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We develop a theory of stochastic transport in disordered media, starting from a linear master equation with
random transition rates. A Green function formalism is employed to reduce the basic equation to a form
snitable for the construction of a class of effective medium approximations (EMAs). The lowest order EMA,
developed in detail here, corresponds to recent approximations proposed by Odagaki and Lax [Phys. Rev. B
24, 5284 (1981], Summerfield [Solid State Commun. 39, 401 (1981)], and Webman [Phys. Rev. Lett. 47, 1496
(1981)]. It yields an effective transition rate W, which can be identified as the memory kernel of a generalized
master equation, and used to define an associated continuous-time random walk on a uniform lattice. The
long-time behavior of the mean-squared displacement arising from an initially localized state can be found
from W, , as can diffusion constants in any case where the long-time behavior of the system is diffusive.
Detailed calculations are presented for seven lattice systems in one, two, and three dimensions, and for a
variety of probability density functions f{w) for the transitions rates. For percolation-type densities, i.e., those
with only a fraction p <1 of the bonds transmitting, the EMA predicts three distinct kinds of behavior:
localization, “fractal” transport with slower than linear growth of the mean-squared displacement, and
diffusion in the cases p <p,, p =p,, p >P.. respectively, where p_ is the bond percolation threshold of the
lattice. Depending on the form of f{w) near w = 0, critical exponents may take values independent of f{w)
(“universality”) or heavily dependent on f{w) (“nonuniversality”).

I. INTRODUCTION

The problem of stochastic transport in disordered
systems is important, in view of its relevance to the
modeling of a wide variety of phenomena in random
media, A partial list of applications includes the mi-
gration of localized excitations among guest molecules
in a host, ! hopping transport in amorphous semiconduc-
tors, 2 the quantum motion in a solid of an electron, in-
teracting with fixed impurities of a given number den-
sity, ® frequency-dependent conductivity in superionic
conductors, * electron scavenging in glasses, ° oxygen
transport in nuclear reactor fuels,® motion of electrons
in liquids, ? diffusion of nuclear magnetic spin, ® dis-
persion in flow through porous media, ° diffusion through
biological tissue, ' and transport properties of compos-
ite materials,**

A common point of departure for many theoretical
investigations of stochastic transport is the master
equation

B—;JZL =Z,:[W:;P;(f) = WuPin)], M)

which can be viewed as a description of the motion of
a particle on a lattice. Here P,(¢) denotes the probabil-
ity that the particle will be found at site ¢ at time ¢ and
Wy, is the transition rate between sites ¢ and j, fre-
quently taken to be nonzero only when sites 7 and j are
nearest neighbors. For a master equation description
to be appropriate, it is not necessary that the random
medium have lattice structure, or that the transport
process involve identifiable particles: equations of the
form (1) also arise when the problem of diffusion or
conduction in a random continuum is discretized by
finite difference or finite element means. However,
irrespective of the precise physical model, it is nec-
essary to incorporate either or both of the following
considerations into the analysis:

(i) the transition rates W,; are random variables;
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(ii) the topological structure of the lattice varies
randomly with spatial position,

Relatively little work has been done on transport pro-
cesses in topologically disordered systems. 2 In the
main, attention has centered on periodic lattices with
random transition rates, i.e., on regular lattices ran-
domly decorated. Even within this restricted context,
few exact results have been derived, notable exceptions
being confined to one-dimensional systems, !

One approach to the problem in two or more dimen-
sions is based upon an effective medium approximation
(EMA). Although its application to stochastic transport
has been suggested only very recently, *~¢ the basic
EMA idea has a long history.!” It has been extensively
used to estimate the effective properties of heteroge-
neous or composite continua, and a variant has appeared
during the last two decades in several areas of solid
state and condensed matter physics, where it is often
called the coherent potential approximation (CPA). 8
The recent popularity of EMA ideas for lattice systems
is largely due to the seminal paper of Kirkpatrick, *°
who used an EMA to describe percolation and (dc) con-
duction properties of regular lattices of random re-
sistors.

It was realized independently by Summerfield, * Web-
man, % and Odagaki and Lax'® that an EMA could be used
to describe stochastic transport governed by the master
equation (1), with symmetric transition rates (W,, = W,;)
which are independent, identically distributed random
variables with probability density function f{w). Of
particular interest to these authors was the binary dis-
tribution

S(w) =pb(w = wp) +(1 = p) b.(w) , (2)
the prototype for diffusion on a percolating lattice, and
the lattices considered were the linear chain, and the
three-dimensional simple cubic lattice,*

The perspective of Summerfield, Webman, and
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Odagaki and Lax is that of solid state physics, and is
reflected in their formalism, which closely parallels
coherent potential analyses of condensed matter prob-
lems. As an alternative view of the stochastic trans~
port problem, we present a simpler Green function
formalism, which leads to clearer derivations of their
EMA results and which is more readily generalized to
topologically disordered lattices?! and to the construc-
tion of higher order EMA’s.? We only sketch the pos-
sible generalizations here, confining our attention in the
main to a systematic investigation of the effects on the
lowest order EMA for a periodic lattice of (i) variation
in dimensionality and coordination number and (ii)
qualitative changes in the structure of the probability
density function f{w) for the transition rates, The re-
sults given by Summerfield, Webman, and Odagaki and
Lax are briefly derived within the present formalism
for completeness, We put particular emphasis on the
relation between the effective medium approximation,
master equations, generalized master equations, and
continuous-time random walks, which we use to clarify
the nature of qualitatively different types of transport
predicted by the EMA.

The paper may be summarized as follows. In Sec.
I, we develop a Green function formalism for con-
structing effective medium approximate solutions of the
master equation (1), which applies for any lattice sys-
tem, whether periodic or topologically disordered. For
a periodic lattice, the necessary Green function can be
constructed by Fourier analysis (as discussed in the
Appendix). We consider in detail the following periodic
lattice systems, which exemplify the effect of varying
the coordination number z and the dimensionality d of
the lattice:

(a) d=1: alinear chain (2=2),

(b) d=2: hexagonal (z=3), square (z=4), triangular
(z = 6)’

(¢) d=3: diamond {(z=4), simple cubic (z=6), body-
centered cubic (z =8), face-centered cubic (z=12).

For a topologically disordered lattice, such as that
generated by a Voronoi tessellation of the plane or of
space, 2 the general approach remains valid, provided
that the Green function is appropriately interpreted as
a random variable, as discussed elsewhere.?' The
Green function formalism of Sec, II emphasizes lattice
sites. Its reformulation in Sec. III to emphasize bonds
is the point of entry into the systematic construction of
EMA’s. The simplest EMA (single-bond EMA) is con-
structed by allowing the transition rate of a selected
bond to fluctuate from the characteristic rate (conduc-
tivity) W,, of a uniform lattice in which the selected
bond is embedded, and deducing a self-consistent value
for W,. This EMA corresponds to the Kirkpatrick19
EMA for the dc conductivity of a regular lattice of ran-
dom resistors. Higher order EMA’s can be constructed
by selecting several bonds, the conductivities of which
fluctuate from the uniform value. This idea has been
applied by a few authors® to the dc conductivity of regu-
lar lattices of random resistors; and will be pursued in
the present context in a future paper.?

At the single bond level, our self-consistency equation

Sahimi et al.: Stochastic transport in disordered systems

for W, is the same as that derived by Odagaki and Lax,
Summerfield and Webman, Before proceeding with the
analysis of solutions of this equation for various lattice
systems and transition rate distributions, we show in
Sec. IV how the EMA value of the effective transition
rate W, can be interpreted as the memory kernel of a
generalized master equation, thereby determining the
waiting-time distribution ¢(f) for a continuous-time
random walk on the lattice. Depending upon the long-
time behavior of Y(f), the mean-squared displacement
(R%(#)) arising from an initially localized state can be-
have as {—= in three qualitatively distinct ways:

(i) classical diffusion or conduction: (R%#))cc¢, the
proportionality constant yielding the diffusion constant
and (f) <, where {{) is the mean time between steps in
the associated continuous-time random walk;

(ii) nondiffusive conduction: (R¥(#))~ <, but (R¥¢))/
t~0 and (f)=0;

(iii) localization; (R%(f))~ constant, and the associ-
ated continuous-time random walk may freeze after any
step.

