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ABSTRACT. The basic properties of the Temperley-Lieb algebra TLn with parameter β = q+q−1, q ∈ C\{0}, are

reviewed in a pedagogical way. The link and standard (cell) modules that appear in numerous physical applications

are defined and a natural bilinear form on the standard modules is used to characterise their maximal submodules.

When this bilinear form has a non-trivial radical, some of the standard modules are reducible and TLn is non-

semisimple. This happens only when q is a root of unity. Use of restriction and induction allows for a finer description

of the structure of the standard modules. Finally, a particular central element Fn ∈ TLn is studied; its action is

shown to be non-diagonalisable on certain indecomposable modules and this leads to a proof that the radicals of the

standard modules are irreducible. Moreover, the space of homomorphisms between standard modules is completely

determined. The principal indecomposable modules are then computed concretely in terms of standard modules and

their inductions. Examples are provided throughout and the delicate case β = 0, that plays an important role in

physical models, is studied systematically.

1. INTRODUCTION

The Temperley-Lieb algebras are key objects both in mathematics and physics. Temperley and Lieb [1]

introduced them as complex associative algebras that arose in their study of transfer matrix approaches to

(planar) lattice models. This family of algebras, indexed by a positive integer n and a complex number β , spread

quickly through the physics community where it underlies the study of Potts models [2], ice-type models [3], and

the Andrews-Baxter-Forrester models [4]. That Temperley-Lieb algebras play a fundamental role in our modern

understanding of phase transitions cannot be overstated. These algebras were subsequently rediscovered by

Jones [5] who used them to define what is now known as the Jones polynomial in knot theory. The Temperley-

Lieb algebras are also intimately connected with the representation theory of the symmetric groups through

their realisation as natural quotients of the (type A) Hecke algebras (see [6] for example).

As is usual in physical applications, it is the representation theory of the Temperley-Lieb algebra TLn which is

the main focus of attention. Indeed, Temperley and Lieb’s original contribution takes place in a 2n-dimensional

representation commonly used by physicists for the study of spin chains. Such representations still form an

active direction of research in mathematical physics. There are, in addition, somewhat smaller representations

that are perhaps more natural to consider including, in particular, those which we shall refer to in what follows

as link representations. From these, one obtains quotients that have come to be described as being standard. It is

well-known that these standard representations are irreducible for almost all values of the parameter β and that

for such β , the (finite-dimensional) representations of TLn are completely reducible. However, it is a curious

fact that the β which are thereby excluded consist, to a large degree, of the parameter values that are of most

interest to physicists.

This failure of complete reducibility is also well-known and there have been significant efforts by physi-

cists and mathematicians to understand the representation theory for these exceptional values of β . There is

a continuing interest in this quest due to the current reinvigoration of the study of logarithmic conformal field

theories. To explain, the lattice models studied by physicists are believed to have limits (as n → ∞ say) in

which the model should be replaced by a field theory possessing conformal invariance. The representations

upon which the lattice model is founded are supposed to be replaced by representations of the quantised algebra
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of infinitesimal conformal transformations, the Virasoro algebra (see [7] for a recent attempt to formalise this).

Moreover, the corresponding conformal field theory is now believed not to be a minimal model, as the original

paradigm suggested, but rather some logarithmic version thereof [8–10]. Here, “logarithmic” indicates that the

Virasoro algebra representations involved also fail to be completely reducible. Conjecturing results about these

logarithmic theories through the study of their lattice counterparts remains a popular approach.

Perhaps the first to seriously address the structure of Temperley-Lieb representations for all β ∈ C was

Martin. In [2], he devotes two chapters to obtaining an explicit construction of the principal indecomposable

representations of the Temperley-Lieb algebra. The arguments are rather involved and rely heavily upon intricate

combinatorics and a detailed study of a collection of primitive idempotents introduced by Wenzl [11]. Shortly

thereafter, and independently, Goodman and Wenzl [12] applied a similarly detailed study of these idempotents

to prove explicit results concerning the structure of the blocks (two-sided ideals) of the Temperley-Lieb algebras.

The proofs require a long series of elementary but technical lemmata. Unfortunately, they exclude the case when

β = 0 which is of considerable physical interest. Nevertheless, their methods lead to explicit and highly non-

trivial descriptions for the radicals of the blocks.

We should also mention the well-known contribution of Westbury [13]. His article approaches the represen-

tation theory of the Temperley-Lieb algebras from a more algebraic, and less combinatorial, perspective. First,

a sufficient condition for complete reducibility is given whose form is very familiar to conformal field theorists.

This criterion is the non-degeneracy of an invariant bilinear form acting on the standard representations and

Westbury computes the determinant of this form explicitly (the analogous result for the Virasoro algebra is, of

course, the formula of Kac for the determinant of the form defined on Verma modules). The technique em-

ployed involves recursion relations and was suggested by older work of James and Murphy [14]. (The recursion

Westbury employs contains a mistake, as is illustrated by the example he gives.) The rest of Westbury’s article

addresses what happens when complete reducibility fails. The method involves using induction and restriction

to determine abstractly the spaces of homomorphisms between standard representations (although there is men-

tion of certain explicit constructions along the lines of Martin). Proofs are often minimal, incomplete or, in one

case, referred to Martin’s book. Crucial points are therefore left without complete arguments: The exactness of

the sequences satisfied by the restriction and induction of standard modules, the existence of non-trivial homo-

morphisms between certain standard modules when q is a root of unity, and the construction and completeness

of the set of principal indecomposable modules.

While the above makes our dissatisfaction with Westbury’s article evident, his algebraic approach to the

Temperley-Lieb algebra provides, in our opinion, an excellent road-map to learning this particular corner of

representation theory. Indeed, our motivation for writing this article derives in large part from a desire to have

a pedagogical and (mostly) self-contained summary of Temperley-Lieb theory, including detailed proofs. We

believe that this will be of significant value to mathematical physicists working on lattice models and conformal

field theories, as well as provide novice representation-theorists with an excellent worked example over C which

explicitly illustrates some of the difficulties of non-semisimple associative algebras.

Of course, there are many possible approaches to Temperley-Lieb theory and we certainly do not claim that

ours is in any way the best. Indeed, we have tried to minimise the level of sophistication required wherever

possible while still introducing the most basic tools that are indispensable for non-semisimple representation

theory. To illustrate our prejudices in this regard (and to borrow from John Cardy [15]), we mention that the word

‘quiver’ has just made its only appearance. Other elegant alternatives include deducing the results from their

Hecke algebra analogues (see [6] for example) or using Schur-Weyl duality and quantum group representation

theory (see [16] for a recent sketch in this direction). We also mention a powerful category-theoretic approach

due to Graham and Lehrer [17] in which structural results for TLn follow as special cases of their investigations

into the affine Temperley-Lieb algebras.
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The article begins in Section 2 with a review of the diagrammatic and algebraic definitions of the Temperley-

Lieb algebras, proving their equivalence using a standard combinatorial argument. As far as we are aware,

the diagrammatic approach to Temperley-Lieb algebras is due to Kauffman [18], though the equivalence to the

algebraic approach is only sketched there using an example.1 Here, we mostly follow the seminal work of Jones

[5]. We note, in particular, his result concerning a canonical form for monomials constructed from the standard

Temperley-Lieb generators. This turns out to be crucial for the analysis of inducing standard representations

in Section 6. We remark that we make a “heretical” choice for Temperley-Lieb diagrams, orienting them at

ninety degrees to that customarily found in the literature (see [19] for a precedent illustrating this heresy).

This choice facilitates the translation between the diagrammatic and algebraic depictions of multiplication: A

diagram drawn on the left of another object corresponds to a left-action on this latter object. We also find it

notationally convenient for the following section.

Section 3 then introduces the link representations and their quotients, the standard representations. Various

basic, but essential, results are proven for the latter, roughly following the beautiful work of Graham and Lehrer

on cellular algebras [20] (the standard representations are cell representations in their formalism). Particular

attention is paid to the problematic case β = 0 in which there is a single standard representation upon which the

usual invariant bilinear form vanishes identically.

The hard work begins in Section 4 in which we compute the determinant of an invariant bilinear form on the

standard representations. Here, we follow Westbury [13] in using module restriction to block-diagonalise the

Gram matrices and deduce recursion relations for the diagonalising matrices. (One can also use idempotents to

derive such recursion relations; see [17] for example.) As mentioned above, the recursion relation that Westbury

gives is incorrect and we discuss in detail the appropriate refinements that have to be made. The determinant

formula then leads to the well-known result concerning the generic semisimplicity of the Temperley-Lieb alge-

bras. Section 5 then uses the proof of the determinant formula to compute the dimension of the kernel of the

Gram matrix and thence the dimensions of the radicals and irreducible quotients of the standard representations.

By utilising pictures known as Bratteli diagrams, we motivate the conjecture that these radicals are themselves

irreducible (when non-trivial).

Sections 6 and 7 are devoted to proving this conjecture. The first details what is obtained upon performing

the induced module construction on a standard representation of TLn to obtain a representation of TLn+1. This

result is stated in Westbury, but without proof. We then use these induced representations, in the second, to

demonstrate the existence of certain homomorphisms between standard representations. This relies crucially

upon a computation which shows that a particular element, which we call Fn, of the centre of TLn, acts in a non-

diagonalisable fashion upon appropriately chosen induced modules. The existence of these homomorphisms

is enough to prove the conjecture that the radicals of the standard modules are irreducible (or trivial). To our

knowledge, this irreducibility was first proven in [17]; our elementary proof appears to be quite different.

The analysis to this point leaves several questions unanswered, one of which is whether we have determined

a complete set of mutually non-isomorphic irreducible representations. Answering questions like these require

a little more sophistication and so we turn, in Section 8, to the consideration of the principal indecomposable

representations. For this we employ, once again, the induced module technique developed in Section 6 to

concretely determine the structure of these representations in terms of that of the standard representations. We

remark that the proofs rely heavily on an extremely convenient property of the central element Fn (and that

this property is not shared by the central element that appears in Westbury). After a brief summary reporting

what has been proven, we conclude with two appendices. The first defines Fn and proves the properties that

we require. The second lists a selection of standard representation-theoretic results that are needed. The text is

liberally peppered throughout with examples chosen to highlight the theory being developed. We hope that the

reader will find them useful for understanding this beautiful corner of representation theory.

1We thank Fred Goodman for correspondence on this point.
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We end this introduction with a list of common symbols and terms.

GLOSSARY OF TERMS AND SYMBOLS

Mn and Mn,p: link modules beginning of Section 3

Vn,p =Mn,p/Mn,p+1: standard modules Equation (3.3)

Rn,p ⊂ Vn,p: radical of 〈 ·, ·〉n,p on Vn,p Equation (3.10) and Proposition 3.3

Ln,p = Vn,p/Rn,p: irreducible quotient of the standard modules after Proposition 3.3

Pn,p: principal indecomposable module with quotient Ln,p beginning of Section 8

M↓ : restriction of M from TLn to TLn−1 Proposition 4.1

M↑ : induction of M from TLn to TLn+1 beginning of Section 6

basis Sn,p for the induced module Vn,p↑ before Proposition 6.3

〈 ·, ·〉= 〈 ·, ·〉n,p: bilinear form on Vn,p before Lemma 3.1

(n, p) is critical if q2(n−2p+1) = 1 after the proof of Corollary 4.2

critical lines, critical strips of the Bratteli diagram after Corollary 5.2

dn,p: number of (n, p)-link states before Equation (2.8)

Fn and fn,p: central element of TLn and its eigenvalues Appendix A and Proposition A.2

Gn,p: Gram matrices (〈 ·, ·〉n,p in the basis of link states) beginning of Section 4

Jones’ normal form and reverse normal form Proposition 2.3

simple link in a diagram or link state before Equation (2.12) and Lemma 6.1

admissible link state before Lemma 6.2

a symmetric pair Vn,p and Vn,p′ beginning of Section 7

2. DIAGRAMS AND PRESENTATIONS

Let us define an n-diagram algebra, for n a positive integer, as follows. First, draw two parallel vertical lines

and mark n points on each. The 2n points obtained are then connected pairwise by n links (arcs) which do not

intersect and which lie entirely between the two vertical borders. This gives what we will call an n-diagram.

Second, form the complex vector space spanned formally by the set of all n-diagrams. Third, endow this vector

space with a multiplication given by concatenating two n-diagrams, replacing each interior loop by a factor

β ∈ C, and identifying (and then removing) the two interior vertical borders. For example, for n = 3,

· = = β . (2.1)

This multiplication defines, for each β ∈ C, an associative algebra called the n-diagram algebra. It is easily

checked that this algebra has a unit given by the diagram

.

We note here for future reference that much of what follows is simplified algebraically upon making the identi-

fication β = q+ q−1 with q ∈ C×. Of course this implies that the resulting theory must be invariant under the

exchange of q with q−1.

The n-diagram algebra is in fact isomorphic to the Temperley-Lieb algebra TLn, as we shall see. The latter

algebra is abstractly defined as being generated by a unit 1 and elements ui, i = 1,2, . . . ,n−1, satisfying

u2
i = βui, uiui±1ui = ui and uiu j = u jui if |i− j|> 1. (2.2)
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Indeed, if we make the identifications

1 = and ui =

1

i−1

i
i+1

i+2

n

, (2.3)

then we can verify explicitly the properties of the unit (which are clear) and the defining relations

u2
i = = β = βui, (2.4a)

uiui−1ui = = = ui, (2.4b)

and uiu j = = = u jui (|i− j|> 1). (2.4c)

The verification of uiui+1ui = ui is just (2.4b) viewed upside-down. More formally, note that the Temperley-

Lieb algebra TLn has an automorphism specified by 1 7→ 1 and ui 7→ un−i. This corresponds to reflecting our

diagrams about a horizontal line. Finally, the map ui 7→ −ui defines an isomorphism between the two algebras

TLn with parameters β and −β .

It is clear that the identification (2.3) defines an injective homomorphism from the algebra TLn, defined

abstractly through (2.2), to the n-diagram algebra. Let Wn be the set of words in the letters ui, 1 6 i 6 n−1, and

let Dn be the set of n-diagrams. The following result notes that the algebra of n-diagrams is generated by the

diagrams in (2.3).

Lemma 2.1. The map (2.3) from Wn to Dn is surjective.

The proof will be deferred until the end of the section.

This lemma demonstrates that the n-diagram algebra is a quotient of the abstract Temperley-Lieb algebra

— the diagram algebra might satisfy further independent relations. To show that there are no further relations,

hence that we have the isomorphism of algebras claimed above, we only need to show that the dimensions of

the diagram algebra and the Temperley-Lieb algebra coincide. For this, let us first consider the “half-diagrams”

obtained from an n-diagram by cutting vertically down the middle. Each half then has n marked points, but only

some of these will still be connected by “links”. If a half-diagram has p links, then there will be n−2p points

which are not connected to anything. The latter points will be referred to as defects and a half-diagram with n

points and p links will be called an (n, p)-link state. An example with n = 7 and p = 3, hence 1 defect, is given

by
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.

We will always orient our link states so that the links and defects face to the right.

An n-diagram can now be cut in half and reassembled into a (2n,n)-link state by rotating the incorrectly

oriented half so that it lies below the other, and then rejoining the defects of each half as they were joined in the

original n-diagram:

−→ −→ −→ .

As this procedure is obviously reversible, this establishes a bijection between n-diagrams and (2n,n)-link states.

The set of all (n, p)-link states is in turn in bijection with the increasing walks on Z2 from (0,0) to (n− p, p)

which avoid crossing the diagonal (m,m). Here, “increasing” means that the walker may only move up or to

the right at each step. This bijection is easy to describe: Reading an (n, p)-link state from top to bottom, the

walker moves up at the k-th step if the k-th marked point closes a link. Otherwise, the walker moves right. For

the example above with n = 7, p = 3,

−→

(0,0)

(4,3)

.

The walk will never cross the diagonal because we cannot close a link without first opening it. Conversely,

given such an increasing path, we follow it backwards starting from (n− p, p) and construct the corresponding

(n, p)-link state from bottom to top: Every time we move down, we open a link. Every time we move left, we

close the newest open link, if one exists to be closed. If one does not, then that marked point becomes a defect.

As the walk is never above the diagonal, there are never more down moves than left moves remaining, so we

are never left with an open link that cannot be closed. The bijection is now clear.

This proves that the number of (n, p)-link states is equal to the number of increasing walks on Z2 from

(0,0) to (n− p, p) which avoid crossing the diagonal. In particular, the dimension of the n-diagram algebra is

therefore the number of increasing walks on Z2 from (0,0) to (n,n) which avoid crossing the diagonal. We will

now establish the same result for the abstract Temperley-Lieb algebra TLn. Here we follow the seminal paper

of Jones [5].

First, define a word to be a monomial in the Temperley-Lieb generators, ui1 ui2 · · ·uik for example. A word is

said to be reduced if we cannot use the relations (2.2) to rewrite it with fewer generators. The key insight into

converting a given word into reduced form is contained in the following result.
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Lemma 2.2. In any reduced Temperley-Lieb word ui1 ui2 · · ·uik , the maximal index m = max
{

i j : j = 1, . . . ,k
}

occurs only once.

Proof. We use induction on the maximal index m of our reduced word, the case m = 1 being obvious. Suppose

then that we have a reduced word in which um appears twice or more, so our word has the form · · ·umUum · · · ,
in which the maximal index m′ of U is less than m. U must also be reduced (otherwise our word would not be),

so we may assume that its maximal index appears only once. Now if m′ < m−1, then um commutes with every

generator appearing in U , so we can bring the two um’s together and use u2
m = βum to reduce our word even

further. But, m′ = m− 1 means that um commutes with every generator in U except um−1, so this generator

appearing only once in U means that we can sandwich it between the two um’s and use umum−1um = um.

Both possibilities contradict the assumption that our word is reduced, so we conclude that um can only appear

once.

This simple argument allows one to order reduced words by pushing the maximal index as far as possible to

the right. More specifically, if U is a reduced word and m the maximal index appearing then we claim that it is

possible to commute the ui so that we have the form

U =U ′ (umum−1 · · ·um−ℓ) , (2.5)

where U ′ is a reduced word whose maximal index is less than m. If there were a gap in the sequence of indices

following U ′, then the element after the gap would commute with the generators to the left of the gap (up to

um), so could be relocated to the left of um (and absorbed in U ′). If the sequence of indices following U ′ did not

decrease, then one could use u2
i = βui or uiui−1ui = ui to further reduce the word (contradiction). The claim is

therefore established.

Since U ′ is a shorter reduced word with a smaller maximal index, the same arguments apply, allowing us

to write it as U ′′ times another such uniformly decreasing sequence of generators. Induction then leads us to

Jones’ normal form for reduced Temperley-Lieb words:

Proposition 2.3 (Jones’ Normal Form). Any reduced Temperley-Lieb word U ∈ TLn may be written in the form

U =
(
u j1 u j1−1 · · ·uk1

)(
u j2 u j2−1 · · ·uk2

)
· · ·
(
u jr u jr−1 · · ·ukr

)
, (2.6)

where 0 < j1 < · · ·< jr−1 < jr < n and 0 < k1 < · · ·< kr−1 < kr < n. Similarly, any reduced word may also be

written as

U =
(
u j1 u j1+1 · · ·uk1

)(
u j2 u j2+1 · · ·uk2

)
· · ·
(
u jr u jr+1 · · ·ukr

)
, (2.7)

with n > j1 > j2 > · · ·> jr > 0 and n > k1 > k2 > · · ·> kr > 0.

Proof. The increasing nature of the ji follows from the fact that they are the maximal indices of the subwords

. . . ,U ′′,U ′,U . For the ki, note that if ki > ki+1 for some i, then we could commute the uki
appearing at the end

of its decreasing sequence to the right until it bumped up against the uki+1uki
appearing in the next decreasing

sequence. The defining relations (2.2) again give us a contradiction to our word being reduced. Thus, we must

have 0 < k1 < · · ·< kr−1 < kr < n as well. The proof of the second form is similar.

We shall refer to words satisfying (2.6) as elements in Jones’ normal form and those satisfying (2.7) as being in

reverse Jones’ normal form.

