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ABSTRACT. A natural construction of the logarithmic extension of the M(2, p) (chiral) minimal models is
presented, which generalises our previous model [1] of percolation (p = 3). Its key aspect is the replacement
of the minimal model irreducible modules by reducible ones obtained by requiring that only one of the two
principal singular vectors of each module vanish. The resulting theory is then constructed systematically by
repeatedly fusing these building block representations. This generates indecomposable representations of the
type which signify the presence of logarithmic partner fields in the theory. The basic data characterising these
indecomposable modules, the logarithmic couplings, are computed for many special cases and given a new
structural interpretation. Quite remarkably, a number of them are presented in closed analytic form (for general
p). These are the prime examples of “gauge-invariant” data — quantities independent of the ambiguities present
in defining the logarithmic partner fields. Finally, mere global conformal invariance is shown to enforce strong
constraints on the allowed spectrum: It is not possible to include modules other than those generated by the
fusion of the model’s building blocks. This generalises the statement that there cannot exist two effective
central charges in a c = 0 model. It also suggests the existence of a second “dual” logarithmic theory for each
p. Such dual models are briefly discussed.

1. INTRODUCTION

Numerical simulations of non-local observables in simple two-dimensional critical statistical systems —
for example, crossing probabilities for percolation or the Ising model — have revealed a surprising result:
These non-local observables require the presence of non-unitary representations lying outside the Kac table
of the corresponding minimal model conformal field theory [2–4].

To make the discussion of this result transparent, let us recall that the minimal models M(p′, p) are
parametrised by two coprime positive integers p and p′ (with say p > p′), and have central charge

cp′,p = 1− 6(p− p′)2

pp′
. (1.1)

The (chiral) primary fields which populate these models will be denoted by φr,s, for r = 1,2, . . . , p′−1 and
s = 1,2, . . . , p−1, and have conformal dimensions

hr,s =
(pr− p′s)2 − (p− p′)2

4pp′
. (1.2)

These dimensions are conveniently arranged into the Kac table of the minimal model.
Critical percolation is described by a c = 0 theory, hence would correspond, by a naı̈ve central charge

identification, to the M(2,3) model. However, the horizontal crossing probability for this theory (which
can be roughly identified with a four-point function of φ1,2 [5]) indirectly indicates the presence of a field
of dimension h1,3 = 1

3 , which lies outside the M(2,3) Kac table. (Of course, the necessity of going beyond,
in some way, the M(2,3) theory is actually a plain consequence of the triviality of this model.) Similarly,
crossing probabilities for the Ising model involve a field of dimension h3,3 = 1

6 , which again lies outside the
M(3,4) Kac table [3]. Additional non-local observables have been probed for the Ising model in [4], where
in particular, a field of dimension h3,1 = 5

3 appears to be relevant.
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These results suggest the existence of some sort of covering theory for a general minimal model which,
contrary to its minimal model reduction, is not blind to non-local observables. The systematic construction
of such a generalisation, for the specific minimal model related to percolation theory, was considered in [1].
The resulting theory turned out to be a chiral logarithmic conformal field theory, which we will refer to as
the logarithmic chiral minimal model LM(2,3) to stress that it generalises (in a manner we consider very
natural) the chiral part of the (trivial) minimal model M(2,3). This logarithmic signature was marked by the
presence of indecomposable representations that are generated by fusing the building block representations
of critical percolation. We will review our construction briefly in Section 3.

As a brief aside, we would like to emphasise that many of the non-local observables that are typically
considered in this context, crossing probabilities in particular, are necessarily defined in the presence of
boundaries. This then places the theoretical formalism for describing these observables within the realm of
boundary conformal field theory [6]. In other words, any theory describing such non-local observables is
intrinsically chiral. This explains why the logarithmic theory that we have constructed in [1] is chiral, as are
the theories we propose here. Of course, we think that it is desirable that these chiral logarithmic conformal
field theories admit “lifts” to consistent (modular invariant) bulk theories. However, we do not view this
requirement as mandatory, and it could very well be that such a lift does not exist. Our point is that within
the context considered here, it is the boundary conformal field theory which has direct physical meaning,
and therefore this chiral theory must itself be consistently defined1.

The proposal that every minimal model might be “augmented” in some way to define a corresponding
logarithmic model has been suggested recently by various authors [7–12]. Our proposal differs from all of
these, although it inevitably shares a number of features with them (this is most visible with those which
are also intrinsic constructions at the level of the Virasoro algebra). In particular, the motivation underlying
the construction of the lattice models (formulated in terms of non-local variables) in [10] is quite similar to
ours. For the specific logarithmic extension of the M(2,3) model, the differences between our construction
and those of [8, 11, 12] are spelled out in the conclusion of [1].

The aim of the present work is to generalise this construction by presenting a logarithmic chiral ver-
sion of all the M(2, p) models for p odd. In Section 3, we first briefly review the results of [1], with a
special emphasis on the fundamental data characterising certain indecomposable representations (staggered
modules [13]) that appear, namely the logarithmic couplings. These quantify the linking of the constituent
modules that comprise these representations. A further characterisation of these couplings is presented
here, in terms of singular vectors. This new observation explains why these couplings have particular val-
ues (they are not free parameters), and provides a completely transparent method for computing them. We
also stress the notion of “gauge transformations”, reflecting the degrees of freedom inherent in the definition
of logarithmic partner states, and hence the importance of gauge-invariant data.

The LM(2,5) model is then considered in some detail in Section 4. We give several fusion rules explic-
itly, as well as the values of the first few logarithmic couplings. In Section 5, these results are extended to
all M(2, p) models with p odd. Quite amazingly, we are able to compute a number of logarithmic couplings
for general p, obtaining remarkably simple closed analytic forms. This leads to a conjecture for the gen-
eral form of certain logarithmic couplings, in particular for the modules which extend the vacuum module.
Non-trivial computational evidence is given to support this conjecture.

Next, a constraint induced by nothing more than global conformal invariance is shown, in Section 6,
to prevent our naı̈ve attempts to extend the spectra of our LM(2, p) models beyond that which we have

1We emphasise that we have not proven that the description we give of this chiral theory is complete. Rather, we content ourselves by
noting that we have closure under fusion and consistency with global conformal invariance (pointing out that the latter rules out the
most obvious proposed extensions of our description). We expect to return to this issue of the characterisation of a consistent chiral
theory in future work.
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considered. This generalises a result already presented in our previous analysis of percolation [1] (p = 3)
for which the argument boils down to the statement that the effective central charge (which is a distinguished
logarithmic coupling constant) of a c = 0 theory is unique [14, 15].

This constraint then suggests the existence of a dual logarithmic theory L
∗
M(2, p) (for each p odd)

which shares the same central charge as LM(2, p), but which has a completely different spectrum (only the
vacuum module is common to both). We briefly discuss these dual models in Section 7, exhibiting their
fusion rules and some of their logarithmic couplings.

We finish with a brief summary of our results and some conclusions. This is followed by two technical
appendices which justify (and clarify) certain computations used to derive the spectrum-limiting constraint
of Section 6. These appendices may be of independent interest, and should also serve to allay any suspicion
that this constraint might be circumvented in some way. They are followed by a third appendix which
clarifies the physical significance of the choice of inner product on the indecomposable modules which
appear in these logarithmic theories. We stress that this differs from the conventional choice sometimes
advocated in the logarithmic conformal field theory literature2.

2. NOTATION

As we have already noted, it is customary to represent the dimensions of the primary fields of a minimal
model M(p′, p) in a table, the Kac table of the theory. The Kac symmetry hr,s = hp′−r,p−s indicates field
identifications within this theory. We will be more interested in the table of dimensions obtained from
Equation (1.2) by relaxing the conditions on r and s to r,s ∈ Z+. We refer to this table as the extended Kac

table, and use the same notation φr,s to denote primary fields whose dimension is given by Equation (1.2)
(for arbitrary r,s ∈ Z+).

We will denote the Verma module generated from the highest weight state
∣∣φr,s

〉
by Vr,s and its irreducible

quotient by Lr,s. Note that at central charge c = cp′,p, the Verma module Vr,s with r divisible by p′ or s

divisible by p (in brief, p′ | r or p | s) has a maximal submodule generated by a single singular vector.
In contrast, the maximal submodules of the other Vr,s associated to the extended Kac table are generated
by two singular vectors [27]. The modules Mr,s which form the primary focus of our investigations are
obtained however by quotienting each Vr,s by the Verma module generated by the singular vector at grade
rs. Under some circumstances, specifically when r = p′ and s 6 p or s = p and r 6 p′, this yields the
irreducible module: Mr,s = Lr,s. The other Mr,s are however reducible but indecomposable3.

3. LM(2,3): CRITICAL PERCOLATION

Our construction of the LM(2,3) logarithmic theory is most simply viewed as a modification of the
(chiral) M(2,3) minimal model. The latter model is composed of two irreducible modules L1,1 and L1,2

which are identified by the Kac symmetry. The modification to M(2,3) consists of breaking this symmetry
in a specific way, by replacing the two irreducible modules with their reducible (and non-isomorphic)
counterparts M1,1 and M1,2. This means that in each module, one of the two principal singular vectors
is not set equal to zero, although it still has zero norm. Specifically, the singular vector at level 2 in V1,1

(which corresponds to the energy-momentum tensor) and the one at level 1 in V1,2 are no longer vanishing

2The literature on this subject is now rather vast. There are at least three main sources of logarithmic models: Wess-Zumino-Witten
models with supergroup symmetries [16–18], models with an affine Lie symmetry algebra at fractional level [19,20], and non-minimal
models of the type M(1, p) [21, 22]. Standard reviews which emphasise the latter two classes of models are [23, 24]. The scalar
product used by Flohr and collaborators [24–26] differs from our choice. However, our convention does agree with that of Gurarie and
Ludwig [14, 15].
3We recall that a module is reducible if it contains a non-trivial submodule and decomposable if it can be written as the direct sum of
two non-trivial submodules.
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0 0 1
3 1 2 10

3 5 7 28
3 12 · · ·

5
8

1
8

−1
24

1
8

5
8

35
24

21
8

33
8

143
24

65
8 · · ·

2 1 1
3 0 0 1

3 1 2 10
3 5 · · ·

TABLE 1. The first three rows of the extended Kac table for c = c2,3 = 0, listing the
dimensions hr,s of the primary fields φr,s. Here, r increases downwards, and s increases
to the right, so the top-left-hand corner corresponds to the identity field φ1,1, which with
φ1,2 exhausts the Kac table of M(2,3).

