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1 INTRODUCTION

In a random walk model (Hughes, 1995; Berg, 1983), 
an agent moves in a sequence of random steps. 
Such models are easy to simulate and well-suited 
to student projects. Students can learn important 
ideas in a highly intuitive context, while the subject 
is still an area of active mathematical research. We are 
interested in applications of random walk models in 
biological contexts, especially cell motility in tissue 
engineering and developmental biology (Simpson 
et al, 2007; Tremel et al, 2009). This kind of discrete 
random walk model may also be referred to as a kind 
of cellular automata model. We show how simulation 
leads to insight and suggests connections to other 
modelling paradigms, and then show how these 
connections can be derived mathematically. The 
procedure is in a sense the reverse of the process of 
discretising a partial differential equation (PDE) for 
numerical computation.

We consider agents occupying sites of the square 
lattice. The possible locations of an agent are (i, j), 
where i and j are integer coordinates. When attempting 
to move, an agent at site (i, j) will always choose one 
of the four target sites (i, j – 1), (i, j + 1), (i – 1, j) or
(i + 1, j). The way the site is chosen is described in 
table 1. The third column gives the probability of 
the choice being made. To simulate this process, for 
each step we draw a random number S uniformly 
distributed in the interval 0 ≤ S ≤ 1. The fourth column 
in the table shows the interval in which the random 
number must fall for the target site to be chosen.

Here –1 ≤ rx ≤ 1 and –1 ≤ ry ≤ 1: these two parameters 
control the preferred direction of drift. For example, 
if 0 < rx < 1, the agent makes both left and right 
moves, but right moves are favoured. Elegant results 
are available for a single agent moving by this or 
other rules (Hughes, 1995) and there are many 
applications (Hughes, 1995; Berg, 1983). However, 
we shall be interested in the behaviour of crowds 
of agents. We consider two models which represent 
different extremes.

In the ghost model, agents do not interact at all. Two 
agents can step through each other, and there is no 
limit on how many agents can occupy the same site at 
any instant. Questions about the ghost model can be 
rephrased as equivalent questions for a single agent 
in a classical random walk process.

In the folks model, we never permit two agents to 
occupy the same site simultaneously. This captures 
an important aspect of many multi-agent systems, 
where volume constraints or territorial aggression 
lead to one agent excluding other agents from its 
immediate vicinity.

There are many ways to implement the ghosts and 
folks models. We always consider the case where 
there are N agents present, and we select an agent at 
random and deal with it, then we chose another agent 
and deal with it, and so on. Of course, sometimes 
the same agent will be chosen more than once in 
this process; but the average number of times that 
a given agent is chosen per time step will be unity. 
This protocol is described as random sequential update 
(Chowdhury et al, 2005).

When an agent is chosen, there is a probability P that 
it decides to attempt a move: we draw a random 
number R from the interval 0 ≤ R ≤ 1 and the agent 
attempts to move if R ≤ P, and decides not to move 

Diffusing populations: Ghosts or folks? *

MJ Simpson †, BD Hughes and KA Landman
Department of Mathematics and Statistics, University of Melbourne, Victoria

SUMMARY: Random walk phenomena abound in engineering contexts, from pedestrian traffic 
to cell motility in tissue engineering. We contrast two random walk models. The ghost model 
involves individuals who pass through each other unhindered. The folks model involves agents that 
interact by refusing to share the same location. Simple simulations reveal behaviour consistent with 
classical diffusion ideas. Using intuitive arguments, we demonstrate how the models are naturally 
associated with partial differential equations. Seductive opportunities for the misinterpretation of 
experimental data are discussed.



60 “Diffusing populations: Ghosts or folks?” – Simpson, Hughes & Landman

Australasian Journal of Engineering Education Vol 15 No 2

otherwise. The value of P can be used to control 
the level of activity of the agents, with small P 
representing minimal motility, and P = 1 representing 
maximal motility.

