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ABSTRACT. This Letter initiates the study of what we call non-chiral staggered Virasoro modules, indecom-
posable modules on which two copies of the Virasoro algebra act with the zero-modes L0 and L0 acting non-
semisimply. This is motivated by the “puzzle” recently reported in [1] involving a non-standard measured value,
meaning that the value is not familiar from chiral studies, for the “b-parameter” (logarithmic coupling) of a c= 0
bulk conformal field theory. Here, an explanation is proposed by introducing a natural family of bulk modules
and showing that the only consistent, non-standard logarithmic coupling that is distinguished through structure
is that which was measured. This observation is shown to persist for general central charges and a conjecture is
made for the values of certain non-chiral logarithmic couplings.

1. INTRODUCTION AND BACKGROUND

A recent advance in our understanding of critical phenomena in two dimensions is that the non-local
observables, such as crossing probabilities and fractal dimensions, of statistical lattice models are not de-
scribed in the scaling limit by rational conformal field theory, but rather by logarithmic conformal field
theory. The difference amounts to the presence of correlation functions with logarithmic singularities in-
stead of just poles and root singularities [2]. At the level of states, this turns out to be essentially equivalent
to having a zero-mode, usually the Virasoro mode L0 ∈Vir, acting non-diagonalisably [3].

The case of models with scaling limit of central charge c= 0 is particularly interesting because it includes
such paradigms as percolation and the self-avoiding walk (dilute polymers), even though standard theories at
this central charge are trivial. Indeed, the literature devoted to making sense of c = 0 logarithmic conformal
field theories has grown rather dramatically in recent years. Our interest here relates to a recent observation
of [1] concerning the value of a certain parameter that was measured (approximately) for both percolation
and dilute polymers when periodic boundary conditions are imposed. The result, which is characteristic of
the bulk c = c = 0 theories, was unexpected as it differed from that predicted through chiral considerations
(pertaining to the boundary theory). Our purpose here is to explain that the measured bulk value has a
perfectly good structural explanation which mirrors that of the boundary values. More precisely, this value
follows directly from a very natural Ansatz for the bulk module structure. We remark that the structure of
bulk c = 0 theories has already been considered in the literature [4–7], but only from the perspective of
extended algebras. It would be very interesting to compare the structures obtained there with the Virasoro
structures proposed below.

To be more specific, the “certain parameter” alluded to above is a complex number which parametrises
the isomorphism classes of certain types of indecomposable Vir-modules called staggered modules [8, 9].
Initially labelled by β , such parameters were first introduced in [10] for a small set of modules with c =−2
and c =−7. Shortly thereafter, similar parameters b were identified [11] in operator product expansions
at c = 0 and referred to as anomaly numbers. Many further examples of these numbers were computed
in [12], though the definition used there failed to give reproducible results in all but the simplest cases.
This was corrected in [13], where an invariant definition for β was given for certain physically relevant
classes of staggered Vir-modules (see [9] for general staggered modules). The invariant β were christened
logarithmic couplings in [13], although the terms beta-invariants [9] and indecomposability parameters

[14, 15] have also been used since.
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A staggered Vir-module is defined in [9] to be an extension of a highest weight module by another
highest weight module upon which the Virasoro mode L0 acts non-diagonalisably. This zero-mode then
possesses a rank 2 Jordan cell of minimal conformal dimension h spanned by two states

∣∣ψ〉
and

∣∣φ〉 =
(L0−h)

∣∣ψ〉
. It is easy to check that

∣∣φ〉 is a singular vector and that the logarithmic coupling

β =
〈
φ
∣∣ψ〉

(1.1)

is independent of the choice of Jordan partner
∣∣ψ〉

. We mention that the actual value of β depends upon
the chosen normalisation for the singular vector

∣∣φ〉 relative to the highest weight state
∣∣ξ〉 from which it

is descended.1 Unfortunately, there are two competing conventions that are used for this normalisation: If∣∣φ〉 is a grade n > 0 descendant of
∣∣ξ〉, then one writes either∣∣φ〉= (

Ln
−1 + · · ·

)∣∣ξ〉 or
∣∣φ〉= (L−n + · · ·)

∣∣ξ〉. (1.2)

The first has some theoretical advantages [9,16]. In particular, the coefficient of Ln
−1 (but not L−n) is known

to be non-zero [17]. Moreover, we must assume in the second (but not the first) that the omitted monomials
in the L−m are ordered in the standard Poincaré-Birkhoff-Witt manner. Nevertheless, it is convenient (and
customary) to use the second convention when studying the particular c = 0 examples which will occupy
us here.