The point of this theory is to establish that every monomial in the Temperley-Lieb generators is (up to factors

of β ) equal to an ordered reduced word of the form (2.6), with strictly increasing ji and ki. The dimension of the

algebra TLn is then bounded above by the number of such ordered reduced words.2 Note that if these ordered

reduced words were linearly independent, then this bound would become an equality. Our next task is to show

2When β = 0, we have the slight modification that every monomial in the Temperley-Lieb generators is either equal to a uniquely ordered

reduced word of the form (2.6), with strictly increasing ji and ki, or is identically zero. The conclusion remains valid.
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that this number coincides with the number of increasing walks on Z2 from (0,0) to (n,n) which avoid crossing

the diagonal. Then, we will have shown that TLn has a quotient (the n-diagram algebra) whose dimension is

equal to our upper bound on the dimension of TLn. It then follows that the bound is an equality, so the set of

ordered reduced words is in fact a basis.

Naturally, this is achieved by constructing a bijection. This is done by stripping the indices ji and ki from the

ordered reduced words (2.6) of TLn and encoding them as a walk on Z2 as follows:

(
u j1u j1−1 · · ·uk1

)(
u j2 u j2−1 · · ·uk2

)
· · ·
(
u jr u jr−1 · · ·ukr

)

−→
〈

(0,0)→ ( j1,0)→ ( j1,k1)→ ( j2,k1)→ ( j2,k2)→ ·· · → ( jr,kr−1)→ ( jr,kr)→ (n,kr)→ (n,n)
〉

.

(The empty word corresponding to the unit 1 in TLn is encoded as 〈(0,0)→ (n,0)→ (n,n)〉.) For example, in

TL9 we have

(u1)(u4u3u2)(u6u5u4u3)(u8u7) −→

(0,0)

(9,9)

.

The walks so obtained cannot cross the diagonal because ji+1 > ji > ki, and they are increasing because ji < ji+1

and ki < ki+1. Conversely, any increasing path from (0,0) to (n,n) is entirely determined by its corners. The

coordinates of these corners may be used to construct a reduced word of the form (2.6) and it is easy to check

that the ji and ki so defined satisfy ji < ji+1 and ki < ki+1. Avoiding crossing the diagonal translates into ji > ki.

This bijection therefore completes the proof that the dimension of the n-diagram algebra coincides with that

of the abstract Temperley-Lieb algebra TLn (this dimension is obviously finite). As noted above, this is sufficient

to conclude that these algebras are in fact isomorphic. It is not difficult now to complete this circle of ideas and

actually compute the dimensions of these algebras by counting the increasing paths from (0,0) to (n,n) which

avoid crossing the diagonal.

In fact, we shall generalise slightly and count the increasing paths from (0,0) to (n− p, p) which avoid cross-

ing the diagonal. This more general computation then gives the number of (n, p)-link states. Let this number be

dn,p. Since an increasing path ending at (n− p, p) must pass through either (n− p−1, p) or (n− p, p−1) (but

not both!), we obtain the recursion relation

dn,p = dn−1,p +dn−1,p−1. (2.8)

With the “boundary values” dn,0 = 1 (the only increasing path which never goes up is the one which only moves

to the right) and d2p−1,p = 0 (the paths are not allowed to cross the diagonal), this completely determines the

numbers dn,p. Its solution is easily verified to be

dn,p =

(
n

p

)

−
(

n

p−1

)

, (2.9)

where we understand, as usual, that
(

n
−1

)
= 0. It follows that the n-diagram algebra and the Temperley-Lieb

algebra TLn have dimension

dimTLn = d2n,n =

(
2n

n

)

−
(

2n

n−1

)

=
1

n+1

(
2n

n

)

. (2.10)

This is of course the n-th Catalan number.

To summarise, we have proven the following result in this section.
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Theorem 2.4. The abstract Temperley-Lieb algebra TLn and the algebra of n-diagrams are isomorphic (for

given n ∈ Z+ and β ∈ C). The dimensions of these algebras are given by Equation (2.10).

We mention that combining the result on dimensions with the “cutting” of n-diagrams into two (n, p)-link states

leads to the curious identity

d2n,n =
⌊n/2⌋
∑
p=0

d2
n,p. (2.11)

This only requires observing that the two link states must have the same number of links p so that each defect

of the first may be joined to a defect of the second.

We close this section with a proof of Lemma 2.1 that is purely diagrammatic. An example of a similar

construction is given by Kauffman (see Figure 16 and the proof of Theorem 4.3 in [18]). Before starting, we

will introduce some new terms and make two preparatory observations concerning diagram multiplication. A

simple link (at position i) is a link that connects positions i and i+ 1 on the same side of a diagram and a link

connecting positions on opposite sides of a diagram is called a through-line. Let d be a diagram that has a

simple link on the left at position i−1 and a through-line connecting i+1 on the left to i+1 on the right. Upon

multiplying on the left by ui, or rather by the diagram corresponding to ui, this diagram becomes

d = i−1

i

i+1

...

...

⇒ uid =

...

...

i−1

i

i+1

...

...

= i−1

i

i+1

...

...

. (2.12)

The vertical dots in d indicate links and through-lines that are not explicitly drawn. Clearly, these remain

unchanged upon multiplication by ui. The result uid is therefore identical to the original d except that the

simple link at position i−1 on the left has migrated to position i and the through-line that started on the left at

position i+ 1 now starts at i− 1. A simple link on the left at i− 1 and a through-line starting at i+ 1 may be

exchanged by left-multiplying by ui.

This observation generalises easily. If d also has a simple link at position i− 3, then the product ui−2uid

would have simple links at i− 2 and i. Moreover, the through-line would now start at i− 3. Of course, right-

multiplication by ui would result in similar exchanges to simple links and through-lines on the right side. The

conclusion is that the generators ui can be used to exchange simple links and through-lines, without changing

any other patterns in a given diagram. This is the first preparatory observation.

For the second, we suppose that d has, on its left side, p consecutive simple links from positions i to i+2p−1.

Left-multiplication of d by (the diagram representing the word) ui+1ui+3 . . .ui+2p−3 creates an overarching link

from i to i+2p−1, while shifting the remaining p−1 simple links so that they fit inside:

d =

...

...

...

i+2p−1

i

i+2

⇒ ui+1ui+3 · · ·ui+2p−3d =

...

...

......
...

i+1

i+3

i+2p−3

=

...

...

...

i+2p−1

i

i+2

. (2.13)

As in the previous example, the other patterns in d remain unchanged. This is the second preparatory observa-

tion.

Finally, we shall define a nested island to be a pattern of p links joining 2p consecutive points on one side

of an n-diagram satisfying two conditions. First, that the top point i and the bottom i+ 2p− 1 are linked (the

island does not consist of two or more smaller “sub-islands”), and second, that no point above (less than) i is
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linked to any point below (greater than) i+ 2p− 1 (the island is not a sub-island of a greater island). To any

n-diagram d, we may therefore associate another n-diagram d′ in which all the nested islands of d are replaced

by consecutive simple links. We illustrate this replacement with a diagram d that has four nested islands, one

on the left and three on the right, each being circumscribed for clarity by a dotted line.

d = ⇒ d′ = . (2.14)

With these preparatory observations and definitions, the following proof of Lemma 2.1 proceeds in two elemen-

tary steps. We will illustrate these steps for the diagram d after giving the proof.

Proof of Lemma 2.1. Given a diagram d, the proof constructs a word w in the ui, with 1 6 i 6 n−1, such that w

is identified with d under (2.3). We first obtain a word w′ which is identified with d′, the n-diagram associated

to d in which its nested islands are replaced by simple links. Then, this word w′ is extended to the desired word

w by reconstructing the nested islands. Note that if all links starting from the left side of d cross to the right

side, the diagram is in fact the diagram representing the unit. In this case, the word w is simply the empty word

corresponding to 1 ∈ TLn.

Suppose then that 2p > 0 is the number of points on the left side of d that are linked pairwise. Clearly, there

are also 2p linked points on the right side and n− 2p > 0 is the number of through-lines in d. The diagram

d′ thus contains p simple links on each of its sides. To construct w′, we start from the word u1u3 . . .u2p−1.

The corresponding diagram has, on each of its sides, p consecutive simple links followed by n− 2p through-

lines. Some of these through-lines might not be at the positions of those of d′ (and d), but the first preparatory

observation above indicates how to move them to the correct positions using left- and right-multiplication by

the ui. The uppermost through-line in u1u3 . . .u2p−1 (that at 2p+1) is first moved, using the observation, to the

position of the uppermost through-line in d′. When this is accomplished, the positions under this through-line

are consecutive simple links followed by the remaining n−2p−1 through-lines, if any. Again, if the positions

of these through-lines do not match those of d′, the observation can be used again. Repeating this process at

most n−2p times gives a word w′ that corresponds precisely to the diagram d′.

Having constructed a word w′ that corresponds to d′, it remains to convert the simple links of d′ into nested

islands as they appear in d. For each nested island that is not a simple link, we first draw the outermost link.

More precisely, if a nested island lies between positions i and i+ 2 j− 1 on the left (right) side of d, then the

word w′ is multiplied from the left (right) by ui+1ui+3 · · ·ui+2 j−3, as the second preliminary observation advises.

Once this has been done for each nested island, the outermost links of all nested islands have been constructed

and we can turn to the interior nested “sub-islands”. If there are any which are not simple links, then the

second observation can be used again to draw the outermost link of these, and so on. When there are no nested

(sub-)islands left but simple links, the word w thus obtained is the desired one: It corresponds to d under the

identification (2.3).

A word w for the diagram d exhibited in (2.14) may be easily found following this proof. Since the diagram d

has p = 4 links on each side, the proof of Lemma 2.1 begins with the word u1u3u5u7. Then, the highest through-

line (at position 9) is moved to the position of the highest through-line in d′ by left-multiplying by u2u4u6u8 and

right-multiplying by u4u6u8. Moving the second highest, and only other, through-line to the correct position in
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d′ then requires right-multiplication by u9. This gives a word w′ that corresponds to d′:

u1u3u5u7 = ⇒ (u2u4u6u8)(u1u3u5u7)(u4u6u8) = =

⇒ w′ = (u2u4u6u8)(u1u3u5u7)(u4u6u8)(u9) = = = d′. (2.15)

The second part of the proof now proceeds as follows. There are two nested islands in d that are not simple

links, one on the left from positions 2 to 9 and another on the right from positions 4 to 7. Their outermost links

are first closed by multiplying w′ by u3u5u7 on the left and by u5 on the right. Now, the resulting diagram differs

from d only in that the simple links on the left at positions 5 and 7 are, in d, replaced by a nested sub-island

from positions 5 to 8. Left-multiplication by u6 then brings us, finally, to d:

w′ = d′ ⇒ (u3u5u7)w
′(u5) = =

⇒ (u6)(u3u5u7)w
′(u5) = = = d. (2.16)

The desired word is therefore

w = (u6)(u3u5u7)w
′(u5) = (u6)(u3u5u7)(u2u4u6u8)(u1u3u5u7)(u4u6u8)(u9)(u5) = d. (2.17)

We remark that this word w is clearly not in Jones’ normal form.

3. STANDARD REPRESENTATIONS

The (n, p)-link states are not just convenient for combinatorial arguments. They in fact admit a very natural

action of the Temperley-Lieb algebra TLn. More precisely, if we let Mn denote the complex span of the (n, p)-

link states (over all p), then Mn is naturally a left TLn-module under the concatenation of diagram with link
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state. We will refer to this module as the link module. An example should serve to make the action clear:

· = = . (3.1)

Equation (3.7) provides an example in which a loop is closed upon concatenation. We note that the number of

defects need not be conserved under the TLn-action. However, this action can only close defects in pairs, so the

number of defects never increases. Equivalently, the number of links never decreases under the TLn-action.

We can therefore identify TLn-submodules Mn,p ⊆ Mn which are spanned by the (n, p′)-link states with

p′ > p. This gives us an obvious filtration

0 ⊂Mn,⌊n/2⌋ ⊂ ·· · ⊂Mn,1 ⊂Mn,0 =Mn, (3.2)

whose consecutive quotients will be denoted by

Vn,p =
Mn,p

Mn,p+1
. (3.3)

The Vn,p are therefore TLn-modules in which the action is by concatenation when the number of links (and

defects) is conserved and zero otherwise. We shall refer to them as the standard modules. In the literature, they

are also often called cell modules, following the seminal work [20] upon which a significant proportion of this

section is based. As vector spaces, they are spanned by the (n, p)-link states (we shall often forget to distinguish

an element of Mn,p from its coset in Vn,p when it is not crucial), so their dimensions are the dn,p computed

in Equation (2.9). For example, Vn,0 is always one-dimensional, spanned by the link state with no links (all

defects). The Temperley-Lieb generators all act trivially on Vn,0 (they would all close two defects), except the

unit of course, which acts as the identity.

It is natural to ask at this point if the Vn,p are irreducible as TLn-modules. We will see, eventually, that the

answer is generically “yes”. The story is subtle however and will not be completed until the end of Section 4.

We will approach this irreducibility in a manner familiar to physicists, by studying the non-degeneracy of an

invariant bilinear form. Let us therefore recall that we have oriented our link states so that the links and defects

point to the right. This facilitates a left action of the Temperley-Lieb algebra. We could also introduce the

reflections of the link states across a vertical line. The links and defects would then point to the left, and we

would have a natural right action of TLn on these reflected link states. This suggests that we might be able to

treat reflected link states as linear functionals acting on the link states, hence that combining a reflected link

state with a standard link state may lead to an interesting bilinear pairing.

We therefore define, on each Vn,p, a form
〈
·, ·
〉
≡
〈
·, ·
〉

n,p
as follows. If x and y are two (n, p)-link states,

then
〈
x,y
〉

is computed by reflecting x across a vertical line and identifying its vertical border with that of y.

The value
〈
x,y
〉

is then non-zero only if every defect of x ends up being connected to one of y; when this is so,
〈
x,y
〉
= β m where m is the number of closed loops so obtained. This is then extended bilinearly3 to all of Vn,p.

As examples, we compute that in V4,1,

〈
,

〉
= = β ,

〈
,

〉
= = 1 and

〈
,

〉
= = 0. (3.4)

3What follows can easily be adapted to the case where one extends sesquilinearly. We have chosen bilinearity for simplicity.
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Note that this bilinear form is symmetric —
〈
x,y
〉

and
〈
y,x
〉

are just reflections of one another in the pictorial

interpretation.

Consider now the reflection of an n-diagram about a vertical line. This will be another n-diagram, so reflec-

tion defines a linear map from TLn to itself. This obviously preserves the multiplication except that the order

will be reversed — this map is an antiautomorphism of TLn.4 We will therefore regard it as an adjoint, denoting

it by U 7→ U†. It is clear from Equation (2.3) that 1† = 1 and u
†
i = ui. This definition is natural and useful.

Indeed, it shows that the bilinear forms we have defined turn out to be invariant with respect to the TLn-action.

Lemma 3.1. The bilinear form
〈
·, ·
〉

on Vn,p satisfies

〈
x,Uy

〉
=
〈
U†x,y

〉
for all U ∈ TLn and x,y ∈ Vn,p. (3.5)

To see this, we merely note that the two sides of (3.5) are identical when expressed in terms of diagrams and

link states.

We introduce a convenient notation x y for the unique n-diagram which, when cut in half vertically,

decomposes into the (n, p)-link state x and the vertical reflection of the (n, p)-link state y. Extending linearly,

we obtain a map · · from Vn,p ×Vn,p into TLn (in fact we obtain such a map for each p, but we will not

bother to distinguish them). The utility of the bilinear form we have defined stems from the following relation.

Lemma 3.2. If x,y,z ∈ Vn,p, then

x y z =
〈
y,z
〉
x. (3.6)

Proof. Observe first that linearity allows us to assume that x, y and z are in fact (n, p)-link states. If any of the

defects of y are closed by a link in z, then
〈
y,z
〉
= 0 by definition, so the right-hand side of (3.6) vanishes. As

the defects of x join those of y, this will close two defects of x, leading to an additional link in x y z. But

then, the resulting link state will vanish in Vn,p due to its definition as a quotient, hence the left-hand side of

(3.6) likewise vanishes.

It remains to check the case in which none of the defects of y are closed by a link in z. But then it is clear

that the left-hand side of (3.6) will be proportional to x. The proportionality constant is then given by β to the

power of the number of loops in the concatenation of x y and z. Since x contributes no loops, this constant

is just
〈
y,z
〉

as required.

We illustrate this deceptively simple result with an example in V7,3: Compare

· = β with
〈

,
〉
= β . (3.7)

We remark that it is tempting (and sometimes useful) to think of x y as the combination xy†, where the

“adjoint” of the link state y refers likewise to its vertical reflection. Then, one could “prove” Lemma 3.2 as

follows:

x y z =
(
xy†
)

z = x
(
y†z
)
=
〈
y,z
〉
x. (3.8)

However, caution should be exercised with such manipulations. If x and y belong to Vn,p′ and z is an (n, p)-

link state (with p′ 6= p), then (3.6) and (3.8) do not make sense — the bilinear form is no longer defined.

4We will take this adjoint to be linear as we are considering
〈
·, ·
〉

as a bilinear form. If one prefers a sesquilinear form, then the adjoint

should be taken to be antilinear. Note however, that this conflicts with the defining relations (2.2) unless β is real.
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Nevertheless, the product x y z may be non-zero (in Mn) and not even proportional to x. For example,

· = . (3.9)

We will therefore refrain from trying to define an adjoint of a link state (what one means is of course a linear

functional in the dual vector space).

We can now understand how this bilinear form will help to decide the irreducibility of the Vn,p. For this, we

consider the radical Rn,p of the bilinear form on Vn,p:

Rn,p =
{

x ∈ Vn,p :
〈
x,y
〉
= 0 for all y ∈ Vn,p

}
. (3.10)

The invariance (Lemma 3.1) of the bilinear form implies that the radical Rn,p is a submodule of Vn,p.

Proposition 3.3. If
〈
·, ·
〉

is not identically zero on Vn,p, then Vn,p is cyclic and indecomposable. Moreover,

Vn,p/Rn,p is then irreducible. Equivalently, Rn,p is the unique maximal proper submodule of Vn,p.

(We shall discuss the case when
〈
·, ·
〉

is identically zero shortly.)

Proof. Since
〈
·, ·
〉

is not identically zero, there exist y,z ∈ Vn,p such that
〈
y,z
〉
= 1. Then, Equation (3.6) says

that for every x ∈ Vn,p, we may form x y ∈ TLn to obtain

x y z =
〈
y,z
〉
x = x. (3.11)

Thus, z generates Vn,p, proving that this module is cyclic. Now, any z /∈Rn,p has such a partner y, so every such

z is a generator of Vn,p. It follows that every non-zero element of Vn,p/Rn,p generates this quotient, hence that

the quotient is irreducible.

Suppose then that Vn,p can be written as Vn,p = A⊕B. Let z be a generator of Vn,p and zA ∈ A,zB ∈ B be such

that z = zA + zB. If both zA and zB were in Rn,p, then they would generate a submodule TLnzA ⊕TLnzB ⊆ Rn,p

that includes TLnz and is distinct from Vn,p. So, at least one of zA or zB is not an element of Rn,p. If it is zA,

then zA generates Vn,p, so Vn,p = TLnzA ⊆ A, giving B = 0. If zB /∈Rn,p, then A = 0 by the same argument. This

proves that Vn,p is indecomposable.

We will find it convenient to denote the quotient Vn,p/Rn,p by Ln,p, even when
〈
·, ·
〉

vanishes identically. In this

latter case, Ln,p is the trivial module {0}; otherwise, Ln,p is irreducible. For this reason, we shall often refer to

the Ln,p as the irreducibles, understanding that one should exclude any Ln,p that vanish.

To prove that Vn,p is irreducible, it is therefore enough to show that the radical Rn,p is zero. Equivalently,

we must show that the bilinear form we have defined on Vn,p is non-degenerate. This will be the strategy of

Section 4. Note however that Rn,p 6= {0} only implies that Vn,p is reducible when
〈
·, ·
〉
6= 0 (that is, when

Rn,p 6= Vn,p). In case
〈
·, ·
〉
= 0, we cannot decide the irreducibility of Vn,p using Proposition 3.3.

