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ABSTRACT. The logarithmic conformal field theory describing critical percolation is further explored using
Watts’ determination of the probability that there exists a cluster connecting both horizontal and vertical edges.
The boundary condition changing operator which governs Watts’ computation is identified with a primary field
which does not fit naturally within the extended Kac table. Instead a “shifted” extended Kac table is shown
to be relevant. Augmenting the previously known logarithmic theory based on Cardy’s crossing probability
by this field, a larger theory is obtained, in which new classes of indecomposable rank-2 modules are present.
No rank-3 Jordan cells are yet observed. A highly non-trivial check of the identification of Watts’ field is
that no Gurarie-Ludwig-type inconsistencies are observed in this augmentation. The article concludes with an
extended discussion of various topics related to extending these results including projectivity, boundary sectors
and inconsistency loopholes.

1. INTRODUCTION

There has recently been a surge of interest concerning the exploration of the mathematical structure of
the conformal field theory describing percolation at its critical point. Percolation itself refers to a collection
of closely related problems in probability theory [1, 2], but these problems exhibit behaviour analogous to
that of phase transitions in macroscopic media [3, 4]. The interest from the physics community then stems
from regarding percolation as a collection of relatively simple statistical models with which one can test
predictions such as conformal invariance at criticality and universality.

Perhaps the most celebrated confirmation of these predictions is Cardy’s derivation of the horizontal
crossing probability in the continuum limit [5]. This derivation assumes that the limit is conformally in-
variant, and relies upon standard conformal field theory techniques [6]. One considers a fixed rectangular
subdomain of a square lattice, and considers random configurations in which each edge (bond) of the lattice
is chosen to be open or closed with probability p or 1− p respectively. A fundamental question of perco-
lation is then to calculate the probability that such a random configuration will contain a cluster of bonds
connecting one of the vertical sides of the rectangle to the other. In the continuum limit where the lattice
spacing tends to zero (but the rectangular domain remains fixed), this crossing probability is only interest-
ing (neither zero nor one) for a critical p = pc, and Cardy’s work gives this limiting crossing probability
as a function of the aspect ratio of the rectangular domain. The agreement with the numerical simulations
of [7] is impressive, and is generally agreed to provide a striking confirmation of the conformal invariance
of statistical models at criticality.

It is worth noting that results such as Cardy’s have encouraged probability theorists to find mathemat-
ically rigorous derivations of crossing probability formulae. In particular, Cardy’s result is now a the-
orem [8, 9]. The toolbox which has led to these successes is known collectively as stochastic Loewner
evolution [10], and these last ten years have seen a rapid development in its understanding and applica-
tion to statistical models. In particular, one can now begin to ask questions regarding the precise relation
between the points of view afforded by the stochastic Loewner evolution and conformal field theory de-
scriptions [11, 12].

October 10, 2008
Part of this work was supported by the Marie Curie Excellence Grant MEXT-CT-2006-042695.

1



2 D RIDOUT

Here, we wish to restrict ourselves to the conformal field theory description of critical percolation. Much
of the interest in this conformal field theory stems from the simple realisation that it must be logarithmic
(see [13] for an early statement to this effect). Indeed, it is almost universally agreed that critical percolation
corresponds to a theory with vanishing central charge c (though [14] offers a dissenting opinion). A standard
argument [15,16] then proves that any c = 0 conformal field theory built from irreducible Virasoro modules
is trivial1. The alternative — that the theory is built from reducible but indecomposable Virasoro modules
— leads to so-called logarithmic conformal field theory [17, 18].

Intertwined with this story is that of the c → 0 “catastrophe” [13,19–22]. Here, one asks what happens to
the operator product expansion of a primary field and its conjugate when c → 0. The standard form of this
expansion shows that the coefficient of the energy-momentum tensor T (z) diverges unless the dimension
of the primary field also tends to 0. Resolving this issue involves modifying the operator product expansion
by adding “partner fields”, and one quickly finds that this modification also leads to logarithmic conformal
field theory. We mention that the derivation of the standard operator product expansion between a primary
field and its conjugate breaks down at c = 0 [23] (because the energy-momentum tensor is null), so the
“catastrophe” alluded to above is merely an expression of the subtlety involved in making sense of limits
such as c → 0. Exactly the same problem occurs with the ∂ 2T (z) and : T (z)T (z) : terms as c → −22

5 ,
unless the primary field dimension tends to 0 or −1

5 [23, 24].
The stage is now set for studying critical percolation via investigating c = 0 logarithmic conformal field

theories. However, the number of such theories is probably infinite: Aside from the theories describing per-
colation and the other c = 0 statistical model, self-avoiding walks, there are theories constructed (in varying
degrees) from affine Kac-Moody algebras [25,26] and superalgebras [17,27–31]. Indeed, one expects to be
able to construct logarithmic conformal field theories for each of the superalgebras ĝl(n | n), ŝl(n+1 | n),
ôsp(2n | 2n) and ôsp(2n+1 | 2n), all of which will have vanishing central charge. It is therefore of utmost
importance to be clear as to how one identifies a given c = 0 logarithmic conformal field theory as describ-
ing critical percolation. In other words, it is insufficient to rely on mathematical consistency alone; there
must be some physical input to the theory which selects the correct choice.

This said, there has recently been much progress made in identifying the percolation conformal field
theory. One can isolate several different approaches including free field methods [32–34], lattice model
constructions [35–39] and fusion [16,40–42]. Each approach has its own advantages and disadvantages, and
each seems to produce results which agree (broadly speaking) when they can be compared. One criticism
that can be levelled at much of the logarithmic conformal field theory literature however is that it restricts
consideration to the chiral sector. Whilst this is natural in conformal field theory proper, where the modular
invariants of rational theories enjoy a simple factorisation property, it is difficult to justify in a logarithmic
conformal field theory. Indeed, the few examples (see [43] for the first) in which modular invariants have
been constructed show that this familiar factorisation property is absent in logarithmic theories. In any case,
the explicit form of the correlation functions in such theories makes it clear that naı̈ve factorisation cannot
suffice.

One situation in which restricting attention to chiral matters is nevertheless justified is when one is
considering the boundary sectors of the theory. It is clear from any discussion of crossing probabilities
that percolation must be described by a boundary conformal field theory, and indeed, this is the structure
that Cardy exploited in his derivation of the horizontal crossing probability [5]. Generally in conformal
field theory, one is taught to understand the theory in the bulk first, as much of the boundary theory is then

1As one might expect, this “irreducibility implies triviality” argument generalises to affine Kac-Moody algebras when c = 0. However,
the same is not true for affine Kac-Moody superalgebras. For example, the irreducible vacuum ĝl(1 | 1)-module (which always has
c = 0) is decidedly non-trivial. However, it does (necessarily) decompose into Virasoro modules which are not irreducible, but merely
indecomposable.
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TABLE 1. A part of the extended Kac table for c = 0, displaying the conformal dimen-
sions hr,s (Equation (1.1)) of the primary fields φr,s. The rows of the table are labelled by
r = 1,2,3, . . . and the columns by s = 1,2,3, . . ..

deducible from that of the bulk [44, 45]. Recently however, it has been realised [46–48] that the reverse is
also true, and that extracting the bulk from the boundary may be “cleaner” in some sense.

A further advantage of starting with the boundary sector of the percolation conformal field theory is that
one has well-known (and numerically tested!) results on which to base the theory. This was the motivation
for the construction detailed in [16]; Cardy’s crossing probability formula was used as the initial physical
datum for a detailed exploration of the boundary sector of the percolation conformal field theory. From this
alone, the structures confirming the logarithmic nature of the theory were generated.

We will review this construction shortly, along with the assertion that the operator content of a logarith-
mic conformal field theory is strongly constrained by the requirements of conformal invariance [22, 42].
What is relevant for now, and should be clear, is that this construction is only the beginning of the story.
There are other observables of critical percolation with which one can play a similar game, in particular,
there is the probability of there being a percolation cluster connecting both the vertical and horizontal sides
of the rectangular domain. This crossing probability is the subject of an article of Watts [49], in which he
derives a formula which again interpolates the numerical data beautifully [7]. We are therefore led to reflect
on whether Watts’ result is incorporated in the logarithmic conformal field theory proposed in [16]. We will
argue below that it is not, and the consequences of this realisation constitute the core of this article.

