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ABSTRACT. The construction of the non-logarithmic conformal field theory based on ŝl(2)−1/2 is revisited.

Without resorting to free-field methods, the determination of the spectrum and fusion rules is streamlined and

the βγ ghost system is carefully derived as the extended algebra generated by the unique finite-order simple

current. A brief discussion of modular invariance is given and the Verlinde formula is explicitly verified.

1. INTRODUCTION

Fractional level Wess-Zumino-Witten models were posited long ago as a tool to construct the non-unitary

minimal models. Their introduction was facilitated by the discovery of Kac and Wakimoto [1–3] of a class

of irreducible representations of affine algebras whose (normalised) characters carry a representation of

the modular group SL(2;Z). These so-called admissible representations include, but are not limited to,

the integrable representations from which the rational Wess-Zumino-Witten models are constructed. The

integrable representations necessarily have non-negative integer levels, so the fractional level models must

be constructed from non-integrable admissible representations.

Whereas the rational models have a well-known geometric description as non-linear sigma models on

compact (simple) group manifolds [4], this cannot be generalised to fractional level models. Indeed, the

action defining such a sigma model is ambiguous unless the level is an integer1 [5]. Of course an action

is not a prerequisite for constructing a conformal field theory, especially a non-unitary one, and one can

proceed in a purely algebraic manner from the representation theory of the appropriate affine algebra.

At each level there are only finitely many admissible representations. Indeed, this number is almost

always zero, and levels for which this is not the case are sometimes referred to as being admissible them-

selves. This finiteness property led to the conjecture that such algebraically-defined fractional level Wess-

Zumino-Witten models were also rational conformal field theories. Indeed, the characters of the admissible

representations close under the modular group action and this action is unitary, as in the integer level case.

However, it was quickly realised that the Verlinde formula, which relates the fusion coefficients of the the-

ory to the modular S-matrix [6], gives negative fusion coefficients in general [7–9]. Moreover, the matrix

representing conjugation, S2, was also observed to contain negative entries. Even worse, subsequent in-

vestigations determining the fusion rules from the decoupling of the null vectors of the representations (in

correlation functions) gave different results [10–14]. Whilst there have been some proposals for how to

interpret these negative coefficients [8,15], this resulted in a general feeling that the fractional level models

suffered from an “intrinsic sickness” [16] and that only their coset theories were well-defined.

All of these efforts were hampered by the seemingly natural assumption that the fusion of admissible

modules decomposed into direct sums of admissible modules. This was pointed out by Gaberdiel [17],

who studied the “smallest” fractional level model corresponding to the affine algebra ŝl(2) at level −4
3

(smallest in the sense of having the minimal number of admissible representations). Using a purely algebraic

algorithm to compute the fusion rules of the admissible representations [18, 19], rather than the Verlinde

May 24, 2019.
1This is not necessarily true if one drops the requirement of compactness. However, investigations of conformally invariant sigma

models on non-compact group manifolds have not yet revealed any clear relation to the fractional level models.
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formula or correlation functions, he was able to show that fusing admissible representations sometimes

resulted in reducible but indecomposable representations of the type found in logarithmic conformal field

theory. Furthermore, he also gave strong evidence that these fusions sometimes produced representations

for which the conformal dimensions of the states were not bounded below.

This may seem like a textbook definition of “intrinsic sickness”, but there is a very natural way to under-

stand these unbounded-below representations. The fusion rules of the rational Wess-Zumino-Witten models

respect, in a natural way, the automorphisms of the underlying affine algebra. It is therefore natural to expect

that the fusion rules of the fractional level models will too, and explicit computations completely support

this expectation (however, we mention that no proof of this property has yet been advanced). Whereas these

automorphisms transform integrable representations into one another, the same is not true for the admissible

representations. There, one finds that the infinite group of affine algebra automorphisms leads to an infinite

number of distinct transformed representations, only a finite number of which have conformal dimensions

which are bounded below.

This ruins the hope that fractional level Wess-Zumino-Witten models would be rational conformal field

theories, but in a manner which is easy to control. The inherent irrationality seems to be restricted to these

automorphic copies (in modern parlance, the images under spectral flow) of the admissible representations.

Of course, there is still the realisation that these models are logarithmic — work on understanding the nature

of the indecomposable representations that arise in these models is still in its infancy. Nevertheless, this

provides a convenient handle with which one can try to understand the true nature of fractional level models.

It is no longer appropriate to regard these models as poorly-defined curiosities. Rather, it is natural to regard

these models as fundamental building blocks for irrational and logarithmic conformal field theories, much

as their integer level cousins are for rational theories.

With this in mind, another fractional level model was studied in [20], ŝl(2) at level −1
2

. This model is

particularly interesting to field theorists as it has been known for some time (see [21] for a statement to

this effect) that the βγ system of ghost fields exhibits the same symmetry. In other words, this fractional

level model is equivalent to a free field theory. Somewhat perversely, the authors of [20] did not analyse

ŝl(2)−1/2 using this equivalence, but instead realised it in terms of a different ghost system and a lorentzian

boson. The advantage of this approach was that they were also able to divine the existence of unbounded-

below representations in terms of “multiple-twist” fields, albeit at a formidable computation cost. More

interestingly, the theory they explored was not logarithmic, in contrast to the k = −4
3

theory of [17].

In this note, we revisit the construction of the ŝl(2)−1/2 conformal field theory. Our aim is threefold.

First, we emphasise that this theory is in fact extremely easy to analyse if one abandons free-field construc-

tions. We do so here in an expository fashion which makes it clear how to generalise to other admissible

levels. Indeed, k = −1
2

is the first of an infinite series of admissible levels k = 1
2
(2m−1) (m ∈ N) which

give rise to non-logarithmic conformal field theories. We expect that all other admissible levels give rise

to logarithmic theories. Our second aim is to make precise the relation between the algebra ŝl(2)−1/2 and

the ghost algebra considered in [20]. This provides an excellent example of the extended algebra formal-

ism of [22, 23], in which all the subtleties uncovered there are present. Our last aim is to point out that

there is nothing mysterious or “sick” about the modular properties of this theory. The partition functions,

conjugation matrices and Verlinde formula all work exactly as expected.

The organisation is as follows. After first introducing our notations and conventions (Section 2), we

derive the structure of the irreducible vacuum module in Section 3. It is worthwhile seeing explicitly in at

least one case that admissibility just means that the corresponding Verma module has the same “braided”

singular vector structure as the integrable modules. This gives us the “null-vector constraints” on the other
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representations of the theory, thence the other admissible highest weight modules (Section 4). Character

formulae for all these are derived.

We then proceed to the computation of the fusion rules of the theory (Section 5). This involves con-

sidering the purely algebraic algorithm of Nahm [18] and Gaberdiel-Kausch [19]. Whilst this algorithm is

computationally intensive, we note that by making two very plausible assumptions, we do not actually have

to perform any computations and can proceed using only logical consequences of the algorithm. First, we

assume that the irreducible vacuum module acts as the fusion identity. We could of course prove this easily

using the fusion algorithm, but prefer to note that this assumption is consistent unless we uncover a loga-

rithmic partner state to the vacuum (which we do not). Logic alone then allows us to compute the fusion

rules of the admissible modules. In particular, we prove that certain fusions of admissible modules lead

to modules whose conformal dimensions are unbounded below. The second assumption then allows us to

identify these modules. This is the assumption that the fusion rules respect the spectral flow automorphisms

of ŝl(2).

This then gives us a complete infinite spectrum of irreducible modules which closes under fusion. In

Section 6, we determine the full set of characters of the theory, noting that they are not all independent as

one might expect from rational theories. Instead, there are only four linearly independent characters. We

argue, following [20], that a module is determined by its character and a prescription of how to expand it.

The latter is implicit in rational theories, but the presence of unbounded-below modules (and non-integrable

modules in general) forces its explicit acknowledgement here. The consequent lack of a bijection between

the modules and the characters therefore leads us to introduce a Grothendieck ring of characters.

Sections 7 – 9 are devoted to a detailed study of the extended algebra of the ŝl(2)−1/2 algebra, which is

the βγ ghost system. In Section 7, we show that the (chiral) primary fields defining this extension cannot be

taken to be mutually bosonic with the affine currents, and that associativity of the operator product algebra

forces the introduction of an additional operator into the theory. The bosonic ghost fields are defined, but

they are not mutually bosonic with respect to the affine currents either. At issue here is the definition of

the adjoint, an integral part of any symmetry algebra. In Section 8, we change the adjoint and repeat the

analysis of the previous section finding satisfying simplifications — all fields are mutually bosonic and the

operator product algebra is associative without need of additional operators.

We then briefly discuss (Section 9) the representation theory of this extended algebra, remarking upon

the consistency of the monodromy charge and the lifted extended algebra spectral flow. The Verma modules

of the extended algebra are verified to be irreducible — in this sense the βγ ghost system may be said to

be free — and fermionic character formulae for them and their ŝl(2)−1/2 counterparts are derived. These

formulae give simple expressions for the string functions of all the modules of the theory.

Finally, we conclude by reconsidering the modular properties of the ŝl(2)−1/2 theory in Section 10. We

derive the S and T -matrices of the theory, verify that they are symmetric and unitary, and write down a

complete set of modular invariants. Moreover, we check that S2 represents conjugation and the Verlinde

formula recovers the fusion coefficients in the Grothendieck ring of characters.

There are also two appendices, the second of which (Appendix B) is just a summary of our notations and

conventions for Jacobi theta functions. The first, Appendix A, gives a detailed description of the spectral

flow automorphisms as affine Weyl group translations (by elements of the coroot lattice) and affine outer

automorphisms (as translations by elements of the dual root lattice). We are not aware of a comprehensive

discussion of this viewpoint in the literature, so we hope that this will be of independent use in the future.
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2. ALGEBRAIC PRELIMINARIES

Let sl(2) be the complex Lie algebra spanned by three generators E, H and F subject to the commutation

relations [
H,E

]
= 2E,

[
E,F

]
= H and

[
H,F

]
=−2F. (2.1)

We define the Killing form to be the trace of the product in the defining (fundamental) two-dimensional

representation (equivalently, 1/4 of the trace of the product in the adjoint representation). This gives

κ
(
H,H

)
= 2 and κ

(
E,F

)
= 1, (2.2)

with all other combinations vanishing. The affine Kac-Moody algebra ŝl(2) is then the vector space

sl(2)⊗C
[
t; t−1

]
⊕ spanC {K,L0} (2.3)

equipped with the commutation relations

[
Ja

m,J
b
n

]
=
[
Ja,Jb

]
m+n

+mκ
(
Ja,Jb

)
δm+n,0K,

[
Ja

m,K
]
= 0, (2.4a)

[
L0,J

a
m

]
=−mJa

m and
[
L0,K

]
= 0. (2.4b)

Here, Ja
m denotes Ja ⊗ tm, where Ja can represent H, E or F . We are generally interested in representations

of ŝl(2) on which the central element K acts as k times the identity, for some common scalar k called the

level. In what follows, we will be principally interested in the case where k = −1
2

.

As is well known, the universal enveloping algebra of ŝl(2) contains a subalgebra isomorphic to the

(universal enveloping algebra of the) Virasoro algebra (when k 6= −2). This is the Sugawara construction.

Here, the Virasoro elements are realised as quadratic elements normally ordered in the standard way:

Ln =
1

2(k+2) ∑
r∈Z

:
1

2
HrHn−r +ErFn−r +FrEn−r : . (2.5)

As usual, we will identify L0 ∈ ŝl(2) with the quadratic element L0 constructed in Equation (2.5). The

central charge defined by the Sugawara construction is c = 3k/(k+2).

We define a triangular decomposition of ŝl(2) as follows: The span of H0, K and L0 defines the Cartan

subalgebra, the raising operators are En−1, Hn and Fn for n > 1, and the adjoint is defined by

E†
n = F−n, H†

n = H−n, K† = K and L†
n = L−n. (2.6)

We can now talk about highest weight states and Verma modules. It is easy to check from Equation (2.5)

that an affine highest weight state with sl(2)-weight (H0-eigenvalue) λ has conformal dimension (L0-

eigenvalue)

hλ =
λ (λ +2)

4(k+2)
. (2.7)

The sl(2)-weight λ , conformal dimension h and the level k completely determine an ŝl(2)-weight λ̂ =

(λ ,k,h). As the level is given and the conformal dimension of a highest weight state is determined by

its sl(2)-weight, it follows that an ŝl(2)-Verma module is characterised solely by the latter. We therefore

denote Verma modules by V̂λ .

The fundamental question to ask about Verma modules concerns their reducibility. If a Verma module

contains a proper submodule, then this submodule is generated by singular vectors, non-trivial descendant

highest weight states. Quotienting V̂λ by its maximal proper submodule gives the corresponding irreducible

module L̂λ . To find singular vectors, we can use the fact that Verma modules come equipped with a unique

(up to normalisation) invariant inner product defined by the adjoint (2.6), the Shapovalov form. With respect

to this form, the (non-trivial) singular vectors and their descendants are all null, meaning that their norm
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is zero. The presence of such null states can be detected by computing the determinant of the Shapovalov

form in each affine weight space.

Happily, there is an explicit form for this determinant, given by the Kac-Kazhdan formula [24]: The

Shapovalov determinant of V̂λ in the weight space (λ −µ ,k,hλ +m) is

detλ (µ ,m) =
∞

∏
ℓ=1

{
(λ +1− ℓ)P(−µ+2ℓ,m)

∞

∏
n=1

(
λ +1+n(k+2)− ℓ

)P(−µ+2ℓ,m−nℓ)

·
(
−λ −1+n(k+2)− ℓ

)P(−µ−2ℓ,m−nℓ)(
n(k+2)

)P(−µ ,m−nℓ)

}
, (2.8)

where P(µ ,m) denotes the multiplicity with which the weight (µ ,0,m) appears in the module V̂0 (this is

independent of k). The presence of a singular vector in V̂λ is signalled by the vanishing of one of the

factors appearing in this formula and the vanishing of the arguments of the function P occurring in the

corresponding exponent (non-vanishing arguments of this P in general correspond to descendants of the

singular vector). We will refer to weights which admit a singular vector as singular weights.