(they are said to be physical). This is how the Kac symmetry is broken and we stress that this is our sole
input to the formulation of LM(2,3).

In the context of percolation theory, this particular construction is supported by firm physical considera-
tions: This is the minimal way in which we can modify M(2,3) so as to generate a theory that is consistent
with Cardy’s computation [5] of the horizontal crossing probability for critical percolation. The module
M1,2, the central object in Cardy’s theory, is the building block of our model. In particular, the spectrum,
that is, the set of modules from which the model is composed, appears to be completely determined by
repeatedly fusing the module M1,2 with itself (see Section 6).

In [1], we computed the fusion rules of our theory using the algorithm4 of Nahm and Gaberdiel-Kausch
[28, 29], which is completely algebraic (making no reference to correlators and differential equations) and
distinguishes between vanishing and non-vanishing singular vectors. The modules that are generated by
these fusions can all be described in terms of the top row of the extended Kac table for c = 0. We display a
part of this table in Table 1 (restricted here to r = 1,2,3 and s = 1, . . . ,10).

These fusion rules imply that the spectrum of LM(2,3) must consist of at least

{M1,s : 3 | s > 3}∪{I1,s : 3 - s > 3} . (3.1)

Here the modules I1,s denote staggered modules [13] of rank 2. As a vector space, I1,s is isomorphic to
M1,s′ ⊕M1,s, where

s′ =





s−2 if s = 1 (mod 3),

s−4 if s = 2 (mod 3),
(3.2)

but this is not an isomorphism of Vir-modules5. The I1,s are in fact reducible, but indecomposable, mod-
ules with a maximal highest weight submodule isomorphic to M1,s′ . Furthermore, quotienting I1,s by the
submodule M1,s′ gives the highest weight module M1,s. We mention that every M1,s with 3 - s appears as
a highest weight submodule of one of these staggered modules, so we can restrict our attention to these
submodules when appropriate. For example, the vacuum module M1,1 appears in this way as the highest
weight submodule of I1,5.

Although rather difficult to calculate (for all but the most trivial cases, a computer is required), the fusion
rules of LM(2,3) can be expressed in a rather elegant and natural way. This description of the fusion rules
makes use of the “auxiliary rule”

M1,s ×f M1,t = M1,|s−t|+1 ⊕M1,|s−t|+3 ⊕ . . .⊕M1,s+t−3 ⊕M1,s+t−1, (3.3)

which we stress does not itself give correct results. Instead, the correct fusion rules (including those involv-
ing staggered modules I1,s) are computed using the following simple procedure:

4We implemented this algorithm in MAPLE 10.
5However, the vector space isomorphism implies that the characters of I1,s and M1,s′ ⊕M1,s are identical.
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PSfrag replacements

∣∣φr′,s′
〉

∣∣χr′,s′
〉 ∣∣λr,s

〉

A
β−1

r,s A†

L0 −hr,s id

FIGURE 1. The relationship between the generating states of a general rank 2 staggered
module Ir,s. Here,

∣∣φr′,s′
〉

is the highest weight state from which the non-vanishing sin-
gular vector

∣∣χr′,s′
〉

is obtained by acting with the composite Virasoro operator A,
∣∣λr,s

〉

is the Jordan partner of
∣∣χr′,s′

〉
with dimension hr,s, and βr,s is the logarithmic coupling

constant of Ir,s.

(1) Replace any I1,s by the direct sum M1,s′ ⊕M1,s (with s′ given by Equation (3.2)).
(2) Compute the “fusion” using distributivity and Equation (3.3).
(3) In the result, replace all direct sums of the form M1,s′ ⊕M1,s by I1,s (there is only ever one way to

consistently do this6).
In other words, we compute the fusion of indecomposable modules by fusing at the level of vector spaces,
and then reconstructing the module structure via the above uniqueness condition.

The logarithmic nature of the theory is due to the non-diagonalisability of L0 on the staggered modules
I1,s. Every state in I1,s can be realised as a descendant of one of two generating states

∣∣φ1,s′
〉

and
∣∣λ1,s

〉
.

The generator
∣∣φ1,s′

〉
is a highest weight state of dimension h1,s′ (with s′ given by Equation (3.2)) which

generates a module isomorphic to the indecomposable submodule M1,s′ . There is a non-vanishing singular
vector

∣∣χ1,s′
〉

descended from
∣∣φ1,s′

〉
, and its dimension is h1,s. The other generating state

∣∣λ1,s
〉

is now
realised as the Jordan partner to

∣∣χ1,s′
〉

in a rank 2 Jordan cell, and may be normalised such that

L0
∣∣λ1,s

〉
= h1,s

∣∣λ1,s
〉
+

∣∣χ1,s′
〉
. (3.4)

Here we must also choose a normalisation for
∣∣χ1,s′

〉
. We illustrate this structure (quite generally) in Fig-

ure 1.
The generator

∣∣λ1,s
〉
∈ I1,s is not primary, although its image in the quotient space M1,s = I1,s/M1,s′ is.

We therefore must have Ln
∣∣λ1,s

〉
∈ M1,s′ for all 0 < n 6 h1,s −h1,s′ . Determining this action of the positive

Virasoro modes on
∣∣λ1,s

〉
is the fundamental prerequisite for being able to compute in I1,s. This contrasts

with the familiar case of a highest weight module, in which the action of the positive modes can be deduced
from that of the non-positive modes and the commutation relations.

The Nahm-Gaberdiel-Kausch fusion algorithm may be used to calculate this positive mode action in
specific cases, but, as we remarked in [1], this action is not well-defined in general. The issue is that the
Jordan partner condition (Equation (3.4)) does not determine

∣∣λ1,s
〉

completely: It is invariant under gauge

transformations7 of the form ∣∣λ1,s
〉
−→

∣∣λ1,s
〉
+

∣∣ψ
〉
, (3.5)

6Actually this uniqueness condition only holds when we fuse fully extended modules — those appearing in (3.1). For example, in
fusing M1,5 with itself, it is not clear whether M1,5 couples to M1,1 or M1,7.
7We refer to these as gauge transformations even though they do not depend on a point in space. One could argue however that they are
localised in the state space in that they differ from one module to another. The basic concepts of gauge theory apply to quite general
quotient constructions, and we feel that they provide a convenient and familiar language with which to understand the subtleties of
staggered modules.
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where
∣∣ψ

〉
is any L0-eigenstate of dimension h1,s (that is,

∣∣ψ
〉
∈ ker(L0 −h1,s id)). If there is only one

such eigenstate (up to scalar multiples), then it is
∣∣χ1,s′

〉
, and the action of the positive Virasoro modes on∣∣λ1,s

〉
is then well-defined (gauge-invariant) as

∣∣χ1,s′
〉

is a highest weight state. In general however, I1,s

will contain L0-eigenstates of dimension h1,s which are not highest weight states, so Ln
∣∣λ1,s

〉
(for n > 0)

will not be gauge-invariant.
Nevertheless, there is a combination of positive Virasoro modes whose action on

∣∣λ1,s
〉

is gauge-invariant.
Let A be the operator composed of negative Virasoro modes for which A

∣∣φ1,s′
〉

=
∣∣χ1,s′

〉
. Then, A† is com-

posed of positive Virasoro modes and A†∣∣λ1,s
〉

= β1,s
∣∣φ1,s′

〉
is gauge-invariant, because

〈
φ1,s′

∣∣A†∣∣ψ
〉

=
〈
χ1,s′

∣∣ψ
〉

= 0 for all
∣∣ψ

〉
∈ ker(L0 −h1,s id) ⊂ M1,s′ . (3.6)

The constant
β1,s =

〈
χ1,s′

∣∣λ1,s
〉

(3.7)

is the essential characteristic of the staggered module I1,s, and depends only8 upon the chosen normalisation
of the singular vector

∣∣χ1,s′
〉
. Unless indicated to the contrary, we will always assume the normalisation

∣∣χ1,s′
〉

=
(

Lh1,s′−h1,s + . . .
)∣∣φ1,s′

〉
, (3.8)

where the omitted terms are each ordered so that the mode indices in each term are increasing (Poincaré-
Birkhoff-Witt order). We call the gauge-invariant β1,s the logarithmic coupling of I1,s.

As an aside, we remark that Equations (3.6) and (3.7) assume that we have defined some sort of inner
product on our staggered modules. We always define this inner product so that the highest weight state∣∣φ1,s′

〉
of the staggered module has norm 1. In particular, the vacuum has norm 1. Since this differs from

some conventions found in the literature (see [26] for example), we refer the reader to Appendix C for a full
justification of this choice.

As the logarithmic coupling may be computed by acting with a certain combination of positive Virasoro
modes on

∣∣λ1,s
〉
, the Nahm-Gaberdiel-Kausch algorithm can be used to compute it. In this way, we found [1]

that
β1,4 =

−1
2 , β1,5 =

−5
8 and β1,7 =

−35
3 . (3.9)

But using this algorithm is not entirely satisfactory as it gives no understanding of why we observe these
particular logarithmic couplings, no matter which fusion rules are employed to generate the staggered mod-
ules. Actually, it would seem reasonable, a priori, to suppose that one can define a 1-parameter family of
staggered modules which are structurally identical except for the value of this coupling [13].

This supposition is however false. In the quotient module M1,s = I1,s/M1,s′ , the vanishing states (relative
to the Verma module V1,s) are generated by a single vanishing singular vector. This must lift to a vanishing
vector in I1,s, and the existence of such a lift uniquely determines the logarithmic coupling β1,s.

