
PART E: PROPOSAL DESCRIPTION

E1: PROPOSALTITLE

Indecomposable Structure in Representation Theory
and Logarithmic Conformal Field Theory.

E2: AIMS AND BACKGROUND

The research which I propose to undertake may be classed under the broad umbrella of conformal
field theory (CFT) [1]1. CFTs are quantum field theories which are not just invariant under the Lorentz
group of special relativity, but are in fact invariant undera larger group of symmetries, known as the
conformal group. The study of conformal invariance takes ona special flavour in two dimensions,
because in this case the corresponding algebra of infinitesimal symmetries is infinite-dimensional,
leading to a substantial increase in our control, and understanding, of the field theory. Indeed, in
many cases the theory can be in principle exactly solved. CFT without qualification generally refers
to this two-dimensional case.

Despite the seemingly special restrictions of a two-dimensional theory, CFT is an extremely active
area of research in theoretical and mathematical physics. One reason for this is that CFT is at the heart
of modern researches into statistical mechanics and stringtheory. The former because of the fact that
statistical models display conformal invariance at their critical points, and the latter because a string
theory must be conformally invariant when “pulled back” to the two-dimensional “worldsheet” swept
out in time by the one-dimensional string.

The most surprising application of CFT is, beyond doubt, to pure mathematics. CFT and its ex-
tension, string theory, have played an enormous role in shaping and unifying modern mathematics in
recent years. Indeed, the concept of a vertex operator algebra, originally developed as a framework
in which to prove the famous “monstrous moonshine” conjectures, is nothing more than the mathe-
matician’s refinement (to their impeccable standards of rigour) of a (chiral) CFT. The role of CFT in
relating diverse mathematical subjects such as infinite-dimensional algebras, stochastic Loewner evo-
lution (SLE), knot theory, combinatorics, number theory, quantum groups, and algebraic geometry
(to name but a few) is well-known. Indeed, the awards list of the most coveted prize in mathematics,
the Fields Medal, turns up Jones and Witten (knot theory), Borcherds (vertex algebras) and Werner
(SLE). I think it fair to say that CFT has been one of the most important developments for mathematics
during the last quarter of a century.

The focus of the research proposed here is on a generalisation of CFT which has come to be known
through the qualifier “logarithmic”. Logarithmic CFTs were first discussed in the early nineties [2,3]
and are so named because they admit correlation functions, vacuum expectation values of products of
quantum fields, with logarithmic branch cuts. This contrasts with standard (rational) CFT in which
the branch points of the correlation functions are of finite order (power-type).

Despite a promising beginning, logarithmic CFT quickly attained a reputation for being esoteric
and technical. Some impressive examples were constructed,in particular the triplet model [4–6], but
the field suffered from a perceived lack of concrete applications. To be sure, there were many attempts
to use logarithmic theories to explain discrepancies in models of the fractional quantum Hall effect,
abelian sandpiles, D-brane recoil and more (see [7] for references to these), but none of these attempts
really left an enduring mark upon their intended field. One possible reason for this is that logarithmic
CFTs are inherently non-unitary, and so could be easily disregarded as unphysical.

1Citations here refer to section E8. Space restrictions unfortunately mean that these references cannot be indicative of
the entire field and I apologise for the many important articles which have been omitted.



Nevertheless, condensed matter physicists remained interested in these theories for the simple rea-
son that the standard CFT description of their favourite models was known to be incomplete. CFT
is celebrated throughout this field for providing a beautiful description oflocal statistical observables
in which expectation values and critical exponents may be deduced from CFT correlation functions.
For example, the local observables of the Ising model correspond to the primary fields of the minimal
model CFTM(3,4). However, there are many models in which the observables of interest are not
local, and here standard CFT appears to have very little to say.

