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ABSTRACT. One of the best understood families of logarithmic conformal field theories is that consisting of

the (1, p) models (p = 2,3, . . .) of central charge c1,p = 1− 6(p−1)2 /p. This family includes the theories

corresponding to the singlet algebras M(p) and the triplet algebras W(p), as well as the ubiquitous symplectic

fermions theory. In this work, these algebras are realized through a coset construction.

The W
(2)
n -algebra of level k was introduced by Feigin and Semikhatov as a (conjectured) quantum hamil-

tonian reduction of ŝl(n)k , generalising the Bershadsky-Polyakov algebra W
(2)
3 . Inspired by work of Adamović

for p = 3, vertex algebras Bp are constructed as subalgebras of the kernel of certain screening charges acting

on a rank 2 lattice vertex algebra of indefinite signature. It is shown that for p 6 5, the algebra Bp is a quotient

of W
(2)
p−1 at level −(p− 1)2/p and that the known part of the operator product algebra of the latter algebra is

consistent with this holding for p > 5 as well. The triplet algebra W(p) is then realised as a coset inside the full

kernel of the screening operator, while the singlet algebra M(p) is similarly realised inside Bp. As an applica-

tion, and to illustrate these results, the coset character decompositions are explicitly worked out for p = 2 and

3.
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1. INTRODUCTION

The principal examples of logarithmic conformal field theories are the families associated to affine su-

peralgebras, to admissible level affine algebras, and to the kernels of screenings acting on lattice theories.

In all three families, only a few examples are well-understood in the sense that the representation theory has

been worked out in detail. These examples include those associated to the A1-root lattice, the logarithmic

(q, p) minimal models [K, GK, FHST, FGST, GR, AM1, AM2, TW1, TW2], the GL(1|1) WZNW theory

[SS, CS, CRo, CR2, CR3], and the admissible level theories of ŝl(2) at k = −1/2 [R1, R2, R3, CR1] and

k = −4/3 [G, A2, AM1, CR1]. The representation theory of the (1, p) series is very similar to that of

ĝl(1|1) and ŝl(2) at admissible levels. Indeed, there are several relationships known between the “small-

est” members of each logarithmic family: The logarithmic (1,2)-model may be described as a coset of a

simple current extension1 of ŝl(2) at level −1/2 [R2], while the (1,3)-model is a coset of ŝl(2)−4/3 [A2].

Moreover, ŝl(2)−1/2 is itself realisable as a coset of (an extension of) ĝl(1|1) [CR3].

The purpose of this work is to extend this picture by providing coset constructions for the (1, p) singlet

algebras M(p) and triplet algebras W(p), for all p. For this, the crucial hint is the work [FS] of Feigin and

Semikhatov on algebras denoted by W
(2)
n , which generalise the well-known Bershadsky-Polyakov algebra

[B, P]. These algebras are constructed in two ways, first as a kernel of screenings associated with the

quantum group of sl(n|1) and second as a subalgebra of ŝl(n|1)k ⊗VL commuting with the subalgebra

ŝl(n)k ⊗ ĝl(1). Here, VL is a rank one lattice vertex algebra and the affine vertex superalgebras are the

November 1, 2013.
1For the purposes of this article, a simple current may be defined to be a simple module which has an inverse in the fusion ring.
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universal ones of the indicated levels k. We have the following picture in mind:

W
(2)
n -algebra at level −n2/(n+1)

ŝl(n|1) at level −2n

M(n+1) and W(n+1)

[FS]

this work

.

One arrow of this diagram was essentially explained by Feigin and Semikhatov. In the present work, we

are interested in a coset construction starting from the W
(2)
n -algebras and yielding the vertex algebras M(p)

and W(p) of the logarithmic (1, p)-models. This generalises the results for p = 2 and 3 mentioned above.

In order to understand the relation between the W
(2)
n -algebras and the (1,n+ 1)-theories, one needs a

suitably explicit description of the W
(2)
n -algebras at level −n2/(n+ 1). Adamović [A2] provides such a

description for W
(2)
2 ≡ ŝl(2) (the level is then −4/3). Recall that the (1, p)-triplet algebra is constructed

as the kernel of a screening inside an appropriate rank one lattice algebra associated to the (rescaled) A1

root lattice. Adamović considers a rank two lattice of indefinite signature, whose associated lattice vertex

algebra contains the rank one lattice vertex algebra of the (1,3)-theory as a subalgebra. For the screening

charge, he chooses that of the (1,3)-theory so as to guarantee that the kernel contains the (1,3)-triplet

algebra W(3) as a subalgebra. But, he also finds the simple affine vertex algebra of sl(2) at level −4/3 as

a subalgebra of the screening’s kernel.

Our first result generalises this. We consider an appropriate rank two lattice D of indefinite signature,

such that the lattice of the (1, p)-triplet theory is a sublattice. We choose the screening charge to be that of

the (1, p)-triplet theory so that the (1, p)-triplet algebra is contained in the screening’s kernel. In addition,

we find another subalgebra, which we call Bp, that is generated by two fields of conformal dimension

n/2. We compute the operator product algebra of Bp and also some relations in B5. The result can be

summarized as

Theorem. For p = 2,3,4,5, the algebra Bp is a quotient of W
(2)
p−1 at level −(p − 1)2/p. In general,

comparing operator product algebras is consistent with the conjecture that Bp is a quotient of W
(2)
p−1 at

level −(p−1)2/p for all p,

As the operator product algebra of the W
(2)
n -algebra for n ≥ 4 is only partially known (see [FS]), we are

unable to make stronger statements concerning the relationship between these algebras and the Bp. We

remark, however, that the dimension three Virasoro primary field of W
(2)
n (that appears for n > 3) is in the

kernel of the proposed homomorphism.

Now that we have an explicit description of the algebra Bp, we investigate its coset algebras. In general

by this we mean the following:

Definition 1. Let A be a vertex algebra and B ⊆ A a subalgebra. Then, the coset algebra of B in A is the

commutant subalgebra Com(B,A) ⊆ A. In physics, the conformal field theory corresponding to the coset

algebra is usually denoted by
A

B
.

If B = Com(Com(B,A),A), then B and Com(B,A) are said to form a Howe pair inside A.

Mutually commuting pairs in the theory of vertex algebras have been introduced in [DM, LL], and examples

containing the singlet algebras M(2) and M(3) appear in [L, CL] and [A2], respectively. Our main result

is then
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Theorem. Within the kernel of the screening operator, the (1, p)-triplet algebra W(p) and a certain rank

one lattice vertex algebra form a Howe pair. Furthermore, the (1, p)-singlet algebra M(p) and a certain

rank one Heisenberg vertex algebra form a Howe pair inside Bp.

It is somewhat remarkable that the very explicit descriptions of the algebras involved allow us to exhaus-

tively describe these commutants.

