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Abstract

A coupled ordinary differential equation model of tumour-immune dynamics is
presented and analysed. The model accounts for biological and clinical factors
which regulate the interaction rates of cytotoxic T lymphocytes on the surface
of the tumour mass. A phase plane analysis demonstrates that competition be-
tween tumour cells and lymphocytes can result in tumour eradication, perpetual
oscillations, or unbounded solutions. To investigate the dependence of the dy-
namic behaviour on model parameters, the equations are solved analytically and
conditions for unbounded versus bounded solutions are discussed. An analytic
characterisation of the basin of attraction for oscillatory orbits is given. It is also
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shown that the tumour shape, characterised by a surface area to volume scaling
factor, influences the size of the basin, with significant consequences for therapy
design. The findings reveal that the tumour volume must surpass a threshold size
that depends on lymphocyte parameters for the cancer to be completely elimi-
nated. A semi-analytic procedure to calculate oscillation periods and determine
their sensitivity to model parameters is also presented. Numerical results show
that the period of oscillations exhibits notable nonlinear dependence on biologi-
cally relevant conditions.

Keywords: Cancer, Immunotherapy, Ordinary differential equations, Dynamical
systems, Finite-time tumour elimination

1. Introduction

Recent advances have opened the possibility of treating some cancers by de-
veloping preventative vaccines [1–4]. Such cancer vaccines would function by
training a person’s cytotoxic T lymphocyte (CTL) response to recognise and elim-
inate early-stage tumours close to inception, by producing a memory CTL popu-
lation against certain tumour-associated antigens [5].

A challenge to designing preventative cancer vaccines is understanding the
tumour-CTL dynamics that lead to successful tumour elimination by the CTL re-
sponse. A recent mathematical modelling paper of Kim and Lee [6] engages this
problem by formulating a hybrid partial differential equation (PDE) and agent-
based model (ABM) of the dynamics of an anti-cancer CTL response in the vicin-
ity of a developing tumour and the draining lymph node. That work points out the
importance of tumour geometry in determining CTL effectiveness and the likeli-
hood of eliminating the tumour. In particular, it observes that lymphocytes might
eliminate the tumour mass at a rate proportional to the surface area rather than the
volume of the tumour.

Here we formulate a simplified deterministic model of the tumour-CTL dy-
namics as a system of ordinary differential equations (ODEs). Our ODEs in-
corporate interactions between CTLs and tumour cells at a rate proportional to
the surface area of a spherical tumour and are able to capture the dynamics of
tumour-CTL oscillations. Although clinical evidence for oscillatory dynamics be-
tween solid tumours and immune cells is not yet thoroughly established, there
are indications of such behaviours for systemic diseases such as leukaemia [7–9],
and oscillations in both cancer and immune cells numbers have been observed in
some clinical contexts [10–12]. Elimination of the cancer mass in finite time and
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oscillations are instead some of the typical findings in mathematical modelling of
immunotherapies [13, 14], and, in particular, have been observed in the framework
developed by Kim and Lee [6]. One of the advantages of the equations we pro-
pose over ABM formulations is that the ODEs in the current work are analytically
tractable. This enables us to characterise dynamics mathematically over a wide
range of parameters and obtain explicit mathematical descriptions of clinically
relevant scenarios for tumour-CTLs interactions. In addition, the equations can be
readily extended to consider alternative tumour geometries, partial penetration of
T cells into the tumour mass, and other tumour growth rates.

Interest in mathematical modelling of tumour-immune dynamics has grown
rapidly in recent years and various modelling approaches have been used to de-
scribe these phenomena. In particular, a large body of tumour-immune models has
been developed using ODEs [15–22] and PDEs [23]. For the interested reader, a
review of ODE models of tumour-immune interactions can be found in Eftimie et
al. [14], whereas Bellomo et al. [24] and Roose et al. [25] contain thorough discus-
sions of ODE and PDE models of tumour growth. A recent approach has focused
on ABMs, or cellular automata, sometimes coupled with differential equations,
to simulate tumour growth [26, 27], tumour growth and angiogenesis [28, 29],
and tumour growth in the presence of an immune response [30–32]. While these
models consider chemotherapy, immunotherapy, and other treatments against ex-
isting tumours, our equations focus on protective anti-tumour immunity by CTLs
that would detect a tumour very early in development and could induce complete
tumour elimination.

The paper is organized as follows. In Section 2, the coupled ODE system
describing the dynamics of tumour and CTL populations is presented. A phase
plane analysis is conducted in Section 3 and conditions that lead to bounded or
unbounded solutions (as well as a degenerate case) are ascertained. In Section 4,
analysis of the system leads to explicit solutions in terms of the Lambert W func-
tion, leading to the determination of basins of attraction for perpetually oscillating
solutions and for tumour elimination. Furthermore a semi-analytic procedure to
determine the period of oscillations in terms of parameters and initial conditions
is discussed. Numerical computations of periods as functions of a variety of clin-
ically relevant factors are performed, to illustrate model sensitivity. Finally, in
Section 5 conclusions are drawn and directions for future work are discussed.
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2. Model equations

We consider a tumour of volume V (t). Although the volume changes with
time, we assume that the shape is constant, so that the surface area of the tumour
is ρV (t)2/3, where the dimensionless shape factor ρ is given by ρ = (36π)1/3 for
the case of a sphere, which is used in all our numerical computations. We assume
that the number N(t) of CTLs available to attack the tumour has a growth rate
proportional to the current surface area of the tumour and a constant death rate, so
that we have

dN
dt

= ρrcV (t)2/3N(t)−dcN(t).

The constant parameters rc and dc are the recruitment and death rates of CTLs,
respectively. (Note, we refer to rc as a rate although it is a rate per unit area.)

Concerning the interpretation of the first term on the right, we assume here
that CTLs interacting with the tumour surface release chemokines to recruit other
similar cells to the cancer site [33, 34].

We assume that the tumour has no vascular system so its growth is regulated
by nutrient supply at the surface, with a volumetric growth rate proportional to the
surface area. In the presence of CTLs, the tumour loses mass at a rate proportional
to the area of its surface that is under attack from leukocytes. We introduce C(t),
a dimensionless function that we shall call the coverage, which is the fraction of
the surface area that is under attack. Then we have

dV
dt

= ρrtV (t)2/3−ρkV (t)2/3C(t).

The constant parameters rt and k represent the tumour growth rate and the killing
rate due to CTLs. (Similarly, rt and k are referred to as rates although they involve
a length scale as well.) As it will be shown explicitly in Appendix A, the choice
of a term proportional to V (t)2/3 corresponds to a linear growth rate for the radius
of the tumour. This is one of the proposed laws for the evolution and development
of cancers [35], although the existence of a universal rule and its functional form
is controversial and difficult to evaluate [36]. Although we have not considered
vascular tumours, for which the T-cells are certainly able to access the tumour
interior, we note that some penetration of an avascular tumour by T-cells is plausi-
ble. In Appendix B we discuss, as an interesting limiting case, an adjusted model
in which the tumour loses mass at a rate proportional to its volume, corresponding
to deep penetration of the tumour by the attacking T-cells.