3. VACUUM MODULE STRUCTURE

We now specialise to k = −1
2

, with the aim of constructing a conformal field theory. This theory will

therefore have central charge c = −1. The first step is to determine a vacuum module. By definition, the

vacuum
∣∣0
〉

is an ŝl(2)-highest weight state which is also annihilated by all the zero-modes, in particular

by H0 and F0. The vacuum module is therefore a quotient module of V̂0. We can analyse these quotients

by determining the singular vector structure of the Verma module, and to do this we use the Kac-Kazhdan

formula (2.8).

Setting λ = 0 in this formula, we see that the determinant vanishes when

ℓ= 1, ℓ=
3n

2
+1 or ℓ=

3n

2
−1 (n ∈ 2Z+). (3.1)

In the first case, the arguments of P in the corresponding exponent vanish if µ = 2ℓ= 2 and m= 0, indicating

that the singular vector has weight
(
−2, −1

2
,0
)
. This is clearly the singular vector F0

∣∣0
〉

which is set to zero

by definition. The other two cases are more interesting and the weights of the corresponding singular vectors

are found to be
(
−6m−2,

−1

2
,2m(3m+1)

)
and

(
6m−2,

−1

2
,2m(3m−1)

)
(m =

n

2
∈ Z+), (3.2)

respectively. The first few singular weights are therefore
(

4,
−1

2
,4

)
,

(
−8,

−1

2
,8

)
,

(
10,

−1

2
,20

)
,

(
−14,

−1

2
,28

)
, . . . (3.3)

These weights do not determine the singular vector itself, but it can be shown that every weight space of a

Verma module admits at most one singular vector.

Unfortunately, these are not the only singular weights of V̂0. We also have to check for singular vectors

which are descended from those we have already found. In other words, we should check the submodules

which the known singular vectors generate for further singular vectors. Repeating the above Kac-Kazhdan

analysis for the submodule generated by the singular weight
(
−2, −1

2
,0
)
, we find further singular weights

of the form
(
−6m,

−1

2
,2m(3m−1)

)
and

(
6m,

−1

2
,2m(3m+1)

)
(m ∈ Z+). (3.4)
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(0,0)

(−2,0)

(4,4)

(−6,4)

(6,8)

(−8,8)

(10,20)

(−12,20)

(12,28)

(−6m+4,2(m−1)(3m−2))

(6m−2,2m(3m−1))

(−6m,2m(3m−1))

(6m,2m(3m+1))

V̂0 k = −1
2

FIGURE 1. The singular vector structure of the vacuum Verma module at level −1
2

. Each

singular vector is labelled by its sl(2)-weight and conformal dimension (respectively).

These describe two series of singular vectors which are completely disjoint from those found above. The

first few weights are
(
−6,

−1

2
,4

)
,

(
6,

−1

2
,8

)
,

(
−12,

−1

2
,20

)
,

(
12,

−1

2
,28

)
, . . . (3.5)

However, the weight
(
−2, −1

2
,0
)

and those given in (3.2) and (3.4) exhaust the singular weights of V̂0.

This is not hard to check explicitly: For example, the singular weights descended from that of weight(
−6m−2, −1

2
,2m(3m+1)

)
of (3.2) all have the form

(
−6
(
m′−m

)
,
−1

2
,2
(
m′−m

)(
3
(
m′−m

)
−1
))

(m′ > 2m)

or

(
6
(
m′+m

)
,
−1

2
,2
(
m′+m

)(
3
(
m′+m

)
+1
))

(m′ ∈ Z+),

(3.6)

which are both of the form given in (3.4). It follows now that the singular vector structure of V̂0 is as shown

in Figure 1. Note the braiding pattern familiar from the integrable modules (and the Virasoro algebra).

It follows that the descendant singular vectors of V̂0 are generated by the two singular vectors of weights(
−2, −1

2
,0
)

and
(
4, −1

2
,4
)
. The former is the vector F0

∣∣0
〉

which we have already set to zero, so we see that

there are only two possible choices for the vacuum module. Either we set the dimension 4 singular vector to

zero, or we do not. We choose to set this singular vector to zero, thereby taking the vacuum module to be the

irreducible quotient L̂0. The alternative, in which this singular vector is not set to zero, will undoubtedly

lead to a logarithmic conformal field theory [25] (assuming it can be defined), which we do not want to

consider here2.

The character for the vacuum Verma module is easily computed from the standard Poincaré-Birkhoff-

Witt basis and has the form

χ
V̂0

(z;q) = tr
V̂0

zH0qL0 =
1

∞

∏
i=1

(
1− z−2qi−1

)(
1−qi

)(
1− z2qi

) =
1

∑
n∈Z

(−1)n
z2nqn(n+1)/2

, (3.7)

2We remark that a logarithmic conformal field theory with ŝl(2)−1/2 symmetry was proposed in [26], based on free field constructions.

We do not expect that keeping the singular vector in the vacuum module will lead to this theory. We intend to return to a detailed

discussion of how the theory discussed here can be extended to something similar to that of [26] in a future publication.
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where we have used Jacobi’s triple product identity, Equation (B.4), in the last step. It now follows from

the embedding pattern of Figure 1 that the character of the (irreducible) vacuum module takes the form

χ
L̂0

(z;q) =

[
1−

∞

∑
n=1

(
z6n−2q2n(3n−1)+ z−6n+4q2(n−1)(3n−2)

)
+

∞

∑
n=1

(
z6nq2n(3n+1)+ z−6nq2n(3n−1)

)]
χ
V̂0

(z;q)

=

∑
n∈Z

(
z−6n − z6n−2

)
q2n(3n−1)

∞

∏
i=1

(
1− z−2qi−1

)(
1−qi

)(
1− z2qi

) =
∑
n∈Z

(
z−6n − z6n−2

)
q2n(3n−1)

∑
n∈Z

(−1)n
z2nqn(n+1)/2

. (3.8)

4. ADMISSIBLE REPRESENTATIONS

Now that we have a vacuum module, we can ask if it constrains the spectrum of the theory. Since the

vacuum module has a vanishing singular vector at sl(2)-weight 4 and grade 4, the answer is “yes” (setting

F0

∣∣0
〉

to zero does not affect the spectrum as it is a part of the definition of the vacuum). To derive the

constraints, we need the explicit form of this singular vector. There exist semi-explicit formulae for such

singular vectors in the literature [27–29], but it is not hard to compute it directly in this case. It turns out to

be

(
156E−3E−1 −71E2

−2 +44E−2H−1E−1 −52H−2E2
−1 −16F−1E3

−1 −4H2
−1E2

−1

)∣∣0
〉
= 0, (4.1)

up to normalisation. By the state-field correspondence of conformal field theory, this vanishing singular

vector gives rise to a vanishing chiral field whose modes must therefore annihilate any physical state [30].

These are the constraints we seek.

Instead of considering this singular vector itself, it is convenient to consider its sl(2)-weight 0 descendant

obtained by acting with F2
0 . This descendant field is (up to normalisation)

Λ = 64 : EEFF : −16 : EHHF : +136 : EH∂F : −128 : E∂HF : +12 : E∂ 2F : −8 : HHHH :

−200 : ∂EHF : +108 : ∂E∂F : +8 : ∂HHH : −38 : ∂H∂H : −156 : ∂ 2EF : +24 : ∂ 2HH : −∂ 3H.

(4.2)

Let
∣∣λ
〉

be a highest weight state with sl(2)-weight λ . Since the modes of Λ must annihilate any physical

state,

0 = Λ0

∣∣λ
〉
=
(
−8H4

0 −8H3
0 −38H2

0 +48H2
0 +6H0

)∣∣λ
〉
=−2λ (λ −1)(2λ +1)(2λ +3)

∣∣λ
〉
, (4.3)

implying that λ = 0,1, −1
2
, −3

2
. These are the only allowed highest weight states of the theory. Their

conformal dimensions are 0, 1
2
, −1

8
and −1

8
, respectively.

Now that we know the possible highest weight states, we can ask about the possible highest weight

modules. For example, repeating the analysis of Section 3 shows that the Verma module V̂1 has singular

vectors of weights
(
−3, −1

2
, 1

2

)
,

(
±6m−3,

−1

2
,

1

2
+2m(3m∓2)

)
and

(
±6m+1,

−1

2
,

1

2
+2m(3m±2)

)
(m ∈ Z+).

(4.4)

The embedding pattern is again of braided type and the two generating singular vectors are those with

weights (
−3,

−1

2
,

1

2

)
and

(
3,

−1

2
,

5

2

)
. (4.5)

The sl(2)-weights of these singular vectors do not belong to the allowed set, hence we can conclude that

all descendant singular vectors vanish in the physical module. It follows that the highest weight state with
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1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 2 2

1 2 3 2 1 1 3 5 5 5 5 5 5

1 2 5 6 5 2 1 2 6 9 10 10 10 10 10

1 2 5 9 12 9 5 2 1 1 5 12 18 20 20 20 20 20 · · ·
1 2 5 10 18 21 18 10 5 2 1 2 9 21 31 35 36 36 36 36

1 2 5 10 20 31 38 31 20 10 5 2 1 1 5 18 38 55 63 65 65 65 65

1 2 5 10 20 35 55 63 55 35 20 10 5 2 1 2 10 31 63 91 105 109 110 110 110
...

...
. . .

L̂0 L̂−1/2

1 1 1 1 1 1 1 1

1 2 2 1 1 2 2 2 2 2 2

1 2 4 4 2 1 2 4 5 5 5 5 5

1 2 5 8 8 5 2 1 1 4 8 10 10 10 10 10

1 2 5 10 15 15 10 5 2 1 2 8 15 19 20 20 20 20 · · ·
1 2 5 10 19 27 27 19 10 5 2 1 1 5 15 27 34 36 36 36 36

1 2 5 10 20 34 47 47 34 20 10 5 2 1 2 10 27 47 60 64 65 65 65

1 2 5 10 20 36 60 79 79 60 36 20 10 5 2 1 1 5 19 47 79 100 108 110 110 110
...

...
. . .

L̂1 L̂−3/2

FIGURE 2. The multiplicities of the weights of the admissible representations of

ŝl(2)−1/2. In these pictures, the sl(2)-weight increases from right to left (in multiples

of 2) and the conformal dimension increases from top to bottom (in multiples of 1).

λ = 1 generates the irreducible module L̂1. Its character is

χ
L̂1

(z;q) = zq1/2

∑
n∈Z

(
z−6n − z6n−4

)
q2n(3n−2)

∑
n∈Z

(−1)n
z2nqn(n+1)/2

. (4.6)

Similarly, one finds that the modules corresponding to λ = −1
2

and −3
2

are also irreducible with characters

χ
L̂−1/2

(z;q) = z−1/2q−1/8

∑
n∈Z

(
z6nqn(6n+1)− z−6n+2q(2n−1)(3n−1)

)

∑
n∈Z

(−1)n
z2nqn(n+1)/2

(4.7)

and χ
L̂−3/2

(z;q) = z−3/2q−1/8

∑
n∈Z

(
z6nqn(6n−1)− z−6n+4q(2n−1)(3n−2)

)

∑
n∈Z

(−1)n
z2nqn(n+1)/2

, (4.8)

respectively. These are the admissible highest weight modules of Kac and Wakimoto [2]. We illustrate

them in Figure 2.

5. FUSION AND THE SPECTRUM

We turn now to the derivation of the fusion rules of the admissible modules. Normally, we could inves-

tigate this by computing 3-point correlation functions of the primary fields. However, doing this requires

making a number of non-trivial assumptions. In particular, we must assume that every field has a conjugate

so that the matrix of 2-point functions is non-degenerate. Moreover, we would also be implicitly assuming

that we have already identified every field of the theory. Since there are no candidates within the admissible
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representations for the conjugate fields to the dimension −1
8

primaries, we must conclude that there are

further fields to discover. But if we admit to not knowing the field content of the theory, then it follows that

we cannot be sure that the 2-point functions we will use in our fusion computations are non-degenerate.

For example, it seems reasonable to declare that the vacuum is self-conjugate, so that the 2-point function

of the identity is constant. However, if subsequent fusion computations revealed that the vacuum had a

logarithmic partner state, then it would follow from general principles [31] that the conjugate field to the

identity would be this logarithmic partner (and the 2-point function of the identity would vanish identically),

contradicting our original declaration.

For this reason, we will be careful and compute fusion using a purely algebraic method that makes

no reference to correlation functions nor non-degeneracy. This is the algorithm of Nahm and Gaberdiel-

Kausch [18,19]. Happily, the situation here is sufficiently simple that we will not have to make any explicit

computations with this algorithm; we will be able to proceed with a few logical consequences which are

easy to state (and hopefully understand).

In general, this algorithm constructs a representation ∆ of the symmetry algebra on the fusion product of

two modules M1 and M2. Decomposing this representation gives the fusion rule M1 ×f M2. In practice,

one only constructs this representation to a chosen finite grade g — all the “deeper” structure of the fused

module is thrown away. The idea is to choose g large enough that one obtains as much information as is

required. The representation ∆ is constructed within the working space, which for affine symmetry algebras

consists of the tensor product of the zero-grade subspace of M1 and the subspace of M2 consisting of

elements with grade at most g. The working space is then reduced by removing the so-called spurious

states which reflect the vanishing of certain singular vectors of M1 and M2. This is achieved by employing

three master equations [19, Eqs. 2.2–2.4] iteratively on expressions formed from these singular vectors. The

fusion representation space is thereby constructed (to grade g) when all spurious states are removed. The

master equations then define the action of the symmetry algebra (that is ∆) upon what remains.