Let us take this opportunity to introduce some useful notation [16,42]. First, we let Vr,s (r,s∈Z+) denote
the Verma module for the Virasoro algebra Vir (with vanishing central charge) whose highest weight state
has conformal dimension

hr,s =
(3r−2s)2 −1

24 . (1.1)

These dimensions are conveniently arranged in a semi-infinite table which we shall refer to as the c = 0
extended Kac table. A part of this table is presented in Table 1. The Verma module Vr,s has a singular
vector at grade rs, and we define Mr,s to be the quotient of Vr,s by the submodule generated by this singular
vector. Mr,s is an in general reducible highest weight module, but for special values of r and s (when r = 1,2
and 3 divides s, or when 2 divides r and s = 1,2,3) it coincides with the corresponding irreducible module.
Irreducible highest weight modules will be denoted by Lr,s. The highest weight states of the highest weight
modules Vr,s, Mr,s and Lr,s will all be denoted by

∣∣φr,s
〉

(and we trust that this will not cause any confusion).
We mention that whilst this extended Kac table has been taken as fundamental throughout much of the

literature, our first observation (see Section 3) is that a conformal field theory description of Watts’ crossing
probability requires the introduction of indecomposable modules which have no natural interpretation in
terms of this table. Instead, we introduce a “shifted” extended Kac table (Table 2) in Section 3 in which
the modules required by both Cardy’s and Watts’ formulae can be accommodated. This failure of the usual
extended Kac table is not surprising in hindsight, and it can be tracked back to the fact that Verma modules
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FIGURE 1. A schematic picture of the indecomposable modules M1,1 and M1,2. The
black circles represent the highest weight states, grey denotes a singular vector that does
not identically vanish, and white denotes the identically vanishing singular vectors. These
states are labelled by their conformal dimension.

of type III− (see [50, Thm. 2.2] for this and notation) require two distinct parallel lines of integral points to
describe the complete set of singular vectors.

2. CARDY’S CROSSING PROBABILITY AND LCFT

In this section we shall review the (chiral) structures derived in [16,42] from the existence of the bound-
ary condition changing operator φ1,2, required for Cardy’s computation of the horizontal crossing probabil-
ity in critical percolation [5]. This primary field was proven to generate a reducible but indecomposable
module, which we may identify with M1,2. The structure of this module completely encodes the require-
ments of Cardy’s derivation.

The spectrum of the percolation conformal field theory must then contain, in the boundary sector, all
modules generated from M1,2 by fusion. Using the algebraic fusion algorithm of Nahm and Gaberdiel-
Kausch [51–53], this was investigated explicitly2. As one might expect, fusing M1,2 with itself generates
two modules:

M1,2 ×f M1,2 = M1,1 ⊕M1,3. (2.1)

(Here we denote the fusion operation by ×f to distinguish it from the direct product ×.) The module M1,1

is generated by a highest weight state of dimension 0 which is annihilated by L−1. This is then the vacuum∣∣0
〉
, and in fact one finds that

M1,1 ×f M1,1 = M1,1 and M1,1 ×f M1,2 = M1,2. (2.2)

The vacuum module M1,1 therefore serves as the fusion identity (on the fusion subring generated by M1,2).
We illustrate the singular vector structures of the modules M1,1 and M1,2 in Figure 1. This structure is
what distinguishes the two dimension 0 highest weight modules. Note that M1,1 is also reducible but
indecomposable.

We can generate further modules by fusing M1,2 with the module M1,3 generated by (2.1). Repeating,
we deduce that the modules M1,3k = L1,3k (k ∈ Z+) appear, as do new modules which we shall denote by
I1,3k+1 and I1,3k+2 (k ∈ Z+). The fusion ring is associative (as expected) and the general fusion rules may

2One cannot use the more standard methods of computing fusion rules (using 3-point correlation functions for example), because the
module M1,2 contains non-trivial null states which are orthogonal to the entire module. The matrices of 2-point functions at each grade
are therefore degenerate (singular), hence we require a method of computing fusion which does not refer to correlation functions.
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be obtained from those with the generator M1,2:

M1,2 ×f M1,3k = I1,3k+1 (2.3a)

M1,2 ×f I1,3k+1 = 2M1,3k ⊕ I1,3k+2 (k ∈ Z+). (2.3b)

M1,2 ×f I1,3k+2 = M1,3(k−1) ⊕ I1,3k+1 ⊕M1,3(k+1) (2.3c)

(We define M1,0 to be the trivial zero-dimensional module.) These new modules I1,s are examples of rank-
2 staggered modules [54], and it is these which give rise to logarithms in the correlation functions of the
theory. We mention that the modules generated by repeatedly fusing M1,2 can be naturally associated with
the first row of the c = 0 extended Kac table (Table 1). We will sometimes refer to them as first-row modules
in what follows.

The structure of the staggered modules I1,s (s = 3k+`, k ∈ Z+, ` = 1,2) can be characterised as follows.
Their maximal highest weight submodule is isomorphic to M1,s′ (where s′ = 3k − `). Quotienting the
staggered module by this submodule gives another highest weight module, this time isomorphic to M1,s.
(In [54], the maximal highest weight submodule and the corresponding quotient highest weight module are
referred to as the “lower” and “upper” modules, respectively.) This is summarised mathematically by the
short exact sequence

0 −→ M1,3k−` −→ I1,3k+` −→ M1,3k+` → 0 (k ∈ Z+, ` = 1,2). (2.4)

The submodule M1,s′ is itself reducible but indecomposable and contains a unique non-vanishing sin-
gular descendant of

∣∣φ1,s′
〉

which will be denoted by
∣∣χ1,s′

〉
. By the usual abuse of notation, we will also

denote the corresponding elements of I1,s by
∣∣φ1,s′

〉
and

∣∣χ1,s′
〉
. The quotient module M1,s is likewise re-

ducible, but we cannot identify its highest weight state
∣∣φ1,s

〉
with any element of I1,s. Indeed, its preimage

in I1,s is only defined up to the subspace of M1,s′ with conformal dimension h1,s. Choosing a representative∣∣λ1,s
〉

of this preimage gives a state which is not an eigenvector of L0 as L0
∣∣λ1,s

〉
= h1,s

∣∣λ1,s
〉

need only hold
modulo M1,s′ . It is a simple exercise to demonstrate [54] that (L0 −h1,s id)

∣∣λ1,s
〉

must be a highest weight
state, so it follows that we may normalise our representative

∣∣λ1,s
〉

so that

L0
∣∣λ1,s

〉
= h1,s

∣∣λ1,s
〉
+

∣∣χ1,s′
〉
, (2.5)

at least once a normalisation for
∣∣χ1,s′

〉
has been decided upon. The states

∣∣χ1,s′
〉

and
∣∣λ1,s

〉
then constitute

a non-diagonalisable Jordan cell3 (in normal form) for L0. The structures of the first few staggered modules
are illustrated in Figure 2.

As previously mentioned, it is this staggered module structure which signals a logarithmic conformal
field theory. Indeed, solving the three partial differential equations induced by the conformal invariance of
the vacuum shows that the correlation function

〈
λ1,s (z)λ1,s (w)

〉
has the form

〈
λ1,s (z)λ1,s (w)

〉
=

C1 +C2 log(z−w)

(z−w)2h1,s
(2.6)

(in fact, one only needs to solve two of these equations — the third is then satisfied automatically). Here,
C1 and C2 are constants. The latter is computable — it is related to the logarithmic coupling β1,s defined
below in Equation (2.8) (in a manner depending upon s) — whereas the former is not [16].

