PART E: PROPOSAL DESCRIPTION

El: PROPOSALTITLE

Indecomposable Structure in Representation Theory
and Logarithmic Conformal Field Theory.

E2: AIMS AND BACKGROUND

The research which | propose to undertake may be classed thederoad umbrella of conformal
field theory (CFT) [1}. CFTs are quantum field theories which are not just invariadenthe Lorentz
group of special relativity, but are in fact invariant un@elarger group of symmetries, known as the
conformal group. The study of conformal invariance takesa@pecial flavour in two dimensions,
because in this case the corresponding algebra of infimt#ssymmetries is infinite-dimensional,
leading to a substantial increase in our control, and unaedsng, of the field theory. Indeed, in
many cases the theory can be in principle exactly solved. Ciiowt qualification generally refers
to this two-dimensional case.

Despite the seemingly special restrictions of a two-dineared theory, CFT is an extremely active
area of research in theoretical and mathematical physies.réason for this is that CFT is at the heart
of modern researches into statistical mechanics and dtigayy. The former because of the fact that
statistical models display conformal invariance at theiiaal points, and the latter because a string
theory must be conformally invariant when “pulled back” e two-dimensional “worldsheet” swept
out in time by the one-dimensional string.

The most surprising application of CFT is, beyond doubt, teepuathematics. CFT and its ex-
tension, string theory, have played an enormous role inisgamnd unifying modern mathematics in
recent years. Indeed, the concept of a vertex operator r@gehginally developed as a framework
in which to prove the famous “monstrous moonshine” conjesstuis nothing more than the mathe-
matician’s refinement (to their impeccable standards autyjof a (chiral) CFT. The role of CFT in
relating diverse mathematical subjects such as infiniteedsional algebras, stochastic Loewner evo-
lution (SLE), knot theory, combinatorics, number theoryagtum groups, and algebraic geometry
(to name but a few) is well-known. Indeed, the awards lishefrnost coveted prize in mathematics,
the Fields Medal, turns up Jones and Witten (knot theory)ycBerds (vertex algebras) and Werner
(SLE). I think it fair to say that CFT has been one of the mostartgnt developments for mathematics
during the last quarter of a century.

The focus of the research proposed here is on a generatisdt@FT which has come to be known
through the qualifier “logarithmic”. Logarithmic CFTs weresti discussed in the early nineties [2, 3]
and are so named because they admit correlation functianaumn expectation values of products of
guantum fields, with logarithmic branch cuts. This consagith standard (rational) CFT in which
the branch points of the correlation functions are of finitgen (power-type).

Despite a promising beginning, logarithmic CFT quickly miésl a reputation for being esoteric
and technical. Some impressive examples were construntpdrticular the triplet model [4—6], but
the field suffered from a perceived lack of concrete applcet To be sure, there were many attempts
to use logarithmic theories to explain discrepancies in @®df the fractional quantum Hall effect,
abelian sandpiles, D-brane recoil and more (see [7] foreefees to these), but none of these attempts
really left an enduring mark upon their intended field. Onegdole reason for this is that logarithmic
CFTs are inherently non-unitary, and so could be easily gased as unphysical.

ICitations here refer to section E8. Space restrictionsnumiately mean that these references cannot be indicative o
the entire field and | apologise for the many important aggavhich have been omitted.



Nevertheless, condensed matter physicists remaineesgtézt in these theories for the simple rea-
son that the standard CFT description of their favourite n®das known to be incomplete. CFT
is celebrated throughout this field for providing a beauigfescription oflocal statistical observables
in which expectation values and critical exponents may lekided from CFT correlation functions.
For example, the local observables of the Ising model cpmed to the primary fields of the minimal
model CFTM (3,4). However, there are many models in which the observablestefast are not
local, and here standard CFT appears to have very little to say

The archetypal example of such a statistical model is patiool. Percolation itself refers to a col-
lection of closely related problems in probability thedwyt these problems exhibit critical behaviour
analogous to that of phase transitions in macroscopic nj8flid he interest from the physics com-
munity then stems from regarding percolation as a colleabiorelatively simple models with which
one can test predictions such as conformal invariance ttaliiy and universality. The setup is
as follows: One considers a fixed rectangular subdomain guare lattice, and considers random
configurations in which each edge of the lattice is chosenetofen or closed with probabilitp
or 1— p. The basic question of percolation is then to determine tbheability that such a random
configuration will contain a cluster of edges connecting oitbe vertical sides of the rectangle to the
other. In the continuum limit where the lattice spacing ®tawlzero, this crossing probability is only
interesting (neither zero nor one) for a critical valugpofThe fundamental observable of percolation
is then the crossing probability for this critical As this requires a global knowledge of each random
configuration, the crossing probability is referred to a®a-localobservable.