We now assume that the fractional coverage of the surface area of the tumour
is directly proportional to the concentration of T-cells delivered in the vicinity
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of the cancer. This concentration is also taken to be proportional to the total T-
cell supply. If the local concentration of lymphocytes is sufficiently high, the
tumour surface is under complete attack (i.e. completely covered) and no further
T-cells can be recruited to the surface. Absorbing all proportionality constants,
we introduce N , which is the minimum total cell number in the vicinity of the
cancer so that the tumour is under complete attack.

It follows that when N(t) is too low for total coverage of the tumour to be
achieved (N(t) < N , say), we have C(t) = N(t)/N . As originally defined,
C(t) ≤ 1. However, if we extend the definition to C(t) = N(t)/N for all val-
ues of N(t), then C(t) satisfies the same linear ODE as N(t) and we arrive at the
following model for the interaction of the CTLs and the tumour:

dV
dt

= ρrtV (t)2/3−ρkV (t)2/3 min{1,C(t)}, (1)

dC
dt

= ρrcV (t)2/3C(t)−dcC(t). (2)

Note that, in the following, given its definition as an extension of the coverage for
N(t)≥N , we will also refer to C(t) as the (dimensionless) CTL concentration.

Biologically relevant ranges and units of measurements for parameters and
variables used in this model are given in Table 1. The range of tumour volumes
that our model can describe is assumed to be between 0 and 4 x 106 µm3, corre-
sponding to a tumour mass of approximately 0 to 1000 tumour cells, if we consider
that tumour cells have a diameter of about 10 µm [20, 28, 31, 37].

Although our study could be generalized to consider different types of tu-
mours, much experimental work has focused on breast cancer, e.g. Refs. [38–41],
so we estimate our tumour growth rates from these data sets. Specifically, Spratt
et al. calculate that the initial tumour cell doubling time is between 30 and 4800
days (∼ 13 years) [40]. Weedon-Fekjær et al. find similar doubling times of 1.2
months to 6.3 years [41]. Other experimental studies report moderate doubling
times of around 100 days [38, 39]. Consequently, we use a maximum growth rate
of rt = 0.5 µm · day−1, which means that the tumour mass will grow by one cell
diameter (∼ 10 µm as stated above) over a period of 10/0.5 = 20 days, or approx-
imately one month. We allow the growth rate to vary from zero to this maximum
rate.

For the purposes of investigating tumour and CTL dynamics, we assume that
the tumour killing rate of CTLs, k, is comparable to tumour growth rates. On
the other hand, if CTL killing rates far outpaced tumour growth rates or vice
versa, the system would result in very robust dynamics of rapid tumour death or
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uncontrollable growth, respectively. As a result, we assume that k varies over the
same range as rt, namely 0 to 0.5 µm · day−1.

CTL recruitment rates are hard to estimate directly, but experimental studies
have shown that this process can happen very effectively [2, 3], so we estimate a
maximum rate of rc = 0.2 µm−2 · day−1. If we assume that one CTL has a cross-
sectional area of approximately 100 µm2, (because we assume a diameter of∼ 10
µm as above), then one CTL engaging the tumour can recruit additional cells
at maximum rate 0.2× 100 = 20 · day−1, which corresponds to approximately
one additional cell per hour. This rate may be quite fast, since transit times of
CTLs from draining lymph nodes to tissues is more likely on the order of several
hours [37], so we vary this recruitment rate from zero to the maximum value of
0.2 µm−2 day−1 to consider a range of possible values.

The half-life of CTLs has been experimentally estimated to be about 41 hours,
which corresponds to a death rate of dc = 0.4 · day−1 [42]. For our analysis, we
allow this parameter to vary from 0 to 0.5 day−1.

It is important to remark that not all solutions associated to Eqs. (1) and (2)
have biological meaning, e.g. the cases of a negative tumour volume or a neg-
ative cell concentration are unphysical. A similar occurrence is also present in
other well-established two-dimensional ODEs approaches to immunotherapies,
for example in the model by Sotolongo-Costa et al. [43]. Thus, if the volume
of the tumour becomes zero at some time t∗, that is V (t∗) = 0 with dV

dt (t
∗) ≤ 0,

then for all subsequent times t > t∗, V (t) = 0. For this case, Eq. (2) reduces to
C(t) =C(t∗)e−dc(t−t∗) for t > t∗. Note that this solution corresponds to complete
elimination of the tumour by the lymphocytes in finite time, and represents one of
the three possible types of solutions for the model.

The other two possible solutions are given by the existence of perpetual os-
cillations of the two cell populations and by unbounded solutions. Examples of
bounded solutions are presented in Fig. 1. Unbounded V (t) and C(t) represent
cases where the lymphocyte response fails to prevent the tumour from growing un-
restrictedly, ultimately carrying the solution beyond biologically relevant ranges,
and signifying a catastrophic clinical outcome. All three types of solutions based
on model parameters are discussed in the following section, and their biological
relevance, in the light of model assumptions, is examined in Sec. 5.

3. Phase plane analysis of model equations

The quantity that determines the outcome of CTL-tumour interactions is the
ratio rt/k, that is, the tumour growth rate relative to the CTL killing rate. (The
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larger this ratio, the more aggressive the tumour). We see from Eq. (1) that irre-
spective of the value of C(t),

dV
dt
≥ ρ(rt− k)V (t)2/3.

Thus, if rt/k > 1, the tumour growth is unbounded: even concomitant unbounded
increase of the available CTL supply ensuring constant maximal attack of the
tumour surface is unable to control the tumour. This is one of three scenarios that
the phase plane analysis that follows reveals.

To understand the dynamics in the (V,C)-plane, let us first consider the null-
clines. The solutions corresponding to dC/dt = 0 in Eq. (2) are

C = 0 and V =
( dc

ρrc

)3/2
, (3)

irrespective of the value of rt/k. Nullclines corresponding to dV/dt = 0 for Eq. (1)
are

V = 0 and rt = k min{1,C(t)}. (4)

If rt/k > 1 the second of Eqs (4) has no solutions, but if rt/k < 1 we have the
nullcline

C =
rt

k
. (5)

Examples of solutions for the bounded case at rt/k < 1 are shown in Fig. 2.
Two of the nullclines intersect at a centre with coordinates

(V�,C�) =

((
dc

ρrc

)3/2

,
rt

k

)
. (6)

Depending on the initial conditions (V0,C0) at time t = 0, two possible solutions
exist: the tumour is destroyed and the concentration of lymphocytes goes to zero
or the two populations oscillate perpetually, with respective maxima and minima
that occur at different times. With no loss of generality, it is more mathemati-
cally convenient to consider initial conditions (V0,C0) that belong to the region
0 < C(t) < 1. In fact, in the next section we study analytically what conditions
give rise to different types of solutions in this model, and what factors influence
the success of the immune response. As stated, no unbounded solutions exist
when a centre is present. The tumour can grow to a very large volume, but the
immune response eventually catches up and prevents any trajectory from growing
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to infinity. This is a consequence of the assumption in our model that an endless
supply of lymphocytes is available in the lymph node. In fact, there is no con-
straint on the maximal amount of CTL concentration C(t) that can be present in
the proximity of the tumour. The typical time evolutions for this scenario have
been presented in Fig. 1.