We point out that the “logarithmic partner state”
∣∣λ1,s

〉
need not be annihilated by the Ln with n > 0,

though the result must belong to the submodule M1,s′ . Determining the action of the positive Virasoro
modes on

∣∣λ1,s
〉

then completely fixes the structure of the staggered module I1,s as a Vir-module. However,

3Normally, L0 is guaranteed to be diagonalisable by virtue of it being self-adjoint. Whilst L0 is still self-adjoint in logarithmic theories,
the inner product on the states spanning this Jordan cell is indefinite (neither positive nor negative-definite). This lack of unitarity —
our state space is not a (pre-)Hilbert space — resolves the seeming contradiction [55].
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FIGURE 2. The structure of the staggered modules I1,s with s = 4,5,7,8. As before, the
black circles represent the highest weight states, grey denotes a singular vector that does
not identically vanish, and white denotes the identically vanishing singular vectors. For
the circles comprising the right half of each diagram, this is understood to mean that these
states are singular in the quotient M1,s (not in the staggered module itself). The conformal
dimension is indicated on the right. The arrows denote the logarithmic coupling between
the state

∣∣λ1,s
〉

(on the right) and
∣∣χ1,s′

〉
(on the left).

this determination is subject to the following subtlety: The action of these positive modes on
∣∣λ1,s

〉
is in

general not well-defined. To see this, recall that Equation (2.5) only defines
∣∣λ1,s

〉
up to states in M1,s′ of

dimension h1,s. For s = 4,5, the only such state is
∣∣χ1,s′

〉
(and its multiples) which is annihilated by the

positive Virasoro modes. For s > 7 however, there are other states which are not annihilated by these modes,
so for s > 7, the action of the positive Virasoro modes on

∣∣λ1,s
〉

is not well-defined.
Following [42], we will refer to the redefinitions

∣∣λ1,s
〉
7−→

∣∣λ1,s
〉
+

∣∣ψ
〉
, L0

∣∣ψ
〉

= h1,s
∣∣ψ

〉
, (2.7)

as gauge transformations. There is one obvious gauge-invariant quantity that we must compute, the so-
called logarithmic coupling. It is most simply defined as

β1,s =
〈
χ1,s′

∣∣λ1,s
〉
, (2.8)

and so appears as the coefficient of
∣∣φ1,s′

〉
upon acting on

∣∣λ1,s
〉

with an appropriate sum of strings of
positive Virasoro modes. (It follows from this observation that the staggered modules I1,s are cyclic, each
being generated as a Vir-module by the state

∣∣λ1,s
〉
.)

This logarithmic coupling may be computed directly from the Nahm-Gaberdiel-Kausch fusion algo-
rithm. Alternatively [42], it may be obtained as a by-product of computing the vanishing singular vector
associated with

∣∣λ1,s
〉
. The corresponding singular vector in M1,s vanishes, so the same combination of

Virasoro modes acting on
∣∣λ1,s

〉
must give an element of the submodule M1,s′ . Determining this latter ele-

ment determines the logarithmic coupling. In any case, either way quickly becomes tedious, and so far only
the logarithmic couplings with s 6 8 have been computed explicitly (see [42] for some conjectured general
formulae however):

β1,4 =
−1
2 , β1,5 =

−5
8 , β1,7 =

−35
3 , and β1,8 =

−13475
216 . (2.9)

These values assume the normalisation for
∣∣χ1,s′

〉
used in [16, 42] (

∣∣χ1,s′
〉

is expressed as a descendant of∣∣φ1,s′
〉

in which all terms are Poincaré-Birkhoff-Witt ordered and such that the coefficient of the term with
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only one Virasoro mode is unity). Knowledge of these couplings β1,s is necessary in order to compute
within the staggered module I1,s and thereby compute correlation functions of the corresponding fields.

We want to emphasise an obvious but important feature of the staggered modules I1,s. Physics mandated
the introduction of the indecomposable M1,2, but this module is quite unsatisfactory from a field-theoretic
point of view. The problem is the presence of non-vanishing null states, orthogonal to every state in the
module. Correlation functions involving the corresponding fields should therefore vanish identically, so
what prevents us from setting these null states to zero? The answer is that M1,2 is actually realised as a
submodule of I1,4. In the latter, the non-vanishing null states are paired with logarithmic partners, and
each pair is not orthogonal. There are therefore correlation functions involving the null fields which do not
vanish identically. More abstractly, we see that whereas the module M1,2 is not isomorphic to its restricted
dual (see [56] for a definition), the staggered module I1,4 is. Note that this self-duality property of rank-
2 staggered modules is also shared by the irreducible modules that compose a traditional conformal field
theory.

The correlation functions of a chiral logarithmic conformal field theory themselves lead to fundamental
issues relating to the theory’s consistency. The simplest example illustrating this, originally considered4

in [22], pertains to I1,5. Here, the null field χ1,1 (z) is the energy-momentum tensor T (z). Our three
invariant-vacuum partial differential equations give

〈
χ1,1 (z)λ1,5 (w)

〉
=

β1,5

(z−w)4 and
〈
λ1,5 (z)λ1,5 (w)

〉
=

C−2β1,5 log(z−w)

(z−w)4 , (2.10)

where C is an unknowable (non-gauge-invariant) constant (see Equation (2.6)). Suppose now that we
wanted to augment our theory by a staggered module I of a form similar (but different to) that of I1,5.
More precisely, suppose that I also has M1,1 as its maximal highest weight submodule, and that the quo-
tient I/M1,1 is highest weight of dimension h1,5 = 2. Consistency is now brought into question through the
consideration of the correlation function

〈
λ (z)λ1,5 (w)

〉
, where λ (z) denotes the (logarithmic) Jordan part-

ner field to χ1,1 (z) = T (z) in I. It transpires that two of the invariant-vacuum partial differential equations
give the solution

〈
λ (z)λ1,5 (w)

〉
=

C′− (β +β1,5) log(z−w)

(z−w)4 , (2.11)

where β is the logarithmic coupling of I, but this does not satisfy the third partial differential equation
unless β = β1,5.

The suppositions discussed above are not purely academic. Such a situation occurs if we try to augment
our theory by the module M2,1 [16]. This is a natural assumption in many respects — fields of dimension
h2,1 = 5

8 have a long history of being associated with percolation [57,58]. But, fusing this module with itself
leads to a staggered module I = I3,1 of precisely the form discussed above. The logarithmic coupling turns
out to be β3,1 = 5

6 6= −5
8 = β1,5, and so the conformal invariance of the vacuum makes this augmentation

inconsistent. Similar arguments can be made for other augmentations by modules of the form Mr,s with
r,s ∈ Z+ and r > 1 [42].

One conclusion is then the following: Cardy’s derivation of the horizontal crossing probability forces
the conformal field theory of critical percolation to contain, in the boundary sector, the chiral logarithmic
conformal field theory generated by the indecomposable module M1,2, and moreover, this chiral theory
cannot be augmented by the modules Mr,s with r > 1. However, it is necessary to keep in mind that
we have only proven that the module I cannot coexist with I1,5 in a chiral logarithmic conformal field
theory. As we shall see (Section 5), there are loopholes by which the hypotheses of this theorem can be
avoided, but physical relevance maintained. Nevertheless, it is obvious that any serious proposal for a

4There the consideration was restricted to the level of operator product expansions, postulated in order to avoid the c → 0 catastrophe.
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physical logarithmic conformal field theory should detail whether consistency issues arise, and how they
are resolved if they do. With this in mind, we now turn to the other crossing probabilities that should also be
accommodated within the percolation conformal field theory. In particular, we will consider the probability
for simultaneous horizontal and vertical crossings as determined by Watts [49].

3. WATTS’ CROSSING PROBABILITY AND LCFT

Recall that to derive his horizontal crossing probability, Cardy noted [5] that it could be expressed as
a linear combination of 4-point functions of the boundary condition changing operators associated with
the primary φ1,2. This identification of the boundary condition changing operators was suggested by an
extrapolation of the corresponding identifications in the Ising model and 3-state Potts model. Specifically,
percolation can be viewed as the q → 1 limit of the q-state Potts model (the Ising model is q = 2). Once
this identification has been made, the descendant singular vector of

∣∣φ1,2
〉

at grade 2 induces a second-order
ordinary differential equation for the crossing probability. This is easily solved (given the obvious boundary
conditions).