Let us illustrate this with an example. In I1,4, we have a highest weight state
∣∣φ1,2

〉
of dimension 0 with

non-vanishing singular descendant
∣∣χ1,2

〉
= L−1

∣∣φ1,2
〉
. Its Jordan partner therefore satisfies

L0
∣∣λ1,4

〉
=

∣∣λ1,4
〉
+L−1

∣∣φ1,2
〉

and L1
∣∣λ1,4

〉
= β1,4

∣∣φ1,2
〉
. (3.10)

The M1,4 vanishing singular vector lifts to a vanishing vector in I1,4 of the form

∣∣ξ1,4
〉

=

(
L−4 −L−3L−1 −L2

−2 +
5
3L−2L2

−1 −
1
4L4

−1

)∣∣λ1,4
〉

+
(
a1L−5 +a2L−4L−1 +a3L−3L−2 +a4L2

−2L−1
)∣∣φ1,2

〉
= 0. (3.11)

8It is not hard to see that if we scale
∣∣χ1,s′

〉
by a factor of a, then β1,s scales by a factor of |a|2.
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Note that we are using the vanishing singular vector of M1,2 to replace L2
−1

∣∣φ1,2
〉

by 2
3 L−2

∣∣φ1,2
〉
, and thereby

eliminate 3 of the 7 possible states descended from
∣∣φ1,2

〉
at grade 5. Solving L1

∣∣ξ1,4
〉

= L2
∣∣ξ1,4

〉
= 0 then

amounts to solving five linear equations in the five unknowns a1, . . . ,a4 and β1,4. The unique solution is

a1 =
1
2 , a2 =

4
3 , a3 =

−8
9 , a4 = 0 and β1,4 =

−1
2 . (3.12)

This example is particularly easy (as is the analogous computation of β1,5) because
∣∣χ1,2

〉
(and

∣∣χ1,1
〉
)

have such a simple form. In general, computing in I1,s requires choosing a gauge. For instance, in I1,7 we
have

∣∣χ1,5
〉

=
(
L−3 −L−2L−1 + 1

6 L3
−1

)∣∣φ1,5
〉
, hence β1,7 =

〈
φ1,5

∣∣(L3 −L1L2 + 1
6 L3

1
)∣∣λ1,7

〉
(3.13)

is the only gauge-invariant. To fix the action of the positive Virasoro modes on
∣∣λ1,7

〉
, it is convenient to

work in the gauge in which L1
∣∣λ1,7

〉
= 0. We can choose such a gauge because there are three independent

states at grade 3 in the submodule M1,5, hence there are two effective9 degrees of freedom in gauge trans-
forming

∣∣λ1,7
〉
, and L1

∣∣λ1,7
〉

belongs to the grade 2 subspace of M1,5, which happens to be two-dimensional.
The invariance of Equation (3.13) then gives

L2
∣∣λ1,7

〉
=

−1
8 β1,7L−1

∣∣φ1,5
〉

and L3
∣∣λ1,7

〉
=

1
2β1,7

∣∣φ1,5
〉

(3.14)

in this gauge.
The vanishing singular vector of M1,7 is at grade 7, so there exists a vanishing singular vector

∣∣ξ1,7
〉

in I1,7 at grade 10. Referring to the character of I1,7, one finds that L1
∣∣ξ1,7

〉
= L2

∣∣ξ1,7
〉

= 0 reduces to 62
linear equations in 51 unknowns (one of which is β1,7). Computing these equations in the gauge described
above and solving them takes only a few seconds10, giving a unique solution (as it must), with β1,7 = −35

3 .
This matches the result obtained [1] from the Nahm-Gaberdiel-Kausch algorithm (given in Equation (3.9)).

We outline one further example to illustrate a subtlety that one sometimes encounters when gauge-fixing.
To compute β1,8, we note that it is obtained by acting on

∣∣λ1,8
〉

with a degree-6 composite Virasoro operator
(whose exact form we will omit). The highest weight submodule M1,4 has 9 independent states at grade 6,
so there are 8 independent effective gauge transformations that we can apply to

∣∣λ1,8
〉
. There are 6 and 4

independent states at grades 5 and 4 respectively, so we can choose the 8 independent gauge transformations
so as to tune all 6 of the coefficients of L1

∣∣λ1,8
〉

to zero, and additionally, a further 2 of the 4 coefficients of
L2

∣∣λ1,8
〉

to zero. For definiteness, we will work in the gauge

L1
∣∣λ1,8

〉
= 0 and L2

∣∣λ1,8
〉

=
(
aL−4 +bL2

−2
)∣∣φ1,4

〉
. (3.15)

Then,

L3
∣∣λ1,8

〉
= −((5a+3b)L−3 +6bL−2L−1)

∣∣φ1,4
〉

L5
∣∣λ1,8

〉
= −10(a+3b)L−1

∣∣φ1,4
〉

(3.16)

L4
∣∣λ1,8

〉
=

(
(10a+12b)L−2 +9bL2

−1
)∣∣φ1,4

〉
L6

∣∣λ1,8
〉

= 5(a+3b)
∣∣φ1,4

〉
, (3.17)

from which we determine that β1,8 = −112
3 a− 1774

9 b. This is a strange result, as we should be able to fix
Ln

∣∣λ1,8
〉

(n > 0) in terms of the gauge-invariant β1,8. There are no other invariants, so we conclude that
there must exist an additional relation between a and b.

And indeed there is, though it is somewhat delicate to find: Let
∣∣ζ1,4

〉
denote the vanishing singular

vector of the highest weight submodule M1,4. Obviously,
〈
ζ1,4

∣∣L2
∣∣λ1,8

〉
= 0. However, if we compute

9Recall that gauge transforms corresponding to shifts by the singular vector
∣∣χ1,s′

〉
have no effect on Ln

∣∣λ1,s
〉

(n > 0).
10We again used MAPLE 10 for these calculations.
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0 −1
5

−1
5 0 2

5 1 9
5

14
5 4 27

5 · · ·

11
8

27
40

7
40

−1
8

−9
40

−1
8

7
40

27
40

11
8

91
40 · · ·

4 14
5

9
5 1 2

5 0 −1
5

−1
5 0 2

5 · · ·

TABLE 2. The first three rows of the extended Kac table for c = c2,5 = −22
5 , listing the

dimensions hr,s of the primary fields φr,s. Here, r increases downwards, and s increases
to the right, so the top-left-hand corner corresponds to the identity field φ1,1, which with
φ1,2, φ1,3 and φ1,4 exhausts the Kac table of M(2,5).

L−2
∣∣ζ1,4

〉
explicitly, take its adjoint, and apply it to

∣∣λ1,8
〉

with the above choice of gauge, we obtain
〈
ζ1,4

∣∣L2
∣∣λ1,8

〉
= 126a+324b. (3.18)

A similar computation using L2
1 instead of L2 yields 84a+216b, so in both cases we conclude that b = −7

18 a.
The gauge-fixing is now complete, so we can compute β1,8 as before. This is somewhat more computation-
ally intensive — we must determine and solve 152 linear equations in 116 unknowns — but an hour and a
half of computation gives a unique solution with

β1,8 =
−13475

216 . (3.19)

We have confirmed this value for the logarithmic coupling via a (very tedious) application of the Nahm-
Gaberdiel-Kausch algorithm to the fusion of M1,3 and M1,6 (to grade 6). We have also checked through
explicit calculation that this value of β1,8 is not dependent upon our gauge choice (3.15).

4. LM(2,5): THE YANG-LEE EDGE SINGULARITY

We now generalise the analysis of Section 3 to LM(2,5). Just as LM(2,3) has been shown to describe
crossing probabilities for critical percolation at c = c2,3 = 0, we expect that the logarithmic theory we will
construct below describes similar non-local observables in the Yang-Lee edge singularity at c = c2,5 = −22

5 .
The thermodynamic limit of this statistical model has been previously identified (as a bulk conformal field
theory) with the minimal model M(2,5) [30].

As with LM(2,3), we begin with the observation that the vacuum module in this theory cannot be irre-
ducible. In fact, none of the modules corresponding to the M(2,5) Kac table can be irreducible, for fusing
such a module with itself would yield the irreducible vacuum module, and the vanishing of the vacuum
singular vector at grade 4 implies that the theory is M(2,5) (at least on the chiral level) [31]. The vacuum
module of LM(2,5) must therefore be again of the form M1,1 and we will assume that the other modules
corresponding to the Kac table are also present as M1,s, s = 2,3,4. Our proposal is therefore to modify
M(2,5) by replacing the 4 irreducible modules L1,s, 1 6 s 6 4, by their reducible, but indecomposable,
versions M1,s (note that this modification breaks the Kac symmetry of M(2,5)). These indecomposable
modules are the building blocks of our LM(2,5) model.

The fusion of these modules can again be calculated using the Nahm-Gaberdiel-Kausch algorithm, out
of which a picture of the logarithmic structure of LM(2,5) emerges gradually. In particular, M1,1 is again
the identity of the fusion ring, and we find the non-trivial fusion rules

M1,2 ×f M1,2 = M1,1 ⊕M1,3 M1,2 ×f M1,3 = M1,2 ⊕M1,4

M1,2 ×f M1,4 = M1,3 ⊕M1,5 M1,2 ×f M1,5 = I1,6

M1,3 ×f M1,3 = M1,1 ⊕M1,3 ⊕M1,5 M1,3 ×f M1,4 = M1,2 ⊕ I1,6 (4.1)
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M1,3 ×f M1,5 = M1,5 ⊕ I1,7 M1,4 ×f M1,4 = M1,1 ⊕M1,5 ⊕ I1,7

M1,4 ×f M1,5 = I1,6 ⊕ I1,8 M1,5 ×f M1,5 = M1,5 ⊕ I1,7 ⊕ I1,9.

As expected, we again generate rank 2 staggered modules I1,s (when 5 - s) on which L0 is non-diagonalisable.
The structure of these modules is extremely similar to those described in the case of LM(2,3): They again
have a maximal highest weight submodule isomorphic to M1,s′ , but with s′ no longer given by Equa-
tion (3.2), but rather by

s′ =





s−2 if s = 1 (mod 5),

s−4 if s = 2 (mod 5),

s−6 if s = 3 (mod 5),

s−8 if s = 4 (mod 5).