For each agent offered an opportunity to move, 
another random number S is drawn. Motile ghosts 
always accept an opportunity to move according to 
table 1. Motile folks, however, move according to 
the rules in table 1 with the additional constraint 
that the target site must be empty. If the target site is 
occupied, the attempt to move is aborted. This rule 
is known as an asymmetric simple exclusion process 
(Liggett, 1999; Spitzer, 1970) and has been used as a 
model for traffic flow (Chowdhury et al, 2005) and 
biological cell motility (Sander & Deisboeck, 2002).

We also discretise time into unit increments. We 
will place agents on the square lattice at time 
t = 0 and then implement the rules at t = 1, 2, 3, ... 
times. All our simulations and arguments can be 
easily generalised to arbitrary lattice spacings 
and arbitrary time increments, but we keep things 
simple here by choosing uniform lattice spacing and 
constant time steps.

2 SIMULATIONS

It is relatively easy to perform simulations of the 
motions of ghosts or folks, but what quantitative 
data would we like to extract from simulations? The 
trajectory of each agent is a sequence of coordinates 
(Xt, Yt), starting from (X0, Y0), where t indexes the time 
step. For simplicity, we consider only the horizontal 
(x) component of the trajectory, but the vertical (y) 
component of the trajectory data may be analysed in 
the same way. We use angle brackets to denote the 
average or expected value over all possible agent 
motions. The (random) net x-displacement Xt – X0 
after t time steps and its expected value mt are given, 
respectively, by:
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The expected net displacement m t gives no 
information about statistical fluctuations. For this, 
we study the sum of squares of individual horizontal 
displacements and its expected value:
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Periodic (cyclical) boundary conditions are imposed 
along both the horizontal and vertical boundaries. 
This means that, for example, an agent residing in the 
bottom row of the lattice that moves in the negative 
y direction will appear in the top row of the lattice.

2.1  Simulating single agents 
or one tagged ghost

Consider a system with only one agent, or a particular 
tagged agent in a swarm of ghosts; for simulations 
these scenarios are equivalent. Simulation data in 
figure 1 shows sample trajectories, with P = 1 and 
(X0, Y0) = (20, 50) for 500 time increments. Each 
sample trajectory comes from a single simulation. 
The trajectory is irregular in shape and another 
simulation would look different in detail, although 
some similarities between successive simulations 
might be seen. Figure 1(a) shows unbiased motion  
(rx = ry = 0); note that we cannot assume that 
unbiased motion produces perfectly symmetric 
individual trajectories. Figure 1(c) shows a trajectory 
with a preference to drift to the right imposed on the 
agent in the parameters (rx = 0.5, ry = 0). This desire 
is reflected in the trajectory.

Let us try to quantify this behaviour. For a single 
agent or a tagged ghost, then all steps are equivalent 
and the expected displacement in a single step is the 
same for all steps; so we have:
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Table 1: Algorithm by which an agent at site (i, j) selects a target site.
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The factor of P accounts for the fact that not all 
opportunities to attempt a move are accepted by the 
agent. Thus, the average velocity component in the 
x direction is:
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In figure 1(b), we show Xt – X0 from the trajectory 
with rx = 0 given in figure 1(a). For this case mt = 0, but 
we do not see Xt – X0 ≡ 0: the agent makes excursions 
to the left (Xt < X0) and to the right (Xt > X0), but these 
are small compared to the duration of the process. 
For example, for this simulation a least-squares fit to 
a straight line constrained to pass through the origin 
gives Xt – X0 ≈ 0.05t. In figure 1(d), corresponding 
to the trajectory from figure 1(c) with rx = 0.5, we 
have mt = 0.25t, but for the simulation we find that
Xt – X0 ≈ 0.29t. If instead of plotting single trajectories 
we take averages over many trajectories to compute 
an “average trajectory”, then a plot of this average 
trajectory conforms more closely to the expected 
behaviour 〈Xt〉 = tPrx/2. Alternatively, we can run 
a single simulation over a much longer timescale 
and exploit a result known as the Strong Law of 
Large Numbers (Feller, 1971) that in this context says 
Xt/t → Prx/2 (in a well-defined sense appropriate to 
random systems) as t → ∞.