Watts’ derivation [49] of the probability of having simultaneous horizontal and vertical crossings in a
rectangle of given shape starts from the assumption that this probability can also be expressed as a linear
combination of 4-point functions of some boundary condition changing operators. Conformal invariance
of this probability requires that the associated primary field have vanishing conformal dimension. Unfortu-
nately, Watts was not able to propose a candidate for this field in percolation, essentially because the fields
corresponding to his boundary condition changing operators were not known in the q-state Potts models
(with q = 2 and 3). Instead, he was able to derive certain properties that this crossing probability must
satisfy. The solutions to Cardy’s second-order ordinary differential equation do not satisfy these properties,
but Watts found that there is unique solution to the fifth-order ordinary differential equation (induced by the
grade 5 descendant singular vector of

∣∣φ1,2
〉
) which does. Satisfyingly, this solution beautifully interpolates

the results of the corresponding numerical simulations [7] (and has been subsequently proven via stochastic
Loewner evolution [59]).

In hindsight, this success suggests an obvious proposal for the primary field corresponding to Watts’
boundary condition changing operators. In the formalism of Section 2, Watts’ primary field, φ say, cannot
be identified with φ1,2 ∈ M1,2 (or φ1,1 ∈ M1,1 obviously). Instead, it seems clear that φ must belong to an
indecomposable dimension 0 module in which both the singular vectors at grades 1 and 2 are non-vanishing,
but that at grade 5 vanishes. Such a module has not yet appeared in any theory of critical percolation (to our
knowledge). In particular, this means that we must further augment the logarithmic boundary theory of [16]
by this module. As we have noted, naı̈ve augmentations of this theory frequently lead to inconsistencies, so
we will have to carefully analyse the representations induced by this physical augmentation to make sure
that mathematical consistency is preserved.

Before continuing with the representation theory, let us gather some further evidence for our proposal
for Watts’ primary field. In [41], there is an alternative derivation of both Cardy’s and Watts’ crossing prob-
abilities (among others). There, the authors consider crossing probability densities for which the relevant
boundary condition changing operator is argued to correspond to a dimension 1 primary which the authors
denote by ψ3. There is some discussion of the relation of this field to ∂φ1,2, the derivative of Cardy’s field,
which is also primary of dimension 1. This discussion stems from the fact that recovering the physical
crossing probabilities from the corresponding densities requires integrating over the arguments of the ψ3

fields. However, the two dimension 1 primaries cannot coincide if ψ3 is to be relevant for Watts’ crossing
formula. The interpretation is that ψ3 is to be strictly identified with ∂φ1,2 only when considering Cardy’s
crossing density.
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FIGURE 3. A schematic picture of the module generated by Watts’ primary field φ .
Again, the black circles represent the highest weight state, grey denotes a non-vanishing
singular vector, and white denotes a vanishing one. These states are labelled by their
conformal dimension.

What is important for our purposes is that the state
∣∣ψ3

〉
has a descendant singular vector at grade 4

(hence of dimension 5). Of course, so does
∣∣∂φ1,2

〉
= L−1

∣∣φ1,2
〉
, but the essential point is that

∣∣φ1,2
〉

has
a vanishing descendant at dimension 2, so the singular descendants of

∣∣∂φ1,2
〉

at dimensions 5 and 7 must
both vanish (see Figure 1).

∣∣ψ3
〉

is thereby distinguished, representation-theoretically, from
∣∣∂φ1,2

〉
if its

grade 6 (dimension 7) singular descendant does not vanish.
This would seem to settle the issue. For computing Watts’ crossing density, we identify ψ3 with our di-

mension 1 primary field φ1,4. Recall that the corresponding state
∣∣φ1,4

〉
generates the highest weight module

M1,4 which is realised in percolation as a submodule of the staggered module I1,8 (Figure 2). However, this
is somewhat unsatisfactory as it gives an interpretation for the 4-point functions corresponding to Watts’
crossing density, but not for those corresponding to his crossing probability. The latter, as noted above, is
obtained by integrating the coordinate of the field ψ3. We therefore propose that the correct interpretation
of the derivation of [41] is that ψ3 must be identified with a dimension 1 primary field ∂φ . φ must then be a
well-defined dimension 0 field with non-vanishing singular descendants at grades 1 and 2, and a vanishing
singular descendant at grade 5. This is exactly the structure which we have proposed based on Watts’ orig-
inal derivation. Moreover, we also now know that the singular descendant at grade 7 should not vanish, so
as to distinguish ∂φ1,2 (Cardy’s density) from ∂φ (Watts’ density)5. We indicate the structure of the module
generated by

∣∣φ
〉

in Figure 3.
We mention that it is possible to see in a different manner that the singular descendant of

∣∣φ
〉

at grade
7 must not vanish. The module obtained from the dimension 0 Verma module by setting both the singular
vectors at grade 5 and 7 to zero can be fused with itself using the Nahm-Gaberdiel-Kausch algorithm.
Computing to grade 3 (for example), we find that the resulting fusion contains among others a copy of
the module M1,3 and a submodule isomorphic to the irreducible vacuum module L1,1. This result is self-
contradictory — an irreducible vacuum at c = 0 precludes the existence of any other states [15,16], including
those of M1,3 for instance.

We therefore consider the module obtained from the dimension 0 Verma module by setting only the
grade 5 singular vector to zero. This is the module generated by Watts’ primary field φ . Recall that

5Clearly ∂φ will be null (unlike φ1,4). We consider this further evidence in its favour — ∂φ1,2 is also null, yet computes Cardy’s
crossing density admirably.
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0 0 1
3 1 2 10

3 5 7 28
3 12 · · ·

1
3 0 0 1

3 1 2 10
3 5 7 · · ·

2 1 1
3 0 0 1

3 1 2 10
3 5 · · ·

...
...

...
...

...
...

...
...

...
. . .

TABLE 2. A part of the shifted extended Kac table for c = 0, displaying the conformal
dimensions hr,s (Equation (1.1)) of the primary fields φr,s. The rows of the table are
labelled by r = 1,2,3, . . . and the columns by s. When r is odd, s takes values 1,2,3, . . .,
but when r is even, s takes values 3

2 , 5
2 , 7

2 , . . ..

the modules considered in Section 2 could all be naturally associated with entries in the c = 0 extended
Kac table, Table 1. This is not the case for this new module. Indeed, identifying the newcomer with an
indecomposable of the form Mr,s, where hr,s = 0 and rs = 5, yields four solutions for r and s (as usual), but
none of these are integral:

(r,s) = ±
(
2, 5

2
)

and (r,s) = ±
( 5

3 ,3
)
. (3.1)

It turns out to be useful to identify6 this new module as M2,5/2. We will therefore identify Watts’ primary
field as φ2,5/2.

In fact, it is convenient to define at this point a shifted extended Kac table in which the entries with r
even have s half-integral. We present a part of this shifted extended Kac table in Table 2. Note that there is
a slight redundancy inherent in this table, due to the isomorphisms

M2a−1,3b ∼= M2b,3a−3/2, a,b ∈ Z+. (3.2)

This generalises the redundancy in the standard extended Kac table, Table 1. Indeed, we always have
Mr,s ∼= M2s/3,3r/2 when this module is well-defined, regardless of the integrality of the indices r and s (and
this generalises in the obvious way to other extended Kac tables).

We now turn to the fusion rules of M2,5/2. As we are proposing to augment the spectrum required by
Cardy’s crossing formula by this module, we will focus first upon its fusion with the first-row modules.
In particular, we find that M1,1 is again verified to act as the fusion identity. We can therefore turn to the
fusion with M1,2. Computing at grade 0, we find that the fusion product is generated by two highest weight
states of dimensions 0 and 1

3 . The first vanishing singular vector is found at grade 3, identifying M1,3 as a
direct summand. The next vanishing singular vector does not occur until grade 7, and reveals itself to be a
descendant of the dimension 0 highest weight state. This then identifies the second summand in the fusion
decomposition as a new module which we may identify as M2,7/2 (note that h2,7/2 = 0). We have therefore
derived the fusion rule

M1,2 ×f M2,5/2 = M2,3/2 ⊕M2,7/2, (3.3)

where Equation (3.2) has been used to identify M1,3 with M2,3/2.

6As we shall see, this is the appropriate identification for fusing with the first-row modules of Section 2, in particular, for fusing with
M1,2. If we planned to consider fusions with first-column modules, M2,1 for instance, then the identification as M5/3,3 would be more
useful.
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FIGURE 4. The structure of the staggered modules I2,s with s = 11/2 and 13/2. As be-
fore, the black circles represent the highest weight states, grey denotes a singular vector
that does not identically vanish, and white denotes the identically vanishing singular vec-
tors. For the circles comprising the right half of each diagram, this is understood as in
Figure 2. The conformal dimension is indicated on the right and the arrows denote the
logarithmic coupling between the singular vectors (left) and their logarithmic partners
(right).