Given a vertex operator algebra together with a mutually commuting pair of subalgebras, an important

question is how a given vertex algebra module will decompose into modules of the two subalgebras. Con-

sider the cases p = 2, for which B2 is the rank one βγ vertex algebra, and p = 3, for which B3 is the simple

affine vertex algebra of ŝl(2)−4/3. In both cases, characters are known for the full spectrum of modules and

extended algebras corresponding to simple currents are known [CR1]. As an application of our results, we

decompose characters of all the irreducible Bp-modules, for p = 2,3, into irreducible characters of M(p)

and the appropriate rank one Heisenberg algebra. In addition, we find the simple current extensions whose

modules’ characters can be decomposed into those of W(p) and the appropriate rank one lattice vertex

operator algebra. When p = 2, B2 is itself a simple current extension of ŝl(2)−1/2 [R3] and we provide

character decompositions for the latter into M(2)- and W(2)-characters.

The article is organized as follows. In section two, we provide necessary information concerning the

triplet algebra W(p) and the singlet algebra M(p). The main results are then proven in section three, where

we first construct the vertex algebra Bp, compute the first few leading terms of its operator product algebra,

and compare the result with that of the W
(2)
p−1-algebra at level −(p−1)2/p. The second part of this section

then proves that W(p) may be realised as a coset algebra inside the kernel of a screening operator, while

M(p) may be realised as a coset algebra inside Bp. Section four then details the character decompositions

that illustrate our results for p = 2 and p = 3.

Acknowledgements. We thank Andrew Linshaw and Antun Milas for carefully reading the manuscript and

useful discussions related to this work. We also thank the referee for their very helpful comments. DR’s

research is supported by an Australian Research Council Discovery Project DP1093910. SW’s work is

supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; the

Grant-in-Aid for JSPS Fellows number 2301793; and the JSPS fellowship for foreign researchers P11793.

2. W(p) AND M(p) THEORIES

In this section, we outline the representation theory of the W(p) and M(p) vertex operator algebras —

to be defined in the following. This summary is based on [A1] and [NT].

2.1. The free boson or Heisenberg vertex operator algebra. The Heisenberg vertex operator algebra

is that whose field modes are given by sums of products of generators of the Heisenberg algebra H. This

algebra is an associative complex algebra generated by an infinite number of generators an,n ∈Z, satisfying

the commutation relations

[am,an] = mδm+n,01 .

The Heisenberg algebra contains a number of commutative subalgebras. The most important one for this

paper is

H
≥ = C[a0,a1,a2, . . . ] .

The highest weight representations Fλ of H are called Feigin-Fuchs modules or Fock spaces. They are

uniquely characterised by their Heisenberg highest weight λ ∈C.2 If we denote the highest weight state by

|λ 〉 ∈ Fλ , so that

an|λ 〉= δn,0λ |λ 〉 , n ≥ 0 , (2.1)

2For physics applications, one usually restricts oneself to real λ , which is what we will do in later sections.
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then Fλ can be constructed as

Fλ =H⊗H≥ C|λ 〉 . (2.2)

The weight 0 Fock space F0 carries the structure of a vertex operator algebra – the so called Heisenberg

vertex operator algebra. As a vertex operator algebra, F0 is generated by the field

a(z) = ∑
n∈Z

anz−n−1 , (2.3)

which satisfies the operator product expansion

a(z)a(w)∼ 1

(z−w)2
. (2.4)

The choice of conformal structure is not unique. For any α0 ∈ C, one can define a Virasoro field

T (z) =
1

2
: a(z)2 : +

α0

2
∂a(z) , (2.5)

where : · · · : denotes normal ordering, meaning that one arranges the Heisenberg generators by ascending

mode number. The central charge defined by this choice of Virasoro field is

cα0
= 1−3α2

0 . (2.6)

The primary fields corresponding to the highest weight states |λ 〉 ∈ Fλ are constructed by means of an

auxiliary field which is the formal primitive of a(z):

φ(z) = â+a0 logz− ∑
n 6=0

an

n
z−n . (2.7)

Here,

[am, â] = δm,01 . (2.8)

Exponentials of the auxiliary generator â shift the weight of the Fock spaces, defining maps

eµ â : Fλ −→ Fλ+µ . (2.9)

The primary field corresponding to the state |λ 〉 is given by

Vλ (z) = : eλφ(z) : = eλ âzλa0eλ ∑n≥1 a−nzn/ne−λ ∑n≥1 anz−n/n . (2.10)

The conformal weight of this primary field is

hλ =
λ

2
(λ −α0) . (2.11)

2.2. The lattice vertex operator algebra V(p). For special values of α0, one can define a lattice vertex

operator algebra V(p). Let p be an integer greater than one and define α+ =
√

2p, α− =−
√

2/p and

αr,s =
1− r

2
α++

1− s

2
α− , (2.12)

where r and s are integers. Note that αr,s is periodic: αr,s = αr+1,s+p. We set the parameter α0 of the

Heisenberg vertex operator algebra to α0 = α++α−, so that the Virasoro field is given by

T (z) =
1

2
: a(z)2 : +

p−1√
2p

∂a(z) (2.13)

and the central charge by

cp = 1−6
(p−1)2

p
. (2.14)

We introduce the lattices

L = Zα+, L∨ = homZ(L,Z) = Z
α−
2

. (2.15)
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Then, αr,s ∈ L∨ for all r,s ∈ Z. The lattice algebra V(p) is an extension of the Heisenberg vertex operator

algebra F0 which, as a Heisenberg module, is given by an infinite sum of Fock spaces:

V(p) =
⊕

λ∈L

Fλ . (2.16)

There are 2p isomorphism classes of irreducible V(p)-modules [D]. They are parametrised by the cosets

[µ ] ∈ L∨/L:

V[µ ] =
⊕

λ∈[µ ]
Fλ . (2.17)

If we label the simple V(p)-modules by αr,s, for r = 1,2, 1 ≤ s ≤ p, then the definitions (2.16) and (2.17)

can be reexpressed as

V[αr,s] =
⊕

n∈Z
Fαr+2n,s . (2.18)

In more physical terms, V(p) is the extension of F0, or rather its associated vertex operator algebra,

by the simple current group generated by Fα+ under fusion. It is easy to check that the extension fields

are all mutually bosonic and that their conformal dimensions are integers. The reduction from a con-

tinuous spectrum to a finite spectrum may be explained by noting that the constraint on [µ ] ∈ L∨/L ={
0,− 1

2
α−,−α−, . . . ,− 1

2
(2p−1)α−

}
in the extended algebra module V[µ ] arises from requiring that the

conformal dimensions of the fields of V[µ ] all differ from one another by integers. These modules therefore

constitute the untwisted sector of the extended theory.

2.3. Screening operators and the singlet and triplet algebras. By the formula (2.11) for conformal

weights, there are two primary weight 1 fields

Q±(z) =Vα±(z) , (2.19)

which can be used to construct screening operators, though we will only be using Q−(z) for this purpose

here. The singlet vertex operator algebra M(p) is defined to be the vertex operator subalgebra of F0 given

by

ker

(∮
Q−(z)dz : F0 −→ Fα−

)
, (2.20)

while the triplet vertex operator algebra W(p) is the vertex operator subalgebra of V(p) given by

ker

(∮
Q−(z)dz : V[0] −→ V[α−]

)
. (2.21)

As a vertex operator algebra, W(p) is generated by the Virasoro field T (z) it inherits from V[0] and

two additional weight 2p− 1 Virasoro primary fields W±(z). These two weight 2p− 1 fields generate

an additional weight 2p− 1 Virasoro primary field W 0(z) in their operator product expansion, hence the

name “triplet algebra”. As a Virasoro module, W(p) decomposes into an infinite direct sum of irreducible

Virasoro modules:

W(p) =
⊕

n≥0

(2n+1)L(hα2n+1,1 ,cp) . (2.22)

Here, L(h,c) is the irreducible Virasoro module of weight h and central charge c.

