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We present a new approach, the renormalized effective-medium approximation (REMA), for the
percolation conductivity problem in disordered conductance networks. This approach combines
real-space renormalization and effective-medium approximation techniques. We use it to investigate
two-, three-, and four-dimensional bond-disordered conductance networks. REMA provides excel-
lent predictions for the network conductivity g (p) over the entire range of fraction p of conducting

bonds in two and three dimensions. REMA reproduces the exact bond percolation threshold of the
square lattice and predicts bond percolation thresholds for the simple cubic lattices in three and four

dimensions which differ only by about 6% and 1%, respectively, from the best available estimates.
It also provides good estimates of the conductivity critical exponents ¢ and s in both two and three

dimensions.

INTRODUCTION

Random conductance networks have become an impor-
tant model for the investigation of transport phenomena
in disordered materials such as diffusion and conduction
in amorphous and inhomogeneous materials and spin-
wave properties in disordered ferromagnets.! Despite the
conceptual simplicity of such models, few exact results are
available.? Thus many different approximate techniques
have been developed to understand transport in disordered
networks. Notable among these are computer simula-
tions,> perturbation methods,* and the effective-medium
approximation® (EMA) and its cluster extension.® The
EMA is an analytical approximation that has performed
well outside the critical region. In some limiting cases it is
possible to obtain some information about transport prop-
erties of these networks from percolation theory using the
critical-path analysis.” But aside from Monte Carlo
methods which are purely numerical, none of the forego-
ing approximations is accurate in the critical region.
Moreover, as the percolation threshold is approached,
larger and larger networks must be used in order to main-
tain accuracy in the Monte Carlo approach.

Kasteleyn and Fortuin® showed that percolation and
random conductance network problems are special cases
of the g-state Potts model, so that it became possible to
apply modern theory of critical phenomena to the study of
percolation and conduction problems. Thus various au-
thors have used renormalization-group methods, both in
momentum? and in real space,'® to study percolation and
conduction near the critical point. In particular, it was
shown!! how a decimation transformation can be used to
study the percolation conductivity problem near the criti-
cal point. But this method suffers from the fact that the
approximations involved are extremely difficult to quanti-
fy, and it is only applicable to the critical region. Ber-
nasconi'? modified this method and proposed a Monte
Carlo renormalization approach to the percolation con-
ductivity problem that could handle the entire range of
fraction of conducting bonds. His method yields very
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good results in two dimensions, but not in three dimen-
sions (it predicts a too low bond percolation threshold and
a too high conductivity critical exponent). Moreover, this
method in practice is not appreciably easier to apply than
the Monte Carlo method alone.

In this paper we propose a new method of approxima-
tion for the percolation conductivity problem for networks
constructed on regular lattices. We combine the real-space
renormalization method and EMA to obtain an approxi-
mation method, the renormalized effective-medium ap-
proximation (REMA), that is simple and yields an excel-
lent prediction of percolation conductivity over the entire
range of concentration of conducting bonds at all dimen-
sions.

RENORMALIZED EFFECTIVE-MEDIUM
APPROXIMATION

In the EMA approach,’ the disordered network is re-
placed by a uniform effective medium, having the same
conductance g,, between all neighboring sites. In the
single-bond EMA, a single bond in the effective medium -
is replaced by the conductance g; the perturbation this
causes in the local voltages is computed, and the value of
g, is determined by requiring that the average of the volt-
age perturbation equal zero when the average is computed
with respect to the distribution f(g) of conductances in
the original disordered network. In particular, g, is deter-
mined by the equation’

& —8m

J 1o =i,

dg =0. (1)
The quantity y is a bond Green function which depends
only on the topological structure of the network and is
given by y= —2/z for all regular networks with coordina-
tion number z. This EMA has been recently extended to
hopping transport problems by several authors.’* If the
conductances are distributed according to a simple binary
distribution

f(@)=(1—p)d,(g)+pdlg —go) » 2)
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then the EMA predicts a bond percolation threshold
p.=—7v. In particular, it gives +, the exact value for the
square lattice, and +, a value too high for the simple cubic

lattice in three dimensions.

