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ABSTRACT. The fusion rings of Wess-Zumino-Witten models are re-éranh Attention is drawn

to the difference between fusion rings o%efwhich are often of greater importance in applications)
and fusion algebras ovél. Complete proofs are given characterising the fusion alggefover
C) of theSU (r+ 1) andSp (2r) models in terms of the fusion potentials, and it is shown that
analagous potentials cannot describe the fusion algebthe other models. This explains why no
other representation-theoretic fusion potentials haen feund.

Instead, explicit generators are then constructed for rgeévéZW fusion rings (ovetZ). The
Jacobi-Trudy identity and itSp (2r) analogue are used terivethe known fusion potentials. This
formalism is then extended to the WZW models over the spimggoof odd rank, and explicit
presentations of the corresponding fusion rings are givVae.analogues of the Jacobi-Trudy identity
for the spinor representations (for all ranks) are derivedHis purpose, and may be of independent
interest.

1. INTRODUCTION

The fusion process is a fundamental ingredient in the standiescription of all rational con-
formal field theories. Roughly speaking, the fusion coedfitiN ,,© counts the multiplicity with
which the family of fieldsg. appears in the operator product expansion of a field fromljagi
with a field from family¢,. This is succinctly written as a fusion rule:

%X%ZZNabC(R:- (1.1)
Cc

This definition makes clear the fact that fusion coefficieares non-negative integers. Of course,
one can define fusion in a more mathematically precise maniterms of the Grothendieck ring of
a certain abelian braided monoidal category that appedng ivertex operator algebra formulation
of conformal field theory. However, we will not have need focks sophistication in what follows.
For our purposes a fusion ring is defined by Eqn. (1.1), wheeecoefficients\ ¢ are explicitly
given.

The standard assumptions and properties of the operatdugirexpansion then translate into
properties of the fusion coefficients. It is convenient tpress these in terms of matricdg
defined by[Na],. = N,,°. We assume that the identity field is in the theory; the cpwasding
family is denoted by, andN is therefore the identity matrix. Commutativity and asatigity
of the operator product expansion translate into

NaNb:NbNa and NaNb: ZNabCNC7
Cc
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respectively. Last, given a familg, there is a unique family,+ such that their operator product
expansions contain fields from the famgy with multiplicity one (this is effectively just the nor-
malisation of the two-point function). It followghatN 5+ = NaT, where” denotes transposition.

These matrices thus form a commuting set of normal matrane$,so may be simultaneously
diagonalised by a unitary matrix. The diagonalisatioftN U = UD, (D5 diagonal) is equivalent
t0 5N Ucd = Ubd}\éa) Where}\éa) are the eigenvalues 0f,. Puttingb = 0 then givesJ,q =
UOd)\éa), which determines the eigenvalues completelyJg§ were to vanishlJ,q would vanish
for all a contradicting unitarity).

The celebrated Verlinde conjecture [1] identifies the dredising matrixU with the S-matrix
Sdescribing the transformations of the characters of theathymmetry algebra induced by the
modular transformatiom — —1/1. This gives a closed expression for the fusion coefficients:

N, = SadSdSeg.
Sod

It is worthwhile noting that the Verlinde conjecture hasameity been proved for a fairly wide class

of conformal field theories (in the vertex operator algelmaraach) [2].

Mathematically, these families with their fusion produefide a finitely-generated, associative,
commutative, unital ring. Moreover, thfgsion ringis freely generated asZmodule (abelian
group), and possesses a distinguished “basis” in whichtthetare constants are all non-negative
integers. The matriceN 5 introduced above correspond to this basis in the regulaeseptation
of the fusion ring. It is often convenient to generalise 8tisicture to dusion algebrgalso known
as aVerlinde algebra by allowing coefficients in an algebraically closed field,say. We will
denote the fusion ring b§”, and the corresponding fusion algebra (c@@by F€ = F2 @, C. It
is important to note that the structure which arises ndiunalapplications is the fusion ring, and
that the fusion algebra is just a useful mathematical coostr

One of the first advantages in consideri is that it contains the elements [3]

Th= SOa%S;b%, (1.3)

(1.2)

where the sum is over the distinguished basi§6f A quick calculation shows that thwe, then
form a basis of orthogonal idempotents; x 1, = dp7%,. It follows that there are no non-zero
nilpotent elements itFC, and hence the same is true .

Since the fusion algebra is finitely-generated, assoeaéind commutative, it may be presented
as a free polynomial ring (ove®) in its generators, modulo an ide#. The lack of non-trivial
nilpotent elements implies that this ideal has the propidy whenever some positive power of a
polynomial belongs to the ideal, so does the polynomialfitSdat is, the ideal igadical, hence

IHere we are implicitly excluding logarithmic conformal figheories from our considerations.
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completely determined by the variety of points (i) at which every polynomial in the ideal
vanishes [4]. This variety will be referred to as fiagion variety

As 7€ is a finite-dimensional vector space ov@r it follows that the fusion variety consists
of a finite number of points, one for each basis element [4hc&ithers, of Egn. (1.3) form a
basis of idempotents, they correspond to polynomials wteikh the values 0 and 1 on the fusion
variety. Theirsupportgpoints of the fusion variety where the representing polyiads take value
1) cannot be empty, and their orthogonality ensures thatshpports must be disjoint. This forces
the supports to consist of a single point, different for emghWe denote this point of the fusion
variety byv@. It now follows from inverting Eqn. (1.3) that the polynorha representingp, takes
the value)\éa) = Sup/Sop at\P.

Suppose now that there is a subg@f : i = 1,...,r} of the g which generates the entire fusion
algebra. If we take the free polynomial ring to@ég,,, . . ., @, ], then the coordinates of the fusion
variety are just

Vib:paa <Vb>:%-

This proves the following result of Gepner [5]:

Proposition 1. F€ 2 C[qy,, ..., @] /I, whered€ is the (radical) ideal of polynomials vanishing

on the points
Sub Sa,b) (C’}
{<—S)b’m’—ﬁ)b € .

Notice that this result only characterises the fusion algebhe fusion ring may likewise be rep-
resented as a quotient@fg,,, ..., @, |, where the fusion ideal is given BY = I°NZ [y, ..., @]

[3]. The fusion ideal oveZ thus inherits the property froff that if any integral multiple of a
polynomial is in the ideal, then so is the polynomial itsdlhis ensures that the quotient is a free
Z-module, as required. By analogy with radical ideals (armdafont of a better name), we will
refer to ideals with this property as beidiyiding.

In this paper, we are interested in the fusion rings of WaasiAo-Witten models. These are
conformal field theories defined on a group manifGlgvhich we will take to be simply-connected,
connected, and compact), and parametrised by a positegdrk called the level. Our motivation
derives from the determination of the dynamical charge guafia certain class of D-brane in these
theories. The brane charges [6, 7] can be computed exypliaitd the order of the charge group
can be shown to be constrained by the fusion rules [8, 9]. fablyi detailed understanding of the
structure of the fusion rules therefore makes the computatf the charge group possible. This
was achieved for the models based on the gré&spsSU (r + 1) in [9], and the general case in [10].
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However, the general charge group computations have omg bigorously proved foG =
SU (r +1) and Sp(2r), essentially because the detailed structure of the fusites mssociated
with the other groups is not well understood. The aim of tlapgy is to re-examine the cases
which have been described, and try to elucidate a correspgaeétailed structure in other cases.

The field families of a levek Wess-Zumino-Witten model on the group manif@dre conve-
niently labelled by an integrable highest weight represt@mt of the associated untwisted affine
Lie algebrag, hence by the projection of the highest weight onto the weighce of the horizontal
subalgebrgy (which will be identified with the Lie algebra d§). In other words, the abstract
elements naturally appearing in the fusion rules may betifitsoh with the integral weights (of)
in the closed fundamental affine alcove. We denote this seeghts byﬁk. In what follows, it
will usually prove more useful to regard these weights asritegral weights in th@pen, shifted
fundamental alcove. Concretely,

Pc={A€P: (A+p,a)>0foralli, and (A +p,0) <k+h"},

whereP is the weight latticeq; are the simple root®) denotes the highest roqi,the Weyl vector,

and Y is the dual Coxeter number gf The inner product on the weight space is normalised so

that(0,0) = 2.