The analysis of Sec. V shows that the single-bond EMA
predicts all three types of behavior for percolationlike
distributions, i.e., distributions for which only a frac-
tion p<1 of the bonds are active (have nonzero transfer
rate). If the subdistribution of the active bonds satis-
fies a certain moment condition, we obtain universal
behavior, in the sense that certain critical exponents
are independent of the distribution, The universality
fails if the moment condition is violated. For the binary
distribution (2), the behavior of (R%¢)) below and at the
percolation threshold serves as a probe of the structure
of connected subsets (clusters) of the lattice.*® Our re-
sults are tabulated and interpreted in Sec. VI, where we
also suggest extensions of the ideas of the present paper
to more complicated systems.

H. SITE GREEN FUNCTION FORMALISM

Introduction of the Laplace Transform

Py = fo T P,(t)at (3)

reduces Eq. (1) to an algebraic system

APN) = 810= 2, [W,, P00 - W P0)] 4)
3

We restrict our attention to lattices for which W,
=0 unless sites i and j are nearest neighbors. When
W;;=W,, as is assumed here, % gq. (4) is equiv-
alent to Kirchhoff’s law for an electrical network, with
ﬁj(x) corresponding to the voltage at site j and W,; the
conductivity of the bond joining sites ¢ andj. The terms
-8, and xﬁ,(x) can be interpreted, respectively, as a
current source and an electrical connection to ground
(with A a conductivity if it is real, or an admittance if
it is complex). In the discussion of the diffusion or
conduction problem which follows, we shall frequently
resort to electrical circuit terminology, voltage being
equivalent to probability or concentration, voltage drop
or potential difference to probability or concentration
difference, and current to probability or diffusion flux.
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To facilitate solution of Eq. (4) we introduce a reference
lattice with all nearest-neighbor transition rates equal
to W°, and site occupation probabilities P(2), so that

ABYN) = 8,9 = j;;} WOBYN) - BY)] (5)

where {i} denotes the set of nearest neighbors of site 7.
As is shown in Sec. HI, the effective medium approxi-
mate solution is constructed by taking W°= W,()), the
effective transition rate of the lattice, and determining
W,(A) in a self-consistent manner. Subtracting Eqs.
(4) and (5), we obtain

B~ i = 22 {80, [B,00 - B,00]

+[2,0) =B, =- B0 - B0, (6)

where €=)/W?° and A,;=(W,,~ W%/ W’ if { and j are
nearest neighbors and zero otherwise. Equation (6)
can be rewritten in the form

(2 + ) [B0) - BYN)] - D [B,(0) = BY)]

Jelt}
== MZ” AL[B M) -2 )], (7)

where z; is the coordination number of site 7 (i.e., the
number of nearest neighbors). An associated Green
function G is defined by the equation

(2, +€)Gy, = Z Gp=—"04 . (8)
je{i}

(G, is the voltage induced at the lattice site j by unit
current injected at site 7.) Equation (7) becomes

B0y =By + j}; Gia [PV = ByM)] . (9)

The analysis so far is exact and applies to any lattice,
irrespective of dimensionality or topological structure.
For topologically disordered lattices, further progress
requires a statistical treatment of the Green function
appropriately coupled to the disorder of the lattice. 2!
However, for periodic lattices, for which all sites have
the same coordination number z, the Green functions
can be constructed explicitly by Fourier analysis (see
the Appendix).

For a simple cubic lattice in 4 dimensions (z = 2d),
which includes as special cases the usual square (z = 4)
and 3-d simple cubic (z =6) lattices, the construction
is particularly straightforward. If we label by 4 inte-
gers (m,, m,, ..., m,) the relative position of two sites
i and j on the lattice, separated by m, bond lengths along
principal axis &, then provided that Re{€}=0, ifd= 3,
and Re(€) 2 0, € #0, if d=1 or 2, a suitable Green func-
tion is

Glj = G(ml’ toey "Zd)
11~ \ fI
=——f exp[-zHz+€)] 1] L, () ds . (10)
25 e
Here I,(¢) denotes the modified Bessel function of order

v. The correctness of Eq. (10) is easily verified by
substitution into Eq. (8) and use of the identity

I8 +1,4(8) =21(8).

In one or two dimensions, the limit of Eq, (10) as
€ -~ 0 is singular, corresponding to the failure of the
Laplace transiform ﬁ,(x) to converge at A =0, while in
three or more dimensions the Green function (10) is
continuous at €=0. As is shown in the Appendix, the
singularity or continuity of the Green function as €~ 0
is determined by the dimensionality of the lattice: the
Green functions for the hexagonal and triangular lattices
diverge at the origin, while those for the face-centered
and body-centered cubic lattices and the diamond lattice
are continuous. The singular part of the Green function
Gy, for each of the two-dimensional lattices is indepen-
dent of the lattice sites ¢ and j,

A
G,,~-Eln(1/€), as €~0, (11)

where
1, for the square lattice
A=<{1/V3, for the triangular lattice . (12)
V3, for the hexagonal lattice

It will be seen that the construction of the single-bond
EMA in Sec. III involves only linear combinations of
the G;; which define functions continuous at the origin.

The continuity of the Green function in three or more
dimensions means that the steady state injection prob-
lem

2Gy~ Z Gp==04 (13)
jeld}

can be treated as the small A limit of the general time-
dependent problem defined by Eq. (9). However, for
one or two dimensions, one should in principle treat
the steady state problem separately. A Green function
for Eq. (13) can be constructed from the Green function
of Eq. (8) by subtracting G,, and letting ¢~ 0. For ex-
ample, the time-dependent Green function for the square
lattice

Gy ma) == [ exp(- 24N LoD Lyt (10

can be replaced, for € =0, by the Green function

Gy, me) =5 [ expl= 20) [130) =y Dbyt

(15)
The qualitative difference between the cases d <2 and
d >3 in the present context reflects a characteristic
difference between stochastic processes in low and
higher dimensional systems which is well known in other
contexts, Po6lya’s random walk?’ on a d-dimensional
cubic lattice provides an example. The Green function
for Polya’s walk is, apart from minor notational dif-
ferences, given by Eq. (10). For sufficiently low di-
mensionality (d=1 or d=2), the divergence of the
Green function at € =0 establishes that the walker must
return to the origin, while its finiteness for d= 3 en-
sures that the walk is transient, i.e., the walker need
not return to the origin and will ultimately escape to
infinity.
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I1l. BOND GREEN FUNCTION FORMALISM AND THE
SINGLE-BOND EMA

The electrical circuit analogy suggests that it may be
useful to work in terms of the difference in B between
neighboring sites, rather than the values of D at the
sites themselves. Let @, ;1) denote the “voltage drop”
across the nearest-neighbor link i~j, i.e.,

FFINETANES F VN (16)
so that §,,(\)=-@;;(A). Then Eq. (9) becomes

éi,»(x) = é?j()\) + z,:zk: sz(A)Axk(Giz -Gy, (17)

so that
3,00 =8%,00) + ;} M@ M) (G +Gp= Gy = Gp),  (18)

where [Ik] means that the bond connecting nearest-neigh-
bor sites I and k is counted only once. We denote bonds
with Greek letters and assign directions to them and let

YasZ (G +Gyp) = (G + Gyy) (19)

be a bond—bond Green function, ® where 7 and I (j and
k) are lattice sites with tails (heads) of arrows on bond
« and B respectively. Unlike the site—site Green func-
tion G;,, the bond-bond Green function 7,5 is not singu-
lar in one or two dimensions when € - 0. Equation (18)
can be written as
Qa0 =050+ 22 Agvassl) - (20)

The effective transition rate (conductivity) for the lat-
tice, denoted by W,, can be defined by the following
algorithm. Define the reference lattice such that W,
= W? and solve Eq. (20) for an arbitrary set of individual
transition rates, i.e., for arbitrary Ag. Select any
bond @ and require that

@ ~Q%)-=0,

where { ). denotes the average over all possible transi-
tion rates of all bonds. The condition (21) requires that
the fluctuation in the voltage drop across bond o from
its value for the reference lattice should vanish on the
average and leads to a self-consistent determination of
W,. (The W, so obtained is a function of A, and though
we refer to it here loosely as an effective transition
rate, it has the significance of a memory kernel in a
genevalized mastev equation, as discussed below.)

