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As a primitive model for structural breakdown in elastic media, we analyze the failure of random
resistor-fuse networks with various distributions of properties. We show that variations in break-
down voltage have a more significant effect than variations in resistance values. This is analogous to
the fluid-displacement problem [D.Y.C. Chan, B. D. Hughes, L. Paterson, and C. Sirakoff, Phys.
Rev. A 38, 4106 (1988)], in which variations in fluid capacity have a greater effect on displacement
efficiencies than variations in permeability. An exponential distribution of breakdown voltages
creates much more disorder than any uniform distribution, but power-law distributions that em-
phasize weak bonds can create even greater disorder, up to the percolation limit, in which bonds are

broken independently at random.

I. INTRODUCTION

Classical theories of failure and degradation of solids
by mechanical stress emphasize regular geometries, the
prime example being tensile failure tests in notched
beams, where the experimental setup is carefully con-
trived to produce regular fracture patterns. In contrast,
failure in engineering or geomechanical contexts is usual-
ly associated with erratic fracture patterns. These erra-
tive patterns are associated with the fluctuations in the
material parameters of the failing continuum. Recently,
computer simulation studies of properties of randomly
structured materials have become fashionable, and there
has been a proliferation of models. In the present paper
we report simulations of a simple class of models for
failure or fracture of materials which we feel capture
many of the key aspects of the problem. If a network of
Hookean springs with natural length zero is stretched
onto a frame, then there is an exact mapping onto the
random resistor network problem.! Our model is
phrased in terms of the failure of a network of electrical
resistors which act as fuses, burning out when an ap-
propriately defined failure criterion is met. However,
such networks may also serve as primitive models for
fracture in elastic media. The advantage of studying
resistor networks is that, because only scalar quantities
are involved, the network models are less expensive to
simulate. Furthermore, the use of such networks helps to
unveil the essential physics without the need to introduce
a large number of variables and parameters that a full
tensor formalism would require.

Previous studies of resistor networks have concentrat-
ed on several types of models in which resistors are burnt
out (converted to insulators) one at a time during the
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breakdown process. The models differ in the criterion for
burning of a resistor.

Type 1. One begins with a regular network of identical
resistors, say a two-dimensional (2D) square lattice
confined between two parallel has bus bars.? Before the
simulation commences, each resistor is inspected and de-
clared to be burnt out already, (i.e., to have infinite resis-
tance) with probability 1—p. A potential difference is
now applied across the bus bars. The resistors are now
burnt out one at a time, the resistor selected being that
with the greatest voltage across it. The process continues
until sufficiently many fuses burn out to disconnect the
system and preclude further current flow.

Type 2. The previous model may be generalized® by as-
signing a general probability density function f(g) to the
bond conductances g. Model 1 corresponds to the special
choice

f(g)=(1—p)6,(g)+pdlg —gy) - (1)

The resistors are now burnt out one at a time, with one of
the following three failure criteria being selected: (i) the
resistor that carries the greatest current is broken at each
step; (ii) the resistor with the greatest voltage drop across
it is broken at each step; (iii) the resistor with the greatest
power dissipation is broken at each step. A converse of
this model, in which the fuses turn into near short cir-
cuits when they blow, has also been proposed. *

Type 3. In the third model® the resistors in a regular
network are all assigned the same resistance and the sto-
chastic element is introduced by assigning random break-
down voltages to the components. At each stage in the
simulation, the applied voltage is raised until one resistor
suffers a voltage drop that exceeds its breakdown voltage
and this resistor is immediately burnt out. As the
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response of the network is linear, this is equivalent to
burning out the resistor which has the largest value for
the ratio of the voltage drop to the breakdown voltage.

In all three of these models, there is usually probability
zero that the need to break two fuses simultaneously will
ever arise. We have chosen to concentrate on the type-3
model to complement previous studies on types 1 and 2,
because we wish to examine the relative importance of
fluctuations in resistance, which control the current flow
patterns at each stage, and fluctuations in the local intrin-
sic strength of the system. In another context, we have
previously shown that when two radically different forms
of fluctuation are present, the effects of one may dom-
inate over the other. Specifically, in the study of fluid dis-
placement in porous media, fluctuations in the local fluid
capacity (analogous to the breakdown voltage) dominate
over fluctuations in the local permeability (resistance). %’