(4.2)

Moreover, as before, the quotient of I1,s by M1,s′ is isomorphic to the highest weight module M1,s. These
staggered modules therefore give rise to a logarithmic structure for LM(2,5) in exactly the same way that
it arose in LM(2,3). The dimensions of the highest weight states appearing in these modules are displayed
in Table 2, which presents a part of the extended Kac table for c = −22

5 .
We note that the fusion rules (4.1) are in perfect agreement with the procedure given for computing the

LM(2,3) fusion rules in Section 3, with s′ given as above. We have further tested these rules with more
general fusions involving staggered modules, for example

M1,2 ×f I1,6 = 2M1,5 ⊕ I1,7, M1,3 ×f I1,6 = 2I1,6 ⊕ I1,8, (4.3)

again with perfect agreement. We conclude that the spectrum of LM(2,5) must contain

{M1,s : 5 | s > 5}∪{I1,s : 5 - s > 5} . (4.4)

Finally, we have computed the logarithmic couplings β1,s for the staggered modules appearing in the
fusion rules (4.1). These are defined in the same way as in LM(2,3) (Equation (3.7)): The highest weight
submodule is generated by the highest weight state

∣∣φ1,s′
〉

which has a descendant non-vanishing singular
vector

∣∣χ1,s′
〉

with a Jordan partner state
∣∣λ1,s

〉
. β1,s is then defined to be

〈
χ1,s′

∣∣λ1,s
〉
. In each case, the cou-

pling obtained from the Nahm-Gaberdiel-Kausch algorithm coincided precisely with that obtained directly
by choosing a gauge and solving for the vanishing singular vector descended from

∣∣λ1,s
〉
. This is a strong

confirmation of these results, which are

β1,6 =
−3
2 , β1,7 =

21
8 , β1,8 =

189
8 and β1,9 =

77
8 . (4.5)

5. GENERAL LM(2, p) THEORIES

Our construction of LM(2,3) and LM(2,5) can easily be generalised to define a corresponding theory
LM(2, p), for every odd p > 3. An identical argument to that given in Section 4 shows that none of the
modules corresponding to the Kac table of M(2,3) can be irreducible, and our proposal is simply to replace
each and every one of them with its reducible, but indecomposable, counterpart M1,s (s = 1, . . . , p−1). For
the vacuum module, this is the only possibility; our assumption then is that the other modules corresponding
to the Kac table are present and have this particular indecomposable structure.

These modules M1,s, s = 1, . . . , p−1, then generate (see Section 6) the spectrum of LM(2, p) via fusion.
The fusion rules of LM(2, p) are given11 by the procedure described in Section 3 (just after Equation (3.3)),

11We have verified that this indeed holds for various examples with p = 7 and p = 9.
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r�s 1 2 · · · p−2 p−1 p p+1 p+2 · · · 2p−1 2p 2p+1 · · ·

1 0 3−p
2p · · · 3−p

2p 0 p−1
2p 1 3(p+1)

2p · · · p−1 p+2 · · ·

2 3p−4
8 · · · 4−p

8 · · · · · ·

3 p−1 · · · 3(p+1)
2p 1 p−1

2p 0 3−p
2p · · · 0 1 · · ·

TABLE 3. A part of the extended Kac table for c = c2,p, listing (some of) the dimensions
hr,s of the primary fields φr,s. The Kac table of M(2, p) corresponds to the h1,s with
1 6 s 6 p−1.

except that s′ is defined by

s′ = s−2σ , where s = σ (mod p) and σ ∈ {1,2, . . . , p−1} . (5.1)

The fusion of M1,2 and M1,p−1 therefore generates M1,p, and this in turn generates staggered modules I1,s:

M1,2 ×f M1,p = I1,p+1, M1,3 ×f M1,p = M1,p ⊕ I1,p+2, . . . (5.2)

The staggered modules appearing in our general LM(2, p) models are identical in structure to those we have
discussed above, and we will use the same notation to denote them. In particular, the generating primary
state will be denoted by

∣∣φ1,s′
〉
, its non-vanishing singular descendant by

∣∣χ1,s′
〉
, and the logarithmic partner

of this descendant by
∣∣λ1,s

〉
(as in Figure 1).

The LM(2, p) models are therefore logarithmic conformal field theories whose spectrum must contain

{M1,s : p | s > p}∪{I1,s : p - s > p} . (5.3)

These generalise the chiral parts of the minimal models M(2, p) in two obvious ways: They share the same
central charge, and their spectra are generated by replacing every irreducible module L1,s of the (chiral)
minimal model by its indecomposable counterpart M1,s. Since these theories follow minimally from the
single assumption that every (chiral) primary field of M(2, p) has a primary counterpart in LM(2, p) (with
a single non-vanishing singular vector), we believe that it is natural to refer to these theories as logarithmic

chiral minimal models12. Our expectation (albeit vague but borne out for p = 3), that they describe non-
local observables in the statistical models whose local observables are described by M(2, p), gives another
reason to single out these theories as natural extensions of these minimal models. We present, for later
reference, a portion of the extended Kac table for c = c2,p = 1−3(p−2)2 /p in Table 3.

In order to be able to calculate within these logarithmic minimal models, one needs to compute the
logarithmic couplings β1,s =

〈
χ1,s′

∣∣λ1,s
〉
. As we have seen, there are at least two ways to do this, though

both become computationally prohibitive as the grade of the singular vectors of the modules increases.
Surprisingly however, it is possible to deduce general formulae for certain logarithmic couplings using the
Nahm-Gaberdiel-Kausch algorithm.

The idea behind these deductions is not subtle, though it does require some knowledge of how this
algorithm works. We refer to [29] for a thorough account of the application of this algorithm. What is
relevant is that the structure of the module I that results from fusing two Vir-modules, M and M′, can be
analysed through calculations in a finite-dimensional vector space. Specifically, if we want to analyse the
structure to grade n, then we compute within a space whose dimension is given by the grade of the first

12We will see in Section 7 that logarithmic theories may be constructed from other modules, in particular from the modules appearing
in the first column of the extended Kac table. These theories do not share this property. Whilst they have the correct central charge,
they do not possess modules naturally corresponding to those of the minimal model.
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vanishing singular vector in M, multiplied by the dimension of the subspace of M′ consisting of states of
grade less than or equal to n. A vital observation is that often this working space is in fact strictly larger
than the actual subspace of I of grade 6 n states which we are trying to analyse. In this situation, one has to
reduce the dimensionality of the working space by determining a so-called spurious subspace [28], before
the analysis proper can begin. This determination is often the most computationally intensive part of the
algorithm.

What we want to do is compute the fusion rule

M1,n+1 ×f M1,p =





I1,p+n ⊕ I1,p+n−2 ⊕ . . .⊕ I1,p+1 if n is odd,

I1,p+n ⊕ I1,p+n−2 ⊕ . . .⊕ I1,p+2 ⊕M1,p if n is even.
(5.4)

to grade n. Since the dimensions of the generating states of I1,p+n differ by h1,p+n −h1,p−n = n, knowledge
of the explicit form of the non-vanishing singular vector of M1,p−n ⊂ I1,p+n (which is at grade n) will then
allow us to compute β1,p+n. For small n, this is indeed feasible, provided that we can apply the Nahm-
Gaberdiel-Kausch algorithm to this somewhat general fusion rule.

In this application, we require the explicit form of the vanishing singular vector of the first module
appearing in the fusion: M1,n+1. This is at grade n + 1, so again, for small n, this can be determined
explicitly (as a function of p). The vanishing singular vector of the second module, M1,p, is not so easily
computed (for general p), but it enters into the fusion algorithm in only two ways. First, it is used to derive a
basis for M1,p to grade n. But if p > n, then this singular vector will be too deep to affect the basis. Second,
it is used in an essential way to determine the spurious subspace. But note that (for p > n) the dimension of
the working space is (n+1)∑n

m=0 P(m), where P(m) denotes the number of partitions of m. If p > 2n, then
the vanishing singular vectors of every module appearing on the right hand side of Equation (5.4) occur at
grades greater than n (the lowest-graded one is that of M1,p−n ⊂ I1,p+n at grade p− n), so the dimension
of the subspace of the right hand side consisting of states of grade 6 n is also (n+1)∑n

m=0 P(m). There is
therefore no spurious subspace, and hence no need to compute the singular vector of M1,p explicitly.

This argument therefore allows us to compute (in principle) an explicit expression for β1,p+n for all
p > 2n. In practise, computational limitations restrict us to small n only13. We have computed

β1,p+1 = −
p−2

2 (p > 2), (5.5)

β1,p+2 =
(p−4)(p−2)(p+2)

8 (p > 4), (5.6)

β1,p+3 = −
(p−6)(p−2)(p+2)(p+4)

8(p−4)
(p > 6), (5.7)

β1,p+4 =
(p−8)(p−6)(p−4)(p−2)(p+2)(p+4)(p+6)

8(p2 −8p+24)2 (p > 8), (5.8)

though we note that these formulae also correctly predict

β1,5 =
−5
8 when p = 3 and β1,8 =

189
8 , β1,9 =

77
8 when p = 5 (5.9)

(refer to Equations (3.9) and (4.5)). We have also confirmed these formulae in several computations with
p = 7 and p = 9, again even for p outside the ranges specified. In particular, we have (arduously) computed
from singular vectors that β1,11 = −19305

2312 for p = 7, in full agreement with Equation (5.8).

13In fact, for n > 2, it is computationally worthwhile to consider, instead of (5.4), the fusion rule
M1,2 ×f I1,p+n−1 = I1,p+n ⊕I1,p+n−2 (n > 2).

The analysis is identical, except that it is necessary to choose a gauge in order to fix the Virasoro action on I1,p+n−1.
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It is rather striking that Equations (5.5 – 5.8) involve such a simple series of linear factors in p, par-
ticularly upon recalling that the precise values of these logarithmic couplings depend upon the (arbitrary)
normalisation of the singular vector

∣∣χ1,p−n
〉

chosen in Equation (3.8). This observation is given more
weight upon noting that the factors of p− 4 and p2 − 8p + 24 which appear in the denominators of Equa-
tions (5.7) and (5.8) (respectively) also appear in the explicit expressions for the normalised

∣∣χ1,p−n
〉
. What

this suggests is that there is in fact a more natural normalisation for these singular vectors. Indeed, this
(admittedly small) set of data is consistent with the conjecture that upon normalising this non-vanishing
singular vector such that14 (compare with Equation (3.8))

∣∣χ1,p−n
〉

=

(
. . .−

pn

2(n−1)!Ln
−1

)∣∣φ1,p−n
〉
, (5.10)

then the corresponding renormalised logarithmic couplings take the form

β̂1,p+n = (−1)n p
8

n−1

∏
i=−n

(p+2i) . (5.11)

We expect that such a formula will hold for all p > n. Note that this normalisation differs from that given
in the general (combinatorial) formula of [32] by a factor of − 1

2 n!pn.
There is one further logarithmic coupling that we have been able to compute in general:

β1,2p+1 = −
3(p−2)(3p−2)(p+1)(p+2)

2p2 (p−1)
. (5.12)

This correctly gives β1,7 = −35
3 for p = 3 (Equation (3.9)), and predicts β1,11 = −2457

100 for p = 5. Half an
hour of computation confirms this latter value directly from the singular vectors. We remark that if we
renormalise the non-vanishing singular vector

∣∣χ1,2p−1
〉

so that the coefficient of L3
−1 is −p/2, then the

renormalised logarithmic coupling takes the form

β̂1,2p+1 = −
3p
8 (3p−2)

2

∏
i=−2

(p+ i) . (5.13)

This again is strikingly simple.