Simple arguments suggest that the CFT describing criticalgtation must have a vanishing “cen-
tral charge”. But standard CFTs with this property are congbjetrivial and cannot describe any
(interesting) physical model. Nevertheless, one of thetm@lgbrated confirmations of conformal in-
variance in condensed matter physics is the derivationt@dehn Cardy [9], of an exact formula for
the crossing probability in percolation. His derivatiosases that the limit is conformally invariant,
and then relies only upon standard CFT techniques. It shailstiessed that his article says little
about the CFT itself. However, the agreement of his formul wie numerical simulations of [10]
IS very impressive.

In collaboration with Pierre Mathieu, | have proven that Gésdlerivation of the percolation cross-
ing probability defines a CFT which we have verified to be lagpanic [11]. This comes amid a recent
resurgence in activity within the logarithmic CFT communaymed at clarifying applications to the-
oretical physics and developing the mathematical propeiif logarithmic theories so as to more
closely mirror those of standard CFTs. One can isolate skddfarent approaches including free
field methods and quantum group connections [12—-14], éaftiodel constructions [15-18] and con-
struction through explicit fusion [19-21]. At around thevsatime, high-energy physicists started to
reconsider models of string theories in which the targetspa a Lie supergroup [22—-24]. Whilst
these models have a long history in string theory, they cab@said to be nearly as well-understood
as their bosonic analogues, despite the role they play imitapt topics such as the AAS/CFT cor-
respondence. This attention has revived the realisatiaintttese models are also logarithmic CFTs,
and deserve to be understood as such. A third strand of gttkeas also arisen in the mathematical
community, where efforts are underway to formally definerappate notions of a logarithmic vertex
operator algebra [25].

The core aim of the programme which | intend to follow durihg tourse of this fellowship may
be summarised as follows:

This project aims to study the mathematical structures undelying logarithmic
conformal field theory, with a view to explore, unify and enalle computation.
Expected outcomes include the generation of a consistent adetailed formalism
which naturally accommodates applications to condensed ntizgr physics, string
theory and mathematics.

| shall detail more specific aims and outcomes in the teche&aion E4, where | shall also explain
the relevance of “indecomposable structure in representdheory” (section E1). These specific
aims take the form of sub-projects, each of which is rootedrtitles | have published in this field



[11, 20, 21, 26] and current work in progress. For furtherkgsound of a more technical nature, the
reader is referred to the descriptions of these sub-pject

E3: SGNIFICANCE AND INNOVATION

Logarithmic CFT has a relatively short history — only fifteezeys have elapsed since the original
papers on the subject. But, as mentioned above, the lastdavs )\ave seen a substantial improve-
ment in our understanding of this seemingly technical stibj@his is a rapidly emerging area of
mathematical physics which is currently attracting mord arore interest internationally, both for
the sake of fundamental research and with a view to potesyiglications. Australia is already con-
tributing strongly to this fundamental research effort #melproject outlined here aims to significantly
boost and complement our current strengths. We are wedlepidio situate ourselves as the leaders in
the field and should make every effort to capitalise on thancle.

As noted, one motivating reason to develop the theory ofrldgaic CFTs is that they describe
the statistical behaviour of non-local observables inaaitcondensed matter systems. Besides the
example of percolation (section E2), such systems includthematical idealisations of solutions
of polymers, both dilute (low concentration) and densel{fagncentration), as well as a wealth of
other important models. The value of a complete descriptibthe observables of these systems,
both for fundamental and applied science, should be evidedeed, the value of the corresponding
descriptions for local observables in the Ising, tricatidsing, 3-state Potts, etc... models is well
documented (see [1, Chs. 7.4 and 12] for an overview).

