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ABSTRACT. It was recently shown that ĝl(1|1) admits an infinite family of simple current extensions. Here,

these findings are reviewed and explicit free field realisations of the extended algebras are constructed. The

leading contributions to the operator product algebra are then calculated. Among these extensions, one finds

four infinite families that seem to contain, as subalgebras, copies of the W
(2)
N algebras of Feigin and Semikhatov

at various levels and central charges ±1.

1. INTRODUCTION

The affine Kac-Moody superalgebra ĝl(1|1) is an attractive candidate for study. On the one hand, its

highest weight theory is particularly easy to analyse. On the other, one is naturally led to study inde-

composable modules of the type that arise in logarithmic conformal field theory. In [1], we reviewed and

consolidated what was known about this superalgebra, drawing in particular upon the previous works [2–8].

One motivation for undertaking this work was to understand how one could reconcile the observation

that conformal field theories with ĝl(1|1) symmetry appeared to admit only continuous spectra, whereas one

might expect that the Wess-Zumino-Witten model on the real form U(1|1) would have the same symmetry,

but a discrete spectrum. Another was to understand whether ĝl(1|1) could be related to other infinite-

dimensional algebras, thus providing relationships between certain (logarithmic) conformal field theories.

For the first question, we were able to show that certain discrete spectra seem to be consistent provided one

extends the chiral algebra appropriately. For the second, we identified a certain û(1)-coset of ĝl(1|1) as

the chiral algebra of the well-known βγ ghost system. Previous work [9] then links ĝl(1|1) to the affine

Kac-Moody algebra ŝl(2)−1/2 [10, 11], the triplet algebra W(1,2) of Gaberdiel and Kausch [12] and the

symplectic fermions algebra [13] (p̂sl(1|1)).
This article describes a certain family of extended algebras of ĝl(1|1). In [1], we noted that the fusion

rules give rise to an infinite family of simple currents labelled by n ∈ R and ℓ ∈ Z. It follows that these

algebra extensions may be computed algorithmically [14, 15]. Here, we perform the computations up to

a certain order, using a well-known free field realisation [16]. More precisely, we study the resulting W-

algebras and show that, for certain infinite families of n and ℓ, there is a bosonic subalgebra which we

conjecture to be the W
(2)
N algebra of Feigin and Semikhatov [17].

2. gl(1|1) AND ITS REPRESENTATIONS

2.1. Algebraic Structure. The Lie superalgebra gl(1|1) consists of the endomorphisms of the super vector

space C
1|1 equipped with the standard graded commutator. It is convenient to choose the following basis,

N =
1

2

(
1 0

0 −1

)
, E =

(
1 0

0 1

)
, ψ+ =

(
0 1

0 0

)
, ψ− =

(
0 0

1 0

)
, (2.1)

in which N and E are parity-preserving (bosonic) whereas ψ+ and ψ− are parity-reversing (fermionic). The

non-vanishing brackets are then

[
N,ψ±]=±ψ±,

{
ψ+,ψ−}= E. (2.2)
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We note that E is central, so this superalgebra is not simple. In fact, gl(1|1) does not decompose as a direct

sum of ideals. Equivalently, the adjoint representation of gl(1|1) is reducible, but indecomposable.

The standard non-degenerate bilinear form κ
(
·, ·
)

on gl(1|1) is given by the supertrace of the product in

the defining representation (2.1). With respect to the basis elements (2.1), this form is

κ
(
N,E

)
= κ

(
E,N

)
= 1, κ

(
ψ+,ψ−)=−κ

(
ψ−,ψ+

)
= 1, (2.3)

with all other combinations vanishing. From this, we compute the quadratic Casimir Q ∈ U
(
gl(1|1)

)
(up

to an arbitrary polynomial in the central element E). We find it convenient to take

Q = NE +ψ−ψ+. (2.4)

2.2. Representation Theory. The obvious triangular decomposition of gl(1|1) regards ψ+ as a raising

(annihilation) operator, ψ− as a lowering (creation) operator, and N and E as Cartan elements. A highest

weight state of a gl(1|1)-representation is then defined to be an eigenstate of N and E which is annihilated by

ψ+. Such states generate Verma modules in the usual way and as ψ− squares to zero in any representation,

every Verma module has dimension 2. If (n,e) denotes the weight (the N- and E-eigenvalues) of a highest

weight state generating a Verma module, then its unique descendant will have weight (n−1,e). We will

denote this Verma module by Vn−1/2,e, remarking that the convention of characterising a highest weight

module by the average N-eigenvalue of its states, rather than that of the highest weight state itself, turns out

to symmetrise many of the formulae to follow.

Suppose now that
∣∣v
〉

is a (generating) highest weight state of Vn,e. It satisfies

ψ+ψ−∣∣v
〉
=
{

ψ+,ψ−}∣∣v
〉
= E

∣∣v
〉
= e
∣∣v
〉
, (2.5)

so the descendant ψ−∣∣v
〉
6= 0 is a singular vector if and only if e = 0. Verma modules are therefore ir-

reducible for e 6= 0, and have irreducible quotients of dimension 1 when e = 0. Modules with e 6= 0 are

called typical while those with e = 0 are atypical. We will denote a typical irreducible by Tn,e
∼= Vn,e and

an atypical irreducible by An. Our convention of labelling modules by their average N-eigenvalue leads us

to define the latter to be the irreducible quotient of Vn−1/2,0. This is summarised in the short exact sequence

0 −→An−1/2 −→ Vn,0 −→An+1/2 −→ 0 (2.6)

and structure diagram

An+1/2 An−1/2Vn,0 :
ψ−

. (2.7)

Such diagrams illustrate how the irreducible composition factors of a module are combined, with arrows

indicating (schematically) the action of the algebra.