Real-space renormalization methods implement an in-
tuitive picture proposed by Kadanoff.!* In this picture,
cells of conducting bonds in a nearly critical system
behave as single bonds in a rescaled system farther from
criticality. The system rescaling is achieved by removing
sites and joining the remaining sites with new bonds to
form a lattice of the original type. The Green function y
does not change because of rescaling since it is determined
solely by the lattice topology. As was shown by Stin-
chcombe and Watson!! after one rescaling from a network
having the bond conductivity distribution (2) the new dis-
tribution of conductances becomes

N
f@)=[1-R(p)]6,(g)+ 3 a;(p)dlg —g;) . 3)
i=1
Here N is the number of possible nonzero values of g;, the
conductance of the cell that is chosen for renormalization
transformation, and a;(p) is the probability that the value
g; occurs; 2?;1 a;(p)=R (p), where R (p) is the renormali-
zation transformation, i.e., the probability that a bond in
the rescaled network is present. In principle, one can re-
scale the network many times and obtain a conductivity
distribution f(g) which is a kind of “fixed-point” distribu-
tion, the shape of which does not change under further re-
scaling. Then the conductivity of the network can be cal-
culated as some average of this distribution (as was done
by Bernasconi'?). However, in practice (especially in three
and higher dimensions), it is very difficult to rescale the
network more than once with reasonable computational
effort and thus f(g) cannot be determined exactly and one
has to resort to Monte Carlo methods. It is worth men-
tioning that aside from one-dimensional systems, almost
all renormalization transformations in two or higher di-
men?gons are only approximate ones; exceptions are very
few.

It is a matter of experience that the rescaled network is
farther from the critical point than the original one. Be-
cause the rescaled network is identical in topological struc-
ture to the old network, one can more accurately apply
single-bond EMA to the rescaled network with f(g) of
Eq. (1) replaced by f(g) as given by Eq. (3). Since the re-
scaled network is farther from criticality than the original
network, the performance of the EMA is improved; this is
the essence of our method. Because the bonds of the re-
scaled network are b times longer than the old one (where
b is the scaling factor of the transformation), this necessi-
tates a rescaling of conductivities for the new network to
replicate the old one: The EMA conductivity for the new
network is taken to be the same as that for the old one at
p=1

We have applied this method to bond-disordered square
and simple cubic networks and the results are in good
agreement with Monte Carlo simulations over the entire
concentration range of the conducting bonds. Using
REMA, we predict a bond percolation threshold p, given
by

R(p.)=—7v. (4)

\

FIG. 1. Cells used for renormalizing the conductivity distri-
bution, together with their equivalent conductance networks: (a)
smallest cell for the square lattice, equivalent to a Wheatstone
bridge; (b) a larger cell for the square lattice, equivalent to a gen-
eralized Wheatstone bridge; (c) cell for the simple cubic lattice,
equivalent to an octahedral network.

(c)

RESULTS AND DISCUSSION

For the square lattice we used two different cells. The
first one is the cell originally proposed by Reynolds
et al.' [for which b =2, see Fig. 1(a)], and it has been
used by several authors.!® It preserves the self-duality of
the square lattice and thus p, = % is the fixed point of this
transformation. If we start with the binary conductance
distribution (2) for individual bonds, the rescaled distribu-
tion f(g) [the distribution of the conductance of a Wheat-
stone bridge as shown in Fig. 1(a)] is given by

Fl@)=[1—(p°+5p*q +8pq>+2p%*)15 . (g)
+2p3q%8(g — 780)+2p*(1+2p)g*8(g — 58o)

+4p*q8(g —580)+p*8(g —go) . (5)
Thus
R(p)=p>+5p'q +8p°¢>+2p’¢>,
where ¢ =1—p and, therefore, REMA predicts p, =+.
We also used a larger cell [for which b =3, see Fig. 1(b)].

For this cell N =131 and the renormalization transforma-
tion is given by



28 REAL-SPACE RENORMALIZATION AND EFFECTIVE-MEDIUM . . . 309

T T T T T T I,r
012} s
/ ,/, O
/
0.10F p i
oE / o
, 0.08- / ,/O .
= >
E 0.06 /6 -
3 7
2 004l /0 .
= ,
o Yz
0 I"
0.02F /; .
g
1 1 1 | |

1 |
0.52 0.54

0.50 0.56 0.58
FRACTION OF CONDUCTING
BONDS p
FIG. 2. Conductivity of a square lattice of random resistors
in the critical region: — —, simple EMA (Ref. 5); ---, REMA
(b =2); —, REMA (b =3); 0, Fogelholm’s Monte Carlo data
(Ref. 17).