It is possible to perform standard linear analysis [44] and find a closed expres-
sion for the frequency ω0 for small oscillations around the centre. This frequency
is given by

ω0 =

(
2
3

) 1
2

ρ
3
4 (rcdc)

1
4 r

1
2
t . (7)

Interestingly, this expression shows that small oscillations do not depend on the
CTL killing rate k and the contribution of other model parameters is regulated
by different powers. Thus, for initial tumour sizes and T-cell concentrations in
proximity of the centre, the efficiency of lymphocytes in destroying cancer cells
is irrelevant for the period of oscillatory orbits. This does not mean, however, that
an increase in the killing rate k will be ineffective in eradicating the tumour. In
fact, if k is changed, then the value of C� is also altered, and the centre shifts
position causing the system to follow a different trajectory. Importantly, small
oscillations also depend on the shape factor ρ . For example, if parameters remain
unaltered, a larger shape factor (i.e. a larger surface to volume ratio) makes small
oscillations more frequent, since the CTL killing action depends on the amount
of accessible tumour surface. In the case of spherical tumours considered in this
paper, the expression for ω0 reduces to

ω0 = 2r
1
2
t (πrcdc)

1
4 . (8)

The case of unbounded solutions is illustrated in Fig. 3. In this scenario, the
absence of the nullcline C = rt/k prevents the formation of a centre, and the null-
cline V =V� is the locus of minima in C(t). Considering initial conditions (V0,C0)
such that V0 < V�, the solutions will initially decrease to a minimum in C(t) and
then grow without bound with increasing velocity. Clearly, when rt/k > 1 the
tumour grows faster than the rate at which it is destroyed by CTLs and cannot
be eradicated, as shown by the time evolution in Fig. 4(a). Note also that the
CTL concentration rapidly increases to unlimited values, as a result of a faster
and faster recruitment, but the CTLs cannot contain or halt the expansion of the
tumour.

In the final case (c) for rt = k, the rate of growth and the killing frequency
are equal, so, when C(t) reaches the threshold value of Cmax = 1, the tumour

8



ceases to enlarge and reaches its maximal volume (see Fig. 4(b)). Again, although
the number of CTLs in the vicinity of the tumour grows without bound, they are
not sufficient to kill the tumour, since we assume that only CTLs in contact with
the tumour surface can kill its cells. The difference between this case and the
unbounded case (b) is that in (b) both variables V (t) and C(t) eventually grow to
infinity, whereas in the degenerate case only the CTL concentration is unbounded.
In fact, when C(t)≥ 1 Eqs. (1)–(2) for rt = k reduce to

dV
dt

= 0, (9)

dC
dt

= ρrcV (t)2/3C(t)−dcC(t), (10)

indicating that the tumour volume remains constant. Hence, although the dynam-
ics for 0 < C(t) < 1 are similar to the case of bounded orbits, when a solution
crosses the nullcline C = 1, its behaviour is regulated by the equations above, as
exemplified in Fig. 5. The phase space now presents a degenerate centre, which
possesses some of the features shown for the oscillatory case. In fact, the re-
gion 0 < C(t) < 1 has the same properties. Note that the solution for C(t) ≥ 1
has a different stability depending on its position with respect to the nullcline
V = (dc/(ρrc))

3/2. The Jacobian always has one zero eigenvalue and a second
eigenvalue λ2 =−dc +ρrcV (t)2/3, which is positive, and hence repelling, on the
right side of the nullcline. This causes the degenerate solution to effectively per-
form only a half-turn around the centre, and go to infinity following a vertical
line.

4. Analytic results

It is useful to consider whether analytic solutions exist for all the three cases:
bounded, unbounded and degenerate. Besides being important from a theoreti-
cal point of view, existence of closed formulae in terms of model parameters are
also valuable from a practical perspective. Understanding what combinations of
parameters give rise to oscillations can help design more effective vaccination
therapies that will respond successfully to a variety of characteristics of possible
tumours.

4.1. Solutions to model equations
Given the min{1,C(t)} term in Eq. (1), it is evident that the case C(t) ≥ 1 is

solvable by direct integration. If min{1,C(t)}= 1, no coupling between V (t) and
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C(t) is present in Eq. (1), and the following expression for V =V (t) can be found:

V (t) =
1

27
(3V 1/3

I − (k− rt)ρt)3, (11)

where the initial condition for the tumour volume at t = 0 is indicated by V (0) =
VI . When solving for this case, VI is the initial value of V at the boundary between
the two regions that are relevant in the model, hence C(0) = 1. This notation is
used to distinguish the point (VI,1) from a generic initial condition (V0,C0) for
the whole solution in the phase plane.

Note that the solution is a cubic, as in Kim and Lee [6], and its boundedness
directly depends on the sign of the term (k−rt). If k> rt, it eventually reaches zero
in finite time (tumour eradication). Otherwise, the solution is either unbounded
for k < rt or constant and equal to VI for the degenerate case k = rt. Substituting
Eq. (11) into Eq. (2) and integrating, we obtain:

C(t) = exp

(
−dct +

rcVI

k− rt
−

rc(3V 1/3
I − (k− rt)ρt)3

27(k− rt)

)
. (12)

As stated, given that C(0) = 1, the above expression contains only the initial con-
dition for V (t), i.e. VI . The exponent in the solution has a linear term with respect
to time that is proportional to the decay rate of CTLs dc and a cubic dependence
from the evolution of the tumour volume. The remaining term of the exponent
is inversely proportional to (k− rt). In the degenerate case, C(t) is given by
C(t) = exp(−dct + rcV

2/3
I ). So, since V (t) =VI when k = rt, the degenerate solu-

tion grows to infinity following a vertical line in the phase plane (see Fig. 5). A
graphic depiction of a family of solutions given by Eqs. (11)–(12) for the bounded
and unbounded cases is presented in Fig. 6.

Solving for the case 0 <C(t)< 1 is not straightforward, due to the presence of
the bilinear term in Eq. (1). A strategy to arrive at analytic solutions requires sub-
stitutions that recast the model equations into a simpler system and is illustrated
in the Appendix. Closed expressions for V = V (t) and C = C(t) can be found,
although they are particularly involved. Instead, it is interesting to use the above
mentioned strategy to obtain expressions for level set curves.

These are implicit functions such that g(V (t),C(t),V0,C0) = 0, where (V0,C0)
are initial conditions at t = 0 chosen in the region 0 <C(t)< 1. As shown in the
Appendix, a separable ordinary differential equation can be integrated to arrive at

C(t)
C0

exp
(
− k

rt
(C(t)−C0)

)
− exp

(rc

rt
(V (t)−V0)−

3dc

ρrt
(V (t)1/3−V 1/3

0 )
)
= 0.