Atypical modules also appear as submodules of larger indecomposable modules. Of particular impor-

tance are the four-dimensional projectives1
Pn whose structure diagrams take the form

An

An+1 An−1

An

Pn

ψ+ ψ−

ψ− −ψ+

. (2.8)

1We mention that the typical irreducibles are also projective in the category of finite-dimensional gl(1|1)-modules.
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We remark that these modules may be viewed as particularly simple examples of staggered modules [18].

Indeed, they may be regarded as extensions of highest weight modules via the exact sequence

0 −→ Vn+1/2,0 −→ Pn −→ Vn−1/2,0 −→ 0, (2.9)

and one can verify that the Casimir Q acts non-diagonalisably on Pn, taking the generator associated with

the top An factor to the generator of the bottom An factor, while annihilating the other states.

2.3. The Representation Ring. The relevance of the projectives Pn is that they appear in the representation

ring generated by the irreducibles.2 The tensor product rules governing this ring are [2]

An ⊗An′ =An+n′ , An ⊗Tn′,e′ = Tn+n′,e′ , An ⊗Pn′ = Pn+n′ ,

Tn,e ⊗Tn′,e′ =




Pn+n′ if e+ e′ = 0,

Tn+n′+1/2,e+e′ ⊕Tn+n′−1/2,e+e′ otherwise,

Tn,e ⊗Pn′ = Tn+n′+1,e ⊕2Tn+n′,e ⊕Tn+n′−1,e, Pn ⊗Pn′ = Pn+n′+1 ⊕2Pn+n′ ⊕Pn+n′−1.

(2.10)

There are other indecomposables which may be constructed from submodules and quotients of the Pn by

taking tensor products. We will not need them and refer to [19] for further discussion.

3. ĝl(1|1) AND ITS REPRESENTATIONS

3.1. Algebraic Structure. Our conventions for gl(1|1) carry over to its affinisation ĝl(1|1) in the usual

way. Explicitly, the non-vanishing brackets are

[
Nr,Es

]
= rkδr+s,0,

[
Nr,ψ

±
s

]
=±ψ±

r+s,
{

ψ+
r ,ψ−

s

}
= Er+s + rkδr+s,0, (3.1)

where k ∈ R is called the level and r,s ∈ Z. We emphasise that when k 6= 0, the generators can be rescaled

so as to normalise k to 1:

Nr −→ Nr, Er −→
Er

k
, ψ±

r −→ ψ±
r√
k
. (3.2)

As in the more familiar case of û(1), we see that the actual value of k 6= 0 is not physical.

The Virasoro generators are constructed using (a modification of) the Sugawara construction. Because

the quadratic Casimir of gl(1|1) is only defined modulo polynomials in E, one tries the ansatz [2]

T (z) = µ : NE +EN −ψ+ψ−+ψ−ψ+ : (z)+ν : EE : (z) , (3.3)

finding that this defines an energy-momentum tensor if and only if µ = 1/2k and ν = 1/2k2. Moreover, the

ĝl(1|1) currents N (z), E (z) and ψ± (z) are found to be Virasoro primaries of conformal dimension 1 and

the central charge is zero.

The structure theory of highest weight modules for ĝl(1|1) turns out to be particularly accessible because

of certain automorphisms. These consist of the automorphism w which defines the notion of conjugation

and the family [4] of spectral flow automorphisms σ ℓ, ℓ ∈ Z. Explicitly,

w (Nr) =−Nr,

σ ℓ (Nr) = Nr,

w (Er) =−Er,

σ ℓ (Er) = Er − ℓkδr,0,

w
(
ψ±

r

)
=±ψ∓

r ,

σ ℓ
(
ψ±

r

)
= ψ±

r∓ℓ,

w (L0) = L0.

σ ℓ (L0) = L0 − ℓN0.
(3.4)

These automorphisms may be used to construct new modules w∗ (M) and σ∗ (M) by twisting the action of

the algebra on a module M:

J ·w∗(∣∣v
〉)

= w∗ (w−1
(
J
)∣∣v
〉)

, J ·σ∗(∣∣v
〉)

= σ∗ (σ−1
(
J
)∣∣v
〉)

(J ∈ ĝl(1|1)). (3.5)

Note that w∗ (M) is precisely the module conjugate to M.

2It is perhaps also worth pointing out that the adjoint representation of gl(1|1) is isomorphic to P0.
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3.2. Representation Theory. We can now define affine highest weight states, affine Verma modules V̂n,ℓ,

and their irreducible quotients as before. We remark only that (3.2) suggests that we characterise modules

by the invariant ratio ℓ = e/k rather than by the E0-eigenvalue e. The affine highest weight state
∣∣vn,ℓ

〉
of

V̂n,ℓ, whose weight (its N0- and E0/k-eigenvalues) is
(
n+ 1

2
, ℓ
)
, has conformal dimension

∆n,ℓ = nℓ+
1

2
ℓ2. (3.6)

Of course, this formula also applies to singular vectors. Again, the label n refers to the average N0-

eigenvalue of the zero-grade subspace of V̂n,ℓ, generalising the labelling convention of Section 2.2.

