvolution estimators of mul-
tivariate densities of stationary processes. Journal of Multivariate Analy-
sis 44 (1), 47–68.

Masry, E. (1993b). Strong consistency and rates for deconvolution of mul-
tivariate densities of stationary processes. Stochastic Processes and their
Applications 47 (1), 53–74.

Masry, E. (2003). Deconvolving multivariate kernel density estimates from
contaminated associated observations. IEEE Transactions on Information
Theory 49 (11), 2941–2952.

McIntyre, J. and L. Stefanski (2011). Density estimation with replicate het-
eroscedastic measurements. Annals of the Institute of Statistical Mathemat-
ics 63 (1), 81–99.

Meister, A. (2006). Support estimation via moment estimation in presence of
noise. Statistics 40 (3), 259–275.

Meister, A. (2007). Deconvolution from fourier-oscillating error densities un-
der decay and smoothness restrictions. Inverse Problems 24 (1), 015003.

Meister, A. (2009a). Deconvolution Problems in Nonparametric Statistics.
Springer.

Meister, A. (2009b). On testing for local monotonicity in deconvolution prob-
lems. Statistics & Probability Letters 79 (3), 312–319.

Meister, A. and M. H. Neumann (2010). Deconvolution from non-standard
error densities under replicated measurements. Statistica Sinica 20, 1609–
1636.

Neumann, M. H. (1997). On the effect of estimating the error density in
nonparametric deconvolution. Journal of Nonparametric Statistics 7, 307–
330.

Pensky, M., B. Vidakovic, et al. (1999). Adaptive wavelet estimator for non-
parametric density deconvolution. The Annals of Statistics 27 (6), 2033–
2053.

Potgieter, C. J. (2020). Density deconvolution for generalized skew-symmetric
distributions. Journal of Statistical Distributions and Applications 7 (1), 1–
20.

Rachdi, M. and R. Sabre (2000). Consistent estimates of the mode of the prob-
ability density function in nonparametric deconvolution problems. Statistics
& Probability Letters 47 (2), 105–114.



Bibliography 37

Song, W. (2010). Moderate deviations for deconvolution kernel density esti-
mators with ordinary smooth measurement errors. Statistics & Probability
Letters 80, 169–176.

Stefanski, L. (1990). Rates of convergence of some estimators in a class of
deconvolution problems. Statistics & Probability Letters 9 (3), 229–235.

Stefanski, L. and R. J. Carroll (1990). Deconvolving kernel density estimators.
Statistics 21 (2), 169–184.

Stefanski, L. and J. R. Cook (1995). Simulation-extrapolation: the mea-
surement error jackknife. Journal of the American Statistical Associa-
tion 90 (432), 1247–1256.

Van Es, A. and A. Kok (1998). Simple kernel estimators for certain non-
parametric deconvolution problems. Statistics & Probability Letters 39 (2),
151–160.

Van Es, A. and H.-W. Uh (2004). Asymptotic normality of nonparametric
kernel type deconvolution density estimators: crossing the cauchy boundary.
Nonparametric Statistics 16, 261–277.

Van Es, A. and H.-W. Uh (2005). Asymptotic normality of kernel-type de-
convolution estimators. Scandinavian Journal of Statistics 32 (3), 467–483.

Van Es, B. and S. Gugushvili (2010). Asymptotic normality of the deconvo-
lution kernel density estimator under the vanishing error variance. Journal
of the Korean Statistical Society 39, 103–115.
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