Returning to history, the operator product expansion computations of [18, 19] resulted in a heuristic
derivation of the values of β relevant for a c = 0 chiral logarithmic conformal field theory: β = − 5

8 and
β = 5

6 (assuming the second normalisation of (1.2)). These values were recovered in [12] at the level of
Vir-modules by explicitly constructing fusion products of c = 0 irreducibles and [13] then used this to
identify β = − 5

8 as characterising percolation and β = 5
6 as characterising dilute polymers. Moreover, it

was explained in [16], and then proven in [9], that structural reasons forced these to be the only possible
values for (self-contragredient) staggered modules containing the vacuum. These values have even been
confirmed directly at the level of the lattice for both percolation and dilute polymers [14].

The above results concerning β pertain either to boundary or chiral conformal field theory at c = 0.
Nevertheless, the recent lattice measurement [1] of a value β = −5 for the non-chiral, meaning bulk,
c = c = 0 theories describing percolation and dilute polymers, came as a surprise. In what follows, we
generalise the structural arguments of [9,16] from staggered Vir-modules to their natural Vir⊕Vir-module
analogues, that is, from the chiral to the non-chiral setting, to explain this measurement.

We conclude this historical survey with a brief comment on the physical relevance of the logarithmic
couplings β that are being studied. As is well known, they appear in operator product expansions and,
in particular, correlation functions where they play the role of two-point constants for logarithmic partner
fields. As such, they are fundamental quantities that need computing in any logarithmic conformal field
theory. What seems to be not so well known, however, is that the β one computes at the level of modules
is not precisely the same as that which appears in two-point functions. The difference is a combinatorial
proportionality factor which derives from relating

〈
φ
∣∣ in (1.1) to the singular field φ (z). We refer to [16,

App. A] for a simple example illustrating this subtlety.

2. A NON-CHIRAL STAGGERED MODULE

The indecomposable Vir⊕Vir-module studied in [1] has the (non-chiral) vacuum module Q1,1⊗Q1,1

as a submodule. Here, Q1,1 is the c = 0 Vir-module2 obtained from the vacuum Verma module V0 by
setting the Verma submodule V1, generated by the singular vector L−1

∣∣0〉, to zero. That is, Q1,1 = V0/V1.
In general, we will denote by Vh the Verma Vir-module generated by a highest weight state of conformal

1We assume here that
∣∣φ〉 is not proportional to

∣∣ξ〉 and that
〈
ξ
∣∣ξ〉= 1. When

∣∣φ〉= ∣∣ξ〉, staggered modules are unique (when they
exist) [9], so one does not define β in this situation.
2Until further notice, all Vir-modules will be assumed to be c = 0.
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dimension h and by Qr,s the quotient Vhr,s/Vhr,s+rs, where hr,s denotes the conformal dimension of the (r,s)-
entry in the Kac table. The chiral vacuum module Q1,1 is itself indecomposable, with submodule L2 and
quotient Q1,1/L2 =L0, where Lh denotes the irreducible Vir-module generated by a highest weight state
of conformal dimension h. We illustrate this schematically with the aid of a structure diagram:

L0

L2

Q1,1 . (2.1)

This indicates the decomposition of a module into its irreducible composition factors, with arrows indicating
(schematically) the action of the algebra. For example, we see that L2 above is a submodule, because the
arrow points towards it, whereas L0 is only a (sub)quotient, because the arrow points away from it. It
follows that the indecomposable structure of the non-chiral vacuum module Q1,1⊗Q1,1 is given by the
following structure diagram:

L0⊗L0

L2⊗L0 L0⊗L2

L2⊗L2

Q1,1⊗Q1,1 . (2.2)

The space of singular vectors in Q1,1⊗Q1,1 is therefore four-dimensional, and we shall choose basis vectors
for this space in the obvious manner:∣∣0〉≡ ∣∣0〉⊗ ∣∣0〉,∣∣T〉≡ ∣∣T〉⊗ ∣∣0〉= L−2