Verma modules for ĝl(1|1) are infinite-dimensional and their characters have the form

χ
V̂n,ℓ

(
z;q
)
= tr

V̂n,ℓ
zN0qL0 = zn+1/2q∆n,ℓ

∞

∏
i=1

(
1+ zqi

)(
1+ z−1qi−1

)

(1−qi)2
. (3.7)

For the irreducible quotients, the case with ℓ = 0 is particularly easy. As in Section 2.2, we regard (n, ℓ)

(and modules so-labelled) as being typical if V̂n,ℓ is irreducible and atypical otherwise.

Proposition 1. The affine Verma module V̂n,0 has an exact sequence

0 −→ Ân−1/2,0 −→ V̂n,0 −→ Ân+1/2,0 −→ 0 (3.8)

in which the Ân,0 are (atypical) irreducibles whose characters are given by

χ
Ân,0

(
z;q
)
= zn

∞

∏
i=1

(
1+ zqi

)(
1+ z−1qi

)

(1−qi)2
. (3.9)

Proof. Since ℓ= 0, every singular vector of V̂n,0 has dimension 0 by Equation (3.6). The space of singular

vectors is thus spanned by
∣∣vn,0

〉
and ψ−

0

∣∣vn,0

〉
. Taking the quotient by the module generated by ψ−

0

∣∣vn,0

〉

gives a module with a one-dimensional zero-grade subspace. The only singular vector is then the highest

weight state, so this quotient is irreducible. We denote it by Ân+1/2,0 as its zero-grade subspace has N0-

eigenvalue n+ 1
2
. Its character follows trivially. The submodule of V̂n,0 generated by ψ−

0

∣∣vn,0

〉
is not a

Verma module because
(
ψ−

0

)2∣∣vn,0

〉
= 0. It must therefore be a proper quotient of V̂n−1,0 and, by the above

argument, the only such quotient is the irreducible Ân−1/2,0. The exact sequence follows.

For ℓ 6= 0, one proves by direct calculation [1] that for 0 < |ℓ| < 1, V̂n,ℓ is irreducible. In other words,

the corresponding irreducibles are typical, hence we denote them by T̂n,ℓ. For |ℓ| > 1, the structure of the

Verma modules now follows from considering the induced action of the spectral flow automorphisms. More

precisely, one proves [1] that any Verma module is isomorphic to a twisted version of a Verma module with

−1 < |ℓ|< 1 (or the conjugate of such a Verma module). We summarise the result as follows.

Proposition 2. When ℓ /∈ Z, the affine Verma module V̂n,ℓ is irreducible, V̂n,ℓ
∼= T̂n,ℓ, so its character is

given by Equation (3.7). When ℓ ∈ Z, the affine Verma module V̂n,ℓ has an exact sequence

0 −→ Ân+1,ℓ −→ V̂n,ℓ −→ Ân,ℓ −→ 0 (ℓ=+1,+2,+3, . . .),

0 −→ Ân−1,ℓ −→ V̂n,ℓ −→ Ân,ℓ −→ 0 (ℓ=−1,−2,−3, . . .),
(3.10)

in which the Ân,ℓ are (atypical) irreducibles whose characters are given by

χ
Ân,ℓ

(
z;q
)
=





zn+1/2q∆n,ℓ

1+ zqℓ

∞

∏
i=1

(
1+ zqi

)(
1+ z−1qi−1

)

(1−qi)2
(ℓ=+1,+2,+3, . . .),

zn+1/2q∆n,ℓ

1+ z−1q−ℓ

∞

∏
i=1

(
1+ zqi

)(
1+ z−1qi−1

)

(1−qi)2
(ℓ=−1,−2,−3, . . .).

(3.11)

(The exact sequence and character for ℓ= 0 was given in Proposition 1.)
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Note that the V̂n,ℓ with ℓ ∈ Z have a non-trivial singular vector at grade |ℓ|. We emphasise that the Ân,ℓ with

ℓ 6= 0 therefore possess a two-dimensional zero-grade subspace.

This description of the Verma modules, their irreducible quotients and characters relies upon being able

to identify the result of applying the spectral flow automorphisms to modules. For irreducibles, we have

(
σ ℓ′)∗(

T̂n,ℓ

)
= T̂n−ℓ′,ℓ+ℓ′ ,

(
σ ℓ′)∗(

Ân,ℓ

)
= Ân−ℓ′+ε(ℓ+ℓ′)−ε(ℓ),ℓ+ℓ′ , (3.12)

where we introduce a convenient variant ε of the sign function on Z, defined by taking ε (ℓ) to be 1
2
, 0 or

− 1
2

according as to whether ℓ ∈ Z is positive, zero or negative, respectively.