For these Wess-Zumino-Witten models, the Verlinde conjeotvas proven in [11-13]. By com-

bining this with the Kac-Peterson formula [14] for the W&asnino-Witten S-matrix elements,

Siu=C(g.k) 5 detw g 2m(W(A+p).u+p)/(k+hY) (1.4)
weW
(hereC (g, k) is a constant an/ is the Weyl group ofs), one can derive a very useful expression
for the fusion coefficients, known as the Kac-Walton formas-19]:

Ny = Y dewn,, ™. (1.5)
WweWy
This formula relates the fusion coefficients to the tensodpct muItipIicitiesNAu" of the irre-
ducible representations of the groGp(or its Lie algebrag), via the shifted action of the affine
Weyl groupWj at levelk, W- v = W(V+p)—p.
The Kac-Walton formula suggests that for Wess-Zumino-&Mithodels, it may be advantageous
to choose the free polynomial ring appearing in Proposititmbe the complexified representation
ring (character ring) o;. The character of the irreducible representation of higihvesght A is

2In this paper we denote [8p (2r) the (unique up to isomorphism) connected, simply-conmgcempact Lie group
whose Lie algebraisp (2r).
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given by )
- g B
HEPR, weW
whereP, is the set of weights of the representation with multipji¢eand the second equality is
the Weyl character formula). The character ring is freelgegated by the charactegs, = X
(i=1,...,r =rankG) of the representations whose highest weights are the fnedtl weights
N of G. Gepner’s result for Wess-Zumino-Witten models may theeebe recast in the form:

Proposition 2. The fusion algebra of a level-k Wess-Zumino-Witten modgivien by J - =
Clx1,-.- xr] /IS, Wherejf(c is the (radical) ideal of polynomials vanishing on the psint

Shia S/\/\) " A}
—— ..., == ]1eC:AeP;.
{<So/\ S “

We will likewise denote a levet-Wess-Zumino-Witten fusion ring tﬂ]% and the corresponding
fusion ideal ofZ [x1,. .., xr] by JZ.

We are interested in explicit sets of generators for theseffuideals (ovefC andZ). Given a
candidate set of elementsﬂﬁ, the verification that this set is generating may be brokewdato
three parts: First, one checks that each element vanishige dasion variety. Second, one must
show that these elements do not collectively vanish anysvhkse. Third, the ideal generated by
this candidate set must be verified to be radical. This |&ft ist always necessary because there
is generically an infinite number of ideals correspondin@ tgiven variety (consider the ideals
(X")  C[x] which all vanish precisely at the origin). It should be clézat verifying radicality
does not consist of the trivial task of checking that the cdaie generating set contains no powers
of polynomials (considefx? +y?,2xy) C C [x,y]).

For theSU (r + 1) andSp (2r) fusion algebras, generating sets #yrhave been postulated in
[5,20,21] as the partial derivatives ofasion potential The first step of the verification process is
well-documented there, the second step appears somevatelgkand the third does not seem to
have appeared in the literature at all. We rectify this intta2. The methods we employ are then
used to show why analogous potentials have not been fourttidasther groups, despite several
attempts [22, 23].

However, we would like to repeat our claim that it is the fursiong which is of physical interest
in applications, and the above verification process doesahov us to conclude that a set of
elements is generating ovér In other words, a set of generators fﬂ§rneed not form a generating
set forJZ, even if the set consists of polynomials with integral cagdfits (a simple example
would be ifJf = (x+y,x—y) C C[x,y] thenIZ £ (x+y,x—Yy) C Z[x,y] as this latter ideal is not
dividing). This consideration also seems to have been ooked in the literature, and is, in our
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opinion, quite a serious omission. We will rectify this sition in Section 3 by removing the need
to postulate a candidate set of generators; instead, wiedgiale generating setb initio.

In the case& = SU (r + 1) andSp (2r), some simple manipulations will allow us to reduce the
number of generators in these sets drastically. We will saethese manipulations reproduce the
aforementioned fusion potentials. Our results thereforestitute the first complete derivation of
this description from first principles, and we emphasise tifia derivation holds ovef.. The re-
sults to this point have already been detailed in [24]. Wa tthetail the analagous manipulations
for Spin (2r 4+ 1) in Section 4, producing a relatively small set of explicihgeators for the corre-
sponding fusion ideal. It is not clear to us whether thesegsors are related to a description by
fusion potentials. The manipulations essentially relyrugoe application of a class of identities
generalising the classical Jacobi-Trudy identity (whiawill collectively refer to as Jacobi-Trudy
identities). Many of these are well-known [25], but we wereahle to find identities for spinor
representations in the literature, so we include deriwatio Appendix A. We also include the
corresponding identities f&pin (2r), as they may be of independent interest.

2. PRESENTATIONS OFFUSION ALGEBRAS

In this section, we consider the description of the fusicaraldJ‘E by fusion potentials. We in-
troduce the potentials for the Wess-Zumino-Witten modeés the group$U (r + 1) andSp (2r),
and verify that the induced ideals vanish precisely on tlseofuvariety,and are radical. We then
investigate the obvious class of analogous potentials fes3AZumino-Witten models over other
groups, and show that in these cases, no potential in thés clarrectly describes the fusion alge-
bra. Readers that are only interested in fusiogs and presentations of the idea%should skip
to Section 3.

2.1. Fusion Potentials. For Wess-Zumino-Witten models oveU (r + 1) andSp (2r), the fusion
ideal is supposed to be generated by the partial derivativiéis respect to the charactexsof the
fundamental representations) of a single polynomial edathefusion potential At level k, [5]

gives theSU (r 4 1)-potential as

1 r+1
Vk+r+1 (le“le’) = k+r+1-ZLqr+r+l7 (21)
i=

where theg; are the (formal) exponentials of the weiglstof the defining representation (whose
character is(1). Note thatq;---gr1 = 1. Theg are permuted by the Weyl grolpy = S; ;1 of
SU(r+1), andW acts analogously on thg. Therefore V.. 1 is clearlyW-invariant, hence is
indeed a polynomial in thg; [26].
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The levelk Sp (2r)-potential is given in [20 21] as

Vicrr+1 (X155 Xr) Zl[ g g (ar+ D] (2.2)

k+r+1

where theg; and qi‘1 refer to the (formal) exponentials of the weighis; of the defining repre-
sentation ofp (2r) (whose character is agaji). The Weyl groupV = S; x Z, acts on the; by
permutation $,) and negation (each, sends oneg; to —¢; whilst leaving the others invariant). We
see again that the given potential igvainvariant, hence a polynomial in thg.

These potentials are obviously best handled with gengyétinctions. We also note that these
potentials may be unified as

1
Vicehy (X155 Xr) = K+ hY Z e(k+hv)u7 (2.3)
HEFA;

whereP, denotes the set of weights of the irreducible represematidighest weighfA . Putting
this form into a generating function (and dropping the esip){j dependence) gives
Vi)=Y (=)™ Vint™ = log |‘P| (1+€Ht)
HEFA

m=1

This generating function may therefore be expressed ingearhthe characters of the exterior
powers of the defining representation. These exterior poaser well-known [27], and give

r+1
SU(r+1): V (t) =log [%xnt”] : (2.4)
n=
wherexo = xr+1 =1, and

r-1
Sp(2r): V (t) = log [Z}En (t" 12" + Eft” (2.5)

wherexo =1, xn=0foralln< 0, andE, = xn+ Xn—2+ Xn-4+-- ..

At this point it should be mentioned that there is an expboihstruction for arbitrary rational
conformal field theories [28], which determines a functidmose derivatives vanish on the fusion
variety. This construction, however, requires an expkiciwledge of the S-matrix elements, and is
guite unwieldy (as compared with the above potentials)edukl it also seems to possess significant
ambiguities, and it is not clear how to fix this so as to find aptal with a representation-theoretic
interpretation. In any case, it also appears to be difficuttdtermine if these ideals thus obtained
are radical or dividing, so we will not consider this constran any further. There is also a
paper [22] postulating simple potentials for every Wessfio-Witten model, similar in form to
those of Egns. (2.1) and (2.2). But, as pointed out in [23],hrtial derivatives of the potentials
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given do not always vanish on the fusion variety, and so cageerate the fusion ideal. In [23],
fusion potentials are presented for rings related to thefusngs of the Wess-Zumino-Witten
models over the special orthogonal groups. Unfortunatbbir method fails to give the fusion
rings for the special orthogonal groups. We will see in inte&c2.3 why this is the case.