(21)

Such an algorithm cannot be implemented in practice.
As an approximation, however, one may assign to all
but a finite number of bonds in the lattice the transition
rate W, (so that Ag#0 only for a finite number of bonds),
and proceed as above, now averaging over the conduc-
tivities of a finite number of bonds to determine W,
self-consistently. To obtain rapid convergence with
increasing cluster size to the infinite system result,
it is important to choose a suitably symmetrical cluster
of bonds whose transition rates are to be allowed to
fluctuate from W,. These matters are discussed in
detail elsewhere.? For the present, we consider only
the simplest case, in which only a single bond (a) has
transition rate W differing from W,. Equation (20) re-
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duces to
=G\ . (22)

We now average over all possible values of W, requiring
that (Q 1)) =@%(%), i.e., the voltage fluctuation induced
by W differing from W, is to vanish on the average. A
self-consistent determination of W, results:

1
—_y =1,
<1-yomArx>

(The same equation is obtained here if a different self-
consistency condition is imposed, viz., that the fluctua-
tion in current is to vanish: (WoQ.) = W,Q%.) It remains
only to specify the lattice (to determine v,,) and the
transition rate distribution f(w). For the periodic lat-
tices considered in the present paper, it may be easily
shown [using Egs. (19) and {(A23)] that

(23)

Yoo =~ 2/2+(2€/2)G(¢) , (24)
where
S(e)==G;;>0, (25)

with 7 the site at which the right-hand side of Eq. (8) is
nonzero, i.e., the site of current injection, in the elec-
trical terminology. Equation (23) has been derived re-
cently by Webman, '* Summerfield, ** and Odagaki and
Lax'® using different techniques. *2

IV. RELATION BETWEEN THE EMA, GENERALIZED
MASTER EQUATIONS, AND CONTINUOUS-TIME
RANDOM WALKS

Before examining particular lattices and distributions,
we examine which properties of W (\) are needed to
characterize the transport process. Replacing W;; in
the Laplace transformed master equation (4) by W,(2)
gives

AB{(N) = B10= W,(N) ;} (B,0) - B(V] (26)
jeli
and, inverting the Laplace transform, we find
8P; ¢
P> [ Wt =7y [P A7) = Py)]ar . (27)

jeli} <0

Thus, if we can determine the effective transition rate
W,{(\) exactly, we can replace the master equation (1)
for a lattice with random transition rates by the gener-
alized master equation (27) for a lattice with uniform
memory kernels W,(£)=£™ W, (1). In practice, since
W_()) is determined here only implicitly through Eq.
(21), an equation which we can usually only solve ap-
proximately (via the EMA), we are only able to derive
an approximate generalized master equation,®! Before
we address the specific predictions of the EMA-based
generalized master equation, we recall that the kinds
of stochastic behavior which can be described by equa-
tions of the form (27) are more varied than those de~
scribable by the memoryless equation

9

—&:const. Z [Pty - Py1)] .

28
ot i) 28)

It has been shown by Kenkre et al.? that a general-
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ized master equation for a periodic lattice, of the form
-}
a7 PL D)

1
- [ arsie-n2 {p1-1) P, 1) = p =) P, T,
0 1 (29)

can be put into a one-to-one correspondence with a con-
tinuous-time random walk®® on the same lattice, with
transition probability p(1-1') for a displacement from
site 1’ to site 1, and a waiting time density ¥(#) describ-
ing the time between steps.®! The relation between (£)
and the time-dependent part ¢(¢) of the memory kernel
in the generalized master equation is most simply ex-
pressed in Laplace transform space:

-~

o)

P(A) A0 (30)

If we restrict our attention to periodic lattices, with
lattice sites defined by position vectors 1 and motion
commencing from the site 1=0, we have

AP, =010= W) 2 BN ~PU L. G1)
' &

We may choose to analyze this equation as a generalized

master equation, or (in view of the result of Kenkre

et al.?®) we may consider the equivalent continuous-time

random walk, characterized by a waiting time density

Y(2), with
2w

ey TA+2W,(0) (32)

(where z is the coordination number of the lattice). We
now apply a discrete Fourier transform to Eq. (31), with

B, A)= 2 exp(ik - 1) B(1, A) (33)
1
so that
Pk, \) ={x+ 2 W,(0) [1 - AT, (34)
where
Ak =(1/2) 2 explik- (1 ~D)] (35)

is the structure function of the lattice?” and z is the co-
ordination number. The Laplace transform of the mean-
squared displacement at time ¢ is

S{R¥e); t=2}= 2 12B(1, ) (36)
1

== VEP(K,A) | g0 (37)

and if the bonds of the lattice all have unit length we
easily see that V,A(k)=0 and ~ VEA(k)=1 at k=0, It
follows that

RAY =L 2/ 2D W,} . (38)

The long-time behavior of (R%(?)) can be inferred from
the behavior of its Laplace transform in the neighbor-
hood of the origin® and will therefore depend on the be-
havior of W,(1) as A~ 0. In view of Eq. (32), the small
A behavior of W, (1) determines the long-time behavior
of the waiting time density for the associated continu-
ous-time random walk. We consider three distinct
cases for the behavior of W,(x) as A -~ 0"

6853

(i) WnA)=C, a constant. Since £}(A?)=¢, we then
have (R¥t)) ~2Ct as t~=, and so there is macroscopic
transport or conduction. Moreover, this transport is
diffusive in character for sufficiently large times,
since the fundamental solution of the continuum diffusion
equation 8p/9¢=DV% in d dimensions gives (R¥#))
=2dDt¢, and we may identify the diffusion constant as

D=(z/2d)C . (39)
Any memory kernel for which [ Wm(t) dt=C will give
W,(A)~C as A~ 0" [including the cases W,(t)
=Caexp(— af) and W, (#) = C3,(¢); in the latter case the
generalized master equation (27) reduces to the usual
master equation (28)].

(i) W,(A)~Cx, C constant. Since £x"1)=1, we
have (R%#))~zC. In this case there is no macroscopic
conduction and the motion is confined for all times to
a finite region of the lattice. It is not possible to find
a non-negative continuous function Dflm(t) for which W, ()
~Cx as A—0". However, we are able to generate this
asymptotic behavior from oscillating memory kernels
such as

W,(#)=Co?cos wt , (40)
from memory kernels which change sign a finite number
of times and decay at large times, such as

W, (#) = Ca?(1 - at) exp(- at) , (41)

and from any memory kernel of the form W, (¢) =7 "(¢)
+f(#), where f(t)~ 0 as t—« and
f0) = fo Andt=C . (42)

(iii) W,(x)=0, but W,{r)/x~. In this case, we
have {R%#))~», so that there is conduction, but this
conduction is not diffusive in character, since ®R%))
grows with time more slowly than ¢. If we attempt to
write (R%(#)) ~2dDt, we are forced to conclude that the
“diffusion constant” D is a function of time which decays
at long times. We consider an example:

W,(A)~C\%, 0<a<l, (43)
Since
£-1 {Aa-Z}z r(z - a)-l ti-a (44)

(where I" denotes the usual gamma function), we find
that

(R ~{Cz/T(2 - a)} ' . (45)

A memory kernel yielding the value a =3 may be in-
ferred from the Laplace transform pair®®

avT \/_
(46)

A clear physical interpretation of these three distinct
cases is possible, using the correspondence between
generalized master equations and continuous-time ran-
dom walks. It follows from Eq. (32) that:

- . 1, in cases (i) and (iii)z
- arwior=1im dov - (47)

1:2C in case (ii) S .
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In cases (i) and (iii), the random walk will never stop,
since if the walker arrives at lattice site 1, he is cer-
tain to leave it at some subsequent time. On the other
hand, in case (ii), there is a finite probability (1 + 2C)™!
that a walker arriving at a site 1 never leaves it. In-
deed, the probability that precisely » steps are taken in
the entire history of the random walk is (zCY(1+C)Y™?,
a rapidly decaying function of », and the mean number
of steps taken is

Z{ n(zCY'(1+2C)™ " =zC . (48)

ne
There is a striking difference between the character
of ¥{¢) in cases (i) and (iii). In case (i),

$(2) ~1 - (2C)™ A + higher terms, (49)
while in case (jiii), if W,(A)~ CA* then
$(A)~1 = (2C)" A" 4 higher terms . (50)

It can be shown for arbitrary ¥(#) that if the mean time
between jumps

(t>=f0 w(t) dt (51)
is finite, then
P(A) =1 = (D \ +higher terms, (52)

so that in case (i), ) is finite, while in case (iii) {#)
=o_ It is readily established® that a waiting~time dis-
tribution ¥(¢) for which

p(t)~{zC|T(a - 1)|F1% 2, ast-=(0<a<l) (53)

gives rise to the asymptotic behavior specified by Eq.
(50). Such “long-tailed” waiting time distributions have
been used in continuous-time random walk models of
charge transport in xerographic films? and can be re-
lated® to sets of fractal dimension® and real-space
renormalization group transformations.?’ We shall
call transport described by such distributions “fractal”,
1t should be noted that although the occurrence of an in-
finite mean time between jumps in case (iii) may be in-
terpreted as a kind of freezing of motion, it does not
represent genuine localization. The median time be-
tween jumps is finite, We now show that within the
single-bond EMA all three types of stochastic motion
{diffusive, terminating, and fractal) arise, depending
on the dimensionality of the system and the structure of
the transition rate distribution Aw).