3.3. Fusion. The fusion rules of the irreducible ĝl(1|1)-modules (among others) were first deduced in [5]

using three-point functions computed in a free field realisation and a conjectured completeness of the spec-

trum. These rules and the spectrum conjecture were confirmed in [1] through a direct argument involving

the Nahm-Gaberdiel-Kausch fusion algorithm [20, 21] and spectral flow. The fusion ring generated by the

irreducibles may be understood [22] as a “constrained lift” of the representation ring (2.10) of gl(1|1) where

the constraints are effectively implemented by spectral flow. Explicitly, the rules are

Ân,ℓ× Ân′,ℓ′ = Ân+n′−ε(ℓ,ℓ′),ℓ+ℓ′ , Ân,ℓ× T̂n′,ℓ′ = T̂n+n′−ε(ℓ),ℓ+ℓ′ , Ân,ℓ× P̂n′,ℓ′ = P̂n+n′−ε(ℓ,ℓ′),ℓ+ℓ′ ,

T̂n,ℓ× T̂n′,ℓ′ =




P̂n+n′+ε(ℓ+ℓ′),ℓ+ℓ′ if ℓ+ ℓ′ = 0,

T̂n+n′+1/2,ℓ+ℓ′ ⊕ T̂n+n′−1/2,ℓ+ℓ′ otherwise,

T̂n,ℓ× P̂n′,ℓ′ = T̂n+n′+1−ε(ℓ′),ℓ+ℓ′ ⊕2 T̂n+n′−ε(ℓ′),ℓ+ℓ′ ⊕ T̂n+n′−1−ε(ℓ′),ℓ+ℓ′ ,

P̂n,ℓ× P̂n′,ℓ′ = P̂n+n′+1−ε(ℓ,ℓ′),ℓ+ℓ′ ⊕2 P̂n+n′−ε(ℓ,ℓ′),ℓ+ℓ′ ⊕ P̂n+n′−1−ε(ℓ,ℓ′),ℓ+ℓ′ .

(3.13)

Here, we have defined ε (ℓ,ℓ′) = ε (ℓ)+ ε (ℓ′)− ε (ℓ+ ℓ′) for convenience.

These fusion rules also introduce the indecomposable modules P̂n,ℓ which are the counterparts of the

projective gl(1|1)-modules Pn discussed in Section 2.2.3 The P̂n,ℓ are staggered with structure diagram

Ân,ℓ

Ân+1,ℓ Ân−1,ℓ

Ân,ℓ

P̂n,ℓ (3.14)

and a non-diagonalisable action of the Virasoro mode L0. It follows that conformal field theories whose

spectra contain typical modules will also contain such P̂n,ℓ (by fusion), and so will be logarithmic.

4. W-ALGEBRAS EXTENDING ĝl(1|1)

4.1. Chiral Algebra Extensions. Our search for extended algebras is guided by the following consider-

ations: First, note that if we choose to extend by a zero-grade field associated to any irreducible ĝl(1|1)-
module, then we must include the rest of its zero-grade fields in the extension. Second, the fields we extend

by should be closed under conjugation. Third, extending by fields from typical irreducibles will lead to

logarithmic behaviour in the extended chiral algebra because fusing typicals with their conjugates yields

the staggered indecomposable P̂0,0.

3More precisely, P̂n,0 is the affine counterpart to Pn and the remaining P̂n,ℓ are obtained by spectral flow.
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It seems then that the most tractable extensions will involve zero-grade fields from atypical modules Ân,ℓ

and their conjugates Â−n,−ℓ. The simplest extension we could hope for would involve a single atypical and

its conjugate and have the further property that these extension fields generate no new fields at the level of

the commutation relations. This may be achieved for extension fields of integer or half-integer conformal

dimension by requiring that the operator product expansions of the zero-grade fields of Ân,ℓ are regular.

From the fusion rules (3.13), we obtain

Ân,ℓ× Ân,ℓ = Â2n−ε(ℓ),2ℓ, (4.1)

from which it follows that the zero-grade fields of Ân,ℓ will have regular operator product expansions with

one another if 2 ∆n,ℓ 6 ∆2n−ε(ℓ),2ℓ, that is, if

|ℓ|6 2 ∆n,ℓ. (4.2)

We may take ℓ positive without loss of generality. Further, we require that the conformal dimension of the

extension fields be a positive half-integer (so 2nℓ ∈ Z). Equation (4.2) then implies that there are m distinct

possibilities to extend by fields of dimension m/2. We denote by Wn,ℓ the algebra obtained upon extending

ĝl(1|1) by the atypical module Ân,ℓ and its conjugate Â−n,−ℓ.

4.2. Characters of Extended Algebras. The complete extended algebra also contains normally-ordered

products of the extension fields and their descendants. Indeed, the extended algebra Wn,ℓ may be identified,

at least at the level of graded vector spaces, with the orbit of the ĝl(1|1) vacuum module under fusion by

the simple current modules Ân,ℓ and Â−n,−ℓ. In other words,

Wn+1/2,ℓ = Â0,0 ⊕
∞⊕

m=1

(
Âmn+1/2,mℓ⊕ Â−mn−1/2,−mℓ

)
. (4.3)

The character of the extended vacuum module is therefore

χ
Wn+1/2,ℓ

(
y;z;q

)
= χ

Â0,0

(
y,z;q

)
+

∞

∑
m=1

[
χ
Âmn+1/2,mℓ

(
y;z;q

)
+ χ

Â−mn−1/2,−mℓ

(
y;z;q

)]

= z ∑
m∈Z

ymℓzmnq(mn+1/2)mℓ+m2ℓ2/2

1+ zqmℓ
·

∞

∏
i=1

(
1+ zqi

)(
1+ z−1qi−1

)

(1−qi)2
.

(4.4)

Here, we have introduced an additional formal variable y in order to keep track of the eigenvalues of E0/k.

One can likewise identify the irreducible modules of the extended algebra with the other orbits of the

extension modules. We will not consider these modules, their characters, nor their interesting modular

properties here, but will return to this in a future publication.