Besides this application to condensed matter theory anlalsuch applications entail, logarithmic
CFT also has a relatively under-exploited role to play in nradsring theory research, in particular
to theories with supersymmetric backgrounds. Indeed tasreeven recent claims that logarithmic
structure in such theories is a gravitational effect [24aBples of such backgrounds include Lie su-
pergroups oPSU type and their symmetric spaces. The corresponding sth@gries are prototypes
for the famous AdS/CFT correspondence of Maldacena [28]4setton E4, project 6). In addition,
the mathematical structures underlying logarithmic CFTen@cently been proven [29] to be present
in stochastic Loewner evolution (SLE). SLE is a rigoroushaoilistic approach to the models of
condensed matter physics which has already been hailedeasfahe great mathematical break-
throughs of recent times. Structural results from loganith CFT will therefore be of great interest
to this mathematical community, and work is already undgrteeclarify and extend the relationship
between SLE and logarithmic CFT.

One key point of this proposal is that to obtain a useful mathtecal framework for these appli-
cations, we will have to devise methods to enable us to dgtaampute the quantities which are
required. | will argue that the current state of knowledgaas sufficiently mature to accommodate
this natural desire. Not only are we arduously exploringasslof (presumably physical) logarithmic
CFTs, but we are doing so without much concern for explicit patation. Below, | outline several
specific issues (and solutions) addressing this latteraror(section E4, projects 2 and 5) as well as a
more general vision encompassing new classes of fundahtegéaithmic CFTs whose elucidation
is vital for improving upon our current knowledge.

E4: APPROACH ANDMETHODOLOGY

Below | will outline in detail the sub-projects which | havemind to fulfil the core aim of section
E2, indicating my proposed approaches and methods. Thedsyaro means exhaustive, but serve
to indicate that there is a wealth of valuable work with whiakill occupy myself, upon receiving
funding. First however, it is necessary to introduce somghetechnical concepts and nomenclature
that are necessary for informed discussion.

The most important mathematical structure associatedavir T, logarithmic or not, is its chiral
symmetry algebra. This is a graded, infinite-dimensionabeisitive algebra whose representations
comprise the quantum state space of the theory. A chirabedgmay be a Lie algebra (the Virasoro
algebra and affine Kac-Moody algebras are archetypal exa))@ Lie superalgebra, or something



more general (parafermionic algebras, W-algebras, .o)chiracterise the CFT, it is therefore vital
to understand the representation theory of the appropstatel algebra.

Concerning logarithmic CFTs, it was Gurarie [3] who realisealtiogarithmic branch cuts in cor-
relation functions were an indication that a “zero-modettdd chiral algebra, typically the Virasoro
zero-modd._g, can not be diagonalised but rather possesses a rank-2JmetlaThe zero-modes of a
chiral algebra always commute with one another and theareiglues are typically interpreted as the
guantum numbers which distinguish the states of the thé&auyarie’s insight was then that logarith-
mic CFTs are distinguished structurally from standard CFTisaving zero-modes witgeneralised
eigenspaces.

This insight was confirmed rather dramatically by Gaberdred Kausch [4] who were able to ex-
plicitly construct representations on whitly was not diagonalisable using ideas of Gaberdiel [30]
and Nahm [31]. Standard CFT presupposes that all repregergappearing in the theory are com-
pletely reducible (can be expressed as direct sums of ictbdurepresentations) and highest weight.
However, wherlLg (or another zero-mode) is not diagonalisable, the reptaten is necessarily re-
ducible but not completely so. Moreover, it need no longehighest weight. Instead one speaks
of direct sums ofindecomposableepresentations generalising their highest weight caydience
the p;radigm that logarithmic CFT roughly equates to indgmusable structure in representation
theory.

With this background, the following research projectssthate the directions | propose to pursue.
Space constraints limit the number which can be adequatsygribed, and there are many others
which may prove fruitful. For example, | would also like taudy integrable perturbations of logarith-
mic CFTs with a view to determining what happens to the quargtoup symmetry of the standard
case. It would moreover be interesting to further develalihdge between logarithmic CFT and
SLE. Finally, engaging in research typically leads to fartirections of study and applications that
one had not envisaged at the start. In any case, it is clegthie is much to be done!