However, when β 6= 0,
〈
x,x
〉
= β p 6= 0 for all (n, p)-link states x, so the bilinear form is non-zero. Indeed, if

β = 0 but n 6= 2p (so there is at least one defect), then the form is non-zero because we may choose x and y so
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as to form a “snake”:

〈
x,y
〉
= = 1. (3.12)

However, when β = 0 and there are no defects (n = 2p), the bilinear form vanishes identically. It is therefore

useful to renormalise it, defining

〈
x,y
〉′
= lim

β→0

〈
x,y
〉

β
(x,y ∈ V2p,p), (3.13)

where the forms appearing within the limit are those of the V2p,p with β 6= 0. Since
〈
x,y
〉

is a polynomial in

β with vanishing constant coefficient,
〈
x,y
〉′

is defined — in fact, when x and y are (2p, p)-link states, it is 1

when a single loop is formed and 0 otherwise. Moreover,
〈
·, ·
〉′

inherits bilinearity, symmetry and invariance

from
〈
·, ·
〉
. Note that this renormalised bilinear form is not identically zero because x and y may be chosen so

as to obtain

〈
x,y
〉′
= lim

β→0

1

β
= lim

β→0

β

β
= 1. (3.14)

We cannot immediately apply Proposition 3.3 to the radical of this renormalised form because the proof

relied crucially upon Lemma 3.2, special to the form
〈
·, ·
〉
. However, we have the following replacement:

Lemma 3.4. Let x and y be (2p, p−1)-link states, so that they have precisely two defects. Denote by x′ and y′

the respective (2p, p)-link states formed by closing these defects. Then for β = 0,

x y z =
〈
y′,z
〉′

x′, for all z ∈ V2p,p. (3.15)

This extends linearly to all x,y ∈ V2p,p−1.

Proof. Note first that the defects of y must be closed by a link in z (assuming by linearity that the latter is a

(2p, p)-link state). Thus, x y z will be proportional to the link state x′ obtained by closing the defects of x.

The constant of proportionality is given by β to the power of the number of loops formed by y and z. This is 0

(since β = 0) unless there are no such loops, in which case it is 1. However, this matches the value of
〈
y′,z
〉′

,

as closing the defects of y leads to an additional loop which is dealt with by dividing by β in (3.13).

If R′
2p,p denotes the radical of the renormalised β = 0 form

〈
·, ·
〉′

, we can now mimic the proof of Proposi-

tion 3.3 to obtain the analogous result.

Proposition 3.5. The form
〈
·, ·
〉

is identically zero if and only if β = 0 and n = 2p. Then, V2p,p is cyclic,

indecomposable and has an irreducible quotient V2p,p/R
′
2p,p.

It remains only to remark that this quotient is never zero because we have shown that R′
2p,p 6= V2p,p (the form

〈
·, ·
〉′

is never identically zero).
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We conclude this section with a study of whether the Vn,p, and their irreducible quotients Ln,p = Vn,p/Rn,p

are all mutually distinct as TLn-modules (up to isomorphism of course). The fact that Vn,p and Vn,p′ involve

different numbers of links, for p 6= p′, can be misleading. For example, V2,1 and V2,0 are isomorphic one-

dimensional TL2-modules, when β = 0 (1 and u1 are represented by 1 and 0, respectively, on both). Neverthe-

less, this behaviour is rather exceptional.

Proposition 3.6. Let N and N
′ be submodules of Vn,p and Vn,p′ , respectively, where p > p′ and

〈
·, ·
〉

n,p
6= 0.

Then, the only module homomorphism θ : Vn,p/N→ Vn,p′/N
′ is the zero homomorphism.

Proof. Let γ be the canonical homomorphism from Vn,p onto Vn,p/N. Choose y,z ∈ Vn,p such that
〈
y,z
〉
= 1.

Then, for all x ∈ Vn,p,

x y θ (γ (z)) = θ
(
γ
(

x y z
))

= θ (γ (x)) . (3.16)

But when p > p′, x y θ (γ (z)) = 0, since θ (γ (z)) has p′ links but left-multiplying by x y leads to at least

p links. Thus, θ (γ (x)) = 0, so θ = 0 as γ is surjective.

Putting N = N
′ = {0} or N = Rn,p and N

′ = Rn,p′ in Proposition 3.6, and using the basic fact that an isomor-

phism has an inverse, we obtain:

Corollary 3.7. When
〈
·, ·
〉

n,p
and

〈
·, ·
〉

n,p′ are non-zero,

Vn,p
∼= Vn,p′ ⇒ p = p′ and Ln,p

∼= Ln,p′ ⇒ p = p′.

As we have seen,
〈
·, ·
〉

2p,p
vanishes identically when β = 0, so it follows that V2p,p (L2p,p) could coincide with

one of the other V2p,p′ (L2p,p′) in this case. This is what allows the (β = 0) isomorphism V2,1
∼= V2,0 which we

remarked upon above.

We record a related result for future reference:

Proposition 3.8. Every module homomorphism θ : Vn,p → Vn,p is a multiple of the identity.

Proof. When
〈
·, ·
〉

n,p
6= 0, this follows readily by choosing y,z ∈Vn,p such that

〈
y,z
〉
= 1. Then, for all x ∈Vn,p,

θ (x) = θ
(

x y z
)
= x y θ (z) =

〈
y,θ (z)

〉
x. (3.17)

For the remaining case, when
〈
·, ·
〉

n,p
= 0, we must have n = 2p and β = 0. However, the renormalised form

〈
·, ·
〉′

of Equation (3.13) does not vanish identically, so there exist y′,z ∈ V2p,p such that
〈
y′,z
〉′
= 1. For every

x′ ∈ V2p,p, let x ∈ V2p,p−1 be obtained by cutting an outermost link of x′ (say the one closing at n = 2p for

definiteness). Form y ∈ V2p,p−1 from y′ in the same fashion. Then, Lemma 3.4 gives

θ
(
x′
)
= θ

(
x y z

)
= x y θ (z) =

〈
y′,θ (z)

〉′
x′, (3.18)

completing the proof.

4. GRAM MATRICES

We can now turn to a study of the irreducibility of the Vn,p, based on the non-degeneracy of the invariant

bilinear forms
〈
·, ·
〉

n,p
. Recall that each Vn,p has a canonical basis given by the (n, p)-link states. With respect

to this basis, the corresponding form is represented by a symmetric dn,p ×dn,p matrix which we shall denote by

Gn,p. Such matrices are called Gram matrices. For example,

G4,0 =
(
1
)
, G4,1 =






β 1 0

1 β 1

0 1 β




 and G4,2 =

(

β 2 β

β β 2

)

, (4.1)
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when we adopt the (respective) ordered bases













,







, ,







and







,







.

As the radical Rn,p is represented by the kernel of the Gram matrix Gn,p, we see that the irreducibility of the

Vn,p is equivalent to det(Gn,p) 6= 0.5 Our aim in this section is to compute det(Gn,p) explicitly. The strategy is

to use restriction to derive a recursion relation for det(Gn,p) when the Rn,p all vanish. This turns out to occur

for generic β ∈ C, excluding only a countable set. Continuity therefore takes care of the outstanding cases.

Proposition 4.1. Consider the inclusion of TLn−1 in TLn (for fixed β ) given by sending the unit to the unit and

the ui with i < n− 1 to their counterparts in TLn. Denote the corresponding restriction of Vn,p to a TLn−1-

module by Vn,p↓ . Then, we have an exact sequence of TLn−1-modules,

0 −→ Vn−1,p −→ Vn,p↓ −→ Vn−1,p−1 −→ 0, (4.2)

meaning that Vn−1,p is a submodule of Vn,p↓ and Vn,p↓ /Vn−1,p
∼= Vn−1,p−1.

Proof. The inclusion Vn−1,p →֒ Vn,p↓ is defined to extend an (n−1, p)-link state to an (n, p)-link state by

adding a defect at position n. This is clearly an injective homomorphism of TLn−1-modules as the inclusion of

TLn−1 in TLn will preserve the defect at n. The quotient Vn,p↓ /Vn−1,p is then a TLn−1-module with a basis of

cosets which are represented by the (n, p)-link states in which n is part of a link.

There is an obvious vector space isomorphism Ψ from Vn,p↓ /Vn−1,p to Vn−1,p−1 obtained by cutting the

link which closes at n and then removing the newly-created defect at n. We wish to show that Ψ is in fact an

isomorphism of TLn−1-modules, thereby completing the proof. So for a given basis element z of Vn,p↓ /Vn−1,p,

let m denote the opening point of the link which closes at n. Applying any ui (i < n−1) to z usually then gives

another such basis element in which n is linked to some m′. It is easy to see that Ψ(uiz) = uiΨ(z) in this case.

The only exception occurs if i = m−1 and m−1 is a defect in z. Then, applying um−1 to z leads to n becoming

a defect:

= . (4.3)

In this case, Ψ(um−1z) = Ψ(0) = 0. But, Ψ(z) will have defects at both m− 1 and m, so applying um−1 will

close the defect leading to an extra link. Thus, um−1Ψ(z) = 0 too and Ψ is a homomorphism.

Corollary 4.2. When q2(n−2p+1) 6= 1 (recall that we write β = q+q−1), the exact sequence (4.2) splits, so we

have

Vn,p↓ ∼= Vn−1,p ⊕Vn−1,p−1 (as TLn−1-modules). (4.4)

Proof. This is easy to see by using the eigenvalues of the central element Fn−1 on TLn−1 (see Appendix A).

Since Fn−1 is central, left-multiplication by Fn−1 − λ1 is a homomorphism from any module N to itself, for

any λ ∈ C. Thus, the (generalised) eigenspaces of Fn−1 on N are submodules. Applying this to N = Vn,p↓
and recalling that Vn−1,p and Vn−1,p−1 are indecomposable, we see that Fn−1 has at most two eigenvalues:

fn−1,p with eigenspace Vn−1,p and fn−1,p−1 with eigenspace (isomorphic to) Vn−1,p−1. If these eigenvalues are

distinct, both eigenspaces are submodules and (4.2) splits. It remains to determine when fn−1,p = fn−1,p−1. But,

5We shall defer addressing the exceptional case of V2p,p with β = 0 until the end of the section.
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Proposition A.2 gives

fn−1,p−1 − fn−1,p =
(
q−q−1

)(

qn−2p+1 −q−(n−2p+1)
)

. (4.5)

If either factor is zero, then q2(n−2p+1) will be 1, contradicting the hypothesis.

We introduce a useful definition: Say that the pair (n, p) is critical for a given q ∈ C× if q2(n−2p+1) = 1.

Similarly, any quantity indexed by n and p will be said to be critical if (n, p) is critical. A rephrasing of

Corollary 4.2 is therefore that a non-critical restricted module Vn,p↓ always splits as Vn−1,p ⊕Vn−1,p−1.

Suppose now that Vn,p↓ is non-critical so that there exists a splitting ψ : Vn,p↓ −→Vn−1,p⊕Vn−1,p−1. Then,

if we order the canonical basis of link states of Vn,p so that those of Vn−1,p (which have n as a defect) come

first, ψ may be chosen so that it is represented by a matrix of the form

Un,p =

(

id Vn,p

0 id

)

. (4.6)

Here, the submatrix Vn,p encodes the non-trivial part of the splitting (the embedding of Vn−1,p−1 in Vn,p↓ ).

At this point, we make an inductive assumption: We suppose that when q is not a root of unity (so (4.2)

always splits), the Rn′,p′ vanish for all n′ < n and all p′ — this is certainly true for n′ 6 2. With this assumption,

the Vn′,p′ are all irreducible and mutually distinct by Proposition 3.3 and Corollary 3.7.

Lemma 4.3. If the splitting ψ exists, we may define a bilinear form on Vn−1,p ⊕Vn−1,p−1 by

〈〈
x+ x′,y+ y′

〉〉
=
〈
ψ−1

(
x+ x′

)
,ψ−1

(
y+ y′

)〉

n,p
, for x,y ∈ Vn−1,p and x′,y′ ∈ Vn−1,p−1. (4.7)

This form is symmetric and invariant, hence

〈〈
x+ x′,y+ y′

〉〉
=
〈
x,y
〉

n−1,p
+αn,p

〈
x′,y′

〉

n−1,p−1
, (4.8)

for some αn,p ∈ C.

Proof. This is a well-known argument: A bilinear form induces a map from a module V to its dual by v 7→
〈
v, ·
〉
.

The invariance of the form translates into this induced map being an intertwiner. When V is irreducible, so is

its dual, so Schur’s lemma tells us that the induced maps form a one-dimensional vector space, hence so too do

the invariant bilinear forms. In the application at hand, V is the direct sum of two non-isomorphic irreducible

modules, so there is a two-dimensional space of bilinear forms. Comparing the form on Vn−1,p with that on the

direct sum fixes one of the latter’s degrees of freedom to be unity.

In matrix form, this becomes

Gn−1,p ⊕αn,pGn−1,p−1 =
(
U−1

n,p

)T
Gn,pU−1

n,p

⇒ Gn,p =UT
n,p

(

Gn−1,p 0

0 αn,pGn−1,p−1

)

Un,p. (4.9)

This is the recurrence relation which we shall use to compute det(Gn,p). For this, it is useful to introduce the

familiar notation [m]q for the q-number

[m]q =
qm −q−m

q−q−1
, (4.10)

with the limiting case for q =±1 being [m]q = mqm−1. Note that (n, p) is critical if and only if [n−2p+1]q = 0

or q =±1.

Proposition 4.4. When [n−2p+1]q 6= 0 and p > 0, αn,p is finite and is given by

αn,p =
[n−2p+2]q
[n−2p+1]q

. (4.11)
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Proof. We will prove this first under the assumption that q is not a root of unity. The general case then follows

from continuity.

We begin by writing the Gram matrix in block form. We again choose to order the canonical basis of link

states so that those with n a defect come first. Thus,

Gn,p =

(

G
1,1
n,p G

1,2
n,p

G
2,1
n,p G

2,2
n,p

)

, (4.12)

where G
1,1
n,p is in fact just Gn−1,p (removing the defect at n has no effect on the values taken by the bilinear form).

Substituting Equations (4.6) and (4.12) into Equation (4.9) now gives two independent (non-trivial) constraints:

G1,2
n,p = Gn−1,pVn,p (4.13a)

and G2,2
n,p = (Vn,p)

T
Gn−1,pVn,p +αn,pGn−1,p−1 (4.13b)

= (Vn,p)
T

G1,2
n,p +αn,pGn−1,p−1, (4.13c)

where the last equality uses (4.13a).

Just as we chose the basis of Vn,p so that the link states with n a defect came first, we now refine it so that

when n is a defect, the link states with n− 1 a defect come before those with n− 1 part of a link. Similarly,

when n is part of a link, put those link states with n−1 linked to n before the rest. Pictorially, the order is:

, , , .

This results in G
1,2
n,p, G

2,2
n,p and Vn,p having the (refined) block forms

G1,2
n,p =

(

0 ∗
Gn−2,p−1 ∗

)

, G2,2
n,p =

(

βGn−2,p−1 ∗
∗ ∗

)

and Vn,p =

(

V
1,1
n,p ∗

V
2,1
n,p ∗

)

. (4.14)

To explain, the top-left block of G
1,2
n,p corresponds to the scalar product of link states of types 1 and 3 (in the

above order), which clearly gives zero. Similarly, the bottom-left block of G
1,2
n,p corresponds to the scalar product

of link states of types 2 and 3, and it is easy to see that the value will not change if we remove n−1 and n from

both (cutting one link in each). Finally, the top-left block of G
2,2
n,p represents the scalar product of two type 3

link states, hence the factor of β .

We substitute the block forms (4.14) and (4.12) (with n → n− 1) into Equation (4.13a). The first column

then yields two equations:

0 = Gn−2,pV 1,1
n,p +G

1,2
n−1,pV 2,1

n,p (4.15a)

and Gn−2,p−1 = G
2,1
n−1,pV 1,1

n,p +G
2,2
n−1,pV 2,1

n,p . (4.15b)

Using Equation (4.13a) (again with n → n−1) on (4.15a) gives

V 1,1
n,p +Vn−1,pV 2,1

n,p = 0, (4.16)

since Gn−2,p is invertible by assumption (Rn−2,p = {0}). To simplify Equation (4.15b), we note that G
2,1
n−1,p is

the transpose of G
1,2
n−1,p and apply (4.12), (4.13b) (both with n → n−1) and then (4.16) to get

V 2,1
n,p =

1

αn−1,p
id . (4.17)

Here we have used the invertibility of Gn−2,p−1.
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Finally, we look at the top-left block of Equation (4.13c). Substituting the block forms (4.14), applying

(4.17) and the invertibility of Gn−2,p−1 once more, we arrive at a recursion relation for the αn,p:

αn,p = β − 1

αn−1,p
. (4.18)

This simple relation allows us to reduce the computation of any αn,p to that with n smaller. In particular, if

n = 2p, we have Gn,p = βGn−1,p−1, since Vn−1,p is not defined and (n−1, p−1)-link states are lifted to Vn,p

by adding a link. This gives the starting point for the recursion, α2p,p = β . It is easy to check that Equation (4.11)

is the unique solution.

Since det(Un,p) = 1, Equation (4.9) now yields an explicit recursion relation for the determinants of the

Gram matrices:

det(Gn,p) = α
dn−1,p−1
n,p det(Gn−1,p)det(Gn−1,p−1) . (4.19a)

Here, dn−1,p−1 is the dimension of Vn−1,p−1 as given in Equation (2.9). The starting points for this recursion

are the results

det(Gn,0) = 1 and det(G2p−1,p) = 1. (4.19b)

The first follows because Vn,0 is spanned by a single link state consisting entirely of defects. The second follows

from putting G2p,p = βG2p−1,p−1 into (4.19a).

It is clear from Equations (4.11) and (4.19) that the determinant of Gn,p can only vanish when q is a root of

unity. This gives the following fundamental result:

Proposition 4.5. When q is not a root of unity, the determinant of the Gram matrices of the Vn,p are all non-zero,

hence the Vn,p are irreducible TLn-modules.

Corollary 4.6. When q is not a root of unity, TLn is a semisimple algebra and the Vn,p, 0 6 p 6 ⌊n/2⌋, form a

complete set of non-isomorphic irreducible modules.

Proof. The Vn,p are irreducible by Proposition 4.5, distinct by Corollary 3.7, and form a complete set (meaning

that there are no other non-isomorphic irreducibles) because the sum of the squares of their dimensions gives

that of TLn (Equation (2.11)). The result now follows from Proposition B.2.

We remark that the irreducibility of the Vn,p for all p is not sufficient to conclude that TLn is semisimple.

A counterexample is TL2 with β = 0 for which the left regular representation is reducible but indecomposable,

despite both V2,1 and V2,0 being irreducible (they both have dimension 1). The issue here is that, as we saw in

Section 3, these two standard modules are in fact isomorphic. The sum of the squares of the dimensions of the

distinct irreducibles is thus 1 < dimTL2 = 2, so we cannot deduce semisimplicity. For this, it is sufficient to

have both the irreducibility and the inequivalence of the Vn,p.

Let us return now to the recursion relation (4.19) for the det(Gn,p). Its solution gives us the main result of

this section.

Theorem 4.7. For all n, p and all β = q+q−1 ∈ C, the Gram matrix of Vn,p has determinant

det(Gn,p) =
p

∏
j=1

(

[n−2p+1+ j]q
[ j]q

)dn,p− j

. (4.20)

Proof. As in the proof of Proposition 4.4, we may first assume that q is not a root of unity so that the recursion

(4.19) is well-defined for all n and p (q general then follows from continuity). Checking Equation (4.19b) is easy,

and (4.19a) follows from considering the numerators and denominators separately and applying Equation (2.8)

several times.

Note that Equation (4.20) is manifestly invariant under q ↔ q−1 because q-numbers are unchanged under this

transformation. We remark that it is not entirely obvious from this formula that det(Gn,p) is actually finite for
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all q 6= 0, though this is clear from the definition (it is polynomial in β ). Here is the most useful consequence of

the determinant formula (4.20):

Corollary 4.8. If (n, p) is critical, then Rn,p = {0}, so Vn,p is irreducible.

Proof. Recall that (n, p) critical means that q2(n−2p+1) = 1. We let ℓ be the smallest positive integer for which

q2ℓ = 1, so that n−2p+1 = mℓ for some positive integer m, and

det(Gn,p) =
p

∏
j=1

(

[mℓ+ j]q
[ j]q

)dn,p− j

. (4.21)

The numerator only vanishes when j = m′ℓ for some positive integer m′ (this also requires ℓ > 1), but then the

denominator vanishes likewise. Now note that

[mℓ]q =
qℓ−q−ℓ

q−q−1

qmℓ−q−mℓ

qℓ−q−ℓ
= [ℓ]q [m]qℓ , (4.22)

so the zero of [mℓ]q is always first order (because qℓ = ±1, so [m]qℓ 6= 0 for m 6= 0). Thus, the zeroes in the

numerator of (4.21) precisely cancel those in the denominator, hence det(Gn,p) 6= 0.