The average velocity gives only a partial 
characterisation of the process: if it is found to be non-
zero, it reveals the presence of bias, but we are unable 
to separate the values of P and rx in the combination 
vx = Prx/2. What we need is a direct way to estimate 
P, which embodies the degree of motility of an 
agent. Consider the sum St of squared displacement 
increments and its average value (equation (2)). For 
a single agent or a tagged ghost, we have:
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and so
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(6)

Note that this is independent of the drift parameter 
rx. If we average St over many simulations, or if we 
consider the limiting behaviour for one very long 
simulation, then the prediction of equation (6) will 
be a good approximation. In figure 1(b), we have  
St ≈ 0.49t for our single simulation with rx = 0, while 
in figure 1(b), St ≈ 0.53t for our single simulation 
with rx = 0.5. The simulations are consistent with 
the prediction that for our simulated cases, where 
P = 1, we should find St ≈ 0.5t, independent of the 
value of rx.
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Figure 1: Trajectory data for a single isolated agent (or a tagged ghost within a population
of ghosts) with P = 1. (a) The trajectory coordinates of an unbiased isolated agent
initially located at (20, 50). (b) The corresponding evolution of Xt – X0 and St.
(c) The trajectory coordinates of a biased isolated agent, with rx = 0.5, initially
located at (20, 50). (d) The corresponding evolution of Xt – X0 and St.
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2.2 Tagged folks

If we tag one agent in a swarm of folks, equations 
(3) and (5) fail to hold, since some moves are aborted 
due to the interactions between agents. The value of 
mt is not known unless the position of all other agents 
at all times are known.

Trajectory data for populations of interacting agents 
differ from the trajectory data for a single agent. To 
demonstrate this, simulations are performed on 
a lattice where each site has been independently 
populated with probability 0 ≤ C ≤ 1. For example, 
the lattice shown in figure 2 corresponds to C = 0.25.

100 200
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x

Figure 2: A randomly populated lattice where each site is populated with
C = 0.25. A tagged agent within the bulk population is located at (20, 50)
is shown with an enlarged blue bullet.

simulation over a much longer timescale and exploit a result known as the
Strong Law of Large Numbers [9] that in this context says Xt/t → Pρx/2
(in a well-defined sense appropriate to random systems) as t → ∞.

The average velocity gives only a partial characterisation of the process:
if it is found to be nonzero, it reveals the presence of bias, but we are unable
to separate the values of P and ρx in the combination vx = Pρx/2. What we
need is a direct way to estimate P , which embodies the degree of motility of
an agent. Consider the sum St of squared displacement increments and its
average value [equation (2)]. For a single agent or a tagged ghost, we have
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Note that this is independent of the drift parameter ρx. If we average St over
many simulations, or if we consider the limiting behaviour for one very long
simulation, then the prediction of equation (6) will be a good approximation.
In Figure 1(b), we have St ≈ 0.49t for our single simulation with ρx = 0,
while in Figure 1(b), St ≈ 0.53t for our single simulation with ρx = 0.5. The
simulations are consistent with the prediction that for our simulated cases,
where P = 1, we should find St ≈ 0.5t, independent of the value of ρx.
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If we tag one agent in a swarm of folks equations (3) and (5) fail to hold,
since some moves are aborted due to the interactions between agents. The
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Figure 3: Trajectory data for a tagged agent within a background popula-
tion of interacting agents (folks) with P = 1. (a) The trajectory coordinates
of an unbiased isolated agent initially located at (20, 50). (b) The corre-
sponding evolution of Xt − X0 and St. (c) The trajectory coordinates of a
biased isolated agent, with ρx = 0.5, initially located at (20, 50). (d) The
corresponding evolution of Xt − X0 and St.

value of µt is not known unless the position of all other agents at all times
are known!

Trajectory data for populations of interacting agents differ from the tra-
jectory data for a single agent. To demonstrate this, simulations are per-
formed on a lattice where each site has been independently populated with
probability 0 ≤ C ≤ 1. For example, the lattice shown in Figure 2 corre-
sponds to C = 0.25.