∣∣0〉⊗ ∣∣0〉= L−2
∣∣0〉,∣∣T〉≡ ∣∣0〉⊗ ∣∣T〉= ∣∣0〉⊗L−2

∣∣0〉= L−2
∣∣0〉,∣∣TT

〉
≡
∣∣T〉⊗ ∣∣T〉= L−2

∣∣0〉⊗L−2
∣∣0〉= L−2L−2

∣∣0〉.
(2.3)

Here, Ln and Ln denote Ln⊗ id and id⊗Ln, respectively.3

To obtain what we shall refer to as a non-chiral staggered module, we introduce Jordan partner states
∣∣t〉

and
∣∣t〉 to

∣∣T〉 and
∣∣T〉 with (generalised) conformal dimensions (2,0) and (0,2), respectively:

(L0−2)
∣∣t〉= ∣∣T〉, (

L0−2
)∣∣t〉= ∣∣T〉. (2.4a)

This is physically reasonable as neither T(z) nor T(z) have a conjugate field among those corresponding to
the states of Q1,1⊗Q1,1. A necessary condition for the locality of the two-point functions in any non-chiral
conformal field theory is that L0−L0 be diagonalisable [20], hence we may assume that

L0
∣∣t〉= ∣∣T〉, L0

∣∣t〉= ∣∣T〉. (2.4b)

We will declare, for now, that there are no linear dependencies among the descendants of
∣∣t〉 and

∣∣t〉. Math-
ematically, this means that we are considering an indecomposable Vir⊕Vir-module SSS ′ with submodule
Q1,1⊗Q1,1 and quotient

SSS ′

Q1,1⊗Q1,1
∼= (V2⊗V0)⊕ (V0⊗V2) . (2.5)

3In general, we shall use bold type to indicate non-chiral states and operators.
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In other words, the descendants of
∣∣t〉 and

∣∣t〉 form independent, non-chiral Verma modules, modulo the
states of Q1,1⊗Q1,1.

We should emphasise that the existence of this non-chiral staggered module SSS ′ has not been proven.
While this can be seen from straight-forward generalisations of the arguments in [9, Sec. 4–6], it is far
beyond the scope of the Letter to address this question in the generality it deserves; we hope to return to
this question in a future publication. In fact, these arguments allow us to assert something stronger: That
there is a two-parameter family of (isomorphism classes of) such SSS ′ which may be distinguished by two
logarithmic couplings β and β , defined by

L2
∣∣t〉= β

∣∣0〉, L2
∣∣t〉= β

∣∣0〉. (2.6)

These couplings are clearly invariants of SSS ′ in that they do not depend upon the choice of
∣∣t〉 and

∣∣t〉. The
quantity β appears to be precisely what was measured in [1] with the result −5.

The strategy now [16] is to analyse whether one can introduce a linear dependence in the descendants
of

∣∣t〉 and
∣∣t〉, without affecting any of the states of the submodule Q1,1⊗Q1,1, and check if imposing this

linear dependence leads to any constraints on β and β . Mathematically, we are asking for the existence of
submodules TTT ′ ⊂SSS ′ whose intersection with Q1,1⊗Q1,1 is trivial and questioning whether there are such
submodules that only exist for certain β and β . If we find such a submodule that only exists when β =−5,
then we have a seemingly strong candidate, namely SSS =SSS ′/TTT ′, for explaining the measurement of [1].

Before embarking on this quest, we find it useful to draw (a part of) the structure diagram for SSS ′. This
requires identifying the irreducible composition factors that correspond to the singular vectors of the non-
chiral modules Q1,1⊗Q1,1, V2⊗V0 and V0⊗V2. The former has four singular vectors as we have seen,
but the latter two have infinitely many. For example, V2⊗V0 has singular vectors of conformal dimension(
h,h

)
, where h ∈ {2,5,7,12,15, . . .} and h ∈ {0,1,2,5,7,12,15, . . .}. We will therefore only indicate a few

of these, denoting (for clarity) the non-chiral composition factors by their conformal dimensions
(
h,h

)
:

(0,0)

(2,0) (0,2)

(2,2)

(2,0)

(2,1)

(2,2)

(2,5)

(5,0)

(5,1)(5,2)(7,0)

(0,2)

(1,2)

(2,2)

(5,2)

(0,5)

(1,5) (2,5) (0,7)

SSS ′

...
...