4.3. Free Field Realisations. The affine Kac-Moody superalgebra ĝl(1|1) has two well-known free field

realizations, the standard Wakimoto realization [4] and one constructed from a pair of symplectic fermions,

a euclidean boson, and a lorentzian boson [16]. An explicit equivalence between the two realisations was

established in [23]. Here, we review the latter one.

We take the symplectic fermions χ± and bosons Y , Z to have the following operator product expansions:

χ+ (z)χ− (w) =
1

(z−w)2
+ regular terms, ∂Y (z)∂Z (w) =

1

(z−w)2
+ regular terms (4.5)

(the others are regular). The ĝl(1|1) current fields are then given by

E (z) = k∂Y (z) , N (z) = ∂Z (z) , ψ± (z) =
√

k : e±Y (z) : χ± (z) , (4.6)

and a moderately tedious computation shows that the ĝl(1|1) energy momentum tensor (3.3) indeed corre-

sponds to the sum of those of the bosonic and symplectic fermion systems.
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It remains to construct the ĝl(1|1) primaries that generate our extended algebras. As these correspond

to atypical modules, this is relatively straight-forward. First, we introduce some convenient notation: Let

Xn,ℓ be the bosonic linear combination nY + ℓZ and define composite fields F±
r , with r ∈ N, by F±

0 = 1 and

F±
r = : F±

r−1∂ r−1χ± : for r > 1. The conformal dimension of F±
r is then 1

2
r (r+1). The zero-grade fields

of the atypicals Ân,ℓ for ℓ > 0 have conformal dimension ∆n,ℓ = ℓ(n+ ℓ/2) and are realised by

V+
n,ℓ = : eXn+1/2,ℓ : F−

ℓ−1, V−
n,ℓ = : eXn−1/2,ℓ : F−

ℓ . (4.7)

This follows from their operator product expansions with the ĝl(1|1) currents:

N (z)V±
n,ℓ (w) =

(n±1/2) V±
n,ℓ (w)

z−w
+ . . . ,

E (z)V±
n,ℓ (w) =

ℓkV±
n,ℓ (w)

z−w
+ . . . ,

ψ+ (z)V−
n,ℓ (w) = (−1)ℓ−1 ℓ!

√
kV+

n,ℓ (w)

z−w
+ . . . ,

ψ− (z)V+
n,ℓ (w) =

(−1)ℓ−1

(ℓ−1)!

√
kV−

n,ℓ (w)

z−w
+ . . . ,

(4.8)

the others being regular. The zero-grade fields of the conjugate module Â−n,−ℓ are realised as

V+
−n,−ℓ = : eX−n+1/2,−ℓ : F+

ℓ , V−
−n,−ℓ = : eX−n−1/2,−ℓ : F+

ℓ−1. (4.9)

Their operator product expansions with the current fields are similar.

4.4. The Extended Operator Product Algebra. In order to compute the leading contributions to the

extended algebra operator product expansions, we need the expansion of the bosonic vertex operators. To

second order, this is

: eXn,ℓ(z) : : e
Xn′ ,ℓ′ (w) : = (z−w)nℓ′+n′ℓ

[
: e

Xn+n′,ℓ+ℓ′ (w) : + : ∂Xn,ℓ (w)e
Xn+n′,ℓ+ℓ′ (w) : (z−w)

+
1

2
:
(

∂Xn,ℓ (w)∂Xn,ℓ (w)+∂ 2Xn,ℓ (w)
)
e

Xn+n′,ℓ+ℓ′ (w) : (z−w)2 + . . .

]
. (4.10)

Note that it follows that : eXn,ℓ(w) : and : e
Xn′ ,ℓ′ (w) : will be mutually bosonic when nℓ′ + n′ℓ is an even

integer and mutually fermionic when nℓ′ + n′ℓ is odd. The implication of this for the statistics of the

extended algebra generators V±
n,ℓ and V±

−n,−ℓ is a little subtle. It turns out that when 2nℓ is even, these

generators may be consistently assigned a bosonic or fermionic parity — Wn,ℓ is a superalgebra. In fact,

V+
n,ℓ and V−

−n,−ℓ will be fermions and V−
n,ℓ and V+

−n,−ℓ will be bosons in this case. However, when 2nℓ is odd,

such an assignment is impossible — Wn,ℓ is not a superalgebra. In this case, separately taking V+
n,ℓ and

V−
−n,−ℓ to be bosons and V−

n,ℓ and V+
−n,−ℓ to be fermions is consistent, but the mutual locality of a boson and

a fermion will now be −1 instead of +1. We will remark further on this subtlety in Section 4.5.

We moreover need the leading terms of certain operator product expansions of the F±
r . In particular,

F+
r (z)F−

r (w) = (z−w)−r(r+1)

[
µ
(0)
r +µ

(2)
r−1 : χ+ (w)χ− (w) : (z−w)2 + . . .

]
,

F−
r−1 (z)F+

r (w) = (z−w)−(r−1)(r+1)

[
µ
(1)
r−1 χ+ (w)+ . . .

]
,

F−
r (z)F+

r−1 (w) = (z−w)−(r−1)(r+1)

[
µ
(1)
r−1 χ− (w)+ . . .