The archetypal example of such a statistical model is percolation. Percolation itself refers to a col-
lection of closely related problems in probability theory,but these problems exhibit critical behaviour
analogous to that of phase transitions in macroscopic media[8]. The interest from the physics com-
munity then stems from regarding percolation as a collection of relatively simple models with which
one can test predictions such as conformal invariance at criticality and universality. The setup is
as follows: One considers a fixed rectangular subdomain of a square lattice, and considers random
configurations in which each edge of the lattice is chosen to be open or closed with probabilityp
or 1− p. The basic question of percolation is then to determine the probability that such a random
configuration will contain a cluster of edges connecting oneof the vertical sides of the rectangle to the
other. In the continuum limit where the lattice spacing tends to zero, this crossing probability is only
interesting (neither zero nor one) for a critical value ofp. The fundamental observable of percolation
is then the crossing probability for this criticalp. As this requires a global knowledge of each random
configuration, the crossing probability is referred to as anon-localobservable.

Simple arguments suggest that the CFT describing critical percolation must have a vanishing “cen-
tral charge”. But standard CFTs with this property are completely trivial and cannot describe any
(interesting) physical model. Nevertheless, one of the most celebrated confirmations of conformal in-
variance in condensed matter physics is the derivation, dueto John Cardy [9], of an exact formula for
the crossing probability in percolation. His derivation assumes that the limit is conformally invariant,
and then relies only upon standard CFT techniques. It should be stressed that his article says little
about the CFT itself. However, the agreement of his formula with the numerical simulations of [10]
is very impressive.

In collaboration with Pierre Mathieu, I have proven that Cardy’s derivation of the percolation cross-
ing probability defines a CFT which we have verified to be logarithmic [11]. This comes amid a recent
resurgence in activity within the logarithmic CFT community, aimed at clarifying applications to the-
oretical physics and developing the mathematical properties of logarithmic theories so as to more
closely mirror those of standard CFTs. One can isolate several different approaches including free
field methods and quantum group connections [12–14], lattice model constructions [15–18] and con-
struction through explicit fusion [19–21]. At around the same time, high-energy physicists started to
reconsider models of string theories in which the target space is a Lie supergroup [22–24]. Whilst
these models have a long history in string theory, they cannot be said to be nearly as well-understood
as their bosonic analogues, despite the role they play in important topics such as the AdS/CFT cor-
respondence. This attention has revived the realisation that these models are also logarithmic CFTs,
and deserve to be understood as such. A third strand of interest has also arisen in the mathematical
community, where efforts are underway to formally define appropriate notions of a logarithmic vertex
operator algebra [25].

The core aim of the programme which I intend to follow during the course of this fellowship may
be summarised as follows:

This project aims to study the mathematical structures underlying logarithmic
conformal field theory, with a view to explore, unify and enable computation.
Expected outcomes include the generation of a consistent anddetailed formalism
which naturally accommodates applications to condensed matter physics, string
theory and mathematics.

I shall detail more specific aims and outcomes in the technical section E4, where I shall also explain
the relevance of “indecomposable structure in representation theory” (section E1). These specific
aims take the form of sub-projects, each of which is rooted inarticles I have published in this field



[11, 20, 21, 26] and current work in progress. For further background of a more technical nature, the
reader is referred to the descriptions of these sub-projects.

E3: SIGNIFICANCE AND INNOVATION

Logarithmic CFT has a relatively short history — only fifteen years have elapsed since the original
papers on the subject. But, as mentioned above, the last few years have seen a substantial improve-
ment in our understanding of this seemingly technical subject. This is a rapidly emerging area of
mathematical physics which is currently attracting more and more interest internationally, both for
the sake of fundamental research and with a view to potentialapplications. Australia is already con-
tributing strongly to this fundamental research effort andthe project outlined here aims to significantly
boost and complement our current strengths. We are well-poised to situate ourselves as the leaders in
the field and should make every effort to capitalise on this chance.

As noted, one motivating reason to develop the theory of logarithmic CFTs is that they describe
the statistical behaviour of non-local observables in critical condensed matter systems. Besides the
example of percolation (section E2), such systems include mathematical idealisations of solutions
of polymers, both dilute (low concentration) and dense (high concentration), as well as a wealth of
other important models. The value of a complete descriptionof the observables of these systems,
both for fundamental and applied science, should be evident. Indeed, the value of the corresponding
descriptions for local observables in the Ising, tricritical Ising, 3-state Potts, etc... models is well
documented (see [1, Chs. 7.4 and 12] for an overview).