V. PREDICTIONS OF THE SINGLE-BOND EMA FOR
PERIODIC LATTICES

For any distribution f{w) of transition rates, the sin-
gle-bond EMA is, from Egs. (23) and (24),

7 f(w)dw )
fo 1‘9c+17c€9(€)+pcﬁ-eg(e)}(w/wm)—l ’ (54)
where € =1/ W,(\) and we have defined

b.= 2/2 . (55)

The quantity p, is the single-bond effective medium ap-
proximation to the bond percolation threshold!® of a lat-
tice with coordination number z. As we shall shortly
demonstrate, if the inactive bond fraction

"
1—p=}’i_r51 J; Aw)dw (56)

is nonzero, i.e.,
flw) =(1 = p) 3 (w) + ph(w) , (57)

where %{w) has no generalized function component at

the origin, then qualitatively different behavior is ob-
tained for the three regimes 0<p<p,, p=p. P.<P<1.
The quantity p represents the relative abundance of
bonds which are active. We call Eq. (57) a percolation-
like distribution because it leads [as does the binary
distribution (2)] to a percolation threshold in dc conduc-
tion., Using the EMA, Kogut and Straley®® have con-
sidered the dc conductivity of regular lattices of random
resistors, with a conductivity distribution of the form
(57), and found that there is a striking difference in be-
havior of the effective conductivity when p is near p,
depending on whether

By fo -’l—(%i”ﬂ (58)

is finite or infinite. If _, is finite, “universal” results
are obtained, i.e., certain critical exponents take val-
ues independent of Z{w). However, if s, =, the criti-
cal exponents depend heavily on the behavior of k(w) as
w—0*. This result has also been obtained for dc con-
ductivity, using renormalization group techniques, by
Ben-Mizrahi and Bergman.*® We shall exhibit analogous
results for stochastic transport.

For a distribution with all bonds active (i.e., p=1),
we see that so long as z> 2 (i.e., in two or more di-
mensions), *® it is a direct consequence of Eq. (54) that
W, ()=~ W,(0), a constant, as A —0", where W,(0) is the
solution of

- Aw)dw .
fo L= pe+potof Wn(0) ™ 1. (59)

Thus, if the lattice has dimension d> 2, for any transi-
tion rate distribution with all bonds active, the long-time
behavior of the system is diffusive, with the diffusion
constant D determined by Eq. (59) and the relation D
=(2/2d)W,(0) [Eq. (39)].

We now turn to 2 more detailed analysis of the cases
in which diffusive behavior is not guaranteed on general
grounds: the one-dimensional lattice, and percolation-
like transition rate probability densities in higher di-
mensions. In the analysis we frequently employ Tauber-
ian theorems® for the determination of the long-time
behavior of functions from the small A behavior of their
Laplace transforms. We also employ well-known meth-
ods for the asymptotic solution of transcendental equa-
tions.® Most of the details are straightforward, and
are consequently omitted.

A. The linear chain (d=1)

For a linear chain, p.=1 and Eq. (54) reduces to

) flw)dw )
fo € S(e)+[1 ~€ S()](w/W,) 1, (60)

where [see the Appendix]

J. Chem. Phys., Vol. 78, No. 11, 1 June 1983

Downloaded 07 Jun 2007 to 128.250.49.72. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Sahimi et al.: Stochastic transport in disordered systems 6855

gle)=€V2[4+e]V2 (61)

We consider first the case when all bonds are active
(p=1). Solong as

Ja= ]; ﬁw;)}ﬂ (62)

is finite, then as A= 0"
Wa(X) =~ Wo(0) =(1/1.1) , (63)

and we have diffusion as ¢+, with diffusion constant
D=(1/f.;). On the other hand, if f., =%, we have as
A=-0°

WM(A)L §A17zf(ﬁ1’l:,,)(i;‘;’z+w~1 . (64)

If f(w)~A0)[0< A0)<»] as w—0*, we deduce from Eq.
(64) that

RO W () In{22/2 W, (1) 2} ~1 (65)
and so

Wo(2)~2{A0)In(A)}! . (66)
In this case the system evolves nondiffusively:

RN ~{2/A0)} /¢, (67)

and the mean time between steps for the associated con-
tinuous-time random walk is infinite [the integral (51)
being logarithmically divergent]. To deduce Eq. (67)
from Eq. (66) we have used Eq. (38) and a Tauberian
theorem. If f(w)~cw *(0<a<l)as w-0", we find that

sin 7o 2/ (2-x) _
Wm(h)...{_z_a_c_ﬂ_} )\a/(a o ) , (68)
and
(RZ(t»‘xt(z-Za)/(z-a) R (69)

Equations (67) and (69) have been given previously by
Alexander ef al.*' Their analysis establishes that these
asymptotic forms are exact. Odagaki and Lax*? have
previously presented some of the above results in their
CPA analysis of ac conductivity of random linear
chains. We conclude that the system is diffusive
[(R%(#))/t ~ constant] only if f(w) vanishes sufficiently
rapidly as w— 0%, with fractal transport occurring oth-
erwise,

If p<1, i.e., if a fraction of the bonds are inactive,
we find in place of Eq. (60), the equation

o Ww) dw _p=1+€5(¢€)
"fo @ -es@lw/Wy - <st > (0

with 2(w) defined by Eq. (57). There can be no long-
range transport, since the existence of a single inac-
tive bond “breaks the circuit”. Motion must therefore
be localized and we recall that this requires W,())
~k™\, as A= 0* (with x constant). We insert this as-
ymptotic form into Eq. (70) and obtain

R "" hw)dw _Pp—=1+kS(x)
PR .{ AG(k) +[1 = kS(x)w Kk G(x)

For any distribution #(w), the left-hand side of Eq. (71)
approaches zero as A~ 0%, and so the right-hand side
must vanish identically. This gives an equation for «:

Y

kG(k)=1-p. (72)
This equation may be solved exactly, giving

WalX) ~2 (2 = p) (1 = p) 2 (73)
and

lim R¥)=2p(2-p)(1-p)" . (74)

These results have been derived previously for the bi-
nary distribution (2) by Odagaki and Lax.'® We have
shown that they continue to hold for a general distribu-
tion A#(w) of the transition rates of active bonds. This
is to be expected, since lim,. . R¥*(#))=3p(2 ~p)(1-p)*
reflects the mean size of clusters (subsets of the lat-
tice connected by active bonds), which is a purely topo-
logical property. However, if %_, =, the first correc-
tions to Eqs. (73) and (74) will be heavily distribution
dependent.