1. Classification of Staggered Representations

The indecomposable representations relevant to logactGfT were calledtaggeredy Rohsiepe
[32], who made significant progress in classifying simplaraples of these representations. With
Kalle Kytola (Universie de Gepve), | have been generalising and extending Rohsiepeitseand
we have obtained a classification of the simplest class gfstad representations of the Virasoro al-
gebra (those which are extensions of one highest weightseptation by another witky possessing
Jordan cells of rank 2). This work is anticipated to appeatherarXiv in March or April.

Whilst the Virasoro representations we have classified ctheemajority of those known to arise
naturally in logarithmic CFT, they are not exhaustive. Esiens constructed from three highest
weight representations have appeared in critical pericoldR1], and representations with rank 3
Jordan cells fotg have also been constructed [19]. An obvious line of reseiartien to generalise
our current results to cover these cases and more. An (aab)taim would be to classify all Virasoro
staggered representations.

This is clearly a non-trivial exercise in pure mathematice (heory and homological algebra),
but its resolution is not only of mathematical importancet is also critical to improving our un-
derstanding of logarithmic CFT. Unfortunately, constrogtihigher-rank staggered representations
directly from lattice model techniques or fusing simplgomesentations is computationally intensive,
and our algorithms are already reaching the limit of whaemsible. Progress in understanding what
is physically possible therefore requires mathematigaliirto reduce the number of possibilities to
something more manageable. Such progress will also be tangdo other related fields, in particular
to the study of algebraic representations in SLE.

Along similar lines, the other projects proposed here walhéfit enormously from similar classi-
fications for other chiral algebras. A second branch to t[riz;qnt that | intend to explore concerns
staggered representations for the affine Kac-Moody algeli®), as this case is expected to be the

2Strictly speaking, indecomposable structure is not enptigilugh the paradigm is often stated in this form. What is
needed is indecomposable structure on which a zero-mod@antdiagonalisably.



most tractable (the analysis of Kac-Moody symmetries igglfy more straight-forward than that of
Virasoro symmetries) and useful (see sub-projects 3 ande&xample). However, there is significant
interest in considering similar classifications for sup@asoro algebras, simple Lie superalgebras
and affine Kac-Moody superalgebras.

2. Free-Field Realisations and the Logarithmic Coupling

The staggered representations which arise most frequiengiyplorations of logarithmic CFT are
generically described by a paramefgrcalled the logarithmic coupling (or less imaginativelyeth
beta-invariant). This is most simply defined as the scaladpct of the (normalised) zero-mode
eigenstate and its Jordan cell partner [11], and its knogded necessary to characterise the math-
ematical action of the positive chiral algebra modes on thlerépresentation. Indeed, its value is
generally deduced from this action. Moreover, correlafionctions involving Jordan cell partner
fields generally involve the logarithmic coupling, so it fsdirect physical interest as well. It follows
from this that physical applications of any logarithmic CFelquire knowledge of the appropriate
logarithmic couplings.

This said, the logarithmic coupling is generally quite d@ifit to compute. Lattice model ap-
proaches have so-far proved fruitless as there one onlynsbitaformation about the Virasoro mode
Lo and not the positive modes needed forExplicit constructions of staggered representations via
fusion allows the computation @f but this is computationally prohibitive except in the siegticases.
For certain representations, one may obfaias a by-product of computing singular vectors [20], but
this is again computationally intensive and not complegggeral.

To reiterate, computation within staggered represematrequires the logarithmic couplirfgas
do the correlation functions of any physical applicatiortted corresponding logarithmic CFT. It is
therefore vital to develop better methods to compute théssve invariants, and this is of course
the aim of this project. In support of this aim, Pierre Mathend | have already noted [20] that
the logarithmic couplings of certain examples of Virascepresentations can be expressed as sim-
ple functions of the central charge (they occur quite gdhgrasuggesting that there are universal
formulae for at least some classes of staggered represergat

The technical tool with which | propose to attack this congpion is the formalism of free-field
methods. This will be familiar to CFT researchers (see [1, Clr $33]), and allows one to replace
a chiral algebra with another for which computations aredfasier. At the end, one performs a
BRST-like projection (takes the cohomology of the freedietsolutions) to recover the required
result for the original chiral algebra. Free-field approexho logarithmic CFT have already been
pioneered [12—14] with some success, but applicationsripoting3 have not yet been considered.