...
...

...
...

...
...

β β

. (2.7)

Despite appearances, this diagram is in fact a simplified version — we have omitted all arrows correspond-
ing to the action of the positive-mode subalgebra, except for those labelled by β and β which account for
the actions described in (2.6). Indeed, our quest essentially involves determining whether certain of these
omitted arrows are present or not (for certain values of β and β ).

We begin by noting that the maximal proper submodule of V2⊗V0 is generated by four singular vectors
with conformal dimensions

(
h,h

)
= (5,0), (7,0), (2,1) and (2,2). We will analyse the submodules gener-

ated by their lifts
∣∣χh,h

〉
in SSS ′.4 These are defined to be states of SSS ′ which are mapped to the appropriate

singular vectors upon quotienting by Q1,1⊗Q1,1. It follows that the action of Ln and Ln for n > 0, as
well as L0− h and L0− h, must send

∣∣χh,h

〉
into the submodule Q1,1⊗Q1,1. In order for the submodule

generated by
∣∣χh,h

〉
to have trivial intersection with Q1,1⊗Q1,1, it is therefore necessary and sufficient that∣∣χh,h

〉
be a singular vector in SSS ′.

4We expect, again based on [9], that the non-generating singular vectors will not lead to constraints on β and β .
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So, consider first the singular vector of dimension (5,0) in V2⊗V0. Its lifts in SSS ′ have the form∣∣χ5,0
〉
=

(
L−3−L−2L−1 +

1
6

L3
−1

)∣∣t〉+(a1L−5 +a2L−3L−2)
∣∣0〉, (2.8)

for some a1,a2 ∈ C, because V0⊗V2 has no states of this conformal dimension. These states are clearly
annihilated by Ln with n > 0 because SSS ′ has no states of antiholomorphic dimension −1. Similarly,
L0

∣∣χ5,0
〉
= 0, because the dimension (5,0) singular descendant of

∣∣T〉 has already been set to zero in
Q1,1⊗Q1,1 (it is a descendant of L−1

∣∣0〉 = 0). The constraints coming from demanding that
∣∣χ5,0

〉
be

singular are therefore exactly the same as in the chiral case. It is easy to check that this requires

a1 =−
1
3
, a2 =

1
2
, β =

5
6
. (2.9)

In other words, we can consistently quotient SSS ′ by the submodule generated by
∣∣χ5,0

〉
if and only if β = 5

6 .
No constraint is imposed upon β in this analysis — such a constraint would come from quotienting by the
submodule generated by the appropriate lift

∣∣χ0,5
〉

of the singular vector in V0⊗V2 of conformal dimension
(0,5) (and would obviously require β = 5

6 ).
It should now be clear that the story regarding the singularity of

∣∣χ7,0
〉

will also parallel the chiral case,
leading thus to the well-known conclusion: β =− 5

8 . Similarly, setting
∣∣χ0,7

〉
to zero requires β =− 5

8 . We
therefore turn our attention to the singularity of

∣∣χ2,1
〉
. Its form,∣∣χ2,1

〉
= L−1

∣∣t〉, (2.10)

is particularly simple because neither Q1,1⊗Q1,1 nor V0⊗V2 have any dimension (2,1) states. However,
this state is never singular:

L1
∣∣χ2,1

〉
= 2L0

∣∣t〉= 2
∣∣T〉. (2.11)

We therefore cannot use it to derive interesting constraints on β or β . Note that it follows that the field t(z,z)
corresponding to

∣∣t〉 cannot be made holomorphic: ∂ t(z,z) 6= 0. Similarly, t(z,z) is not antiholomorphic.5

Our last hope is therefore
∣∣χ2,2

〉
. Here, things are more interesting because each of V2⊗V0, Q1,1⊗Q1,1

and V0⊗V2 have states of dimension (2,2), though those of Q1,1⊗Q1,1 are precisely the scalar multiples
of the singular vector

∣∣TT
〉

of Equation (2.3). Taking the most general form for
∣∣χ2,2

〉
modulo

∣∣TT
〉

and
requiring annihilation under L1, L1, L0− 2 and L0− 2 fixes our candidate singular vector up to scalar
multiples as ∣∣χ2,2

〉
=

(
L−2−

3
2

L2
−1

)∣∣t〉−(
L−2−

3
2

L2
−1

)∣∣t〉. (2.12)

This has a suggestive interpretation: The singular vector
∣∣TT

〉
has two logarithmic partners in SSS ′, one

lifted from V2⊗V0 and the other from V0⊗V2. Equation (2.12) gives
∣∣χ2,2

〉
as the difference of these lifts.