2.2. Verification. Let us first establish that the ideals defined by the potegiaken in Egns. (2.1)
and (2.2) vanish on their respective fusion varieties. FRyoposition 2, the points of the fusion

variety have coordinates
S\ A+p
V= TNy (—Zm—) ,
' S '
where the second equality follows readily from Weyl's cleéeaformula and Eqn. (1.4). It follows
that the fusion potentials should have critical points {z&g when the characters are evaluated at
&, =—2m(A+p)/(k+hY), for A € Py. In fact, the functionss defined by

v (—om AP _ —2m(pA+p)/(k+h")
%i(A) = Xi ( ank-l-hv) _“;A‘e

are invariant under the shifted action of the affine Weyl grtska. Thus, the potentials should
have critical points when evaluatedyat= s; (A ), for anyA € P which isnoton a shifted alcove
boundary.

We denote the gradient operations with respect to the fuedtahcharacterg; and the Dynkin
labelsAj by Oy and[d, respectively, and the jacobian matrix of the functiesisvith respect to the
Aj by J. From the chain rule, it follows that if the potential has dical point with respect ta at
whichJ is non-singular, then this is also a critical point with resipto the fundamental characters.
It is therefore necessary to determine wlddrecomes singular.

Explicit calculation shows that the jacobian, as a functiarthe weight space, satisfies

J(w(v))=J(v)w, (2.6)

hence del is anti-invariant under the Weyl groify (here,w on the right hand side refers to the
matrix representation oiv with respect to the basis of fundamental weights). It isdfee a
multiple of the primitive anti-invariant element [26], abgl comparing leading terms, we arrive at

—2m\" 1
det) = el/2 _g0/2
<k+hv> |P/Qv\a|e]+< >,

whereQV is the coroot lattice and, are the positive roots aof (explicit details may be found
in [24]). Evaluating at-2mi (A +p) /(k-+h"), it follows that the jacobian is singular precisely

when (a2 )
. a, +p}
sin|m————~| =0.
ag+ [ k—+h"
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That is, when is on the boundary of a shifted affine alcove. Therefore gleaindaries are the
only places where a potential may have critical points waspect tod which need not be critical
points with respect to thg;.

Evaluating the potentials, Eqn. (2.3), as above gives

\/k-H’]v (j{l()\)w“;%r (A)) =

Z e 2HATR) — X1(=271(A +p)).

K+ hv

Note that the level dependence becomes quite trivial. Wedetarmine the critical points of these
potentials with respect to the Dynkin labéls

Sp(2r): The 2 weights of the defining representation are #heand their negatives. The
potentials therefore take the form

A+p 2 J
Vieenv ( k+hV) = JZlcos[Zn(s,-,)\ +p)]-

Critical points therefore occur when

.
Zl Ni,gj)sin[2m(gj,A +p)] =

foreachi=1,...,r. The (/\i , Ej) form the entries of a square matrix which is easily seen to

be invertible, agj = % <ajv +...+ arv) [26]. We therefore have critical points precisely

when

sin[2m(gj,A +p)] =sin[m(Aj+pj+...+ A +pr)] =0,

forall j=1,...,r. Itfollows thatA;+...4+A; € Z foreachj = 1,...,r, henceA € P.
SU(r+1): In this case, the + 1 weights of the defining representation are ghebut we

have the constraint; + ...+ &1 = 0. Finding the critical points on the weight space

is a constrained optimisation problem®i, so we add a Lagrange multipli€ to the

potential:

~ A+p 1 E on(e
A <—27T1k+hv) = Z e (&) A+p) +QA &1+ ...+ &41).

It is now straightforward to show that the critical pointg @gainA € P, so we leave this
as an exercise for the reader.

So, for bothSU (r+1) andSp (2r), the critical points with respect td of the potentials of
Eqn. (2.3) coincide with the weight lattiéz Every integral weight which is not on a shifted affine
alcove boundary therefore corresponds to a critical poittt espect to the fundamental characters
(sinced is non-singular there). To conclude that the critical peimitthe potentials coincide with
the points of the corresponding fusion varieties, we tlogeeheed to exclude the possibility that an
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integral weight on a shifted affine alcove boundary can epwed to a critical point with respect

to the fundamental characters. This follows readily fronalg of the determinant of the hessian

VA
matrixH, = (‘;Xg};j) of the potentials at these points, whose computation we nawto.

SU(r+1): Here (indeed, for any simply-laced group)coincides with the dual of the root
lattice. Thus,A € P implies that(u,A +p) = (A1,A+p) (mod ) for all i € Pa,. It
follows that

—417 .
N k+hv HEZ/\

—4T __omi(aua
=i A (A

wherel, is the Dynkin index of the irreducible representation ofiteigt weight\;. Thus,

—47PIp, r a—2mir (AL, A+p)
k+h’ ) IP/QY|

detHA = < #£0,

whenA € P.

Sp(2r): The weights o, take the formte, = £3 (a)f +...+aY), for£=1,2,....r, so
(&0, (&0,1\j) = %1 if i >¢andj > ¢, and 0 otherwise. Computing the hessian as before
gives

—271’2 min{i,j}
(Ha)i; = KhY /; cos[m(Ag+...+ A +r—£+1)].

Elementary row operations now suffice to compute

—2m\" [
detHA == <m) J_llCOS[n()\é‘l‘...‘i‘Ar‘i‘r—Z‘f’l)],

S0 again detl, # 0 on the weight lattice.

Denote the hessian matrix with respect to thef the potentials byd,. Then, from

0NV _ 9IXs 9?Virn OXt Niin %X
0Ai0Aj N £ OAj OXsOXt OA; o Xy a}\id)\j,

we see that
Hy=J"H,J  whenO,V,, =0.
It follows that at the critical points of the potential witegpect to the;,
detH, = (detJ)®detH. (2.7)

Now, we have just demonstrated thatldgt~ 0 on the weight lattice, but we know that det O
on the shifted affine alcove boundaries. Astdgis a polynomial (hence finite-valued), this forces



PRESENTATIONS OF WESS-ZUMINO-WITTEN FUSION RINGS 11

the conclusion that any integral weight lying on a shiftefihafalcove boundary isot a critical
point of the potential with respect to thg Of course, this is exactly what we wanted to show.
To summarise, we have shown that the ideal generated by tivatilees of the potentials given

in Egns. (2.1) and (2.2) vanishes precisely on the fusioretarTo complete the proof (ovér)
that these potentials describe the fusion id%al/ve need to show that this ideal is radical. Happily,
this follows immediately from Eqgn. (2.7) and some standardtiplicity theory, specifically the
theory ofMilnor numberg29, 30]: The ideal generated by the derivatives of a poigiradical

if and only if the hessian of the potential is non-singulaeath point of the corresponding (zero-
dimensional) variety. Sinckl, andJ are non-singular at the points of the fusion variedy, is
non-singular there by Eqgn. (2.7), and we are done. The idealsadical, so the potentials given by
Eqgns. (2.1) and (2.2) correctly describe the fusion algebf&U (r + 1) andSp (2r) (respectively).

2.3. A Class of Candidate Potentials.In searching for fusion potentials appropriate for the Wess
Zumino-Witten models over the other (simply-connected)@e groupsG, an obvious class of
potentials to consider is those of the form (compare EqB))2.

1 v
V== 5 ek (2.8)
k+h
+ k+hY “%r

Here,l is a finiteW-invariant set of integral weights. This ensures that thpentials are poly-
nomials in the fundamental characters with rational caefiits. Indeed, the derivatives of such
polynomials have integral coefficients, as may be seen ligrdiitiating the generating function

Vi) = % (=)™ vItM = |og [

m=1

ﬂ(l-l—e“t)

ue

In this section, we will show (with the aid of an example) ttied fusion algebra of these other
Wess-Zumino-Witten models is not described by potentiamfthis clasé For our example,
we choose the exceptional gro@ because its weight space is easily visualised. Specifjcally
we consider the two potentials obtained from Eqn. (2.8) lyntal™ to be the Weyl orbitV (A;)
of a fundamental weight. One might prefer to take the patésitbased on the weights of the
fundamental representations, but this leads to more diftcunputations.

As in Section 2.2, we evaluate these potentials on the wsjggnte (a€,). It is extremely im-
portant to realise that as functions on the weight spaceydtentials are invariant under the shifted
action of the affine Weyl group§/k for all k (because the level dependence is essentially trivial).
We can therefore restrict to computing the critical poimsifundamental alcove at (effective)
levelk = k+h" = 1 (a truly fundamental domain for the periodicity of the putals). The results
are shown in Figure 1. It is immediately evident that in castwith theSU (r + 1) andSp (2r)

370 be precise, we will prove that the potential cannot talkefehm of Eqn. (2.8) for all levels, unlessis SU (r + 1)
orSp(2r).
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V%V(Al) V¥V(Az)
N1/2 Ao N1/2 N2
N1/3 @
NaJ2
0 0

FIGURE 1. The (shifted) critical pointa + p of the potentiaIS/kVXE]’v\l) andvlz’iﬁ"v\”
for G as a function of the weight space. (Our convention is thais the highest
weight of the adjoint representation.)

fusion potentials, thes@, potentials have critical points (with respect to the Dynkihels A;)
which include, but are not limited to, the weight lattice.