This corollary implies the semisimplicity of TLn when β =±2 (q =±1) because all (n, p) are then critical. We

similarly obtain the semisimplicity of the TLn with n odd at β = 0 (q =±i). Indeed, ℓ= 2 divides n−2p+1 in

this case, so the (n, p) with n odd are all critical. The inequivalence of the Vn,p follows from Corollary 3.7 as n

odd means, in particular, that n 6= 2p for any p. Even though the (n, p) are not critical when β = 0 and n is even,

the tools developed up to now allow for the proof that V2p,p, which then coincides with R2p,p, is irreducible.

Proposition 4.9. When β = 0, the radical R2p,p is irreducible.

Proof. Since R2p,p = V2p,p when β = 0, we must show that R′
2p,p = {0} (Proposition 3.5). Let G′

2p,p denote

the Gram matrix of the renormalised form
〈
·, ·
〉′

defined in Equation (3.13). As noted before Proposition 4.5,

G2p,p = βG2p−1,p−1 and G′
2p,p = limβ→0 G2p,p/β = G2p−1,p−1

∣
∣
β=0

. For β = 0, the values of q are ±i and [m]q
is 0 when m is even and ±1 when it is odd. Therefore,

det
(
G′

2p,p

)
= det(G2p−1,p−1)

∣
∣
β=0

=
p−1

∏
j=1

(

[ j+2]q
[ j]q

)d2p−1,p−1− j
∣
∣
∣
∣
∣
q=±i

. (4.23)

Each factor of this product with j odd is a power of ±1. When j is even, we use [2m]q = [2]q [m]q2 to see that

the factor’s numerator and denominator are both polynomials in β with a simple root at β = 0. Their quotient

is therefore non-zero at β = 0. It follows that det
(
G′

2p,p

)
6= 0, whence the result.

5. EXPLORATIONS AT ROOTS OF UNITY

The results of Section 4 not only tell us when the radical Rn,p is trivial, but they also tell us its dimension

when it is not. Recall that Equation (2.8) amounts to a simple recursion relation for the dimensions of the

standard modules:

dimVn,p = dimVn−1,p +dimVn−1,p−1. (5.1)

The analogue for the Rn,p is given as follows. Let q be a root of unity and let ℓ be the minimal positive integer

satisfying q2ℓ = 1. For given (n, p) then, set

n−2p+1 = k (n, p)ℓ+ r (n, p) , (5.2)

where k (n, p) ∈ N and r (n, p) ∈ {1, . . . , ℓ−1, ℓ}. The criticality of (n, p) is therefore equivalent to r (n, p) = ℓ

when q is a root of unity.
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Proposition 5.1. The dimensions of the radicals Rn,p satisfy the recursion relation

dimRn,p =







0 if r (n, p) = ℓ,

dimRn−1,p +dimVn−1,p−1 if r (n, p) = ℓ−1,

dimRn−1,p +dimRn−1,p−1 otherwise,

(5.3)

with initial conditions dimRn,0 = 0 and dimR2p−1,p = 0.

Proof. The initial conditions are clear as Gn,0 =
(
1
)

for all n and V2p−1,p is not defined for all p. The recurrence

when r (n, p) = ℓ, which is when (n, p) is critical, also follows directly from Corollary 4.8. We may therefore

assume that r (n, p) 6= ℓ. Then, q2(n−2p+1) = q2r(n,p) 6= 1 by minimality of ℓ, so Corollary 4.2 applies. We can

therefore make a change of bases to bring Gn,p to the block diagonal form of Equation (4.9):

Gn,p =UT
n,p

(

Gn−1,p 0

0 αn,pGn−1,p−1

)

Un,p. (5.4)

We want the dimension of the kernel of Gn,p. But, as Un,p is invertible,

Gn,pv = 0 ⇐⇒
(

Gn−1,pw1

αn,pGn−1,p−1w2

)

= 0, where

(

w1

w2

)

=Un,pv. (5.5)

Thus when αn,p 6= 0, ker(Gn,p) = ker(Gn−1,p)⊕ ker(Gn−1,p−1) as vector spaces, whereas when αn,p = 0,

ker(Gn,p) = ker(Gn−1,p)⊕Vn−1,p−1 as vector spaces. The result now follows from Proposition 4.4.

Corollary 5.2. The dimensions of the irreducible quotients Ln,p = Vn,p/Rn,p satisfy the recursion relation

dimLn,p =







dimVn,p if r (n, p) = ℓ,

dimLn−1,p if r (n, p) = ℓ−1,

dimLn−1,p +dimLn−1,p−1 otherwise,

(5.6)

with initial conditions dimLn,0 = 1 and dimL2p−1,p = 0.

We can use Proposition 5.1 and Corollary 5.2 to build up tables of dimensions of radicals and irreducibles. It

proves convenient to arrange these tables so that n increases as we go down and p increases in a south-westerly

direction (staying constant to the south-east). The important quantity n− 2p+ 1 is therefore constant along

vertical lines and increasing from left to right. This corresponds to the standard arrangement of the Bratteli

diagram of the family of Temperley-Lieb algebras. To illustrate this, we present the first few rows of this

diagram in Figure 1. It is useful to mark the critical (n, p) — these form vertical lines on the diagram which

we will refer to as critical lines. The regions bounded by consecutive critical lines will be referred to as critical

strips.

When we replace the pairs in the Bratteli diagram by some quantity indexed by n and p, we shall also refer

to the result as a Bratteli diagram. In Figure 2, we show the first few rows of the Bratteli diagrams obtained

by replacing (n, p) by dimRn,p and dimLn,p when β = ±
√

2 (q = ±eiπ/4,±e3πi/4). The features of these

tables are similar for other roots of unity. Notice that the radicals vanish on the critical lines in accordance with

Corollary 4.8.

The feature which is of most interest to us here is that the dimensions of the non-critical Rn,p appear to

coincide with those of the Ln,p′ , where p′ is obtained from p by reflecting about the critical line immediately

to the right. This suggests that when the radical Rn,p does not vanish, it is in fact irreducible. Establishing

this irreducibility is somewhat difficult and will be the focus of Section 7. For now, we content ourselves with

demonstrating this observed coincidence of dimensions.

Proposition 5.3. Let q be a root of unity and (n, p) be non-critical. Then, dimRn,p is equal to dimLn,p+r(n,p)−ℓ

if p+ r (n, p)− ℓ> 0 and 0 otherwise.
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|
(1,0)

(2,1) | (2,0) |
(3,1) (3,0)

(4,2) | (4,1) | (4,0) |
(5,2) (5,1) (5,0)

(6,3) | (6,2) | (6,1) | (6,0) |
(7,3) (7,2) (7,1) (7,0)

(8,4) | (8,3) | (8,2) | (8,1) | (8,0)
...

...
...

...

FIGURE 1. An example of the arrangement of pairs called a Bratteli diagram. The critical

lines in this picture correspond to β = 0, hence ℓ= 2.

0 1

0 0 | 1 1 |
0 0 2 1

0 1 | 0 2 2 | 1

1 0 0 4 4 1

1 5 | 0 0 | 4 4 | 5 1 |
6 0 0 0 8 14 6 1

6 20 | 0 1 | 0 8 8 | 20 6 | 1

26 0 1 0 0 16 48 26 8 1

26 74 | 1 9 | 0 0 | 16 16 | 74 26 | 9 1 |
100 0 10 0 0 0 32 165 100 44 10 1

100 265 | 10 54 | 0 1 | 0 32 32 | 265 100 | 54 10 | 1
...

...
...

...
...

...

dimRn,p dimLn,p

FIGURE 2. The Bratteli diagrams for the dimensions of the radicals Rn,p and the irreducibles

Ln,p when β =±
√

2, hence ℓ= 4.

We remark that the indices (n, p) of R and (n, p+ r (n, p)−ℓ) of L form a symmetric pair, a concept introduced

in Section 7.

Proof. This is clear for n = 1 as then, ℓ > 2 and the index p+r(n, p)−ℓ= 2−ℓ is negative, so that dimRn,p = 0

as needed. So assume that the proposition is true for n−1 and all p. We have to consider four cases for the pairs

(n, p), corresponding to whether (n−1, p) and/or (n−1, p−1) lie on critical lines. The position of the pairs

(n−1, p), (n, p) and (n−1, p−1), relative to the critical lines, is pictured below in each case.

| ... ... ... |
(n−1,p) (n−1,p−1)

| ... (n,p) ... |
(n+1,p+1) (n+1,p)

| ... ... ... |

... ... | ...
(n−1,p) (n−1,p−1)

... (n,p) | ...
(n+1,p+1) (n+1,p)

... ... | ...

Case (1) Case (2)

... | ... ...
(n−1,p) (n−1,p−1)

... | (n,p) ...
(n+1,p+1) (n+1,p)

... | ... ...

... | ... | ...
(n−1,p) (n−1,p−1)

... | (n,p) | ...
(n+1,p+1) (n+1,p)

... | ... | ...

Case (3) Case (4)

(1) Both (n−1, p) and (n−1, p−1) are non-critical, so r (n, p) /∈ {1, ℓ−1, ℓ}. Then,

dimRn−1,p = dimLn−1,p+r(n−1,p)−ℓ = dimLn−1,p−1+r(n,p)−ℓ (5.7a)



24 D RIDOUT AND Y SAINT-AUBIN

and dimRn−1,p−1 = dimLn−1,p−1+r(n−1,p−1)−ℓ = dimLn−1,p+r(n,p)−ℓ. (5.7b)

Proposition 5.1 now gives dimRn,p as the sum of the left-hand sides. To compute the sum of the

right-hand sides, we note that r (n, p+ r (n, p)− ℓ) = −r (n, p) (mod ℓ), hence Corollary 5.2 gives

dimLn,p+r(n,p)−ℓ for this sum.

(2) Only (n−1, p−1) is critical. Then, r (n, p) = ℓ−1 and (5.7a) is valid, but instead of (5.7b), we have

dimVn−1,p−1 = dimLn−1,p−1 = dimLn−1,p+r(n,p)−ℓ. (5.7c)

Now apply Proposition 5.1 and Corollary 5.2 to the sum of (5.7a) and (5.7c).

(3) Only (n−1, p) is critical. Now, r (n, p) = 1, (5.7b) is valid, and we use

dimRn−1,p = 0. (5.7d)

Adding (5.7b) and (5.7d) then gives the result.

(4) Both (n−1, p) and (n−1, p−1) are critical. Thus, r (n, p) = 1 = ℓ−1, that is, ℓ = 2 (and so β = 0).

The result now follows from adding (5.7c) and (5.7d).

We remark that there is one (non-trivial) case in which we already know that the radical is irreducible. This

is the content of Proposition 4.9 which asserts that R2p,p is irreducible when β = 0. Of course, this does not tell

us that R2p,p is isomorphic to L2p,p−1 (since ℓ= 2 when β = 0) as Proposition 5.3 would have us believe.

6. INDUCED MODULES

Recall that in Proposition 4.1, we studied the result of restricting the action on a TLn-module to the action

of the subalgebra TLn−1 spanned by the n-diagrams in which the two n-th points are joined. Restriction has

a close relative which constructs instead a TLn+1-module from a given TLn-module (subject to the analogous

inclusion of TLn in TLn+1). This is, of course, the induced module construction. We therefore consider the

induced modules

Vn,p↑ = TLn+1 ⊗TLn Vn,p. (6.1)

These are TLn+1-modules in which the action is given by left-multiplication: a(b⊗ z) = (ab)⊗ z for all a,b ∈
TLn+1 and z ∈ Vn,p. The subtlety of this definition lies in the subscript on the “⊗” which informs us that

the tensor product is “permeable” to elements of TLn. More precisely, this means that ab⊗ z = a⊗ bz for all

a ∈ TLn+1, b ∈ TLn and z ∈ Vn,p (the elements of TLn are scalars as far as the tensor product is concerned).

Indeed, Vn,p↑ may alternatively be characterised as the quotient of the C-tensor product TLn+1 ⊗C Vn,p (with

the TLn+1-action a(a′⊗C z) = (aa′)⊗C z as before) by the submodule generated by the elements of the form

(ab⊗C z−a⊗C bz). This characterisation will shortly prove useful.

By Proposition 2.3, any monomial in the TLn+1-generators ui can be written in reverse Jones’ normal form.

In this form, the generator un appears at most once to the far left and may only be preceded by a string of

the form urur+1 · · ·un−1. We conclude that TLn+1 is spanned by monomials of the forms ur · · ·un−1unU and U ′,

where U and U ′ are monomials in the TLn-subalgebra. Thus, if D denotes a basis of Vn,p, then Vn,p↑ is spanned

by the set

{ 1⊗d , un ⊗d , un−1un ⊗d , . . . , u1 · · ·un−1un ⊗d : d ∈ D } . (6.2)

Note that this spanning set is not usually a basis of Vn,p↑ . For example, if d can be written as un−1d′ for some

d′ ∈ Vn,p, then

un−1un ⊗d = un−1un ⊗un−1d′ = un−1unun−1 ⊗d′ = un−1 ⊗d′ = 1⊗un−1d′ = 1⊗d. (6.3)

To obtain a basis, we generalise this computation. As for simple links in an element of TLn, we will say that a

link in a link state d is simple if it joins neighbouring positions i and i+1. We then say that d has a simple link
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at i. Obviously, if d = uid
′, where d and d′ are link states, then d will have a simple link at i. The converse is

the following:

Lemma 6.1. If d is an (n, p)-link state with n > 3 which has a simple link at i, then d can always be expressed

as uid
′ with d′ another (n, p)-link state. When n = 2, such an expression is valid if and only if β 6= 0.

Proof. We construct d′ explicitly to be the (n, p)-link state which is identical to d except that the simple link

joining i and i+1 is swapped with whatever appears at i−1 (or i+1). Schematically,

d = i

i−1

i+1
⇒ d′ = i

i+1

i−1

. (6.4)

It is clear that d′ satisfies uid
′ = d and likewise clear that this construction requires n > 3. The only remaining

possibility then concerns the unique (2,1)-link state d = . This satisfies d = β−1u1d when β 6= 0, but when

β = 0, u1 acts as the zero operator on V2,1.

This lemma allows us to reduce the number of elements in the set (6.2) while preserving its spanning property.

But before describing this reduction, we introduce some more vocabulary. The (n, p)-link state d will be called

r-admissible, 1 6 r 6 n, if d has no simple link at r or below, meaning at any i with i > r. It follows that

all (n, p)-link states are n-admissible. Moreover, an element urur+1 · · ·un ⊗ d ∈ Vn,p↑ of (6.2) will be called

admissible if d is r-admissible.

Lemma 6.2. Let n > 3 and 0 6 p 6 ⌊n/2⌋. Let u ∈ TLn+1 be a word in the generators and d be an (n, p)-link

state. Then, there exists an integer s, 1 6 s 6 n+1, and an element e ∈ Vn,p that is either 0 or an s-admissible

(n, p)-link state, such that u⊗d = usus+1 · · ·un ⊗ e in Vn,p↑ (if s = n+1, then u⊗d = 1⊗ e).

Proof. We suppose that the word u is written in reverse Jones’ normal form. If u does not contain un, then

u⊗ d = 1⊗ ud and the form suggested is obtained by choosing s = n+ 1 and e = ud. Suppose now that u is

urur+1 · · ·unu′ where u′ is a word of TLn and therefore u⊗d = urur+1 · · ·un ⊗u′d. If the element u′d is zero in

Vn,p, then again urur+1 · · ·un ⊗ e is of the desired form with e = 0. If u′d is r-admissible, take e = u′d.

The only remaining case is when u′d is not r-admissible. This means that there is a simple link at r or

below. Let t be the position of the lowest simple link. Clearly r 6 t 6 n−1 and thus ut ∈ TLn. Because n > 3,

Lemma 6.1 ensures the existence of an (n, p)-link state f such that ut f = u′d. Then,

urur+1 · · ·un ⊗u′d = ur · · ·un ⊗ut f

= ur · · ·ut−1utut+1utut+2 · · ·un ⊗ f

= ur · · ·ut−1utut+2 · · ·un ⊗ f

= ut+2 · · ·un ⊗ur · · ·ut f

= ut+2 · · ·un ⊗ur · · ·ut−1u′d. (6.5)
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(The two extreme values of t lead to ur+2 · · ·un ⊗ u′d for t = r and 1 ⊗ ur · · ·un−2u′d for t = n − 1.) The

configurations of u′d and of ur · · ·ut−1u′d are shown in the following diagrams:

If u′d =

r

t
, then ur · · ·ut−1u′d =

r

t
=

r

t+2

.

Note that in the lower box of u′d, marked by three dots, all positions are either defects or linked with positions

in the two top boxes, since the lowest simple link is at t. (The two top boxes may have defects, links within

and between them and, as just said, links with the bottom box.) The action of ur · · ·ut−1 is seen to exchange

the simple link at t and the middle box. Since, after this exchange, the first position in the lower box is t + 2,

then the resulting link state is (t +2)-admissible. Clearly this is of the desired form if we set s = t +2 (and then

s 6 n+1) and e is taken to be ur · · ·ut−1u′d.

Let Sn,p be the set consisting of all elements 1⊗d for any (n, p)-link state d and of elements urur+1 · · ·un⊗d

for all 1 6 r 6 n and all r-admissible (n, p)-link states d. Due to the previous lemma, Sn,p is a spanning set of

Vn,p↑ for n > 3. (One can check that S2,p spans V2,p↑ except when p = 1 and β = 0.) As an example,

S3,1 =
{

1⊗ , 1⊗ , u3 ⊗ , u3 ⊗ , u2u3 ⊗
}

(6.6)

and |S3,1|= 5. Our aim is to show that Sn,p is actually a basis of Vn,p↑ . For this, we first introduce a linear map

d 7→ d between the vector spaces underlying Vn,p and Vn+2,p+1. This is defined on the basis of (n, p)-link states

by adding two points to each basis element and a simple link from n+1 to n+2:

d =
d

n+1

. (6.7)

We now define

Φ : Vn,p↑ → Vn+2,p+1↓ , Φ(u⊗d) = ud (u ∈ TLn+1, d ∈ Vn,p). (6.8)

Our first concern is to check whether Φ is well-defined, that is, whether the images Φ(u⊗ d) and Φ(v⊗ e)

are equal when u⊗ d = v⊗ e for u,v ∈ TLn+1 and d,e ∈ Vn,p. From the characterisation of induced modules

as quotients of the C-tensor product, it follows that Φ will be well-defined if Φ(uu′⊗ d) = Φ(u⊗ u′d) for all

u ∈ TLn+1, u′ ∈ TLn and d ∈ Vn,p. But, this follows immediately from the associativity of the TLn+1-action on

Vn+2,p+1↓ :

Φ(uu′⊗d) = (uu′)d = u(u′d) = u(u′d) = Φ(u⊗u′d). (6.9)

We remark that the u′ in (u′d) should be interpreted as the image of u′ ∈ TLn in TLn+2 under the inclusion

which adds two defects at the bottom.

The associativity of the TLn+1-action also makes Φ a homomorphism of TLn+1-modules (here is where the

restriction is necessary):

u′Φ(u⊗d) = u′(ud) = (u′u)d = Φ(u′u⊗d) for all u,u′ ∈ TLn+1, d ∈ Vn,p. (6.10)

To prove that it is actually an isomorphism does not require much more effort.

Proposition 6.3.
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(i) For all n > 1, 0 6 p 6 ⌊n/2⌋ and β ∈ C, the set Sn,p is a basis of Vn,p↑ , except for V2,1↑ at β = 0

which has instead
{

1⊗ ,u2 ⊗ ,u1u2 ⊗
}

as a basis.

(ii) When (n, p) 6= (2,1) or β 6= 0, the TLn+1-modules Vn,p↑ and Vn+2,p+1↓ are isomorphic.

Proof. The basis for V2,1↑ is obtained by direct computation. For the general case, we show that the homomor-

phism Φ is both surjective and injective. The two statements (i) and (ii) are clear consequences.