We can continue our exploration of the spectrum by fusing M1,2 with the newly generated module
M2,7/2. The result is perhaps not unexpected7:

M1,2 ×f M2,7/2 = M2,5/2 ⊕M2,9/2, (3.4)

where M2,9/2 = M3,3. Similarly,

M1,2 ×f M2,9/2 = I2,11/2 and M1,2 ×f I2,11/2 = 2M2,9/2 ⊕ I2,13/2, (3.5)

where I2,11/2 and I2,13/2 are rank-2 staggered modules defined by their respective short exact sequences

0 −→ M2,7/2 −→ I2,11/2 −→ M2,11/2 → 0 (3.6)

and 0 −→ M2,5/2 −→ I2,13/2 −→ M2,13/2 → 0, (3.7)

and logarithmic couplings
β2,11/2 =

−1
2 and β2,13/2 =

−5
8 . (3.8)

These logarithmic couplings are normalised in the same way as in Section 2. Note that they take the same
values as β1,4 and β1,5 respectively (Equation (2.9)). We illustrate these modules in Figure 4. It should be
clear now why the shifted extended Kac table of Table 2 was introduced, and we will find it convenient to
refer to the modules Mr,s with r = 2 as second-row modules in what follows.

These fusion rules are reminiscent of those of M1,2 with the other first-row modules, given in Equa-
tion (2.3). It is therefore reasonable to conjecture the following: Fusing the first-row modules with M2,5/2

generates the second-row modules M2,5/2, M2,7/2, M2,3(k+1/2), I2,3(k+1/2)+1 and I2,3(k+1/2)+2 (k ∈ Z+).
These new staggered modules are defined by the short exact sequences

0 −→ M2,3(k+1/2)−` −→ I2,3(k+1/2)+` −→ M2,3(k+1/2)+` → 0 (k ∈ Z+, ` = 1,2). (3.9)

7Actually, computing with the Nahm-Gaberdiel-Kausch algorithm to grade 9 (necessary to identify M2,9/2) was not feasible with our
current implementation. It is easy to rule out M2,3/2 as the dimension 1

3 direct summand of this fusion rule. The only possibilities
are then M2,9/2,M3,6,M4,15/2, . . ., of which the first is overwhelmingly likely. In fact, no fusion rule considered in this section was
computed to a grade greater than 7, so the identification of the deeper structure of these decompositions remains conjectural.
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The corresponding fusion rules can be computed from those of M1,2 and associativity (remembering that
M2,3/2 = M1,3). We conjecture that these rules take the form

M1,2 ×f M2,3(k+1/2) = I2,3(k+1/2)+1 (3.10a)

M1,2 ×f I2,3(k+1/2)+1 = 2M2,3(k+1/2) ⊕ I2,3(k+1/2)+2 (k ∈ Z+) (3.10b)

M1,2 ×f I2,3(k+1/2)+2 = M2,3(k−1/2) ⊕ I2,3(k+1/2)+1 ⊕M2,3(k+3/2). (3.10c)

We note that such fusions of first and second-row modules will not always decompose into second-row
modules. For example, associativity gives

M1,3 ×f M2,5/2 = I1,4 ⊕M2,9/2. (3.11)

Naı̈vely, we might have expected that the result would decompose (as vector spaces) into the second-row
modules M2,1/2, M2,5/2 and M2,9/2. But, M2,1/2 is not defined8. Instead, the identification of M2,3/2 and
M1,3 causes the decomposition to “spill over” into the first row. M2,1/2 and M2,5/2 are replaced by M1,2

and M1,4 respectively, and these together are replaced at the level of modules by I1,4.
Note that the new staggered modules we have discovered do not lead to any inconsistencies of the type

discussed in Section 2. Indeed, it is not hard to prove that associativity prevents the generation of any
staggered module composed of one first-row and one second-row module. The maximal highest weight
submodules of the staggered modules found to date are therefore all distinct. This consistency check is nec-
essary for our proposed construction of a theory encompassing both Cardy’s and Watts’ crossing probability
formulae, but there remain the fusion rules of the second-row modules with one another to investigate.

These fusion rules are unsurprisingly more complicated, and we will only be able to obtain partial in-
formation about them; we defer the discussion to Section 4. For now, we want to comment on certain
deficiencies of the second-row modules we have introduced. The module M2,5/2 that we started from is,
like M1,2, field-theoretically unsatisfactory as it contains non-vanishing states which are orthogonal to the
entire module (the corresponding null fields should therefore be zero in every correlation function). Unlike
the case of M1,2 ⊂ I1,4, this is not rectified by embedding it into the rank-2 staggered module I2,13/2. For
this embedding does not provide any partner for the non-vanishing singular vector at grade 1 (Figure 4).
Those at grades 2 and 7 are partnered, but only the grade 2 partner has non-vanishing inner product with the
singular vector. The grade 7 singular vector of M2,5/2 ⊂ I2,13/2 is therefore also problematic. We mention
that this problem is not restricted to I2,13/2. Every second-row staggered module exhibits this deficiency.

We have seen then that the staggered module I2,13/2 has non-vanishing states orthogonal to the entire
module. We might therefore expect that the corresponding fields vanish in all correlation functions. But
this cannot be. If it were true, then there would be no obstacle to setting these fields to zero, hence these
troublesome states to zero as well. However, if we set the grade 1 (and hence grade 7) singular vector of
M2,5/2 to zero, we will recover the module M1,2. In other words, if I2,13/2 was the largest indecomposable
containing M2,5/2, then the field theory would allow us to replace Watts’ field φ2,5/2 with Cardy’s φ1,2. The
resolution is clear — there must exist an indecomposable extension of M2,5/2 which is larger than I2,13/2.
This is in stark contrast to what we would have expected given the analogous behaviour of M1,2 and the
other first-row modules. We will return to this realisation in the following sections.

4. FURTHER FUSIONS

We consider first the fusion of the module M2,5/2 with itself. Proceeding as always with the algorithm
of Nahm and Gaberdiel-Kausch, we find that the decomposition to grade 0 gives five generating states of

8Such a module would have to have a highest weight state of dimension h2,1/2 = 1 and a vanishing singular vector of dimension 2.
There is no such Virasoro module.
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FIGURE 5. The singular vector structure of the modules obtained in the fusion of the
module M2,5/2 with itself (up to grade 7). As usual, the black circles represent the highest
weight states, grey denotes singular vectors that do not identically vanish, and white
denotes the identically vanishing singular vectors (in the appropriate quotient modules).
Arrows again denote logarithmic coupling. We mention that the space of logarithmic
partner states of dimension 2 is just 1, despite the two arrows drawn here.

dimensions 0, 0, 1, 2 and 1
3 . What is of immediate interest here is that the two dimension 0 states form a

non-trivial Jordan cell. This situation, in which the highest weight state is itself part of a Jordan cell, has
not been previously observed in the theory we are exploring. Nevertheless, such couplings are by no means
uncommon among general logarithmic conformal field theories.

We continue computing the fusion decomposition at deeper grades. At grade 1, the highest weight
state of dimension 0 is found to have a vanishing descendant singular vector, hence may be identified as
the vacuum

∣∣0
〉
. Its logarithmic partner,

∣∣λ
〉

say, does not. Satisfyingly, we observe that the dimension 2
descendant singular vector of the vacuum does not vanish, meaning that the vacuum (sub)module appearing
in this decomposition is the first-row module M1,1, and not its irreducible (but inconsistent) counterpart.

Computing to deeper grades, one uncovers a wealth of vanishing and non-vanishing singular vectors. In
particular, the grade 3 singular vector descended from the highest weight state of dimension 1

3 is seen to
vanish, hence M1,3 occurs as a direct summand in the fusion decomposition. Two more vanishing singular
vectors occur at grades 3 and 5, both descended from the generator of dimension 2. We find no further
vanishing singular vectors up to grade 7 (except for those whose vanishing is forced by what we have
already discovered). The decomposition is therefore as in Figure 5.