R(p)=3p3¢'°+38p*q°+209p°¢%+627p%
+1089p7g%+1078p%q° +677p%q¢* +283p %3

+78p11q2+13p12q +P13 i (6)

REMA again yields p. = % In fact, Bernasconi'? showed
that this family of cells has the same self-duality as the
square lattice itself. Thus R (p.)=+ for all b, and since
y=—+ for the square lattice, REMA predicts p, = + for
the square lattice for all b.

The conductivity of the square network in the critical
region as predicted by REMA is shown in Fig. 2 where it
has been compared with the data of Fogelholm!” (the pre-
dictions of REMA outside the critical region are not
shown because they are identical to Monte Carlo data of
Kirkpatrick®). Even the predictions of REMA for b =2
show significant improvement over the simple EMA. It is
worth mentioning that the cumulant theory of Hori and
Yonezawa* gives poor results in two dimensions (it
predicts p,~0.393), whereas Bernasconi’s method recovers
p. =~ for the square lattice.

Figure 1(c) shows the cell we used for the simple cubic
calculation which was also used by Bernasconi. It is a
three-dimensional version of the (b =2) cell that was used
for square lattice. The renormalization transformation for
this cell is given by

R(p)=p2+12p'lg +66p'°q2+220p°¢> +493p3g*
+776p"q° +856pSq°+616p°q7 +238p%q®
+48p3q° +4p3q1° . )]

Thus REMA yields p,~0.265, in agreement with the
series expansion estimate!® p.~0.248, the large-cell Monte
Carlo renormalization estimate!® p,~=0.2526, and the
conjecture of Sahimi et al.?’ p,~0.2527. It is far superior
to the p,~0.208 given by Bernasconi’s method, and to the
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FIG. 3. Conductivity of a simple cubic lattice in the critical
region: — —, simple EMA (Ref. 5); ---, cluster EMA [Ahmed
and Blackman (Ref. 6)]; —, REMA; O, Kirkpatrick’s Monte
Carlo data (Ref. 5).

p. =+ which the simple EMA yields, whereas the cumu-
lant theory* predicts p,~0.285, a value not as impressive
as the prediction of REMA.

For this cell N =73, i.e., there are 73 possible nonzero
conductivities for the cell. The conductivity of the simple
cubic lattice of random resistors in the critical region as
predicted by REMA is compared with the Monte Carlo
data of Kirkpatrick® in Fig. 3. The agreement is excellent
over much of the region (the error is less than 5% for
p>0.3 and is about 7% for 0.28 <p <0.3). Also shown
in Fig. 3 are the results of Ahmed and Blackman® who
tried to improve the simple EMA by doing a cluster (con-
sisting of 15 bonds) calculation. Their method yields
D.~0.315.

We point out that sufficiently close to the critical point
REMA will usually predict that the conductivity goes to
zero as the first power of p —p,, i.e., REMA predicts that
the conductivity critical exponent ¢ equals one. This can
be seen by noting that if the conductivity distribution (3) is
written as

f(g)=[1—R(p)1d,(g)+Hl(g;p),
then

Em f (liggg(i;i)yg B Riﬂjy ' ®
so that as long as H_(p) and H_,(p) are finite (see
Sahimi et al.'®), where

H_,(p)= [ H(g;p)g "dg

(as will be the case if the original distribution is binary and
the renormalizing cell is of finite size), the asymptotic
behavior of the predicted conductivity is

8m =a(p _‘pc)+B(P —Pc )2+0((P —Dc )2) ’ 9)

where
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Y| R'(p.)
azm (10)
and
B (1+7)H_2(Pc)a2_ H'—l(Pc)a+ lvIR"(p) _
lv|H_1(p) H_(p.) 2(1+y)H _(p.)

(11)

REMA therefore appears to fail in the critical region,
since it is believed! that ¢ > 1. However, even for small re-
normalizing cells, this linear region is quite small com-
pared to the physical critical region (by which we mean
the region where the conductivity has distinct curvature).
A quantitative estimate of the width of the linear region
can be made from Eq. (9) by finding those values of p —p,
for which the second term of the REMA conductivity
fails to exceed a fraction k of the first term, viz.,