An earlier study by Kahng et al.’® of the breakdown of
resistor networks, based on a type-3 model, suggests that
the pattern of burnt-out resistors as well as the fraction of
resistors burnt at the limit where the entire network be-
comes disconnected, depends on the form of the distribu-
tion function of breakdown voltages as well as the net-
work size. They considered N resistors in a 2D square
lattice network in which the breakdown voltage ¢ of each
element is given by the normalized distribution function

flo)=1/w,

For small values of w, they observed that when the net-
work breaks down, the pattern of burnt resistors forms a
linear chain with the mean number of burnt-out resistors
(N, ) being proportional to N!/2. They called this the
“brittle” regime. As w becomes larger, say > 1.5, the
mean number of burnt-out resistors (N ) increases fas-
ter than N!/2. The pattern of burnt resistors at break-
down also changes in a qualitative sense. In addition to
the main critical cluster of burnt resistors that caused the
network to become disconnected, there are also many
clusters of burnt resistors which are not attached to the
main critical cluster— this was termed the “ductile” re-
gime. Kahng et al. conjectured that in the limit w =2,
the mean number of burnt-out resistors (N, ) will in-
crease with the lattice size like N.

In this paper, we consider in more detail the break-
down characteristics of a resistor network as a function
of the distribution of breakdown voltages of the elements.

l—w/2<ep<l+w/2, O<w=2. (2)

II. PAIRS OF RESISTORS

In a simple random bond percolation model, bonds in a
network are selected at random and then broken. The
network breaks down when one particular cluster of bro-
ken bonds separates the network into two disconnected
portions. In a type-3 resistor network prescribed above,
the criterion for breaking a particular bond or resistor is
controlled by the ratio of the voltage drop across the
resistor to the breakdown voltage of the resistor. The
magnitude of the breakdown voltage @ depends on the
choice of the normalized distribution function f(¢),
while the voltage drop may be found using the Kirchoff
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equations for the current configuration of unburnt resis-
tors. To gain insight into the role of the breakdown volt-
age distribution function, let us first analyze the simple
case of two resistors with breakdown voltages ¢, and ¢,
chosen according to some normalized distribution f ().
Let the voltage drop across the two resistors be ¥V, and
V,, respectively. In a type-3 model, we burn out the
resistor with the largest value of the ratio (V;/¢;). We
assume, without loss of generality, that resistor 1 has the
larger voltage drop across it, and define the ratio of the
voltage drops across the two resistors as p=V,/V, <1.
Therefore the probability that the resistor with the larger
voltage across it will be burnt is given by

P=["dpS (@) [ doaf (9:) . 3)

Explicit forms for this probability can be obtained for a
number of breakdown voltage distribution functions

f(p).
Uniform:
flp)=1, 0O<p<1; PL:1—1;—. 4)
Exponential:
— _ ) -1
f@)=aexp(—ag), O0<@p<ow; P, T4p (5)
Power:
I—¢q
fle)=(1—g)p™9, 0<p<l, g<1; P,=1—L— .

2
(6)

In Fig. 1, we show the probability P; for the uniform, ex-
ponential, and power distribution for various values of
the index

g=n—1)/n. (7)

The probability P; calculated according to the distribu-
tion (2) is

1) 0< P < P1
PL = 3 1 5 ) (8)
Z+W[8—P(w+2) —(w —2) /p], p1<p<1
1.0
N ~N < — — uniform [0.25, 1.75]
0.9 \\\\ ~ ——— uniform [0, 1]
08 \ \\: N N ——~=- exponential
P - N \\\\\ N - powern =2
L 0.7 ~\~ \\\\:\ N N ——-—— powern=4
\.\ \\\\\ - ~ |7 powern =16
0.6 . T~ N ~
__________________ —~—. N
0.5

FIG. 1. The probability P; that, in a pair of resistors, the
resistor with larger voltage drop will be burnt, as a function of
the ratio p of the voltage drops across the two resistors,
0<p<1, for the uniform [0.25,1.75], the uniform [0,1], ex-
ponential, and three-power-law distributions with » =2, 4, and
16.
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where p,=(1—w/2)/(1+w/2). This probability is also
shown in Fig. 1 for w =4 as used by Kahng et al.’