B. Percolationlike distributions in two and three
dimensions

It has been shown above that in two or more dimen-
sions, the ultimate behavior of the system is diffusive
if the distribution of transition rate is nonpercolative
(i.e., p=1). We now examine a general percolationlike
distribution of the form (57), with p<1. Equation (54)
becomes

j"’ w)dw
P Sy 1o, 15 SO +p 11 =€ SO w0/ W)

TT-perepS() (79)

We pose the general question: under what circumstances
will the three distinct types of transport discussed in
Sec. IV be predicted by Eq. (75)? Consider first the
case of diffusive transport, where W (\)— W, (0)>0 as
A—~0", Since

(A/47m) [In(1/€)], in two dimensions,
G(e)~ { } ’

const., in three dimensions,
as €~0", (76)

we see that as A~ 0" [implying that € ~x/W,(0)] Eq. (75)
vields

= h(w)dw _p_pj
Wi OW/20 [ oo - ()

Solutions of Eq. (77) with W,_(0)> 0 are possible if and
only if p>p.. We see, therefore, that diffusion is ob-
tained after sufficiently long times only above the perco-
lation threshold. The value of W,(0) (and so of the dif-
fusion constant) decreases as p—~p, from above, a prop-
erty which we shall explore in more detail below for the
binary distribution. If z_;, defined by Eq. (58), is finite,
then

~ P"pc
Wm(o) h_l(l _pc),

whereas if #_; =<, nonuniversal behavior occurs as
p—~b., the asymptotic form of W,(0) depending on the
behavior of #(w) near w=0. Arguments similar to

asp-p;, (78)
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those used above in finding the X dependence of W,(A)
in one dimension may be used to show that:

(i) H{w)~hy> 0 implies

W,(0) ~{g(1 = p)}™ (p — pe)/1n{[p - p 17} 5 (79)
(it) h(w)~cw™ (0< a<1) implies
. sin(na) 1/ (1-a) (p _Pc)l/(l-a) . (80)
Wa(©) { cnps } (1=

We consider next the case of localization, i.e., (R¥t))
bounded as £~ =, or in the continuous-time random walk
interpretation [ ¢(£)dt<1. This requires W,(A)x]A, as
x—0'. To seek such solutions, we write

W, (A)~kI\, as ) ~0* . (81)

To determine x, we note that to leading order Eq. (75)
becomes
“ Kw)dw
Mo/ |
®/29) ), 7B~ pev b SOOT #lL = K GO0
D=Dctpek S(x)

T=po+pex §() (82)
and for the asymptotic behavior (81) to be obtained the
right-hand side of Eq. (82) must vanish identically,
i.e.,

kG(K)=(1=~p/b,) . (83)

This equation has positive solutions only below the per-
colation threshold. We cannot solve Eq. (83) for « ex-
plicitly, but the asymptotic behavior of k as p - p; is
easily obtained:

(a) in two dimensions, G(x)~(4/47)In(1/k), as x~0,
so that

Wa(X) ~(A/4m) (1 = p/p) In{(1 - p/pcY I\ 5 (84)

(b) in three dimensions, G(x)— G(0)<>, as k=0, so
that

W, (A)~S(0)[1-p/p. I . (85)

As in one dimension, we find leading order results in-
dependent of the distribution A(w) of active bond transi-
tion rates. In particular, close to the percolation
threshold,

Lim (R(t)) ~(2A/4m) (1 - p/pc) {In(1 - p/p)"}  (86)
in two dimensions, and

lim R¥ ) ~2$(0)(1=p/p)™! (87)

in three dimensions.

We have shown that for percolation-type distributions
in two or three dimensions, the single-bond EMA pre-
dicts localization if and only if p<p., and diffusion if
and only if p> p.. As we now show, the remaining type
of stochastic behavior, fractal transport, is predicted
at the percolation threshold (p =p.). It may be recalled
from Sec. IV that for fractal transport W,(A\)~0, as
A ~0* with € =2/ W,(A\)~ 0, and (R¥#)) grows with time
more slowly than linearly, while the waiting time dis-
tribution #(#) for the associated continuous-time random
walk is long tailed, ({f)=). Setting p=p, in Eq. (75),
we find as A —~ 07,

- h{(w) dw oA/ WS [ W]
KON i arper T
If k., is finite, we obtain from Eq. (88),

2. DA SV We(M)]
O (®9)

and we have universal behavior, i.e., qualitative be-
havior determined by the dimensionality of the system,
independent of the structure of 2(w). In three (or high-
er) dimensions, G(0) is finite, and we obtain

1/2
Wi(2) ~{(T”f%i%2:} Az, (90)

and so at large times

2 1/2
(R¥(t)) ~ ﬁz{%ﬁ—%’%:} U (91)

and the associated continuous-time random walk has a
waiting time distribution

O A S (92)
In two dimensions, using Eq. (11) we see that
SO Wa(X) ~(A/47) In( W, (X)/A) (93)

and Eq. (89) may be solved asymptotically using stan-
dard techniques®® to give

_§ Ap.Imr vz
ORI o
I Ae Int 1/2 1/2
and
P(H =3 Ve, (96)

If B{w)—~ k> 0, as w—0°, Eq. (88) gives

BoWo) )} - LN FAlUSO WAL (g7

and so

Ap A In(Wp/A)

arhgl-p.) ° in two dimensions
0\t~ Fe

WM In{ W, (1)} ~ (98)

S(0)pA

ll-py) in three dimensions
N T Ve

(99)
and we find weakly nonuniversal behavior

~ AP A 1/2
Wm()\) {47Th0(1 -pc)}

in two dimensions, and
29(0) A 1/2
W ~ ____EG___
- {ho(l =Py m(m)}

in three dimensions. The corresponding asymptotic
forms of (R*(¢)} and ¢(¢) as ¢~ are

(100)

(101)

(Rt 2 Yyt 2 (102)
in two dimensions, and
R¥ )= HInH™E, Pt/ ¥(ng)/2 (103)

in three dimensions. More strongly nonuniversal be-
havior is found if we take h(w)~cw™, as w—-0*, O<a<l.
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In this case, it can be shown from Eq. (88) that

T APSV W)

c WM(A)Z {( 1- pc) Wm(h)/pc}-a

sin(ra) 1-p, ’
(104)
and so
_{(1 = o)A sin(ma) ]!/ @
W) { Z-a) 4?‘0 }
{1~a)/ 2-00)
x {1—{1[)—} (A In1/x)/ (2o (105)

in two dimensions, and

g(0) sin(woz)}”‘z""’ { be

~ 1/(2=a)
W) { = Ty X

}(l-a)/(z-a)

(106)
in three dimensions. The mean-squared displacements
at long times are given by

ch(t)) < t(l-u)/ (2-a) (In }f)l/ (2-a)
and
<R2(t)> o« t(l-a)/ (2-a)

in two dimensions (107)

in three dimensions . (108)

C. The binary distribution

We now examine the binary distribution (2) (for which
k.1 =1/w,) in more detail. Equation (75) reduces to

W0}/ 10y = B LatBeE HE)

- 1 _pc+pc€ 9(6) ’ (109)
and in the dc limit (¢ - 0) gives
Wm(o)/wo=(i’ 'Pc)/(l _pc) ’ if bZpe (110)

which is Kirkpatrick’s result'® for the EMA theory of
dc conductivity of periodic lattices of random resistors.

To estimate the time scale on which diffusive motion
is fully developed (i.e., (R¥{#))/¢= constant), we analyze
the first order correction to W,{}) as x ~ 0" above the
percolation threshold. For two-dimensional lattices
we find [using Eq. (11)]

_wgp=pd) f. Apl-p) [ 1
P00 {1* e [(p—pf

“wer) e (] -}

Equation (111) is correct (within the EMA) when inter-
preted as an asymptotic expansion of W,(x), as x—0’,

(111)

{1-(1-p)r

with w, and p — p.> 0 held fixed. It is numerically ac-
curate only when

W wo(p = pe)?Hnfwg(p - p)/A} <1 .
In three dimensions the asymptotic expansion is

~’w(P-2L) pc(l_Pc)
W) ("1_ S {1+ o

(112)

% 1 _ 1
[(p-ﬁz (l_pc)(p _pc)

]9(0)A+~"} . {113)

For any fixed values of w, and p — p,, the term linear in
A is negligible compared to the constant term when

A<Lwy(p—p)E . (114)

If, in addition to Eq. (110), we also have p - p, <1, we
obtain the simpler equation

Wm(k)gw {1

(1=p0 | Twolp-p.)°

Ll =pg) GO + - } . (115)
A special case of Eq. (115), appropriate for the simple
cubic lattice, has been given by Webman.'® [We correct
a minor error in his Eq. (20) for W,(\) when p> p, and
A <<wy(p - po)e: replace his a=2 §(0) by $(0). ]