It is extremely important to note that we need to assume that the conformal dimensions of the states

composing each module are bounded from below3. Then, we can define the grade of an arbitrary state in

this module to be the difference between the dimension of the state and the minimal dimension. It should

be clear that we require this bounded-below property for the modules we are fusing and the modules we

generate via fusion. Indeed, when we say that the fusion representation space is constructed to grade g,

we mean that upon decomposition, the structure of each component module is determined to grade g in the

above sense.

We will not need to enter into the details of this algorithm. Computing to grade 0 turns out to suffice for

our purposes, and so we will only determine the action of the sl(2)-subalgebra spanned by the zero-modes

E0, H0 and F0. The master equations give this action as

∆(J0) = J0 ⊗ id+ id⊗J0 (J = E,H,F), (5.1)

which is identical to the tensor product sl(2)-action (on sl(2)-modules). The fusion of ŝl(2)-modules to

grade 0 therefore only differs from the tensor product of the corresponding grade 0 sl(2)-modules if there

are non-trivial spurious states. We point out that if we find a spurious state, then acting upon it with any

∆(J0) must give another spurious state. The spurious states therefore form a representation of the zero-mode

sl(2)-subalgebra.

Consider first fusing the vacuum module L̂0 with some other module M. We require only that the zero-

grade states of M form an irreducible sl(2)-module. The working space is then the tensor product of the

trivial sl(2)-module with this irreducible sl(2)-module. There are vanishing singular vectors in at least

3In fact, one can sometimes bypass this requirement [17], but it adds significantly to the complexity of the computations.
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one of the ŝl(2)-modules, so there could be spurious states. But, the working space is isomorphic to a

single irreducible sl(2)-module, so the existence of spurious states would mean that the fusion product is

empty! The possibilities are therefore that fusing a module with the vacuum gives the module back again

or nothing.

Suppose therefore that L̂0×f M is empty for some module M in our theory. As M must have a conjugate

representation M
+ in the theory, M×f M

+ = L̂0 + . . .. By hypothesis, the result of fusing the left hand

side of this rule with L̂0 is empty, hence L̂0 ×f L̂0 must also be empty. But this implies that the vacuum is

a null state, which requires the existence of a logarithmic partner (as we noted above). We may therefore

proceed under the assumption that L̂0 ×f M is not empty for any module in our theory — this will only be

invalidated if we find that it leads to a logarithmic partner to the vacuum. As we will see, we do not find this

outcome, hence it is consistent to insist that the irreducible vacuum module L̂0 acts as the fusion identity

on every module in the theory4. Note that it follows from this that the vacuum module is self-conjugate.

A more interesting computation is to determine the fusion of the module L̂1 with itself. Computing to

grade 0 again, we may regard the working space as the tensor product of the fundamental representation

of sl(2) with itself. This decomposes as the direct sum of the trivial and adjoint representations, so the

working space contains a sl(2)-highest weight state of weight 2. In the absence of any spurious states, this

would imply that the fused module contains a ŝl(2)-highest weight state of weight
(
2, −1

2
, 4

3

)
. But this is

forbidden by the vacuum singular vector (Section 4), so the weight 2 highest weight state must be spurious.

It then follows that the entire adjoint representation must also be spurious, so we are left with the trivial

sl(2)-representation. If this were also spurious, then the fusion product would be empty. The requirement

of a conjugate for L̂1 would then force L̂0 ×f L̂1 to be empty, contradicting the fact that L̂0 is the fusion

identity. The ŝl(2)-module corresponding to the trivial sl(2)-representation is clearly the vacuum module5,

so we have derived the following fusion rule:

L̂1 ×f L̂1 = L̂0. (5.2)

The module L̂1 is therefore also self-conjugate.

We can continue in a similar fashion to determine the fusion rules of the other admissible modules. In

particular, we obtain

L̂1 ×f L̂−1/2 = L̂−3/2 and L̂1 ×f L̂−3/2 = L̂−1/2 (5.3)

without fuss. The rest of the fusion rules are more delicate to analyse however. For example, considering

L̂−1/2 ×f L̂−1/2 to grade 0 as above, the working space decomposes as an sl(2)-representation into an

infinite direct sum6 of irreducibles whose highest weights are −1,−3,−5, . . .. Proceeding as above, we

would conclude that none of these highest weights are allowed, hence that all states are spurious and the

fusion product is empty.

But as with L̂1, insisting on a conjugate for L̂−1/2, even if we have not yet identified it, again leads

to a contradiction. The loophole is in trusting that a non-spurious sl(2)-highest weight state corresponds

4Of course, we can explicitly show that L̂0 ×f M = M for each of our admissible modules using the Nahm-Gaberdiel-Kausch al-

gorithm. But the above argument is much more elementary, and has the additional advantage of drawing attention to the subtleties

possible when one does find logarithmic structure. It does assume the existence of conjugates, however this is physically necessary

in all (quasirational) theories, even logarithmic ones (with a suitable interpretation) — fields without a conjugate decouple within

correlation functions.
5Matthias Gaberdiel points out that this assumes that the result of the fusion is a module whose conformal dimensions are bounded

below. I believe that this assumption is warranted because of the finite-dimensionality of the working space, but I have no proof of

this at present. In any case, the conclusion of the above argument has been confirmed by explicitly calculating the fusion structure to

grade 1 using the full Nahm-Gaberdiel-Kausch algorithm.
6We know that this is a direct sum because these sl(2)-representations are unitary with respect to the sl(2;R) adjoint J‡ = −J,

J = E,H,F .
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to an ŝl(2)-highest weight state. We could trust this correspondence in the previous examples because

the Nahm-Gaberdiel-Kausch algorithm gives us, grade by grade, the affine structure of the fused module.

However, this algorithm does not make sense if the conformal dimensions of the states of the fused module

are not bounded from below (recall that in this situation, the concept of grade is not defined). Before, this

boundedness property was guaranteed because we only had finitely many irreducible representations of the

zero-mode sl(2)-subalgebra. In the case at hand however, there are infinitely many such representations, so

the conformal dimension need not be bounded from below. Indeed, we cannot even compute the conformal

dimensions of the sl(2)-highest weight states without assuming something about the fused module struc-

ture. The correct conclusion to draw from our analysis is that either L̂−1/2 ×f L̂−1/2 is empty, which leads

to a contradiction, or that it gives a module whose states have arbitrarily negative conformal dimension.

In fact, it is not too difficult to justify directly that the second option is what actually occurs. To do

this, we make use of the automorphisms of our symmetry algebra, in particular the spectral flow automor-

phisms (described in detail in Appendix A). For ŝl(2), the spectral flow is freely generated by a single

automorphism γ which may be taken to act by (see Equation (A.18))

γ (En) = En−1, γ (Hn) = Hn −δn,0K, γ (Fn) = Fn+1, (5.4a)

γ (K) = K and γ (L0) = L0 −
1

2
H0 +

1

4
K. (5.4b)

We consider the induced action of γ on the vacuum. Specifically, we determine the sl(2)-weight and

conformal dimension of γ
(∣∣0
〉)

:

H0γ
(∣∣0
〉)

= γ
(
γ−1 (H0)

∣∣0
〉)

= γ
(
(H0 +K)

∣∣0
〉)

=
−1

2
γ
(∣∣0
〉)

, (5.5)

L0γ
(∣∣0
〉)

= γ
(
γ−1 (L0)

∣∣0
〉)

= γ

((
L0 +

1

2
H0 +

1

4
K
)∣∣0
〉)

=
−1

8
γ
(∣∣0
〉)

. (5.6)

Similarly, one can check that γ
(∣∣0
〉)

is a highest weight state. This therefore suggests that

γ
(
L̂0

)
= L̂−1/2. (5.7)

This is to be interpreted as γ ◦π0 ◦ γ−1 = π−1/2, where πλ denotes the representation (map) of ŝl(2) on L̂λ .

Note that here γ−1 is acting as an automorphism on ŝl(2), whereas γ denotes the induced isomorphism of

vector spaces acting on the states (as in γ
(∣∣0
〉)

above).

We can prove (5.7) in many ways. First, we can note that what we have proven is the corresponding

equality of Verma modules. We should therefore explicitly check that the expressions for the two vanishing

singular vectors of each module are mapped to zero by γ and γ−1 (as appropriate). A second proof involves

verifying that the characters satisfy

χ
L̂−1/2

(z;q) = χ
γ(L̂0)

(z;q) = ∑
basis γ(|ψ〉)

z
λγ(|ψ〉)q

∆γ(|ψ〉)

= ∑
basis |ψ〉

z
λ|ψ〉+k

q
∆|ψ〉+

1
2 λ|ψ〉+

1
4 k = z−1/2q−1/8χ

L̂0

(
zq1/2;q

)
, (5.8)

where λ|ψ〉 and ∆|ψ〉 denote the sl(2)-weight and conformal dimension of
∣∣ψ
〉

(respectively). This can be

done in a straight-forward fashion using the character formulae given in Equations (3.8) and (4.7). However,

it is far more elegant to simply observe that twisting a representation by an algebra automorphism clearly

preserves irreducibility. To this third proof, we add the practical method of looking at the picture of L̂0 in

Figure 2, turning one’s head 45◦ to the right, and comparing with the picture of L̂−1/2 there. In this way, we

observe that the multiplicities of the appropriate weight spaces precisely match. This actually constitutes a
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rigorous proof in itself because the pictures in Figure 2 show the multiplicities to sufficiently deep grades

(in general, both pictures must show that the generating singular vectors vanish).

We can similarly study the spectral flow of L̂1. Proceeding as above, we compute that the image of

the highest weight state
∣∣1
〉

under γ has sl(2)-weight 1
2

and conformal dimension 7
8
. However, it is not a

highest weight state:

F1γ
(∣∣1
〉)

= γ
(
γ−1 (F1)

∣∣1
〉)

= γ
(
F0

∣∣1
〉)

6= 0. (5.9)

Instead, it is the image of F0

∣∣1
〉

which becomes the highest weight state of the flowed module γ
(
L̂1

)
. This

can be checked explicitly, but is most easily seen from Figure 2. Since γ
(
F0

∣∣1
〉)

has sl(2)-weight −1
2

and

conformal dimension −1
8

, it now follows that

γ
(
L̂1

)
= L̂−3/2. (5.10)

We can apply our new-found knowledge regarding the action of the spectral flow automorphisms to the

computation of fusion rules. This relies upon the principle that the fusion rules respect these automorphisms

in the following manner7:

M×f M
′ =M

′′ ⇒ Ω(M)×f Ω′ (
M

′)= ΩΩ′ (
M

′′) . (5.11)

Here, Ω and Ω′ are automorphisms. This principle is well-known from studies of rational conformal field

theories with Lie algebra symmetries. Despite its natural appearance, we are not aware of any formal

general proof. It has however been checked explicitly in many non-trivial cases (see [17] in particular). For

example, we can determine L̂1 ×f L̂−1/2 by applying id×f γ (in hopefully obvious notation) to L̂1 ×f L̂0.

The result reproduces the first fusion rule of (5.3).

More importantly, we can apply this principle to compute the fusion of L̂−1/2 with itself. The result is

therefore that this gives the module γ2
(
L̂0

)
= γ
(
L̂−1/2

)
(and indeed we see that the fusion is not empty).

This module is not one of the admissibles that we have considered. Indeed, it is not even a highest weight

module, as can be seen by looking at the picture of L̂−1/2 in Figure 2 and turning one’s head 45◦ to the

right. This is perhaps physically distasteful, but is an unavoidable feature of the theory. We remark that the

conformal dimensions of the states in this module with a given sl(2)-weight are bounded below. It follows

from this that operator products of the corresponding fields may still be expanded as a Laurent series (with

poles of finite order). The standard field-theoretic machinery of conformal field theory may therefore be

carried across to these modules without difficulty.

It is now trivial to determine the remaining fusion rules of the admissible modules:

L̂−1/2 ×f L̂−1/2 = L̂−3/2 ×f L̂−3/2 = γ2
(
L̂0

)
and L̂−1/2 ×f L̂−3/2 = γ2

(
L̂1

)
. (5.12)

Moreover, we now see that the spectrum contains the modules γℓ
(
L̂0

)
and γℓ

(
L̂1

)
for all ℓ. Extending this

to ℓ negative also makes sense, and is in fact necessary for physical consistency. Otherwise (for example),

L̂−1/2 would have no conjugate within the spectrum, so correlation functions of its fields with any other

fields would vanish, leading to the effective decoupling (and removal) of L̂−1/2 from the theory. The

conjugate of L̂−1/2 = γ
(
L̂0

)
is of course γ−1

(
L̂0

)
. This is not a highest weight module — one pictures

it by looking at L̂0 in Figure 2 and turning one’s head 45◦ to the left — as its zero-grade states form a

lowest weight representation of sl(2). We indicate this module (and other flowed modules) schematically

in Figure 3. Note that even the Weyl group of sl(2) does not preserve the modules in the spectrum: The

non-trivial reflection induces a (grade-preserving) map between γℓ
(
L̂λ

)
and γ−ℓ

(
L̂λ

)
(for λ = 0,1). Of

course, this map is nothing but conjugation (as usual for ŝl(2) theories).

7This can only apply when the automorphisms acting commute. It is not clear what should replace this principle in general.
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L̂0

L̂1

L̂−1/2

L̂−3/2

γ γ

γ γ

γγ

γγ

(0,0)

(−1
2

,
−1
8

)(
1
2
,
−1
8

)

(
−1,

−1
2

)(
1,
−1
2

)

(
1,

1
2

) (
−1,

1
2

) (−3
2

,
−1
8

)

(
1
2
,
7
8

)

(
3
2
,
−1
8

)

(−1
2

,
7
8

)
(−2,−1)

(0,1)(0,1)

(2,−1)

FIGURE 3. Depictions of the modules appearing in the spectrum and the action of the

spectral flow automorphism γ . Each “corner state” is labelled by its sl(2)-weight and

conformal dimension (in that order).