Since the (n+ 2, p+ 1)-link states define a basis of Vn+2,p+1↓ , the surjectivity of Φ will follow if every

(n+2, p+1)-link state has a preimage in Sn,p. Suppose that e is such a link state and note that e has at least

one simple link. To construct u⊗d ∈ Sn,p such that Φ(u⊗d) = e, let r be the position of the lowest simple link

in e. Denote by d the (n, p)-link state obtained from e by deleting this lowest simple link. Since there are no

simple links of e below r, the link d is r-admissible and therefore urur+1 · · ·un ⊗d = u⊗d ∈ Sn,p. (Note that if

r = n+1, then urur+1 · · ·un is understood to be 1.) It is now easy to verify that Φ(urur+1 · · ·un ⊗d) = e:

If e =
r

r+2

n+2

, then d = r

n

and Φ(urur+1 · · ·un ⊗d) = urur+1 · · ·und =
r

n

n+2

=
r

r+2

n+2

= e. (6.11)

Therefore, every (n+2, p+1)-link state has a preimage in Sn,p and Φ is surjective.

The map Φ sends every element of Sn,p to an (n+2, p+1)-link state. Since the latter are linearly indepen-

dent, the injectivity of Φ will be established if distinct elements of Sn,p have distinct images. Suppose then

that w1 = urur+1 · · ·un ⊗d and w2 = usus+1 · · ·un ⊗d′ are elements of Sn,p with the same image. The link state

d, being r-admissible, can be represented as above by two blocks, that marked by two dots being devoid of

simple links. The image Φ(w1) is then represented by the above diagram for e whose lowest simple link is at

r. Similarly, the lowest simple link of Φ(w2) must be at s. If Φ(w1) = Φ(w2), then r and s must be equal. But

then, the two link states Φ(w1) and Φ(w2) will coincide if and only if the upper boxes (marked by one dot) of d

and d′ coincide and similarly for their lower boxes (marked by two dots). This forces the original d and e to be

equal and thus w1 = w2.

For completeness, we mention that as V2,1
∼= V2,0 when β = 0, it follows that V2,1↑ ∼= V3,1 ⊕V3,0. However,

Proposition 4.1 gives V4,2↓ ∼= V3,1.

Because restricting a module does not change its dimension, the dimension of Vn,p↑ is that of Vn+2,p+1. We

therefore obtain:

Corollary 6.4. The dimension of the induced module Vn,p↑ is

dimVn,p↑ =







3 if (n, p) = (2,1) and β = 0,

dn+2,p+1 otherwise.
(6.12)

Moreover, the structure of induced modules now follows, using the isomorphism Φ, from Proposition 4.1 and

Corollary 4.2 which describe the structure of restricted ones.
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Corollary 6.5. When (n, p) 6= (2,1) or β 6= 0, the sequence

0 −→ Vn+1,p+1 −→ Vn,p↑ −→ Vn+1,p −→ 0 (6.13)

is exact.

Corollary 6.6. When (n, p) is non-critical, the exact sequence (6.13) splits, so we have (for (n, p) 6= (2,1) or

β 6= 0)

Vn,p↑ ∼= Vn+1,p+1 ⊕Vn+1,p (as TLn+1-modules). (6.14)

Whether or not the exact sequence (6.13) splits, a submodule isomorphic to Vn+1,p+1 is easily identified in

Vn,p↑ . In Vn+2,p+1↓ , such a submodule is spanned by those (n+2, p+1)-link states which have a defect at

position n+2 (see the proof of Proposition 4.1). Their images under Φ−1 have the form urur+1 · · ·un ⊗d, with

r 6 n and d an (n, p)-link state with a defect at n. Then the injection Vn+1,p+1 → Vn,p↑ , call it α , of the exact

sequence (6.13) sends (n+1, p+1)-link states to elements of Sn,p as follows: If d is an (n+1, p+1)-link state,

then α(d) = urur+1 · · ·un ⊗ d′, where the lowest simple link in d is at r and d′ is the (n, p)-link state obtained

from d by removing this simple link and adding a defect at position n.

The exact sequences in Equations (4.2) and (6.13) can be read off the Bratteli diagram quite easily. For

restriction, the TLn−1-modules Vn−1,p and Vn−1,p−1 appearing in the exact sequence (4.2) for Vn,p↓ correspond

to the entries immediately above, and to the left and right, respectively, of the entry corresponding to Vn,p. For

induction, we must instead look immediately below, and again to the left and right, to find the entries indicating

the constituents of the exact sequence (6.13). We have learned that these exact sequences split when the module

being restricted or induced is non-critical. The question of whether the sequences split when the module is

critical will not be resolved until Section 8.

We conclude with an example showing that the induced module Vn,p↑ may be different to the direct sum

Vn+1,p+1⊕Vn+1,p and even to the quotient Mn+1,p/Mn+1,p+2. These three TLn+1-modules share the same exact

sequence (6.13), the latter because Equations (3.2) and (3.3) give

Vn+1,p+1 =
Mn+1,p+1

Mn+1,p+2
⊆ Mn+1,p

Mn+1,p+2
and

Mn+1,p/Mn+1,p+2

Mn+1,p+1/Mn+1,p+2

∼= Mn+1,p

Mn+1,p+1
= Vn+1,p. (6.15)

For our example, we take q = eiπ/3, so that β = 1 and (n, p) = (2,0) is critical. Then, one can check that

the central element F3 ∈ TL3, introduced in Appendix A, is represented on V2,0↑ and M3 =M3,0/M3,2, with

respective (ordered) bases
{

u2 ⊗ ,u1u2 ⊗ ,1⊗
}

and
{

, ,
}

, by






−1 0 3

0 −1 −3

0 0 −1




 and






−1 0 0

0 −1 0

0 0 −1




 . (6.16)

Thus, this central element can be diagonalised on M3 (and on V3,1 ⊕V3,0 by Proposition 3.8), but not on V2,0↑ .

7. THE IRREDUCIBILITY OF THE RADICALS

The present section carries on the exploration, launched in Section 5, of the standard modules at roots of

unity. The goal here is to prove that the radicals Rn,p of the standard modules Vn,p are either trivial (meaning

Rn,p = {0}) or irreducible. One can actually be more precise: Let q be a root of unity with ℓ the smallest positive

integer such that q2ℓ = 1. We shall say that two pairs (n, p′) and (n, p) with 0 < |p′− p| < ℓ form a symmetric

pair if (n, p′) and (n, p) are non-critical and are located symmetrically on either side of the (single) critical line

between them. The adjective symmetric will also be used when two objects, for example Vn,p′ and Vn,p, are

labelled by a symmetric pair (n, p′) and (n, p). The relevance of this concept is already apparent from previous

sections. In particular, Proposition 5.3 equates the dimensions of the symmetric pair (with p′ > p) Rn,p′ and

Ln,p. In this section, we shall prove that the modules Rn,p′ and Ln,p of such a symmetric pair are isomorphic.
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We remark that, as noted at the end of Section 4, every (n, p) is critical when β = ±2 or when β = 0 with n

odd. It follows that there are no symmetric pairs in these cases. However, for all other β and n, such pairs exist

whenever n > ℓ.

A crucial role will be played in this section by the central element Fn of TLn whose detailed properties

may be found in Appendix A. The first part of this section shows that, even though Fn is central, its action is

non-diagonalisable on certain indecomposable modules. The second part then uses this fact to construct an iso-

morphism between the symmetric pair Rn,p′ and Ln,p (with p′ > p). The inspiration here comes from the theory

of staggered modules in logarithmic conformal field theory, see [21] for example. Though the irreducibility of

the radical is well-known to experts, the only proof that we are aware of [17] relies upon some rather abstract

category-theoretic analysis.6 The last part describes completely the space of homomorphisms between standard

modules.

Proposition A.2 states that Fn acts as a multiple of the identity on the standard modules Vn,p. The next lemma

provides a simple example where this action is non-diagonal. It will turn out to be key for what follows.

Lemma 7.1. Let q be a root of unity other than ±1 and let (n, p) be critical for this q (so n 6= 2p). If zp denotes

the (n, p)-link state which has p simple links at 1, 3, . . . , 2p−1, then when Fn+1(1⊗zp) is expanded in the basis

Sn,p of Vn,p↑ , the coefficient of u1u2 · · ·un ⊗ zp = u2p+1u2p+2 . . .un ⊗ zp does not vanish.

Proof. We first study the case p = 0. Since Fn+1 ∈ TLn+1, it can be written as a sum of words in reverse Jones’

normal form, as in Equation (2.7). For such a word to act non-trivially on 1⊗ z0, the rightmost u j must be un.

So only words with a single “flight” uiui+1 · · ·un will contribute, and among these, only u1u2 · · ·un will lead to

the term u1u2 · · ·un ⊗ z0 that we are seeking. We therefore need to compute the coefficient of u1u2 · · ·un in Fn+1.

We first expand the two crossings of the top row of the diagram (A.2) defining Fn+1. The points marked by

dots in the following diagrams need to be linked if they are to lead to the word u1u2 · · ·un.

= − +q−1 − +q . (7.1)

The last term will not contribute to u1u2 · · ·un, so we obtain

◦
= (−2+βq−1) , (7.2)

where the sign “
◦
=” indicates that the equality is restricted to the coefficient of u1u2 · · ·un. We now expand the

second row. Only one term of the crossing on the right may contribute, as the other term can be seen to close

a link on the right vertical line. But then only one term of the crossing on the left contributes to u1u2 · · ·un. A

similar argument can be repeated for all rows but the last one and the expansion of all crossings but those of the

bottom row gives

◦
= (−2+βq−1)(−1)n−1 . (7.3)

6Our proof is based on the existence of a non-zero homomorphism θ : Vn,p → Vn,p′ when the two modules form a symmetric pair with

p′ > p. Martin [2] has proved that ker(θ) and coker(θ) are irreducible. This follows from, but is weaker than, Theorem 7.2 below.
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Note that the top points on the left are now linked; those on the bottom right, marked by dots, still remain to be

linked. Expanding the last row, we finally get that the coefficient of u1u2 · · ·un in Fn+1 is

(−1)n−1(−2+βq−1)(−2+βq) = (−1)n(β 2 −4). (7.4)

Therefore, the coefficient of u1u2 · · ·un ⊗ z0 in Fn+1(1⊗ z0) vanishes only when β =±2 (q =±1).

We shall now assume that p> 1 and consider elements in Vn,p↑ of the form v= 1⊗v′, where v′ is constrained

to be an (n, p)-link state with a simple link at 1. In other words,

v = 1⊗ , (7.5)

where the box stands for any (n, p−1)-link state. We shall also make the hypothesis that β 6= 0 which allows

us to use the identity

v = β−1u1v (7.6)

(the case β = 0 will be deferred until the end of the proof). We now expand the two crossings on the top right of

Fn+1, extracting these crossings from the diagram representing Fn+1 and using dots to mark the points at which

the subdiagrams we have extracted are to be connected:

Fn+1v = ×
(

q − − +q−1

)

v

= ×
(

qβ−1 − − +q−1β−1

)

v

(where we have used the identity (7.6) on the first and last terms)

= ×
(

(
(q+q−1)β−1 −1

)
−

)

v =− v. (7.7)

We now carry out the expansion of the two crossings on the left:

Fn+1v = ×
(

−q−1 + + −q

)

v. (7.8)

The first, third and last terms cancel and, by (7.6), the second becomes

Fn+1v = ×
(

β−1 v

)

= β−1

Fn−1

u1v =

Fn−1

v. (7.9)
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Suppose now that the link state v′ in v = 1⊗ v′ contains several consecutive simple links at the top. Then the

above computation can be repeated for each of them with the result that

Fn+1(1⊗ zp) =

Fn−2p+1

2p
(1⊗ zp), in Vn,p↑ . (7.10)

The expansion of the Fn−2p+1 indicated at the bottom of this diagram will contain a term u2p+1u2p+2 · · ·un

only if n > 2p. In that case, we may use the previous p = 0 computation to conclude that the coefficient of

u1u2 · · ·un ⊗ zp in Fn+1(1⊗ zp) is (−1)n(β 2 − 4) as before. Again this coefficient does not vanish under the

hypotheses of the lemma.

The case β = 0, corresponding to q = ±i, remains. In the link basis of the modules Vn,p, the elements of

the matrices representing the generators ui are polynomials in β or, equivalently, in q and q−1. The matrices

representing the ui in the induced modules Vn,p↑ inherit this property if the basis Sn,p is used. Indeed, the action

of ui on an arbitrary member urur+1 · · ·un ⊗d of Sn,p is easily computed:

ui (ur · · ·un ⊗d) =







ur · · ·un ⊗uid, i < r−1

ur−1 · · ·un ⊗d, i = r−1

βur · · ·un ⊗d, i = r

ui · · ·un ⊗ur · · ·ui−2d, r+1 6 i 6 n.

(7.11)

The right-hand sides are either elements of Sn,p or are equivalent to scalar multiples of such elements (using

Lemma 6.2). The central element Fn, defined diagrammatically by (A.1) and (A.2), is a linear combination

of words in the generators with weights that are also polynomials in q and q−1. Therefore, the coefficients of

Fn+1(1⊗ zp) in the basis Sn,p of Vn,p↑ are polynomials in q and q−1. Their actual values for a given β can be

obtained by evaluation of these polynomials at the corresponding value of q. The coefficient of u1u2 · · ·un ⊗ zp

in Fn+1(1⊗ zp) when β = 0 is therefore (−1)n(β 2 −4) = 4(−1)n+1 and is non-zero.

Equation (6.16) provides a simple example of this off-diagonal action — there, we considered F3 acting on the

indecomposable module V2,0↑ at q = eiπ/3.

Proposition 3.6 has shown that the only homomorphism Vn,p′ →Vn,p with p′ > p and 〈·, ·〉n,p and 〈·, ·〉n,p′ 6= 0

is the zero homomorphism. The above properties of the central element Fn allow us to construct a non-zero

homomorphism Vn,p → Vn,p′ , p′ > p, when the modules form a symmetric pair, and thereby reveal the structure

of the radical Rn,p.

Theorem 7.2. The radical Rn,p is zero or irreducible and, if the pair Vn,p and Vn,p′ , with p′ > p, is symmetric,

then Rn,p′
∼= Ln,p.

Proof. If q is not a root of unity, these statements have already been proven. Indeed, the Vn,p are then irreducible

(Proposition 4.5) and their radicals are trivial. The same is true when q = ±1 and when q = ±i with n odd

(Corollary 4.8). The theorem is therefore non-trivial only if q is a root of unity with either ℓ> 3 or ℓ= 2 and n

even. We will therefore assume these conditions in what follows.

We first construct a non-zero homomorphism between the two standard modules Vn+1,p and Vn+1,p+1, as-

suming that (n, p) is critical. The symmetric pair therefore consists of (n+1, p) and (n+1, p+1) and we note

that fn+1,p and fn+1,p+1 are equal. Let ϕ : Vn,p↑ → Vn,p↑ be the map obtained from left-multiplication by

Fn+1 − fn+1,p1 ∈ TLn+1. Because this element is central, ϕ is a homomorphism. Moreover, it is non-zero by

Lemma 7.1.

Consider now the exact sequence (6.13)

0 −→ Vn+1,p+1
α−→ Vn,p↑

γ−→ Vn+1,p −→ 0 (7.12)
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(the homomorphism α was constructed explicitly after Corollary 6.6). Since ϕ acts as zero on Vn+1,p+1

(Lemma A.2), we have im(α)⊆ ker(ϕ). Similarly, γ ◦ϕ = 0 and therefore im(ϕ)⊆ ker(γ) = im(α). Now, for

any w∈Vn+1,p, we can find v∈Vn,p↑ such that γ(v) =w. Note that any other v′ ∈Vn,p↑ with γ(v′) =w satisfies

v− v′ ∈ ker(γ) = im(α)⊆ ker(ϕ). It follows that the map w 7→ ϕ(v) is independent of the choice of preimage

v. This map, in turn, is a TLn+1-homomorphism from Vn+1,p into im(α) ⊂ Vn,p↑ since given any u ∈ TLn+1,

we may choose uv as a preimage of uw and uw is mapped to ϕ(uv) = uϕ(v). Finally, let i : Vn+1,p → Vn+1,p+1

be defined by w 7→
(
α−1 ◦ϕ

)
(v). This is the non-zero TLn+1-homomorphism that we set out to construct. The

conclusion is therefore that dimHomTLn+1
(Vn+1,p,Vn+1,p+1)> 1, when (n, p) is critical.

Frobenius reciprocity (Proposition B.5) allows us to extend this result to arbitrary symmetric pairs. Assume

again that (n, p) is critical. Then, the pairs Vn+ j,p and Vn+ j,p+ j are symmetric for 1 6 j < ℓ, where ℓ is the

smallest positive integer such that q2ℓ = 1, and any symmetric pair is of this form for some j and critical (n, p).

Suppose now that j ∈ {2, · · · , ℓ−1}. We will justify each step of the following computation:

HomTLn+ j
(Vn+ j,p,Vn+ j,p+ j) = HomTLn+ j

(Vn+ j,p ⊕Vn+ j,p+1,Vn+ j,p+ j)

= HomTLn+ j
(Vn+ j−1,p↑ ,Vn+ j,p+ j)

= HomTLn+ j−1
(Vn+ j−1,p,Vn+ j,p+ j↓ )

= HomTLn+ j−1
(Vn+ j−1,p,Vn+ j−1,p+ j ⊕Vn+ j−1,p+ j−1)

= HomTLn+ j−1
(Vn+ j−1,p,Vn+ j−1,p+ j−1). (7.13)

Recall that fn,p takes distinct values between any two adjacent critical lines and that fn,p 6= fn,p′ implies that

Hom(Vn,p,Vn,p′) = {0}. The first and last equalities in (7.13) follow from this observation and the usual prop-

erties of Hom. Since (n, p) is critical and 2 6 j < ℓ, neither (n+ j − 1, p) nor (n+ j, p+ j) can be critical,

so Corollary 6.6 explains the second equality and Corollary 4.2 the fourth. The third equality is Frobenius

reciprocity. We therefore conclude that

HomTLn+ j
(Vn+ j,p,Vn+ j,p+ j) = HomTLn+1

(Vn+1,p,Vn+1,p+1) 6= {0} . (7.14)

In other words, there exists a non-zero homomorphism Vn,p → Vn,p′ between an arbitrary symmetric pair with

p′ > p.

We are now ready to prove the statement of the theorem. Let f ∈ Hom(Vn,p,Vn,p′) be a non-zero homo-

morphism between a symmetric pair with p′ > p. Then, ker( f ) is a proper subset of Vn,p and must therefore

be a subset of Rn,p by maximality of the radical. If f were surjective, then Vn,p/ker( f ) ∼= Vn,p′ which would

contradict Proposition 3.6. (Here, we must temporarily assume that β 6= 0 or p′ 6= n/2 — see the end of the

present paragraph.) Thus, im( f ) is a subset of Rn,p′ , again by maximality. If either of ker( f ) or im( f ) is a

proper subset of the corresponding radical, then we would have

dimker( f )< dimRn,p or dimim( f )< dimRn,p′ (7.15)

which gives

dimVn,p = dimker( f )+dimim( f )< dimRn,p +dimRn,p′ . (7.16)

But then, the dimension of the irreducible quotient Ln,p = Vn,p/Rn,p would satisfy

dimLn,p = dimVn,p −dimRn,p < dimRn,p′ , (7.17)

contradicting Proposition 5.3. This proves that ker( f )=Rn,p and im( f )=Rn,p′ . The first isomorphism theorem

now says that Ln,p = Vn,p/ker( f ) is isomorphic to im( f ) = Rn,p′ if the pair (n, p) and (n, p′), p′ > p, is

symmetric. The case β = 0 and 2p′ = n was set aside in this argument, but is in fact easier because in this case

Corollary 4.9 has already established that R2p′,p′ = V2p′,p′ is irreducible. Since f is non-zero, im( f ) = R2p′,p′

(and dimim( f ) = dimRn,p′). The rest of the proof is identical.
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This argument proves the irreducibility of every Rn,p′ for which the image (n, p) of (n, p′) by a reflection

with respect to the critical line immediately to its right is well-defined (meaning p > 0). This test fails for some

(n, p′) on the right of the second-rightmost critical line. For example, Figure 2, drawn for ℓ = 4, shows that

(4,0) and (8,2) have no reflection with respect to the critical line on their right. For all pairs (n, p′) without

such reflection, Proposition 5.3 shows that the radicals attached to them are {0}.