These non-integral critical points are the crux of the nmaiféhen these critical points lie on a
shifted (levelk) alcove boundary, we saw in Section 2.2 that they need no¢spond to genuine
critical points (with respect to the fundamental chara)terHowever, any critical point in the
interior of a shifted alcove is necessarily a critical pauith respect to the fundamental characters,
and Gepner’s characterisation of the fusion variety reguinese to be integral. Unfortunately, at
any given levek > 0, the invariance of the critical points und@’n(/ for all k' means that there will
always be non-integral critical points in the interior oéthlcoves (fok sufficiently large). This
is illustrated in Figure 2 for the potenti!a(gw(Al) (corresponding to levet = 1). It follows that
the potentials based on the Weyl orbits of tefundamental weights do not describe the fusion
variety.

We can, of course, consider potentilsfléhv based on more complicatéfi-invariant setd .
However, when evaluating on the weight space, any such paltés just aW-invariant linear
combination of formal exponentials of integral weightsdao is a polynomial in the potentials

VXE]/V\” andVXﬁQ\Z) considered before. It follows now from the chain rule forfeli€ntiation that

if A +p is a common critical point of all thVXﬁOi), then it is also a critical point d’errhV' From

Figure 1, we see that any potent‘i;{{l+hv for G2 will have critical points at non-integral weights,
and so will not correctly describe the fusion variety.

The situation is similarly bleak for the other simple grodgesause any potential of the form
Vkr nv Will have (shifted) critical points at the vertices of théiaé alcoves (at all levels). We will

+
demonstrate this claim shortly. What it implies is that tidydime a potential of this form stands
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AV
o o

FIGURE 2. The critical pointsA of the potentia}\/l:fr/ﬁ]/v\” for Gy in the shifted fun-

damental alcove at lev&l= 1. The white points denote those in the interior which
do not belong to the weight lattice.

of chance of describing the fusion variety is when the alommtices are integral (at all levels).
This only happens when the comarks of the Lie group are atiyuwhich is only the case for
G=SU(r+1) andSp(2r).

Let us finish with the promised demonstration. Our earlienagks show that it is sufficient to
consider the potentia\ﬁEAi, i=1,...,r. We will show that these always have critical points (with
respect tol) whenA + p is the vertex of an affine alcove. Identifyimgwith k- h", the condition
for VnF:"‘ to have a critical point is just thatj (—2mi (A + p)) = 0 for eachj. We therefore need to
show thatl (—2miv) = 0 whenevew is an alcove vertex.

We rewrite Eqn. (2.6) in terms of th& row of J, 0, xi:

O Xi (—2miw(v)) = 0y Xi (—2miv) w.

Herew (on the right hand side) denotes the matrix representingith respect to the basis of
fundamental weights. We will treat the row vectay x; (—2miv) as an element of the dual of the
weight space (the Cartan subalgebra).

We can also restrict our attention to the fundamental ala@réces, byW-invariance of the
characters. IV = 0, thenv is fixed by everyw € W, so[, x; (—2miv) is a row vector fixed by
everyw € W. Thus,J, x; (0) is the zero vector (for eadly, verifying our claim for this vertex (and
its W-images).
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The other fundamental alcove vertices have the formA;/a), wherea; is the j™" comark of
g. Asv is invariant under all the simple Weyl reflections exceptl) xi (—2miv) is also invariant
under all these simple reflections, hendgx; (—2miv) is orthogonal to every simple root except
aj. But, v is fixed by the affine reflection about the hyperplgped) = 1. This reflection has the
formw(u) =wpg (1) + 6, wherewy € W is the Weyl reflection associated with the highest @ot
Hence, using the invariance of the characters under triaorsan Q"

Oaxi (—2miv) = 0, Xi (=27 (We (V) + 6)) = U, Xi (—2miwg (v)) = U, Xi (—271v) W.

It follows now that[, xi (—2miv) is also orthogonal t@. But, 8 and the simple roots, except-
ing aj, together constitute a basis of the weight space (as the ajamever vanishes). Thus,
0, xi (—2miv) is again the zero vector, verifying our claim for all the Vet of the fundamental
alcove.

3. PRESENTATIONS OFFUSION RINGS

We now turn to the study of fusion rings ov&r Given the results of Section 2.3, we introduce
a characterisation of the fusion id&gl for general Wess-Zumino-Witten models which makes no
mention of potentials. We then analyse this characteoisati the cases &U (r +1) andSp(2r),
and show that it can be reduced to recover the potentialsid.g.1) and (2.2). We would like to
emphasise that this constitutes a derivation of theserfysitentials over., and not ara posteriori
verification overC. In Section 4, we will apply this reduction &pin (2r +1).

3.1. A General Characterisation. We begin with the simple observation that given any weight
A andw € W, we have
X» — detw xg., € IZ. (3.1)

(The definition of character has been extended to non-darhimeights by Weyl's character for-
mula.) This follows easily from Gepner’s characterisawbthe fusion algebra, Proposition 2 (and
the remarks which follow it). Since the fusion ideal is divig (Section 1), it follows thak, € J%
wheneven is on a shifted affine alcove boundary.

Let L, denote the irreducible representation®bf highest weightA. Letting A; denote the
Dynkin labels of the weight, it follows from the familiar properties of the represematring that
A is the highest weight of the representatloﬁf1 R Lff)r)‘r. As a polynomial in the character
rng, Z[x1,. .., Xr], we see that the charactey has the form

Xa =Xt Xt =

where the omitted terms correspond, in a sense, to lowerhtgeighich we regard as being of
lesser importance. Our strategy now is to make this lack gontance precise by introducing
a monomial ordering on the character ring such that the mgatBrm (1) of x, is precisely
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LT(Xx) = Xfl--- A, Of course, we are studying fusion, so we also want to asseatiye)
importance to characters according to whether the assdciatight is on a shifted affine alcove
boundary or not. In particular, we should distinguish wesgin the boundargA , 0) = k+ 1 from
those inside the fundamental alcave 0) < k.

Happily, these requirements can both be satisfied by defmimgnomial ordering< on the
character ringZ [x1, - .., Xr], by

Xi‘l... r’\r<Xfl"' He if and only if

(A,0) <(u,8),  or
(A,6)=(u,0) and  (A,p) <(M,p), oOr
(A.0)=(u,0) and  (A,p)=(u.p)  and  x{Toox < xEoxt

where<' is any other monomial ordering, lexicographic for definésgs. This is an example of a
weight order [4] (and is therefore a genuine monomial ordgri

We demonstrate thatr (x, ) is indeed)(i‘l ---x{. This proceeds inductively on the height, as
it is obvious whenA is zero or a fundamental weight. We decomph§§l R ® Lffr}‘f into
irreducible representations, so that

X1t X =Xa+ S CuXu,
v

where theu are all of lower height than: (u,p) < (A,p). By induction,LT (X, ) is the greatest
(under<) of x}*...x} and the monomials-c, x**--- x/*. Now, since eachu is a weight of
Lfffl Q- ® Lffr}“, u=A —3;ma;, where than are non-negative integers. It follows that, 8) <
(A, 0) since the Dynkin labels & are never negative. But, in the definition-ef tiesin(-, 6) are
broken by height, hencx;fl ... X" is the greatest of the monomials (undéras required.

Consider now the idealLT (JZ)) generated by the leading terms (with respect<joof the
polynomials in the fusion ideal. Since the fusion ring isefyegenerated (asA-module) by (the
cosets of) the characters of the weightﬁm the leading term,«}(i\l - X, with (A,8) < k must
be the only monomials not i(LT (JZ)). Thatis,(LT (JZ)) is freely generated as an abelian group
by the set of monomia®( = {xi‘l XM (A, 0) > k}.

As an ideal, it is now easy to see thatr (JZ)) is generated by thatomicmonomials of),
where the atomic monomials are defined to be those wteécimotbe expressed as the product
of a fundamental character and a monomial frdtn Equivalently, atomic monomials are those
corresponding to weights from which one cannot subtracfamgamental weight and still remain
in the set of weights correspondingXé.
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FIGURE 3. The weights corresponding to the atomic monomials for itieal
(LT (9Z)) associated wittG, at even and odd level. Weights corresponding to
monomials in the ideal are grey or black, the latter corragdpay to atomic mono-
mials. The arrows indicate the effect of multiplying gy and x».