We have therefore shown that the the spectrum of our ŝl(2)−1/2 theory consists of two infinite series of

modules, γℓ
(
L̂0

)
and γℓ

(
L̂1

)
(ℓ ∈ Z). The fusion rules may be summarised by

γℓ
(
L̂λ

)
×f γm

(
L̂µ

)
= γℓ+m

(
L̂λ+µ

)
, (5.13)

where λ and µ take value 0 or 1 and their sum is taken modulo 2. It should be clear that all the modules in

the spectrum are mutually distinct (there are no module isomorphisms between them).

6. CHARACTERS AND MODULAR INVARIANTS

Consider now the characters of the modules comprising our theory. We have already determined the

characters of L̂0 and L̂1 and their images under γ , and it is easy to use the explicit spectral flow action to

determine expressions for those which remain. But let us first take this opportunity to rewrite the known

characters in a more standard form [2]. Recall the explicit form of the vacuum character, given in Equa-

tion (3.8). We split the denominator (as an infinite sum over n) into sums over n even and n odd. Completing

the square in the q-exponents of both the numerator and denominator then gives

χ
L̂0

(z;q) = q−1/24

∑
r∈Z+1/6

z6rq6r2 − ∑
r∈Z−1/6

z6rq6r2

∑
r∈Z+1/4

z4rq2r2 − ∑
r∈Z−1/4

z4rq2r2
. (6.1)

The reader will no doubt recognise that the numerator and denominator are differences of classical theta

functions [32]. The factor q−1/24 is the standard modular anomaly qc/24. A similar massaging of Equa-

tion (4.6) gives

χ
L̂1

(z;q) = q−1/24

∑
r∈Z+1/3

z6rq6r2 − ∑
r∈Z−1/3

z6rq6r2

∑
r∈Z+1/4

z4rq2r2 − ∑
r∈Z−1/4

z4rq2r2
. (6.2)

Apply now the spectral flow automorphism γℓ. Generalising Equation (5.8), we quickly derive that

χ
γℓ
(
L̂λ

) (z;q) = z−ℓ/2q−ℓ2/8χ
L̂λ

(
zqℓ/2;q

)
. (6.3)
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From Equations (6.1) and (6.2) we therefore obtain

χ
γℓ
(
L̂0

) (z;q) = q−1/24

∑
r∈Z+(3ℓ+2)/12

z6rq6r2 − ∑
r∈Z+(3ℓ−2)/12

z6rq6r2

∑
r∈Z+(2ℓ+1)/4

z4rq2r2 − ∑
r∈Z+(2ℓ−1)/4

z4rq2r2
(6.4)

and χ
γℓ
(
L̂1

) (z;q) = q−1/24

∑
r∈Z+(3ℓ+4)/12

z6rq6r2 − ∑
r∈Z+(3ℓ−4)/12

z6rq6r2

∑
r∈Z+(2ℓ+1)/4

z4rq2r2 − ∑
r∈Z+(2ℓ−1)/4

z4rq2r2
. (6.5)

This appears to provide a satisfying answer to the determination of the characters of our theory. However,

it is easy to check from Equations (6.4) and (6.5) that the common denominator is antiperiodic under

ℓ→ ℓ+1, hence periodic under ℓ→ ℓ+2. Moreover, the numerators of the spectrally-flowed characters of

L̂0 and L̂1 are interchanged (with an additional factor of −1) under ℓ→ ℓ+2, and are thus periodic under

ℓ→ ℓ+ 4. It therefore follows that these expressions for the spectrally-flowed characters are periodic in ℓ

with period 4, and that there are only four linearly independent characters (there are actually eight distinct

characters, but four are just the negatives of the other four). We can take these to be the characters of the

admissible highest weight modules L̂0, L̂1, L̂−1/2 = γ
(
L̂0

)
and L̂−3/2 = γ

(
L̂1

)
. The spectral flow action

on the characters may then be summarised as

· · · γ−→−χ
L̂1

γ−→−χ
L̂−3/2

γ−→ χ
L̂0

γ−→ χ
L̂−1/2

γ−→−χ
L̂1

γ−→ ·· ·

· · · γ−→−χ
L̂0

γ−→−χ
L̂−1/2

γ−→ χ
L̂1

γ−→ χ
L̂−3/2

γ−→−χ
L̂0

γ−→ ·· ·
(6.6)

This seems to contradict the fact that the corresponding modules are all distinct. There are no isomorphisms

between the spectrally-flowed modules, but nevertheless there is an infinite degeneracy of the characters.

A resolution to this seeming contradiction was proposed in [20], where it was noted that one has to pay

close attention to the regions of convergence of such character formulae. The problem is very much related

to the more transparent example of sl(2) characters. Here, a highest weight Verma module with highest

weight λ has character

zλ + zλ−2 + zλ−4 + . . .=
zλ

1− z−2
(|z|> 1). (6.7)

Similarly, a lowest weight Verma module with lowest weight λ +2 has character

zλ+2 + zλ+4 + zλ+6 + . . .=
zλ+2

1− z2
(|z|< 1). (6.8)

Formally, these characters give the same function (up to a conspicuous factor of −1), but the notion that

the modules are (almost) the same is patently absurd. The point is that in general the physical module is

determined by its character and the given region of convergence. It is the latter which dictates the formal

expansion, here in powers of z2 or z−2. Note that finite-dimensional sl(2)-modules have characters that are

polynomial in z and z−1, hence converge when |z|= 1 (indeed, everywhere).

The ŝl(2)−1/2 character formulae we have derived have to be understood in a similar way. Specifically,

the infinite sums appearing in the numerators and denominators of these formulae are easily checked to

converge for all z ∈ C, provided that |q| < 1. However, the common denominator of these expressions

vanishes whenever z2 = qi (i ∈ Z). This is obvious from its product form (displayed in Equation (3.7) for

example), but it is also useful to check this from the above sum form:

∑
r∈Z+ 2ℓ+1

4

q2r2+2ir − ∑
r∈Z+ 2ℓ−1

4

q2r2+2ir = q−i2/2


 ∑

s∈Z+ ℓ+i
2

+
1
4

q2s2 − ∑
s∈Z+ ℓ+i

2
− 1

4

q2s2



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= q−i2/2


 ∑

s∈Z− ℓ+i
2

− 1
4

q2s2 − ∑
s∈Z+ ℓ+i

2
− 1

4

q2s2


= 0, (6.9)

as ℓ+ i ∈ Z. The character formulae will therefore have poles at z2 = qi (i ∈ Z) unless the zeroes of the

denominator are cancelled by zeroes in the numerator (this is what happens in the integrable module case).

But, analysing the numerators of Equations (6.4) and (6.5) as above, we find that zeroes occur only at

z2 = qℓ+i with ℓ+ i ∈ 2Z. It follows that the character formulae we have given for the modules γℓ
(
L̂0

)
and

γℓ
(
L̂1

)
have poles at z2 = qi for all i ∈ 2Z−1− ℓ.

We have argued above with the example of sl(2) that the relationship between a character and the module

it is supposed to describe is determined by the region in which the character is to be expanded. It is now clear

how this applies to the present case. The characters given for L̂0 and L̂1 should be expanded on the annulus

|q|1/2 < |z| < |q|−1/2
. Note that as |q| < 1, this covers the case |z| = 1. Accordingly, when q-expanding

Equations (6.1) and (6.2), the coefficients simplify to give (Laurent) polynomials in z as the constituent

sl(2)-modules are all finite-dimensional. The spectral flow action now implies that the appropriate region

on which to properly expand the characters (6.4) and (6.5) with ℓ 6= 0 is the annulus

|q|(−ℓ+1)/2 < |z|< |q|(−ℓ−1)/2 . (6.10)

Note that when ℓ > 0, we have |z| > 1, appropriate for highest weight sl(2)-modules, and for ℓ < 0, we

have |z| < 1, appropriate for lowest weight sl(2)-modules. This accords with the pictures we have drawn

in Figure 3.

For ℓ = ±1, q-expanding the character gives coefficients which are rational functions of z. These coef-

ficients may then be expanded for either |z| > 1 or |z| < 1, as appropriate, in order to recover the correct

weight multiplicities of the module. However, for |ℓ| > 1, this procedure fails. For example, q-expanding

Equation (6.4) with ℓ = 2 gives polynomial coefficients in z because this character coincides with that of

L̂1 up to an overall factor of −1 (Equation (6.6)). The expansion annulus (6.10) for ℓ = 2 is disjoint from

that for ℓ = 0, so a naı̈ve q-expansion8 is no longer appropriate. Indeed, for this module the conformal

dimension is not bounded below, so the correct expansion would have to include arbitrarily negative powers

of q as well as the usual positive powers. To obtain such an expansion, we would have to change variables

to u =
(
zqℓ/2

)−1
, effectively undoing the spectral flow, then q-expand and change u back again.

It is clear therefore that the explicit expressions we have given for the modules γℓ
(
L̂0

)
and γℓ

(
L̂1

)
with

|ℓ| > 1 are not actually particularly useful. The point however is that any other expression we might cook

up will be equivalent to these because the classical theta functions from which they are constructed are

entire in the z-plane (when |q| < 1). The conclusion is that by expressing the characters in terms of these

functions, instead of as formal power series, we lose the equivalence between modules and characters. We

have an infinite collection of distinct modules, but only four linearly independent characters.

More precisely, the Z-linear map which assigns to each module in the fusion ring its character is not one-

to-one. It is not hard to check that the kernel of this map is generated by the modules γℓ±1
(
L̂0

)
⊕ γℓ∓1

(
L̂1

)

and that these modules are closed under fusion. It follows that we can consistently define fusion at the level

of characters. We call the resulting ring over Z the Grothendieck ring of characters9. Assigning modules

8Here, we mean an expansion in which the powers of q are bounded from below, such as one obtains from computer algebra packages.
9We should mention that the notion of Grothendieck ring which we have defined here is not quite the same as that used in logarithmic

conformal field theory (and in category theory in general). There, the Grothendieck ring makes precise the notion of forgetting the

indecomposable structure of the modules in the fusion ring, essentially regarding these objects as graded vector spaces (for a precise

definition, see [33, App. C]). Since this is exactly what the characters do, we see that the spirit of the two definitions is the same, and

so it is reasonable to call the ring of characters a Grothendieck ring (despite the absence of indecomposable structure in the fusion

ring).
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their characters therefore defines a projection (more precisely, an onto ring homomorphism) from the fusion

ring onto the Grothendieck ring.

This has a peculiar effect when considering modular invariance. Specifically, one expects from rational

theories that pairing each module with itself under the holomorphic and antiholomorphic ŝl(2)-actions leads

to a modular invariant partition function. But in our case, the coincidence of characters means that there

are infinitely many modules all contributing the same amount to the partition function, which therefore di-

verges. One can of course regularise this divergence by only allowing the linearly independent characters to

contribute, effectively dividing the modular invariant by the infinite multiplicity of each independent char-

acter, and in this way one recovers the modular invariant of Kac and Wakimoto [2] (we postpone a proper

discussion of modularity until Section 10). This is indeed invariant under the usual action of SL(2;Z), but

we should be uneasy about its status as a physical partition function. It does not, strictly speaking, refer

to a complete set of modules of the theory. In particular, there is no set of modules corresponding to this

partition function which is closed under fusion.

In essence however, what this does is determine a modular invariant partition function in the Grothendieck

ring of characters. This is no different to what one does in rational theories, and evidence is steadily mount-

ing that this is what one should do in logarithmic theories as well. However, it is clear that determining

a modular invariant in this way does not answer the fundamental question of how the holomorphic and

antiholomorphic sectors of the theory are glued together. For this reason, we advise caution in treating

such modular invariants as physical. Applications require a justification of why such a partition function is

appropriate.

We briefly compare this conclusion with that of [20]. Their proposal for making sense of Kac and

Wakimoto’s invariant is to regard the character of γℓ
(
L̂λ

)
as only being defined on the annulus (6.10).

Summing to get a partition function is therefore viewed as summing over the different annuli in order to

have a finite meromorphic partition function on the z-plane (with |q| < 1). Presumably this means each

character should take value zero outside its given annulus, in defiance of analytic continuation. Evidence

for this proposal is quoted in the claim that a particular modular transformation maps the annuli into one

another. This claim is not true. Even if it were, the other transformations do not preserve this annulus

structure, hence one is forced to analytically continue the characters into the rest of the z-plane.

We agree that it would be better to extend the definition of partition function so that every module

contributes, but the interpretation of [20] does not achieve this goal. What is needed in our opinion is an

additional quantum number to distinguish representations with the same character. It is not clear however

that such a quantum number need exist. It seems plausible that modular invariants for fractional level

models can only be defined at the level of Grothendieck rings.

7. EXTENDED ALGEBRAS AND GHOSTS

Note that the fusion rules of ŝl(2)−1/2 (Equation (5.13)) show that every module in the spectrum is a

simple current — these are distinguished in general by the property that fusing them with any irreducible

module gives a single irreducible factor [34]. This is clear for the modules γℓ
(
L̂0

)
as they are automorphic

images of the vacuum module. For the other modules, this follows because L̂1 happens to be a simple

current. This is somewhat mysterious as L̂1 is not related to the vacuum by any automorphism of ŝl(2).

Nevertheless, this is the only simple current which has finite order, and its order is 2 (Equation (5.2)).

It is therefore interesting to study the extended algebra defined by this simple current, more precisely,

by the zero-grade fields of the module L̂1. Their conformal dimension is 1
2

which suggests some sort of

fermionic behaviour. Correctly determining an extended algebra can be a somewhat subtle business, and
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we shall proceed carefully in an elementary fashion. The final answer may not be particularly surprising,

but there are several pitfalls to avoid during the derivation which we would like to draw attention to.