6. INCONSISTENCIES IN LOGARITHMIC THEORIES

In principle then, the considerations of the previous sections allow us to compute within a general stag-
gered module, hence within LM(2, p) (or at least the part corresponding to the first row of the extended Kac
table). A natural question to ask now is whether there are any further modules present in the theory. In this
section, we will show that augmenting LM(2, p) by such modules is fraught with difficulty, by proving that
including the most obvious candidate modules in the spectrum leads to fundamental contradictions with the
requirements of conformal invariance.

Let us begin with LM(2,3). As we have seen, the module M1,2 generates the set of modules (3.1), each
of which can be associated with an entry in the first row of the extended Kac table. We will first attempt
to add the module M2,1 to the spectrum. In [1], we showed that fusing this module with itself generates a
rank 2 staggered module I3,1, whose presence in the theory is inconsistent with the presence of I1,5. This
was shown using an argument of Gurarie and Ludwig [15, App. A]. Rather than present this case again, we
will instead detail a slightly more involved argument (whose conclusion is identical). The advantage of this
latter argument is that it generalises directly to all p.

14In hindsight, it is perhaps not so surprising that normalising the coefficient of Ln
−1 is more natural than normalising that of L−n.

The latter coefficient is sensitive to how we choose to order Virasoro modes — the usual Poincaré-Birkhoff-Witt order is by no means
canonical — whereas the former is not!
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We therefore compute with the Nahm-Gaberdiel-Kausch algorithm (see also [8, 12]) that fusing M1,2

with M2,1 gives M2,2. Fusing this latter module again with M2,1 now yields a rank 2 staggered module
which we will denote by I3,2. Its highest weight submodule is isomorphic to M1,2 and the quotient by this
submodule is isomorphic to M3,2. As h3,2 = h1,4 = 1 (Table 1), we see that I3,2 is structurally very similar
to I1,4. Indeed, the only difference is that

∣∣λ1,4
〉

has a vanishing descendant at grade 4 whereas
∣∣λ3,2

〉

has no vanishing descendant until grade 6. This difference in vanishing singular vectors leads to different
logarithmic couplings, β1,4 = −1

2 whereas β3,2 = 1
3 .

This is where we generalise Gurarie and Ludwig’s argument. The operator product expansions that result
from the structures of I1,4 and I3,2 are (we use the standard convention z12 = z1 − z2 for brevity)

T (z1)λr,s (z2) =
βr,sφ1,2 (z2)

z3
12

+
λr,s (z2)+ χ1,2 (z2)

z2
12

+
∂λr,s (z2)

z12
+ . . . ((r,s) = (3,2) ,(1,4)). (6.1)

We will derive a contradiction by using these expansions to compute the 2-point function
〈
λ1,4 (z1)λ3,2 (z2)

〉
.

To do this however, we first need to compute a few auxiliary results. We begin with
〈
χ1,2 (z1)λ3,2 (z2)

〉
, not-

ing that χ1,2 = ∂φ1,2. As usual, the global conformal invariance generated by L−1 and L0 (the fact that both∣∣0
〉

and
〈
0
∣∣ are annihilated by these operators) leads to an ordinary differential equation for this correlator:

(
z12

d
dz12

+2
)〈

χ1,2 (z1)λ3,2 (z2)
〉

= −
〈
χ1,2 (z1)χ1,2 (z2)

〉
= 0. (6.2)

The solution is then (see Appendix A for the sign appearing here)
〈
χ1,2 (z1)λ3,2 (z2)

〉
=

−β3,2
z2

12
. (6.3)

Similarly,
〈
χ1,2 (z1)λ1,4 (z2)

〉
= −β1,4/z2

12, so

〈
λ1,4 (z1)χ1,2 (z2)

〉
=

−β1,4
z2

12
, (6.4)

since λ1,4 and χ1,2 are mutually bosonic (Appendix B).
We are now ready to tackle

〈
λ1,4 (z1)λ3,2 (z2)

〉
. The operator product expansions (6.1) and global con-

formal invariance under L−1 and L0 induce the ordinary differential equation
(

z12
d

dz12
+2

)〈
λ1,4 (z1)λ3,2 (z2)

〉
= −

〈
χ1,2 (z1)λ3,2 (z2)

〉
−

〈
λ1,4 (z1)χ1,2 (z2)

〉
=

β3,2 +β1,4
z2

12
, (6.5)

the solution of which is 〈
λ1,4 (z1)λ3,2 (z2)

〉
=

C +(β3,2 +β1,4) logz12
z2

12
, (6.6)

for some unknown15 constant C. However, the global conformal invariance generated by L1 induces another
equation, a partial differential equation, which must also be satisfied:
(

z2
1

∂
∂ z1

+ z2
2

∂
∂ z2

+2(z1 + z2)

)〈
λ1,4 (z1)λ3,2 (z2)

〉
= −2z1

〈
χ1,2 (z1)λ3,2 (z2)

〉
−2z2

〈
λ1,4 (z1)χ1,2 (z2)

〉

−β1,4
〈
φ1,2 (z1)λ3,2 (z2)

〉
−β3,2

〈
λ1,4 (z1)φ1,2 (z2)

〉

=
2(β3,2z1 +β1,4z2)

z2
12

. (6.7)

15In fact, C is not just unknown, but unknowable. More specifically, it is not gauge-invariant. Shifting either of the fields appearing in
this correlation function by multiples of χ1,2 leads to shifts in the constant C by multiples of the (corresponding) logarithmic coupling.
We mention that logarithms in correlators are always accompanied by unknowable constants. This is required so that some semblance
of locality is preserved: Swapping z1 and z2 leads to ill-defined constants of the form log(−1) in such correlators, which can then
be absorbed by the unknowable constant C. Similarly, logarithms in these functions request the presence of a dimensionful scale
(breaking conformal invariance!), and this too can be absorbed by the unknowable constant C. In a logarithmic conformal field theory
then, locality and scale-invariance are only broken up to gauge transformations. In particular, such a scale would not be physical.
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It is not hard to verify that (6.6) is a solution of this partial differential equation if and only if β1,4 = β3,2.
This is a contradiction (they are not equal), so the conclusion is that the conformal invariance of the vacuum
forbids simultaneously having I3,2 and I1,4 in the spectrum. Backtracking, we conclude that M1,2 and M2,1

cannot both be in the spectrum either.
One can then ask if it is possible to add M2,s to the spectrum for any s. For s = 1,2, we already know

that the answer is “no”. s = 3 is a little more interesting, as

M1,2 ×f M2,3 = J2,4, (6.8)

where Jr,s denotes a rank 2 Jordan highest weight module16 [13]. But, this J2,4 has highest weight sub-
module isomorphic to M2,2, and we have already seen that this is not allowed in the spectrum. Continuing
in this way, it is not difficult to show inductively (assuming the obvious fusion rules) that M2,s cannot be
consistently added to the spectrum for any s ∈ Z+.

One can take this further. If we try to add M3,1 to the spectrum, then fusing it with M1,2 gives M3,2, and
fusing M3,1 and M3,2 generates I3,2. M3,1 therefore cannot be included in the spectrum. In fact, this argu-
ment appears to extend to Mr,1 for every r > 1, so we cannot include any of these modules. Furthermore,
by repeatedly fusing with M1,2 as above, it is easy to see that this means that every Mr,s with r > 1 must be
excluded from the spectrum.

Summarising, we see that the presence of M1,2 (and hence I1,4) in the spectrum of LM(2,3) prevents
any module of the form Mr,s with r > 1 from appearing. We have not ruled out augmentations by the
more complicated staggered modules (of rank 2 or higher), but we mention that such modules have highest
weight submodules of the form Mr,s, so these potential augmentations will also be severely constrained by
the above arguments. We conjecture then that the spectrum of this theory is precisely that given in (3.1),
which corresponds to the first row of the extended Kac table.

This argument can be generalised to all LM(2, p). Let us therefore attempt to add the module M2,1

to the spectrum (5.3). Then, fusing repeatedly with M1,2, we generate M2,p−1. By now, it should not
be surprising (see Table 3) that fusing M2,1 and M2,p−1 yields a staggered module I3,p−1 whose highest
weight submodule is isomorphic to M1,p−1 and whose quotient by this submodule is isomorphic to M3,p−1.
This staggered module is therefore structurally identical to I1,p+1, except for having a vanishing logarithmic
singular vector at grade 3(p−1)+1 = 3p−2 instead of at grade p+2 (here we measure grade with respect
to the highest weight state). We have already determined the logarithmic coupling β1,p+1 in Equation (5.5),
and it is easy to determine β3,p−1 in the same way. The result is

β3,p−1 =
p−2

p
6= −

p−2
2 = β1,p+1. (6.9)

The argument of Gurarie and Ludwig can now be generalised to our present situation. Using the same
procedure as before, we can compute the correlator

〈
λ1,p+1 (z1)λ3,p−1 (z2)

〉
by solving the ordinary differ-

ential equation induced by the global conformal invariance generated by L−1 and L0 (up to an unknowable
constant of integration). Again, we find that this solution does not satisfy the partial differential equation
induced by L1-global conformal invariance unless β1,p+1 = β3,p−1, in contradiction with Equation (6.9).
We therefore see that the presence of M1,2 in the spectrum of LM(2, p) (for all odd p) is inconsistent with
the presence of M2,p−1 and hence M2,1.