It should be clear that every weightwith (A, 8) = k+ 1 corresponds to an atomic monomial.
In fact, forSU (r + 1) andSp (2r), these are all the atomic monomials, as the comarks;are 1
(soif (u,0) > k+ 1, one can always subtract a fundamental weight froiyet remain inM).
For other groups, it will generally be necessary to includeomonomials. For example] = 2
for Gp, so it follows that when the levéd is even, the monomia)>t£k+2)/2 is also atomic (this is
illustrated in Figure 3).

Let xi‘l--- M be an atomic monomial dft. If the associated weighk is on a shifted affine
alcove boundary, we associate to this atomic monomial thepmial py, = x, € J%. If not, we
use Eqgn. (3.1) to refledt into the fundamental affine alcove, and take= x, — detW xg., € JZ.
In either case, we have constructed)ain the fusion ideal whose leading term with respeckto
is X2 - - xM. Therefore,

<LT <J%>> = <atomicxi‘1 - X in M>
= (LT (p,): A is associated to an atomic monomialNt) .
But, this is exactly the definition of @robner basigor J% [4,29].

Proposition 3. The polynomials p constructed above for each weightassociated to an atomic
monomial ofM = {Xi‘l... A (A,0) > k} form a Gidbner basis for the fusion ide&f, with
respect to the monomial ordering. That is,

JZ = (p,: A is associated to an atomic monomialif) .

Note the crucial, but subtle, role played by the monomideoing <. Note also that because
the Grobner basis given has elements whose leading ceeffis unity, this presentation shows
explicitly that the fusion ideal is dividing. Whilst this @sentation has a nice Lie-theoretic inter-
pretation, it is rather more cumbersome than we would wishfaleed, a presentation in terms of
a potential would give a set of= rankG generators for the fusion ideal (at every lekglwhereas
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Proposition 3 gives a set whose cardinality is of the orded of. We will therefore indicate in
what follows how one can reduce the number of generatorsntesong a bit more manageable
(at least for the classical groups).

3.2. Deriving Fusion Potentials. We will begin with the case o$U (r +1). As noted in Sec-
tion 3.1, the atomic monomials off = {xi\l X (A,0) > k} are precisely those correspond-
ing to weightsA with (A, 0) = k+ 1. It follows from Proposition 3 that

IZ = (xp: (A,0) =k+1).

The highest root has the foréh= g1 — &1, so for these weight&+1=(A,0) = A1 - ATl =L,
Here, we writeA = zﬁﬁ)\jej, and fix the ambiguity corresponding jﬁ gj = 0 by setting
A1 = 0. We emphasise that ttd are not to be confused with the Dynkin labals

We now use thdacobi-Trudy identityEqgn. (A.3), to decompose these generators of the fusion

ideal into complete symmetric polynomials (denotedHp) in theq;. We have

H)\l H)\Zfl HAr—I’—i-l Hk+1 H)\Zfl HAr—I’—i-l
H)\ 111 H)\Z T H)\’fr+2 Hk+2 H)\Z e H)\’fr+2
XA = : . ) : = . . ) : .
Hyir1r Hazgr o o Hyr Hir Hazgr o o Hjr

SinceHm = Xmn, € Z[X1,- - -, Xr], €xpanding this determinant down the first column giygss a
Z[X1,- -, Xr]-linear combination of thélx,j = X(k4i)a,» Wherei = 1,...,r. Therefore,

j%g<)((k+i)/\1: i:l,...,r>.

Conversely, we show that eath+i)A1,i =1,...,r, is on a shifted affine alcove boundary, hence
is fixed by an affine reflectiow, and thus thaj ki), is in the fusion ideal. This amounts to
verifying that ((k+i)A1,a) € (k+h")Z for some roota, and the reader can easily check that
o = & — &42-j works. We have therefore demonstrated that

T = Xoripng 1 =1,...,1). (3.2)

It is rather pleasing that such a simple device can reducauh#er of generators from (the
order of)k' 1 to r. Before turning to the integration of these generators totamial, we would
like to mention one further observation that may be of irderé/e consider the characteqig,, 1 A, ,
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wherei = 1,...,r. Expanding with the Jacobi-Trudy identity, we find that

XkA+A = Hk+l
XkAp+n, = HiHk 1 —Hipo
XkA+As = (le —Hz) Hir1 — HiHi2 4+ Hirs

XkAg+As = (HF — 2H1Ho + Hg) Hie1 — (HE — Ha) Hir2 + HaHig s — Hia

We call this themethod ofl’s due to the line of 1's which appear off-diagonal in the Ja€hiidy
expansion of these characters. These equations show fivelygthat there is another simple
generating set for the fusion ideal:

I = (Xingin s i=1,...,1).

This generating set is suggested by the computations oth@lLgh not explicitly stated there)
on the corresponding brane charge grdupéote that this set has the nice property of consisting
entirely of characterg, with (A,0) =k+1.

We now turn to the derivation of the fusion potential, Eqnl)2LetE, denote the elementary
symmetric polynomial in thej. From the identityy o Hnt™ = [ 3 (—1)" Ent"] ~1 we can derive

OHm _  \j+1 ,
ForSU(r+1), Ej = Xj = xa, for j=1,...,r, so we see that
L OHL .
(_1>I 1% — (_1>I+] Z HnHk+hvfifjfn
X n

is symmetric in andj. Thereforey; (—1)i_1 H. nv_idxi is a closed 1-form, hence integrates to a
potentialV, v (there is no topology).

4To elaborate somewhat, the authors of [9] computed the hraage group of the lev& SU (r + 1) Wess-Zumino-
Witten model from the greatest common divisor of the dimensiof the irreducible representations of highest weight
kA1 + A, i =1,...,r. In[10], the brane charge group was shown to be determingkiebgreatest common divisor of
the dimensions of any set of generators of the idgalf the fusion ring. This suggests that tk,, 1A, are such a set

of generators, and here we have given a simple proof of this fa
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We can compute this potential using generating functidng.(1) = zm(—l)m_lvmtm, then
t! t!

ov (t) _ M 4m_ —
Z( 1) Hnit" = |_|g(1+Q£t) = S E

oxi &

i
S A e
=  V(t)=log[l+xit+...+ xt" +t™],

up to a constant. This is of course Egn. (2.4), from which ome easily recover the fusion
potential, Egn. (2.1).

We would like to emphasise once again that not only have wengascomplete derivation of
the fusion potential for th8U (r + 1) Wess-Zumino-Witten models, but we have shown that this
potential describes the fusion process dgerather than just ovet.

Consider now the fusion ring f&p (2r). As before, Proposition 3 gives the characteyswith
(A,0) =k+1 as a set of generators for the fusion idéal, The highest root i = 21, so for these
charactersk+1= (A,0) = A! (note that| |2 = 1). We expand th&p (2r) Jacobi-Trudy identity,
Eagn. (A.4), down the first column. Noting thidt, = Xmn,, this shows that the generating characters
can be expressed @sxi, . . ., Xr]-linear combinations of theelementd ;1 andHy; 14 + Hky1-i
(i=1,...,r—1). Here, theH,, are complete symmetric polynomials in tiyeand their inverses. It
is obvious that these elements belongohence

T8 = Xkt )Ags Xk 1+i)AL T Xk 1oipag s 1 =1,...,r —1). (3.4)

Applying the method of 1's to these elements gives an alteaet of generators:

T2 = (Xingin s i=1,...,1).

Deriving a potential from these generators is somewhat manmgersome than before. For this
purpose, we use the set of generators

r—i
{%Hk—i—hv—i—%: I = 1,...,r},

which is easily derived from those given above. From EqrB)(and the expressions fé, in
terms of thex; [27], we compute that

J "= i ) r—i r—j

1

) . ; Hirn—ioar = (-1)' TS H Y WZ HiihY —n-i-j—2(mm)»
Xi mM=0nY=0

n

which is symmetric in and | (indeed, this symmetry is what suggests the above gengisginas
it leads to a closed 1-form). These generators may theréiategrated to a potential, and the
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derivation may be completed using generating functions #isaSU (r + 1) case. In this way, we
recover Eqn. (2.5) and therefore the fusion potential, E2j2).