Since the only proper submodule of Vn,p is the radical Rn,p (and when β = 0, the exceptional case V2p,p is

irreducible), the only quotients obtained from Vn,p are the modules {0}, Vn,p/Rn,p
∼= Ln,p and Vn,p itself. Of

course some of these may coincide. Therefore:

Corollary 7.3. Every quotient of a standard module is indecomposable.

The previous theorem also reveals the structure of the standard modules in terms of its composition factors.

Corollary 7.4. With exception of the (irreducible) V2p,p when β = 0, the standard module Vn,p is reducible (but

indecomposable) if and only if (n, p) forms a symmetric pair with (n, p′), where p > p′, and then the sequence

0 −→ Ln,p′ −→ Vn,p −→ Ln,p −→ 0 (7.18)

is exact and non-split. The reducible standard module Vn,p therefore has two composition factors, Ln,p′ and

Ln,p, and its (unique) composition series is 0 ⊂ Ln,p′ ⊂ Vn,p.

Proof. The standard module Vn,p is reducible if and only if it has a non-trivial submodule. This submodule is

then its radical Rn,p which, by Theorem 7.2, is isomorphic to Ln,p′ , the pair (n, p) and (n, p′), with p > p′, being

symmetric. The indecomposability of Vn,p was proved in Proposition 3.3, so the short exact sequence (7.18)

cannot split. The rest of the statement follows from the definition of composition series (see Appendix B).

We remark that the sequence (7.18) is still exact in the exceptional case β = 0 and n = 2p because we have

defined L2p,p to be 0 in this case (see the discussion after Proposition 3.3).

It is natural to decompose the set of allowed p (0 6 p 6 ⌊n/2⌋) into orbits under reflection about a critical

line.7 Let (n, p1) lie to the left of the first critical line of the Bratteli diagram and let p1 > p2 > · · · > pm > 0

be the indices obtained from p1 by reflecting across the critical lines (so there is precisely one pi between

each pair of consecutive critical lines). The set {(n, pi) : 1 6 i 6 m} is called the orbit of (n, p1) under these

reflections and every non-critical (n, p) belongs to a unique orbit. (One may complete this definition by adding

that a critical (n, p) is alone in its orbit.) The notation k(n, p) and r(n, p) introduced in (5.2) allows for recursive

expressions for the pi of a given non-critical orbit. Since, on line n of the Bratteli diagram, the two pi and pi+1

are separated by a single critical line and lie symmetrically on each of its side, their labels are related by

k(n, pi+1) = k(n, pi)+1 and r(n, pi+1) = ℓ− r(n, pi). (7.19)

Since n−2p+1 = k(n, p)ℓ+ r(n, p), one finds that

pi+1 = pi + r(n, pi)− ℓ and pi−1 = pi + r(n, pi). (7.20)

Appendix A has shown that the central element Fn takes distinct eigenvalues on (distinct) standard modules

whose labels fall between two consecutive critical lines. This observation leads to another definition of non-

critical orbits: Two labels p, p′ belong to the same (non-critical) orbit if and only if fn,p = fn,p′ . With the

relations above, the equivalence between the two definitions is easily established using q2ℓ = 1:

fn,pi−1
= qn−2pi−1+1 +q−(n−2pi−1+1) = qk(n,pi−1)ℓ+r(n,pi−1)+q−k(n,pi−1)ℓ−r(n,pi−1)

= q(k(n,pi)−1)ℓ+ℓ−r(n,pi)+q−(k(n,pi)−1)ℓ−ℓ+r(n,pi) = qk(n,pi)ℓ−r(n,pi)+q−k(n,pi)ℓ+r(n,pi)

= q2k(n,pi)ℓq−(k(n,pi)ℓ+r(n,pi))+q−2k(n,pi)ℓqk(n,pi)ℓ+r(n,pi)

7These orbits were introduced in [12] and play a central role in the construction of the blocks of TLn.
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= fn,pi
. (7.21)

Frobenius reciprocity was a key ingredient in the proof of Theorem 7.2. It allowed us to deduce the existence

of non-trivial homomorphisms between certain standard modules Vn,p from the explicit construction of such a

homomorphism in the simplest case. This underlines also the usefulness of a central element, in the present case

Fn, that acts non-diagonalisably. A natural question which remains is whether these non-trivial homomorphisms

are the only ones. We conclude the section by settling this in the affirmative.

Theorem 7.5. The dimension dimHom(Vn,p,Vn,p′) is 1 if p = p′ or if the two standard modules form a sym-

metric pair with p′ > p. Moreover, there is a single exceptional case: dimHom(V2,1,V2,0) = 1 when β = 0.

Otherwise, dimHom(Vn,p,Vn,p′) = 0.

Proof. We first omit, for β = 0 and n even, the study of Hom(V2p,p,V2p,p′) and Hom(V2p,p′ ,V2p,p). This

omission makes available all results from Section 3 that call for the bilinear form
〈
·, ·
〉

to be non-zero. Then the

homomorphisms Vn,p → Vn,p′ have been determined by Proposition 3.6, in the case p > p′, and Proposition 3.8,

in the case p = p′. We also know that Hom(Vn,p,Vn,p′) = {0} when fn,p 6= fn,p′ . The outstanding cases are

therefore:

(1) (n, p) and (n, p′) are both critical with p′ > p and fn,p = fn,p′ .

(2) (n, p) and (n, p′) form a symmetric pair with p′ > p.

(3) (n, p) and (n, p′) are non-critical with p′− p > ℓ and fn,p = fn,p′ .

Case (1) is easily dealt with: If two distinct (n, p) and (n, p′) are critical, then Vn,p and Vn,p′ are irreducible

(Corollary 4.8) and it follows from Corollary 3.7 that Hom(Vn,p,Vn,p′) = 0. In case (2), we know from Theo-

rem 7.2 that Rn,p′
∼=Ln,p. Schur’s lemma then implies that any two homomorphisms from Ln,p to Rn,p′ are equal

to one another up to a multiplicative constant. Choose two non-zero homomorphisms f ,g ∈ Hom(Vn,p,Vn,p′).

The argument used to prove Theorem 7.2 implies that we must necessarily have ker( f ) = ker(g) = Rn,p and

im( f ) = im(g) = Rn,p′ . Both f and g then define homomorphisms f̂ , ĝ : Ln,p → Rn,p′ and so we learn that

f̂ = µ ĝ for some µ ∈ C. As

f (v) =
(

f̂ ◦π
)
(v) = µ (ĝ◦π)(v) = µg(v) for all v ∈ Vn,p, (7.22)

where π is the projection Vn,p → Ln,p, we conclude that f = µg, hence that dimHom(Vn,p,Vn,p′) = 1.

We therefore turn to case (3). Let (n, p′′) be the reflection of (n, p′) in the critical line immediately to its

right, so that Vn,p′ and Vn,p′′ form a symmetric pair with p′ > p′′ > p. Let f : Vn,p → Vn,p′ be a non-zero

homomorphism, so ker( f )⊆Rn,p. But, Rn,p is irreducible and therefore ker( f ) is either {0} or Rn,p. Similarly,

im( f ) must be either Rn,p′ or Vn,p′ . The first isomorphism theorem, together with Corollary 3.7, now leads to a

contradiction in each of the four possible combinations. For example:

• If ker( f ) = {0} and im( f ) = Vn,p′ , then Vn,p
∼= im( f ) = Vn,p′ with p 6= p′, contradicting Corollary 3.7.

• If ker( f ) = {0} and im( f ) = Rn,p′ , then Vn,p
∼= im( f ) = Rn,p′

∼= Ln,p′′ . But, Vn,p being irreducible implies

that Ln,p
∼= Ln,p′′ with p 6= p′′, again contradicting Corollary 3.7.

The last two cases ker( f ) = Rn,p, im( f ) = Vn,p′ and ker( f ) = Rn,p, im( f ) = Rn,p′ are similar and are left to

the reader. We conclude that Hom(Vn,p,Vn,p′) = {0} in all these cases.

It only remains to consider the omitted case involving V2p,p = R2p,p at β = 0. In this case, every (2p, p′) is

non-critical (see Figure 1) and shares the same F2p-eigenvalue: f2p,p′ = 0. V2p,p′ and V2p,p′′ therefore form a

symmetric pair if and only if |p′− p′′|= 1. Corollary 3.7 can be used to conclude that the L2p,p′ with 0 6 p′ 6

p−1 are mutually non-isomorphic. Because L2p,p′
∼=R2p,p′+1, the radicals R2p,p′ with 1 6 p′ 6 p are likewise

mutually non-isomorphic. Finally, the R2p,p′ = L2p,p′−1 are non-zero for 1 6 p′ < p, so the only irreducible

modules among the V2p,p′ are therefore V2p,p (by Proposition 4.9) and V2p,0.
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We now look for a non-zero homomorphism f : V2p,p → V2p,p′ with p′ < p. If such a homomorphism exists,

then ker( f ) = {0} and im( f )∼= V2p,p (because the latter is irreducible). It follows that either V2p,p
∼= R2p,p′ or

V2p,p
∼= V2p,p′ . The first possibility is excluded by the previous observation that the radicals R2p,p′ , 1 6 p′ 6 p,

are mutually distinct as well as recalling that R2p,p = V2p,p 6= {0} = R2p,0. We are therefore left with the

second possibility, that V2p,p′ is itself irreducible, which can only happen when p′ = 0. But, dimV2p,0 = 1 only

coincides with dimV2p,p when p = 1. So we arrive at the exceptional case Hom(V2,1,V2,0)∼= C (the existence

of such a non-zero homomorphism was already established after Corollary 3.7).

Finally, the pair V2p,p−1 and V2p,p is symmetric and the same arguments that proved (2) above lead to

dimHom(V2p,p−1,V2p,p) = 1. The proof that dimHom(V2p,p′ ,V2p,p) = 0 for p′ 6 p−2 mimics that of (3) with

the simplification that now im( f ) = V2p,p since V2p,p is irreducible, hence there are only two cases to consider

instead of four.

8. PRINCIPAL INDECOMPOSABLE MODULES

In this section, we describe a concrete construction, for q a root of unity, of the principal indecomposable

modules as submodules of certain induced modules. These are the indecomposable direct summands of the

Temperley-Lieb algebra when one treats it as a module by letting it act on itself by left-multiplication (this is

just the regular representation). It follows immediately that principal indecomposables are canonical examples

of projective modules. Indeed, they are precisely the indecomposable projective modules. Moreover, a stan-

dard fact about them [22] is that there is a bijective correspondence between principal indecomposables and

irreducibles given by quotienting the former by its (unique) maximal proper submodule (its radical). We will

therefore denote a principal indecomposable module by Pn,p, understanding that its irreducible quotient is Ln,p.8

The properties of projective modules needed for this section are reviewed in Appendix B.

Note that when the algebra is semisimple, indecomposability implies irreducibility, so

Pn,p = Vn,p = Ln,p (TLn semisimple). (8.1)

We remark that because TLn is semisimple for generic β (and its dimension is obviously independent of β ), it

follows from Theorems B.1 and B.3 that

∑
i

dimLi dimPi = dimTLn =
⌊n/2⌋
∑
p=0

dimVn,p dimVn,p, (8.2)

where the sum on the left-hand side is over a complete set of pairwise non-isomorphic irreducibles Li and the

corresponding principal indecomposables Pi. We recall from Corollary 4.6 that the sum on the right-hand side

corresponds to a complete set of non-isomorphic irreducibles, when q is not a root of unity. At this point, we

know that the Ln,p are pairwise non-isomorphic, but we are not assured that they form a complete set when q

is a root of unity, excluding L2p,p = {0} from the set when β = 0. This completeness will be deduced as a

corollary of the principal indecomposable analysis.

We will first show how one can concretely construct the principal indecomposables with the aid of a de-

tailed example. This serves to nicely illustrate the salient features of the general discussion (which is obscured

somewhat by the necessary induction arguments). So let us take q = eiπ/4 (β =
√

2), noting that criticality

corresponds to n− 2p+ 1 being a multiple of ℓ = 4. It may be helpful to recall that the dimensions of the

irreducible modules for this β and small n were organised in a Bratteli diagram in Figure 2.

Consider first the rather trivial algebra TL1. Since it is one-dimensional and spanned by the unit 1, its left

regular representation is isomorphic to its only standard module V1,0. Thus,

TL1 = P1,0
∼= V1,0. (8.3)

8In the exceptional case, β = 0 and n = 2p, we recall that L2p,p = {0} and the irreducible quotient of V2p,p is in fact V2p,p = R2p,p
∼=

L2p,p−1. There is therefore no need to define a non-trivial principal indecomposable P2p,p when β = 0.
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Now apply the induced module construction to get TL2 ⊗TL1
TL1

∼= V1,0↑ as TL2-modules. Since TLn+1 ⊗TLn

TLn is obviously isomorphic to TLn+1 (just send a⊗b = ab⊗1 to ab), we obtain

TL2
∼= V1,0↑ ∼= V2,1 ⊕V2,0. (8.4)

Here, we have applied Corollary 6.6, using the fact that (1,0) is not critical, because β 6= 0. Note that both V2,1

and V2,0 are indecomposable, by Proposition 3.3, and are direct summands of the left regular representation.

They are therefore principal indecomposable modules: P2,1
∼= V2,1 and P2,0

∼= V2,0.

For n = 3, we similarly apply the induced module construction to Equation (8.4), obtaining

TL3
∼= (TL3 ⊗TL2

V2,1)⊕ (TL3 ⊗TL2
V2,0)∼= V2,1↑ ⊕V2,0↑ , (8.5)

since tensor product distributes over direct sums. Now, (2,0) is only critical for β = ±1, hence Corollary 6.6

applies, giving V2,0↑ ∼= V3,1 ⊕V3,0. Since V2,1↑ ∼= V3,1, we conclude that P3,1
∼= V3,1 and P3,0

∼= V3,0. Note

that this implies that TL3 = 2P3,1 ⊕P3,0, consistent with Theorem B.3 as dimL3,1 = 2 and dimL3,0 = 1.

We pause to remark that for all n considered thus far, we have demonstrated the decomposition

TLn
∼=

⌊n/2⌋
⊕

p=0

(dimLn,p) Pn,p. (8.6)

We may therefore deduce from Theorem B.3 that the set of Ln,p with 0 6 p 6 ⌊n/2⌋ constitutes a complete set

of pairwise non-isomorphic irreducibles, at least for n 6 3 and β =
√

2.

At some point, criticality must enter the fray. For β =
√

2, this first occurs for n = 4. Inducing our decom-

position of TL3 and analysing as above, we easily conclude that

TL4
∼= 2V4,2 ⊕2V4,1 ⊕V3,0↑ , (8.7)

hence that P4,2
∼=V4,2 and P4,1

∼=V4,1. As dimL4,2 = dimL4,1 = 2 and dimL4,0 = 1 (see Figure 2), Theorem B.3

requires that

TL4
∼= 2P4,2 ⊕2P4,1 ⊕P4,0 ⊕·· · , (8.8)

where the “⊕·· ·” admits that there may be additional unknown principal indecomposables beyond the P4,p.9

Comparing gives V3,0↑ ∼= P4,0 ⊕·· · . Now, Corollary 6.6 does not help us to simplify V3,0↑ because (3,0) is

critical. Instead, Corollary 6.5 gives the exact sequence

0 −→ V4,1 −→ V3,0↑ −→ V4,0 −→ 0. (8.9)

We note that the composition factors of V4,0 and V4,1 are L4,1, L4,0 and L4,0, and that these are also the compo-

sition factors of V3,0↑ by the exactness of (8.9). If V3,0↑ ≇ P4,0, meaning that there exist additional unknown

principal indecomposables (the “⊕·· ·”), then the additional principal indecomposables, and hence V3,0↑ , will

have quotients, hence composition factors, which are not irreducibles of the form L4,p. This contradicts our

conclusion that the composition factors of V3,0↑ all have the form L4,p, so it follows that these additional prin-

cipal indecomposables do not exist and that we may identify P4,0 with V3,0↑ . Consequently, the L4,p furnish a

complete set of pairwise non-isomorphic irreducibles.

Continuing, we induce our n = 4 decomposition and argue as above to get

TL5
∼= 4P5,2 ⊕2P5,1 ⊕P4,0↑ , (8.10)

with P5,2
∼= V5,2 and P5,1

∼= V5,1. As dimL5,2 = dimL5,1 = 4 and dimL5,0 = 1, Theorem B.3 yields the

decomposition

P4,0↑ ∼= 2P5,1 ⊕P5,0 ⊕·· · , (8.11)

9Such additional principal indecomposables would correspond to additional irreducibles. The existence of these would therefore amount to

a negative answer to the question of the completeness of the set of L4,p.
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where we again allow the possibility of additional unknown principal indecomposables. We therefore need to

analyse the structure of P4,0↑ . For this, we induce each module of the exact sequence (8.9). Because induction

is right-exact (Proposition B.6), we obtain the exact sequence

V4,1↑ ∼= V5,2 ⊕V5,1 −→ P4,0↑ −→ V4,0↑ ∼= V5,1 ⊕V5,0 −→ 0 (8.12)

which we have simplified using Corollary 6.6. Note that the central element F5 has eigenvalue 0 on V5,2 and V5,0,

but eigenvalue −2 on V5,1. Any homomorphism A → B will map generalised eigenspaces of A into generalised

eigenspaces of B with the same eigenvalue f of Fn. It follows that P4,0↑ decomposes into projectives as P⊕P′

(see Proposition B.7) along the generalised eigenspaces of F5 and that the exact sequence (8.12) is equivalent to

the exactness of

V5,1
ι−→ P−→ V5,1 −→ 0 and V5,2

ι ′−→ P
′ −→ V5,0 −→ 0. (8.13)

Since P5,1
∼=V5,1 is projective, the first exact sequence splits, hence P∼=P5,1⊕(P5,1/ker ι). Equation (8.11)

shows that P4,0↑ must contain two copies of P5,1 and these can come only from P, since Fn has distinct

eigenvalues on P5,1 and P
′. This forces ker ι = 0, P∼= 2P5,1 and, thus, P′ = P5,0 ⊕·· · . Once again, we rule out

the existence of additional principal indecomposables by noting that the composition factors of both V5,0 and

W= V5,2/ker ι ′ have the form L5,p. The exactness of

0 −→W−→ P
′ −→ V5,0 −→ 0 (8.14)

then finishes the job: P′ ∼= P5,0, so P4,0↑ ∼= 2P5,1 ⊕P5,0 and the L5,p form a complete set of irreducibles. It

only remains to determine the module W. This follows quickly from Equation (8.2) by comparing dimensions:

4dimP5,2 +4dimP5,1 +dimP5,0 = 5dimV5,2 +4dimV5,1 +dimV5,0 (8.15a)

⇒ dimP5,0 = dimV5,2 +dimV5,0 ⇒ W= V5,2. (8.15b)

We therefore see that ker ι ′ = 0 and so we obtain the non-split exact sequence 0 → V5,2 → P5,0 → V5,0 → 0.

This completes our analysis for n = 5.

One can continue to analyse this example for higher n with few further difficulties. However, we have seen

enough tricks by now to understand the principal indecomposables in general.

Theorem 8.1. Let q be a root of unity and let ℓ be the minimal positive integer satisfying q2ℓ = 1. Define

k (n, p) ∈ N and r (n, p) ∈ {1, . . . , ℓ−1, ℓ} by n−2p+1 = k (n, p)ℓ+ r (n, p). Then, the principal indecompos-

ables Pn,p of TLn are identified as follows:

• If r (n, p) = ℓ (so (n, p) is critical), then Pn,p
∼= Vn,p.

• If k (n, p) = 0 (so (n, p) lies to the left of the first critical line) and β 6= 0, then Pn,p
∼= Vn,p.

• If k (n, p)> 0 and r (n, p) 6= ℓ, then Pn,p is the direct summand of the r (n, p)-fold induced module

Vn−r(n,p),p ↑ · · · ↑
︸ ︷︷ ︸

r (n, p) times

consisting of the generalised eigenspace, under the action of Fn, whose generalised eigenvalue is fn,p =

qn−2p+1 +q−(n−2p+1). Furthermore, there is a non-split exact sequence

0 −→ Vn,p+r(n,p) −→ Pn,p −→ Vn,p −→ 0. (8.16)

Moreover,
{
Ln,p : p = 0,1, . . . ,⌊n/2⌋

}
is a complete set of pairwise non-isomorphic irreducibles, except when

n is even and β = 0. In this latter case, the range must be restricted to p = 0,1, . . . ,n/2−1.