(13)
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This expression can be inverted to obtain

C(t)=−rt

k
W(−1;0)

(
−C0k

rt
exp
{
−C0k

rt

[rc

rt
(V (t)−V0)−

3dc

ρrt
(V (t)1/3−V 1/3

0 )
]})

.

(14)
In the solution (14), we write for brevity W(−1;0)(x) to represent the two real
branches of the Lambert W function [45]. The Lambert W function is defined
implicitly by W (x)exp[W (x)] = x. For −1/e < x < 0, this transcendental equa-
tion for W (x) has two solutions, denoted by W−1(x) and W0(x), with W−1(x)<−1
and W0(x)>−1. The solutions coincide at x=−1/e and W0(x) is the solution that
continues into the region x≥ 0. Examples of solutions obtained using Eq. (14) are
presented in Fig. 7.

It is important to stress that, whilst for rt < k both branches of the Lambert W
function contribute to the solution, in the unbounded and degenerate cases only
the 0 branch is a solution. This means that in Fig. 7(a) the upper part of the
egg-shaped curves corresponding to C(t) > rt/k is described by the −1 branch,
whereas the lower part for C(t)< rt/k is given by the 0 branch. As the ratio rt/k
increases towards one, the C-coordinate of the centre C� increases, and the region
of solutions belonging to the −1 branch gets smaller. At the degenerate stage,
when C� = 1, the solutions for 0 < C(t) < 1 are captured only by the 0 branch.
This effect occurs because the expression for C(t) corresponding to the branch
W−1(x) in Eq. (14) is equal to one for rt = k, and is bigger than one for rt > k.

Clearly, the final, complete solution to the model equations will be given by
the union of the solution for 0<C(t)< 1 with the solution for C(t)≥ 1, depending
on the initial condition (V0,C0). Examples of full solutions for different values of
the ratio rt/k are shown in Fig. 8.

4.2. Basin of attraction for oscillatory solutions
When the model equations give rise to a centre for rt/k < 1, it is relevant to find

out which initial conditions cause a solution to be of the oscillatory or eradication
type. In Fig. 9, the basin of attraction for oscillatory solutions is illustrated. Rather
than reasoning in terms of generic initial conditions (V0,C0), it is algebraically
simpler to consider the intersection of a generic solution with the line C = 1.
Indicating the V -coordinate at such intersection with VI , it turns out that if VI is
less than an extremal value V ∗I , the solution is oscillatory.

To prove this result, we consider the extremal solution for the case C(t) ≥ 1,
given by the cubic Eq. (11) with one intersection at the phase point (V,C) = (0,1).
This solution is labelled as extremal because it represents the quickest solution to
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tumour eradication. All other solutions having C-coordinates larger than one at
V = 0 are also eradication solutions, but V reaches zero at longer times. Con-
versely, there are no solutions having C-coordinates smaller than one at V = 0,
because intersections with the line C = 1 occurring at V > 0 are typical of oscil-
latory solutions and obviously do not happen in the case of tumour eradication.

To find the extremal value V ∗I , we consider the time t∗f needed for the extremal
orbit to reach the intersection (V,C) = (0,1). According to Eq. (11),

t∗f = 3
3
√

VI

ρ(k− rt)
.

We substitute the above expression into the solution for C(t) in Eq. (12) and find
the relevant root for the cubic equation that results from imposing that C(t∗f ) = 1.
Of the three roots, one is zero, one is negative and is discarded, and one is positive.
This last root provides the final result for V ∗I , i.e. the right edge of the boundary
of the basin of attraction, which is given by

V ∗I = 3
√

3
(

dc

ρrc

)3/2

= 3
√

3V�, (15)

where V� is the V -coordinate of the centre. To sum up, the extremal solution, i.e.
the first eradication orbit, starts at coordinates (V ∗I ,1) and ends at (0,1). The total
time taken for this trajectory is given by substituting V ∗I in the previous expression
for t∗f . Any other solution whose V -coordinate at the intersection VI is on the right
of V ∗I is eradicated (see Fig. 9).

A solution can be oscillatory or not depending on its distance from the centre,
when it intersects the boundary C = 1. This is an interesting result, because it
shows that there is a maximal size for tumours after which they are efficiently
destroyed by the primed CTLs. Eq. (15) shows that a faster recruitment rate and a
longer life for CTLs contribute to reduce that maximal size, making a vaccination
response more efficient. Also, the dependence on the shape factor ρ indicates
that tumours with a smaller surface area to volume ratio have a larger basin of
attraction for oscillatory orbits and the compactness of their shapes make cancers
more resilient to attack by lymphocytes. The significance of this result in the light
of the assumptions used for this model is discussed at length in Sec. 5.

4.3. Period of oscillations
Using the expression (14) for C(t) =C(V (t)), it is possible to illustrate a semi-

analytic procedure for investigating the periods of oscillatory solutions. The total
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period of any of such solutions is constituted by two or three terms, depending
on whether the chosen orbit remains entirely within the region 0 < C(t) < 1 or
presents bounded excursions in the C(t)≥ 1 half-plane (see Fig. 10).

In the first case, the total period is the sum of the time spent when C(t)< rt/k
plus the analogous term for C(t) > rt/k. For 0 < C(t) < 1, terms containing
the branches W0(x) and W−1(x) are present. Using quadrature methods [46] and
indicating with VA1 and VB1 the left and right intersections of the solution with the
line C = rt/k (see Fig. 10), the period for such a half turn below the centre is given
by

T0 = ρrt

∫
VB1

VA1

V−
2
3 dV

1+W0

(
C0k
rt

exp
{
−C0k

rt

[
rc
rt
(V −V0)− 3dc

ρrt
(V 1/3−V 1/3

0 )
]}) .

(16)
A similar expression for T−1 with inverted ranges of integration gives the pe-

riod for the other half turn above the centre. Note that VA1 and VB1 are solutions to
a cubic equation given by imposing that C(t) = rt/k and V (t) =VI in Eq. (13):

− k
rt

(rt

k
−C0

)
− log

rt

kC0
=

rc

rt
(VI−V0)−3

dc

ρrt
(V 1/3

I −V 1/3
0 ).

Closed expression for the roots are particularly involved, so we do not report them
here, and depend on the initial conditions V0 and C0 in the region 0 <C(t)< 1.

When the orbit is not fully contained within the region 0<C(t)< 1, the ranges
of integration need to be substituted with the values of VI and VF at the intersection
with the line C = 1. These intersections can also be calculated using the expression
for the level curves Eq. (13) and imposing that C(t) = 1 and V (t) = VI . Again, a
cubic equation similar to the one previously discussed needs to be solved:

− k
rt
(1−C0)− logC0 =

rc

rt
(VI−V0)−3

dc

ρrt
(V 1/3

I −V 1/3
0 ).