Let us begin by introducing some convenient notation for the zero-grade fields of the simple current. We

will denote the field corresponding to the highest weight state
∣∣1
〉
∈ L̂1 by φ and that corresponding to the

descendant F0

∣∣1
〉

by ψ . We recall [22] that in general such zero-grade fields are mutually bosonic with

respect to the ŝl(2) current field H, but mutually fermionic with respect to E and F . This is true even for

admissible levels, and the proof is easy in this special case. Suppose therefore that

J (z)φ (w) = µJ,φ φ (w)J (z) , (J = E,H,F), (7.1)

for some µJ,φ ∈ C. Then, we can write

J (z)J′ (x)φ (w) = µJ′,φ J (z)φ (w)J′ (x) = µJ,φ µJ′,φ φ (w)J (z)J′ (x) . (7.2)

Alternatively, we can make use of the operator product expansion to get

J (z)J′ (x)φ (w) =

(
κ
(
J,J′

)
K

(z− x)2
+

[
J,J′

]
(x)

z− x
+ . . .

)
φ (w) = µ[J,J′],φ φ (w)J (z)J′ (x) , (7.3)

if
[
J,J′

]
6= 0. Thus we have

µJ,φ µJ′,φ = µ[J,J′],φ if
[
J,J′

]
6= 0. (7.4)

In addition, K remains central in the extended algebra so we can also conclude that

µJ,φ µJ′,φ = 1 if κ
(
J,J′

)
6= 0. (7.5)

These constraints (which are equivalent to the generalised Jacobi identity at the level of modes) fix

µH,φ = 1 and µE,φ µF,φ = 1. H and φ are therefore mutually bosonic, but the case of E or F and φ is not

decided. The corresponding conclusion for the zero-grade descendant field ψ is identical. To settle the

remaining ambiguity, we need to extend the adjoint (2.6) to the simple current fields. Needless to say, the

adjoint must define an (antilinear) antiautomorphism on the extended algebra, and it is this requirement that

we shall exploit.

Since L̂1 is self-conjugate, the extended adjoint must take the form

φ †
n = εψ−n ⇒ ψ†

n = ε−1φ−n, (7.6)

where the bar denotes complex conjugation. We now translate the primary field operator product expansions

into modes using Equation (7.1). For example, we have

F (z)φ (w) =
ψ (w)

z−w
+ . . . ⇒ Fmφn −µF,φ φnFm = ψm+n (7.7a)

and E (z)ψ (w) =
φ (w)

z−w
+ . . . ⇒ Emψn −µE,ψ ψnEm = φm+n. (7.7b)

Taking the adjoint of Equation (7.7a) and using µE,φ µF,φ = 1, we find that

−|ε |2 µF,φ

(
Emψn −µE,φ ψnEm

)
= φm+n. (7.8)

Comparing with Equation (7.7b), we finally conclude that µF,φ = −|ε |−2
and µE,φ = µE,ψ , hence that

µE,φ = µE,ψ and µF,φ = µF,ψ are real and negative. There are no further constraints to be found, so we are

free to choose the most symmetric consistent solution:

ε = 1 hence µE,φ = µF,φ = µE,ψ = µF,ψ =−1. (7.9)

It follows that E and F are both mutually fermionic with respect to φ and ψ , as claimed.
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We can now turn to the operator product expansions of the simple current fields. From Equation (5.2)

and conservation of sl(2)-weight, we know that these must take the form

φ (z)φ (w) = αE (w)+ . . . ψ (z)ψ (w) = γF (w)+ . . . (7.10a)

φ (z)ψ (w) =
1

z−w
+βH (w)+ . . . ψ (z)φ (w) =

1

z−w
+β ′H (w)+ . . . , (7.10b)

for some constants α , β , β ′ and γ . These are easily computed. For example, the first expansion implies that

φ−1/2

∣∣φ
〉
= αE−1

∣∣0
〉
. Comparing

〈
0
∣∣F1φ−1/2

∣∣φ
〉
=
〈
0
∣∣ψ1/2φ−1/2

∣∣0
〉
= 1 and

〈
0
∣∣F1E−1

∣∣0
〉
=
〈
0
∣∣K −H0

∣∣0
〉
=

−1

2
(7.11)

immediately yields α = k−1 = −2. Similarly, β = −1, β ′ = 1 and γ = −2. Note that we have normalised

the zero-grade state
∣∣φ
〉

to have norm 1. It follows that
∣∣ψ
〉
= F0

∣∣φ
〉

also has norm 1 (these norms are the

respective constants in the singular term of the operator product expansions (7.10b)).

We also need to determine the mutual locality of the simple current fields with one another, and this

follows easily from the above operator product expansions. For example, if φ (z)ψ (w) = µψ (w)φ (z),

then inserting the operator product expansions (7.10b) gives

1

z−w
−H (w)+ . . .= µ

(
1

w− z
+H (z)+ . . .

)
. (7.12)

Taylor-expanding H (z) about w, we see that µ = −1. Thus, φ and ψ are mutually fermionic with respect

to each other. Similarly, we can prove that both simple current fields are mutually bosonic with respect to

themselves.

Finally, we have to verify that the operator product expansions we have derived are associative. For this

we need to consider operator products of three fields. The associativity when at least one of the fields is an

affine current is built into the above derivations, so we only need to check the case where all three fields are

simple current fields. For example, since E and φ are mutually fermionic, we see that

φ (z)φ (w)φ (x) = [−2E (w)+ . . .]φ (x) =−φ (x) [−2E (w)+ . . .] =−φ (x)φ (z)φ (w) . (7.13)

However, this contradicts the fact that φ is mutually bosonic with respect to itself. In fact, further computa-

tion shows that every combination of three simple current fields exhibits the same contradiction — there is

always a lone factor of −1 unaccounted for by the mutual locality.

This problem has been observed before in the algebra defining graded parafermions [35] and certain

minimal model extended algebras [23]. The remedy is to introduce an auxiliary operator S which commutes

with the affine generators, leaves the vacuum invariant, but anticommutes with the simple current fields. The

defining operator product expansions of the extended algebra are thereby modified to be

φ (z)φ (w) = S [−2E (w)+ . . .] ψ (z)ψ (w) = S [−2F (w)+ . . .] (7.14a)

φ (z)ψ (w) = S

[
1

z−w
−H (w)+ . . .

]
ψ (z)φ (w) = S

[
1

z−w
+H (w)+ . . .

]
(7.14b)

One can check that introducing such an S precisely accounts for the factor of −1 observed above, restoring

associativity. The mutual localities then give the corresponding mode algebra as

[
φm,φn

]
= 0,

{
φm,ψn

}
= δm+n,0S and

[
ψm,ψn

]
= 0. (7.15)

It is easy to check that S acts as the identity on each γℓ
(
L̂0

)
, but as minus the identity on each γℓ

(
L̂1

)
. S is

therefore self-inverse, and by Equation (7.15), self-adjoint.
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Finally, the singular terms of the operator product expansions derived here suggest, together with the

conformal dimensions of the simple current fields, that what we have constructed is nothing but a complex

fermion, or equivalently, a system of fermionic ghosts. However, this system has central charge 1 whereas

ŝl(2)−1/2 has central charge −1. The correct identification is that our extended algebra realises a system of

bosonic ghosts, given by

β (z) = φ (z) and γ (z) = S
−1ψ (z) . (7.16)

The defining operator product expansions then become

β (z)β (w) = S [−2E (w)+ . . .] γ (z)γ (w) = S
−1 [2F (w)+ . . .] (7.17a)

β (z)γ (w) =
−1

z−w
+H (w)+ . . . γ (z)β (w) =

1

z−w
+H (w)+ . . . (7.17b)

It is easy to check that β and γ are mutually bosonic with respect to themselves and each other.

By making the redefinitions Ẽ = SE, H̃ = H and F̃ = S
−1F (which do not affect the affine algebra

structure), we recover the standard βγ ghost operator product expansions. Whilst this trick allows us to

remove any trace of S from the defining equations, and even makes all the fields mutually bosonic with

respect to one another, the ghost adjoint still requires the S operator:

β † = Sγ and γ† = βS−1. (7.18)

As the adjoint is vital for computations, we see therefore that we cannot do without S completely!

8. A SIMPLIFICATION

It is worth emphasising once again the fundamental rôle played by the adjoint (2.6) in deriving the

extended algebra in the previous section. This is the adjoint corresponding to the real form su(2) of sl(2) =

sl(2;C). We could also consider the adjoint corresponding to the real form sl(2;R):

J‡
n =−J−n, K‡ = K and L‡

n = L−n (J = E,H,F). (8.1)

When we wish to emphasise that the chiral algebra ŝl(2) comes equipped with one of these adjoints, we

will denote it by ŝu(2) or ŝl(2;R), as appropriate. We stress that these are still complex Lie algebras. In

general, every order-2 automorphism of a complex simple Lie algebra g induces10 an adjoint on g and its

untwisted affinisation ĝ. For g= sl(2;C), the adjoint given in Equation (2.6) corresponds to the non-trivial

Weyl reflection whereas that of Equation (8.1) corresponds to the trivial automorphism.

We want to repeat the derivation of the extended algebra using the sl(2;R) adjoint. The result will

be slightly different, but the derivation is significantly simpler. The point here is that the choice of adjoint

makes a real difference to simple current extensions of a chiral algebra. In the theory we are constructing, we

have no physical intuition to support either choice, so it is interesting and valid to consider both possibilities.

However, in concrete applications one generally does have a given adjoint, so it is extremely important to

be sure that the extended algebra one derives and works with is the correct one.

To proceed, we have to change our basis to something appropriate for sl(2;R). The problem here is that

the eigenvectors E and F of ad(H) are not raising and lowering operators with respect to the adjoint (8.1).

Instead, we introduce the linear combinations

h = i(E −F) , e =
1

2
(iE + iF −H) and f =

1

2
(iE + iF +H) (8.2)

10If Ω is the automorphism, the induced adjoint is given by x† = −Ω(x), where x is either an element of the Cartan subalgebra or a

root vector. This is then extended antilinearly to the entire complex Lie algebra.
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(of sl(2;C)). These can be quickly checked to satisfy

e‡ = f , h‡ = h,
[
h,e
]
= 2e and

[
h, f
]
=−2 f , (8.3)

so we have recovered the formalism of raising and lowering operators. The subtle but important difference

between these operators and those considered in Section 2 is that

[
e, f
]
=−h. (8.4)

This difference is mirrored in the Killing form which is given in this basis by (compare Equation (2.2))

κ
(
h,h
)
= 2 and κ

(
e, f
)
=−1, (8.5)

with all other entries vanishing. The basis {e,h, f} can now be affinised in the usual manner to define a

new basis {en,hn, fn,K,L0} of ŝl(2). We will not change the normalisation of the central extension K and

derivation L0, as compared with Equation (2.4) (we mention this as many articles implicitly replace K by

−K which changes the prefactor of L0 in the Sugawara construction).

Consider now the zero-grade states
∣∣φ
〉

and
∣∣ψ
〉

of the simple current module L̂1. Just as we have had to

change the basis of algebra generators to account for the sl(2;R) adjoint, so we need to change this basis.

The problem now is that
∣∣φ
〉

is not a highest weight state with respect to the triangular decomposition

afforded by en, hn and fn. Indeed, it is not even an eigenstate of h0. A better basis of zero-grade states is

given by ∣∣Φ
〉
=
∣∣φ
〉
− i
∣∣ψ
〉

and
∣∣Ψ
〉
=
∣∣φ
〉
+ i
∣∣ψ
〉
. (8.6)

One can easily check that these are h0-eigenstates with eigenvalues 1 and −1, respectively, and that e0

∣∣Φ
〉
=

f0

∣∣Ψ
〉
= 0. Again, there is a subtle difference in the structure:

f0

∣∣Φ
〉
=
∣∣Ψ
〉

but e0

∣∣Ψ
〉
=−

∣∣Φ
〉
. (8.7)

This is reflected in the norms: If
∣∣Φ
〉

has norm 1, then
∣∣Ψ
〉

has norm −1 (the fundamental representation of

sl(2) is not unitarisable with respect to the sl(2;R) adjoint).

We can now repeat the computations of Section 7. First, it is clear that the operator product expansions

of e, h or f with the simple current fields Φ or Ψ will lead to the same constraints on the mutual localities,

namely

µh,Φ = µh,Ψ = 1 and µe,Φµ f ,Φ = µe,Ψµ f ,Ψ = 1. (8.8)

We therefore determine when the adjoint extends to an antiautomorphism of the extended algebra. Defining

Φ‡
n = εΨ−n, hence Ψ‡

n = ε−1Φ−n, we take the adjoint of the algebra relation

fmΦn −µ f ,ΦΦn fm = Ψm+n (8.9)

and compare it to the dual relation

emΨn −µe,ΨΨnem =−Φm+n (8.10)

(note the minus sign!). This time we find that µ f ,Φ = |ε |−2
and µe,Φ = µe,Ψ, hence that µe,Φ = µe,Ψ and

µ f ,Φ = µ f ,Ψ are real and positive. The simplest solution is therefore

ε = 1 hence µe,Φ = µ f ,Φ = µe,Ψ = µ f ,Ψ = 1. (8.11)

The algebra generators are therefore mutually bosonic with respect to the simple current fields in this pic-

ture!

This is evidently a more familiar situation than that which we found in Section 7 with the su(2) ad-

joint. Continuing with the extended algebra derivation, we can determine the defining operator product
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expansions:

Φ(z)Φ(w) = 2e(w)+ . . . Ψ(z)Ψ(w) = 2 f (w)+ . . . (8.12a)

Φ(z)Ψ(w) =
−1

z−w
+h(w)+ . . . Ψ(z)Φ(w) =

1

z−w
+h(w)+ . . . (8.12b)

(note that the constants appearing in the singular term of these operator product expansions correspond to

the respective norms of
∣∣Ψ
〉

and
∣∣Φ
〉
). It follows immediately from these expansions that the simple current

fields are mutually bosonic with respect to themselves and each other, and it is simple to show that these

expansions determine an associative operator product algebra (without any additional S-type operators).