The singlet algebra M(p) is not only a vertex operator subalgebra of F0, but also of W(p). In fact it can

alternatively be defined as

M(p) = F0 ∩W(p) . (2.23)

As a vertex operator algebra, M(p) is generated by the Virasoro field T (z) and the weight 2p−1 Virasoro

primary field W 0(z), hence the name “singlet algebra”. As a Virasoro module, M(p) decomposes into an
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infinite direct sum of the same irreducible Virasoro modules as W(p):

M(p) =
⊕

n≥0

L(hα2n+1,1 ,cp) . (2.24)

In order to understand the representation theories of M(p) and W(p), we need to refine our understand-

ing of the screening operators somewhat. The main difficulty arises from the fact that the factor zα−a0 in

Q−(z) (see formula (2.10)) will give rise to non-trivial monodromies when applied to general Fαr,s . This

problem can be circumvented by considering products of the Q−(z):
∫

[Γs]
Q−(z1) · · ·Q−(zs)dz1 · · ·dzs : Fαr,s → Fαr,−s . (2.25)

The cycle [Γs] over which this integral is taken is uniquely determined (up to normalisation) by requiring

that the above map be non-trivial (see [NT] for details). This map will henceforth be denoted by Q
[s]
− . The

maps Q
[s]
− , 1 ≤ s ≤ p− 1, commute with M(p) and W(p) and therefore define M(p)- and W(p)-module

homomorphisms.

The modules Fαr,s with r ∈Z and 1 ≤ s ≤ p−1 may be organised into Felder complexes under the action

of Q
[s]
− :

· · · −→ Fαr,s

Q
[s]
−−−→ Fαr+1,p−s

Q
[p−s]
−−−−→ Fαr+2,s

Q
[s]
−−−→ Fαr+3,p−s

−→ ·· · . (2.26)

Here we have made use of the periodicity αr,s = αr+1,s+p. These sequences are exact, meaning that

im(Q
[p−s]
− : Fαr−1,p−s

→ Fαr,s) = ker(Q
[s]
− : Fαr,s → Fαr+1,p−s

) , (2.27)

and also extend to V(p) modules:

· · · −→ V[α1,s]

Q
[s]
−−−→ V[α2,p−s]

Q
[p−s]
−−−−→ V[α1,s]

Q
[s]
−−−→ V[α2,p−s] −→ ·· · . (2.28)

There are 2p isomorphism classes of simple W(p)-modules Wr,s, r = 1,2 and 1 ≤ s ≤ p. They can be

simply characterised in terms of the exact sequences (2.28):

Wr,s =





ker
(

Q
[s]
− : V[αr,s] −→ V[α3−r,p−s]

)
if 1 ≤ s < p,

V[αr,p] if s = p.
(2.29)

We therefore obtain short exact sequences for 1 ≤ s < p:

0 −→Wr,s −→ V[αr,s] −→W3−r,p−s −→ 0. (2.30)

The highest conformal weight of Wr,s is hαr,s . For r = 1, the “space of ground states” — the space annihilated

by all positive modes of W(p) — is one-dimensional and for r = 2, it is two-dimensional. As Virasoro

modules, the Wr,s decompose into an infinite direct sum of simple Virasoro modules:

Wr,s =
⊕

n≥0

(2n+ r)L(hα2n+r,s ,cp) (r = 1,2, 1 ≤ s ≤ p). (2.31)

The characters of the simple Virasoro modules that constitute the Wr,s are well-known, leading to explicit

expressions for the characters of the latter modules:

ch
[
Wr,s

]
=

1

η(q) ∑
n≥0

(2n+ r)
(

q((2n+r)p−s)2/4p −q((2n+r)p+s)2/4p
)
. (2.32)

The representation theory of the singlet algebra M(p) is slightly more complicated because there are

uncountably many isomorphism classes of simple modules. For λ ∈C\L∨, the Fock space Fλ is simple as

a Virasoro module and therefore also as an M(p)-module. For λ ∈ L∨, the Fλ are not always semisimple
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as M(p)-modules, but they may again be used to characterise the simple (highest weight) M(p)-modules:

Mr,s =





ker
(

Q
[s]
− : Fαr,s −→ Fαr+1,p−s

)
if r ≥ 1 and 1 ≤ s < p,

im
(

Q
[p−s]
− : Fαr−1,p−s

−→ Fαr,s

)
if r ≤ 1 and 1 ≤ s < p,

Fαr,p if s = p.

(2.33)

Note that the equality (2.27) accounts for the case r = 1 in this characterisation. This time, the short exact

sequences (for 1 ≤ s < p) take the form

0 −→ Mr,s −→ F[αr,s] −→ Mr+1,p−s −→ 0. (2.34)

Again, the highest weight of Mr,s is hαr,s . As Virasoro modules, these M(p)-modules decompose as

Mr,s =
⊕

k≥0

L(hαr+2k,s
) (r ≥ 1, 1 ≤ s ≤ p),

Mr+1,p−s =
⊕

k≥0

L(hαr−2k,s
) (r ≤ 0, 1 ≤ s ≤ p).

(2.35)

We remark that for r ≥ 1 and 1 ≤ s ≤ p, the M(p)-modules Mr,s and M2−r,s are isomorphic as Virasoro

modules but not as M(p)-modules. The simple W(p)-modules are semisimple as M(p)-modules:

Wr,s =
⊕

k∈Z
M2k+r,s . (2.36)

For r ≥ 1 and 1 ≤ s ≤ p−1, the characters of the singlet modules are given by

ch
[
Mr,s

]
= ch

[
M2−r,p−s

]
=

1

η(q) ∑
n≥0

(q((r+2n)p−s)2/4p −q((r+2n)p+s)2/4p)

= ∑
n≥0

(
ch
[
Fαr−2n−1,p−s

]
− ch

[
Fαr−2n−2,s

])
.

(2.37)

3. COSET CONSTRUCTIONS FOR M(p) AND W(p)

In this section, we will construct a family of free field vertex algebras Bp inside a rank two lattice algebra.

These vertex algebras will be compared with the W-algebras W
(2)
n introduced by Feigin and Semikhatov and

the singlet algebras M(p) and triplet algebras W(p) will be characterized as commutant subalgebras.

3.1. The Feigin-Semikhatov algebras W
(2)
n . In [FS], Feigin and Semikhatov introduce a family of W -

algebras associated to the affine Lie superalgebra ŝl(n|1). They provide two constructions of these algebras.