Since f(¢) is assumed to be normalized over some in-
terval, the probability P; —0.5 in the limit p—1 for all
models. A value of P, =0.5 is equivalent to the simple
random percolation model in which one of the two resis-
tors is chosen at random to be burnt irrespective of their
breakdown voltages. Thus at a given p value, the model
that has the lowest P; will yield the most “random”
burnt resistor clusters. From Fig. 1 we see that the
power distribution (6) is expected to yield the most ran-
dom distribution of burnt resistor clusters when the net-
work breaks down. We shall present simulation results to
support this conclusion. The power distribution has oth-
er interesting properties. To quote Stephens and Sahimi:3
“Halperin, Feng and Sen have shown that f(¢p)
=(1—q)p 9, 0<g <1, describes the distribution of the
conductance of the channel random-void (‘Swiss cheese’)
model of continuous media. In this model, spherical
holes are randomly placed in a medium having otherwise
uniform transport properties. It was proposed many
years ago [for example, by Kogut and Straley®] that such
distributions would give rise to nonuniversal behavior of
the conductivity of percolating systems near [the percola-
tion threshold] p..”

We have included the exponential distribution (5) be-
cause of all distributions supported on the interval
0 <@ < o, with a given mean () =1/a, the exponential
distribution is the most random in the sense that it max-
imizes the Shannon entropy'® —f(@)Inf(¢). For this
distribution, the probability P; for the exponential distri-
bution is independent of the parameter . However, we
expect from Fig. 1 that the power distribution, with
g >0, will give a more random distribution of the burnt-
out clusters.

III. NUMERICAL SIMULATIONS

We have performed a number of simulations of type-2
and -3 resistor networks. Three examples of networks at
the point of failure are shown in Figs. 2—4. In Fig. 2, we
show a type-3 network with an exponential distribution
of breakdown voltages. In Fig. 3, we show another type-
3 network, with breakdown voltages governed by Egs. (6)
and (7), with n =128. In this case, the effects of weak
bonds were strongly emphasized and a larger number of
resistors were burnt out when breakdown occurred. In
Fig. 4 we show a type-2(i) network with an exponential
distribution of resistance values, displaying a more local-
ized breakdown path than for the distributed breakdown
voltages.

In Fig. 5 we show a summary of many of our simula-
tion results of type-3 resistor network for different distri-
butions of the breakdown voltage. The set of linear equa-
tions for the voltage drops across each resistor was solved
by a successive over-relaxation method. Each data point
represents an average over 20 realizations of the same
distribution function. The average number of burnt resis-
tors is fitted to the equation
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FIG. 2. An example of a simulation on a type-3 network with
an exponential distribution of breakdown voltages.

and the results for the parameters p and v are summa-
rized in Table I. We also show in Fig. 5 the results for a
type-2(i) model, distributing the resistances and at each
step breaking the resistor with maximum current. This
demonstrates that varying the breakdown voltages has a
much greater effect than varying the resistances.

The following question naturally arises: Does the set
of burnt-out resistors at failure have nonzero density in

FIG. 3. An example of a simulation on a type-3 network,
with breakdown voltages governed by Egs. (6) and (7), with
n =128.
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TABLE 1. Fitted parameters for (N, ) defined in Eq. (8) for
various distribution functions of breakdown voltages or resis-
tances. The exponent g of the power distribution (6) is given by
g=(n—1)/n.

Type Distribution u v

Breakdown voltage Exponential 0.37 0.88

Breakdown voltage Power n =1 0.32 0.88

Breakdown voltage Power n =2 0.38 0.93

== Breakdown voltage Power n =4 0.38 0.97
Breakdown voltage Power n =128 0.41 1.0

I Resistance Exponential 0.31 0.72

SSSNERS

T
| '
1 T
Ty 1 T T
- T T 1 It
Py B T FH
supu T
HHH - m T 1
1 T - T T T T
Tt T T T T T I
T T T It - It T
T T - T 17T T T
T T T T
T ULARRRRRRRERRRRRRRRRERER! LABRERRRERE! LB T

FIG. 4. An example of a simulation on a type-2(i) network
with an exponential distribution of resistance values.

the limit of an infinite lattice? If the answer is yes, then
the mean number (N, ) of burnt-out resistors at network
breakdown increases linearly with the total number of
resistors N in the network. Kahng et al.® claimed that
this seems to happen for the distribution (2) in the limit
w =2, which corresponds to the power distribution at
q =0 (n =1). From the results in Table I, the dependence
is (N, ) « N>8 for w =2, i.e., v=0.88, which is less than
1. However, for the power-law distributions, the ex-
ponent v is an increasing function of n. For n =4 (that is.