p—p. <W(k)=k |a/B| . (12)
For example, for the square lattice with the smallest cell
(b =2), we find that p —p, <0.2k estimates the linear re-
gion. Taking k as large as 0.1, we find that p —p, <0.02,
a very small region. Thus it is possible to use REMA to
estimate the true exponent by analysis of the conductivity
curve just outside p —p, < W (k). For the square lattice
we analyzed the predictions of REMA (for b =3) outside
p—p.<002 wp to p—p.=0.1. This  yielded
t =1.1240.05. The value of ¢ has been reported by several
authors and has been found to be anywhere from?! ¢ =1
to?? t =1.43 (For a review see Sahimi.?’) Our finding is
consistent with Kirkpatrick’s® who found 1<t <1.3 and
with Straley’s’ who obtained 7 =1.1+0.05 for the square
network. However, very recently Derrida and Van-
nimenus®* applied a transfer-matrix method (which is be-
lieved to be very accurate) to random conductance net-
works and obtained r=1.28+0.03, which is consistent
with Fogelholm’s!” finding ¢ =1.31+0.04, whose data are
compared with REMA predictions. Thus it appears that
the REMA prediction of 7 in two dimensions is somewhat
low, but a larger cell, e.g., b =4, will definitely improve
the prediction.

For the cubic network we analyzed the predictions of
REMA in the range 0.28<p <0.45. This yielded
t=1.55+0.1. This is definitely consistent with
Kirkpatrick’s® 1 =1.6+0.1 (bond) and ¢ =1.5+0.2 (site),
with £=1.6+0.1 (bond) of Webman et al.,’ and with
Straley’s® t =1.740.1 (bond), whereas Bernasconi obtained
t =2.14+0.02, which seems to be rather high. This is be-
cause in his method p. is too low and thus the renormali-
zation transformation overestimates the length of the criti-
cal region; thus the value of ¢ predicted is too high. We
note, however, that our estimate of ¢ is lower than the pre-

diction of the finite-size scaling method®’ ¢ =1.87+0.04
as is expected.

We consider now a random conductance network for
which the individual bond conductances have the distribu-
tion

f(g)=(1—p)d(g —g¢)+pdlg — ),

i.e., if a fraction (1—p) of bonds are ordinary conductors
and the remaining fractions p of them are superconduct-
ing. For p > p. the network is superconducting. The con-
ductivity g, of the network diverges as the percolation
threshold is approached from below (i.e., as the perfect
metallic state is approached), with a power law depen-
dence of the form

(13)

gm~(Pc_P)_s . (14)

In two dimensions a simple application of the duality
transformation by Straley® shows that s =¢. REMA satis-
fies this duality relation, as does the simple EMA (as was
shown by Bernasconi et al.?). For the simple cubic net-
work in three dimensions we obtained s =0.8940.09.
This should be compared with Straley’s® estimate
5§ =0.720.05 and with the estimate s =0.9+0.1 of Web-
man et al.?® Simple EMA yields s =1, while Bernasconi
obtained s =0.76+0.01. We finally remark that REMA
predicts the exact slopes of g,,(p) at p =1 and p =0 in two
dimensions as does the simple EMA.

SUMMARY AND CONCLUSIONS

We have developed a new method of predicting the per-
colation conductivity by combining real-space renormali-
zation and EMA methods. Very good agreement is found
between REMA predictions and those of Monte Carlo
data in two dimensions; in three dimensions the predic-
tions are excellent. The ideas presented in this paper can
be used to calculate ¢ and p, very accurately in dimensions
higher than three. For example a four-dimensional ver-
sion of the cell that was used in three dimensions'® yields
p.=0.157 with REMA, in excellent agreement with the
series expansion estimate?’ p,=0.161 and the conjecture
of Sahimi et al.?® p,=0.156. Simple EMA yields
Pp.=0.25 for d =4. These ideas can also be modified for
percolation conductivity problems in other d-dimensional
cubic networks and in site-disordered random resistor net-
works. The results will be reported elsewhere in a planned
future publication.

ACKNOWLEDGMENT

This research was supported in part by the U. S.
Department of Energy.

For a review, see S. Kirkpatrick, in Ill-Condensed Matter, edit-
ed by R. Balian, R. Maynard, and G. Toulouse (North-
Holland, Amsterdam, 1979), p. 321.

2R. B. Stinchcombe, J. Phys. C 6, L1 (1973); 7, 179 (1974); J.
Marchant and R. Gabillard, C. R. Acad. Sci. Ser. B 281, 261
(1975); J. Bernasconi, W. R. Schneider, and H. J. Weismann,

Phys. Rev. B 16, 5250 (1977).