Besides this application to condensed matter theory and allthat such applications entail, logarithmic
CFT also has a relatively under-exploited role to play in modern string theory research, in particular
to theories with supersymmetric backgrounds. Indeed thereare even recent claims that logarithmic
structure in such theories is a gravitational effect [27]. Examples of such backgrounds include Lie su-
pergroups ofPSU type and their symmetric spaces. The corresponding string theories are prototypes
for the famous AdS/CFT correspondence of Maldacena [28] (seesection E4, project 6). In addition,
the mathematical structures underlying logarithmic CFT have recently been proven [29] to be present
in stochastic Loewner evolution (SLE). SLE is a rigorous probabilistic approach to the models of
condensed matter physics which has already been hailed as one of the great mathematical break-
throughs of recent times. Structural results from logarithmic CFT will therefore be of great interest
to this mathematical community, and work is already underway to clarify and extend the relationship
between SLE and logarithmic CFT.

One key point of this proposal is that to obtain a useful mathematical framework for these appli-
cations, we will have to devise methods to enable us to actually compute the quantities which are
required. I will argue that the current state of knowledge isnot sufficiently mature to accommodate
this natural desire. Not only are we arduously exploring a class of (presumably physical) logarithmic
CFTs, but we are doing so without much concern for explicit computation. Below, I outline several
specific issues (and solutions) addressing this latter concern (section E4, projects 2 and 5) as well as a
more general vision encompassing new classes of fundamental logarithmic CFTs whose elucidation
is vital for improving upon our current knowledge.

E4: APPROACH ANDMETHODOLOGY

Below I will outline in detail the sub-projects which I have in mind to fulfil the core aim of section
E2, indicating my proposed approaches and methods. These are by no means exhaustive, but serve
to indicate that there is a wealth of valuable work with whichI will occupy myself, upon receiving
funding. First however, it is necessary to introduce some ofthe technical concepts and nomenclature
that are necessary for informed discussion.

The most important mathematical structure associated witha CFT, logarithmic or not, is its chiral
symmetry algebra. This is a graded, infinite-dimensional associative algebra whose representations
comprise the quantum state space of the theory. A chiral algebra may be a Lie algebra (the Virasoro
algebra and affine Kac-Moody algebras are archetypal examples), a Lie superalgebra, or something



more general (parafermionic algebras, W-algebras, ...). To characterise the CFT, it is therefore vital
to understand the representation theory of the appropriatechiral algebra.

Concerning logarithmic CFTs, it was Gurarie [3] who realised that logarithmic branch cuts in cor-
relation functions were an indication that a “zero-mode” ofthe chiral algebra, typically the Virasoro
zero-modeL0, can not be diagonalised but rather possesses a rank-2 Jordan cell. The zero-modes of a
chiral algebra always commute with one another and their eigenvalues are typically interpreted as the
quantum numbers which distinguish the states of the theory.Gurarie’s insight was then that logarith-
mic CFTs are distinguished structurally from standard CFTs inhaving zero-modes withgeneralised
eigenspaces.

This insight was confirmed rather dramatically by Gaberdieland Kausch [4] who were able to ex-
plicitly construct representations on whichL0 was not diagonalisable using ideas of Gaberdiel [30]
and Nahm [31]. Standard CFT presupposes that all representations appearing in the theory are com-
pletely reducible (can be expressed as direct sums of irreducible representations) and highest weight.
However, whenL0 (or another zero-mode) is not diagonalisable, the representation is necessarily re-
ducible but not completely so. Moreover, it need no longer behighest weight. Instead one speaks
of direct sums ofindecomposablerepresentations generalising their highest weight cousins, hence
the paradigm that logarithmic CFT roughly equates to indecomposable structure in representation
theory2.

With this background, the following research projects illustrate the directions I propose to pursue.
Space constraints limit the number which can be adequately described, and there are many others
which may prove fruitful. For example, I would also like to study integrable perturbations of logarith-
mic CFTs with a view to determining what happens to the quantumgroup symmetry of the standard
case. It would moreover be interesting to further develop the bridge between logarithmic CFT and
SLE. Finally, engaging in research typically leads to further directions of study and applications that
one had not envisaged at the start. In any case, it is clear that there is much to be done!