In N

FIG. 5. A summary of simulation results for type-3 resistor
networks with various distributions of the breakdown voltages:
A power n =128; B, power n =4; C, power n =2; D, exponen-
tial distribution; E, power n =1 (equal to uniform distribution).
Also shown are simulation results for type-2(i) resistor networks
with (F) an exponential distribution of resistance values.

g=3),097=v=1 and in the case n =128, the exponent
v is equal to 1 within the accuracy of our simulation.

In a classical bond percolation model on the square lat-
tice at the percolation threshold, Eq. (9) is replaced by

(N,)~1IN as N— o . (10)

In the case n =128, where the exponent v is very close to
1, the coefficient p (which would be the fraction of burnt
resistors if v were exactly 1) is only 0.41, which is still
some way short of the random percolation limit, where
©=0.5 for an infinite system.

In Fig. 6, we show for an 11 X9 network consisting of
162 resistors the dependence of the number of burnt
resistors (N, ) for a power distribution of breakdown
voltages on the index ¢ =(n —1)/n. We observe that as
g—1—, that is, when n— o, (N, ) satisfies the empiri-
cal relation

(N,)=77—48n 04 (11)

so we can see how the coefficient u in Eq. (9) approaches
0.5 as n becomes large.

4
n
= 34
Vv
o~
c
g

2.4

1 L] L v L] 1

0 1 2 3 4 5

In n

FIG. 6. The dependence of the number of burnt resistors
(N, ) for a power distribution of breakdown voltages on n for
an 11X 9 network consisting of 162 resistors.
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IV. COMPARISON WITH FLUID DISPLACEMENT
IN RANDOM MEDIA

The resistor simulations have much in common with
stochastic simulations of fluid displacement in porous
media at infinite viscosity ratio. Both involve solving
Laplace’s equation for the potential function and then
changing the state of a component of the system as some
function of the gradient of the potential. In flow in
porous media, the component which changes state is at
the node of the lattice, corresponding to a pore, which
may be filled with either the displaced or driving fluid. In
the resistor network problem, the changing component is
the bond of the lattice corresponding to a resistor which
may be either intact or burnt out. In the fluid-
displacement problem, an exponential distribution of
fluid capacities, and in the network problem, an exponen-
tial distribution of breakdown voltages, has a very special
property: the component changes state with a probabili-
ty equal to the magnitude of the potential gradient at that
component. The major qualitative difference between the
two problems is that, for simulations of flow in porous
media, components can only change state if they are adja-
cent to a component that has already changed state. Asa
result of this restriction, random walkers can be used to
simulate the special case of an exponential distribution of
fluid capacity. This permits the use of the simple
diffusion-limit aggregation model to simulate fluid dis-
placement in random media. In the resistor network
problem, components can change state anywhere in the
network so a new random walker model will be required.

As we have shown in Fig. 5, varying the breakdown
voltage has a much larger effect on the fraction of burnt-
out resistors than varying the resistances in each com-
ponent. In a general resistor network, both the individu-
al resistances and the breakdown voltages may vary ac-
cording to their own distributions (which may be related),
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however, variations in the breakdown will have the dom-
inant effect in dictating the course of the network break-
down. This is directly analogous to the porous medium
problem, where varying local fluid capacity has a greater
effect on unstable two-fluid displacement processes than
varying local permeabilities. %’

All the models (types 1-3) we have outlined here in-
corporate, to varying degrees, the heterogeneous micros-
tructure in an otherwise statistically homogeneous medi-
um. The stochastic property is necessary to explain the
irregular and serrated surfaces which are created in the
fracture of natural materials. Knowledge of the
geometry of these fracture surfaces is relevant to such
processes as sliding (earthquakes) and fragmentation
(blasting).

V. CONCLUSIONS

Our simulation results suggest that the breakdown of a
resistor network (or equivalently a network of Hookean
springs with natural length zero) is more sensitive to the
distribution of breakdown voltages (tensile strengths)
than to variations in the resistance (the elastic moduli).
This observation is mirrored in the study of fluid dis-
placement in random media in which the distribution of
fluid capacities is mainly responsible in controlling the
displacement efficiency. The exponential distribution,
which we found to give the least efficient displacement
and to have a one-to-one correspondence to simulation of
fluid displacement by the diffusion-limited aggregation al-
gorithm, does not seem to hold the same significance in
the resistor breakdown problem. The power distribution
of breakdown voltages (6) gives a more random break-
down pattern than the exponential distribution and in the
limit ¢ —1—, appears to produce the expected classical
version of percolation theory.
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