There is a certain delicacy to this analysis however. Whilst we know that there are generating states
of dimensions 1 and 2, we cannot identify them uniquely (the same is true for the dimension 0 state

∣∣λ
〉
,

but this is just due to the familiar gauge transformations of Equation (2.7)). In particular, the dimension
1 generator

∣∣ψ
〉

can always be redefined by adding multiples of the other L0-eigenstate of this dimension,
L−1

∣∣λ
〉

(see Figure 5). The situation for the dimension 2 generator
∣∣µ

〉
is even more complicated as there

are three other L0-eigenstates (and one non-eigenstate) of this dimension. It is easy to check that
∣∣ψ

〉

may be chosen so that it is annihilated by L1 (and trivially by L2). This choice makes it a highest weight
state. However, for

∣∣µ
〉
, there is no such choice. We can find a dimension 2 generating eigenstate which

is annihilated by L1, but the best we can do with respect to the L2-action is to have it yield a non-trivial
multiple of the vacuum.

One way to understand this is to consider the explicit form of the vanishing grade 3 singular vector
associated with

∣∣µ
〉

(its dimension is thus 5). This is found to have components which are strict descendants
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of this generator as well as (grade 5) descendants of the vacuum and its logarithmic partner
∣∣λ

〉
. (There

are no components descended from
∣∣ψ

〉
.) We can choose to eliminate all the components descended from∣∣λ

〉
by allowing ourselves to further redefine

∣∣µ
〉

through the addition of multiples of the only state of this
dimension which is not an eigenstate of L0. Once we have done this,

∣∣µ
〉

is then logarithmically coupled
to

∣∣χ1,1
〉

= L−2
∣∣0

〉
(Figure 5). Normalising it so that (L0 −2id)

∣∣µ
〉

=
∣∣χ1,1

〉
, we can then determine the

logarithmic coupling. It turns out to be 5
6 .

This should set off alarm bells. Recall from Section 2 that the vacuum module is realised as a submodule
of the staggered module I1,5. The logarithmic coupling there was β1,5 =

〈
χ1,1

∣∣λ1,5
〉

= −5
8 (Equation (2.9)).

We therefore have two logarithmic partner states to the same singular vector
∣∣χ1,1

〉
with different logarithmic

couplings. This then suggests that we have an inconsistency. Specifically, we expect that the 2-point
function of λ1,5 (z) and µ (w) will not satisfy the partial differential equations induced by the conformal
invariance of the vacuum.

Let us ignore this problem for the moment, in order to further analyse the situation. It was noted in [42]
that the logarithmic couplings of these staggered modules were completely determined by the vanishing
singular vectors associated with the logarithmic partner states. Indeed, we chose

∣∣µ
〉

above so that its
associated vanishing singular vector at grade 3 only involved descendants of

∣∣µ
〉

and
∣∣0

〉
. The form of this

singular vector is the same as that of the module I3,1 = M2,1 ×f M2,1 (with µ replaced by λ3,1), introduced
at the end of Section 2, which is why we derive β3,1 = 5

6 for the logarithmic coupling above.
However, the present situation is more complicated in that

∣∣µ
〉

has another associated (vanishing) singu-
lar vector at grade 5 (hence dimension 7). If this singular vector only involved descendants of

∣∣µ
〉

and
∣∣0

〉
,

then its form would be identical to that of I1,5, and so we would derive β1,5 = −5
8 for the logarithmic cou-

pling. That we do not implies that the form of the grade 5 singular vector must involve further descendants,
and we can check its explicit form to verify that it does indeed involve descendants of

∣∣λ
〉
.

This begs the question: Can we redefine
∣∣µ

〉
so that the descendants of

∣∣λ
〉

in the associated grade 5
singular vector all vanish? And of course, we can, by adding to

∣∣µ
〉

an appropriate multiple of L−2
∣∣λ

〉
. For

this
∣∣µ

〉
, the logarithmic coupling is −5

8 (and the grade 3 singular vector has components descended from∣∣λ
〉
). Note that this does not resolve the inconsistency induced by having different logarithmic couplings

— these “other definitions” of
∣∣µ

〉
are still states of the theory. Rather, it can be interpreted as expressing

that the logarithmic coupling is not gauge-invariant in this more complicated module. Indeed, redefining∣∣µ
〉

by adding arbitrary multiples of L−2
∣∣λ

〉
, we can tune the logarithmic coupling to any value we desire.

At the root of this state of affairs is the following observation: Every state of the form
(
L−2 +aL2

−1
)∣∣λ

〉

is a (normalised) logarithmic partner to
∣∣χ1,1

〉
= L−2

∣∣0
〉
. But,

L2
(
L−2 +aL2

−1
)∣∣λ

〉
= (4+6a)

∣∣0
〉
. (4.1)

This traces the lack of gauge-invariance to the fact that we have logarithmic partner states which are them-
selves descendants. Such a situation did not arise when we were only considering first-row staggered
modules, but it seems that this is unavoidable in general.

How then can all this inconsistency and lack of gauge-invariance be physical? The answer lies in the
following simple computation:

〈
0
∣∣0

〉
=

〈
0
∣∣L0

∣∣λ
〉

=
〈
λ

∣∣L0
∣∣0

〉∗
= 0. (4.2)

This merely expresses the fact that the eigenstate in a (non-trivial) Jordan cell (for a self-adjoint operator) is
necessarily null [55]. Its ramifications are, however, huge. For a null vacuum implies that all the logarithmic
couplings actually vanish:

L2
∣∣µ

〉
∝

∣∣0
〉

⇒ β =
〈
0
∣∣L2

∣∣µ
〉

= 0 for all choices of
∣∣µ

〉
. (4.3)
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In this way, the 2-point functions of the various logarithmic partner fields become consistent with global
conformal invariance of the vacuum. In fact, these 2-point functions all vanish identically9.

We have therefore derived the fusion rule

M2,5/2 ×f M2,5/2 = N1 ⊕J(3) ⊕M1,3, (4.4)

though we have only been able to derive partial information about the structures of the modules N1 and
J(3). In particular, we know that N1 is a dimension 1 highest weight module, but is neither M1,4, M3,2 nor
L1,4 = L3,2. The latter module J(3) is a more complicated indecomposable generated by three independent
states (Figure 5). We have already identified the vacuum as one of these states, and it generates a submodule
of J(3) isomorphic to M1,1. The partner state to the vacuum

∣∣λ
〉

heads a module N0 of unknown character,
and the third generator

∣∣µ
〉

gives a copy of L1,5 = L3,1. More precisely, we can introduce an increasing
chain of submodules of J(3) of the form

0 = J(0) ⊂ J(1) ⊂ J(2) ⊂ J(3), (4.5)

where the J(i) are generated by the first i states from the ordered list
[∣∣0

〉
,
∣∣λ

〉
,
∣∣µ

〉]
. It is the quotients

J(i)/J(i−1), i = 1,2,3, which we can identify10 as

M1,1, N0 and L1,5, (4.6)

respectively. The submodule chain (4.5) thus realises a generalised composition series in which irreducibles
are replaced by maximal highest weight submodules.

We can similarly investigate the decompositions obtained upon fusing other second-row modules. For
example, we have derived the following rules:

M2,5/2 ×f M2,7/2 = N2 ⊕J′(3) ⊕N1/3, (4.7)

M2,7/2 ×f M2,7/2 = N1 ⊕J(3) ⊕ I1/3 ⊕N10/3. (4.8)

The partial characterisations of these modules that we have been able to glean are summarised in Figure 6.
In particular, we have found a module J′(3) similar to J(3), except that the quotients of its generalised com-
position series are (in order):

M1,2, N′
0 and L1,4 = L3,2. (4.9)

N′
0 is another dimension 0 highest weight module with no vanishing singular vectors to grade 7. We cannot

tell if it is isomorphic to N0 or not. A plausible guess would be that N0 = M3,4 and N′
0 = M3,5, but we have

no evidence for this. Similarly, we conjecture that the module we have denoted by I1/3 is actually I3,3 (that
is, the logarithmic singular vector at grade 9 vanishes).