1. Classification of Staggered Representations
The indecomposable representations relevant to logarithmic CFT were calledstaggeredby Rohsiepe

[32], who made significant progress in classifying simple examples of these representations. With
Kalle Kytölä (Universit́e de Geǹeve), I have been generalising and extending Rohsiepe’s results, and
we have obtained a classification of the simplest class of staggered representations of the Virasoro al-
gebra (those which are extensions of one highest weight representation by another withL0 possessing
Jordan cells of rank 2). This work is anticipated to appear onthe arXiv in March or April.

Whilst the Virasoro representations we have classified coverthe majority of those known to arise
naturally in logarithmic CFT, they are not exhaustive. Extensions constructed from three highest
weight representations have appeared in critical percolation [21], and representations with rank 3
Jordan cells forL0 have also been constructed [19]. An obvious line of researchis then to generalise
our current results to cover these cases and more. An (ambitious) aim would be to classify all Virasoro
staggered representations.

This is clearly a non-trivial exercise in pure mathematics (Lie theory and homological algebra),
but its resolution is not only of mathematical importance, but is also critical to improving our un-
derstanding of logarithmic CFT. Unfortunately, constructing higher-rank staggered representations
directly from lattice model techniques or fusing simpler representations is computationally intensive,
and our algorithms are already reaching the limit of what is feasible. Progress in understanding what
is physically possible therefore requires mathematical input to reduce the number of possibilities to
something more manageable. Such progress will also be important to other related fields, in particular
to the study of algebraic representations in SLE.

Along similar lines, the other projects proposed here will benefit enormously from similar classi-
fications for other chiral algebras. A second branch to this project that I intend to explore concerns
staggered representations for the affine Kac-Moody algebraŝl(2), as this case is expected to be the

2Strictly speaking, indecomposable structure is not enough, though the paradigm is often stated in this form. What is
needed is indecomposable structure on which a zero-mode acts non-diagonalisably.



most tractable (the analysis of Kac-Moody symmetries is typically more straight-forward than that of
Virasoro symmetries) and useful (see sub-projects 3 and 4 for example). However, there is significant
interest in considering similar classifications for super-Virasoro algebras, simple Lie superalgebras
and affine Kac-Moody superalgebras.

2. Free-Field Realisations and the Logarithmic Coupling
The staggered representations which arise most frequentlyin explorations of logarithmic CFT are

generically described by a parameterβ called the logarithmic coupling (or less imaginatively, the
beta-invariant). This is most simply defined as the scalar product of the (normalised) zero-mode
eigenstate and its Jordan cell partner [11], and its knowledge is necessary to characterise the math-
ematical action of the positive chiral algebra modes on the full representation. Indeed, its value is
generally deduced from this action. Moreover, correlationfunctions involving Jordan cell partner
fields generally involve the logarithmic coupling, so it is of direct physical interest as well. It follows
from this that physical applications of any logarithmic CFTrequire knowledge of the appropriate
logarithmic couplings.

This said, the logarithmic coupling is generally quite difficult to compute. Lattice model ap-
proaches have so-far proved fruitless as there one only obtains information about the Virasoro mode
L0 and not the positive modes needed forβ . Explicit constructions of staggered representations via
fusion allows the computation ofβ but this is computationally prohibitive except in the simplest cases.
For certain representations, one may obtainβ as a by-product of computing singular vectors [20], but
this is again computationally intensive and not completelygeneral.

To reiterate, computation within staggered representations requires the logarithmic couplingβ as
do the correlation functions of any physical application ofthe corresponding logarithmic CFT. It is
therefore vital to develop better methods to compute these elusive invariants, and this is of course
the aim of this project. In support of this aim, Pierre Mathieu and I have already noted [20] that
the logarithmic couplings of certain examples of Virasoro representations can be expressed as sim-
ple functions of the central charge (they occur quite generally), suggesting that there are universal
formulae for at least some classes of staggered representations.