As indicated in Fig. 10, we need to calculate integrals similar to Eq. (16) using the
−1 branch, and evaluate the duration of the two trajectories B2→ I and F → A2.
To complete the calculation, the time Te needed for a full, bounded excursion in the
half-plane C(t) ≥ 1 can be calculated using Eq. (12) and imposing the condition
C(Te) = 1. Solving the cubic equation, the positive root is given by

Te =
9ρr1/2

c V 1/3
I +3

√
3ρ1/2(4dc−ρrcV

2/3
I )1/2

2ρ2r1/2
c (k− rt)

, (17)
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where VI , as noted, is the intersection with C = 1 on the right side of the centre. A
closed expression for the second intersection VF can also be found by considering
Eq. (11) and substituting the above expression for Te, i.e. using the expression for
V (t) in the region C(t)≥ 1 rather than the equation for the level set curves in the
region 0 <C(t)< 1.

Beyond semi-analytic expressions, numerical calculations can be employed to
examine the variation of periods of oscillation with respect to model parameters.
In Fig. 11, periods for orbits for different ratios rt/k are plotted. Choosing the
initial condition C0 = 9/10 C�, where C� is the C-coordinate of the centre for
the chosen model parameters, it is possible to vary V0 and compute the period of
an oscillatory solution as a function of the distance from the centre V�. As the
ratio rt/k approaches the degenerate value of 1, the periods associated with initial
conditions at the left, i.e. V0/V� < 1, and on the right, i.e. V0/V� > 1, of the
centre increase in a nonlinear fashion. When the initial condition starts closer to
the centre, i.e. V0/V� ' 1 the period approaches the limiting value 2π/ω0, cor-
responding to the regime of small oscillations. The shape of this trough depends
on the value of rt/k, with an increasingly more marked V-shaped appearance as
the ratio approaches one. Note that for each curve, the two arms meeting at the
minimum are not symmetric and that the segments on the right of the extremum
become almost linear as the distance from the centre grows larger. On the other
hand, the segments on the left side rapidly rise towards high T , with concavities
that depend on the ratio rt/k. All curves exist up to the limiting value V0 such that
the intersection of the solution VI with the line at C = 1 is such that VI < 3

√
3V�,

which corresponds to the edge of the basin of attraction discussed in Fig. 9.
Note that an increase in dc, corresponding to higher death rates for CTLs, alters

the curves presented in Fig. 11. The minimum for 2π/ω0 occurs at higher values
and both arms around the minimum are shifted up, with a consequent increase in
steepness. Clearly, if CTLs die at a faster rate with all other parameters staying
constant, the tumour can grow to larger volumes and the cycles between the two
competing populations of cells take longer to complete.

It is also interesting to understand how larger recruitment rates rc affect the pe-
riods of oscillation. In Fig. 12, the shapes of curves and the minima for V (0)/V�→
1 resemble the previous example for varying k. In this case though, the minima
occur at different periods, since the frequency of small oscillations ω0 depends
on rc. Quicker rates of recruitment decrease the period of oscillations, with an
effect that depends nonlinearly on the initial tumour volume. Changes in rc alter
the periods more dramatically than changes in k. It should also be noted that, in
general, the extension of the region for which the curves in Fig. 12 exist directly
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depends on the value of rc. In fact, because the basin of attraction for oscilla-
tory solutions is bounded by 3

√
3V� and V� ∼ r−3/2

c , the length of the basin is
inversely proportional to the rate of recruitment. This dependence agrees with the
intuition that faster recruitment processes increase the effectiveness of the CTL
response against the tumour, promoting eradication.

5. Conclusions

We develop and analyse a two-dimensional ODE model of CTL-tumour dy-
namics that accounts for tumour geometry in determining interaction rates be-
tween the two populations of cells. Our model provides an analytically tractable
system. Furthermore, it reproduces the phenomena of oscillatory behaviour and
finite-time tumour elimination obtained in more computationally complex ap-
proaches, such as that of Kim and Lee [6]. Indeed, our results show that the
oscillations are inherent to the dynamics of the system and not due to the stochas-
tic nature of the computational model used by Kim and Lee [6].

In agreement with the findings in that paper, the proposed equations do not
admit a “small tumour size” equilibrium, whereas other models existing in the
literature present such a solution [13, 14]. In fact, our system of ODEs does
not contain any assumption about a possible inhibition of leukocytes’ recruitment
rates or a deterioration in CTLs killing efficiently due to an anti-immune response
by cancer cells. Other two-dimensional approaches that focus on immunothera-
pies for tumours in later stages of development do include a term that weakens the
response of the immune system as the tumours grows larger [17, 43, 47, 48]. The
interplay between the pro-immune and anti-immune terms gives rise to a balance
between the two populations, corresponding to a small tumour size equilibrium.

For Eqs. (1)–(2), a degenerate solution has been found in the case of a tumour
growing at the same rate at which its cells are destroyed by CTLs. Although the
tumour size remains constant, this solution is not stable since the population of
T-cells grows to infinity in an unphysical way. This is a consequence both of
the absence of the anti-immune response term, which could block the increase in
cell concentration to large numbers, and of an unlimited and constant influx of
leukocytes from the lymph node, which acts as an infinite reservoir for T-cells.

In fact, our model contains a number of hypotheses that are advantageous from
the mathematical point of view, but that have to be taken into consideration when
relating our results to clinical practice. First of all, the tumour mass is treated
as continuous, so, in principle, tumours of very small size can regrow. This is
evident in the family of solutions depicted in Fig. 8, where oscillatory behavior
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occurs for curves that reach very low, nonzero values in V (t). When considering
the biological relevance of the model, those curves should be discarded, since
extremely low values of V (t) correspond in practice to eradication. This is a
result of the threshold we assume for the complete depletion of the cancer mass,
when we postulate that if V (t∗) = 0 with dV

dt (t
∗)≤ 0, then for all subsequent times

t > t∗, V (t) = 0. The condition can be relaxed without altering the analytical
results presented or changing the model equations, for example choosing a higher
threshold which is not strictly zero and corresponds to the volume of half a cell.

Secondly, the model allows for an infinite supply of T-cells and for the tumour
volume to grow without bound. Neither of these assumptions is strictly valid,
and in a clinical application the model breaks down when tumour size exceeds
the limits discussed in Sec. 2 or when the T-cells supply exceeds a biologically
feasible size. Due to the diffusion limit of oxygen, the model is in fact valid for
small tumours of the order of one cubic millimeter.

Analysis of our system shows that there is a maximum size for tumours that
can oscillate perpetually. A further prediction of the model, when applied without
the caveats, is that if tumours grow beyond this size, cancers get eliminated by
an adequately strong response by T-cells. In other words, a larger tumour appears
easier to find and kill, because, due to the model limitations discussed above, it
elicits a stronger immune response and represents a bigger initial target, with a
larger surface area to which T-cells can attach.