The proof, which constitutes the remainder of this section, is by induction on n. As in the ℓ= 4 example detailed

above, the key is to note that applying the induced module construction to a projective TLn−1-module results

in a projective TLn-module. The labour mostly concerns keeping track of the multiplicities with which these

projectives appear. Before commencing the induction arguments, it is convenient to deal with the exceptional
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cases β = 0,±2. Indeed, the above statement makes it clear that the case β = 0 and n even is special, since

there is now no principal indecomposable P2p,p, the number of distinct principal indecomposables being then

one less.

Proposition 8.2. When either β =±2 (ℓ= 1), or n is odd and β = 0 (ℓ= 2), the principal indecomposables of

TLn may be identified as Pn,p
∼= Vn,p

∼= Ln,p, for p = 0,1, . . . ,⌊n/2⌋. Moreover, the Ln,p form a complete set of

pairwise non-isomorphic irreducibles for 0 6 p 6 ⌊n/2⌋.

When n is even and β = 0, we have instead Pn,p
∼= Vn−1,p↑ , for p = 0,1, . . . ,n/2− 1. The Ln,p therefore

form a complete set of pairwise non-isomorphic irreducibles for 0 6 p 6 n/2−1.

Proof. When β = ±2 or n is odd and β = 0, TLn is semisimple (as remarked after Corollary 4.8), hence

Pn,p
∼= Vn,p = Ln,p for all p. So, assume that n is even and β = 0. Then, ℓ= 2 and the semisimplicity of TLn−1

gives

TLn−1
∼=

n/2−1
⊕

p=0

(dimLn−1,p)Vn−1,p, (8.17)

by Theorem B.1, hence

TLn
∼=

n/2−1
⊕

p=0

(dimLn−1,p)Vn−1,p↑ =

n/2−1
⊕

p=0

(dimLn,p)Vn−1,p↑ . (8.18)

Here, we have used Corollary 5.2, noting that r (n, p) = 1 = ℓ−1.

We see that Vn−1,p↑ is a projective TLn-module, for 0 6 p 6 n/2− 1, hence it may be written as a direct

sum of principal indecomposables. Because of the exact sequence

0 −→ Vn,p+1 −→ Vn−1,p↑ −→ Vn,p −→ 0, (8.19)

we know that Ln,p is an irreducible quotient of Vn−1,p↑ , hence (at least) one of these principal indecomposables

is Pn,p. Thus, Vn−1,p↑ ∼= Pn,p ⊕·· · . Moreover, it follows from this sequence and the fact that the composition

factors of the standard modules all have the form Ln,p′ , with 0 6 p′ 6 n/2−1, that any other principal indecom-

posable appearing in this decomposition has the form Pn,p′ , with 0 6 p′ 6 n/2−1. But, Theorem B.3 ensures

that the multiplicity of Pn,p in TLn is exactly dimLn,p. We see now that this is only consistent with (8.18) if

Vn−1,p↑ ∼= Pn−1,p. There are therefore no other principal indecomposables, nor other irreducibles.

Proof of Theorem 8.1. Because of Proposition 8.2, we can (and will) assume throughout the proof of Theo-

rem 8.1 that ℓ > 2. So recall that when n = 1, P1,0 = TL1 is the only principal indecomposable and it coincides

with V1,0 (and L1,0). This therefore agrees with the statement of the theorem. Clearly L1,0 is the unique irre-

ducible, up to isomorphism. The proof then proceeds in three steps: We first establish that
{
Ln,p

}
is a complete

set of non-isomorphic irreducibles, then compute how many copies of the projective Pn,p can be accounted for

by the induction hypothesis, and end with the study of the structure of the projective modules.

The set
{
Ln,p

}
is a complete set of non-isomorphic irreducibles — The module TLn can be written, on the one

hand, as

TLn =

⌊(n−1)/2⌋
⊕

p=0

(dimLn−1,p)Pn−1,p↑ , (8.20a)

by induction over n, and, on the other hand, as

=

⌊n/2⌋
⊕

p=0

(dimLn,p)Pn,p ⊕Pnew, (8.20b)
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by Theorem B.3. Here, Pnew is a (possibly empty) direct sum of principal indecomposables that are not of the

form Pn,p′ . Our first task is to show that Pnew = 0. This will follow as a consequence of the following analysis

of the induced modules Pn−1,p↑ appearing in (8.20a). There are three cases to consider:

(i) If k (n−1, p) = 0 and r (n−1, p)< ℓ, so (n−1, p) lies to the left of the first critical line, then the inductive

hypothesis gives Pn−1,p
∼= Vn−1,p and Pn−1,p↑ ∼= Vn,p+1 ⊕Vn,p, by Corollary 6.6. We therefore identify

Pn,p+1
∼= Vn,p+1, Pn,p

∼= Vn,p and

Pn−1,p↑ ∼= Pn,p+1 ⊕Pn,p. (8.21)

(Recall that direct summands of projective modules are projective (Proposition B.7).)

(ii) If r (n−1, p) = ℓ, so (n−1, p) is critical, then we again have Pn−1,p
∼= Vn−1,p, but now Corollary 6.6 does

not apply and we are left with the exact sequence 0 → Vn,p+1 → Pn−1,p↑ → Vn,p → 0 that follows from

Corollary 6.5. However, this tells us that the projective module Pn−1,p↑ has Ln,p as a quotient, hence that

Pn−1,p↑ ∼= Pn,p ⊕Pold. (8.22)

Here, Pold is a (possibly empty) direct sum of principal indecomposables that are of the form Pn,p′ because

the composition factors of Pn−1,p↑ are those of Vn,p+1 and Vn,p, hence have the form Ln,p′ for some p′.

(iii) Finally, if k (n−1, p)> 0 and r (n−1, p)< ℓ (all remaining cases), then the inductive hypothesis says that

the sequence 0 → Vn−1,p+r(n−1,p) → Pn−1,p → Vn−1,p → 0 is exact. Applying the induction functor of

Proposition B.6 and Corollary 6.6, we obtain the exact sequence

Vn,p+r(n−1,p)+1 ⊕Vn,p+r(n−1,p) −→ Pn−1,p↑ −→ Vn,p+1 ⊕Vn,p −→ 0 (8.23)

which, when projected onto (generalised) eigenspaces of Fn, results in exact sequences

Vn,p+r(n−1,p)+1 −→ P−→ Vn,p −→ 0 and Vn,p+r(n−1,p) −→ P
′ −→ Vn,p+1 −→ 0, (8.24)

where Pn−1,p↑ ∼= P⊕P
′. The projectives P and P

′ then have quotients Ln,p and Ln,p+1, respectively, so

we can write

Pn−1,p↑ ∼= Pn,p ⊕Pn,p+1 ⊕P
′
old. (8.25)

Here, P′
old is a (possibly empty) direct sum of principal indecomposables that are of the form Pn,p′ since,

as before, all composition factors of Pn−1,p↑ are of the form Ln,p′ for some p′.

Substituting these conclusions into (8.20a) and comparing with (8.20b), we see that all the principal indecom-

posables of TLn have the form Pn,p. Thus, Pnew = 0 and the Ln,p with 0 6 p 6 ⌊n/2⌋ constitute a complete set

of pairwise non-isomorphic irreducibles.

Counting copies of Pn,p — We can now use the above information to complete the proof. The easiest case is,

naturally enough, when (n, p) is sufficiently far from the critical lines. However, the tactic in all cases is the

same: We fix p and identify some of the Pn−1,p′ ↑ that have copies of Pn,p appearing in their decomposition.

Then, we compare (8.20a) and (8.20b) to verify that the copies of Pn,p obtained from these Pn−1,p′ saturate the

multiplicity of Pn,p in the regular representation. This information is then used to identify Pn,p, at least at the

level of an exact sequence.

Case 1 [1< r (n, p)< ℓ−1]: In this case, both (n−1, p) and (n−1, p−1) are non-critical. We split the analysis

into two sub-cases for clarity:

• If k (n, p) = 0, then (n−1, p) and (n−1, p−1) lie to the left of the first critical line, so case (i) above

applies.10 Equation (8.21) then says that each copy of Pn−1,p↑ and each copy of Pn−1,p−1↑ contribute

exactly one copy of Pn,p to TLn. From (8.20a), this means that we get dimLn−1,p + dimLn−1,p−1 copies of

10Of course, it might happen that p > ⌊(n−1)/2⌋, so (n−1, p) falls outside the Bratteli diagram. If so, then we have n = 2p and we must

formally set dimLn−1,p to zero as indicated by Corollary 5.2. With this proviso, the argument that follows remains unchanged.
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Pn,p in total. By Corollary 5.2, this is dimLn,p copies, which completely accounts for the multiplicity of Pn,p

in (8.20b). This also means that Pold and P′
old appearing in (8.22) and (8.25) may not contain any Pn,p such

that 1 < r(n, p)< ℓ−1. Finally, case (i) also gives Pn,p
∼= Vn,p, in agreement with Theorem 8.1.

• When k (n, p) > 0, case (iii) applies and we find that Pn−1,p ↑ and Pn−1,p−1 ↑ again contribute at least

dimLn−1,p + dimLn−1,p−1 = dimLn,p copies of Pn,p, by Equation (8.25) and its analogue with p → p− 1.

The projections of the exact sequence (8.23), and its p → p−1 analogue, onto the (generalised) eigenspace

of Fn of eigenvalue fn,p are

Vn,p+r(n−1,p)+1
ι−→ P−→ Vn,p −→ 0 and Vn,p−1+r(n−1,p−1)

ι ′−→ P
′ −→ Vn,p −→ 0, (8.26)

which shows that the projectives P and P
′ each have at least one direct summand isomorphic to Pn,p. Noting

that p+ r (n−1, p)+1 = p−1+ r (n−1, p−1) = p+ r (n, p), we can rewrite these exact sequences in the

form

0 −→
Vn,p+r(n,p)

ker ι
−→ P−→ Vn,p −→ 0 and 0 −→

Vn,p+r(n,p)

ker ι ′
−→ P

′ −→ Vn,p −→ 0. (8.27)

Now, if P ≇ Pn,p or P
′ ≇ Pn,p, then we would generate additional copies of projectives Pn,p′ with Fn-

eigenvalue fn,p′ = fn,p. However, all such (n, p′) will have 1 < r (n, p′) < ℓ− 1, hence are covered by our

analysis (see Equation (7.21)). Any additional copies of such a Pn,p′ would then contradict Equation (8.20b),

hence we conclude that P∼= Pn,p and P
′ ∼= Pn,p. The exact sequences (8.27) will then prove Theorem 8.1, in

the case 1 < r (n, p)< ℓ−1, once we show that ker ι = ker ι ′ = 0. This will follow from a simple dimension

argument after we have settled the remaining cases.

Case 2 [r (n, p) = 1 or r (n, p) = ℓ−1]: When r (n, p) = 1, (n−1, p) becomes critical though (n−1, p−1) does

not (recall that we may assume that ℓ > 2). However, this has almost no effect upon the analysis — as with

Case 1, we arrive at the exact sequences (8.27) (the only difference is that we use case (ii) above and that the

first sequence has ker ι = 0).11 In particular, all copies of Pn,p in TLn are accounted for by inducing Pn−1,p and

Pn−1,p−1. However, the additional projectives Pn,p′ , with fn,p′ = fn,p, that would be generated if P ≇ Pn,p or

P
′ ≇ Pn,p, could now have r (n, p′) = ℓ−1. To complete the argument as in Case 1, we therefore need to verify

that the Pn,p′ with r (n, p′) = ℓ−1 are likewise also accounted for by inducing appropriate modules Pn−1,p′′ .

So, suppose that r (n, p) = ℓ−1. Now, (n−1, p) is non-critical, but (n−1, p−1) is critical (and this makes

a difference!). As in the analysis of Case 1, inducing Pn−1,p leads to an exact sequence

0 −→
Vn,p+r(n,p)

ker ι
−→ P−→ Vn,p −→ 0 (8.28)

(where P is the projection of Pn−1,p↑ onto the Fn-eigenspace of eigenvalue fn,p) and thereby to the conclusion

that Pn−1,p↑ contributes dimLn−1,p copies of Pn,p to TLn. However, dimLn−1,p = dimLn,p in this case, by

Corollary 5.2, so all copies of Pn,p in TLn are accounted for, this time by only inducing Pn−1,p. The same

argument as for Case 1 now identifies Pn,p as P (and P
′) when r (n, p) = 1 or ℓ− 1. Again, it only remains to

show that ker ι = ker ι ′ = 0.

Case 3 [r (n, p) = ℓ]: When (n, p) is critical, r (n−1, p) = ℓ−1 and r (n−1, p−1) = 1. Inducing and projecting

as above, we obtain exact sequences for the summands P of Pn−1,p↑ and P
′ of Pn−1,p−1↑ whose Fn-eigenvalue

is fn,p:

Vn,p+ℓ
ι−→ P−→ Vn,p −→ 0 and Vn,p

ι ′−→ P
′ −→ Vn,p −→ 0. (8.29)

Now, all of the standard modules appearing in these sequences are critical, hence irreducible (Corollary 4.8).

There are therefore only three possibilities for P: First, ker ι = Vn,p+ℓ, hence P ∼= Vn,p. Second, ker ι = 0 and

P is indecomposable with exact sequence 0 → Vn,p+ℓ → P → Vn,p → 0. Third, ker ι = 0 and P decomposes

11From here on, we will omit explicit consideration of the case k (n, p) = 0. It is easy to see that this case is recovered from the general

case by setting modules with labels p > ⌊n/2⌋ to zero.
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as Vn,p+ℓ ⊕Vn,p. Each Pn−1,p↑ therefore accounts for one copy of Pn,p in the first two possibilities (for a

total of dimLn−1,p copies), but one copy of Pn,p and one copy of Pn,p+ℓ in the third (so the total becomes

dimLn−1,p + dimLn−1,p−ℓ). The possibilities for P
′ are likewise P

′ ∼= Vn,p, P′ indecomposable with exact

sequence 0 → Vn,p → P
′ → Vn,p → 0, and P

′ ∼= 2Vn,p, so each Pn−1,p−1↑ contributes one copy of Pn,p in the

first two possibilities (for a total of dimLn−1,p−1 copies), but two copies in the third (yielding 2dimLn−1,p−1

copies in all).

The number of copies of Pn,p required by Equation (8.20b) is

dimLn,p = dimVn,p = dimVn−1,p +dimVn−1,p−1 (by Proposition 4.1)

= dimLn−1,p +dimRn−1,p +dimLn−1,p−1 +dimRn−1,p−1 (by Proposition 3.3)

= dimLn−1,p +2 dimLn−1,p−1 +dimLn−1,p−ℓ (by Proposition 5.3). (8.30)

Considering all the critical (n, p), we see that this multiplicity can only be attained if the third possibilities for

P and P
′ occur in each case.12 Then, contributions are received from inducing Pn−1,p, Pn−1,p−1 and Pn−1,p−ℓ.

As the second possibility above is ruled out, it follows that Pn,p
∼= Vn,p for all critical (n, p), as required.

The structure of the projective Pn,p — It only remains to prove that ker ι (and ker ι ′) are 0 in the exact sequences

(8.27) and (8.28) that we have derived for the non-critical Pn,p:

0 −→
Vn,p+r(n,p)

ker ι
−→ Pn,p −→ Vn,p −→ 0. (8.31)

We remark that this equation still holds when (n, p) lies to the left of the first critical line (k (n, p) = 0) if we

understand that the Vn,p′ with p′ > ⌊n/2⌋ are 0.

Since we have shown that the Pn,p form a complete set of principal indecomposables, the constraint (8.2)

relating the dimensions of the Pn,p, Vn,p and Ln,p may be written in the form

⌊n/2⌋
∑
p=0

dimLn,p dimPn,p =
⌊n/2⌋
∑
p=0

(dimVn,p)
2 . (8.32)

This constraint is now used to determine the dimensions of the projective modules Pn,p and, therefore, the

dimensions of the kernel of ι and ι ′. The contributions from the critical (n, p) may be cancelled in the constraint

because then Pn,p
∼= Vn,p

∼= Ln,p.

We break down the remaining sum over p into non-critical orbits under reflection about critical lines (see the

discussion after Corollary 7.4). We thus rewrite the original sum as, first, a sum over non-critical orbits, labelled

by their leftmost element p1, and then as a sum over elements p1 > p2 > · · ·> pm > 0 of the orbit of p1:

∑
n−2p1+1<ℓ

m

∑
i=1

dimLn,pi
dimPn,pi

= ∑
n−2p1+1<ℓ

m

∑
i=1

(dimVn,pi
)2 . (8.33)

For the (n, p) contributing to (8.33), the exact sequences (8.31) and the relations (7.20) immediately imply the

bounds

dimPn,pi
6 dimVn,pi+r(n,pi)+dimVn,pi

= dimVn,pi−1
+dimVn,pi

, (8.34)

with saturation attained if and only if ker ι = 0. (All dimensions of modules indexed by p0 or pm+1 are under-

stood to be zero.) These, in turn, give the following bound for the contribution from each non-critical orbit to

the left-hand side of (8.33):

m

∑
i=1

dimLn,pi
dimPn,pi

6

m

∑
i=1

(
dimLn,pi

dimVn,pi
+dimLn,pi

dimVn,pi−1

)

=
m

∑
i=1

(

(dimVn,pi
)2 −dimRn,pi

dimVn,pi
+dimLn,pi

dimVn,pi−1

)

12Again, any module whose label is out of the allowed range 0 6 p 6 ⌊n/2⌋ is understood to be trivial.
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=
m

∑
i=1

(

(dimVn,pi
)2 −dimLn,pi+1

dimVn,pi
+dimLn,pi

dimVn,pi−1

)

=
m

∑
i=1

(dimVn,pi
)2. (8.35)

Here, we have used (8.34), then Proposition 3.3 and, finally, Proposition 5.3. For (8.33) to hold, this inequality

must be an equality for all non-critical orbits, hence the ker ι (and ker ι ′) must always vanish. This proves that

the sequence (8.16) is exact for all non-critical Pn,p (to the right of the first critical line), completing the proof

of Theorem 8.1.

9. SUMMARY OF RESULTS

We conclude the article with a brief summary outlining what has been proven and a few ideas concerning

what can be done with the results. First, we have presented the well-known equivalence between the algebraic

and diagrammatic definitions of the Temperley-Lieb algebra TLn (with parameter β = q+ q−1), deducing as

a consequence that its dimension is given by the n-th Catalan number. We have then discussed the standard

TLn-modules Vn,p, with 0 6 p 6 ⌊n/2⌋, each of which admits a natural invariant bilinear form, and explained

that a study of the irreducibility of the Vn,p may be reduced, in almost all cases, to the consideration of the

non-degeneracy of this bilinear form. Of course, we have also detailed how to analyse the exceptional cases

when the natural bilinear form is not useful.

The question of whether these standard modules are irreducible or not turned out to have structural impli-

cations for the Temperley-Lieb algebra. We used restriction from TLn to TLn−1 to derive a recursion relation

describing the kernel of the bilinear form on each Vn,p. This gave a complete answer to the irreducibility of the

Vn,p and led to a criterion for the semisimplicity of TLn. In particular, this recovered the well-known result that

the TLn are all semisimple when q is not a root of unity. While our strategy follows that of [13] rather closely, we

believe that our proof is new. Moreover, we found that the aforementioned description of the kernel suggested

that the standard modules were either irreducible or had an irreducible maximal submodule, the radical.

To prove this suggestion, we turned to the induced modules obtained from the Vn,p by including TLn in TLn+1

in the obvious way. After deriving the required structural information concerning these induced modules, we

detailed a non-trivial computation involving the action of a little-known central element Fn ∈TLn on the induced

modules. This then allowed us to deduce the existence of non-trivial homomorphisms between certain standard

modules. As a consequence, we obtained the desired irreducibility of the (non-trivial) radicals as well as a

complete description of the space of homomorphisms between any two standard modules. All of these proofs

appear to be new.