4. PRESENTATIONS FORSpin (2r 4+ 1)

We now apply the techniques of Section 3.1 to the fusion rioigthe Wess-Zumino-Witten
models ovefpin (2r +1). We are not aware of any concise, representation-theqneggentations
of these rings (nor of the corresponding algebras) in tleedituré. We will see that the appro-
priate Jacobi-Trudy identities may be employed to substinsimplify the presentations given
by Proposition 3, though the simplification turns out to bé auaite so drastic as that found for
SU(r+1) andSp(2r). In particular, it seems rather doubtful that the presémtatobtained are
related to potentials.

Recall from Section 3.1 that we can derive a generating s¢héfusion idea]l% by computing
the atomic monomials of the s%lxi‘l X (A,0) > k}. As shown there fof,, this computa-
tion depends upon the comar&s, which for Spin (2r + 1) are 1 fori = 1,r, and 2 otherwise (we
will only considerr > 2). The atomic monomials therefore correspond to the weight

kodd: {A: (A,0)=k+1}
keven: {A: (A,8)=k+1}U{A: (A,0) =k+2andA; = A, =0}.

Finding elements oﬂ% whose leading terms are these monomials is easy, and we elédac
Proposition 3 that the fusion ring is generated by:

k odd : {xr: (A,0)=k+1}

4.1
keven:  {xa: (A,0)=k+1}U{xx +Xr_g: (A,0) =k+2 andA; = A, =0}. @1

We note that il, =0, x,_g = 0.

In order to reduce the size of this generating set, we agaimnttuthe appropriate Jacobi-Trudy
identities. As noted in Appendix A.3, these identitiesidigtiish betweetensorandspinorrepre-
sentations (whose highest weighhasA, even and odd, respectively). We consider first the tensor
representations. The appropriate Jacobi-Trudy idedw, (A.7), gives the irreducible characters

SIn the course of preparing this section, we were made awaaeohjecture regarding the presentations of the fusion
ideals of theSpin (2r 4+ 1) (andSpin (2r)) Wess-Zumino-Witten models [31]. This elegant conjecar®unts to the
statement that the fusion ideal at lekek the radical of the ideal generated by ¥\@.ia,, fori=1,2,.. . hY -1,
This is a generalisation of th&U (r + 1) result, Eqn. (3.2). It is further conjectured that the ratif this ideal is
generated by the above characters gad. A, (Xkn 1A, , iS also needed fdpin (2r)).
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as a determinant of anx r matrix:

Hyt—Hyi o Hy2_1—Hy2_3 -+ Hyrpqr —Har_1
Hyip 1 —Hyig Hyz—Hj2_4 o Hargor —Har 2
X\ = : : . : . (42)
Hatprog—Haiog Hyzpr o—Hp2 o - Har —Har_o

Here,A1 denotes the componentsdfwith respect to the usual orthonormal basgisf the weight
space, anth,, denotes then™ complete symmetric polynomial in thgg = exp(&), their inverses,
and 1.

How this treatment differs from the analysis of Section ar#] is thereby significantly compli-
cated, is tha® = &1+ &, S0(A, 0) = A1+ Az. It follows that the elements in any single column of
the Jacobi-Trudy determinant of a charagtgmwith (A, 8) = k+ 1 will not generally belong to the
fusion ideal, so expanding the determinant down a singlensnlis pointless. Instead, we notice
that the top-left 2« 2 subdeterminant is the characjgfi,, | y2,,, and that(A, 8) = k+ 1 implies
thatthis subdeterminant is .

This observation suggests that we must expand Eqn. (4.2) tlosvfirst two columns. In this
way, X, is expressed as&[x1,. .., Xr]-linear combination of the 2 determinants

Yy, ()\1 }\2) _ ﬂ)\hrml—l - H)\l—ml—l H)\2+m1—2 - H)\Z—ml—z .
Agmp—1—Hatime—1 Hazim,_2—Hyz_m, 2

Here, 1< my < mp < r counts the(%) choices of rows used in these subdeterminants. We have
already noted thapy (A1,A2) € JZ whenAl+ A2 =k+1, so it is natural to enquire if the same
is true for generatny andmy.

To investigate this, we need to digress a little in order tavéea more amenable form for
the Yn2 (}\ 1,}\2) (Egn. (4.4) below). This derivation is an exercise in matdapag generating
functions. Introducing parametdxsandty, we compute

melmz(/\ A = Z Hyat) Z H, 2t}
A%€Z

t”m‘ 4.3)
A ANZc ij= -1

Denoting the determinant on the right By, m,, we form the generating function

° <tj—1_tj+1> Z 2
Z Amlmzzrinlzg]z - J J 1
my,mp=0 (1—'[]'25) (1—tf Zi>

hj=1
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Applying Egn. (A.2) to this determinant gives

) (%) ||zt
z 'A‘f“ﬂlmzzrlng]2 = (1_t12) (tz—tg) 2
My, mp=0 1 (1-tz) <1—tj’12i>

hy (t2,t; 512,15 ) Z.m] ,
where we recogniség, = (1-t?) (1-1t3) (1-titp) (1 —t; 'tp). Here,hy denotes then™ com-

plete symmetric polynomial in thigand their inverses (to be distinguished from ).
It follows thatAq» is a factor ofAmm,:

meZ

hm—2 Nmp—1+hm,—3

Amym, = A12
L hm1—2 hml—l + hm1—3

Fascinatingly, if we seffj = exp(n,—), wheren; denotes the usual orthogonal basis vectors for the
weight space o$p (4), then comparing with Egn. (A.4) gives
m _ XSp(4)
Arp (Mp—2)n1-+(m—1)n2°
This rather unexpected relation turns out to be extremedjulisFor example, we can substitute it
back into Eqgn. (4.3) to recover an expression for the origieterminants:
s (N 0%) = 5 X0 ey 4.

Here, the sum is over the weightis= u'n; 4+ u?n; of the irreducibleSp (4)-module of highest
weight(mz —2) N1+ (M1 — 1) .

Recall that the fusion ideal is generated by the charagtgraiith (A,0) = k+1 and, ifk
is even, by the same set augmented by xhet x)_g With (A,0) = k+2 andA; = A, = 0.
We have seen that when the characters correspond to temseseatations, the generators of
the first type may be expressed a& i1, . . ., Xr]-linear combination of th@m,m, ()\1,)\2), with
AL+ A2 =k+1. Sinced = & + &, it follows that the Jacobi-Trudy determinant fgg and
X2 _g Will be identical in columns 3..,r. Therefore, the generators of the second type (which
always correspond to tensor representations) may be eques & X1, ..., Xr]-linear combina-
tion of theYm,m, (A1, A2) + Prym, (A1 —1,A2—1), with A1+ 212 =k+2. IndeedA; = 0 implies
thatA1 = A2, so the generators of the second type alrbe expressed in terms of the elements
Wy m, (l?( +1 l?( + 1) + Yy m, (%’ l?()

Consider now a singl8pin (2r 4+ 1)-character in the sum of Eqgn. (4.4), labelled by the weight
(A=) 14 (A2 — p?) &, with A1+ A2 = k+1. We can pair it with the character labelled by
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the weight (A1 + u?) &1+ (A% +p?) &, its image under the fundamental affine Wey! reflection
Wop. If this character is also (always) in the sum, then we carclooie that the right-hand-side of
Eqn. (4.4) belongs 07, that is@mm, (A1,A2) € IZ.

But this follows immediately from the fact that the transfation

— Ny — puPng — PPN+ ptng

is precisely the action of th&p (4)-Weyl reflection about the (short) rogt + n». Since the sum
in Eqn. (4.4) is over the weights of &p (4)-representation, which is invariant under this (indeed
any) Sp (4)-Wey! reflection, it is clear thatmym, (A*,A?) € JZ (whenAl+A2 =k+1). More

generally, an almost identical argument shows Wafm, (5§ +1,%+1) + ¢mym, (5, %) € 2. 1t
follows that the generators 6% that correspond to tensor representations can be replgced b

Lljmlmz(A]-?Az)? Al—f—)\zzk—f—l,
k k k k ey
and Yy m (é +1, >t 1) + Yy <§, §) if kis even,
where 1< my < mp <r.
The story for the spinor representationd half-integral) is much the same. Using the appro-

priate Jacobi-Trudy identity, Eqn. (A.6), we find that theareZ[xa, ..., Xr]-linear combinations
of the subdeterminants

H)\1+m1—% - H)\l—ml—% H)\2+mr% - H/\Z—ml—%

H m 1 H

Prymy ()\ 17)\2) = Xr .
me—3

3 _H)\1,

A1+m272 5 H)\Zf

)\2+m2_2
Constructing generating functions as before, one can pghate

142\ Spin(2r+1)
Py, (A7,A7) = ZX()\1_v1_%)£1+()\2_v2_%)82+/\r’ (4.5)

where this sum is over the weights= v1; + v2Z5 of the irreducibleSpin (5)-module of highest
weight(mp — 2) {1+ (my — 1) {» (and the(; are the usual orthonormal basis vectors for this weight
space). As before, it now follows quickly from the fact that+ {> is a root ofSpin(5) that
Py (A LA 2) € J%.