The technical tool with which I propose to attack this computation is the formalism of free-field
methods. This will be familiar to CFT researchers (see [1, Ch. 9] or [33]), and allows one to replace
a chiral algebra with another for which computations are fareasier. At the end, one performs a
BRST-like projection (takes the cohomology of the free-field resolutions) to recover the required
result for the original chiral algebra. Free-field approaches to logarithmic CFT have already been
pioneered [12–14] with some success, but applications to computingβ have not yet been considered.

3. Logarithmic CFTs with ŝl(2) Symmetry
It is widely believed that every standard (rational) CFT can be related to Wess-Zumino-Witten

(WZW) models by a few well-understood operations including orbifold and coset constructions. For
example, the unitary minimal models may be uniformly constructed as certain cosets of WZW theo-
ries with ŝl(2) symmetry. These WZW models are rational CFTs describing strings propagating on
a compact Lie group, and are often referred to as the fundamental building blocks of rational CFT. It
is therefore reasonable to expect that logarithmic versions of these models will provide “fundamental
building blocks” for a large class of logarithmic CFTs.

The simplest of the (non-abelian) WZW models is that defined onSU(2). The symmetry algebra
may be identified as the affine Kac-Moody algebraŝl(2)k, where the subscriptk (the level) denotes
the common eigenvalue of the generator of the (one-dimensional) centre. The geometric definition as
a string theory restrictsk to a non-negative integer [34]. However, one can try to construct the CFT
algebraically for any realk if one gives up the geometric interpretation.

Such constructions are easiest for the so-called admissible levels. These are certain rationalk for
which the representation theory ofŝl(2)k behaves similarly tok ∈ N [35]. The corresponding CFTs
were originally posited as non-unitary versions of WZW models from which the non-unitary minimal
models could be constructed as cosets. However, further study of non-unitary WZW models found



puzzling contradictions which led to a general feeling thatthese models suffered from an “intrinsic
sickness” (see for example, [1, Sec. 18.6]).

This sickness was cured by Gaberdiel [36] who showed that theroot cause was the assumption
that non-unitary WZW models are rational CFTs. Indeed, fork = −

4
3, he proved that the theory is

only quasi-rational and moreover, logarithmic. This was followed up fork = −
1
2 which admits a

quasi-rational non-logarithmic construction [26, 37] anda logarithmic cover [38]. Aside from these
two special values however, nothing further is known about the nature or structure of admissible-level
WZW models.

This gap in our knowledge is clearly unacceptable if we accept the maxim that these models are the
fundamental building blocks of logarithmic CFT. I propose toundertake a systematic investigation
of such theories with the primary aim of filling this gap. To analyse specific models, the fusion
algorithm of Nahm [31] and Gaberdiel-Kausch [4] will be programmed and applied to admissible
representations in order to uncover the detailed logarithmic structure of these theories. I expect that
the richer structure of̂sl(2), as compared to the Virasoro algebra say, will lead to readily discernible
patterns. Free-field methods will then be employed to prove these patterns. Other CFT phenomena
(for example, modularity) will be generalised to these theories.

I also intend to investigate logarithmic versions of thek ∈ N theories. There is a little literature
pertaining to thek = 0 case [39,40] which makes it clear that there are potential applications for such
theories. Investigation is anticipated to proceed as in theadmissible cases, although here there are
fewer constraints on the structure and inspiration will be sought from applications. It is also very
interesting to investigate non-unitary WZW models with other symmetry algebras. However, such
investigations are not envisaged to be as crucial as theŝl(2) case (see however sub-project 6).

4. Cosets of Logarithmic CFTs and Extended Algebras
An important (and indeed motivating) application of the development of non-unitary WZW models

which I will follow is the construction of their coset theories. Recall that the admissible-level models
were originally posited as a way to construct non-unitary minimal models via the coset mechanism.
As it has since been realised that the admissible-level WZW models are generically logarithmic,
the following question becomes pertinent: Do the (appropriate) cosets of the admissible-level WZW
models recover the non-unitary minimal models, or some logarithmic version thereof? This simple
question will be of significant interest to the logarithmic CFT community as much of the recent
motivation in this area has come from attempts to construct logarithmic versions of minimal models.
I aim to answer this question, which will hopefully shed important light on the structure of these
logarithmic minimal models.