To estimate the influence of the interactions between the agents, a tagged
agent is introduced into the background population, such as the enlarged
agent in Figure 2. The tagged agent and the background agents behave
identically. The system is allowed to evolve and we compute Xt −X0 and St

for the tagged agent. Results in Figure 3 correspond to C = 0.25 and show
both unbiased (Figure 3(a)–(b)) and biased (Figure 3(c)–(d)) simulations. In
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Figure 3: Trajectory data for a tagged agent within a background population of interacting
agents (folks) with P = 1. (a) The trajectory coordinates of an unbiased isolated
agent initially located at (20, 50). (b) The corresponding evolution of Xt – X0 and St.
(c) The trajectory coordinates of a biased isolated agent, with rx = 0.5, initially located
at (20, 50). (d) The corresponding evolution of Xt – X0 and St.
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To estimate the influence of the interactions between 
the agents, a tagged agent is introduced into the 
background population, such as the enlarged agent 
in figure 2. The tagged agent and the background 
agents behave identically. The system is allowed to 
evolve and we compute Xt – X0 and St for the tagged 
agent. Results in figure 3 correspond to C = 0.25 and 
show both unbiased (figures 3(a) and (b)) and biased 
(figures 3(c) and (d)) simulations. In comparison with 
the results for a single agent in figure 1, we see that 
the rates of increase of Xt – X0 and St are reduced 
when the background population are introduced. By 
performing a range of simulations and varying C, P 
and rx, we find that the parameters that characterise 
an individual folk’s motion are density dependent 
and are given by:

� � � �

� � � �

1
2

1
2

t

x
x

PS C C

P
v C C

r

≈ �

≈ �
 

(7)

where we have modified the notation for St and vx to 
exhibit the value of C, the background concentration 
of folks. The influence of the interactions between 
agents in equation (7) appears through the factor 
(1 – C). We note that these results are not derived 
rigorously, they are simply implied through our 
simulation data.
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As expected, when C = 0, the behaviour is the same 
as for a single isolated agent, or a tagged ghost 
in a swarm of ghosts, but among genuine crowds 
(C > 0), individual ghosts do not behave like 
individual folks. Indeed, when the lattice is 
completely full and C = 1, for folks we have vx(1) = 0 
and St(1) = 0. This is intuitively reasonable since the 
tagged agent is unable to move at all on a completely 
occupied lattice.

3  PARTIAL DIFFERENTIAL 
EQUATION DESCRIPTION

We would like to consider average properties of a 
population of agents. A continuous-time, continuous-
space description in terms of an agent density is 
natural. Here we show, using conservation of mass 
arguments, how the simple discrete random walk 
rules can be developed into a PDE description, often 
encountered in engineering applications.

In order to carry this out properly, we introduce a 
unit of length D called the lattice spacing and a unit 
of time t called the time increment. (In our previous 
simulations, D = 1 and t = 1.) An agent with integer 
coordinates (i, j) after k time increments will be 
deemed to be at position (x, y) = (iD, jD) at time t = kt.

The ghosts and folks models will be considered 
separately, but in each case we shall average over 
each column of our square lattice to produce a one-
dimensional model.

3.1 For ghosts

Let 〈Ci*〉 be the averaged occupancy of any site in 
column i. Since any site can contain an unlimited 
number of agents, we normalise 〈Ci*〉 by the 
maximum value across the lattice, defined as  
Ci = 〈Ci*〉/〈Ci*〉max, giving 0 ≤ Ci ≤ 1.

A one-dimensional conservation of agent statement 
for the average occupancy of any site in column i 
between time t and t + t is:
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The first term on the right of equation (8) is the 
averaged occupancy of any site in column i at time 
t, while the remaining four terms represent the 
change in occupancy of sites in column i due to 
transitions between sites in columns (i – 1), i and 
(i + 1). These remaining terms consist of two factors 
which can be interpreted as follows: (i) P(1 ± rx)/4 
is the probability that an agent can step to the right 
and left, respectively; and (ii) Cq(t) is the averaged 
occupancy of a site in column q at time t.

Dividing equation (8) by t and rearranging, we obtain:
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As the terms on the right of equation (9) look similar 
to standard finite difference approximations (Chapra 
& Canale, 1998) (or using Taylor series expansions 
arguments), we rewrite equation (9) as:
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By considering the limiting case where t → 0 and 
D → 0 simultaneously while keeping D2/t constant 
(Codling et al, 2008), we replace the discrete 
derivatives with their continuous counterparts 
written in terms of a continuous variable C(x, t):
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The governing PDE for the non-interacting population 
of agents is an advection-diffusion equation. This 
equation is linear, which reflects the fact that the 
motile agents do not interact.