The correspondence with the ghost fields is therefore as natural as it could be:

β (z) = Φ(z) and γ (z) = Ψ(z) . (8.13)

Moreover, the adjoint on the ghost fields is just β ‡ = γ and γ‡ = β .

It is appropriate now to discuss the reverse procedure, obtaining the ŝl(2)−1/2 symmetry from study-

ing the βγ ghost system, for this was how these theories were first related (see [21] for example). From

Equations (8.12) and (8.13), we see that the composite fields

e =
1

2
: ββ : , h = : βγ : and f =

1

2
: γγ : (8.14)

together reconstitute the ŝl(2) generators. Moreover, explicit calculation confirms that these are the sl(2;R)-

type generators of this section. Furthermore, the ghost adjoint β ‡ = γ now implies the adjoint (8.1).

To summarise, the last two sections prove that the βγ ghost system is naturally a simple current extension

of ŝl(2;R)−1/2 (we remind the reader again that we do not negate the level here). In order to realise these

ghosts as an extension of ŝu(2)−1/2, it is necessary to augment the ghost algebra by the operator S. It is not

hard to find examples in the literature where this subtlety has been overlooked, so we want to emphasise the

precise results derived here. Ignoring this leads to contradictions in the algebra when delving deeper into

the module structure [22].

9. EXTENDED ALGEBRA REPRESENTATION THEORY

We now turn to a discussion of the representations of our extended algebra (8.12), or equivalently, of the

ghost system (7.17) (we work with ŝl(2;R) for simplicity). The corresponding algebra relations are

[
Φm,Φn

]
= 0,

[
Ψm,Φn

]
= δm+n,0 and

[
Ψm,Ψn

]
= 0, (9.1)

where we write Φ(z) = ∑n Φnz−n−1/2 and Ψ(z) = ∑n Ψnz−n−1/2 as usual. Since

L̂1 ×f γℓ
(
L̂0

)
= γℓ

(
L̂1

)
and L̂1 ×f γℓ

(
L̂1

)
= γℓ

(
L̂0

)
, (9.2)

we see that each (irreducible) extended module will be labelled by a single integer ℓ, and be composed of

two ŝl(2)−1/2-modules, γℓ
(
L̂0

)
and γℓ

(
L̂1

)
. We denote this extended module by Lℓ (ℓ ∈ Z).

To understand the structure of these extended modules, we must first determine their monodromy charges

θℓ. These determine whether the extended algebra modes Φn and Ψn have indices which are integers, half-

integers, or something else entirely. The monodromy charge may be defined [22,34] in terms of the powers

of z−w appearing in the operator product expansions of the simple current fields Φ(z) and Ψ(z) with a field

ξ (ℓ) (z) associated to a state of the extended module Lℓ. The simple current property means that the powers

of z−w which appear only differ by an integer, and their common value modulo Z defines the monodromy

charge (strictly speaking, this is the negative of the monodromy charge). This is also obviously independent

of the choice of ξ (ℓ) and simple current field.
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From Equation (A.15), we can compute (as in Section 5) that γℓ
(∣∣0
〉)

has conformal dimension −ℓ2/8

whereas that of γℓ
(∣∣1
〉)

is −
(
ℓ2 −4ℓ−4

)
/8. The fusion rules (9.2) then imply that the monodromy charges

of γℓ
(
L̂0

)
and γℓ

(
L̂1

)
are

1
2
− 1

8
ℓ2 + 1

8

(
ℓ2 −4ℓ−4

)
= −1

2
ℓ and 1

2
− 1

8

(
ℓ2 −4ℓ−4

)
+ 1

8
ℓ2 = 1

2
ℓ+1, (9.3)

respectively. The monodromy charge of the extended module Lℓ is therefore well-defined (as claimed) and

is simply

θℓ =
ℓ

2
(mod Z). (9.4)

It now follows that when Φ(z) and Ψ(z) act upon a state
∣∣ξ (ℓ)

〉
∈ Lℓ (with monodromy charge θℓ), they

must be expanded in the forms

Φ(z)
∣∣ξ (ℓ)

〉
= ∑

n∈Z+θℓ−1/2

Φnz−n−1/2
∣∣ξ (ℓ)

〉
and Ψ(z)

∣∣ξ (ℓ)
〉
= ∑

n∈Z+θℓ−1/2

Ψnz−n−1/2
∣∣ξ (ℓ)

〉
. (9.5)

In other words, the modes Φn and Ψn with n ∈ Z+ 1
2

act on the extended algebra modules Lℓ with ℓ ∈ 2Z,

and the modes Φn and Ψn with n ∈ Z act on the extended algebra modules Lℓ with ℓ ∈ 2Z+1.

For example, the extended vacuum module L0 ∼ L̂0 ⊕ L̂1 has monodromy charge 0, so Φn and Ψn act

upon it with half-integer indices. In particular, Φ−1/2 and Ψ−1/2 act on the vacuum to create the zero-grade

states
∣∣Φ
〉

and
∣∣Ψ
〉

of the simple current module L̂1 (these are not the same as
∣∣1
〉
=
∣∣φ
〉

and F0

∣∣1
〉
=
∣∣ψ
〉

as

we changed basis in Section 8). We recall from Section 5 that every module in our ŝl(2)−1/2 theory could

be regarded as the image under a spectral flow automorphism of either L̂0 or L̂1. It is reasonable therefore

to expect that the same conclusion will hold for the extended algebra modules.

This is indeed the case. The spectral flow11

γ̃ (en) = en−1 γ̃ (hn) = hn −δn,0K γ̃ ( fn) = fn+1 (9.6a)

γ̃ (K) = K γ̃ (L0) = L0 −
1

2
h0 +

1

4
K (9.6b)

may be derived from the following extended algebra automorphism (which we also denote by γ̃)

γ̃ (Φn) = Φn−1/2 γ̃ (Ψn) = Ψn+1/2. (9.7)

Glancing at Equation (9.1), this is obviously an extended algebra automorphism, and the change of mode

indices from integer to half-integer and vice-versa precisely accounts for the fact that the monodromy charge

changes in this way when applying the ŝl(2) spectral flow.

To show that Equation (9.7) implies Equation (9.6), we derive certain generalised commutation relations

relating extended algebra modes and affine modes. These are obtained by evaluating
∮

0

∮

w
Φ(z)Φ(w)zm+1/2wn−1/2 (z−w)−1 dz

2πi

dw

2πi
(9.8)

11We denote this spectral flow by γ̃ because this automorphism is not the same as the spectral flow automorphism γ which was

introduced in Equation (5.4). Whereas the latter denotes a spectral flow naturally defined on the ŝu(2) basis, the flow γ̃ is naturally

defined on the ŝl(2;R) basis. We can see that these are different by determining the action of γ̃ on the ŝu(2) basis:

γ̃ (En) =
1

4
(En−1 +2En +En+1 + iHn−1 +2iδn,0K − iHn+1 +Fn−1 −2Fn +Fn+1)

γ̃ (Hn) =
1

2
(−iEn−1 + iEn+1 +Hn−1 +Hn+1 − iFn−1 + iFn+1)

γ̃ (Fn) =
1

4
(En−1 −2En +En+1 + iHn−1 −2iδn,0K − iHn+1 +Fn−1 +2Fn +Fn+1) .

While this can be checked to indeed provide a non-trivial automorphism (of ŝl(2;C)), it is not clear whether it is of any use in further

analysing our theory. Note that it preserves the adjoint (8.1) but not (2.6).
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in two different ways (and by replacing one or both of the fields Φ by Ψ). We can expand the operator

product directly, using Equation (8.12), or we can break the z-contour around w into the difference of two

contours around the origin, one with |z|> |w| and the other with |z|< |w|. The results of this procedure are

the following generalised commutation relations:

∞

∑
j=0

[
Φm− jΦn+ j +Φn− j−1Φm+ j+1

]
= 2em+n, (9.9a)

∞

∑
j=0

[
Ψm− jΦn+ j +Φn− j−1Ψm+ j+1

]
= hm+n +

(
m+

1

2

)
δm+n,0, (9.9b)

∞

∑
j=0

[
Ψm− jΨn+ j +Ψn− j−1Ψm+ j+1

]
= 2 fm+n. (9.9c)

Regarding these as defining relations for the affine modes12, it is easy to check that applying Equation (9.7)

recovers the affine spectral flow (with the implicit replacement of K by k = −1
2

).

Now consider the singular vectors of the extended algebra module L0, or rather of the corresponding

Verma module V0. Since one expects this module to be composed of the ŝl(2)−1/2 Verma modules V̂0 and

V̂1, there are four non-trivial singular vector combinations to consider:

f0

∣∣0
〉
∈ V̂0, f0

∣∣Ψ
〉
∈ V̂1, (9.10a)

(
156e−3e−1 −71e2

−2 +44e−2h−1e−1 −52h−2e2
−1 +16 f−1e3

−1 −4h2
−1e2

−1

)∣∣0
〉
∈ V̂0 (9.10b)

and (7e−2 −2h−1e−1)
∣∣Φ
〉
+4e2

−1

∣∣Ψ
〉
∈ V̂1. (9.10c)

Note the slight sign change in (9.10b) as compared to (4.1) due to our change of basis. Note also that (9.10c)

has the correct dimension and sl(2)-weight as given in Equation (4.5).

But applying Equation (9.9c) with m = −1
2

to f0

∣∣0
〉

gives

f0

∣∣0
〉
=

∞

∑
j=0

Ψ− j−1/2Ψ j+1/2

∣∣0
〉
= 0, (9.11)

since there are no states in V0 with conformal dimension less than 0. Similarly,

f0

∣∣Ψ
〉
= f0Ψ−1/2

∣∣0
〉
= Ψ−1/2 f0

∣∣0
〉
= 0. (9.12)

We therefore see that f0

∣∣0
〉

and f0

∣∣Ψ
〉

are not (non-trivial) singular vectors in V0, rather they vanish iden-

tically. It is somewhat more surprising that the same is true for the vectors (9.10b) and (9.10c). We will

detail this computation for the latter vector leaving the former as a simple if tedious exercise.

Consider therefore the first term of (9.10c), e−2

∣∣Φ
〉
= e−2Φ−1/2

∣∣0
〉
. Commuting the affine mode to the

right and using Equation (9.9a) with m = −1
2

gives

e−2

∣∣Φ
〉
=

1

2
Φ−1/2

(
Φ−1/2Φ−3/2 +Φ−3/2Φ−1/2

)∣∣0
〉
= Φ−3/2Φ2

−1/2

∣∣0
〉
. (9.13)

Repeating this process with e−1

∣∣Φ
〉

and then h−1e−1

∣∣Φ
〉

(using Equation (9.9b)) yields

h−1e−1

∣∣Φ
〉
=

(
3

2
Φ−3/2Φ2

−1/2 +
1

2
Ψ−1/2Φ4

−1/2

)∣∣0
〉
. (9.14)

12We mention that this is the correct way of defining these modes given the operator product expansions (8.12), despite the fact that

m can be chosen arbitrarily (up to monodromy charge considerations). Naı̈vely defining the affine modes as the obvious normally-

ordered products of the extended algebra modes gives equivalent results, except for h0 when m ∈ Z. Then the naı̈ve result is incorrect,

and must be adjusted by the appropriate multiple of the identity. This correction phenomenon should be familiar from the computation

of the Virasoro zero-mode in the Ramond sector of the free fermion.
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Finally, recalling that
[
em,Ψn

]
=−Φm+n, we derive that

e2
−1

∣∣Ψ
〉
=

(
1

4
Ψ−1/2Φ4

−1/2 −Φ−3/2Φ2
−1/2

)∣∣0
〉
. (9.15)

We therefore see that all the terms of (9.10c) explicitly cancel, hence that this singular vector also vanishes

identically in V0.

It follows from the identical vanishing of these singular vectors that the extended algebra Verma module

V0 is irreducible and is therefore composed of irreducible ŝl(2)−1/2-modules: V0 = L0 ∼ L̂0 ⊕ L̂1. Be-

cause the ŝl(2) spectral flow lifts to a spectral flow automorphism (9.7) on the extended algebra, we may

immediately deduce that the other extended algebra modules Vℓ = γ̃ℓ
(
V0

)
(ℓ∈Z), which will not be Verma

modules in general, are likewise irreducible. We mention that the irreducibility of extended algebra Verma

modules is generic for (finite) simple current extensions [22,23], although the extended algebra will usually

have to be defined by generalised commutation relations.

The extended algebra characters are therefore easily deduced from the obvious Verma module (Poincaré-

Birkhoff-Witt) bases. Indeed, the character of the extended vacuum module is just

χL0
(z;q) =

∞

∏
i=1

1(
1− z−1qi−1/2

)(
1− zqi−1/2

) = ∑
n∈Z/2

∞

∑
m=|n|

qm

(q)m−n (q)m+n

z2n, (9.16)

where (q)m = ∏m
i=1

(
1−qi

)
as usual, and we have used the well-known partition identity [36, Eq. 2.2.5]

∞

∏
i=1

1

1− zqi
=

∞

∑
j=0

q j

(q) j

z j. (9.17)

This is an example of a so-called fermionic character formula — upon expanding the (q)m factors in the

denominator, we find that all the contributions to the sums come with positive signs. Splitting the sum over n

into n ∈Z and n ∈Z+ 1
2

gives fermionic character formulae for the affine modules L̂0 and L̂1, respectively.

This is to be contrasted with the bosonic character formulae given for these modules in Equations (3.8)

and (4.6) which are not manifestly positive in this sense. The difference is that before we had to subtract

and add contributions corresponding to the braiding pattern of the ŝl(2)−1/2 singular vectors (Figure 1). In

the extended algebra picture, these singular vectors all vanish identically, leading to far nicer, manifestly

positive character formulae.