Setting
∣∣χ2,2

〉
to zero would therefore amount to identifying these two logarithmic partner states.

It remains to impose annihilation under L2 and L2. Any easy computation gives

L2
∣∣χ2,2

〉
= (β +5)

∣∣T〉, L2
∣∣χ2,2

〉
=
(

β +5
)∣∣T〉, (2.13)

hence
∣∣χ2,2

〉
is singular if and only if β = β = −5. We therefore have a winner: For β = β = −5, there

is a non-chiral staggered module SSS = SSS ′/TTT ′, where TTT ′ is the submodule generated by the singular
vector

∣∣χ2,2
〉

given in (2.12). The existence of this module would appear to explain the observation of [1]
completely. We emphasise that we are not claiming that SSS is the module investigated there, merely that we
have found a structural interpretation for the value of β they measured.

The β = β =−5 module SSS that we have discovered still has infinitely many composition factors, so it
is natural to look for further submodules that one can quotient by without affecting the essential non-chiral
staggered structure. We have shown above that one cannot set

∣∣χ5,0
〉
,
∣∣χ7,0

〉
,
∣∣χ0,5

〉
or

∣∣χ0,7
〉

to zero in SSS

5One appealing consequence of this is that the module SSS ′ cannot be identified as a tensor product of two chiral staggered modules.
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without conflicting with β = β =−5, but we expect that the constraints on the deeper singular vectors will
not be as limiting. Indeed, chiral considerations [9] show that there is no obstacle to quotienting by the
submodules generated by appropriately chosen

∣∣χ12,0
〉
,
∣∣χ15,0

〉
,
∣∣χ0,12

〉
and

∣∣χ0,15
〉
. Moreover, it is easy to

check that the same is true for
∣∣χ5,1

〉
,
∣∣χ7,1

〉
,
∣∣χ1,5

〉
and

∣∣χ1,7
〉
. However, this is not the case for

∣∣χ5,2
〉
,∣∣χ7,2

〉
,
∣∣χ2,5

〉
or

∣∣χ2,7
〉
. The structure diagram of the “smallest” β = β =−5 non-chiral staggered module

SSS◦ is therefore as follows:

(0,0)

(2,0) (0,2)

(2,2)

(2,0)

(2,1)(5,0)(7,0) (2,2)

(2,5)(5,2)

(2,7)(7,2)

(0,2)

(1,2) (0,5) (0,7)

SSS◦

β =−5 β =−5

. (2.14)

We have again simplified the diagram by omitting arrows describing the action of the positive-mode subal-
gebra, except for those labelled by β and β . Nevertheless, this analysis makes it clear that the structure of
bulk indecomposables is significantly more intricate than that of their boundary analogues.

It is tempting to claim that SSS◦ is the “Ockham’s razor” candidate for the non-chiral staggered module that
explains the measurement of [1]. However, it is easy to check that this module is not physically satisfactory
because it is not isomorphic to its contragredient dual (the other quotients of SSS suffer from this failing
as well). To restore non-degeneracy of the two-point functions, many of the “deeper” composition factors
require additional logarithmic partners. We therefore expect that SSS◦, or a similar quotient, will instead
appear as a submodule of the non-chiral module that appears in the bulk percolation (dilute polymers)
model of [1]. The physical module would then be some even larger indecomposable, presumably with
infinitely many composition factors, in which the deeper structure is more complicated than our naı̈ve rank
2 considerations have allowed. We will not try to address this structure here — “experimental” input (that
is, concrete examples) would seem to be a good idea at this point — but hope to return to it in the future.