3.2 For folks

The averaging procedure will now be repeated for 
the folks model. Again, we average the occupancy 
of all sites within each column of the lattice giving 
Ci, which is the averaged occupancy of any site in 
column i. Since we permit a maximum of one agent 
per site, we have 0 ≤ Ci ≤ 1 without any scaling. A 
one-dimensional conservation of mass statement 
for the average occupancy of any site in column i 
between time t and t + t is:
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The discrete conservation equation for the folks 
model is identical to the ghost model with the 
addition of an extra factor on each term associated 
with transitions between sites in columns (i – 1), i and 
(i + 1). The extra term, 1 – Cq(t), can be interpreted as 
the probability that a site in column q is unoccupied 
at time t. This extra term represents the interaction 
of agents as transitions are only allowed when the 
target site is empty.

Dividing equation (13) by t and simplifying 
(Simpson et al, 2009a), we see that the conservation 
statement corresponds to an explicit finite difference 
approximation of a PDE written with C(x, t) as the 
dependent variable, given by:
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where the transport coefficients are given by 
equation (12).

Here we see that the PDE governing a swarm of 
folks is different from the PDE governing a swarm 
of ghosts through the appearance of a non-linear 
advection term. However, it is a real surprise that 
the diffusion term has a constant diffusivity, just as it 
did for the ghosts model – we might have expected it 
to reflect the exclusion of volume that we saw in the 
individual folks trajectories. We will comment more 
on this, after showing that equation (14) matches 
averaged simulation data very well.

Averaging the occupancy of sites across each column 
in the lattice allows us to reduce the two-dimensional 
random walk to a one-dimensional PDE. This 
differential equation is only valid for simulations 
where the initial average occupancy of all sites 
within every column on the lattice is a constant 
(Simpson et al, 2009a; 2009b). For more general 
initial conditions, it is possible to develop a two-
dimensional conservation statement by averaging 
the occupancy of each site (i, j) across several 
identically prepared realisations to give 〈Ci,j〉. We 
leave this extension to two-dimensions as an exercise; 
the results can be checked with the conservation 
equations given elsewhere (Simpson et al, 2009a).

3.3  Comparing continuum and 
discrete models of folks

The PDE description given by equation (14) will now 
be tested by comparing the solution of equation (14) 
with density data extracted from the random walk 
simulations. Simulations with 0 ≤ x ≤ 250, 0 ≤ y ≤ 20, 
and D = t = 1 are considered. For these simulations, 
periodic boundary conditions are imposed along 
the horizontal boundaries only. Reflecting boundary 
conditions are imposed on the vertical boundaries; 
this means that agents located in the left-most column 
are unable to move left, while agents in the right-most 
column are unable to move right. All simulations 

that we consider are insensitive to the boundary 
conditions imposed on the vertical boundaries 
since we stop the simulations before such time that 
the agents touch the vertical boundaries. The initial 
distribution of agents has all sites with 90 ≤ x ≤ 110 
completely occupied.

Density data are extracted by averaging the 
occupancy of all sites across each column of the 
lattice, and then further averaging these estimates 
across 40 identically prepared realisations giving Ci 
for i = 0, 1, ..., 250. Scatter plots in figures 4(a) and 
4(b) show a single realisation of an unbiased and 
biased simulation. Averaged density data are given in 
figures 4(c) and (d) showing the temporal evolution 
of the agent density profiles. The influence of the bias 
parameter is clear as the biased population is more 
effective in moving in the positive x direction than 
the unbiased population.

To compare the simulation density profiles with the 
solution of equation (14), we must obtain numerical 
solutions of equation (14). This can be done in several 
ways. For example, standard software for solving 
PDEs such as the MATLAB routine pdepe.m or the 
Numerical Algorithms Group routine d03pcf.f may be 
used. Alternatively, a finite difference approximation 
may be used. To do this, we replace the continuous 
spatial derivatives in equation (14) with a central 
difference approximation after discretising the 
domain 0 ≤ x ≤ 250 with constant grid spacing dx. 
This leads a system of coupled non-linear first-order 
ordinary differential equations with t as the dependent 
variable. These ordinary differential equations are 
integrated using a backward Euler finite difference 
approximation (Chapra & Canale, 1998).