These manipulations for the tensor and spinor representgatinally prove that the fusion ideal
has the following generators:

kodd: 9% = <melm2 (ALA2) by, AL A2) 1 AT+ AZ=k+1, 1< < Mp < r>,
keven: JL— <L,Um1m2 (A1 A2) Wy (5 + 15+ 1) + Yrym, (5,5) » Prmymy (A,47) (4.6)

AT+ A%=k+1, 1<m1<mz<r>.
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SinceA® > A2 are integers and half-integers in they, m, and ¢m,m, respectively, it follows that
the number of generators in this set is of the ordek@. This compares favourably with the set
of generators given in Eqn. (4.1), whose number is of therddde, though perhaps not with the
expectation that we could reduce the number of generatarsRimally, we note that other sets of
generators can be deduced from this one, in particular mguke method of 1's. We leave this as
an exercise for the enthusiastic reader.

5. DiIscussiION ANDCONCLUSIONS

In this paper we have attempted to give a complete accounuwofioderstanding regarding
explicit, representation-theoretic presentations offtleon rings and algebras associated to the
Wess-Zumino-Witten models over the compact, connectatplgiconnected (simple) Lie groups.
We have discussed presentations in terms of fusion polgraiad have provided complete proofs
of the fact that there are explicitly known potentials whedhrectly describe the fusicalgebras
of the models oveBU (r +1) andSp(2r). These potentials appear to have been guessed in an
educated manner. We hope that our proofs will complement Waa already appeared in the
literature, and will be useful for subsequent studies. Wesladso proven that the fusion algebras
of the other groupsannotbe described by potentials analogous to those known, whiglaies
why attempts to guess these potentials have not been sfidcess

We recalled that it is the fusiamng, rather than the fusion algebra, which is of physical irgere
in applications. Despite the fact that the fusion ring ision-free, we noted that a presentation for
the fusion algebra need not give a presentation of the fugign To overcome this, we have stated
and proved a fairly elementary result (Proposition 3) givam explicit presentation (that is easily
constructed) of the fusion ring in all cases. We believe thiatis the first time such a presentation
has been formulated. It is in terms of (linear combinati@isireducible characters, and so should
be regarded as representation-theoretic in the strongssiijle sense.

These general presentations have one rather obvious drsadpe in that the number of charac-
ters appearing is quite large. Whilst easy to write downseéhgresentations nevertheless contain
quite a bit of complexity. However, we have seen that it is stimes possible to express the rele-
vant characters in terms of simpler characters, and so egti@gcnumber of characters that appear.
In particular, we have used the well-known determinantahtdies for the characters 60 (r + 1)
andSp (2r) to derivethe fusion potentials from first principles. An importantaiary to our re-
sults is then that these fusion potentials correctly dbedtie fusiorrings of the SU (r +1) and
Sp(2r) models.

We then extended this result to thein (2r + 1) models. The corresponding determinantal iden-
tities for the characters did not lead to as nice a simplificeas before, in particular we did not
end up with a potential description, but the result, Eqré)(4s still relatively concise. To the best
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of our knowledge, this is the first rigorous representatizenretic presentation of the fusion ideal
(overC or Z) for these Wess-Zumino-Witten models. Nonetheless, tiesegntation is not as con-
cise as we would like for the concrete applications we havaiimd. Certainly, for our motivating
application to D-brane charge groups, our result allowugrite down an explicit form for this
group. However, we have been unable to substantially simplify fbimula, so as to rigorously
prove the result conjectured in [10]. We have checked thatr#sult is numerically consistent (to
high level) with the generators presented here.

We expect that this result can also be extended t&plive(2r) models. However, we have not
done so for two reasons. First, as mentioned in Appendix thel derivation of the appropriate
determinantal identities requires a slightly more genapgroach than what we have been using.
It follows that the methods we applied in analysing $pé (2r + 1) case will require an analagous
generalisation. However, we believe that this generatisathould follow easily from the methods
used in [27]. Our second reason in that as withSphm (2r + 1) case, we do not expect to get as
simple a presentation as we would like. We feel that the rbthis is the observation that deter-
minants are not particularly well-suited to computatiorigew the Weyl group is not a symmetric
group. A far more elegant approach would be to generalisaltjabdra of determinants to the other
Weyl groups, and then derive “generalised determinangaititles” for the Lie group characters in
terms of Weyl-symmetric polynomials. It would be very irgsting to see if such an approach can
be constructed (if it has not already been), and we envidaggattmay lead to more satisfactory
fusion ring presentations. We hope to return to this in thertu
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APPENDIXA. DETERMINANTAL IDENTITIES OFJACOBI-TRUDY TYPE

In this section, some formulae are presented, expressengréducible characters of the clas-
sical groups in terms of determinants of matrices whoseiesntire relatively simple charac-
ters. These formulae, which we will calacobi-Trudy identitiesre well-known for the groups
SU(r+1), Sp(2r), SO(2r+1), andO(2r), and may be found in [25, 27]. We are not aware
of a reference for the corresponding formulae for the spiepresentations dpin(2r +1) or
Wargegroup has the for?i);"j'f2 [32], and we can determineto be the greatest common divisor of the integers
obtained by evaluating the fusion ideal generators at thggnoof the weight space. With respect to Eqn. (4.6), this

amounts to replacing the complete symmetric polynontiiga,1,q7%) by (™;*) (and then finding the greatest
common divisor).
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Spin (2r), nor for the tensor representations of the latter which ater@strictions ofO (2r) rep-
resentations. We therefore indicate how Jacobi-Trudytities for these cases may be derived,
following the “transcendental” method of Weyl.

The transcendental method relies on Weyl's character flarfi2b]:

_ Mo _ ()
Xy = A where A = Wezwdetw e
and an identity of Cauchy [27]:
1k 1k
k—] K—i
1 k )X' ‘ )i j=1 (A1)
1-Xyj i ; ' '

= k 2
A
ij=1

Here,

‘. j—1 denotes the determinant of tkex k matrix with entriesa;j. An alternative form of
Cauchy’s identity is obtained by replaciggby y-*1 and multiplying through:

k ‘X:( |]1‘ ‘I]l
Ijl |—|yJ

ihj=1

1
Yj—

We will often apply this in the form

5
(1—atj) (1-g ')

B ] Goay) @-g )

obtained by putting; = gi +¢; * andy; =t; +t;

A.l. SU(r+1). The Weyl group i, 1, acting as permutations on the weightsvf the defining
representation. We pwf = €9, soq;---0r+1 = 1, and writeA = 3{_ 1)\ &, with A"*1 =0 (in
particular,o! =r+1—j). ThenA1>A2> ... > A™1 =0 are all integers, and

r+1
Ay = ‘q

. 1 *
We would like to emphasise that thé are to be dlstlnguished from the Dynkin labels, which we
denote byj;.
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We form a generating function and apply Cauchy’s identign HA.1):

. r+1
Alnd

> at

AT=0

r+1

o0
Ar+l

AAt .. r+1 =

_‘1
1—qﬁ

hj=1

AL ATHL=0 ij=1

tr+1—i‘
j

q:+1 ]}

[1(1—at;)

L
We recogniséd, in the numerator, and expand the denominator in terms of tEmpymmetric
polynomialsH, (q) in theq;. We then get

A)\t )\r+1
Ap I’+1 -

r+1—i
AL ATH=0 ! ‘ l_l [mlzeZHmJ ] .
Bringing the symmetric polynomials into the determinattamging the summation variables so
that the power ofj is A! 4 p!, and then bringing thg out of the determinant finally gives the
original Jacobi-Trudy identity:

X = [Haiio @l 2 (A.3)

Note that applying this formula td = mA; = me; givesHm (0) = Xma, -

A.2. Sp(2r). This time the Weyl group i$, x Z5, acting on the weights-¢; of the defining
representation by permutatios § and sign flips (eacl, negates one of thg whilst leaving the
others invariant). With = ;A'g;, sopl =r+1— j, we find