We conclude the section with a brief remark concerning the recent observation [7] that the logarithmic
coupling β = −5 may also be recovered in a chiral setting when the c = 0 vacuum

∣∣0〉 possesses a Jordan
partner state

∣∣O〉
with L0

∣∣O〉
=
∣∣0〉.6 For

L2

(
L−2−

3
2

L2
−1

)∣∣O〉
=−5L0

∣∣O〉
=−5

∣∣0〉. (2.15)

Comparing with Equations (2.12) and (2.13) reveals that this is not really a coincidence. It is in fact a
general phenomenon, if not a particularly deep one. Nevertheless, we emphasise that the measurement
of [1] did not pertain to a chiral module, and more importantly, no Jordan partners to the vacuum were
reported there.

3. OTHER NON-CHIRAL STAGGERED MODULES

It should be clear that the above analysis is not restricted to extending the non-chiral vacuum module
Q1,1⊗Q1,1, nor to c = 0. Here, we outline the complementary c = 0 case in which SSS ′ has submodule

6Actually, the chiral setup in [7] involved a Jordan cell of rank 3, but this is irrelevant to the argument.
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Q1,2⊗Q1,2, with Q1,2 = V0/V2, and its quotient by this submodule is (V1⊗V0)⊕ (V0⊗V1). We let
∣∣ΩΩΩ〉

denote the highest weight state of Q1,2⊗Q1,2 and denote the logarithmic partners of L−1
∣∣ΩΩΩ〉

and L−1
∣∣ΩΩΩ〉

by
∣∣ωωω〉

and
∣∣ωωω〉

, respectively:

(L0−1)
∣∣ωωω〉

= L0
∣∣ωωω〉

= L−1
∣∣ΩΩΩ〉

,
(
L0−1

)∣∣ωωω〉
= L0

∣∣ωωω〉
= L−1

∣∣ΩΩΩ〉
. (3.1)

The logarithmic couplings are defined by L1
∣∣ωωω〉

= β
∣∣ΩΩΩ〉

and L1
∣∣ωωω〉

= β
∣∣ΩΩΩ〉

.
The analysis is even easier than that of the previous section. The singular vectors of V1⊗V0 which

generate its maximal proper submodule have conformal dimensions (5,0), (7,0), (1,1) and (1,2). Those of
dimension (5,0) or (7,0) merely reproduce the chiral analysis upon lifting to SSS ′: They become singular,
hence may be set to zero, if and only if β = − 1

2 or β = 1
3 , respectively. It is likewise easy to check that

the dimension (1,2) singular vector never lifts to a singular vector in SSS ′ because applying L2 to any such
lift gives a non-zero multiple of L−1

∣∣ΩΩΩ〉
. The story for β and V0⊗V1 is identical (with holomorphic and

antiholomorphic dimensions exchanged).
The truly non-chiral phenomenon is again found with the two Jordan partners to the dimension (1,1)

singular vector L−1L−1
∣∣ΩΩΩ〉

of Q1,2⊗Q1,2. Taking their difference,∣∣χ1,1
〉
= L−1

∣∣ωωω〉
−L−1

∣∣ωωω〉
, (3.2)

gives the only candidate for (another) dimension (1,1) singular vector in SSS ′, and it is trivial to check that∣∣χ1,1
〉

is singular if and only if β = β = 2. We conclude from this that when β = β = 2,
∣∣χ1,1

〉
may be

set to zero to obtain a quotient module SSS . In any theory incorporating this module, the fields ωωω (z,z) and
ωωω (z,z) are neither holomorphic nor antiholomorphic, but satisfy

∂ωωω (z,z) = ∂ωωω (z,z) . (3.3)

The obvious generalisation of this setup is as follows. Let Q and Q be highest weight Vir-modules
of length 2, meaning that they have precisely two composition factors, and arbitrary central charge c. Let
these composition factors be Lh and Lh+n for Q and Lh and Lh+n for Q.7 The tensor product Q⊗Q

will therefore have four singular vectors which we shall denote by
∣∣x〉, U

∣∣x〉, U
∣∣x〉 and UU

∣∣x〉 (U and U are
therefore linear combinations of monomials in the Ln and Ln, respectivly). There is then a two-parameter
family of non-chiral staggered modules with submodule Q⊗Q and quotient

(
Vh+n⊗Vh

)
⊕
(
Vh⊗Vh+n

)
.