The inequalities (112) and (114) define a natural time
scale 7, such that motion is diffusive when #> 7, where

{Two(f) -pc)z}-l In{TwO[p _pc]}z 1 (116)
in two dimensions and
woT(p = p)2=1 (117)

in three dimensions, This time scale 7 diverges as
p—p:. The long-time behavior implied by Eqs. (111)
and (113) is

%f—(%l #H1+0( 1n )}

in two dimensions

R¥(t)) ~ (118)
%‘;ﬁl H1+0(t™"} in three dimensions .
: (119)

The diffusion constant vanishes linearly with p - p, {as
we established above [Eq. (78) [} for a general percola-
tionlike distribution. ’

Below the percolation threshold, we note that in one
dimension, Eq. (109) can be solved exactly, giving

- _bR2-pi A
W) < T N B B+ sl PRV A=A {‘ " Sl = o) *""‘3’} - 120

This result has been given by Odagaki and Lax.® In two
or more dimensions, we can determine the ©(\) term
by writing ™' =1im,_ , W,(1)/A and making the expansion
S(€)~S(k)+S'(k)(€ =k)+-++. We find that

Wa) =k {1 - i =p)

KwepAS (k) + k§'(x)} + e(hz)} >

(121)

where « is the solution of Eq. (83). In particular, near

Pe; We note from Eq. (85) that in three dimensions

wo(ﬁc —[T)T

[An analogous formula has been given by Webman!® for
the simple cubic lattice.] The stochastic evolution of
the system approaches equilibrium when ¢> 7, with 7
defined by Eq. (117).
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Vi. DISCUSSION

In the present paper, we address the problem of
stochastic transport in disordered systems, a problem
of wide interest in both the pure and the applied sciences.
Our starting point is the discrete linear master equa-
tion (1), with the transition rates W;; (= W,,) between
nearest-neighbor sites randomly distributed, with
probability density function f(w), and our goal is the
determination of the effective properties of the system,
embodied in a characteristic rate or conductivity W,,.

A Green function formalism, developed in Sec. II, re-
duces the master equation to a form suitable for the
development of a class of effective medium approxima-
tions (EMA’s), both for periodic and topologically dis-
ordered lattices. We consider here in detail only peri-
odic lattices and develop the simplest EMA (single-bond
EMA). In the single-bond EMA, only the statistical
distribution of transition rates of one bond of the lattice
is taken into account. The remaining bonds of the lat-
tice are assigned the transition rate W, and W, is then
determined self-consistently, as discussed in Sec. IIL.

It is important to realize that although the quantity
W,, so determined is independent of spatial position, it
must contain some time dependence. To see this, we
need only consider the most naive approximate analysis
of the master equation, in which all of the transition
rates W,;; are replaced by a single, constant transition
rate W [such as the mean rate [ wf(w)dw]. The re-
sulting equation is a discretization of the diffusion equa-
tion for a uniform system and so can predict only dif-
fusive behavior, Consider a distribution of transition
rates which is percolationlike, i.e., only a fraction
p<1 of all bonds of the lattice are active (have W,,;>0).
We know from percolation theory that if p lies below a
critical value p. (the percolation threshold, determined
solely by the lattice topology), no connected paths of
active bonds span the lattice, and so diffusion or any
long-ranged transport is precluded and the approxima-

TABLE 1.
{(d), and coordination number (z).

Sahimi et al.: Stochastic transport in disordered systems

tion fails. When (as in Secs. II and IlI) the analysis is
performed in Laplace transform space, these difficul-
ties are automatically circumvented. The effective
transition rate is then a function W_()\) of the Laplace
transform variable A, and is shown in Sec. IV to cor-
respond in the time domain to a function W,,,(t), which
is the memory kernel for a generalized master equation
describing the evolution of the system. Given as an
initial condition complete localization at a specified lat-
tice site, W,()) determines the mean-squared displace-
ment (R%(¢)) at subsequent times; it also determines the
waiting-time density §(¢) for an associated continuous-
time random walk description of the evolution of the
system.

In Sec. V, we give a detailed analysis of the predic-
tions of the single-bond EMA for eight different lattice
systems. We pay particular attention to the qualitatively
distinct behavior generated by several different classes
of transition rate probability density functions flw). We
recover results obtained by other authors using different
formalisms'*~'®* and give a number of extensions, em-
phasizing the restrictions on f{w) necessary to obtain
universal behavior [critical exponents and asymptotic
forms independent of the structure of Aw)].

Many of our results are summarized in Tables I-IV,
Table I lists the eight periodic lattices considered in
the present paper, illustrating some effects of variation
of dimensionality 4 and coordination number z. A key
mathematical quantity G(€) (defined in terms of the
Green function of the lattice) determines most of the
qualitative features of the stochastic transport, through
its asymptotic form as € = 0. The asymptotic form de-
pends strongly on the dimensionality d of the lattice, but
only weakly on the coordination number z. If p denotes
the fraction of all bonds which are active [Eq. (56)], the
single-bond EMA gives the approximate value 2/z for
the bond percolation threshold p, of the lattice, with
qualitatively different behavior according as 0<p<p,,

Summary of EMA results for topologically ordered lattices, as afunction of dimensionality

d Lattice z EMA p,.=2/z Exact p, Gle)=—=G,(€)
1 linear chain 2 1 1,0000 M2 gre)ilz
2 hexagonal 3 2/3 0.6527% A=V3 G(€) ~(4/4m1n(1/€),
square 4 1/2 0.5000% A=1 as €— 0"
triangular 6 1/3 0.3473% A=1A3
3 diamond 4 1/2 0.388° G(0)=0,44822°
simple cubic 6 1/3 0, 2495° G(0) =0, 252 73f Gle)— G(0) < =,
body-centered 8 1/4 0,178 G(0)=0,17415¢ as e—0*
cubic
face-centered 12 1/6 0,119 G(0)=0,112 06!
cubic

2Exact values (Ref. 67); hexagonal 1 —2sin(7/18), square 1/2, triangular 2 sin(7/18),

PNumerical estimate (Ref, 68).
°Numerical estimate (Ref, 69).
dNumerical estimate (Ref. 70).
®From Ref. 58,

fFrom Egs. (A25)—(A27).

J. Chem. Phys., Vol. 78, No. 11, 1 June 1983

Downloaded 07 Jun 2007 to 128.250.49.72. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Sahimi et al.: Stochastic transport in disordered systems

TABLE II. EMA prediction of behavior of lim,. , (RX¢)), as
p—pe. (The one-dimensional result is correct for 0<p<p.=1;
the two- and three-dimensional results are the leading terms
of asymptotic expansions.)

d 1 2 3
lim (R%(9)) p(2—p) zAIo{(1—p/p)"} z25(0)
tne 2(1 -pp? T 4x(1-p7p) (1-p/p)

P=pe Or p.<p<1l, One measure of the accuracy of

the single-bond EMA is the degree of precision with
which known values of p, are reproduced. In one and
two dimensions, exact values of p, are known, and we
see from Table I that the EMA returns the exact value
of p. for the linear chain and square lattice and quite
good approximations for the hexagonal and triangular
lattices. The discrepancy is larger in three dimen-
sions, " where numerical estimates of the correct value
of p, are available, and p, is well approximated by 1.5/
2.9 However, the single-bond EMA correctly predicts
that the value of p. decreases as the coordination num-
ber increases. These observations, together with evi-
dence** * that the critical exponent ¢, for dc conductivity
[conductivity «(p - p,)*, as p—~p.] is better approximated
by effective medium theories in two dimensions than in
three, 2 guggests that the single-bond EMA of the pres-
ent paper should follow the exact result more closely in
two dimensions than in three. Some exact analysis for
the one-dimensional problem* %47 contirms the ex-
cellence of the EMA in one dimension; the long-time
behavior of the mean-squared displacement is exactly
reproduced. *

We demonstrate in Sec. V that in two or more di-
mensions, the EMA predicts ultimately diffusive be-
havior when all bonds are active (have nonzero transi-
tion rate). To obtain qualitatively different behavior,
it is necessary to turn to one-dimensional lattices, or
to percolationlike distributions with only a fraction
p<1 of all bonds active Aw)=(1 -p)5,(w)+ph{w). In
the latter case, with (R%)) the mean-squared displace-
ment at time £, we find in two or three dimensions that
as ¢t~

(i) (R%¢))~ constant, if p<p, (localization),

(ii) (RY(#)—~ o, but (R¥#))/t~0, if p=p, (fractal
transport),

(iii) R¥H)t, if p>p, (diffusion).