The first is as the intersection of kernels of screening charges inside a certain lattice vertex algebra, where

the screening charges are associated to a simple root system of sl(n|1). The second is as a subalgebra of the

tensor product of the universal affine vertex super algebra of ŝl(n|1) at level k′ = 1/(k+n−1)+1−n with

a rank one lattice vertex algebra V . They use these constructions to compute the first few leading terms of

the operator product algebra, but for general n, a complete characterization of the algebra is unknown. We

will use the second to define a universal version of this algebra which we shall refer to as the W
(2)
n -algebra

of level k.

Feigin and Semikhatov consider two fields Ẽ(z), F̃(z) in this tensor product theory and define the W̃
(2)
n -

algebra of level k as the algebra generated by these two fields under iterated operator products. A set of

strong generators3 can then be constructed step by step by simply adding those fields in a given operator

product expansion that cannot be expressed in terms of the previous fields. At each step, one has to ensure

that there are no dependencies, that is, that the set of generators obtained thus far is actually strong. It is clear

that this procedure endows the resulting vertex algebra with a countable ordered set of strong generators.

3We recall that strongly generated means that every field of the algebra is a normally-ordered polynomial in the strong generators and

their derivatives and that being freely generated means that there are no relations between generators — there is no non-trivial linear

combination of normally-ordered products of the generators and their derivatives which vanishes.
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Call this set S and the generators {X̃ (i)(z)}i∈S. It contains a Virasoro field T̃ (z) for which Ẽ(z) and F̃(z) are

both primary fields of conformal dimension n/2. Our definition of the W
(2)
n -algebra is then as follows:

Definition 2. Let {X (i)(z)}i∈S be a set of fields whose operator product expansions have singular terms

which are identical to those of the X̃ (i)(z) (but omitting the tildes). Let A be the vector space spanned by the

vacuum vector |0〉 and the ordered PBW-like basis of non-zero elements of the form

X
(i1)
j1

. . .X
(im)
jm

|0〉,

where j1 ≤ j2 ≤ ·· · ≤ jm < 0 and if jr = jr+1 then ir ≤ ir+1. Then, T (z) is a Virasoro field and, by the

reconstruction theorem, the vector space A can be given the structure of a vertex operator algebra, the

Feigin-Semikhatov algebra W
(2)
n of level k.

By construction, the W̃
(2)
n -algebra of level k is a quotient of W

(2)
n of level k because there may exist relations

captured in the regular terms of the operator product expansions of the strong generators X̃ (i)(z). Our

definition therefore gives a universal version of the algebras constructed by Feigin and Semikhatov.

We remark that Feigin and Semikhatov originally proposed the notation, suggesting that the “(2)” of

W
(2)
n indicates that this algebra behaves similarly to sl(2). They implicitly assume, except for n = 1, that

the W
(2)
n algebra of level k is a quantum Hamiltonian reduction corresponding to a certain non-principal

embedding of sl(2) into the universal affine vertex algebra ŝl(n)k. Since this is an unproven statement,

let us state it as a conjecture. Let ϕn : sl(2) → sl(n) be an embedding of sl(2) in sl(n), such that sl(n)

decomposes into sl(2) modules as

λn−1 ⊕λn−1 ⊕
n−1⊕

i=1

λ2i−1, (3.1)

where λm denotes the m-dimensional irreducible representation of sl(2). Let W
(2)
n of level k be the quantum

Hamiltonian reduction of the affine vertex algebra of sl(n) of level k corresponding to the embedding ϕn.

These types of quantum Hamiltonian reduction can be found for example in [KRW].

Conjecture 1. For n > 1, the two algebras W
(2)
n and W

(2)
n , both of level k, are isomorphic.

This conjecture is implicitely stated in [FS]. We remark that our results do not depend on this conjecture.

Nonetheless, let us state some observations in its favour. The quantum Hamiltonian reduction gives rise to

a vertex algebra that is generated by two bosonic fields E and F of conformal dimension n/2. Moreover,

this reduction is strongly and freely generated as a vertex algebra by two bosonic fields of dimension n/2

and one each of dimensions 1,2, . . . ,n−1.

There is another algebra whose operator product algebra coincides with the known part of the operator

product expansions of the W
(2)
n algebra at the critical level k = −n. This algebra is realised as a com-

mutant associated to the superalgebra p̂gl(n|n) at critical level [CGL]. The resulting commutant algebra

was also found to be strongly and freely generated by n+ 1 fields, which we view as further evidence for

Conjecture 1.

For small n, the W
(2)
n algebras reduce to the βγ-ghosts for n= 1, ŝl(2)k in its universal form for n= 2, and

the Bershadsky-Polyakov algebra for n = 3. This last algebra is indeed known to be a quantum Hamiltonian

reduction of ŝl(3)k [B, P] and its usual notation, W
(2)
3 , gives a rather more mundane explanation for the

notation chosen for the W
(2)
n algebras in general. Recall that at non-generic levels, the universal vertex

algebra associated to ŝl(n)k ceases to be simple and one usually prefers to consider the simple quotient.

Because of this, the algebras defined through hamiltonian reduction will not be simple for all levels and one

should distinguish between them and their simple quotients.

We quote what has been computed for the operator product expansions of W
(2)
n at the level k =−n2/(n+

1) that is of interest for this work. These expansions are common to all non-trivial quotients of W
(2)
n .
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Because we will mostly concern ourselves with the connection to the singlet and triplet algebras M(p) and

W(p), we will set n throughout to p−1 for convenience.

Proposition 1 (Feigin-Semikhatov [FS]). Let k =−(p−1)2/p, let L be a Virasoro field of central charge

c = 2−6(p−1)2/p, and let H, E and F be Virasoro primary fields of conformal dimensions 1, (p−1)/2

and (p−1)/2, respectively. Then, the known part of the W
(2)
p−1 operator product algebra at level k includes

H(z)H(w)∼ −2/p

(z−w)2
, H(z)E(w)∼ E(w)

(z−w)
, H(z)F(w)∼− F(w)

(z−w)
,

E(z)E(w)∼ F(z)F(w)∼ 0,

E(z)F(w) =
(−1)p

pp−1

(2p−2)!

(p−1)!

1

(z−w)p−1
+

1

2

(−1)p−1

pp−2

(2p−2)!

(p−1)!

H(w)

(z−w)p−2
+

1

2

(−1)p

pp−3

(2p−4)!

(p−2)!

(p−2) : H(w)H(w) : − 2p−3
p

∂H(w)− 2
p
L(w)

(z−w)p−3
+

(−1)p

pp−3

(2p−4)!

(p−1)!

1

(z−w)p−4

(
W (w)− (p−1)

2p
∂L′(w)+

(p−1)

2
: H(w)L′(w) : +

(2p−3)(p−1)
(
− p

24
: H(w)H(w)H(w) : +

1

4
: ∂H(w)H(w) : − 1

6p
∂ 2H(w)

))
+ · · · ,

where L′ = L+ p : HH : /4 and W is a dimension 3 Virasoro primary. The dots denote terms in which the

exponent of z−w is greater than 4− p.

We remark that the dimension three field W only appears in the singular part of these operator product

expansions when p ≥ 5. In the case p = 5, Feigin and Semikhatov also computed all the operator product

expansions involving W . For a generic value of k, the resulting expressions are very long, but for k =

−(p−1)2/p =−16/5, they simplify considerably and are quoted for future reference.