Applying the spectral flow one more time, we get expressions for the characters of the extended modules

Lℓ:

χLℓ
(z;q) =

z−ℓ/2q−ℓ2/8

∞

∏
i=1

(
1− z−1qi−(ℓ+1)/2

)(
1− zqi+(ℓ−1)/2

) = z−ℓ/2q−ℓ2/8 ∑
n∈Z/2

∞

∑
m=|n|

qm+ℓn

(q)m−n (q)m+n

z2n. (9.18)

The product forms tell us directly (compare Section 6) that these characters have simple poles when z2 = qi

for all i ∈ 2Z− 1− ℓ. The fermionic sum form is even nicer. It gives the decomposition of the character

into so-called string functions of constant sl(2)-weight. Unlike the q-expansions of Section 6, these string

functions have q-expansions which always give the multiplicities of the weights of the modules correctly.

For example, when ℓ= 2 the terms with sl(2)-weight 2n have q-expansion q|n|+2n+ . . ., so the lowest power

of q is 3n > 0 when n is positive, but is n < 0 when n is negative (compare with the depictions of the affine

modules in Figure 3). Again, restricting the sum to n integer or half-integer recovers fermionic character

formulae for the constituent ŝl(2)−1/2-modules.
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10. MODULAR INVARIANCE

Finally, we consider the modular properties of the ŝl(2)−1/2-characters. Whereas the bosonic character

formulae (6.4) and (6.5) for the affine modules were naturally expressed in terms of classical theta functions,

the characters of the extended algebra may be expressed in terms of ordinary Jacobi theta functions (our

conventions for these are summarised in Appendix B). Before giving these expressions, it is convenient to

redefine the characters (in the standard manner) by

χ̃M (y;z;q) = trM yKzH0qL0−C/24. (10.1)

Since C and K are central, the only effect of this redefinition is to multiply the characters by the factors

q−c/24 = q1/24 and yk = y−1/2. This may seem trivial, especially the inclusion of the new variable y, but is

in fact essential for constructing representations of the modular group SL(2;Z) [37].

To begin, let us compare Equations (B.5) and (B.7) with the product form of the character formula (9.16).

We find that

χ̃L0
(y;z;q) = y−1/2 η (q)

ϑ4

(
z;q
) . (10.2)

As the sl(2)-weights of L̂0 are all even whereas those of L̂1 are all odd, we can project onto the affine

characters using the known behaviour of the theta functions under z → eiπ z (Equation (B.2)):

χ̃
L̂0

(y;z;q) =
y−1/2

2

[
η (q)

ϑ4

(
z;q
) + η (q)

ϑ3

(
z;q
)
]

χ̃
L̂1

(y;z;q) =
y−1/2

2

[
η (q)

ϑ4

(
z;q
) − η (q)

ϑ3

(
z;q
)
]
. (10.3a)

Spectral flow and Equation (B.3) then give

χ̃
γ
(
L̂0

) (y;z;q) =
y−1/2

2

[
−iη (q)

ϑ1

(
z;q
) + η (q)

ϑ2

(
z;q
)
]

χ̃
γ
(
L̂1

) (y;z;q) =
y−1/2

2

[
−iη (q)

ϑ1

(
z;q
) − η (q)

ϑ2

(
z;q
)
]
.

(10.3b)

These are the four linearly independent (admissible) characters of our theory.

It is now clear from Equations (B.11) and (B.12) that the action of the modular transformation S on the

ratios η/ϑi appearing in the admissible characters will be to recover such a ratio, but multiplied by the

factor exp
(
−iπζ 2/τ

)
, where z = exp(2πiζ ) and q = exp(2πiτ). Cancelling this unwanted factor is the

reason why we must include the variable y in the normalised characters. Specifically, if y = exp(2πit), then

we can extend the action (B.8) of the modular group generators as follows:

S : (t,ζ ,τ) 7−→
(
t −ζ 2/τ ,ζ/τ ,−1/τ

)
T : (t,ζ ,τ) 7−→ (t,ζ ,τ +1) . (10.4)

One can easily check that S4 = (ST )6 = id as before. With this extended action, we can now compute (in

hopefully obvious notation)

χ̃
L̂0

(
t −ζ 2/τ | ζ/τ | −1/τ

)
=

e−iπt

2

[
η (τ)

ϑ2

(
ζ | τ

) + η (τ)

ϑ3

(
ζ | τ

)
]

=
1

2

[
χ̃

γ
(
L̂0

)− χ̃
γ
(
L̂1

)+ χ̃
L̂0

− χ̃
L̂1

]
(t | ζ | τ) (10.5)

χ̃
L̂0

(t | ζ | τ +1) = eiπ/12χ̃
L̂0

(t | ζ | τ) . (10.6)

Repeating these computations for the other admissible characters, we obtain the S-matrix and T -matrix

representing these modular transformations on the vector space spanned by the admissible characters. With

respect to the ordered basis {
χ̃
L̂0

, χ̃
L̂1

, χ̃
γ
(
L̂0

), χ̃
γ
(
L̂1

)
}

(10.7)
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(which corresponds to the admissible highest weight modules), these matrices are

S =
1

2




1 −1 1 −1

−1 1 1 −1

1 1 i i

−1 −1 i i




and T =




eiπ/12 0 0 0

0 −eiπ/12 0 0

0 0 e−iπ/6 0

0 0 0 e−iπ/6



. (10.8)

Both matrices are symmetric and unitary. We note that S2 : (t,ζ ,τ) 7−→ (t,−ζ ,τ) represents conjugation,

but that

S2 =




1 0 0 0

0 1 0 0

0 0 0 −1

0 0 −1 0



. (10.9)

This indicates that L̂0 and L̂1 are self-conjugate, as we know, but the appearance of the negative entries in

the last two rows deserves comment. These negative entries may be explained by noting that the conjugates

of the highest weight modules γ
(
L̂0

)
and γ

(
L̂1

)
are the non-highest weight modules γ−1

(
L̂0

)
and γ−1

(
L̂1

)

(respectively). The latter modules do not appear in the list of admissible modules, but their characters satisfy

(Section 6)

χ̃
γ−1
(
L̂0

) (y;z;q) =−χ̃
γ
(
L̂1

) (y;z;q) and χ̃
γ−1
(
L̂1

) (y;z;q) =−χ̃
γ
(
L̂0

) (y;z;q) . (10.10)

This precisely accounts for the negative off-diagonal entries in S2. Put differently, this shows that S2 repre-

sents conjugation on the Grothendieck ring of characters (Section 6).

The diagonal modular invariant therefore takes the form

Zdiag. (y;z;q) =
∣∣χ̃

L̂0

∣∣2 +
∣∣χ̃

L̂1

∣∣2 +
∣∣χ̃

γ
(
L̂0

)∣∣2 +
∣∣χ̃

γ
(
L̂1

)∣∣2

=
1

2 |y|

[
|η (q)|2
∣∣ϑ4

(
z;q
)∣∣2 +

|η (q)|2
∣∣ϑ3

(
z;q
)∣∣2 +

|η (q)|2
∣∣ϑ2

(
z;q
)∣∣2 +

|η (q)|2
∣∣ϑ1

(
z;q
)∣∣2

]
. (10.11)

Furthermore, Equation (10.9) specifies that the charge-conjugate modular invariant takes the form

Zcc. (y;z;q) =
∣∣χ̃

L̂0

∣∣2 +
∣∣χ̃

L̂1

∣∣2 − χ̃
γ
(
L̂0

)χ̃∗
γ
(
L̂1

)− χ̃
γ
(
L̂1

)χ̃∗
γ
(
L̂0

)

=
∣∣χ̃

L̂0

∣∣2 +
∣∣χ̃

L̂1

∣∣2 + χ̃
γ
(
L̂0

)χ̃∗
γ−1
(
L̂0

)+ χ̃
γ
(
L̂1

)χ̃∗
γ−1
(
L̂1

)

=
1

2 |y|

[
|η (q)|2
∣∣ϑ4

(
z;q
)∣∣2 +

|η (q)|2
∣∣ϑ3

(
z;q
)∣∣2 +

|η (q)|2
∣∣ϑ2

(
z;q
)∣∣2 − |η (q)|2

∣∣ϑ1

(
z;q
)∣∣2

]
, (10.12)

where the asterisks denote complex conjugation. We emphasise the negative coefficients appearing with

respect to the basis (10.7). If one neglects these signs (as in [20]), then the “invariant” transforms non-

trivially under the modular S transformation. Indeed, it is not hard to show that every modular invariant

must have the form

Zm (y;z;q) = Zdiag. (y;z;q)+m
∣∣χ̃

γ
(
L̂0

)+ χ̃
γ
(
L̂1

)∣∣2, m ∈ Z. (10.13)

(In this classification, Zdiag. = Z0 and Zcc. = Z−1.) This reflects the simple observation that

χ̃
γ
(
L̂0

) (y;z;q)+ χ̃
γ
(
L̂1

) (y;z;q) = χ̃L1
(y;z;q) =−iy−1/2 η (q)

ϑ1

(
z;q
) (10.14)

is itself SL(2;Z)-invariant, up to a factor of i.
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Finally, it is appropriate to discuss the Verlinde formula. In rational theories, this summarises a remark-

able connection between the modular properties of the characters and the fusion ring. If N ν
λ µ denotes the

multiplicity with which L̂ν appears in the fusion decomposition of L̂λ and L̂µ , then the Verlinde formula

relates these fusion multiplicities to the modular S-matrix via

N
ν

λ µ = ∑
σ

Sλσ Sµσ S∗νσ

S0σ
. (10.15)

Here the sum runs over all irreducible modules L̂σ in the fusion ring, and the index 0 refers to the vacuum

module L̂0.

In our fractional level theory, we no longer have a bijective correspondence between the modules of

the theory and the characters, so it is pointless to expect a direct relation between the fusion ring of our

theory and the S-matrix. However, we can compute the “fusion multiplicities” obtained from the Verlinde

formula by restricting the sum to the linearly independent admissible characters (10.7). Collecting these

multiplicities in fusion matrices, (Nλ )µν =N
ν

λ µ , the results are

N
L̂0

=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




N
L̂1

=




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




(10.16a)

N
γ
(
L̂0

) =




0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0




N
γ
(
L̂1

) =




0 0 0 1

0 0 1 0

−1 0 0 0

0 −1 0 0



. (10.16b)

Whilst the negative “fusion” multiplicities might seem alarming at first sight, it is easy to check that these

are precisely the structure constants of the Grothendieck ring of characters. For example, the Verlinde

formula gives

N
L̂0

γ
(
L̂1

)
γ
(
L̂0

) =−1, (10.17)

which reflects the Grothendieck fusion rule

χ̃
γ
(
L̂1

)×f χ̃
γ
(
L̂0

) =−χ̃
L̂0

. (10.18)

This is of course the projection of the fusion rule

γ
(
L̂1

)
×f γ

(
L̂0

)
= γ2

(
L̂1

)
(10.19)

onto the characters, by Equation (6.6). There is no mystery here — the modular S-matrix only sees the

Grothendieck ring of characters, so it is no surprise that the Verlinde formula reconstructs the structure

constants of this ring, rather than that of the full fusion ring. And as we have seen, these structure constants

are quite often negative.
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APPENDIX A. SPECTRAL FLOW

In this appendix, we detail the construction of spectral flow automorphisms. Spectral flow has a long

history in the conformal field theory literature, and can be traced back at least as far as [38]. The name refers

to the fact that these automorphisms do not preserve the conformal dimension, hence the spectrum “flows”

(discretely in this case) under their action. We are actually only interested in the case where ĝ= ŝl(2), but

it is not much harder to develop the theory for general (untwisted) affine Kac-moody algebras ĝ (and it is

very beautiful).

A.1. Affine Weyl Group Translations. Let g be the horizontal subalgebra of ĝ, let α denote a root of g

with root vector eα and coroot α∨, and let W be the Weyl group of g. Then, each w ∈W permutes the roots

and thereby induces an automorphism of g via

w(eα) = ew(α), hence w
(
α∨)= w(α)∨ . (A.1)

This generalises to ĝ as follows. The real roots now take the form α +nδ̂ (n ∈Z), where α is a root of g and

δ̂ is the generating imaginary root. The corresponding root vector is eα
n . The root vectors corresponding to

the imaginary root nδ̂ (n 6= 0) are denoted by hi
n, i = 1,2, . . . , rankg, and we will associate the hi with the

simple coroots of g: hi = α∨
i . The affine Weyl group decomposes as Ŵ =W⋉Q∨, where Q∨ is the coroot

lattice of g. The coroot lattice acts on the roots of ĝ by translations in the imaginary direction:

α∨ : β +nδ̂ 7−→ β +
(
n−
〈
β ,α∨〉) δ̂ . (A.2)

This is nothing but the usual affine Weyl group action obtained by embedding the roots into the weight

space of ĝ.