3. Logarithmic CFTs with sA[(Z) Symmetry

It is widely believed that every standard (rational) CFT canrelated to Wess-Zumino-Witten
(WZW) models by a few well-understood operations includinigifotd and coset constructions. For
example,Athe unitary minimal models may be uniformly camstied as certain cosets of WZW theo-
ries withs[(2) symmetry. These WZW models are rational CFTs describingggrpropagating on
a compact Lie group, and are often referred to as the fundehiemlding blocks of rational CFT. It
is therefore reasonable to expect that logarithmic vessadithese models will provide “fundamental
building blocks” for a large class of logarithmic CFTs.

The simplest of the (non-abelian) WZW models is that define8b(R). The symmetry algebra

may be identified as the affine Kac-Moody aIgeEWéQ)k, where the subscrigk (the level) denotes
the common eigenvalue of the generator of the (one-dimaabicentre. The geometric definition as
a string theory restrictk to a non-negative integer [34]. However, one can try to qoiesthe CFT
algebraically for any redt if one gives up the geometric interpretation.

Such constructions are easiest for the so-called admesk&éls. These are certain ratiorkdior
which the representation theory &f(2), behaves similarly t& € N [35]. The corresponding CFTs
were originally posited as non-unitary versions of WZW maededbm which the non-unitary minimal
models could be constructed as cosets. However, furthdy stinon-unitary WZW models found



puzzling contradictions which led to a general feeling tingise models suffered from an “intrinsic
sickness” (see for example, [1, Sec. 18.6]).

This sickness was cured by Gaberdiel [36] who showed thatdbecause was the assumption
that non-unitary WZW models are rational CFTs. Indeed kfer —‘g", he proved that the theory is

only quasi-rational and moreover, logarithmic. This wakofwed up fork = —% which admits a
guasi-rational non-logarithmic construction [26, 37] antbgarithmic cover [38]. Aside from these
two special values however, nothing further is known abbettature or structure of admissible-level
WZW models.

This gap in our knowledge is clearly unacceptable if we atttepmaxim that these models are the
fundamental building blocks of logarithmic CFT. | proposeuttdertake a systematic investigation
of such theories with the primary aim of filling this gap. Toatyse specific models, the fusion
algorithm of Nahm [31] and Gaberdiel-Kausch [4] will be praghmed and applied to admissible
representations in orger to uncover the detailed logaithstructure of these theories. | expect that
the richer structure ofl(2), as compared to the Virasoro algebra say, will lead to rgatiicernible
patterns. Free-field methods will then be employed to prbese patterns. Other CFT phenomena
(for example, modularity) will be generalised to these tien

| also intend to investigate logarithmic versions of #he N theories. There is a little literature
pertaining to thé&k = 0 case [39,40] which makes it clear that there are potentiai@ations for such
theories. Investigation is anticipated to proceed as inatihmissible cases, although here there are
fewer constraints on the structure and inspiration will beght from applications. It is also very
interesting to investigate non-unitary WZW models with etegmmetry algebras. However, such
investigations are not envisaged to be as crucial asltf&® case (see however sub-project 6).

4. Cosets of Logarithmic CFTs and Extended Algebras

An important (and indeed motivating) application of the @lepment of non-unitary WZW models
which | will follow is the construction of their coset thees. Recall that the admissible-level models
were originally posited as a way to construct non-unitarpimal models via the coset mechanism.
As it has since been realised that the admissible-level WZ\Watsoare generically logarithmic,
the following question becomes pertinent: Do the (appadpjicosets of the admissible-level WZW
models recover the non-unitary minimal models, or someritdgaic version thereof? This simple
guestion will be of significant interest to the logarithmic TEommunity as much of the recent
motivation in this area has come from attempts to constngarithmic versions of minimal models.
| aim to answer this question, which will hopefully shed imgamt light on the structure of these
logarithmic minimal models.