It is of course possible to use the associativity of the fusion product to try to obtain further results. This
approach can be of some small value. For example, Equation (4.4) implies the relations

M1,2 ×f
(
N1 ⊕J(3)

)
=

(
M2,5/2 ×f M2,7/2

)
⊕M2,9/2, (4.10)

and M1,3 ×f
(
N1 ⊕J(3)

)
⊕N1 ⊕J(3) =

(
M2,7/2 ×f M2,7/2

)
⊕M1,3 ⊕2I2,11/2, (4.11)

9Whilst this observation does solve the consistency issue discussed here, we point out that this “mass vanishing” of 2-point functions
means that we are again in the physically unsatisfactory position of having non-zero states orthogonal to the entire module. Presumably,
this means that the module we are considering here is not fully extended, and is actually realised as a submodule of a much larger
indecomposable.
10Actually, we are assuming here that the vanishing singular vectors associated with

∣∣λ
〉

(if there are any) are only composed of
descendants of

∣∣λ
〉

and
∣∣0

〉
.
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FIGURE 6. The singular vector structure of the modules obtained in the fusion of the
modules M2,5/2 and M2,7/2 (top) and of the module M2,7/2 with itself (bottom). Again,
the space of logarithmic partner states of dimensions 1 and 2 (respectively) is just 1,
despite the two arrows drawn here.

the latter of which proves that the modules N1 and J(3) appearing in Equation (4.8) coincide with those of
Equation (4.4).

5. DISCUSSION

It is now clear that the conformal field theory describing critical percolation is far richer in content
than what has been previously suggested. In particular, we have identified the module generated by the
dimension 0 primary field describing Watts’ crossing probability as M2,5/2. Just as with Cardy’s probability,
this module is reducible but indecomposable, but in contrast, it does not naturally fit into the extended Kac
table at c = 0. Instead, we have introduced a “shifted” extended Kac table which incorporates this module
and the other modules known to be present in the theory from the analysis of Cardy’s probability (which all
appear in the first row). The point is that fusing the latter first-row modules with M2,5/2 fills out the second
row of the shifted Kac table, and we have conjectured the general form of these fusion rules. This suggests
that there may in fact exist a sequence of increasingly rarefied crossing probabilities corresponding to the
other dimension 0 modules in the shifted table. Their interpretation, assuming this speculation has some
merit, is an interesting problem, though perhaps not a pressing one.

We have continued our analysis of the percolation theory by fusing the simplest second-row modules
with one another. What we have found is that the resulting indecomposable modules have a far more
intricate structure. The most complicated modules obtained by fusing first-row modules with those from
the first or second row are certain rank-2 staggered modules. More specifically, these are extensions of
highest weight modules by other highest weight modules, meaning that they are (partially) defined by a
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short exact sequence,
0 −→ M −→ I −→ M′ → 0,

in which both M and M′ are highest weight modules. However, the decomposition of the fusion of second-
row modules with other second-row modules has been shown to include extensions of highest weight mod-
ules by rank-2 staggered modules, for example,

0 −→ I −→ J(3) −→ L1,5 → 0,

for an (unidentified) staggered module I.
This is interesting for many reasons. The first is obviously that this provides further explicit examples

of physically relevant indecomposable modules. In fact, somewhat similar modules have already been dis-
cussed in [40] where it was noted that (in our terminology) fusing second-row modules from the standard
extended Kac table sometimes led to what they called rank-3 representations. These are even more compli-
cated than the modules which we have discussed, but we stress that they have not yet been associated with
any physical observable (such as a crossing probability). The key fundamental difference is the appearance
of rank-3 Jordan cells for L0 — our modules J(3) and J′(3) only possess rank-2 cells.

An example should clarify this point. If we had reason to include the module M2,3 in the spectrum of
percolation, then we could fuse it with itself. We would then obtain a module J(4) (say) which may be
described as an extension of a rank-2 staggered module by another such module:

0 −→ I −→ J(4) −→ I′ → 0.

In practice, we are not able to identify these staggered module components completely (we can only see
vanishing singular vectors to grade 7), but we can say that I has highest weight submodule M1,1 whereas
that of I′ is L1,5 = L3,1. The first rank-3 cell occurs at grade 2 and contains L−2

∣∣0
〉

and the two generators
of I′.

There is an obvious resemblance to our module J(3). Indeed, modulo our inability to see singular vectors
beyond grade 7, we could even realise this rank-3 module as an extension of a dimension 2 highest weight
module (of unknown character) by J(3). We believe it worth emphasising the observation that these modules
possess a logarithmic structure relating a highest weight submodule (here M1,1) and a module for which
both the generating singular vectors vanish (an irreducible type III− module, in the language of [50]). This
would be impossible for a rank-2 staggered module — the competing vanishing logarithmic singular vectors
would lead to conflicting logarithmic couplings [42]. The presence of a third module is thus necessary in
this situation to alleviate the conflict.

The “higher indecomposables” that we have found may then be viewed in a sense as the next rung on the
complexity ladder after the rank-2 staggered modules. They therefore form an important special case in any
quest to understand indecomposable Virasoro modules. One outstanding question which deserves further
study is why we always seem to find irreducible type III− modules appearing in these more complicated
cases. Naı̈vely, one can identify the set of modules Mr,s from which the indecomposables are expected to be
constructed (that is, using the standard sl(2)-type rules). However, with each higher-indecomposable case,
we observe that one of the expected vanishing singular vectors has migrated to a different module (yielding
the irreducible type III− module, in particular). This migration principle requires further clarification if we
are to understand the fusion rings involving higher indecomposables.

A second reason to be interested in these new indecomposables relates to the notion of “projective cover”
which has recently started to permeate the physics literature. This terminology describes a (minimal) pro-
jective indecomposable module which has a quotient module isomorphic to the module being covered. The
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qualifier “projective” here refers to the property that this indecomposable cannot itself be realised as a (non-
trivial) quotient module of a larger indecomposable. The recent interest in these concepts seems to be rooted
in the important rôle that they play in the representation theory of (finite-dimensional) simple Lie superal-
gebras [60–62] where they form an ideal in the representation ring (under tensor product). Something very
similar appears to happen in the fusion ring of our logarithmic conformal field theory. For example, the
first-row indecomposables M1,3k+` with ` = 1,2 are naturally realised as quotients of the larger indecom-
posables I1,3k+`. The latter have not been observed to occur as quotients of still larger indecomposables,
and moreover close (together with the irreducibles L1,3k) under the fusion product. It is therefore very
natural to suspect that the L1,3k and the I1,3k+` are projective (in some category), hence that the I1,3k+` are
projective covers of the M1,3k+` and the L1,3k+`.

Extending this speculation to the second row, we ask ourselves if the modules I2,3(k+1/2)+` with ` = 1,2
and M2,3(k+1/2) can be projective (in some sense). Whilst the fusion with the first-row modules seems to
close on this set of indecomposables, we have observed that fusing second-row modules with other second-
row modules generates new indecomposables. This contradicts the behaviour one expects from projective
modules under fusion, so we are forced to conclude that the second-row modules are not projective (in the
sense we want). But this should not be surprising, as we have already noted that the second-row modules
we have discovered are physically unsatisfactory as they contain non-vanishing singular vectors which are
orthogonal to the entire module. Physically, this leads to an unacceptable degeneracy in the corresponding
2-point functions.

We concluded at the end of Section 3 that this means that there should be a larger indecomposable
covering of the I2,3(k+1/2)+` on which the inner product is non-degenerate. We can now speculate that these
sought-for larger coverings may just be the projective covers of I2,3(k+1/2)+` in some physically appropriate
category (in which such covers exist). A thorough understanding the nature of these covers (and categories)
remains the fundamental outstanding problem at this point, for such knowledge should be invaluable in
describing the fusion ring in generality. Indeed, it seems likely that such knowledge will be indispensable,
as the “brute-force” methods currently employed to compute fusion rules have rather modest upper-bounds
on the module complexities which can be handled.