We denote our choice of Jordan partners of U
∣∣x〉 and U

∣∣x〉 by
∣∣y〉 and

∣∣y〉, respectively:

(L0−h−n)
∣∣y〉= (

L0−h
)∣∣y〉= U

∣∣x〉, (
L0−h−n

)∣∣y〉= (L0−h)
∣∣y〉= U

∣∣x〉. (3.4)

The logarithmic couplings are therefore β =
〈
x
∣∣U†

∣∣y〉 and β =
〈
x
∣∣U†∣∣y〉. We may represent the non-chiral

staggered structure thus: ∣∣x〉
U
∣∣x〉 U

∣∣x〉
UU

∣∣x〉
∣∣y〉

U
∣∣y〉

∣∣y〉
U
∣∣y〉

β β

. (3.5)

Note that the singular vector UU
∣∣x〉 has two Jordan partners, U

∣∣y〉 and U
∣∣y〉. We will therefore look for

a singular vector of the form ∣∣χ〉= U
∣∣y〉−U

∣∣y〉+VV
∣∣x〉, (3.6)

where V is a linear combination of grade n monomials in the Lm and V is a linear combination of grade n

monomials in the Lm. It is easily checked that L0− h− n and L0− h− n both annihilate
∣∣χ〉. Moreover,

7We will consider modules of arbitrary (but fixed) central charge c for the remainder of this section.
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a generalisation of the analysis of [9, Sec. 7] allows us to conclude that there will exist a choice of V and
V making

∣∣χ〉 singular if and only if U†
∣∣χ〉 = U†∣∣χ〉 = 0. Since U†V

∣∣x〉 =
〈
x
∣∣U†V

∣∣x〉∣∣x〉 = 0 by the

singularity of U
∣∣x〉 (and similarly, U†V

∣∣x〉= 0), we obtain

U†∣∣χ〉= (β − p(L0))U
∣∣x〉, U†∣∣χ〉= (

β − p
(
L0

))
U
∣∣x〉. (3.7)

Here, we have used the fact that U†U annihilates
∣∣x〉 to write U†U = p(L0)(L0−h)+U1L1+U2L2, where

p is a polynomial in L0 (and similarly for U†U and p
(
L0

)
). From this, we conclude that

∣∣χ〉 is singular,
hence may be set to zero, precisely when

β = p(h) , β = p
(
h
)
. (3.8)

In the case treated above with h = h = 0 and n = n = 1, we have U = L−1, hence U†U = 2L0 +L−1L1

and p(L0) = 2. Similarly, p
(
L0

)
is also the constant polynomial 2, and we recover our conclusion that the

non-chiral staggered module exists when β = β = 2. The case treated in the previous section corresponds
to h = h = 0 and n = n = 2. Now, U = L−2− 3

2 L2
−1 and one obtains p(L0) = 18L0−5. The existence of

the non-chiral staggered module therefore requires β = p(0) = −5 and we recover β = −5 in exactly the
same manner.

4. CONCLUDING REMARKS

In this Letter, we have used the representation theory of Vir⊕Vir to construct non-chiral staggered

modules which are consistent with the recent measurement [1] of a non-chiral logarithmic coupling β =−5
for a c = 0 indecomposable containing the vacuum

∣∣0〉 = ∣∣0〉⊗ ∣∣0〉. More precisely, we have shown that
there exist non-chiral staggered modules whose structure requires that β = β =−5 and, moreover, that this
is the only such value for the logarithmic couplings, beyond the chiral values 5

6 and − 5
8 , whose origin has

a structural explanation. We are therefore confident in predicting that the indecomposable module studied
in [1] will contain one of our non-chiral staggered modules as a submodule. It is clear that the inclusion
must be proper, as the predicted modules are not self-contragredient on their own.