Proposition 2 (Feigin-Semikhatov [FS]). When p = 5 and k = −16/5, the operator product expansions

for the dimension three field W are

W (z)H(w)∼ 0,

W (z)E(w)∼ 2

3

: H(w)∂E(w) : −2 : ∂H(w)E(w) : + 1
5
∂ 2E(w)− : L(w)E(w) :

(z−w)
,

W (z)F(w)∼ 2

3

: H(w)∂F(w) : −2 : ∂H(w)F(w) : − 1
5
∂ 2F(w)+ : L(w)F(w) :

(z−w)
,

W (z)W (w)∼ 16

5

Λ(w)

(z−w)2
+

8

5

∂Λ(w)

(z−w)
.

Here, Λ is a dimension 4 Virasoro primary. Its operator product expansion with W involves descendants of

W and a Virasoro primary of dimension 5 (see [FS, App. A.4.2]).

3.2. The triplet algebra as a coset. As in Section 2, take α+ =
√

2p and α− =−
√

2/p. We consider the

lattices

D+ = Zα+β+, D− = Zα+β−, D = Z
α+

2
(β++β−)+Z

α+

2
(β+−β−) , (3.2)

where β+ and β− form a basis for a two-dimensional vector space over R with bilinear form chosen such that

β+ has length squared 1, β− has length squared −1 and β+ is orthogonal to β−. We define corresponding

fields β+(z) and β−(z) with operator product expansions

β+(z)β+(w)∼−β−(z)β−(w)∼ log(z−w) , β+(z)β−(w)∼ 0. (3.3)

The derivatives of these fields define a rank 2 Heisenberg vertex operator algebra M. We then assert, in the

usual fashion, the existence of lattice vertex operator algebras VD+ , VD− and VD associated to the respective
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lattices D+, D− and D. We also introduce screening charges similar to those considered in Section 2.3:

Q± =
∮

dz : eα±β+(z) : . It is the kernel of Q− that forms our initial focus of attention.

Proposition 3. Define the following fields of VD:

T (z) =
1

2
: ∂β+(z)∂β+(z) : − 1

2
: ∂β−(z)∂β−(z) : +

α++α−
2

∂ 2β+(z),

T ′(z) =
1

2
: ∂β+(z)∂β+(z) : +

α++α−
2

∂ 2β+(z),

W+(z) = Q+W 0(z), W 0(z) = Q+W−(z), W−(z) = : e−α+β+(z) : ,

e(z) = : e−α+(β+(z)−β−(z))/2 : , h(z) = α−∂β−(z), f (z) =
(−1)p(p−1)!

pp−1
Q+ : e−α+(β+(z)+β−(z))/2 : .

Each of these fields belongs to the kernel of Q−, denoted by kerVD
(Q−).

Proof. This is clear for W+, W 0 and W−, and the operator product expansion of : eα−β+(z) : with e, h and

: e−α+(β++β−)/2 : is easily checked to be regular. Thus, e,h ∈ kerVD
(Q−) too. The statement also follows

for f , since Q− and Q+ commute. Finally, T is in the kernel as T ′ and : ∂β−∂β− : are. �

It is well-known [AM4] that W±, W 0 and T ′ strongly generate the triplet algebra W(p). It is also well-

known [A1] that W 0 and T ′ strongly generate the singlet algebra M(p). Furthermore, it is easily verified

that T is a Virasoro field of central charge c = 2− 6(p− 1)2/p. For the module of VD− corresponding to

the coset D−+α+β−λ/4, we use the convenient notation V[λ ].

Theorem 4. As a module of W(p)⊗VD− ,

kerVD
(Q−)∼=W1,1 ⊗V[0]⊕W2,1 ⊗V[2].

Moreover, this kernel is a simple vertex operator algebra.

Proof. Using (2.33) with s = 1, we get, as a direct sum of irreducible singlet modules,

kerVD+
(Q−)∼=

⊕

r∈Z
M2r+1,1, kerVD++α+/2

(Q−)∼=
⊕

r∈Z
M2r,1 (3.4)

and by (2.36), as a direct sum of irreducible triplet representations,

kerVD+
(Q−)∼=W1,1 and kerVD++α+/2

(Q−)∼=W2,1. (3.5)

Obviously, kerVD− (Q−) = VD− and hence the kernel kerVD
(Q−) is a direct sum of two irreducible W(p)⊗

VD− -modules:

kerVD
(Q−)∼=W1,1 ⊗V[0]⊕W2,1 ⊗V[2]. (3.6)

Finally, the modules W1,1 and V[0] are the identities in their respective fusion rings and W2,1 and V[2] are

simple currents of order two: W2,1 ×W2,1 = W1,1 [FHST, GR, TW1] and V[2]×V[2] = V[0]. We therefore

obtain

(W1,1 ⊗V[0])× (W1,1 ⊗V[0]) =W1,1 ⊗V[0],

(W1,1 ⊗V[0])× (W2,1 ⊗V[2]) =W2,1 ⊗V[2],

(W2,1 ⊗V[2])× (W2,1 ⊗V[2]) =W1,1 ⊗V[0],

(3.7)

which together imply that the kernel is simple as a module of W(p)⊗VD− , hence is a simple vertex operator

algebra. �

It is now fairly simple to characterize W(p) as a commutant inside the kernel of screenings. We recall that

physicists refer to the commutant subalgebra as the coset algebra.

Theorem 5. VD− and W(p) form a mutually commuting pair inside kerD(Q−). In other words, they form a

Howe pair.
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Proof. An element in the commutant of a vertex algebra corresponds to an invariant state for that algebra,

that is, a vacuum state. But the only vacuum state in the W(p)-module W1,1 ⊕W2,1 is the highest weight

state of W1,1, hence the invariant states of kerVD
(Q−), invariant under W(p), have the form 1⊗v0, v0 ∈V[0].

These clearly generate a copy of VD− . Analogously, the only vacuum state for VD− in V[0]⊕V[2] is that of

V[0], hence the invariant states of kerVD
(Q−), invariant under VD− , have the form w1,1 ⊗ 1, w1,1 ∈ W1,1. In

this way, we get W(p). �

3.3. A vertex algebra homomorphism. One of the main problems with explicitly working with the

Feigin-Semikhatov algebras is that the defining operator product expansions are only known to a few orders

(and what is known is already decidedly complex). In this section, we construct a free field realisation

which captures a reasonably large amount of this complexity. More precisely, we show that there exists

a surjective map from W
(2)
n to a subalgebra of the lattice vertex algebra VD. This will be used in the next

section to realise the singlet algebra M(p) as a commutant subalgebra.

Definition 3. Denote by Bp the vertex operator subalgebra of VD generated by e, h, f and T , as defined in

Proposition 3.

We wish to compare Bp with the Feigin-Semikhatov algebra W
(2)
p−1 of level k = −(p− 1)2/p. For this,

we compute some operator product expansions. The calculations are straight-forward, but tedious, and are

therefore omitted.