_Mr

Al
A’\:‘qi B ij=1"

Here,A1 > A2 > ... > A" > 0 are all integers. What follows is very similar to Appendix1A
so the details are left to the reader. The generating fum¢tis time gives the left-hand-side of
Eqn. (A.2), up to a produd; (q. ) After applying the alternative form of Cauchy’s identity,
this product combines with thq,xdetermlnant So obtained to give. From there, the story is as
before, and we find that

Hyivaj (@97
Hyigic (@071 +Haisomiog (@071

In this equation, the top entry of the matrix should be untdexdto describe the elements of row
i =1, and the bottom entry describes the rowsl. The complete symmetric functions are in the
gi and their inverses. Note theltn (0,07 1) = Xm, .-

X) = (A.4)

IvJ:]-
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A.3. Spin(2r+1). The Weyl group is agai, x Z), acting on thenon-zeroweights+¢; of the
defining representation as in tBg (2r) case. Therefore, we again find that

*Aj r

Al
A)\:‘qi — e’

whereA = SiA'g, andA1>A2> ... > A" > 0. In contrast to th€p (2r) case, thé' can either be
all integers (corresponding to a representatioS@f2r + 1), also called a tensor representation)
or all half-integers (a spinor representation). Indegd= r + % —J.

If we form a generating function with! integral, Eqn. (A.2) gives

i—1 .
- ) @y
At -t = g—qg ) -
Al,..%eo S l'_l(l ) I_l(l—qm')(l—ch )

i
]

Recognising tha#, factors aq]; ( 1/2 — 0 1/2) ‘(q.Jrq, ) ",and proceeding as usual gives
r
Hypzoj (@0

- (A.5)
Haig4ig (a.q 1)+H)\i+3 i j(q q)

XA—|'|(q.1/2+q. 12).

i,j=1

Note that because the' are half-integers, this describes the characters o$pireor representa-
tions. Note also thatr = xa, = [ <q,1/2+q, 12 . Finally, as the defining representation has a
zero weight, it may be more convenient to express this r@stétrms of the complete symmetric
polynomials in theg;, their inverses, and 1. This gives the Jacobi-Trudy ideritit the spinor
representations &pin (2r + 1):

;
AM=34i- j(q’lq ) )\l+ —i— j(q’lq )‘l,j:f (A.6)

X)=Xr|H

Forming the generating function with half-integral then gives th&pin (2r + 1) Jacobi-Trudy
identity for the tensor representations. The manipulateme straightforward, and give

X =Haao(@ta ™) —His@la . (A7)

Note thatymy, = Hm (3,1, 1) —Hm-2(a,1,071), 50Hm (0, 1,07 %) = Xmr, + X(m-2)A, + - - -

Finally, if we compare Eqgn. (A.5) with Egn. (A.4), we find tive¢ have established a strange re-
lationship between the characters of the spinor represemsaofSpin (2r + 1) and those obp (2r).
This is perhaps best written in the following form, wharéabels a tensor representation:

Spin Spin )
XAiA(rZr+l) _ X/\F (2r+1)X)\ p(2r).
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(Of course, this has to be interpreted appropriately.) Eatahg the characters at 0 to get the di-
mensions of the corresponding representations gives atitigef [33]. Interestingly, it is claimed
there that this identity cannot hold at the level of chanacte

A.4. Spin(2r). The Weyl group iS5, x Zrz’l, acting on the weights:¢; of the defining represen-
tation as in theSp (2r) case, except that tlﬁz‘1 factor corresponds to transformations where an

evennumber of theg; are negated and the rest are left invariant. Therefore,

*)\j r

-
2AA:‘qi’“+qi ’ij (A.8)

:1+)qa“—

ij=1’
whered = $;Alg, andAt > A2 > ... > A""1 > |A"|. As in the previous case, we have tensor
representations\( € Z) and spinor representations' (c Z + %). A non-trivial Dynkin diagram
symmetry (forr > 4 this is the only such symmetry) acts id — —A', so representations with
A" = 0 will be referred to as symmetrficSymmetric representations correspond to represengation
of O(2r), and it is clear that for these representations, the se@nit the above formula fok,
vanishes. Note thai! = r — j defines a symmetric (tensor) representation:

—(r—j)|" =i

Po=>d '+q

— (q -1
= \(Q.+qi I

Sincep is tensor, forming a generating function with eachhalf-integral and positive gives
an identity for spinor representations. The derivationhis identity should by now be an easy
exercise for the reader. Itis:

r

1/2 -1/2
20 =[] (@0 ™) Mgy (@a )~y @a )|

+|-|< 12 _ 1/2> }HA,__H jaa™) +Hy i (@a™)

r

|7j:1'

Setting allA! = 3 gives 1 = []; (qll 2rq ) +1i (g ( 1/2—qi_1/2). As we assumed' > 3
when computing the generating function, this formula cameoapplied tgy; directly. Instead, it
is determined frony, 1 by applying the Dynkin symmetny: — g;* (this symmetry has the effect
of changing the sign of the second term in the above equafidn)s, 2; = [J; (q,l/z-l-q, 1/2>

1/2

M (q, —G; 1/2> leading to thé&Spin (2r) Jacobi-Trudy identity for spinor representations:

r

1 - —
Xx =5 X1+ X0) |Hp -1 (@4 Y~ Hyp s (@0

hj=1

r
Hiiaying (@07 +Hp 01 (@0 ‘i,j:l' (A.9)

1
+ > (Xr—1—Xr)

’For r odd, this symmetry is conjugation, so symmetric coincidés welf-conjugate. However, far even, the
conjugation automorphism is trivial.
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The 4 appearing here reflects the sign}df Of course, the absolute values appearing’\iH are
only necessary foj =r.

The corresponding derivation for tensor representati®ssinewhat unique in that Weyl'’s tran-
scendental method does not seem to be directly applicalie tirst term in Eqn. (A.8). Instead,
we have to resort to the algebraic method (see [27]). Weyéshod has no problem with the
second term, so this hybrid gives thgin (2r) Jacobi-Trudy identity for tensor representations:

(
Haisioj (a7t —Hasig (aa )| if AT =0,
1 —1 N
2 (Hai iz (9077) —Hp—imj (9,077) ]
X = 2‘ et (97 = Hpi ’(H )(ul , r (A.10)
i|—ij q7q7 .
£3 (XF 1= XF) N . if AT 0.
Hini—ti- (q,q )+H\/\i|+1—i—j (q,q ) i1

Again, the= reflects the sign oA" and correlates with the application of the Dynkin symmetry
g — g 1. Note thatxm, = Hm (9,971) —Hm-2(9,971). We also note that? ; — X7 = Xon, , —
XN, -

A.5. Further Remarks. Comparing thes8pin (2r) identities to those derived for the other groups,
we note two novelties. One is the fact that two determinamgtganerally required, and the second
is that explicit factors og appear (in spite of the fact that the right hand side must lyanpmial

in the fundamental characters with integral coefficient$)ese novelties are direct consequences
of the form of Egn. (A.8), which itself reflects the increagicomplexity of the Weyl group of
Spin (2r), as compared to the cases already treated. Roughly spedkédveyl group is suffi-
ciently “non-symmetric” (where “symmetric” refers to thgnsmetric group) that the use of de-
terminants in Weyl's transcendental method, in particafglying Cauchy’s identity (Egns. (A.1)
and (A.2)), leads to annoyingly complicated Jacobi-Trubbntities.

The Weyl groups of the exceptional groups are even less “sney, and so we expect that
the above methods used to derive Jacobi-Trudy identitido@inext to useless in these cases.
Indeed, the simplest exceptional groGp has the dihedral group of order 12 for its Weyl group:
W = D12 =Z, x S3. Naively proceeding with Weyl's transcendental methadlto the evaluation
of an unpleasant quotient. Forcing the evaluation with tldeod a computer suggests that the
corresponding Jacobi-Trudy identity may require as margpdgdeterminants!

The appropriate course of action seems therefore cleaheR#tan try to force determinants
unnaturally upon a Weyl group in order to apply Cauchy’s tdgrwe should instead try to gen-
eralise Cauchy’s identity in such a way that it applies to WeglternantsA, = ¥\ detw ¥t)
directly. We are not aware of any such generalisation, begrgthe magic of Weyl groups, we
would not be surprised if such a generalisation could bedoWe speculate that such a finding
may lead to simple and useful identities of Jacobi-Trudyetigr all simple Lie groups.
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