Finally, we used our knowledge of induced modules to systematically construct the principal indecomposable

modules Pn,p for the Temperley-Lieb algebra. These turn out to be realised as either standard modules or as

submodules, corresponding to a given generalised eigenspace of the central element Fn, of a multiply-induced

standard module. The structures of the Pn,p followed immediately from the analysis, as did the statement that the

irreducible TLn-modules Ln,p that can be constructed from the Vn,p are, in fact, exhaustive (up to isomorphism).

While the structure of the principal indecomposables is known (it appeared first in [2]), we are confident that

our straight-forward proof is also new. Certainly, it relies upon a particularly remarkable property of Fn, namely

that it completely distinguishes the non-critical blocks of TLn, a property which does not seem to be shared by

other better-known central elements.

We include, for convenience, pictorial representations of the structures of the standard and principal inde-

composable modules when q is a root of unity. These take the form of annotated Loewy diagrams which are

popular in, for example, logarithmic conformal field theory. The Loewy diagrams for the standard modules

have two forms according as to whether (n, p) is critical, meaning q2(n−2p+1) = 1, or not. Let (n, p) and (n, p′)
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form a symmetric pair, in the sense of Section 7, with p > p′. The possible Loewy diagrams for the Vn,p

(0 6 p 6 ⌊n/2⌋) are then as follows:

Ln,p

Ln,p

Ln,p′

L2p,p−1

Vn,p Vn,p Vn,p

(n, p) critical (n, p) non-critical

(n 6= 2p or β 6= 0)

(n = 2p and β = 0).

To explain, these diagrams present the (irreducible) composition factors of the Vn,p as nodes, connected by

arrows, that are meant to represent the action of the algebra. The diagrams on the left and right indicate that Vn,p

is in fact irreducible (and isomorphic to Ln,p and L2p,p−1, respectively) in these cases. By contrast, the diagram

in the middle has its only arrow pointing towards Ln,p′ , indicating that Vn,p has, in this case, a submodule

isomorphic to Ln,p′ . In fact, it is the maximal submodule — quotienting corresponds to removing the node Ln,p′

and the arrow, leaving us with only Ln,p (and no arrows). In other words, Vn,p/Ln,p′
∼= Ln,p. We remark that

for sufficiently small p, the p′ required to form a symmetric pair would be negative. In that case, Ln,p′ should

be understood to be {0}. The diagram in the middle should then be taken to degenerate into the diagram on the

left.

The Loewy diagrams for the principal indecomposables are only a little more complicated. First, we remark

that when β = 0 and n is even, p is restricted to the range 06 p6 n/2−1; otherwise, the range is 06 p6 ⌊n/2⌋.

Now, take p′′ > p> p′ so that (n, p′′) and (n, p), as well as (n, p) and (n, p′), form symmetric pairs. The possible

Loewy diagrams for the Pn,p are then as follows:

Ln,p

Ln,p

Ln,p′′ Ln,p′

Ln,p

L2p+2,p

L2p+2,p−1

L2p+2,p

Pn,p Pn,p Pn,p

(n, p) critical (n, p) non-critical

(n 6= 2p+2 or β 6= 0)

(n = 2p+2 and β = 0).

Again, the diagram on the left indicates that the critical principal indecomposables are irreducible. To under-

stand the diagram in the middle, note that there is a submodule isomorphic to Ln,p (the bottom node with arrows

only pointing in). Quotienting by this submodule leads to a module with three composition factors. It has a sub-

module isomorphic to Ln,p′′ ⊕Ln,p′ ,
13 and quotienting by this submodule results in something isomorphic to

Ln,p. The diagram on the right is interpreted similarly.

13One can (and should) ask why this submodule is a direct sum. Equivalently, why is there no arrow from the factor Ln,p′ to the factor Ln,p′′

in the middle diagram? (That there is no arrow in the opposite direction follows directly from (8.16).) This may be answered by showing

that any short exact sequence of the form 0 → Ln,p′′ → M → Ln,p′ → 0 necessarily splits. To see this, note that projectivity implies the

existence of a homomorphism δ : Pn,p′ →M such that the following diagram commutes:
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The degeneracy conditions are likewise a little more complicated: When p is small enough in the middle

diagram that p′ would have to be negative, one must delete the node Ln,p′ and arrows pointing towards or away

from it. The resulting principal indecomposable therefore has three composition factors. However, when p is

large enough that p′′ would have to be greater than ⌊n/2⌋, one should delete both Ln,p′′ and the bottom Ln,p, so

that Pn,p has only two composition factors. This means that Pn,p
∼= Vn,p when p is on the left of the first critical

line. It may, of course, happen for n sufficiently small that there are non-critical p for which both p′ and p′′ fall

outside the allowed range. Then, the middle diagram degenerates into the diagram on the left. Similarly, the

diagram on the right degenerates only when n = 2 and p = 0. In this case, the Loewy diagram for P2,0 has two

composition factors, both isomorphic to L2,0, connected by an arrow.

Finally, we remark that such a complete description of the principal indecomposables allows one to apply

standard tools from homological algebra to answer more advanced questions regarding the variety of possible

indecomposable structures. We shall not do so here, but will content ourselves with mentioning that it is now

easy to write down projective presentations and resolutions for standard and irreducible modules and so compute

the extension groups between them. This technology answers, in particular, the question of whether giving a

non-split short exact sequence completely determines the module in the middle. For example, one can use this to

show that the characterisation we have obtained for the principal indecomposables, in terms of exact sequences,

does in fact identify them up to isomorphism. One can also use the extension computations to construct injective

modules and, indeed, give a complete classification of the indecomposable modules of the Temperley-Lieb

algebra (something which is not possible for most associative algebras). These directions are clearly crucial

for a sound mathematical understanding of Temperley-Lieb representation theory as well as necessary for a

complete identification of Temperley-Lieb modules in physical models. In both cases, the structural results

proven here provide a springboard from which one can profitably tackle advanced questions.
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APPENDIX A. CENTRAL ELEMENTS

The goal of this appendix is to introduce the central element Fn ∈TLn which plays a crucial role in Sections 7

and 8. This is not the only important central element in the theory of the Temperley-Lieb algebra. One should

also mention the well-known central element Cn = (t1 · · · tn−1)
n ∈ TLn, where ti = 1− qui, which is derived

from its analogue in the braid group [23, 24], as well as the central idempotents described by Jones [5] and

Wenzl [11]. For our purposes, Fn will suffice (whereas Cn in particular will not). This appendix uses notation

and one result from each of Sections 2 and 3; results from other sections are also used to provide examples. The

element Fn is first used in Corollary 4.2.

The role of central elements is well-known to physicists, where the quadratic Casimir of a semisimple Lie

algebra probably provides the most familiar example. One use for such central elements is to decompose

representations into their eigenspaces. More precisely, if c is a central element of an algebra A and M a module

0 Ln,p′′ M Ln,p′ 0.

Pn,p′

δ

Comparing the composition factors of M and Pn,p′ , we see that either δ = 0 or im(δ ) ∼= Ln,p′ . The former contradicts the commutativity

of the diagram, so we conclude that Ln,p′ is a submodule of M, whence M∼= Ln,p′ ⊕Ln,p′′ .
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over this algebra, then the linear map φc : M → M obtained by left-multiplying elements of M by c defines

a homomorphism of modules: aφc(m) = acm = cam = φc(am) for all a ∈ A, m ∈ M. The eigenspaces of φc

are then submodules of M. However, it might happen that φc is not diagonalisable on M, in which case the

generalised eigenspaces Mλ = {m ∈ M |(φc −λ1)dimMm = 0} are also submodules. In fact, M splits, as an

A-module, into the direct sum of the generalised eigenspaces of φc. This is a very useful property.

We therefore turn to the central element Fn ∈ TLn and its properties. The computations which follow, and

even the definition of Fn itself, are diagrammatic. The construction is based upon the recent analysis of a double

row transfer matrix [8]. It also appears briefly in [25] (with β = 0), though it does not seem to have been

recognised as central there. This important property was made explicit in [26], where its eigenvalues were

computed. We will follow their approach with only minor changes.

To define Fn in TLn, it is useful to introduce the following shorthand (recall that β = q+q−1):

= q1/2 −q−1/2 and = q1/2 −q−1/2 . (A.1)

These crossings are to be interpreted as formal objects which will be used as building blocks to form (linear

combinations of) n-diagrams. In particular, we define Fn as follows:

Fn = . (A.2)

This looks deceptively simple, but the notation hides a large number of diagrams as each crossing of thin lines

stands for a sum of two terms. Computing even F3 explicitly requires considering a linear combination of

26 = 64 3-diagrams, even though dimTL3 = 5. For comparison, we list the first few explicit forms for Fn and

the better known Cn:

F1 = (q2 +q−2)1, C1 = 1, (A.3a)

F2 = (q3 +q−3)1− (q−q−1)2u1, C2 = 1+q2(q−q−1)u1, (A.3b)

F3 = (q4 +q−4)1− (q−q−1)(q2 −q−2)(u1 +u2) C3 = 1+q3(q2 −q−2)(u1 +u2)

+(q−q−1)2(u1u2 +u2u1) −q3(q−q−1)(u1u2 +u2u1). (A.3c)

We note that because the number of crossings used to construct Fn is even, the coefficients of the corresponding

linear combination of n-diagrams will only contain integral powers of q and q−1. Note further that

†

= q1/2 −q−1/2 = , (A.4)

recalling that the adjoint was chosen in Section 3 to be linear, not antilinear. It follows that Fn is self-adjoint.

Finally, it is also true [26] that Fn is invariant under q↔ q−1 (we remark that Cn does not have this last property).

Proposition A.1. Fn ∈ TLn is central.
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Proof. The key insight is that

= q − − +q−1 =− (A.5a)

and similarly, that

=− . (A.5b)

Thus,

=− = (A.6)

is symmetric under a vertical reflection, hence self-adjoint. It follows that uiFn must be self-adjoint for all i,

whence

uiFn = (uiFn)
† = F†

n u
†
i = Fnui, (A.7)

as required.

The eigenvalue of Cn on the standard module Vn,p is easily shown to be q2p(n+1−p) (see for example [13]).

The corresponding result for Fn is as follows.

Proposition A.2. The element Fn acts on Vn,p as the identity times fn,p = qn−2p+1 +q−(n−2p+1).

Proof. First note that any central element must act as a multiple of the identity on Vn,p by Proposition 3.8.

We may therefore determine this multiple by computing the action of Fn on any (n, p)-link state (modulo terms

which have more than p links). A convenient choice is the state zp ∈Vn,p which has first p simple links, followed

by n−2p defects.

We will break the computation up into two pieces, corresponding to the action on the p simple links and the

action on the n−2p defects. The first is easy: Using Equation (A.5) (or rather its adjoint) repeatedly, we obtain

= . (A.8)

This will clearly contribute 1 or β , according as to whether the loop wiggling down is closed by the action on

the defects.

This latter action requires a bit of explanation. First, apply the definition (A.1) to expand the top-right partial

crossing (the loop at the top of these diagrams stands for the big loop of (A.8)):

= q1/2 −q−1/2 . (A.9)
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Consider now the first term on the right-hand side. When we expand the crossing immediately below that just

considered, only one term contributes. The other leads to a link on the middle vertical border which creates an

extra link in the result (using the adjoint of Equation (A.5a)), so the result vanishes. This observation propagates

down the right side, yielding a factor of q1/2 at each step. Thus,

q1/2 = q(n−2p)/2 . (A.10)

Now expand the crossing at the top-left. Because of the big loop at the top, we again find that only one term

contributes — the other corresponds to closing two defects and hence vanishes. This observation propagates

down the left side, picking up a factor of q1/2 at each step, until we reach the last crossing for which both terms

contribute:

q(n−2p)/2 = qn−2p−1/2 = qn−2p −qn−2p−1 . (A.11)

The overall contribution from this analysis is therefore a factor of qn−2pβ −qn−2p−1 = qn−2p+1.

The analysis of the second term on the right-hand side of (A.9) is almost identical. After analysing the

crossings on the right side, the diagrams become horizontal reflections of those we have just analysed (this

reflection corresponds to the automorphism ui ↔ un−i) and q is replaced by q−1. The resulting contribution is

therefore q−(n−2p+1). Summing the contributions from both terms now gives the desired result.

We conclude by indicating why we consider the central element Fn superior to the more familiar Cn for the

purpose of analysing the indecomposable structure of TLn-modules. The algebra TLn is semisimple when q is

not a root of unity by Corollary 4.6, so we may as well suppose that there exists a minimal positive integer ℓ

such that q2ℓ = 1. In other words, we have q = eiπk/ℓ for some k ∈ Z coprime to ℓ. The eigenvalue of Fn on the

standard module Vn,p is therefore

fn,p = 2cos
πk (n−2p+1)

ℓ
. (A.12)

In Section 4, we defined (n, p) to be critical when ℓ divides n−2p+1. In that case, fn,p achieves it maximal or

minimal value ±2. More generally, we defined critical lines that partition the Bratteli diagram of the Temperley-

Lieb algebras in Section 5. The crucial property of Fn is that if (n, p) and (n, p′) are distinct pairs, both lying

in the same strip bounded by two consecutive critical lines, then fn,p 6= fn,p′ . In other words, the eigenvalue of

Fn completely distinguishes standard modules within such strips. In the language of Goodman and Wenzl [12],

this means that Fn completely characterises the non-critical blocks of the Temperley-Lieb algebra TLn. This

property is not shared by Cn. A simple example is provided at q = eiπ/6 for TL4. The three modules V4,2, V4,1

and V4,0 lie to the left of the first critical line. The eigenvalues of C4 on each are 1, e4πi/3 and 1, and fail to

distinguish V4,2 and V4,0. The eigenvalues of F4 are −
√

3, 0 and
√

3.

APPENDIX B. BASIC RESULTS

This appendix reviews certain classical tools of representation theory that are not commonly seen in a first

course on representation theory, say at the level of [27]. These are Wedderburn’s theorem and its generalisation

to non-semisimple algebras, Frobenius reciprocity, the right-exactness of induction, the Jordan-Hölder theorem
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and the basic properties of projective modules. We state them here without proof. The reader can find proofs

of Wedderburn’s theorem in [28, 29]. Proofs of Frobenius reciprocity for algebras may be found in [2, 29]. The

right-exactness of tensor products is proven in [30] and projective modules are covered in [22, 29, 31]. Finally,

we note that [6, App. A] provides a concise introduction to finite-dimensional algebras that gives proofs of

Wedderburn’s theorem and its non-semisimple generalisation, a proof of the Jordan-Hölder theorem, as well as

describing what is needed on projective modules in order to understand Section 8. All modules in this summary

should be understood to be finite-dimensional left modules.

Let A be a finite-dimensional associative algebra over C. Every element of A can be seen to act on A by

left multiplication. This action makes A into a left A-module called the regular module. The algebra A is said

to be semisimple if the regular module is completely reducible, that is, if it can be written as a direct sum of

irreducible modules. (In the case of a finite group G, its group algebra CG is always semisimple [27].) A key

consequence of semisimplicity is the following theorem.

Theorem B.1 (Wedderburn). Let A be a complex, finite-dimensional, semisimple, associative algebra. Then,

the regular module decomposes as

A∼=
r⊕

i=1

(dimLi)Li, (B.1)

where the L1, . . . ,Lr form a complete set of non-isomorphic irreducible A-modules. That is, A decomposes as

the direct sum of irreducibles with each irreducible appearing with multiplicity equal to its dimension.

A useful “converse” to this result which will be invoked in Section 4 is the following:

Proposition B.2. If the regular representation of a complex, finite-dimensional, associative algebra A decom-

poses as in (B.1), where the L1, . . . ,Lr form a complete set of non-isomorphic irreducible A-modules, then A is

semisimple.

When the algebra A is not semisimple, the decomposition of its regular module will contain modules that

are reducible, but not completely reducible. An indecomposable module M is one which cannot be written

as the direct sum of two proper non-trivial submodules. Irreducible modules are examples. When the regular

module of an algebra is written as a direct sum of indecomposable modules, those that appear in the decom-

position are called the principal indecomposable modules of the algebra. Let {Pi} and {Li} be complete sets

of non-isomorphic principal indecomposable modules of A and non-isomorphic irreducible modules, respec-

tively. Wedderburn’s theorem does not hold when semisimplicity is relaxed. It is replaced by the following

generalisation:

Theorem B.3. Let A be a complex, finite-dimensional, associative algebra. The two sets {Pi} and {Li} are

put in one-to-one correspondence by associating a given principal indecomposable with its unique irreducible

quotient. If r is the common cardinality of these sets, then the regular representation decomposes as

A∼=
r⊕

i=1

(dimLi)Pi. (B.2)

One way to characterise the structure of an A-module M is through its composition series. A filtration is a

sequence of submodules of M such that

0 =M0 ⊂M1 ⊂M2 ⊂ ·· · ⊂Mk =M. (B.3)

A filtration is said to be a composition series if every quotient Mi/Mi−1, for 1 6 i 6 k, is irreducible (and non-

zero). These quotients are called the composition factors of M. It is easily shown that every (finite-dimensional)

module has a composition series. Indeed, a module may have several composition series. However, the follow-

ing theorem shows that the composition factors of M do not depend upon the choice of composition series.
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Theorem B.4 (Jordan-Hölder). Let

0 =M0 ⊂M1 ⊂M2 ⊂ ·· · ⊂Mk =M and 0 =N0 ⊂N1 ⊂N2 ⊂ ·· · ⊂Nℓ =M (B.4)

be two composition series of the A-module M. Then, k = ℓ and, up to a permutation of their indices, the

composition factors Di =Mi/Mi−1 and E j =N j/N j−1, for 1 6 i, j 6 k, coincide.

The composition factors of a submodule N ⊂M form a subset of those of M. The same holds for quotients of

M and more general subquotients.

The theorem of reciprocity due to Frobenius is the next result covered in this appendix. It relates modules

constructed from known ones through the classical constructions of restriction and induction. The first is easy

to describe: When the algebra A contains a subalgebra B, any module M over A is also a module over B. (The

action of an element of B on M is simply that of this element seen as an element of A.) We will denote this

B-module by M↓ . As vector spaces, M and M↓ are identical and have the same dimension. The second

construction, induction, also uses a pair of algebras B ⊂ A as before, but the starting module M is now over

B. The induced A-module, which we denote by M↑ , is the tensor product A⊗B M. (Section 6 provides a

more detailed definition and several explicit examples.) Restriction and induction are “dual” operations in the

following sense.

Proposition B.5 (Frobenius reciprocity). Let B⊂ A be two finite-dimensional associative algebras over C. Let

M be a B-module and N be an A-module. Then, the following isomorphism between vector spaces of module

homomorphisms holds:

HomA(M↑ ,N)∼= HomB(M,N↓ ). (B.5)

The most familiar version of reciprocity corresponds to taking B and A to be the group algebras CH and CG of

a pair of finite groups H ⊂ G. Finally, we shall need the behaviour of induction with respect to exact sequences.

Proposition B.6. Suppose that

0 −→M1 −→M2 −→M3 −→ 0 (B.6)

is an exact short sequence of B-modules. If B ⊂ A, then there is an exact sequence involving the induced

A-modules Mi↑ = A⊗BMi:

M1↑ −→M2↑ −→M3↑ −→ 0. (B.7)

Because induction preserves the exactness of short exact sequences except at the leftmost position, induction is

said to be right-exact.

We turn now to projective modules which play a central role in Section 8. An A-module P is projective if,

when there are two other A-modules M and N and homomorphisms α :P→N and γ :M→N with γ surjective,

then there exists a homomorphism δ :P→M such that γ ◦δ =α . Equivalently, with the same input, there exists

a homomorphism δ : P→M such that the following diagram, with the bottom row exact, commutes:

P

NM 0.

α
δ

γ

Here are some basic properties of projective modules.

Proposition B.7.

(i) Any direct sum of projective modules is projective.

(ii) Every direct summand of a projective module is projective.

Clearly (ii) implies that every projective module can be written as a sum of indecomposable projective modules.

There are many other ways to characterise projective modules.
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Proposition B.8. Let P be a module over an associative algebra. The three following conditions are equivalent:

(i) P is projective.

(ii) if M and N are any modules such that the sequence 0 →M→N→ P→ 0 is exact, then this sequence

splits.

(iii) P is a direct sum of principal indecomposable modules.

The last statement shows the particular role played by the summands of (B.2): The principal indecomposables

are precisely the indecomposable projective modules.
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