Proposition 6. The field T is Virasoro of central charge c = 2− 6(p− 1)2/p in Bp, while h, e and f are

Virasoro primaries of conformal dimensions 1, n/2 and n/2, respectively. Moreover,

h(z)h(w)∼ −2/p

(z−w)2
, h(z)e(w)∼ e(w)

(z−w)
, h(z) f (w)∼− f (w)

(z−w)
,

e(z)e(w)∼ f (z) f (w)∼ 0,

and, if p > 2,

e(z) f (w) =
(−1)p

pp−1

(2p−2)!

(p−1)!

1

(z−w)p−1
+

1

2

(−1)p−1

pp−2

(2p−2)!

(p−1)!

h(w)

(z−w)p−2
+

1

2

(−1)p

pp−3

(2p−4)!

(p−2)!

(p−2) : h(w)h(w) : − 2p−3
p

∂h(w)− 2
p
T (w)

(z−w)p−3
+

(−1)p

pp−3

(2p−4)!

(p−1)!

1

(z−w)p−4

(
− (p−1)

2p
∂T ′(w)+

(p−1)

2
: h(w)T ′(w) : +

(2p−3)(p−1)
(
− p

24
: h(w)h(w)h(w) : +

1

4
: ∂h(w)h(w) : − 1

6p
∂ 2h(w)

))
+ · · · .

If p = 2, this latter operator product expansion is replaced by

e(z) f (w) =
1

(z−w)
−h(w)−

(
∂h(w)+T (w)

)
(z−w)+

2

(
W(w)− 1

4
∂T ′(w)+

1

2
: h(w)T ′(w) : −

1

12
: h(w)h(w)h(w) : +

1

4
: ∂h(w)h(w) : − 1

12
∂ 2h(w)

)
(z−w)2 + · · · ,

where W is a dimension 3 Virasoro primary. Again, the dots denote higher-order terms.

Carefully comparing the operator product expansions of Propositions 1 and 6 now motivates the following

definition:

Definition 4. For p > 2, we define a map ω between the generators of W
(2)
p−1 at level k =−(p−1)2/p and

Bp as follows:

ω(H) = h, ω(E) = e, ω(F) = f , ω(L) = T, ω(W ) = ω(Λ) = · · ·= 0 .
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Here, we let W, Λ, and the higher-dimensional Virasoro primaries they generate, be annihilated by ω . For

p = 2, we instead set

ω(H) = h, ω(E) = e, ω(F) = f , ω(L) = T, ω(W ) =W, . . . ,

where the dots indicate that one may identify non-zero fields in Bp which serve as the images under ω of

the higher-dimensional Virasoro primaries.

It appears that ω induces a surjective homomorphism of vertex operator algebras from W
(2)
p−1, at the appro-

priate level, and Bp. Our lack of knowledge concerning the full structure of the Feigin-Semikhatov algebras

for large p makes this impossible to check in general. However, we can verify it for p ≤ 5.

First, note that the operator product expansion of E and F generates H, L, W , and probably the other

higher-dimensional primaries. Therefore, it is enough to verify the homomorphism property on E, F and

whichever fields appear in the singular terms of this expansion — the strong generators — because the

fields appearing in the regular terms may be expressed as linear combinations of normally-ordered products

of the strong generators. (This enables one to compute, for example, the explicit form of the p = 2 field W

introduced in Proposition 6.)

For p = 2, the strong generators are just E and F , so we need only compare

E(z)F(w)∼ 1

(z−w)
with e(z) f (w)∼ 1

(z−w)

to guarantee that ω extends to a homomorphism. Since both h and T (as well as W) may be expressed as

linear combinations of normally-ordered products of e and f , this homomorphism is surjective. The story is

similar for p = 3, for which h becomes a strong generator, and p = 4, for which h and T are both promoted

to strong generators.

When p = 5, W becomes a strong generator, in addition to h and T . Thus, we need to check that its

operator product expansions are consistent with W ∈ kerω . These were given in Proposition 2. We note

that the expansion of W with itself requires that Λ ∈ kerω and, in fact, that W generates a proper ideal in the

operator product algebra of W
(2)
p−1. Moreover, the expansions of W with E and F require that the following

non-trivial relations hold in B5:

Lemma 7. In B5, we have

0 = : h(z)∂e(z) : −2 : ∂h(z)e(z) : +
1

5
∂ 2e(z)− : T (z)e(z) : ,

0 = : h(z)∂ f (z) : −2 : ∂h(z) f (z) : − 1

5
∂ 2 f (z)+ : T (z) f (z) : .

Again, checking these relations is a straight-forward computation which will be omitted. However, we

mention that it is useful for these calculations to note that f (z) has the following explicit form in B5:

f (z) =− 1

54
: eα+(β+(z)−β−(z))/2

(
α+∂ 4β+(z)+4α2

+∂ 3β+(z)∂β+(z)+3α2
+∂ 2β+(z)∂

2β+(z)

+6α3
+∂ 2β+(z)∂β+(z)∂β+(z)+α4

+∂β+(z)∂β+(z)∂β+(z)∂β+(z)
)

: .

We remark that these relations mean that B5 is not freely generated by e, f , h and T (it is not universal as a

vertex operator algebra).

To summarise, we have proven the following result:

Theorem 8. For p≤ 5, ω induces a surjective vertex algebra homomorphism between the Feigin-Semikhatov

algebra W
(2)
p−1 of level k =−(p−1)2/p and Bp.

The following conjecture is therefore natural:

Conjecture 2. For general n, there exists a surjective vertex algebra homomorphism (extending ω) between

the Feigin-Semikhatov algebra W
(2)
n of level k =− n2

n+1
and Bn+1.
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The obstruction to verifying this for higher n is the unknown operator product expansions of the strong

generators of dimension greater than 3.

We remark that if the algebra considered by Feigin and Semikhatov in [FS] turns out not to be freely

generated, meaning that there are non-trivial linear dependencies among normally-ordered products of the

generators, then an analogue of Theorem 8 will still hold with W
(2)
p−1 and Bp replaced by their appropriate

quotients. In particular, W
(2)
1 may be identified with the βγ ghost vertex algebra which is universal and

simple. The surjection ω therefore gives rise to an isomorphism of vertex algebras W
(2)
1

∼= B2.4 Similarly,

W
(2)
2 is the universal form of ŝl(2) at level − 4

3
and one can easily check that the kernel generated by W

is the maximal ideal of W
(2)
2 using the explicit knowledge of the singular vectors of the vacuum module.

In this case, ω induces an isomorphism between ŝl(2)−4/3 (the simple quotient of W
(2)
2 ) and B3. We will

come back to these isomorphisms in Section 4.

3.4. The singlet as a commutant subalgebra. We begin by recalling two results on the kernels of screen-

ings due to Adamović:

Lemma 9 (Adamović [A1, Prop. 2.1 and Thm. 3.1]). Let M+ be the rank one Heisenberg vertex opera-

tor algebra generated by ∂β+. Then, kerM+(Q+) is the Virasoro algebra with Virasoro element T ′ and

kerM+(Q−) is the singlet algebra M(p) generated by T ′ and W 0.