When taken without due care, this result may suggest that a delayed immune
response that would allow a tumour to grow beyond the maximum threshold be-
fore initiating an immune attack could be more effective at counteracting tumours.
Besides this result being a consequence of the assumptions used in the model, it
should be clear that such a proposition is very risky. In fact, if a tumour were
allowed to grow too long in the absence of an immune response, it may develop
into a more aggressive malignancy or metastasize quickly with detrimental con-
sequences for the patient’s health. Also, given that there is relevant evidence that
the immune system is capable of eliminating small tumours, pharmacologically
enacting a delayed response by the innate immune surveillance may be unfeasi-
ble or have disastrous effects. On the other hand, it is important to observe that
latent tumours may not become malignant, since it may be the immunoediting
process that in fact hastens the transition to a more malignant tumour [49]. So, to
sum up, although this solution is mathematically interesting and sheds light on the
outcome of an immune response under the hypotheses of our model, suggesting
viable therapeutic strategies with the aid of Eqs. (1)–(2) is beyond the scope of
this paper.
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An additional point to note is that we have not considered possible further
mutations in response to immune attack, so that, for example, long term oscilla-
tions in the system may change the susceptibility of cancers to immune attack. In
some cancers, the growing tumour is immunoedited to remove recognized tumour-
associated antigens so that by the time the disease is symptomatic the cytotoxic
immune response is negligible and the cancer has progressed to a more aggressive
state. We do not consider this case in our formulation.

A more practical and promising direction could be to identify parameters that
lead to a reduced basin of attraction for perpetually oscillating solutions. A key
factor affecting the size to which a tumour can grow without being eliminated
is the surface area to volume ratio, captured by the shape factor ρ . As seen
in Eq. (15), a larger ρ , corresponding to a tumour that is more accessible to
CTLs, decreases the maximum size of tumour that can evade immune elimina-
tion. Hence, tumours whose geometries are more amenable to CTL-cancer cell
contact are more likely to be eliminated without a cycle of regrowth. This result
corroborates the observation that the presence of more tumour-infiltrating lymph
nodes that can partially penetrate the tumour mass leads to a more favourable
prognosis [31].

An advantage of the model presented here is that analytical solutions exist
for all the three cases of typical dynamics. These solutions are interesting from
a mathematical point of view and the nature of the problem allows for a semi-
analytical evaluation of periods of oscillations for certain classes of solutions.
Specifically, it has been shown that the ratio rt/k and the CTL killing rate dc
are important factors in regulating the frequency of oscillations. Periods tend to
increase nonlinearly when CTLs have higher death rates and smaller killing rates.
Also, as the ratio rt/k gets closer to unity, oscillations become slower and slower,
also resulting in nonlinear increases in amplitudes.

Unlike our equations, simulations occasionally present irregular oscillations,
due to the probabilistic terms, which are absent in deterministic systems [6]. In
the literature, there are also higher dimensional ODE models that give rise to a va-
riety of oscillation types, with amplitudes either constant, increasing or decreasing
with time [14]. Augmenting the dimensionality of the system generally increases
the number of possible dynamical scenarios among cellular populations. For ex-
ample, the model by Kirschner et al. [16] introduces a third differential equation
for the mediation of natural and specific immunity by proteine hormones such as
cytokines. This generates more outcomes for the tumour-CTLs oscillations.

The birth of self-sustained oscillations in higher dimensional models is due to
the presence of a Hopf point [50] and not to the existence of a centre, which is in-
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stead a bifurcation that is not mentioned in any of the low dimensional ODEs cur-
rently available in the literature. Although for the typical class of two-dimensional
systems for immunotherapies limit cycles cannot be theoretically ruled out [13],
we are not aware of any work in the literature that reports self-sustained, stable
oscillations when a constant (or null) influx of lymphocytes is assumed. Oscil-
lations have instead been forced onto the system by using external terms in the
equations, typically representing non stationary influxes of T-cells [43, 51]. These
terms mimic the so-called periodic therapies that are clinically employed for treat-
ing cancer patients.

In a different context, two-dimensional and higher order models have also
been employed for the mathematical description of tumour dormancy [52, 53],
which is a condition where tumour cells persists in a host without growing. Exper-
imental results have shown that some tumours can counteract an effective immune
response, remain at low concentration in the system and regrow years later [54].
The modified equations discussed in Appendix B seem to capture some details of
this phenomenon.

It will be interesting in future work to relax some of the model assumptions
presented here and investigate how the solutions discussed in this paper are af-
fected. For example, the hypothesis of a limitless supply of T-cells could be
dropped and the model equations could be augmented with a term that bounds
the total concentration of leukocytes in the system or that limits the influx of T-
cells from lymph nodes to a given amount at any time. It is likely that this term
will also alter the geometry of solutions and change the character and/or the sta-
bility of equilibria in the phase space. A future development of the model will
also be to introduce stochastic effects to account for the degree of randomness in-
herently associated with the process of CTL killing of tumour cells. Furthermore,
Eqs. (1)–(2) allow for a natural extension to include alternative tumour growth
rates, such as Gompertzian, von Bertalanffy, logistic, etc. [13, 55]. The next step
in this analysis will be to understand how these and other factors can change the
character of the solutions and how they impact the efficacy of the anti-tumour
response. Investigating the effect of a periodic influx of T-cells can also prove
beneficial from the clinical point of view.
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[35] A. Brú, S. Albertos, J. Subiza, J. Garca-Asenjo, I. Brú, The universal dy-
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Table 1: Typical ranges and units of measurement for the variables and parameters used in the
model.

Symbol Meaning Typical ranges Unit of measurement

V (t) tumour volume [0−4 x 106] µm3

C(t) CTL (dimensionless) concentration or coverage [0−20] none
ρ shape factor (36π)1/3 none
rt tumour growth rate [0.0−0.5] µm · day−1

k CTL killing rate of tumour cells [0.0−0.5] µm · day−1

rc CTL recruitment rate [0.0−0.2] µm−2 · day−1

dc CTL death rate [0.0−0.5] day−1
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Figure 1: Example of two possible types of solutions of the model. In (a), the tumour is eradicated
in finite time. The solution for V (t) reaches zero approximately at time t = 15 days. In (b), the
populations of CTLs and tumour cells oscillate, and the cancer is never destroyed. Parameters for
the two scenarios have common values rt = 0.1 µm · day−1, k = 0.2 µm · day−1, dc = 0.2 day−1,
but recruitment rates are different. For (a): rc = 0.05 µm−2 · day−1, for (b): rc = 0.001 µm−2 ·
day−1. Note the different maxima for V (t) and C(t) and the different temporal scales in (a) and
(b).
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Figure 2: A centre is present in the (V,C)-plane if rt < k at the intersection of the two relevant
nullclines indicated in red and green. The coordinates of this centre are given by (V�,C�) =
((dc/(ρrc))

3/2,rt/k). Arrows indicate the intensity of the flow field associated with Eqs. (1)–(2).
In this scenario, the tumour volume V (t) can either periodically regrow or be eradicated in finite
time. Oscillatory solutions in the (V,C)-plane are shown in black, and solutions leading to tumour
eradication are shown in orange. The dashed line delimits the boundary between the regions
C(t)≥ 1 and 0 <C(t)< 1, relevant to the term min{1,C(t)} in Eq. (1). Note that model equations
also admit the nullclines V = 0 and C = 0, which are not plotted since they are irrelevant for the
dynamics.
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Figure 3: If rt > k, only one relevant nullcline is present in the (V,C)-plane and solutions are
always unbounded. Note that the other existing nullclines V = 0 and C = 0 are not plotted.
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Figure 4: Example of typical time evolutions for the unbounded and the degenerate cases in (a)
and (b) respectively. Parameters are given by k = 0.2 µm · day−1, dc = 0.2 day−1, rc = 0.05 µm−2