Logarithmic minimal models have their beginnings with thplet model of Gaberdiel and Kausch
[4—6]. This theory is formally associated with the empty rfrexistent) minimal modeM (1,2)
and so is often denoted ByM (1,2). There are fairly straight-forward generalisations of thplet
model corresponding t&M (1,q), but the recent interest has come from trying to make sense of
logarithmic minimal model€.M (p,q) with p > 1 [14,16, 19, 20] (unlike thél,q) models, these do
have genuine minimal model analogues). Despite much eftogt status of these models remains
somewhat questionable. Even their internal consistenggtislear (sub-project 5).

One thing which is generally agreed upon is that logarithmigimal models should have an ex-
tended algebra (or W-algebra) with respect to which thezeaty finitely many representations. This
is true forCM (1,q). Unfortunately, this extended algebra has not been exgldetermined in any
other cases! Much has been deduced indirectly, or congatthy analogy to thé¢l,q) cases, but
we are still missing the foundation upon which the study @faldithmic minimal models is based.
| am currently writing up work in which | naturally reconsttuthe W-algebra of the triplet model
LM (1,2) using coset methods. | propose to generalise this resitig tise results of sub-project 3,
to the other logarithmic minimal modeAIs. This is expectedeguire detailed knowledge of both the
admissible and integer-level logarithmi(2) CFTs.



The representation theory of the resulting W-algebrasciglarly play a fundamental role in analy-
sis logarithmic minimal models. General W-algebra repnéstions can be surprisingly rich in struc-
ture [41], so a careful study is warranted. This will involmeving mathematical structure theorems
as well as computing fusion rules using the algorithm of Namd Gaberdiel-Kausch. | expect that
by realising these W-algebras as cosets of simpler algebrak be able to exploit the known struc-
ture of the latter in determining the structure of the formé&his provides additional motivation to
follow this line of study.

5. Logarithmic Structure and the Adjoint

The chiral symmetry algebra of a CFT always comes equippddamtadjoint. This bestows upon
the representations (the quantum state space) a hernotiaw) invariant under the symmetry algebra
action. This form is not necessarily positive-definite imgeP, but it plays the role of an inner
product, describing the overlap between quantum statekemck the form of the physically relevant
guantities, the correlation functions.

In a logarithmic CFT, it has always been assumed that the symmigebra comes equipped with
the usual adjoint. However, we have some reason to be sagpiof this assumption. First, the zero-
modes are generically self-adjoint in a CFT, so that the specis real (hence physical). However,
in a logarithmic CFT, some of these zero-modes cannot be d&iged. This is not necessarily a
contradiction as the hermitian form is indefinite on theestggace, but one must now wonder why we
need to choose an adjoint for which the zero-modes are dgfrd in the first place. The choice of
adjoint no longer seems fixed by physical considerations.

A more serious issue that this is related to is the followiAg.was noted in sub-project 4, there
has been much recent activity in constructing logarithmiecimal models. However, it was realised
that these constructions, though based on entirely reagophysical models, lead to inconsistencies
within the standardframework of CFT [11]. Specifically, these models lead to aertorrelation
functions which can be proven not to exist [42]. In esserfuese correlation functions must satisfy
three partial differential equations (PDEs) derived fréva ¢onformal Ward identities, and these PDEs
have no common solution (not even 0). There are severallphisss to reconcile this inconsistency
(see the discussion of [21] for some recent thoughts on $Bissl), but the relevant point here is that
the derivation of the PDEasssumeshe standard definition of adjoint.

| therefore propose to study the question of the adjoint gatahmic CFT, with a view to resolve
this current contradiction within the literature. | envggethe consideration of certain simple logarith-
mic theories and their physical applications to divine thggically relevant adjoint in such cases. If
non-standard, this will be followed by reconstruction of lormalism of CFT so as to incorporate
the modifications that such logarithmic adjoints requiteshiould be clear how crucial such a study
Is to physical applications of logarithmic CFT: Without a pes adjoint, we cannot have confidence
that our computations of correlation functions have amgtio do with the application at hand.