Numerical solutions of equation (14) with the same 
initial condition used in the discrete simulations 
are given in figured 4(e) and 4(f). Comparing these 
with the discrete averaged solutions, figures 4(c) and 
4(d) show that the discrete and continuum profiles 
match very well. This confirms that the population-
level evolution of the agent density is described by 
equation (14).

4 DISCUSSION AND CONCLUSIONS

We have outlined a description of two very different 
random walk models that can be implemented and 
analysed in order to give us deeper insight into 
the connection between individual-level random 
walk mechanisms and the collective population-
level response. Computational methods to obtain 
population-level transport coefficients through agent 
tracking data are described, and data are presented 
showing how different estimates of diffusivities and 
drift velocities are obtained for both the ghost and 
folks random walk models. In parallel, a conservation 
statement, described by a PDE, is developed for the 
ghost and folks random walk models.
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For unbiased motility (rx = 0), both of the PDEs 
reduce to the linear diffusion (or heat) equation. This 
was a real surprise. It says that a swarm of unbiased 
folks behaves just like a swarm of unbiased ghosts. 
This is intriguing and unexpected given that the 
underlying random walk mechanism for ghosts 
and folks models are very different. However, by 
expanding each of the terms (equation (13)), we find 
that all the non-linear terms cancel out when rx = 0, 
and the equation simplifies into equation (8); hence 
after taking the continuum limits, the swarm of folks 
satisfies the same PDE as a swarm of ghosts.

These results have bizarre consequences. If an 
individual interacting folk is tagged within a swarm 
of unbiased folks, the individual trajectory is affected 
by neighbourhood interactions – this can be observed 
from trajectory data. But at the population level, 
the distributions of the swarm of folks would be 
indistinguishable from a swarm of ghosts. 

For biased motility, things are now different. Since the 
two PDEs are not identical, a swarm of biased folks 
behaves differently to a swarm of biased ghosts. The 
ghost population behaves like the standard linear 
advection-diffusion equation, which reflects the 
absence of interactions between the agents (Hughes, 
1995; Berg, 1983). The folk population behaves like a 
non-linear advection-diffusion equation, due to their 
interactions. The advection term is non-linear and is 
similar to models used to represent traffic flow and 
Burgers’ equation (Whitham, 1974).

These results provide great opportunities for data 
misinterpretation. If trajectory data is used to 
estimate the diffusivity from an interacting random 
walk mechanism, the density-dependent estimates 
given by equation (7) are inappropriate for describe 
the transport phenomena of the bulk population. 
This highlights the critical difference between self-
diffusion of an individual within a population of 
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Figure 4: Comparison of population-level density information from simulating folks with solutions 
of the associated PDE. (a)-(b) Single realisations of unbiased (rx = 0) and maximally biased 
(rx = 1) folks. (c)-(d) Density data obtained from averaged occupancy across each column in 
the lattice, as well as across the 40 realisations, starting with the same initial conditions. The 
arrows indicate the direction of increasing time. (e)-(f) Numerical solutions of equation (14) 
with the same initial condition as the simulation data. The arrows indicate the direction of 
increasing time. Note: In (c) and (e), the profiles are given at t = 0, 50, 100, 200 and 400; in
(d) and (f), the profiles are given at t = 0, 50, 100 and 200.
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agents and bulk diffusion of the population. On the 
individual level, the interactions between agents is 
observed through the tracking data, yet when we 
consider the averaged behaviour of the population 
these interactions do not appear in the description 
of the population level behaviour.

There is much interest in understanding the 
connection between the microscopic description 
of individuals and the macroscopic description of 
populations. This brief exploration here illuminates 
many interesting and intriguing features. Such 
studies will help us understand the emergent 
behaviour of swarms of animals, cells and, indeed, 
perhaps even humans.
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