]
,

(4.11)

where the coefficients µ
(a)
r , for a = 0, 1, 2, are given by

µ
(a)
r = ∑

σ∈Sr

(−1)|σ |
r

∏
i=1

(i+σ (i)+a−1)! =
r

∏
i=1

(i−1)!(i+a)! (4.12)
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This last equality follows from recognising the µ
(a)
r as determinants of Hankel matrices for which LU-

decompositions are easily found. In detail, consider the r× r matrix Ar (a), for a non-negative integer a,

with entries (Ar (a))i j = (i+ j+a−1)! Defining r× r matrices Lr (a) and Ur (a) by

(Lr (a))i j =
(i+a)!

( j+a)!

(
i−1

j−1

)
, (Ur (a))i j = (i−1)!( j+a)!

(
j−1

i−1

)
, (4.13)

and noting that Lr (a) is lower-triangular with diagonal entries equal to 1 and Ur (a) is upper-triangular, we

see that Lr (a)Ur (a) is an LU-decomposition of Ar (a):

(Lr (a)Ur (a))i j =
r

∑
k=1

(i+a)!(i−1)!( j+a)!( j−1)!

(k+a)!(k−1)!(i− k)!( j− k)!
= ( j+a)!(i−1)!

r

∑
k=1

(
i+a

k+a

)(
j−1

k−1

)

= ( j+a)!(i−1)!

(
i+ j+a−1

i−1

)
= (Ar (a))i j .

(4.14)

Since det Lr (a) = 1, we obtain det Ar (a) = det Ur (a) = ∏r
i=1 (i−1)!(i+a)! and hence Equation (4.12).

We are now in a position to obtain the leading contributions to the operator product expansions of the

extension fields V±
n,ℓ and their conjugates V∓

−n,−ℓ. Since we assume (4.2), there are only four non-regular

expansions and these take the form

V+
n,ℓ (z)V+

−n,−ℓ (w) =
µ
(1)
ℓ−1 ψ+ (w)/

√
k

(z−w)2∆n,ℓ−1
+ . . . ,

V−
−n,−ℓ (z)V+

n,ℓ (w) = µ
(0)
ℓ−1

[
1

(z−w)2∆n,ℓ
−

∂Xn+1/2,ℓ (w)

(z−w)2∆n,ℓ−1
+

ℓ(ℓ−1)

2

: χ+ (w)χ− (w) :

(z−w)2∆n,ℓ−2

+
1

2

: ∂Xn+1/2,ℓ (w)∂Xn+1/2,ℓ (w) : −∂ 2Xn+1/2,ℓ (w)

(z−w)2∆n,ℓ−2
+ . . .

]
,

V+
−n,−ℓ (z)V−

n,ℓ (w) = µ
(0)
ℓ

[
1

(z−w)2∆n,ℓ
−

∂Xn−1/2,ℓ (w)

(z−w)2∆n,ℓ−1
+

ℓ(ℓ+1)

2

: χ+ (w)χ− (w) :

(z−w)2∆n,ℓ−2

+
1

2

: ∂Xn−1/2,ℓ (w)∂Xn−1/2,ℓ (w) : −∂ 2Xn−1/2,ℓ (w)

(z−w)2∆n,ℓ−2
+ . . .

]
,

V−
n,ℓ (z)V−

−n,−ℓ (w) =
µ
(1)
ℓ−1 ψ− (w)/

√
k

(z−w)2∆n,ℓ−1
+ . . .

(4.15)

Here, we have used (4.12) to evaluate the ratios µ
(2)
r−1/µ

(0)
r = 1

2
r (r+1) appearing in these expansions.

4.5. Examples. Let us now illustrate the results of the above calculations with a few simple examples.

First, (4.2) tells us that the extended algebra Wn,ℓ will be unique if we insist that the extension fields have

conformal dimension 1
2
. Indeed, this requires ℓ = 1 and n = 0. We are therefore extending ĝl(1|1) by

the fields associated with the atypical modules Â0,1 and Â0,−1. Since 2nℓ = 0 is even, the generators of

the resulting extended algebra, W0,1, may be assigned a definite parity: κ = V+
0,1 and κ̄ = V−

0,−1 are odd,

β =V−
0,1 and γ =−V+

0,−1 are even. The expansions (4.15) become

κ (z) κ̄ (w) =
1

z−w
+N (w)+

1

2k
E (w)+ . . . ,

β (z)γ (w) =
1

z−w
+N (w)− 1

2k
E (w)+ . . . ,

β (z)κ (w) = +
ψ+ (w)√

k
+ . . . ,

γ (z) κ̄ (w) =−ψ− (w)√
k

+ . . . ,

(4.16)

which we recognise as a free complex fermion (κ, κ̄) and a βγ ghost system. Because the mixed operator

product expansions are regular, W0,1 decomposes into the direct sum of the chiral algebras of these theories.
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If we choose to extend by dimension 1 fields, then there are two distinct choices: n = 1
2

and ℓ = 1 or

n = 1
2

and ℓ = −2. We expect a current algebra symmetry in both cases. Indeed, if we set H = N +E/ℓk

and Z = N−E/ℓk, then we discover that the (H,Z)-weights of the ĝl(1|1) currents and the extension fields

V±
n,ℓ, V±

−n,−ℓ precisely match the (H,Z)-weights of the adjoint representation of sl(2|1).4 Moreover, we have

H(z)H(w) =
2/ℓ

(z−w)2
+ . . . , Z(z)Z(w) =

−2/ℓ

(z−w)2
+ . . . , (4.17)

and H(z)Z(w) regular, which suggests that the extended algebra will be ŝl(2|1) at level 1/ℓ.