It follows that the simple coroots α∨
i (i = 1,2, . . . , rankg) of g each define an independent transformation

τi on the root vectors of ĝ via

τi (e
α
n ) = eα

n−〈α ,α∨
i 〉 (n ∈ Z) and τi

(
h j

n

)
= h j

n (n 6= 0). (A.3)

We extend these transformations to automorphisms of ĝ. First we compute

τi

(
h

j
0

)
= τi

([
e

α j
n ,e

−α j

−n

]
−nκ

(
eα j ,e−α j

)
K
)
=
[
e

α j

n−〈α j ,α
∨
i 〉
,e

−α j

−n+〈α j ,α
∨
i 〉
]
− 2n
∥∥α j

∥∥2
τi (K)

= h
j
0 −

2
〈
α j,α

∨
i

〉
∥∥α j

∥∥2
K +

2n
∥∥α j

∥∥2
(K − τi (K)) . (A.4)

Here, κ
(
·, ·
)

denotes the Killing form of g. Since this computation holds for all n ∈ Z, we must have

τi

(
h

j
0

)
= h

j
0 −κ

(
α∨

i ,α
∨
j

)
K and τi (K) = K. (A.5)

It remains to determine the action of the τi on L0. This is fixed by the Sugawara construction, but requires

a little work. The normal-ordering appearing in this construction turns out to cause some difficulties and

we will treat these by working in the (equivalent) field-theoretic framework, rather than at the level of the

algebra itself. Note that the automorphisms τi act on the fields eα (z) = ∑n eα
n z−n−1 and h j (z) = ∑n h

j
nz−n−1

by

τi (e
α (z)) = z−〈α ,α∨

i 〉eα (z) and τi

(
h j (z)

)
= h j (z)−κ

(
α∨

i ,α
∨
j

)
Kz−1. (A.6)

Our goal is therefore to determine the corresponding action on

T (z) =
1

2(K +h∨)

[
rankg

∑
m,n=1

κ−1
(
hm,hn

)
: hm (z)hn (z) : + ∑

α∈∆

κ−1
(
eα ,e−α

)
: eα (z)e−α (z) :

]
, (A.7)

where h∨ is the dual Coxeter number of g and ∆ is the set of roots of g.
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We first note that

τi ( : hm (z)hn (z) : ) = : hm (z)hn (z) : −κimhn (z)Kz−1 −κinhm (z)Kz−1 +κimκinK2z−2, (A.8)

where κab = κba denotes κ
(
ha,hb

)
. Under τi, the sum over m and n in Equation (A.7) therefore gives

rankg

∑
m,n=1

κ−1
(
hm,hn

)
: hm (z)hn (z) : −2hi (z)Kz−1 +

4

‖αi‖2
K2z−2. (A.9)

Since τi changes the dimension of the eα (z), it affects the normal-ordering in the corresponding terms in a

non-trivial way. Using the standard definition of normal-ordering in conformal field theory, we compute

τi

(
: eα (w)e−α (w) :

)
=
∮

w
eα (z)e−α (w)z−〈α ,α∨

i 〉w〈α ,α∨
i 〉 (z−w)−1 dz

2πi

= w〈α ,α∨
i 〉
∮

w
z−〈α ,α∨

i 〉
[

2K/‖α‖2

(z−w)3
+

α∨ (w)

(z−w)2
+

: eα (w)e−α (w) :

z−w

]
dz

2πi

= : eα (w)e−α (w) : −
〈
α,α∨

i

〉
w−1α∨ (w)+

〈α,α∨
i 〉(〈α,α∨

i 〉+1)

‖α‖2
Kw−2.

(A.10)

Under τi, the sum over the roots in Equation (A.7) gives

∑
α∈∆

[
κ−1

(
eα ,e−α

)
: eα (z)e−α (z) : − ‖α‖2

2

〈
α,α∨

i

〉
z−1α∨ (z)+

〈α,α∨
i 〉(〈α,α∨

i 〉+1)

2
Kz−2

]

= ∑
α∈∆

[
κ−1

(
eα ,e−α

)
: eα (z)e−α (z) : − 2

‖αi‖2
(α,αi)z−1α (z)+

2

‖αi‖4
(αi,α)(α,αi)Kz−2

]

= ∑
α∈∆

κ−1
(
eα ,e−α

)
: eα (z)e−α (z) : −2h∨z−1α∨

i (z)+
4h∨

‖αi‖2
Kz−2. (A.11)

Here in the first step, we have used the fact that summands over ∆ which are odd under α → −α give

vanishing sums. In the second step, we use (twice) the fact that

∑
α∈∆

(λ ,α)(α,µ) = 2h∨ (λ ,µ) (A.12)

for all weights λ and µ .

Putting this all together (and remembering that hi = α∨
i ), we finally obtain

τi (T (z)) = T (z)− z−1hi (z)+
2

‖αi‖2
Kz−2 (A.13)

⇒ τi (L0) = L0 −hi
0 +

2

‖αi‖2
K. (A.14)

This then completes the description of the automorphisms of ĝ induced by the translation subgroup of the

affine Weyl group. It is not hard to check now that powers of τi act as follows:

τℓi (e
α
n ) = eα

n−ℓ〈α ,α∨
i 〉 τℓi

(
h j

n

)
= h j

n − ℓκ
(
α∨

i ,α
∨
j

)
δn,0K (A.15a)

τℓi (K) = K τℓi (L0) = L0 − ℓhi
0 + ℓ

(
ℓ+

2

‖αi‖2
−1

)
K. (A.15b)

These automorphisms are examples of spectral flow automorphisms. However, they do not usually exhaust

the latter in general, as we shall see.

A.2. Outer Automorphisms. Having determined the explicit action of the algebra automorphisms induced

by the affine Weyl group, we can turn to the remaining automorphisms of ĝ, the outer automorphisms
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induced by the symmetries of the Dynkin diagram. Unlike the (non-trivial) affine Weyl transformations,

these preserve a given set of a simple roots. Indeed, an outer automorphism is completely determined by

the permutation it induces on the (chosen set of) simple roots.

The outer automorphisms of g therefore just permute the root vectors eα
n and h

j
n of ĝ without changing

the grade n. But, by analogy with the results of the previous section, we would like to understand the

general case. Happily, this is a simple endeavour. The automorphisms of ĝ which preserve the chosen

Cartan subalgebra can be decomposed into

Aut ĝ= Out ĝ⋉Ŵ = Aut g⋉Q∗, (A.16)

where Q∗ denotes the dual of the root lattice. Thus, our endeavour corresponds to generalising the results

of Appendix A.1 to the outer automorphisms of g (which is trivial) and replacing coroot lattice translations

by dual root lattice translations. It is these dual root translations which generate the complete set of spectral

flow automorphisms.

In fact, it is easy to understand these latter translations. Recall from Equation (A.3) that our starting

point for constructing the automorphisms corresponding to a translation by the simple coroot α∨
i was the

effect on eα
n . Everything else follows from this effect, which was to lower n by 〈α,α∨

i 〉. However, this

index will still be an integer (for all roots α) if we replace α∨
i by an element of the dual root lattice Q∗, so

it follows that such a replacement will still lead to a well-defined automorphism of ĝ.

In fact, we can always choose a basis of Q∗ whose rankg elements are of the form q∨i /mi for some

q∨i ∈Q∨ and mi ∈Z (the fact that Q∗ contains Q∨ follows from the integrality of the Cartan matrix). We may

therefore determine generators of the automorphism group corresponding to dual root lattice translations

by finding such a basis and applying Equation (A.15) with ℓ fractional. Note however that scaling α∨ by

some factor t corresponds to scaling α by t−1.

For example, the coroot lattice of ŝl(2) is generated by α∨
1 , so the coroot spectral flow automorphisms

are generated by τ1:

τ1 (e
α
n ) = eα

n−2, τ1

(
h1

n

)
= h1

n −2δn,0K, τ1 (K) = K, τ1 (L0) = L0 −h1
0 +K. (A.17)

The dual root lattice is however generated by α∨
1 /2. It follows that the spectral flow automorphisms are

generated by γ = τ
1/2

1 . By Equation (A.15), the action of γ is given by

γ (eα
n ) = eα

n−1, γ
(
e−α

n

)
= e−α

n+1, γ
(
h1

n

)
= h1

n −δn,0K, γ (K) = K, γ (L0) = L0 −
1

2
hi

0 +
1

4
K. (A.18)

It should be clear from these formulae why τ1 has a square root.

As a second example, the dual root lattice of ŝl(3) is generated by 2
3
α∨

1 + 1
3
α∨

2 and 1
3
α∨

1 + 2
3
α∨

2 . We

therefore have the spectral flow generators γ1 = τ
2/3

1 τ
1/3

2 and γ2 = τ
1/3

1 τ
2/3

2 , which act on ŝl(3) via

γi

(
e

α j
n

)
= e

α j

n−δi, j
, γi

(
eθ

n

)
= eθ

n−1, γi

(
e
−α j
n

)
= e

−α j

n+δi, j
, γi

(
e−θ

n

)
= e−θ

n+1,

γi

(
h j

n

)
= h j

n −δn,0δi, jK, γi (K) = K, γi (L0) = L0 −
1

3

(
h1

0 +h2
0

)
− 1

3
hi

0 +
1

3
K.

(A.19)

Finally, note that composing any representation of ĝ with an automorphism gives another representation.

Hence, spectral flow automorphisms induce maps (vector space isomorphisms) between ĝ-modules. Since

such maps must preserve integrability, the set of integrable ĝ-modules must close under the induced spectral

flow. In fact, integrable modules are mapped to themselves when the spectral flow corresponds to a transla-

tion by a coroot lattice element. More general translations induce maps between integrable modules whose

highest weights are related by an outer automorphism. In both cases, these maps are non-trivial and provide

a wealth of information about the integrable modules. When the modules are not integrable, the spectral
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flow generally does not map any module to itself, even if the flow corresponds to a coroot translation. In

this case, spectral flow automorphisms are useful for understanding the spectrum and for investigating the

structure of the unfamiliar modules which arise.

APPENDIX B. JACOBI THETA FUNCTIONS

We collect here for convenience our notation for the Jacobi theta functions and some of their important

properties. First we define

ϑ1

(
z;q
)
=−i ∑

n∈Z
(−1)n

zn+1/2q(n+1/2)2/2 ϑ3

(
z;q
)
= ∑

n∈Z
znqn2/2 (B.1a)

ϑ2

(
z;q
)
= ∑

n∈Z
zn+1/2q(n+1/2)2/2 ϑ4

(
z;q
)
= ∑

n∈Z
(−1)n

znqn2/2. (B.1b)

From these definitions follow a number of simple relations:

ϑ1

(
eiπ z;q

)
= ϑ2

(
z;q
)

ϑ3

(
eiπ z;q

)
= ϑ4

(
z;q
)

(B.2a)

ϑ2

(
eiπ z;q

)
=−ϑ1

(
z;q
)

ϑ4

(
eiπ z;q

)
= ϑ3

(
z;q
)

(B.2b)

ϑ1

(
zq1/2;q

)
=

i

z1/2q1/8
ϑ4

(
z;q
)

ϑ3

(
zq1/2;q

)
=

1

z1/2q1/8
ϑ2

(
z;q
)

(B.3a)

ϑ2

(
zq1/2;q

)
=

1

z1/2q1/8
ϑ3

(
z;q
)

ϑ4

(
zq1/2;q

)
=

i

z1/2q1/8
ϑ1

(
z;q
)

(B.3b)

By making use of Jacobi’s triple product identity [36, Eq. 2.2.10],

∞

∏
i=1

(
1+ zqi−1/2

)(
1−qi

)(
1+ z−1qi−1/2

)
= ∑

n∈Z
znqn2/2, (B.4)

each of the theta functions may be written in product form:

ϑ1

(
z;q
)
=−iz1/2q1/8

∞

∏
i=1

(
1− zqi

)(
1−qi

)(
1− z−1qi−1

)
(B.5a)

ϑ2

(
z;q
)
= z1/2q1/8

∞

∏
i=1

(
1+ zqi

)(
1−qi

)(
1+ z−1qi−1

)
(B.5b)

ϑ3

(
z;q
)
=

∞

∏
i=1

(
1+ zqi−1/2

)(
1−qi

)(
1+ z−1qi−1/2

)
(B.5c)

ϑ4

(
z;q
)
=

∞

∏
i=1

(
1− zqi−1/2

)(
1−qi

)(
1− z−1qi−1/2

)
. (B.5d)

This also gives us the identity

ϑ2

(
1;q
)
ϑ3

(
1;q
)
ϑ4

(
1;q
)
= 2η (q)3 , (B.6)

where η is Dedekind’s eta function

η (q) = q1/24
∞

∏
i=1

(
1−qi

)
. (B.7)

The most important property of these functions is their behaviour under modular transformations. Setting

z = exp(2πiζ ) and q = exp(2πiτ), the modular group SL(2;Z) is generated by two transformations S and

T which act via

S : (ζ ,τ) 7−→ (ζ/τ ,−1/τ) T : (ζ ,τ) 7−→ (ζ ,τ +1) . (B.8)
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One can check that S4 = (ST )6 = id. Writing ϑi

(
ζ | τ

)
for ϑi

(
e2πiζ ;e2πiτ

)
, T is therefore represented on

the space of theta functions by

ϑ1

(
ζ | τ +1

)
= eiπ/4ϑ1

(
ζ | τ

)
ϑ3

(
ζ | τ +1

)
= ϑ4

(
ζ | τ

)
(B.9a)

ϑ2

(
ζ | τ +1

)
= eiπ/4ϑ2

(
ζ | τ

)
ϑ4

(
ζ | τ +1

)
= ϑ3

(
ζ | τ

)
. (B.9b)

Equation (B.7) gives (in hopefully obvious notation)

η (τ +1) = eiπ/12η (τ) . (B.10)

Determining the corresponding transformations under S requires a specialisation of the Poisson resumma-

tion formula from Fourier analysis. With this tool, we derive

ϑ1

(
ζ/τ ,−1/τ

)
=−i

√
−iτ eiπζ 2/τ ϑ1

(
ζ | τ

)
ϑ3

(
ζ/τ ,−1/τ

)
=
√
−iτ eiπζ 2/τ ϑ3

(
ζ | τ

)
(B.11a)

ϑ2

(
ζ/τ ,−1/τ

)
=
√
−iτ eiπζ 2/τ ϑ4

(
ζ | τ

)
ϑ4

(
ζ/τ ,−1/τ

)
=
√
−iτ eiπζ 2/τ ϑ2

(
ζ | τ

)
. (B.11b)

The additional factor of −i for ϑ1 reflects the fact that this theta function is antisymmetric under z → z−1

whereas the others are symmetric. Equation (B.6) now gives

η (−1/τ) =
√
−iτ η (τ) . (B.12)
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