The existence of both diffusive and nondiffusive behavior
in one dimension when p =1 [depending on the structure
of f{w)] arises from the coincidence of the percolation
threshold (where for d > 2 there is no diffusion) with
unity (where for d> 2 there is diffusion).

6859

TABLE IV. EMA prediction of ultimate growth with time of
(R¥()) for p=p, (all multiplicative constants have been omitted).

hw) ~cw™ as w— 0 (0<a<1)
200/ (2-a)

hy<o h(w)"’hg as w— 0
¢ t/Int
tx/z (Int)llz tl/Z

tl/z t“z(lnt)‘”z

i )/(2-0)(1[1 t)l/(z-a)

w o A

i1=a)/ (2ea)

Table II shows the behavior of the equilibrium mean-
squared displacement (lim,. ., (R%¢))) as p~p;. This
behavior is, to leading order, independent of the struc-
ture of the probability density function 2(w) for the
transition rates of active bonds. It reflects the growth
in mean size of clusters (subsets of the lattice connected
by active bonds) as the percolation threshold is ap-
proached. The clusters grow more rapidly in low di-
mensions, for reasons similar to those underlying
Pélya’s theorem (Sec. III) on the change with dimension
of the qualitative behavior of random walks: it is easier
for growing clusters to find each other in a low dimen-
sional space.

Above the percolation threshold (p> p,, d=2 or d=3),
the EMA predicts diffusion at large times, (R*(#))~ 2dDt¢,
with the diffusion constant D vanishing as p~p.. We
give the EMA predictions of D as p—~p, in Table III. If
the distribution #(w) of transition rates of active bonds
satisfies the moment condition

e [ 2208
0

i.e., bonds of very low activity are sufficiently rare,

we have universal behavior [critical exponents indepen-
dent of k(w)]. However, if k.,=, the critical exponents
are distribution dependent. A detailed analysis of the
binary distribution (2) reveals the existence of time
scales defined by Eqs. (116) and {117) which must be
exceeded before diffusive behavior is observable,

(123)

Table IV summarizes the large time behavior of
(R¥1)), the mean-squared displacement, for lattices at
the percolation threshold. We again encounter univer-
sality if ., <, and nonuniversality otherwise. The
waiting-time distribution ¥(¢) for the associated con-
tinuous-time random walk is longtailed, so that the
mean time (¢) between steps is infinite.

The extension of the basic ideas of the present paper
to topologically disordered lattices and to the construc-
tion of higher order effective medium approximations will
be considered elsewhere. 21** Thebasic formalism admits
certain other extensions, to which we can only allude
briefly here. The point of departure of the basic analy-
sis is the Laplace transformed version (4) of the linear

TABLE III. EMA prediction of asymptotic form of diffusion constant D as p— be.

d hoy<w h(w)— hy 28 w— 0 hw) ~cw™, as w— 0 (0<a<1)
23 z2(p-p,) z2(p-p) z {sin(m)} <) (pp o/t
' 2dh4(1-p,) 2d ho(1 ~pIn{lp —p 17T} 2d U emps 1-p,)
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master equation (1), so thaf any stochastic process in

a disordered system which can be mapped onto Eq. (4)
can be analyzed in a similar fashion. One may consider
a generalized master equation

t e
Pio ¥ [arwu-niem-pmt, (29

dt B jeli} vo
with the memory kernels Wi ,2) functions of time param-
etrized by one or more random variables, e.g., W;(#)
=ae™®  with o and 8 assigned probability distributions
based on some microscopic model. (Here {z} denotes
the set of nearest neighbors of site 7,) In Laplace
transform space we obtain

AP =B D W00 P,0) - P} (125)

i€

an equation to which we may apply the analysis of the
present paper, and which should yield an even wider
class of possible stochastic behaviors.

Finally, ® we note that the restriction of interactions
to nearest-neighbor sites is unnecessary, although the
Green functions become more complicated. Since
random walks with infinite mean-squared displacement
per step yield a variety of nondiffusive behaviors, *
which may be further enriched by the introduction of
long-tailed waiting-time distributions® an extension of
the EMA to continuous-time random walks or general-
ized master equations with long-ranged transitions
could yield very interesting results,
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APPENDIX

We indicate briefly how a Green function G, de-
fined by Eq. (8), can be found for a variety of periodic
lattices. Equations equivalent to Eq. (8), arise in nu-
merical analysis, > in the theory of lattice dynamics
within the harmonic approximation®® and in the theory
of lattice random walks.?’ Although they have been ex-
tensively studied in these contexts (so that we can refer
the reader to the literature for most of the details), it
is useful to collect here all of the results of interest
using a consistent notation.

Consider first a simple cubic lattice in 4 dimensions
(so that each site has coordination number z =2d).
Since Gy, depends only on the relative positions of sites
i and &, there is no loss of generality in writing #=(0,
0,...,0) and i=(my, ma, ..., my) (With mey, my, .. .70y
integers) and defining G(my, my, ..., my) =Gy, Equation
(8) reduces to the difference equation

(2d+ 5)0(7}’11, Mgy oo ey md) - {G(m1+ 1, L2 T md)

+G(my =1, my, o oo, M)+ Glmy, ma+1, .00, my)
+G(m1,m2"17'-°:md)+“' +G(m1,m2’ '~=:md+1)
(A1)

which can be solved by use of a discrete Fourier trans-
form. We define

+ G(nll, Moy eeey My — 1)}= - GmlD 6sz' ve 6me ’

< =

e 8g)= Z Z

Mmy==o mo==co

Z exp(im 6, +im 6,

my=-=

é(slx 62, .

1 1 r d0,d0,° + - 48, exp(— im,0; — imy0,- - + — im8y)
G(mnmz,..-,md)=_im f_[_,f -t 4 -1 22 —

1 1

Feoe +imB)Glmy, my, ..., mg) , (A2)
and find that
{2d +€ —2(cos6, +cosby+ -+ +€080,)} G(8),8,,...,0,)=~1.
(A3)
Inverting the discrete Fourier transform gives
|
3 (A4)
d +§ —cos8, —cosfp— -+ ~ c080,
r
-3 W ff_' . f d0,d8," + + d0, exXp(— im0y — im0y « < ~ imy8,)
(A5)

® 1=
. f dt exp[— (d+% €)t +(coss, + cosby+ « - - +C088,)t] =~ 3 jo‘ dtexp(~(d+3 |, (M)« - In (D),
0

where we have used the integral representation of the
modified Bessel function
T
() =-2% f cos(m0) exp(¢ cosB)db . (A8)
-t
The necessity of keeping Re(€)> 0, and of insisting that

«#0 when d <2 is apparent from the asymptotic expan-
sion

L(H=2mt) Y2 {1+ 0(t™Y)}, ast—-o. (A7)
In the case d =1 (a linear chain) the Green function can
be evaluated in terms of elementary functions, by means
of a known Laplace transform pair®®;

Gim)=-€V2a+ )2 {1+ 3e -3 13 OVA'™ . (A8)

—
There is an inverse square root singularity as € -0,
To obtain an expression for the singular behavior as
€~ 0* of the Green function for the square lattice (d =2)
we note that for any €>0,

1 1
Gy, mp) =~ 3 L dt exp(—~ 2t - 3 €t)I,,‘1(t)I,,,a(t)

_% f1 dt exp(~ 2t — % ) {I, (DI,,(1) - @mt)™ &}

1 dt L
~ 47 7 exp(- z €4).