Checking this for the choice ℓ = −2 is easy. As 2nℓ = −2 is even, W1/2,−2 admits a superalgebra

structure. Moreover, the fusion rules

Â0,1 × Â0,1 = Â−1/2,2, Â0,−1 × Â0,−1 = Â1/2,−2 (4.18)

imply that W1/2,−2 is a subalgebra of the extended algebra W0,1 considered above. One readily checks

that by taking normally-ordered products, the βγ ghost fields of W0,1 generate the bosonic subalgebra

ŝl(2)−1/2 ⊂ ŝl(2|1)−1/2, the complex fermion gives the û(1)-subalgebra, and the mixed products yield the

remaining fermionic currents. This establishes the superalgebra isomorphism W1/2,−2
∼= ŝl(2|1)−1/2.

The computation when ℓ= 1 is, however, more subtle because 2nℓ= 1 is odd, so W1/2,1 does not admit

the structure of a superalgebra. To impose the correct parities on the extended algebra currents, we must

adjoin an operator-valued function µ which is required to satisfy

µa,bµc,d = (−1)ad µa+b,c+d , (a,b,c,d ∈ Z). (4.19)

Note that the algebra generated by these operators has unit µ0,0. The currents are then given by

E =+µ1,1V+
1/2,1,

F =−µ−1,−1V−
−1/2,−1

,

H = N +E/k,

Z = N −E/k,

e+ =−µ1,0ψ+/
√

k,

f− =+µ−1,0ψ−/
√

k,

f+ = µ0,−1V+
−1/2,−1

,

e− = µ0,1V−
1/2,1,

(4.20)

and routine computation now verifies that these currents indeed generate ŝl(2|1)1.

As our final example, we briefly consider the case of extensions of conformal dimension 3
2
. There are

now three distinct choices, corresponding to n = 1, ℓ = 1, or n = − 1
4
, ℓ = 2, or n = −1, ℓ = 3. The latter

choice again results in an extended algebra which is a subalgebra of W0,1 because

Â0,1 × Â0,1 × Â0,1 = Â−1,3. (4.21)

Both W1,1 and W−1,3 are superalgebras, while W−1/4,2 is not. We expect, however, that a modification

similar to (4.19) will restore the superalgebra parity requirements. We will not analyse this in any detail as

our interest in ∆n,ℓ =
3
2

lies not with the full extended algebra, but rather with one of its subalgebras.

We start with the superalgebras W1,1 and W−1,3. Both V+
−n,−ℓ and V−

n,ℓ are bosonic and upon defining

g+ =

√
3α (3α −1)

2µ
(0)
ℓ

V+
−n,−ℓ, g− =

√
3α (3α −1)

2µ
(0)
ℓ

V−
n,ℓ,

j=−α∂Xn−1/2,ℓ, t=
α

2
: ∂Xn−1/2,ℓ∂Xn−1/2,ℓ : − ℓ(ℓ+1)

2

α (3α −1)

α +1

: ψ+ψ− :

k
,

(4.22)

where

α =
1

(2n−1)ℓ
, (4.23)

4Here, H and Z should be associated with the matrices diag{1,−1,0} and diag{1,1,2} in the defining representation of sl(2|1).
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we obtain the defining relations of the Bershadsky-Polyakov algebra W
(2)
3 [24, 25]:

g+ (z)g− (w) =
(K +1)(2K +3)

(z−w)3
+

3(K +1) j(w)

(z−w)2
+

3 : jj : (w)+ 3
2
(K +1)∂ j(w)− (K +3) t(w)

z−w
+ . . . ,

j(z)g± (w) =
±g± (w)

z−w
+ . . . , j(z) j(w) =

(2K +3)/3

(z−w)2
+ . . . ,

t(z)g± (w) =
3

2

g± (w)

(z−w)2
+

∂g± (w)

z−w
+ . . . , t(z) j(w) =

j(w)

(z−w)2
+

∂ j(w)

z−w
+ . . . ,

t(z) t(w) =
−(2K +3)(3K +1)/2(K +3)

(z−w)4
+

2t(w)

(z−w)2
+

∂ t(w)

z−w
+ . . .

(4.24)

Here, the ŝl(3)-level K = 3
2
(α −1) is 0 for W1,1 and − 5

3
for W−1,3. The central charge of the W

(2)
3 -

subalgebra is in both cases −1.

For W−1/4,2, this procedure does not yield a Bershadsky-Polyakov algebra because V+
−n,−ℓ and V−

n,ℓ are,

in this case, mutually fermionic. Rather, these fields generate a copy of the N = 2 superconformal algebra

of central charge −1. Instead, we must consider the mutually bosonic fields V+
n,ℓ and V−

−n,−ℓ. Taking

g+ =
√

3V−
1/4,−2

, g− =
√

3V+
−1/4,2, j=−∂X1/4,2, t=

1

2
: ∂X1/4,2∂X1/4,2 : − 1

k
: ψ+ψ− : (4.25)

in particular, now leads to the Bershadsky-Polyakov algebra of level 0 and central charge −1. (In contrast,

V+
n,ℓ and V−

−n,−ℓ are fermionic in both W1,1 and W−1,3, generating copies of the N = 2 superconformal

algebra with central charges 1 and −1, respectively.)