6. Supergroup WZW Models and D-Brane Charges

As mentioned above, integer-level WZW models describegdrmpropagating on a Lie group. Sim-
ilarly, one can consider string theories defined on Lie sgquemps [22—-24], so-called supergroup
WZW models. The corresponding CFT then has an affine Kac-Moaggralgebra for a symme-
try algebra, representations of which almost always eximbn-trivial indecomposable structure. It
follows that these CFTs will be generically logarithmic. Sugroup WZW models and their cosets
are currently objects of much interest, due to the role tHay ; the AAS/CFT correspondence [28].
Their logarithmic structure is however not usually remarkgon.

In contrast with the Lie group case, integer-level WZW model$.ie supergroups are almost never
rational. From an algebraic point of view, the simplest dasanalyse is actually when the level is
admissible (see sub-project 3 for terminology). This cassdmot have a geometric interpretation as
a string theory, but will provide further fundamental exdespof logarithmic CFTs which exemplify

SWhat we therefore should say is that instead of an adjoint,ave an antilinear anti-involution with respect to which
the induced hermitian form is contravariant.



the types of indecomposable representation which will levesmt more generally. | therefore propose
that a first study concentrates on admissible-level supe@WZW models.

Subsequent research will then focus on supergroup WZW madetdring theories. Here, one
possible application would be to extend to these models #ikkmown story concerning the classi-
fication of D-branes in standard WZW models by a certain twlistetheory (described in [43, 44]).
This is embodied in a celebrated theorem of Freed, HopkidsTateman [45] describing a natural
iIsomorphism between this K-theory and the Verlinde (fusiarg of the WZW model CFT. A gener-
alisation of this is beyond the scope of the project, but élated issue of computing the classifying
D-brane charges in supergroup WZW models should be amerableatysis [46—-48]. If successful,
this could lead to a similar explosion of valuable activitytlze interface of algebraic topology and
string theory/CFT. It will be extremely interesting to see tiole that logarithmic structure plays in
this development.

The proposal which | have outlined above is substantial édissba five year fellowship), but one
which promises to make significant contributions to cutt@age research in logarithmic conformal
field theory, cementing Australia’s reputation for worlss research in this important discipline. As
mentioned above, | expect that many more applications, tinenaatics and physics, will become
apparent during the course of this research. Undoubtedigt mill result from discussing my work
with colleagues, both locally (in my department and natilyrtarough conferences and workshops)
and globally (via international conferences and collabors).

A (very) tentative timetable outlining envisaged startfelates for the sub-projects discussed here
is as follows:

Year 1: Start projects 1, 2, 3 and 5.

Year 2: Continue projects 1, 2, 3 and 5. Start project 4.
Year 3: Continue projects 1, 2, 3 and 4. Start project 6
Year 4: Continue projects 1, 3, 4 and 6.

Year 5: Continue projects 4 and 6.

The space allocated has been deliberately reduced in lages yo accommodate sub-projects not
described here. In particular, projects centered on iatagrperturbations of logarithmic CFTs and
connections to SLE are candidates for such later work, andwfse there are always new directions
that become apparent during the course of any research.

It is of course necessary to acknowledge the possibility Yhaous parts of this proposal will
be found to be more difficult than anticipated. This propasddased on preliminary results which
have already uncovered surprising subtleties, so it woalébby to assume that this fellowship will
see nothing but smooth sailing. However, | would hasten tbthdt the broad applicability of the
methods being developed ensure that there will always be latucle of different tasks to work
profitably upon (and again | expect that more will presenirtbelves as this research progresses). |
am therefore confident that the programme | have outlinegeall not suffer from the problem of
getting stuck at a key point, as a narrower proposal perhagistm

| submit that this represents an intensive, yet detailedpgsal of research during the period of
the fellowship. It should be clear that this outlines an img@ot unifying framework for logarithmic
conformal field theory that deserves study, emphasisescapgity, and that it will lead to many
beautiful, interesting and useful mathematical resutteglthe way.

E5: NATIONAL BENEFIT

As mentioned above, the completion of the projects propbseelwill lead to importance advances
in the study and applications of logarithmic conformal fitdéory. | will develop precise algebraic
analyses of fundamental examples of logarithmic conforfieéd theories and use this knowledge to
construct a unifying framework in which to understand theselels mathematically and discuss their
applications physically.