Logarithmic minimal models have their beginnings with the triplet model of Gaberdiel and Kausch
[4–6]. This theory is formally associated with the empty (non-existent) minimal modelM(1,2)
and so is often denoted byLM(1,2). There are fairly straight-forward generalisations of thetriplet
model corresponding toLM(1,q), but the recent interest has come from trying to make sense of
logarithmic minimal modelsLM(p,q) with p > 1 [14,16,19,20] (unlike the(1,q) models, these do
have genuine minimal model analogues). Despite much effort, the status of these models remains
somewhat questionable. Even their internal consistency isnot clear (sub-project 5).

One thing which is generally agreed upon is that logarithmicminimal models should have an ex-
tended algebra (or W-algebra) with respect to which there are only finitely many representations. This
is true forLM(1,q). Unfortunately, this extended algebra has not been explicitly determined in any
other cases! Much has been deduced indirectly, or conjectured by analogy to the(1,q) cases, but
we are still missing the foundation upon which the study of logarithmic minimal models is based.
I am currently writing up work in which I naturally reconstruct the W-algebra of the triplet model
LM(1,2) using coset methods. I propose to generalise this result, using the results of sub-project 3,
to the other logarithmic minimal models. This is expected torequire detailed knowledge of both the
admissible and integer-level logarithmiĉsl(2) CFTs.



The representation theory of the resulting W-algebras willclearly play a fundamental role in analy-
sis logarithmic minimal models. General W-algebra representations can be surprisingly rich in struc-
ture [41], so a careful study is warranted. This will involveproving mathematical structure theorems
as well as computing fusion rules using the algorithm of Nahmand Gaberdiel-Kausch. I expect that
by realising these W-algebras as cosets of simpler algebras, I will be able to exploit the known struc-
ture of the latter in determining the structure of the former. This provides additional motivation to
follow this line of study.

5. Logarithmic Structure and the Adjoint
The chiral symmetry algebra of a CFT always comes equipped with an adjoint. This bestows upon

the representations (the quantum state space) a hermitian form, invariant under the symmetry algebra
action. This form is not necessarily positive-definite in general3, but it plays the role of an inner
product, describing the overlap between quantum states andhence the form of the physically relevant
quantities, the correlation functions.

In a logarithmic CFT, it has always been assumed that the symmetry algebra comes equipped with
the usual adjoint. However, we have some reason to be suspicious of this assumption. First, the zero-
modes are generically self-adjoint in a CFT, so that the spectrum is real (hence physical). However,
in a logarithmic CFT, some of these zero-modes cannot be diagonalised. This is not necessarily a
contradiction as the hermitian form is indefinite on the state space, but one must now wonder why we
need to choose an adjoint for which the zero-modes are self-adjoint in the first place. The choice of
adjoint no longer seems fixed by physical considerations.

A more serious issue that this is related to is the following.As was noted in sub-project 4, there
has been much recent activity in constructing logarithmic minimal models. However, it was realised
that these constructions, though based on entirely reasonable physical models, lead to inconsistencies
within the standardframework of CFT [11]. Specifically, these models lead to certain correlation
functions which can be proven not to exist [42]. In essence, these correlation functions must satisfy
three partial differential equations (PDEs) derived from the conformal Ward identities, and these PDEs
have no common solution (not even 0). There are several possibilities to reconcile this inconsistency
(see the discussion of [21] for some recent thoughts on this issue), but the relevant point here is that
the derivation of the PDEsassumesthe standard definition of adjoint.

I therefore propose to study the question of the adjoint in logarithmic CFT, with a view to resolve
this current contradiction within the literature. I envisage the consideration of certain simple logarith-
mic theories and their physical applications to divine the physically relevant adjoint in such cases. If
non-standard, this will be followed by reconstruction of the formalism of CFT so as to incorporate
the modifications that such logarithmic adjoints require. It should be clear how crucial such a study
is to physical applications of logarithmic CFT: Without a proper adjoint, we cannot have confidence
that our computations of correlation functions have anything to do with the application at hand.