4.6. W
(2)
N -subalgebras. In the previous section, we found the Bershadsky-Polyakov algebra W

(2)
3 , at cer-

tain levels, appearing as a subalgebra of the extended algebras W1,1, W−1/4,2 and W−1,3. We now gen-

eralise this observation. The algebra W
(2)
3 is defined [24, 25] as the Drinfel’d-Sokolov reduction of ŝl(3)

corresponding to the non-principal embedding of sl(2) in sl(3). Feigin and Semikhatov [17] found that it

could also be realised as a subalgebra of ŝl(3|1)⊕ û(1) commuting with an ŝl(3)-subalgebra. They then

studied a generalisation W
(2)
N ⊂ ŝl(N|1)⊕ û(1) which commutes with the obvious ŝl(N)-subalgebra.

When N = 1, these generalisations reduce to the chiral algebra of the βγ ghost system. For N = 2,

one gets ŝl(2), and as mentioned above, N = 3 recovers the Bershadsky-Polyakov algebra. The examples

studied in Section 4.5 therefore lead us to the plausible conjecture that the W
(2)
N algebras of Feigin and

Semikhatov may be realised, at least for certain levels, as subalgebras of certain of our extended algebras

Wn,ℓ. We mention that there is a second construction of these W
(2)
N algebras, but restricted to the critical

level K =−N (see (4.27)), starting from the affine superalgebra p̂sl(N|N) at (critical) level 0 [26].

Feigin and Semikhatov only computed the first few terms of the defining operator product expansions

of W
(2)
N . We will compare these terms with those obtained from our extended algebras, finding decidedly

non-trivial agreement. Our findings will, however, be stated as conjectures because the full operator product

expansion of W
(2)
N is not currently known. W

(2)
N is generated by two fields E

±
N of dimension 1

2
N, a û(1)-

current HN and an energy-momentum tensor TN . The defining expansions are:

HN (z)HN (w) =
(N −1)K/N +N −2

(z−w)2
+ . . . , HN (z)E±

N (w) =±E
±
N (w)

z−w
+ . . . ,

E
+
N (z)E−

N (w) =
λN−1

(z−w)N
+

NλN−2HN (w)

(z−w)N−1
− (K +N)λN−3TN (w)

(z−w)N−2

+
λN−3

(z−w)N−2

[
N (N −1)

2
: HNHN : (w)+

N
(
(N −2)(K +N −1)−1

)

2
∂HN (w)

]
+ . . .

(4.26)
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Here, λm = ∏m
i=1

(
i(K +N −1)−1

)
, K is the level of the W

(2)
N algebra, and the central charge is given by

C =−
(
(K +N)(N −1)−N

)(
(K +N)(N −2)N −N2 +1

)

K +N
. (4.27)

Suppose first that 2nℓ is even, so we can consider the bosonic subalgebra generated by the fields

E
+
N =

√
λN−1

µ
(0)
ℓ

V+
−n,−ℓ, E

−
N =

√
λN−1

µ
(0)
ℓ

V−
n,ℓ. (4.28)

Evaluating the operator product expansion of these fields using (4.15) and comparing with (4.26), we find

that the first two singular terms agree provided that N = 2∆n,ℓ and HN =−∂Xn−1/2,ℓ/(2n−1)ℓ. This also

fixes the W
(2)
N level K. Comparing the third terms fixes the form of the W

(2)
N energy-momentum tensor TN

and HN is then verified to have dimension 1. However, the E±
N only have the required dimension 1

2
N = ∆n,ℓ

if n = 1 or 2n+ ℓ = 1.5 These constraints also let us check that TN is an energy-momentum tensor and

the central charge turns out to be C = −1. When 2nℓ is odd, we instead consider the bosonic subalgebra

generated by

E
+
N =

√
λN−1

µ
(0)
ℓ−1

V−
−n,−ℓ, E

−
N =

√
λN−1

µ
(0)
ℓ−1

V+
n,ℓ. (4.29)

A similar analysis reveals that this subalgebra agrees with W
(2)
N up to the first three terms in the operator

product expansions provided that N = 2∆n,ℓ and either ℓ= 1 or ℓ= 2.6 In the first case, C = 1; in the second,

C =−1.

We summarise our findings as follows:

Conjecture. The extended algebra Wn,ℓ has a subalgebra isomorphic to W
(2)
N of level K when:

• ℓ= 1 and n = 0,1,2, . . . Then, N = 2n+1 and K =−2(n−1)(2n+1)/(2n−1).

• ℓ= 1 and n = 1
2
, 3

2
, 5

2
, . . . Then, N = 2n+1 and K =−

(
2n2 −1

)
/n.

• ℓ= 2 and n =− 3
4
,− 1

4
, 1

4
, . . . Then, N = 4(n+1) and K =−2(n+1)(4n+1)/(2n+1).

• n =− 1
2
(ℓ−1) and ℓ= 1,2,3, . . . Then, N = ℓ and K =−

(
ℓ2 − ℓ−1

)
/ℓ.

Note that the examples considered in Section 4.5 exhaust the W
(2)
N -subalgebras with N 6 3 except for ℓ= 2

and n = − 3
4
. This latter case is excluded if one insists, as we did with (4.2), that the operator product

expansion of E± with itself is regular. We mention that Feigin and Semikhatov actually computed the first

four terms of the W
(2)
N operator product expansions, finding in the fourth term a Virasoro primary field WN

of dimension 3 and HN-weight 0. We have extended Equations (4.10), (4.11) and (4.15) to compute WN in

our extended algebras and have checked that for each ℓ and n appearing in our conjecture, this field indeed

has the required properties. It follows that our conjecture has been verified for all N 6 4.
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