We add however that the process by which we have so far investigated this covering phenomenon —
explicitly computing fusion rules — is subject to the following observation. We fuse a (physically unsat-
isfactory) module with other modules until we find a larger (hopefully physically satisfactory) module in
which the original unsatisfactory module is realised as a submodule. Mathematically, this suggests that
the cover we should be trying to understand is not the projective cover, but the “injective cover” (usually
called the injective hull or envelope)11 [63]. However, it should also be clear that the fundamental physical
requirement is that the module carry a non-degenerate inner product (more precisely that the corresponding
set of 2-point functions are non-degenerate). In other words, we want our modules to be isomorphic to their
restricted duals12. This suggests that what we should be searching for are (minimal) self-dual indecompos-
ables in which our physically unsatisfactory modules are realised as submodules (or as quotients).

Let us make one small observation however. In Figure 6 we have illustrated two particular fusion de-
compositions involving second-row modules. We draw attention to the indecomposable module we have
called I1/3, specifically to the fact that it has a submodule isomorphic to M1,3. The latter is therefore not

11An injective module is one which cannot be realised as a proper submodule of an indecomposable.
12More generally, we want the restricted dual of each module to also be present in the spectrum (this is just the requirement that
each field has a unique conjugate field). This is not automatically satisfied. For example, the highest weight module M1,1 has a
restricted dual which is not a highest weight module, but is indecomposable, with maximal highest weight submodule isomorphic to
the irreducible vacuum module L1,1. (This indecomposable module has no logarithmic structure however.) But, this restricted dual
cannot be included in the spectrum, as an irreducible vacuum module precludes the presence of any other modules.
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injective in any category containing I1/3 (which is physically required by fusion if M1,2 and M2,5/2 are
present). But, M1,3 = L1,3 is irreducible, so it is self-dual (its inner product is non-degenerate), and it is
easy to see that under this condition, non-injectivity is equivalent to non-projectivity. This contradicts our
original heuristic notion that because the first-row modules L1,3k and I1,3k+` (` = 1,2) close under fusion,
they must be projective in some sense. This counterexample serves to remind us that none of this is mathe-
matically precise, and requiring projectivity in the mathematical sense is very likely too strong. We would
like to emphasise once again that projectivity (and injectivity) do not seem to have any obvious physical
interpretation, and instead it is self-duality which is distinguished in this regard.

A third reason to be interested in the results presented here is the observation that fusing our second-row
modules with themselves produces a vacuum module J(3) which looks nothing like the vacuum module I1,5

obtained from the first-row modules. It is immediately apparent from Figures 2 and 5 that I1,5 is neither a
submodule nor a quotient module of J(3). More importantly, the vacuum of I1,5 has non-zero norm (unity
by convention) whereas that of J(3) is necessarily null (Equation (4.2)). This proves that these vacua cannot
be identified, not even if we proposed some even-larger indecomposable vacuum module covering both I1,5

and J(3). Indeed, it was proven in [42, App. C] that a null first-row vacuum leads to an identically vanishing
expression for Cardy’s horizontal crossing probability.

We therefore seem to have two distinct vacua. This is problematic in a chiral conformal field theory, as
it is customary to take the uniqueness of the vacuum as axiomatic. The reason for this is that distinct vacua
give rise to distinct energy-momentum tensors, hence distinct Virasoro algebras (in general, distinct chiral
algebras). The theory then decomposes13 into the direct sum of two (physically non-interacting) conformal
field theories.

This logic forces us to take issue with the assumption that we can express percolation in terms of a chi-
ral conformal field theory. Although this is customary in the literature, the correct structure is that of (the
boundary sector of) a boundary conformal field theory. This is something more than a chiral theory as each
field, interpreted as a boundary condition changing operator, comes equipped with two labels describing
which boundary condition it changes and what it changes into. A pair of boundary labels is said to define a
given boundary sector, and the set of fields equipped with these labels defines the spectrum of this boundary
sector. Unfortunately, the allowed (conformal) boundary conditions of critical percolation are not particu-
larly well understood at this point (see [39] for some recent work in this direction), and this is almost surely
the reason why much of the literature has traditionally ignored the boundary labels that should appear on
these fields.

In any case, it is clear that each distinct boundary label α must admit a distinct identity field of the form
1αα (which does not change the boundary condition), hence a distinct vacuum

∣∣0
〉αα and vacuum module.

Our two vacuum modules I1,5 and J(3) are therefore not in contradiction with the axioms of conformal field
theory if they can be identified as the vacuum modules of different boundary sectors. This is a very natural
conclusion as the boundary conditions invoked by Cardy and Watts in their respective seminal works are
not the same.

Finally, we would like to briefly revisit the problem of inconsistencies in logarithmic conformal field
theories. As mentioned at the end of Section 2, the conformal invariance of the vacuum prevents certain
combinations of modules from appearing together in chiral theories. In particular, the modules I1,5 and I3,1

are mutually incompatible in this respect. We emphasise however that we have found no such consistency
problems in our investigation of Watts’ (and Cardy’s) crossing probability, which is (subjectively perhaps)
strong evidence for the validity of our work. There are nevertheless several means by which one can try to

13Is it possible for the two distinct vacua to give rise to distinct chiral algebras which are coupled together via some sort of indecom-
posable structure? This is certainly not the case here, but it is nevertheless interesting to consider such a possibility.
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argue inconsistencies away, with varying degrees of success, and studying these arguments is important for
determining whether percolation can admit still more general fields. For example, we could try setting all
troublesome correlators to zero. Unfortunately, this does not alleviate the problem, as the invariant-vacuum
partial differential equations at the root of the inconsistencies are not homogeneous (so do not admit zero
as a solution). A second attempt might be to note that since two mutually incompatible modules must
share a common submodule, it would be enough to postulate that the common module actually appears
with multiplicity two. However, in the case of I1,5 and I3,1 the common submodule is actually the vacuum
module M1,1, so this postulate runs afoul of the unique vacuum axiom of chiral conformal field theory.

A better loophole to exploit is therefore the simple fact that we are working within a boundary conformal
field theory, so there are many different sectors to consider. Mathematically, the conclusion of the inconsis-
tency argument in this framework becomes the following: If I3,1 does indeed have a physical interpretation
in critical percolation, then it can only appear in boundary sectors whose boundary labels are disjoint from
those of I1,5. In this way, one is prevented from forming the troublesome 2-point correlation function of the
corresponding fields λ1,5 (z) and λ3,1 (w). Note that we are not setting these correlators to zero here, rather
we are denying their existence (meaning) altogether.

It therefore follows that a physically convincing interpretation for λ3,1 (or φ2,1) as a boundary field
in critical percolation is not completely ruled out! If such an interpretation is found then one must ask
whether there is a sequence of boundary fields which (when applied in the correct order) changes a boundary
condition associated with λ3,1 into a boundary condition associated with λ1,5. If there is, then we have a
(possibly consistent) mechanism whereby both fields can coexist within the theory. If there is no such
sequence, then the boundary sectors decompose into (at least) two “connected” components, and we are
effectively left with two different boundary conformal field theories, distinguished by the class of boundary
conditions we can impose.

We conclude by mentioning that it may be possible to (objectively) test the above conclusion using
stochastic Loewner evolution. There, one has an interpretation in percolation for φ1,2 as the trace generator
for κ = 6 and for φ2,1 as the trace generator for κ = 8/3 (but no longer in percolation!). There are therefore
“composite” interpretations for both I1,5 and I3,1 via fusion. It is an open question at present if there is
any obstacle to considering a system with both values of κ , such that both values interact. One subtlety
worth making explicit is that in conformal field theory we generally do not work with the boundary, but
rather employ the method of images to recover a theory without boundary. This is necessary to obtain
a conformally invariant vacuum, the object at the heart of the inconsistency derivations. This method of
images does not seem to play a rôle in stochastic Loewner evolution, so it is not clear that a conformally
invariant vacuum state is even present in the latter approach. Finally, one has to wonder whether considering
evolutions for traces with two different values of κ might not correspond to conformal field theories with
some sort of defect wall corresponding to the discontinuity in κ . In any case, it should be clear that there are
still many important fundamental questions to be resolved, and we hope to report on these at a later date.
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Saleur for interesting (and inspiring) discussions on logarithmic structure, boundary conditions and SLE.



PERCOLATION AND WATTS’ CROSSING PROBABILITY 21

REFERENCES

[1] H Kesten. Percolation Theory for Mathematicians, volume 2 of Progress in Probability and Statistics. Birkhäuser, Boston, 1982.
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