The computations which detail this argument are in fact identical to those which we have presented
for p = 3. As with this previous case, it is easy to extend this argument to show that M1,2 and Mr,s

are inconsistent for all r > 1. Rather than present these arguments in repetitive detail, we would like to

16A rank 2 Jordan highest weight module is just a degenerate case of a rank 2 staggered module in which the non-vanishing singular
vector

∣∣χr′ ,s′
〉

(in Figure 1) coincides with the highest weight state
∣∣φr′ ,s′

〉
.
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outline a more abstract (and less computational) argument, whose conclusions are nevertheless the same.
We want to emphasise however that the following argument is not entirely rigorous, and does not (at least
in its present form) supersede that presented earlier. Rather, we present it as an aid to understanding this
somewhat subtle situation.

Suppose then that we had two staggered modules I1 and I2 such that the two logarithmic generators∣∣λ1
〉

and
∣∣λ2

〉
(respectively) are both partners of dimension h to the same non-vanishing singular vector

∣∣χ
〉

(for example,
∣∣λ1,2p−1

〉
∈ I1,2p−1 and

∣∣λ3,1
〉
∈ I3,1 both couple to the non-vanishing singular vector in the

vacuum module M1,1). Then, we have

(L0 −h id)
∣∣χ

〉
= 0

(L0 −h id)
∣∣λ1

〉
=

∣∣χ
〉 in I1, and

(L0 −h id)
∣∣χ

〉
= 0

(L0 −h id)
∣∣λ2

〉
=

∣∣χ
〉 in I2. (6.10)

In each Ii, a formal adjoint of L0 −h id may be defined (with respect to a basis extending
{∣∣χ

〉
,
∣∣λi

〉}
) [13].

This is a seemingly well-defined operator, but it must satisfy

(L0 −h id)† ∣∣χ
〉

=
∣∣λ1

〉

(L0 −h id)† ∣∣λ1
〉

= 0
in I1, and

(L0 −h id)† ∣∣χ
〉

=
∣∣λ2

〉

(L0 −h id)† ∣∣λ2
〉

= 0
in I2. (6.11)

Since there is only one
∣∣χ

〉
, this is a contradiction.

More precisely, what this argument suggests is that there cannot exist a module which has two submod-
ules of the form I1 and I2. But, this is exactly the structure that naı̈vely extending our LM(2, p) models
by Mr,s (r > 1) leads to. We therefore conclude once again that such extensions are inconsistent, reinforc-
ing our conjecture that the spectrum of LM(2, p) is as given in (5.3) (corresponding to the first row of the
extended Kac table).

We conclude this section with a remark. This inconsistency result hinges on the fact that the logarithmic
couplings of I1,p+1 and I3,p−1 can be explicitly computed, and are different (Equation (6.9)). It is intriguing
to observe that there are further pairs of couplings which can be naturally compared. In particular, I1,p+n

and I3,p−n (the latter decomposes as a vector space into M1,p−n and M3,p−n) share the same highest weight
submodule, hence the same non-vanishing singular vector. We find that the logarithmic couplings of these
modules are simply related by

β3,p−n =
−2n

p
β1,p+n, (6.12)

at least for n 6 4 (for which explicit computations are possible, as in Equations (5.5 – 5.8)). We conjec-
ture that this relation continues to hold for all n < p. Note that it is independent of the singular vector
normalisation used to define the logarithmic couplings.

7. DUAL THEORIES L
∗
M(2, p)

We have just proven in Section 6 that the logarithmic conformal field theories we have constructed from
M1,2 can not admit a module of the form M2,1 in their spectra. It is therefore appropriate (and interesting)
to ask the dual question: Can we construct consistent logarithmic theories from M2,1, which (necessarily)
will not admit a module of the form M1,2 in their spectra? We would expect such a theory to in fact admit
no module except for those corresponding to the first column of the appropriate extended Kac table. In
other words, such a theory would be generated by M2,1, just as the LM(2, p) are generated by M1,2. It turns
out that these dual logarithmic models can indeed be constructed in this way, and we will denote them by
L
∗
M(2, p).
It should be stressed that L

∗
M(2, p) is distinct from LM(2, p), despite sharing the same central charge.

However, we have described the latter as a natural generalisation of the chiral minimal model M(2, p), in
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p 3 5 7 9

β3,1
5
6

−77
5

984555
5054

−74364290
173889

β̂3,1
15
2 −31185 1550674125

2 −66409170077250

TABLE 4. The logarithmic coupling β3,1 (and its appropriately renormalised counterpart
β̂3,1) for the staggered module I3,1 appearing in the L

∗
M(2, p) theories.

that it includes modules which clearly generalise those appearing in the Kac table of the minimal model.
This naturality property is lost with the dual theory L

∗
M(2, p) — they do not define a covering theory for

the (chiral) minimal model M(2, p).
Nevertheless, this loss of naturality is no obstacle to being physically relevant. In particular, we sus-

pect that the dual model L
∗
M(2,3) describes the scaling limit of the lattice model of self-avoiding walks

(which are supposed to model long polymer chains), just as LM(2,3) describes the scaling limit of critical
percolation.

The structures of the modules generated by fusing M2,1 with itself (repeatedly) can be investigated
using the Nahm-Gaberdiel-Kausch algorithm. Unsurprisingly, the results are quite similar to those we
have described for LM(2, p), and are perhaps even simpler. We generate rank 2 staggered modules Ir,1,
r = 3,5,7, . . ., which decompose as vector spaces into Mr−2,1 and Mr,1. The spectrum of L

∗
M(2, p) is

therefore
{Mr,1 : 2 | r > 2}∪{Ir,1 : 2 - r > 2} . (7.1)

The fusion rules are conveniently described as follows:

(1) Replace any Ir,1 by the direct sum Mr−2,1 ⊕Mr,1.
(2) Compute the “fusion” using distributivity and the auxiliary rule

Mq,1 ×f Mr,1 = M|q−r|+1,1 ⊕M|q−r|+3,1 ⊕ . . .⊕Mq+r−3,1 ⊕Mq+r−1,1. (7.2)

(3) In the result, replace all direct sums of the form Mr−2,1 ⊕Mr,1 by Ir,1 (there is only one way to
consistently do this).

The logarithmic couplings of the staggered modules of these theories can be computed from the ap-
propriate vanishing singular vectors, or using the Nahm-Gaberdiel-Kausch algorithm. We have explicitly
determined several L

∗
M(2, p) couplings β3,1 for various p using the singular vector approach, and list them

in Table 4 (the only other logarithmic coupling we have determined is β5,1 = 67375
676 for p = 3). In contrast

to LM(2, p), we are not able to explicitly compute these couplings for general p: computing β3,1 for each
p requires being able to apply the Nahm-Gaberdiel-Kausch algorithm to grade p−1.

However, we can predict such a general formula for β3,1, or rather for the renormalised logarithmic cou-
pling β̂3,1 which corresponds to normalising the non-vanishing singular vector

∣∣χ1,1
〉

as in Equation (5.10)
(with n = p−1). First, note that Equation (5.11) conjectures a formula for the logarithmic coupling β̂1,2p−1

of LM(2, p) (also renormalised according to Equation (5.10)):

β̂1,2p−1 = (−1)p−1 p
8

p−2

∏
i=−p+1

(p+2i) = (−1)(p−1)/2 p!!(3p−4)!!
8 , (7.3)

where n!! = n(n−2)(n−4) · · ·1 (note that p and 3p−4 are odd). Equation (6.12) now conjectures that

β̂3,1 =
−2(p−1)

p
β̂1,2p−1 = (−1)(p+1)/2 (p−1)

(p−2)!!(3p−4)!!
4 . (7.4)
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Comparing this conjectured relation with the explicit values given in Table 4, we find exact agreement.
When p > 5, this therefore provides highly non-trivial evidence that our conjectured relations, Equa-
tions (5.11) and (6.12), hold in general (here, p 6 5 corresponds to cases in which we have been able
to verify our conjectures by explicit computation).

8. SUMMARY AND CONCLUSIONS

The primary fields of a minimal model can be viewed as a complete set of local functionals (which are
well-behaved under scale transformations) of the degrees of freedom of the associated critical statistical
model (the universality-class representative). As such, the minimal models provide a complete description
of the local observables of the critical model.

The description of boundary effects requires a slight extension of the formalism, in particular, the in-
troduction of boundary-changing operators. As their name indicates, these operators are considered to be
locally inserted at points where the boundary conditions are modified, and are viewed as being responsible
for this modification [6]. Take for definiteness the Ising model on the upper half plane, with the boundary
condition that the spins are all “−” on the negative real axis and “+” on the positive real axis. This can
be interpreted as corresponding to inserting a boundary-changing operator, ψ−+ (0) say, at the origin17 of
the theory in which the boundary spins are all negative (say). Although this insertion operation is local, the
action of the inserted operator is inherently non-local. It changes the sign of every spin on the positive real
axis.

It should therefore not be surprising that such boundary-changing operators can be related to a certain
class of non-local observables. In particular, crossing probabilities can be expressed in terms of correlators
of these operators [5,33]. As noted in the introduction, numerical simulations incorporating these boundary
phenomena signal the presence of representations lying outside of the Kac table (which defines the spec-
trum of minimal models). This is the general phenomenological framework within which our analysis is
anchored. However, unravelling a direct physical link between the rise of these representations and non-
locality is beyond the scope of this article. Instead, the main question that we tackle is of a technical, but
investigative, nature: How must the irreducible modules that comprise the minimal models (at a chiral level)
be modified so as to avoid the decoupling of the representations outside the Kac table from those within?

The starting point of this investigation was the computation of the crossing probability of critical per-
colation. From the point of view of conformal field theory, the issue was essentially to see how the trivial
M(2,3) model could be modified to account for a non-trivial φ1,2 four-point function. In [1], we argued
that there is only one possible modification which accounts for Cardy’s result. It amounts to replacing the
irreducible modules L1,1 and L1,2 (which are identical) by their reducible but indecomposable versions
M1,1 and M1,2. The theory was then explored by fusing these latter modules repeatedly. Assuming that
such fusing exhausts the spectrum of the theory, this is then the unique consistent (chiral) conformal field
theory describing critical percolation. We have shown that it is a logarithmic theory and have denoted it in
the present setting by LM(2,3).