3G. E. Pike and C. H. Seager, Phys. Rev. B 10, 1421 (1974); L.
Webman, J. Jortner, and M. H. Cohen, ibid. 11, 2885 (1975);
J. P. Straley, ibid. 15, 5733 (1977); P. Li and W. Strieder, J.
Phys. C 15, 6591 (1982) and Ref. 5 of this paper.

4M. Hori and F. Yonezawa, J. Math. Phys. 16, 352 (1975).



28 REAL-SPACE RENORMALIZATION AND EFFECTIVE-MEDIUM . . . 311

58. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

6]. A. Blackman, J. Phys. C 9, 2049 (1976); G. Ahmed and J. A.
Blackman, ibid. 12, 837 (1979).

7V. Ambegaokar, B. 1. Halperin, and J. S. Langer, Phys. Rev. B
4,2612 (1971); J. Bernasconi, ibid. 7, 2252 (1973).

8P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jpn. Suppl.
26, 11 (1969); C. M. Fortuin and P. W. Kasteleyn, Physica 57,
536 (1972).

9A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgup-
ta, Phys. Rev. Lett. 35, 327 (1975).

10For a review see H. E. Stanley, P. J. Reynolds, S. Redner, and
F. Family, in Real-Space Renormalization, edited by T. W.
Burkhardt and J. M. J. van Leeuwen (Springer, Berlin, 1982),
p- 169.

IR, B. Stinchcombe and B. P. Watson, J. Phys. C 9, 3221
(1976); R. Rosman and B. Shapiro, Phys. Rev. B 16, 5117
(1977); J. P. Straley J. Phys. C 10, 1903 (1977); H. Kunz and
B. Payandeh, Phys. Rev. B 20, 2185 (1979).

12J, Bernasconi, Phys. Rev. B 18, 2185 (1978).

13T, Odagaki and M. Lax, Phys. Rev. B 24, 5284 (1981); I. Web-
man, Phys. Rev. Lett. 47, 1496 (1981); S. Summerfield, Solid
State Commun. 39, 401 (1981); M. Sahimi, B. D. Hughes, L.
E. Scriven, and H. T. Davis, J. Chem. Phys. (in press).

141, P. Kadanoff, Physics 2, 263 (1966).

15The only exact real-space renormalization transformation that
we are aware of is the differential real-space renormalization
of H. J. Hilhorst, M. Schick, and J. M. J. van Leeuwen, Phys.
Rev. Lett. 40, 1605 (1978); Phys. Rev. B 19, 2749 (1979).
These authors have applied this transformation to the two-
dimensional Ising model on a triangular lattice. Also A. N.

Berker and S. Ostlund, J. Phys. C 12, 4961 (1979) have point-
ed out that the Migdal-Kadanoff renormalization procedure is
exact for a class of models on hierarchical lattices that lack
translational invariance. See also M. Kaufman and R. B.
Griffiths, Phys. Rev. B 24, 496 (1981).
16pP, J. Reynolds, W. Klein, and H. E. Stanley, J. Phys. C 10,
L167 (1977).
17R. Fogelholm, J. Phys. C 13, L571 (1980).
18D, S. Gaunt and M. F. Sykes, J. Phys. A 16, 783 (1983).
19A. C. N. de Magalhaes, C. Tsallis, and G. Schwachhein, J:
Phys. C 13, 321 (1980).
20M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis, J.
Phys. A 16, L67 (1983).
21C, D. Mitescu, H. Ottavi, and J. Rossenq, in Electrical Trans-
port and Optical Properties of Inhomogeneous Media (Ohio
State University, 1977), Proceedings of the First Conference
on the Electrical Transport and Optical Properties of Inhomo-
geneous Media, edited by J. C. Garland and D. B. Tanner
(AIP, New York, 1978), p. 377.
22R. Fisch and A. B. Harris, Phys. Rev. B 20, 1285 (1978).
23M. Sahimi, in Proceedings of the Workshop on Physics and
Mathematics of Disordered Media, Minneapolis (Springer, Ber-
lin, in press).
24B. Derrida and J. Vannimenus, J. Phys. A 15, L557 (1982).
25M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis, J.
Phys. C (in press).
26]. Webman, J. Jortner, and M. H. Cohen, Phys. Rev. B 16,
2593 (1977).
27D. S. Gaunt and H. Ruskin, J. Phys. A 11, 1369 (1978).