Recall that h = α−∂β− and that M is the rank two Heisenberg vertex operator algebra generated by ∂β+

and ∂β−. Using similar ideas to [A2], we show:

Proposition 10. The singlet algebra M(p) may be realised as a subalgebra of kerBp
(h0):

kerBp
(h0) = kerM(Q−) = kerM+(Q−)⊗M− =M(p)⊗M−. (3.8)

In particular, M(p) is a subalgebra of Bp.

Proof. Denote by k0 the zero mode of ∂β+ − ∂β−. Then Bp is in the kernel of k0, since all its weak

generators e, f , h and T are. As before, let M± denote the rank one Heisenberg vertex operator algebra

generated by ∂β±. Then kerVD
(h0) =VD+ ⊗M−, while kerVD+⊗M−(k0) = M+⊗M− and hence kerBp

(h0)⊂
M so that we have the inclusion kerBp

(h0) ⊂ kerM(Q−). For the other inclusion, we note that the second

statement of Lemma 9 implies that kerM(Q−) is generated by T ′, W 0 and ∂β− and that the first statement

implies that kerM(Q+) is generated by T ′ and ∂β−. As T ′ and ∂β− both have zero h0-eigenvalue, it follows

that kerM(Q+) ⊂ kerBp
(h0). It remains to show that W 0 ∈ kerBp

(h0), and since h0W 0 = 0, this means we

have to show that W 0 ∈Bp. Define5

v =
2(−1)p pp−1

(p−1)!
e−p−1 f = 2 : e−α+(β+−β−)/2 : −p−1Q+ : e−α+(β++β−)/2 : ∈ kerBp

(h0)

and gp(w) by ∂
(p−1)
w ea(w) = gp(w)e

a(w). Then,

Q+ : e−α+(β+±β−)/2 : = :
gp(α+β+)e

α+(β+∓β−)/2

(p−1)!
:

and thus

Q2
+ : e−α+(β+±β−)/2 : = 0.

4In this respect, it is convenient that p = 2 must be treated separately in Proposition 6. If W vanished (as it does for p > 2), then ω

would have a non-trivial kernel, contradicting the simplicity of W
(2)
1 .

5In what follows, we assume the mode expansion e(z) = ∑n∈Z enz−n−1 familiar in the theory of vertex algebras, even when the

conformal dimension of e is not 1.
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Hence,

Q+v = 2
(
Q+ : e−α+(β+−β−)/2 : −p−1

)(
Q+ : e−α+(β++β−)/2 :

)

= Q2
+

(
: e−α+(β+−β−)/2 : −p−1 : e−α+(β++β−)/2 :

)

= Q2
+ : e−α+β+ : = Q+W 0 .

It follows that v−W 0 ∈ kerM(Q+)⊂ kerBp
(h0) and hence W 0 ∈ kerBp

(h0). �

Theorem 11. The singlet algebra M(p) and the Heisenberg vertex algebra M− generated by ∂β− are

mutually commuting within Bp. In other words, they form a Howe pair.

Proof. Let Com(A,B) denote the commutant algebra of A as a subalgebra of B. We first show that

Com(M(p),Bp) = Com(M(p),kerBp
(h0)) and Com(M−,Bp) = Com(M−,kerBp

(h0)) . (3.9)

The second equality is obvious, since every element that commutes with ∂β− must be in the kernel of h0.

The first equation is a little more involved. For this, we note that every element that commutes with the

singlet algebra must be in the kernel of the zero mode of the Virasoro field T ′:

Com(M(p),Bp)⊂ kerBp
(T ′

0).

We will show that kerBp
(T ′

0)⊂ kerBp
(h0), from which the first equation of (3.9) will follow immediately.

Let Vn denote the M-module whose primary field is given by vn = : e−nα+(β+−β−)/2 : . Then, the Vn with

n ∈ Z close under fusion, so we may conclude that

V =
⊕

n∈Z
Vn

defines a vertex operator subalgebra of VD. Moreover, Bp ⊂V because Bp is generated by e and f , both of

which belong to V . We look for the fields of V that are annihilated by T ′
0 . The T ′

0-eigenvalues of the vn are

given by (see (2.11))

λn =
p

4
n

(
n+

2(p−1)

p

)
.

This is positive for n 6= 0,−1, hence any element of V that is annihilated by T ′
0 must live in either V0 or V−1.

In fact, V−1 can be ruled out when restricting to Bp because the field of minimal T ′
0-eigenvalue in Bp ∩V−1

is f (its T ′
0-eigenvalue is positive). We conclude that Com(M(p),Bp)⊂V0 ∩Bp = kerBp

(h0), as required.

Finally, let A and B be two simple vertex operator algebras inside a third C, and suppose that A commutes

with B. Then A and B are a mutually commuting pair inside A⊗ B. This follows because an element

a⊗ b ∈ A⊗B commutes with A if and only if a is (a multiple of) the identity field a(z) = IA(z) on A (and

similarly for B). The claim of the theorem now follows from the identification kerBp
(h0) = M(p)⊗M−

and the fact that both M(p) and M− are simple vertex algebras. �

We remark that the similar problem of looking for all operators of Bp that annihilate M− leads not only to

all operators of the singlet algebra but also includes the zero-mode h0 of the operator algebra of Mβ .

4. BRANCHING FUNCTIONS FOR B2 AND B3

This section is an application of the coset constructions resulting in Theorems 5 and 11. Irreducible

modules of kerVD
(Q−) and Bp decompose into modules of its mutually commuting subalgebras. Here, we

will find these decompositions at the level of characters when p = 2 or p = 3.

For this, we need to identify kerVD
(Q−) with certain extended algebras constructed in [CR1]. The

construction of both these extended algebras and their modules relies on the conjecture that fusion re-

spects spectral flow, a conjecture that is consistent with the Verlinde formula for admissible level ŝl(2)
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[CR1, CR4]. We will first outline some preliminary results concerning ŝl(2), formulating as well the con-

jecture that fusion respects spectral flow. Then, we perform the character decompositions, using again

results of [CR1].

4.1. ŝl(2) at level k. We first fix our notation and conventions for the affine vertex algebra corresponding

to ŝl(2) at level k. The affine Lie algebra ŝl(2) is generated by hn, en, fn and K, for n ∈ Z, with non-zero

commutation relations6

[
hm,en

]
= 2em+n,

[
hm,hn

]
= 2mδm+n,0K,

[
em, fn

]
=−hm+n −mδm+n,0K,

[
hm, fn

]
=−2 fm+n. (4.1)

We fix K to act as multiplication by a fixed number k, called the level, on modules. The conformal structure

for k 6=−2 is given by the standard Sugawara construction:

Ln =
1

2(k+2) ∑
r∈Z

: 1
2
hrhn−r − er fn−r − fren−r : . (4.2)

The central charge is c = 3k/(k+2). Of course, the hn generate a copy of the Heisenberg algebra ĝl(1).