Here, we have generalised this “lifting” of (chiral) M(2,3) to LM(2,3) to all M(2, p) models with p odd.
The resulting theories have been again found to be logarithmic, so we have denoted them by LM(2, p). At
the level of representations, the signature of a logarithmic theory lies in the presence of certain indecom-
posable modules, called staggered modules. Those that occur in this context are all of rank 2, and so are
fully characterised by the specification of the two highest weight modules from which they are composed,
together with the value of the logarithmic coupling that measures the connection between these modules.

17We should also remember to insert another boundary-changing operator ψ+− (∞) at infinity!
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These couplings were shown to be independent of the unavoidable ambiguities inherent in fixing the pre-
cise form of the logarithmic structure of the staggered modules. We have phrased such ambiguities in the
language of gauge theory.

It should be stressed that these logarithmic couplings, which thus constitute the gauge-invariant data of
the staggered modules, are not free parameters, as one might surmise from [13]. This is very interesting, as
they are frequently quite difficult to compute (the Nahm-Gaberdiel-Kausch fusion algorithm fixes them, but
this is not practical in general). With this in mind, we have observed that they can also be determined by a
particular structural feature of the staggered module, specifically by the precise form (indeed, the existence)
of the vanishing logarithmic singular vector. We have computed a number of logarithmic couplings in this
way and the equivalence of the results with those of the Nahm-Gaberdiel-Kausch algorithm was extensively
checked. Quite unexpectedly, we were also able to derive explicit closed form expressions (as a function of
p) for a number of these coupling constants.

However, we must advocate some care with our singular-vector characterisation of the logarithmic cou-
pling. In a preliminary analysis of the chiral parts of the M(1, p) theories18 [29], we have checked (for
several cases with p = 2 and 3) whether the vanishing logarithmic singular vector of a staggered module
determines its logarithmic coupling. To our surprise, we found that the answer is “no”: The vanishing log-
arithmic singular vector exists for all couplings, and is therefore just a linear function of it. It is not clear to
us at this stage why there should be such a fundamental distinction between these two classes of logarithmic
theories, (chiral) M(1, p) and LM(2, p).

In the context of conformal field theories with c = 0, Gurarie and Ludwig [14, 15] have considered the
formulation of an extended theory in which the energy-momentum tensor T has a logarithmic partner t

satisfying
〈
T (z1) t (z2)

〉
= bz−4

12 . The constant b is called there the effective central charge [34]. They have
argued that mere global conformal invariance enforces the uniqueness of this charge. In our terminology, b

is the logarithmic coupling of a staggered module whose highest weight submodule is the vacuum module
M1,1 and whose quotient by this submodule is generated by a dimension 2 state. When c = 0, there are
only two such staggered modules: I1,5 and I3,1. As their logarithmic couplings are different, Gurarie and
Ludwig’s “unique charge” argument means that they cannot both be present within a consistent theory.

Given the fusion rules we have uncovered, a more basic statement is that the two indecomposable mod-
ules M1,2 and M2,1 are mutually exclusive. In the present work, we have proposed a variant of this argument
in which the common submodule M1,1 of the clashing staggered modules is replaced by M1,2. The con-
clusion is the same, but this version generalises straight-forwardly, indeed verbatim, to all LM(2, p) (the
common submodule is in general M1,p−1). Again, the bottom line is that any fusion ring containing both
M1,2 and M2,1 cannot, even if it is consistent as a fusion ring, correspond to any consistent conformal field
theory, logarithmic or otherwise.

This obstruction not only places severe restrictions on the spectrum of the LM(2, p) model, but it paves
the way for a completely different construction of a logarithmic theory rooted in the structure of the M(2, p)

data. This “dual” theory, which we have denoted by L
∗
M(2, p), is generated by the indecomposable module

M2,1. We have in this way constructed two distinct logarithmic conformal field theories, LM(2, p) and
L
∗
M(2, p), with central charge c = c2,p = 1 − 3(p−2)2 /p, for every odd p. In both cases, we have

presented simple and elegant characterisations of their fusion rules.
It is clear that one can generalise this construction still further to consider the two theories generated

by modules of the form M1,2 or M2,1 (respectively) which can be associated to general minimal models
M(p′, p). (In principle, this could even be done for irrational p/p′.) However, the physical significance of

18Despite the notation, these logarithmic theories are not minimal models, and do not cover any minimal model in the way that our
LM(2, p) theories do.
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such theories is not obvious. In particular, for p/p′ = 4/3 (corresponding to the Ising model), we would
expect to be able to build up a theory which can explain the link, already mentioned in the introduction,
between crossing probabilities in the Ising model and the observed exponent h3,3 = 1

6 . But neither theory
we can construct contains a field of dimension 1

6 . Furthermore, we have checked that the obstruction to
including both M1,2 or M2,1 in a consistent theory is still present in this case, so it is not possible to
generate a field of dimension 1

6 in this way either. We hope to report on the resolution of this puzzle in the
future.

For our final comment, we return to critical percolation. As has already been stressed, the expression
for the crossing probability has been rigorously demonstrated by mathematicians [35, 36]. This proof is
based on Schramm-Löwner Evolution (SLE) techniques (see for example the review [37]), and verifies that
percolation corresponds to κ = 6, where κ is the value of the SLE diffusion constant. On the other hand,
we have provided a consistent field-theoretic framework for Cardy’s original determination of the crossing
probability, the model LM(2,3). It is thus natural to propose the equivalence:

SLE6 ∼ LM(2,3) . (8.1)

We therefore hold that this SLE model is in fact equivalent to a logarithmic conformal field theory. Simi-
larly, by duality, we have already conjectured that the other c = 0 statistical model, self-avoiding walks, is
also described by a logarithmic theory, our L

∗
M(2,3). The natural conjecture in this case is then that

SLE8/3 ∼ L
∗
M(2,3) . (8.2)

These conjectural equivalences and their generalisations will be considered in more detail elsewhere.
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APPENDIX A. ADJOINTS OF FIELDS

In this appendix, we justify the sign appearing in Equation (6.3). This is straight-forward, but involves
a subtlety which we feel deserves to be addressed explicitly. This subtlety does not appear in ordinary
conformal field theory, and arises from the presence of non-vanishing singular vectors in the theory.

The general solution of the ordinary differential equation (6.2) is easily checked to be
〈
χ1,2 (z1)λ3,2 (z2)

〉
=

C

z2
12

, (A.1)

where C is an undetermined constant. As opposed to the constant appearing in Equation (6.6), this constant
is clearly gauge-invariant. We therefore expect that it can be related to the logarithmic coupling. Indeed,
since χ1,2 is primary with dimension 1, we might expect to be able to compute C as

C = lim
z1→∞
z2→0

Cz2
1

z2
12

= lim
z1→∞
z2→0

z2
1
〈
χ1,2 (z1)λ3,2 (z2)

〉
=

〈
χ1,2

∣∣λ3,2
〉

= β3,2. (A.2)

However, we might also recall that χ1,2 = ∂φ1,2, and hence try to compute
〈
χ1,2 (z1)λ3,2 (z2)

〉
by differ-

entiating
〈
φ1,2 (z1)λ3,2 (z2)

〉
with respect to z1. The latter correlator solves the following ordinary differen-

tial equation induced by the global conformal invariance generated by L−1 and L0:
(

z12
d

dz12
+1

)〈
φ1,2 (z1)λ3,2 (z2)

〉
= −

〈
φ1,2 (z1)χ1,2 (z2)

〉
= 0, (A.3)
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hence has the form C′/z12. This C′ is again gauge-invariant, and is determined by the partial differential
equation

(
z2

1
∂

∂ z1
+ z2

2
∂

∂ z2
+2z2

)〈
φ1,2 (z1)λ3,2 (z2)

〉
= −β3,2

〈
φ1,2 (z1)φ1,2 (z2)

〉
= −β3,2, (A.4)

corresponding to L1-global conformal invariance. Substituting our general solution into this gives C′ = β3,2.
But if we now differentiate

〈
φ1,2 (z1)λ3,2 (z2)

〉
, we obtain

〈
χ1,2 (z1)λ3,2 (z2)

〉
=

−β3,2
z2

12
, (A.5)

that is, C = −β3,2. We therefore have a contradiction to resolve.
The resolution is that our first computation (A.2) is incorrect. More specifically, we cannot conclude that

〈
χ1,2

∣∣ = lim
z1→∞

z2
1
〈
0
∣∣χ1,2 (z1) , (A.6)

just because χ1,2 is primary. Such a definition, which really defines the adjoint of this field, should be
restricted to (primary) generators of the module. Once the adjoint is defined for generating fields, the
adjoints of the descendants are completely fixed, regardless of whether they happen to be primary or not.

To illustrate this, let us note that the adjoint of a generating primary field φ of dimension h merely reflects
the adjoint operation on its modes:

φ (z) = ∑
n

φnz−n−h ⇒ φ (z)† = ∑
n

φ †
n z−n−h. (A.7)

If we define the adjoint of φ (z) in the usual way, then
〈
φ
∣∣ = lim

z→∞
z2h〈0

∣∣φ (z) = lim
z→0

z−2h 〈
0
∣∣φ

(
z−1) = lim

z→0

〈
0
∣∣∑

n
φnzn−h = lim

z→0

〈
0
∣∣∑

n
φ−nz−n−h, (A.8)

so we see that this definition is really equivalent to φ †
n = φ−n. The modes of ∂φ (z) therefore satisfy

(∂φ)n = (−n−h)φn ⇒ (∂φ)†
n = (−n−h)φ−n, (A.9)

hence
〈
∂φ

∣∣ = lim
z→0

〈
0
∣∣∂φ (z)† = lim

z→0

〈
0
∣∣∑

n
(−n−h)φ−nz−n−h−1 = lim

z→0

〈
0
∣∣∑

n
(n−h)φnzn−h−1

= lim
z→0

〈
0
∣∣
[

z−2h−2 ∑
n

(n+h)φnzn+h+1 −2hz−2h−1 ∑
n

φnzn+h
]

= − lim
z→0

〈
0
∣∣
[
z−2h−2∂φ

(
z−1)+2hz−2h−1φ

(
z−1)]

= − lim
z→∞

[
z2h+2〈0

∣∣∂φ (z)+2hz2h+1〈0
∣∣φ (z)

]
. (A.10)

Returning to Equation (A.2), we can now correctly write

C = lim
z1→∞
z2→0

Cz2
1

z2
12

= lim
z1→∞
z2→0

z2
1
〈
∂φ1,2 (z1)λ3,2 (z2)

〉
= −

〈
∂φ1,2

∣∣λ3,2
〉

= −β3,2, (A.11)

in full agreement with Equation (A.5). The sign in Equation (6.3) is therefore as given.