Only the third term on the right-hand side diverges as
€ -0 and its behavior as € — 0" may be established by
recognizing it as the exponential integral®’

(A9)
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E(z)= f ‘i:exp(-t)~-1nz, as z-0. (A10)
(1
Thus, for the square lattice
Gaqlmy, mp) ~=(4m)'In(1/€), as e=~0*, (Al1)

Integral representations for the Green functions of
other periodic lattices can be obtained by mapping the
sites of these lattices onto a subset of the sites of a
simple cubic lattice, and solving the equivalent problem
of a simple cubic lattice with some or all of the nearest-
neighbor couplings removed, and some couplings to

Stochastic transport in disordered systems 6861

more remote sites added.?” We consider first two
three~-dimensional lattices: the body-centered cubic
(BCC) lattice, with coordination number z=8, and the
face-centered cubic (FCC) lattice, with coordination
number z=12, As before, we write 2=(0,0,0), ¢=(m,,
mg, my), and Gy, =G(my, my, m;). Any site j of the BCC
lattice is coupled to eight sites, whose coordinates dif-
fer from those of j by (x1,+1,+1), while any site j of
the FCC lattice is coupled to 12 sites whose coordinates
differ from those of j by (£1,+1,0), (£1,0,%1), or
(0,+1,+1). Writing down the appropriate difference
equations for G(m,, m,, m3;) and employing discrete
Fourier transforms as above, we obtain

d9,d0,d8; exp(— im0, — im,0, — im0
GBcc(ml;ma,ma)=— ”) fff—L 2246, exp( . 22 3),

1
8 +€ — 8 cosf, cosf, cosd, (A12)
d91d92d93 eXp(- imlel - imzez - im393) (A13)

1
G =-5 [ f f .
reclm, Mo, ™s) (27) 12 + € - 4(cosb, cosf, + cosh, coshy + cosf; coss,)

[These Green functions take the value 0 at those sites
(my, ma, m3) of the underlying simple cubic lattice which
are not sites of the BCC or FCC lattice.] For other
three-dimensional lattices the analysis is not so
straightforward, though Ishicka and Koiwa®® have found
the Green function for the diamond lattice (z =4).

The triangular lattice (z =6, d=2) may be analyzed
as a sheared square lattice with one diagonal interac-
tion®® or, more simply, as a square lattice with site j
coupled to the six sites whose coordinates differ from
those of j by (£2,0) or (21, £1), as shown in Fig. 1.
Proceeding as above, one may show®® that

Gypy(my, my)

ff' d8,db; exp(— im 6, = im,0,)
6

+€—4co86, cosf, -2 cos28,’ (A14)

with this integral vanishing identically for values of
(m,, m,) which do not correspond to sites of the triangu-
lar lattice. At all other sites, when € =0 the integrand
has nonintegrable singularities at the central point

(—111) (111)

(-2,0) {0,0) (2,0)

-1,-1 (1,-1)

FIG. 1. The sites of the triangular lattice can be mapped onto
a subset of the sites of the square lattice., We show here the
coordinates assigned to the origin of the triangular lattice and
its six nearest neighbors.

|

(64, 85) =(0, 0), and also at the four corners (8,, 6,)
=(tm 7). The leading order behavior of G, (m,, m,)
as € - 0" can be obtained by analyzing the behavior of
the integrand within a small ellipsoid centered on each
of these singular points. Near (0, 0), the integrand is,
to leading order, (¢ +262+66%), and for any 6> 0

1 d6,dt, _ 1 dxdy
T @ 591+282<52 €+ 661+2(92 BYBT ,2iy0ep2 €+ 42490
1 S dy .y .
ST Ak MU UOBECTELS
(A15)

Each of the corner points (x 7, + 1) gives a similar con-
tribution, weighted by a factor of 1/4, and we deduce
that

Girs(my, mg) ~ 4r In(1/€), as€—~0" (A16)

The hexagonal, or “honeycomb” lattice (z=3, d=2),

is more difficult to analyze, because it is not transla-~
tionally invariant. Horiguchi® has shown how its Green
function may be calculated in terms of the Green func-
tion for the triangular lattice, but we offer here a
briefer and more direct derivation. We map the hex-
agonal lattice onto a square lattice as shown in Fig. 2,
with the inhomogeneous term in the equation defining
G, located at (0,0). To accommodate the two distinct
types of sites shown in Fig. 3, we introduce auxiliary
Green functions

Ghex(zmli mz) = ¢(ml; mZ) ?

Gaox(2my + 1, ma) =9(my, mg) , (A17)

and reduce Eq. (8) to a pair of simultaneous difference
equations

(8 +€) p(my, my) = {p(my, mp) +P(my ~ 1, my ~ 1)

+Z,b(ml- 11m2+1)}=—6m106m20 N (A18)
(3 +€)p(my, my) - {¢(m1, my)
+d(my+1, my+ 1)+ d(my+1, my=1)}=0. (A19)
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FIG. 2. A mapping of the sites of the hexagonal (honeycomb)
lattice onto a subset of the sites of the square lattice. We show
here the coordinates assigned to six of the hexagonal lattice :
sites,

These equations may be converted to a pair of simul-
taneous algebraic equations by taking a discrete Fourier
transform. Solution of these equations and inversion of
the transform gives

-1
Grox(2m2y, M) ey

f ¥ _d9,d0, exp(— im0, — imz0,) (3 +€) (A20)

. (3+€)?~1-4cosé, cosd, - 4 cos®s, ’

-1
Gm(zm1+1,mz)=(—27)z

% f " d0,d0, exp(— im0, — imy0,) (1 + 2 exp(— 8,) cosb,)
(3+€)*-1-4cosb, cosd, - 4 cos®d, :

(A21)

[It can again be shown that the Green function defined
by Eqs. (A20) and (A21) vanishes, as it should, at those
points of the square lattice which do not correspond to
sites of the hexagonal lattice.] The behavior of the
Green function as € = 0" can be analyzed as for the tri-
angular lattice. We find

!

1 du dvdw 1
= 3) = 2,
Isce e ff[ 1 -cosucosvcosw T{r( 1)'=1.303

dudvdw

2j-1, k+1) (2j+2, k+1)
¥ $
¢ 14 ¢ (211 )
@K @K (2K aixtk
v ¢
(2j-1, k=1) (2j+2, k-1)

FIG. 3. The two possible configurations of any site of the hexa-
gonal lattice: a ¢ site, surrounded by three ¥ sites, and a ¢
site, surrounded by three ¢ sites.

Ghex(my, M3) ~ -ﬁ‘:: In(1/€) . (A22)

For the purposes of the present paper, we require
only the values of the Green function for each lattice at
the origin [(m,, m,, ..., m4)=(0,0,...,0)] and at each of
its nearest neighbors. For any lattice with the property
that all sites are topologically equivalent (a class which
includes all those discussed in this appendix), symmetry
considerations guarantee that the Green function takes
the same value at each of the nearest neighbors of the
origin. Setting i=% in Eq. (8), we then have

(z + €) Gorigin) — zG(nearest neighbor)=-1 ., (A23)

We need, therefore, to evaluate the Green function only
at the origin.

It is possible to reduce the integral representations
of the Green function at the origin for each of the lat-
tices considered in this appendix to complete elliptic
integrals (for d =2) or products of complete elliptic
integrals (for d =3). The analysis of the three-dimen-
sional cases is extremely complicated® and we shall
not give the formulas here, except for the special case
€ =0, for which Watson®? has derived relatively compact
expressions in terms of the gamma function and the
complete elliptic integral of the first kind®®

vy
Fce = 3 3 — COSu COS U — COS U COS 20 — COS % COS U

1 dudvdw
== = VI -10v3-1V8)(2K,/m)2=0.

where
K,=K([2 -V3][V3-V2))

It has recently been established (Glasser, personal
communication, 1982) that

(A28)

V6

Ic = 55 TEITE TE TED (A29)

/2
K(z)= f {1 - KEsin®o}V2d¢ . (A24)
0
Watson’s results are
(A25)
- E“'%? T(4)8~0.4482 , (A26)
(A27)

r

an earlier expression of Glasser and Zucker®* for Iy
is in error.

It is relatively easy to evaluate the Green function at
the origin for the two-dimensional lattices and we sim-
ply quote the results here®®®®

Square: G(0,0)=- -zl—ﬂ- (1 +§)-1 K(E +ﬂ-l> )

(A30)
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Triangular: G(0,0)= -%{(9 +e)/z_1}ese

1/4
x{<9+e>‘”+3}"”K<@+<W?-i(}g’;f()9+e)“z+3P’”\ ,
(A31)
28 +¢)

Hexagonal: G(0, 0)=— 1@+ V6 + )7
4(e +3)172 >

©1 27 7O (A32)
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