The benefits of this programme of research are legion. Giwemtredible amount of mathematical
activity generated by the introduction of the Virasoro aratkMoody algebras some forty years ago,



it is hard to believe that a study of their representationgohd the irreducible ones will not find
similar applications in unifying areas of mathematics. Tihee is also ripe to exploit the structure of
these representations in applications to condensed npagsics, string theory and SLE. Such results
will be of great interest to the mathematical community, avill certainly help to foster further
collaboration between physicists and mathematicians.

CFT is an active area of research, both in Australia and iateynally. Logarithmic CFT is a
rapidly advancing outgrowth of this discipline whose imjamice demands recognition. The out-
comes described in this proposal will be of considerableredt to mathematical physicists and rep-
resentation theorists across the country. | submit thadihgithis proposal will result in research of
significant international standing. Moreover, the dissetion of the results of work proposed here
will significantly enhance Australia’s international regtion in the fundamental sciences.

E6: COMMUNICATION OF RESULTS

As a mathematical physicist, my primary means of dissenmgaty work is through posting
articles on the arXiv {rxiv.org), and then publishing them in the best reviewed journalsr Fo
example, my recent papers have been published in the Jooirtdigh Energy Physics, Nuclear
Physics B and Physics Letters B, each of which is among the vest in my field as evidenced
by their 2007 impact factors: 5.659, 4.645 and 4.189 regpdyt | expect that the work reported
here will result in an average of at least four papers per.yealso take the opportunity to present
my work at national and international workshops and comfees, and by giving seminars in other
centres and departments. The nature of my field, consisfingsiract fundamental research, means
that it is not appropriate to espouse direct communicatigh the public. However, there should
exist opportunities to contribute to the training of stutdetocally at the departmental level, as well
as nationally through schools and workshops such as thgaaised by AMSI and ICE-EM.

Itis, | think, almost universally agreed amongst my peeas thndamental theoretical results of the
nature we discover should be made available to the wideressedcommunity. This is reflected in
our primary means of dissemination, the internet, in thatdeas are never withheld (as long as one
has an internet connection). Effectively, anybody may ugeesults, with the implicit understanding
that my contribution will be acknowledged in their subsegueork.

E7: ROLE OF PERSONNEL

This is an application for an Australian Research Fellowshith a single applicant. As such, |
must assume responsibility for all major aspects of the gsapdescribed above. As an experienced
researcher in mathematical physics, | claim to have (or betadearn or develop) all the necessary
expertise to satisfactorily complete this project. To supphis claim, | refer to my track record as
evidenced by my publications. Whilst this is discussed iraidlelsewhere (section B10), | think it
fair to say that my recent articles prove that | have considler expertise in logarithmic conformal
field theory and the relevant mathematical disciplines Whidl be required for this project. | would
also like to think that they show that my research has beeracteised by an ability to recognise
difficult outstanding problems in mathematical physics] aolve them through the application of
original mathematics. This should demonstrate that | cdytgpossess the capacity to undertake the
research outlined above.

| also intend to actively involve postgraduate and honotudents in various parts of this proposal.
Choosing an appropriate topic will of course depend heavilyhe student’s interest and mathemati-
cal background. A preference for algebra and representétieory would be well accommodated in
projects 1 and 4. Someone with a background in analysis npigier to study the links with SLE.
Geometric types could work on project 6. Furthermore, ther@mple opportunity throughout for
physical CFT research.

Aside from those funded by this proposal, there are manyratkperts, both in Australia and
internationally, with whom | hope to collaborate. For exdepgd envisage continuing my present
collaboration with Kalle Kyla whilst pursuing project 1 and links to SLE, and | am sure Ehatre
Mathieu will want to revisit the subject of extended algeb(paroject 4). Local expertise will also



play a significant role in attaining these outcomes. For g@tanthe experience of Paul Pearce will
be a valuable resource in general (and for project 5 in pdetiy, and that of Peter Bouwknegt in free
field methods and W-algebras is particularly suited to migj@ and 4.

Finally, there is a minor technical role to be played, esaéntto provide support for the CPU-
intensive algorithms which will need to be programmed. Tiole is discussed in more detail in
C2.
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