· day−1 and rt = 0.22 µm · day−1 for (a) and rt = 0.2 µm · day−1 for (b). Note that V (t) changes
its rate of growth in (a) when C(t) = 1 and that it reaches a plateau in (b). The tumour volume then
increases or remains at a constant value whilst the concentration of CTLs grows without bound.
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Figure 5: If rt = k, two relevant nullclines exist in the (V,C)-plane, where the second nullcline is
now C = 1. This situation is labelled as degenerate due the fact that in the whole half-plane C≥ 1,
one eigenvalue of the Jacobian is always zero. Flowlines for C≥ 1 are vertical lines (not shown to
avoid clutter). Consequently, solutions perform a half turn below the degenerate centre and then
increase vertically towards infinity, because, for C≥ 1, V (t) = constant, while C(t)→∞ as t→∞.
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Figure 6: Examples of solutions from Eqs. (11)–(12) with different initial conditions (VI ,1) in the
half-plane C(t)≥ 1, for (a) the bounded (rt < k) and (b) the unbounded (rt > k) cases. Parameters
are given by k = 0.2 µm · day−1, dc = 0.2 day−1, rc = 0.001 µm−2 · day−1, and rt = 0.1 µm ·
day−1 for (a) and rt = 0.3 µm · day−1 for (b). Note that the maxima occurring in (a) are at the V
value corresponding to the green nullcline in Fig. 2, i.e. V� = (dc/(ρrc))

3/2.
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Figure 7: Solutions in the region 0 <C(t)< 1 for (a) bounded (rt < k) and (b) unbounded (rt > k)
scenarios and for different initial conditions (V0,C0). Parameters are given by: k = 0.2 µm ·
day−1, dc = 0.2 day−1, rc = 0.001 µm−2 · day−1, and rt = 0.1 µm · day−1 for (a) and rt = 0.3
µm · day−1 for (b). For case (a), rt/k = 1/2, and each solution is described by the 0 branch of the
Lambert W function in Eq. (14) in the lower half of the region 0 <C(t)< 1 and by the −1 branch
in the upper half. For case (b), the 0 branch describes the solutions in the whole region. Note the
different scales on the V -axis.
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Figure 8: Example of complete solutions for the oscillatory case for rt/k = 2/3 (rt = 0.2 µm ·
day−1 and k = 0.3 µm · day−1) in (a) and rt/k = 1/3 (rt = 0.1 µm · day−1 and k = 0.3 µm ·
day−1) in (b). Other parameters have common values dc = 0.2 day−1, rc = 0.001 µm−2 · day−1.
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Figure 9: Basin of attraction for oscillatory orbits: orbits in black belong to the basin and orbits in
orange represent tumours that are eradicated in a finite time. Orbits with a V -coordinate at C = 1
that is smaller than V ∗I = 3

√
3V� are oscillatory. Relevant nullclines are in green and red, and the

basin of attraction is in olive.
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Figure 10: Examples of typical paths for the calculations of periods, for two bounded orbits when
rt/k = 1/2. The red, closed trajectory remains in the region 0<C(t)< 1, and its period is given by
the sum of the two paths A1→ B1 and B1→ A1. This calculation involves only the two branches
of the Lambert W in Eq. (14). The green orbit exists also for C(t) ≥ 1, and the calculation of the
period for the section I→ F is made using the cubic solution given by Eq. (11). These two orbits
occur for the following model parameters: dc = 0.2 day−1, rc = 0.001 µm−2 · day−1, k = 0.2 µm
· day−1 and rt = 0.1 µm · day−1. Periods are T ≈ 86 days and T ≈ 64 days for the green and red
cycles respectively.
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Figure 11: Numerical computation of periods of orbits for varying killing rates k and the following
values of other parameters: dc = 0.3 day−1, rc = 0.001 µm−2 · day−1, and rt = 0.1 µm · day−1.
Different initial conditions V0 are chosen, whilst C0 = 9/10 C� remains fixed. The ratio V0/V�
is on the abscissa, and the corresponding period for the given rt/k is on the ordinate. Note that
as the initial condition approaches the centre, i.e. as V0/V� → 1, the period converges to the
limiting value of the small oscillations, given by 2π/ω0 (see Eq. (8)). In this example the period
is approximately 56.7 days. The way the period converges depends on the ratio rt/k, and the plot
becomes steeper and more cusp-like as rt/k approaches unity. For the limiting case rt/k = 1, the
solution is degenerate and diverges. Note also that for intersections occurring at (VI ,1) so that
VI/V� > 3

√
3≈ 5.196, periodic solutions do not exist and the tumour is eradicated.
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Figure 12: Numerical computation of periods of orbits for varying recruiting rates rc for the fol-
lowing values of other parameters: dc = 0.3 day−1, rt = 0.1 µm · day−1, and a ratio rt/k = 0.97
(see Fig. 11). Similarly to the previous Figure, different V0 are chosen, whilst C0 = 9/10 C� is
fixed. The ratio V0/V� is on the abscissa, and the corresponding period for the given value of rc
is on the ordinate, with minima occurring in the small oscillations regime at V0/V� = 1. Since the
extension of the region of existence for these curves decreases as rc increases, a value for the ratio
rt/k has been chosen so that the given range of V0/V� is in the basin of attraction. Note that the
minima occur at values of periods that increase as the rate of CTL recruitment, rc, decreases. The
scale is the same as the one in Fig. 11.
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Appendix A. Analytic solution of model equations when C(t)< 1

An analytic solution to the model equations when C(t)< 1 can be found using the
following strategy of substitutions. First, given the system

dV
dt

= ρrtV 2/3−ρkV (t)2/3C,
dC
dt

= ρrcV 2/3C−dcC,

we substitute x(t) =V (t)1/3. Given that V ′(t) = 3x2x′(t) and discarding the solu-
tion x(t) = 0, we obtain the simplified equations

dx
dt

=
1
3

ρ(rt− kC),
dC
dt

= (ρrcx2−dc)C. (A.1)

From this substitution, given that x(t) is proportional to the radius of the spherical
tumour, it is clear that the growth law is linear in the radius, as in Brú et al. [35].
From the first of these equations, an expression for C(t) can be found, which can
then be differentiated to obtain

dC
dt

=− 3
kρ

d2x
dt2 .

This expression can be substituted back into the second of Eqs (A.1), to obtain a
second-order ordinary nonlinear differential equation that describes the system:

d2x
dt2 = (ρrcx(t)2−dc)

[dx
dt
− 1

3
ρrt

]
.