APPENDIX B. MUTUAL LOCALITY

Two fields φ and ψ are said to be mutually local if

φ (z)ψ (w) = µψ (w)φ (z) (B.1)



LOGARITHMIC M(2, p) MODELS, COUPLINGS, AND DUALITY 21

for some µ 6= 0. This (or an appropriate generalisation) is practically axiomatic in conformal field theory.
Such fields are mutually bosonic if µ = 1 and mutually fermionic if µ = −1. It is generally assumed, but
rarely (if ever) proved, that Virasoro primaries are mutually bosonic. We will show that T and any Virasoro
primary φ are mutually bosonic, not because this is particularly interesting itself19, but because a simple
corollary of this is that the statement remains true when φ is replaced by a logarithmic partner field λ .

Suppose therefore that φ is primary of dimension h and that

T (z)φ (w) = µφ (w)T (z) . (B.2)

Defining the generalised commutator
[[

Lm,φn
]]

= Lmφn −µφnLm,
[[

φn,Lm
]]

= φnLm −µ−1Lmφn = −µ−1[[Lm,φn
]]
, (B.3)

the standard operator product expansion gives
[[

Lm,φn
]]

=
(
m(h−1)−n

)
φm+n. (B.4)

We have to satisfy the Jacobi identity for this generalised commutator, in particular,
[[

Lm,
[[

Ln,φp
]]]]

−
[[

Ln,
[[

Lm,φp
]]]]

= µ
[[[

Lm,Ln
]
,φp

]]
. (B.5)

Substituting Equation (B.4) into this identity and simplifying gives

(µ −1)(m−n)
(
(m+n)(h−1)− p

)
φm+n+p = 0, (B.6)

whence µ = 1.
Let us now replace φ by an arbitrary (generating) logarithmic partner field λ of dimension h′. The

relevant operator product expansion takes the form

T (z)λ (w) = . . .+
h′λ (w)+ χ (w)

(z−w)2 +
∂λ (w)

z−w
+ . . . , (B.7)

where the omitted singular terms only involve the corresponding primary φ and its descendants. Indeed, the
(singular) terms involving λ are precisely what one would expect if λ were primary. When we repeat the
above analysis to determine the mutual locality coefficient µ for T and λ , the Jacobi identity must therefore
reduce to the form

(µ −1)(m−n)
(
(m+n)

(
h′−1

)
− p

)
λm+n+p + . . . = 0, (B.8)

where the omitted terms correspond to the mode φm+n+p and modes of the descendants of φ . It follows
again that µ must be 1 — logarithmic partner fields are also mutually bosonic with T . One can of course
check, at least in specific cases, that the omitted terms in Equation (B.8) also vanish when µ = 1.

As a quick application of this result, let us use this to prove that φ1,2 and λ1,4 are mutually bosonic in
LM(2,3) (this result is needed to justify Equation (6.4)). Let us suppose then that

φ1,2 (z)λ1,4 (w) = µλ1,4 (w)φ1,2 (z) . (B.9)

We expand both sides of
〈
T (x)φ1,2 (z)λ1,4 (w)

〉
= µ

〈
T (x)λ1,4 (w)φ1,2 (z)

〉
(B.10)

using the operator product expansions of T with φ1,2 and λ1,4 (the latter is given in Equation (6.1)), and the
fact that T is mutually bosonic with these fields. Comparing the terms which result, most give no constraint

19It is much more interesting when the symmetry algebra is affine. For example, (chiral) primaries of the SU(2) Wess-Zumino-Witten
model are generally mutually bosonic with the field corresponding to the maximal torus, but mutually fermionic with the other affine
fields [38].
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on µ . For example, the coefficients of (x− z)−1 give

∂z
〈
φ1,2 (z)λ1,4 (w)

〉
= µ∂z

〈
λ1,4 (w)φ1,2 (z)

〉
, (B.11)

in agreement with Equation (B.9) for arbitrary µ . However, the terms which arise from the logarithmic
nature of λ1,4 are more interesting. In this example the (x−w)−3 coefficients give

β1,4
〈
φ1,2 (z)φ1,2 (w)

〉
= µβ1,4

〈
φ1,2 (w)φ1,2 (z)

〉
⇒ µ = 1, (B.12)

since
〈
φ1,2 (z)φ1,2 (w)

〉
= 1 (and β1,4 6= 0). This proves that φ1,2 and λ1,4 are mutually bosonic as required.

We remark that this simple proof would not be valid if λ1,4 were primary. The logarithmic nature of this
field actually makes the analysis easier than in the standard case!

APPENDIX C. INNER PRODUCTS FOR STAGGERED MODULES

As in [1] (albeit implicitly there), we fix the inner product on the staggered modules by setting the norm
of the highest weight state

∣∣φ
〉

of the maximal highest weight submodule to unity. This has at least one
advantage from a mathematical perspective: This restricts to the usual inner product on this maximal sub-
module, so it can be treated as a module on its own terms. There is, however, at least one disadvantage: As
shown in [1] (see footnote 8 and the remark after Equation (3.15)), the norms of the logarithmic generating
states

∣∣λ
〉

in the staggered modules must diverge. Nevertheless, the inner product of the non-vanishing
singular vector

∣∣χ
〉

and its logarithmic partner
∣∣λ

〉
is finite, and in fact defines the logarithmic coupling β

of the module (Equation (3.7)). At the level of fields, where the rôle of the inner product is taken over by the
2-point functions, it is easy to check that our choice of inner product gives a well-defined non-degenerate

matrix of 2-point “constants” (actually functions).
Of course, this is not the only inner product one could choose. At first glance, one might think that

defining the norm of
∣∣λ

〉
to be 1 will be more useful. After all, a rank 2 staggered module is generated by

this state. This has the immediate advantage that every state in the module now has finite norm. However,
that of the highest weight state

∣∣φ
〉

is now necessarily zero. Thus,
∣∣φ

〉
is null,

∣∣χ
〉

is null, and (as we shall
see below) the overlap

〈
χ
∣∣λ

〉
also vanishes. It follows that this inner product leads to degeneracy in all

2-point constant matrices, a mathematically unpleasant situation.
From the point of view of the representation theory, there is no canonical choice. Mathematically, one

can do as one wishes, provided one does not encounter a contradiction20. But in conformal field theory,
such a choice should (ideally) be grounded in physical considerations. This is indeed the case here: The
following two propositions demonstrate that, at least for the LM(2,3) model, our choice is forced by the
non-triviality of Cardy’s 4-point function.

Proposition 1. If the LM(2,3) highest weight state
∣∣φ1,2

〉
is null, then Cardy’s formula for the horizontal

crossing probability of critical percolation (as the 4-point function of φ1,2 (z)) vanishes identically.

Proof. Since φ1,2 has dimension 0,
∣∣φ1,2

〉
null implies that

〈
φ1,2 (z)φ1,2 (w)

〉
=

〈
φ1,2

∣∣φ1,2
〉

= 0. (C.1)

Moreover, since the fusion algorithm of Nahm and Gaberdiel-Kausch does not care whether states are null
or not,

L1
∣∣λ1,4

〉
= β1,4

∣∣φ1,2
〉

(algebraic fusion algorithm) (C.2)

20In the somewhat special case of a Jordan highest weight module, in which the highest weight state
∣∣φ

〉
itself has a Jordan partner∣∣λ

〉
, one can derive such a contradiction. For these modules, we have to take

∣∣φ
〉

to be null. Viewed as an extreme case of a staggered
module, this is natural in that the null state

∣∣χ
〉

would coincide with
∣∣φ

〉
. But note that Jordan highest weight modules do not appear

in the models under investigation here.
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⇒
〈
χ1,2

∣∣λ1,4
〉

= β1,4
〈
φ1,2

∣∣φ1,2
〉

= 0 (C.3)

⇒
〈
χ1,2 (z)λ1,4 (w)

〉
= 0 (global conformal invariance) (C.4)

⇒
〈
φ1,2 (z)λ1,4 (w)

〉
= 0 (χ1,2 (z) = ∂φ1,2 (z)). (C.5)

Indeed, this last correlation function could be an arbitrary function of w alone (the z derivative being zero),
but we already know that it is actually a function of z−w, hence it must vanish.

Now consider Cardy’s 4-point function
〈
φ1,2 (z1)φ1,2 (z2)φ1,2 (z3)φ1,2 (z4)

〉
. Knowing the fusion rule

M1,2 ×f M1,2 ×f M1,2 = M1,2 ⊕ I1,4, (C.6)

we can reduce this 4-point function to an infinite linear combination of “descendant correlators” of
〈
φ1,2 (z1)φ1,2 (z4)

〉
and

〈
φ1,2 (z1)λ1,4 (z4)

〉
. (C.7)

But, we have seen that both these correlators vanish when
∣∣φ1,2

〉
is null, hence so do all their descendant

correlators, and the vanishing of Cardy’s 4-point function follows.

Proposition 2. If the vacuum
∣∣0

〉
is null, so is

∣∣φ1,2
〉
.

Proof. Using M1,2 ×f M1,2 = M1,1 ⊕M1,3, we can reduce
〈
φ1,2 (z)φ1,2 (w)

〉
to an infinite linear combina-

tion of descendant correlators of
〈
φ1,1 (w)

〉
=

〈
0
∣∣0

〉
and

〈
λ1,3 (w)

〉
= 0. (C.8)

If
∣∣0

〉
is null, it follows that

〈
φ1,2

∣∣φ1,2
〉

=
〈
φ1,2 (z)φ1,2 (w)

〉
= 0.

The contrapositives of these propositions together prove that a null vacuum state implies that Cardy’s 4-
point function vanishes identically (in LM(2,3)). This justifies, physically, our choice of an inner product
in which the vacuum is not null, and suggests that the same choice will be the physically relevant one in
the other LM(2, p) models. We mention that in many other logarithmic theories, the M(1, p) theories in
particular, one is forced to take an inner product for which the vacuum is null, as the vacuum has a non-
trivial Jordan partner. The above propositions therefore also prove that the possession of a null vacuum
state is not a necessary condition of logarithmic conformal field theory.
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