The fact that the value β =−5 is not forbidden by the representation theory suggests reconsidering the
conclusion of [1] that the four point function of the “energy operator”, corresponding to the highest weight
state of L5/8 for percolation and L1/3 for dilute polymers, must be set to zero. The argument is that the
relevant c = 0 conformal blocks lead to the chiral values β =− 5

8 or 5
6 [18]. However, this ignores the fact

that the blocks must be combined in a bulk theory to get local correlation functions. From the viewpoint of
fusion, this means that the naı̈ve non-chiral fusion rules must be modified appropriately. In particular, one
should quotient [20] the following guesses by the image of the nilpotent part of the spin operator L0−L0:(

L5/8⊗L5/8
)
×
(
L5/8⊗L5/8

)
= Sβ=5/6⊗Sβ=5/6,(

L1/3⊗L1/3
)
×
(
L1/3⊗L1/3

)
= Sβ=−5/8⊗Sβ=−5/8.

(4.1)

Here, Sβ=5/6 and Sβ=−5/8 denote the chiral c = 0 extensions of Q3,1 and Q1,5, respectively, by Q1,1,
with the given (chiral) logarithmic coupling. Performing the quotients, one finds that the resulting non-
chiral modules contain holomorphic and antiholomorphic energy-momentum tensors which lack logarith-
mic partners. We therefore conclude that the argument of [18] is inapplicable to bulk considerations. What
this analysis does suggest, however, is that the energy operators do not appear in the bulk β =−5 theory as
irreducible tensor irreducible; indeed, this is not the structure seen on the lattice [1]. It would be interesting
to know if L−1/24 and L35/24 appear in the bulk with the simple irreducible tensor irreducible structure.

We have also generalised our construction to arbitrary central charges and explained how to compute the
logarithmic couplings in the general case (Equation (3.8)). One can therefore calculate these bulk couplings
explicitly as functions of the central charge, at least in principle. If we take h = hr,s (r,s ∈ Z+) and n = rs



NON-CHIRAL LOGARITHMIC COUPLINGS FOR THE VIRASORO ALGEBRA 9

in the general setting of Section 3, where

hr,s =
r2−1

4
t− rs−1

2
+

s2−1
4

t−1, c = 13−6
(
t + t−1) (4.2)

as usual, then we have been able to determine the non-chiral logarithmic coupling β ≡ βr,s explicitly when
rs 6 8. In particular, the β1,s thus computed are consistent with the following conjecture (see also [9,
Ex. 16]):

β1,s =
2(−1)s−1 s!(s−1)!

t2(s−1)

s−1

∏
j=1

(
t2− j2) . (4.3)

Here, we have assumed, in contrast to previous sections, the first normalisation convention of (1.2). We
remark that βs,1 may be obtained from this formula by inverting t.

We compare this with the chiral logarithmic couplings, extending the results (and conjectures) of [16,21].
For any value of the central charge, there are two distinguished chiral couplings, β→1,s and β

↓
1,s, which arise,

for example, when explicitly computing the (respective) fusion rules8

Q1,s+1×Vp−1,q, Q2,1×Vp,q−s (t = q/p). (4.4)

We have performed this computation for s 6 4 and the results are consistent with the conjectures (see
also [16])

β
→
1,s =

(−1)s−1 s!(s−1)!
t2(s−1)

s−1

∏
j=1

(
t2− j2) · t− s

−s
,

β
↓
1,s =

(−1)s−1 s!(s−1)!
t2(s−1)

s−1

∏
j=1

(
t2− j2) · t− s

t
.

(4.5)

One can perform similar computations with r > 1, but the computational intensity of the fusion algorithm
severely limits our ability to make more general conjectures. We expect that the heuristic methods reported
in [15] for computing logarithmic couplings will be far better suited for this purpose.

We conclude by noting that it was remarked in [1] that the inverse of the non-chiral coupling β =−5 is
the average of the inverses of the chiral couplings − 5

8 and 5
6 . This coincidence is presumably backed up by

many other examples. The general computations reported above completely confirm that this is a general
phenomenon. In particular, the conjectures (4.3) and (4.5) satisfy

β
−1
1,s =

1
2

[(
β
→
1,s
)−1

+
(

β
↓
1,s

)−1
]
, (4.6)

for all central charges. We have also checked this observation for several other (small) values of r and s and
for all t. This surprising relation between the chiral and non-chiral logarithmic couplings suggests a deeper
relation between the singular vectors which control their values. Understanding why this relation should
hold (and indeed, why there should be any relation at all!) seems to us to be an important outstanding puzzle
in the representation theory of the Virasoro algebra. We hope to report on it in the future.
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