It is trivial now to recast the system as two first-order equations, by defining y(t) =
x′(t)− 1

3ρrt to obtain

dx
dt

= y+
1
3

ρrt,
dy
dt

= y(ρrcx2−dc). (A.2)

These equations are generalisations of the well-known Lotka-Volterra equations,
with a third-order term in the equation for y(t)[56]. Solutions for x = x(t) and
y = y(t) exist as inverse functions of integral expression containing Lambert W
functions [45].

Using Eqs. (A.2), closed formulae for the level set curves g(x(t),y(t)) = 0 can
be obtained. Considering the equation

dy
dx

=
y

y+ 1
3ρrt

(ρrcx2−dc),
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variables can be separated and both sides of the resulting expression can be inte-
grated to obtain[

η +
1
3

ρrt log(η)

]η=y(t)

η=y0

=

[
1
3

ρrcξ
3−dcξ

]ξ=x(t)

ξ=x0

.

Recalling that the previous substitutions imply that x(t) = V (t)1/3 and y(t) =
−1

3ρkC(t), the expression in Eq. (13) is found.
A similar result for the level sets in the simpler case C(t)≥ 1 can be achieved

by integrating the analogous separable differential equation

dC
dx

=
(ρrcx2−dc)C

1
3ρ(rt− k)

,

obtained after performing the usual substitution x(t) = V (t)1/3. No substitution
for C(t) is necessary in this case. The level set curves are given by

1
3

ρ(rt− k) log(C(t))− 1
3

ρrc(V (t)−VI)+dc(V (t)1/3−V 1/3
I ) = 0, (A.3)

and can be inverted to obtain

C(t) = exp

(
1
3ρrc(V (t)−VI)−dc(V (t)1/3−V 1/3

I )
1
3ρ(rt− k)

)
, (A.4)

where VI is the V -coordinate at the intersection of the general solution with the
line C = 1 on the right side of the centre, as illustrated in Fig. 10. Note that,
for this reason, this expression does not depend on C0 or V0, as was the case in
Eq. (12).

Appendix B. Accounting for T-cell infiltration of the tumour

Although the model presented in this work assumes that the size of tumours is
small and cancers have no blood supply, T-cells may still be able to infiltrate in
between tumour cells even in the absence of blood vessels. For a partial explo-
ration of this issue we replace the factor ρkV (t)2/3 in Eq. 1, which asserts T-cell
attack proportional to tumour surface area, by kV (t), which prescribes attack pro-
portional to tumour volume. This revised model represents a limiting case with
the most effective T-cell attack. Note also that the chemical signals produced
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by the T-cells on the surface of or outside the tumour during the attack diffuse
away more easily than any produced by a T-cell that has penetrated the tumour,
so it is reasonable to retain area-dependence in the term that models the growth
of the leukocyte population. These assumptions lead to the following modified
equations:

dV
dt

= ρrtV (t)2/3− kV (t)min{1,C(t)}, (B.1)

dC
dt

= ρrcV (t)2/3C(t)−dcC(t). (B.2)

Note that k has now different units than those discussed in Table 1, but the other
parameters are unchanged. For the case of high coverage, i.e. C(t)> 1, solutions
can be found explicitly, and the tumour volume turns out to be:

V (t) =
e−kt

(
e

C1k
3 +ρrte

kρt
3

)3

k3 , (B.3)

where C1 is an integration constant that depends on the initial tumour volume
at t = 0. Note that this constant is chosen differently than the VI in Eq. (11).
Eq. (B.3) shows an exponential functional dependence on t, presents an absolute,
single minimum at finite times and is unbounded for t→ ∞.

The solution for C(t) is more elaborate, and is given by

C(t) =C2α(t)exp
[(

ρ3rc

k2 r2
t −dc

)
t
]
, (B.4)

where C2 > 0 is an integration constant, and

α(t) = exp
[
−ρrc

2k3

(
e

2
3 k(C1−t)+12 ρrt e

1
3 k(C1−t)

)]
.

Again, this is a different result to Eq. (12). At large times α(t)→ 1, and the
behavior of C(t) depends solely on the sign of the exponential in Eq. (B.4). For
values of the tumour growth parameter rt such that

rt <
k

ρ3/2

(
dc

rc

)1/2

= r∗t ,

C(t) is bounded. This condition is analogous to the condition rt < k for Eqs. (1)–
(2), providing an upper bound on the tumour growth speed for a finite solution.

38



If the coverage is smaller than 1, Eqs. (B.1)–(B.2) are not explicitly solvable, and
no strategy can be found to produce an analytic solution. Transformations similar
to those described in Appendix A are ineffective and level set curves do not exist.
In fact it turns out that, for the meaningful case rt < r∗t , a spiral is present, with
coordinates given by

(Vsp,Csp) =

((
dc

ρrc

)3/2

,
rt

k

(
rc

dc

)1/2

ρ
3/2

)
. (B.5)

If rt > r∗t no spiral (or any stable equilibrium) exists, analogously to Fig 3. If we
compare Eqs. (6) and (B.5) we see that in changing our model by replacing area-
depedent attack to volume-dependent attack, the V -coordinate of the equilibrium
point is unchanged, but the C-coordinate acquires a pre-factor ρ3/2(rc/dc)

1/2. The
eigenvalues associated with (Vsp,Csp) are given by λ1–2 = α± iω , where α = τ/2
and ω =

√
∆− τ2/4, with τ being the trace and ∆ the determinant of the Jacobian

for Eqs. (B.1)–(B.2) evaluated at (Vsp,Csp) [44] and for C(t)< 1. These quantities
are given by:

τ =−1
3

ρ
3
2

(
rc

dc

) 1
2

rt,

∆ =
2
3

ρ
3
2 (rcdc)

1
2 rt.

This equilibrium point is always a spiral, because τ < 0 due to all model param-
eters being positive. A depiction of typical orbits starting from different initial
conditions is given in Fig. B.13. There are no other equilibria present except for
the trivial, unstable, degenerate cases (V,C) = (0,0) and (V,C) = (0,(ρrt/k)3).

In conclusion, no eradication solution is present for rt < r∗t in Eqs. (B.1)–(B.2).
After a number of damped oscillations that depend on the initial conditions V (0)
and C(0) and the chosen values of parameters, the tumour volume V (t) and the
coverage C(t) reach an equilibrium and perpetually maintain the constant values
(Vsp,Csp). This scenario represents an eternally static “dormant” tumour, which
is incapable of growing or shrinking, and does not regrow [53]. Eqs. (B.1)–(B.2)
show the importance of surface terms for the successful destruction of small, solid
cancers, in the context of our model. According to this formulation, the limiting
case of a volume-proportional term for the interaction between cancer cells and
leukocytes does not produce eradication.
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Figure B.13: Example of typical solutions spiralling to (Vsp,Csp) for rt < r∗t . No eradication
solution is possible: tumours are perpetually dormant. Parameters are given by rt = 0.1 µm ·
day−1, k = 0.2 day−1, dc = 0.2 day−1, rc = 0.001 µm−2 · day−1. Note that k has different units
than those discussed in Table 1.
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