6. Supergroup WZW Models and D-Brane Charges
As mentioned above, integer-level WZW models describe strings propagating on a Lie group. Sim-

ilarly, one can consider string theories defined on Lie supergroups [22–24], so-called supergroup
WZW models. The corresponding CFT then has an affine Kac-Moody superalgebra for a symme-
try algebra, representations of which almost always exhibit non-trivial indecomposable structure. It
follows that these CFTs will be generically logarithmic. Supergroup WZW models and their cosets
are currently objects of much interest, due to the role they play in the AdS/CFT correspondence [28].
Their logarithmic structure is however not usually remarked upon.

In contrast with the Lie group case, integer-level WZW modelson Lie supergroups are almost never
rational. From an algebraic point of view, the simplest caseto analyse is actually when the level is
admissible (see sub-project 3 for terminology). This case need not have a geometric interpretation as
a string theory, but will provide further fundamental examples of logarithmic CFTs which exemplify

3What we therefore should say is that instead of an adjoint, we have an antilinear anti-involution with respect to which
the induced hermitian form is contravariant.



the types of indecomposable representation which will be relevant more generally. I therefore propose
that a first study concentrates on admissible-level supergroup WZW models.

Subsequent research will then focus on supergroup WZW modelsas string theories. Here, one
possible application would be to extend to these models the well-known story concerning the classi-
fication of D-branes in standard WZW models by a certain twisted K-theory (described in [43, 44]).
This is embodied in a celebrated theorem of Freed, Hopkins and Teleman [45] describing a natural
isomorphism between this K-theory and the Verlinde (fusion) ring of the WZW model CFT. A gener-
alisation of this is beyond the scope of the project, but the related issue of computing the classifying
D-brane charges in supergroup WZW models should be amenable to analysis [46–48]. If successful,
this could lead to a similar explosion of valuable activity at the interface of algebraic topology and
string theory/CFT. It will be extremely interesting to see the role that logarithmic structure plays in
this development.

The proposal which I have outlined above is substantial (as befits a five year fellowship), but one
which promises to make significant contributions to cutting-edge research in logarithmic conformal
field theory, cementing Australia’s reputation for world-class research in this important discipline. As
mentioned above, I expect that many more applications, to mathematics and physics, will become
apparent during the course of this research. Undoubtedly, most will result from discussing my work
with colleagues, both locally (in my department and nationally through conferences and workshops)
and globally (via international conferences and collaborations).

A (very) tentative timetable outlining envisaged start/end dates for the sub-projects discussed here
is as follows:

Year 1: Start projects 1, 2, 3 and 5.
Year 2: Continue projects 1, 2, 3 and 5. Start project 4.
Year 3: Continue projects 1, 2, 3 and 4. Start project 6
Year 4: Continue projects 1, 3, 4 and 6.
Year 5: Continue projects 4 and 6.

The space allocated has been deliberately reduced in later years to accommodate sub-projects not
described here. In particular, projects centered on integrable perturbations of logarithmic CFTs and
connections to SLE are candidates for such later work, and ofcourse there are always new directions
that become apparent during the course of any research.

It is of course necessary to acknowledge the possibility that various parts of this proposal will
be found to be more difficult than anticipated. This proposalis based on preliminary results which
have already uncovered surprising subtleties, so it would be folly to assume that this fellowship will
see nothing but smooth sailing. However, I would hasten to add that the broad applicability of the
methods being developed ensure that there will always be a multitude of different tasks to work
profitably upon (and again I expect that more will present themselves as this research progresses). I
am therefore confident that the programme I have outlined above will not suffer from the problem of
getting stuck at a key point, as a narrower proposal perhaps might.

I submit that this represents an intensive, yet detailed, proposal of research during the period of
the fellowship. It should be clear that this outlines an important unifying framework for logarithmic
conformal field theory that deserves study, emphasises applicability, and that it will lead to many
beautiful, interesting and useful mathematical results along the way.

E5: NATIONAL BENEFIT

As mentioned above, the completion of the projects proposedhere will lead to importance advances
in the study and applications of logarithmic conformal fieldtheory. I will develop precise algebraic
analyses of fundamental examples of logarithmic conformalfield theories and use this knowledge to
construct a unifying framework in which to understand thesemodels mathematically and discuss their
applications physically.

The benefits of this programme of research are legion. Given the incredible amount of mathematical
activity generated by the introduction of the Virasoro and Kac-Moody algebras some forty years ago,



it is hard to believe that a study of their representations beyond the irreducible ones will not find
similar applications in unifying areas of mathematics. Thetime is also ripe to exploit the structure of
these representations in applications to condensed matterphysics, string theory and SLE. Such results
will be of great interest to the mathematical community, andwill certainly help to foster further
collaboration between physicists and mathematicians.

CFT is an active area of research, both in Australia and internationally. Logarithmic CFT is a
rapidly advancing outgrowth of this discipline whose importance demands recognition. The out-
comes described in this proposal will be of considerable interest to mathematical physicists and rep-
resentation theorists across the country. I submit that funding this proposal will result in research of
significant international standing. Moreover, the dissemination of the results of work proposed here
will significantly enhance Australia’s international reputation in the fundamental sciences.

E6: COMMUNICATION OF RESULTS

As a mathematical physicist, my primary means of disseminating my work is through posting
articles on the arXiv (arxiv.org), and then publishing them in the best reviewed journals. For
example, my recent papers have been published in the Journalof High Energy Physics, Nuclear
Physics B and Physics Letters B, each of which is among the very best in my field as evidenced
by their 2007 impact factors: 5.659, 4.645 and 4.189 respectively. I expect that the work reported
here will result in an average of at least four papers per year. I also take the opportunity to present
my work at national and international workshops and conferences, and by giving seminars in other
centres and departments. The nature of my field, consisting of abstract fundamental research, means
that it is not appropriate to espouse direct communication with the public. However, there should
exist opportunities to contribute to the training of students, locally at the departmental level, as well
as nationally through schools and workshops such as those organised by AMSI and ICE-EM.

It is, I think, almost universally agreed amongst my peers that fundamental theoretical results of the
nature we discover should be made available to the wider academic community. This is reflected in
our primary means of dissemination, the internet, in that our ideas are never withheld (as long as one
has an internet connection). Effectively, anybody may use my results, with the implicit understanding
that my contribution will be acknowledged in their subsequent work.

E7: ROLE OF PERSONNEL

This is an application for an Australian Research Fellowship with a single applicant. As such, I
must assume responsibility for all major aspects of the proposal described above. As an experienced
researcher in mathematical physics, I claim to have (or be able to learn or develop) all the necessary
expertise to satisfactorily complete this project. To support this claim, I refer to my track record as
evidenced by my publications. Whilst this is discussed in detail elsewhere (section B10), I think it
fair to say that my recent articles prove that I have considerable expertise in logarithmic conformal
field theory and the relevant mathematical disciplines which will be required for this project. I would
also like to think that they show that my research has been characterised by an ability to recognise
difficult outstanding problems in mathematical physics, and solve them through the application of
original mathematics. This should demonstrate that I certainly possess the capacity to undertake the
research outlined above.

I also intend to actively involve postgraduate and honours students in various parts of this proposal.
Choosing an appropriate topic will of course depend heavily on the student’s interest and mathemati-
cal background. A preference for algebra and representation theory would be well accommodated in
projects 1 and 4. Someone with a background in analysis mightprefer to study the links with SLE.
Geometric types could work on project 6. Furthermore, thereis ample opportunity throughout for
physical CFT research.

Aside from those funded by this proposal, there are many other experts, both in Australia and
internationally, with whom I hope to collaborate. For example, I envisage continuing my present
collaboration with Kalle Kyẗolä whilst pursuing project 1 and links to SLE, and I am sure thatPierre
Mathieu will want to revisit the subject of extended algebras (project 4). Local expertise will also



play a significant role in attaining these outcomes. For example, the experience of Paul Pearce will
be a valuable resource in general (and for project 5 in particular), and that of Peter Bouwknegt in free
field methods and W-algebras is particularly suited to projects 2 and 4.

Finally, there is a minor technical role to be played, essentially to provide support for the CPU-
intensive algorithms which will need to be programmed. Thisrole is discussed in more detail in
C2.
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