Recall the family of spectral flow automorphisms, parameterized by s ∈ Z, for ŝl(2) at level k:

σs(hn) = hn −δn,0sk, σs(en) = en−s, σs( fn) = fn+s, σs(L0) = L0 −
s

2
h0 +

s2

4
k. (4.3)

When V is a level k ŝl(2)-module, we may define another level k ŝl(2)-module V s as follows. To any

element v ∈ V we associate the twisted element σ∗
s (v). As a set, V s is given by all these twisted elements

and is isomorphic to V as a vector space. Then, the action of X ∈ ŝl(2) on V s is defined by

Xσ∗
s (v) = σ∗

s (σ
−1
s (X)v) . (4.4)

Note that V s and V are not usually isomorphic as ŝl(2)-modules (unless s = 0). We thus find

h0σ∗
s (
∣∣0
〉
) = skσ∗

s (
∣∣0
〉
) and L0σ∗

s (
∣∣0
〉
) =

s2

4
kσ∗

s (
∣∣0
〉
), (4.5)

where
∣∣0
〉

denotes the ŝl(2) vacuum state.

We are looking for states that will correspond to the generators W+, W 0, W− of W(p). For p = 2, the

appropriate ŝl(2) level is k =−1/2 and for p = 3, it is k =−4/3.

Proposition 12. When k = −1/2, the states W+
2 = σ∗

4 (e−1

∣∣0
〉
) and W−

2 = σ∗
−4( f−1

∣∣0
〉
) both then have

conformal dimension three and they are vacuum states for the ĝl(1)-subalgebra generated by h.

When k = −4/3, W+
3 = σ∗

3 (e−1e−1

∣∣0
〉
) and W−

3 = σ∗
−3( f−1 f−1

∣∣0
〉
) are vacuum states for the ĝl(1)-

subalgebra generated by h of conformal dimension five.

Proof. W+
2 is invariant under ĝl(1) because

h0W+ = σ∗
4 ((h0 +4k)e−1

∣∣0
〉
) = (4k+2)W+ = 0 (4.6)

and, obviously, hnW+ = 0 for n > 0. Further, its conformal dimension is 3 because

L0W+ = σ∗
4 ((L0 +2h0 +4k)e−1

∣∣0
〉
) =

(
1+4+4k

)
W+ = 3W+ . (4.7)

An analogous argument shows that W−
3 is invariant under ĝl(1) and likewise has conformal dimension 3.

The argument for the case k =−4/3 is identical. �

An important conjecture for the representation theory of affine vertex algebras is that fusion rules are

compatible with spectral flow automorphisms. In the case of interest to us, this is the following:

6We follow [R3] here in choosing a basis of sl(2) which is adapted to a triangular decomposition that respects the adjoint defining

the real form sl(2;R). There is a subtlety here in that the adjoint of the chiral algebra must extend to an adjoint on the simple current

extended algebra which must be consistent with the mutual localities of the chiral and extension fields. For k = − 1
2

, it was shown in

[R3] that choosing the su(2) adjoint leads to a non-associative extended algebra whereas choosing the sl(2;R) adjoint leads to the

algebra of the βγ ghosts.
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Conjecture 3. Let V and W be (admissible) level k modules of ŝl(2), where k ∈ {−1/2,−4/3}. Then,

V s ×W t = (V ×W )s+t . (4.8)

The fusion rules at these levels have been partially computed in [G, R1] and a Verlinde formula for the

Grothendieck ring of characters has been evaluated in [CR1]. In both instances, the results strongly support

the conjecture, as do the results known for more general admissible levels [CR4].

We denote the vacuum module at level k by L0. Since W±
2 ∈ L

±4
0 , we are interested in an extension

generated by these two modules. Assuming Conjecture 3, the modules L±4
0 generate a free abelian group

of simple currents. Combining the fusion orbit of these simple currents on the vacuum module L0 of level

k =−1/2, we obtain the module

A2 =
⊕

m∈Z
L

4m
0 (4.9)

which constitutes the vacuum module of a simple current extension of ŝl(2)−1/2 [CR1]. We will also denote

the corresponding extended algebra by A2. The fusion orbits through the other ŝl(2)−1/2-modules similarly

define (untwisted) A2-modules when the conformal dimensions of the states in the given orbit all differ by

integers. Similarly, for k =−4/3, the module

A3 =
⊕

m∈Z
L

3m
0 (4.10)

is the module of a simple current extension of ŝl(2)−4/3 and we also call the corresponding extended algebra

A3. This extended algebra has been constructed in [A3].

Finally, recall [AM3, G, R1] that for k = −1/2 or −4/3, hence c = −1 or −6 (respectively), there is

a family of representations Es
λ of ŝl(2)k, called the standard modules7 in [CR5], which are labelled by a

weight (h0-eigenvalue) λ ∈R/2Z and a spectral flow index s ∈ Z. For s = 0 the Eλ are examples of relaxed

highest weight modules [FSST]. They are affinisations of certain sl(2)-modules that are neither highest nor

lowest weight, but instead have weights λ +2n, n ∈Z, each with multiplicity one. Generically, the standard

modules are irreducible and their characters are given by

ch
[
E

s
λ

]
= trEs

λ
zh0qL0−c/24 =

1

η (q)2 ∑
n∈Z

z2n+λ+ksqs(2n+λ+ks/2)/2. (4.11)

The non-generic case corresponds to λ =±k mod 2, in which case the character formula (4.11) still holds,

but the modules become reducible but indecomposable. The irreducible quotient modules at these non-

generic parameters have characters which may be expressed as infinite (but convergent) linear combinations

of the non-generic Es
λ characters. We will detail this in the following as necessary. Modules of the extended

algebras are obtained by combining the appropriate spectral flow orbits.

4.2. Branching functions for B2 and ŝl(2) at level k = −1/2. In this subsection, we consider the case

p = 2 and its relation to ŝl(2) at level k =−1/2; for a review of the representation theory of the latter, see

[CR5]. The standard modules Es
λ , with spectral flow index s ∈Z and weight label λ ∈R/2Z are irreducible

for λ 6= ±1/2 mod 2. There are also non-standard irreducible modules Ls
µ , with µ ∈ {0,1} and s ∈ Z.

When s = 0 and s = 1, the non-standard irreducibles are highest weight modules. L0 is the vacuum module.

When λ =±1/2, the standard modules are indecomposable of length two with non-standard irreducibles

for composition factors:

0 −→ L
s+1
1 −→ E

s
1/2,+ −→ L

s−1
0 −→ 0, 0 −→ L

s+1
0 −→ E

s
−1/2,+ −→ L

s−1
1 −→ 0. (4.12)

Here the subindex + indicates that E±1/2,+ possesses a highest weight vector. The conjugate modules

E∓1/2,− are also indecomposable and are described by similar short exact sequences.

7The name standard refers to the fact that these modules provide the generic family of representations.
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4.2.1. Branching functions and the singlet theory. We now verify explicitly that the M(2)-characters are

precisely the branching functions obtained by decomposing irreducible ŝl(2)−1/2-characters into irreducible

ĝl(1)-characters. Theorem 11 in fact guarantees that we can do this for W
(2)
1 -characters. However, W

(2)
1 is

the βγ ghost system which is the order 2 simple current extension of ŝl(2)−1/2 by L1 [R3], an irreducible

module whose weights (h0-eigenvalue) are odd. It follows that any W
(2)
1 -module decomposes into a di-

rect sum of two ŝl(2)−1/2-modules whose weights (mod 2) differ by 1. As ĝl(1)-modules have constant

weight, we may conclude that the branching functions for the decomposition of ŝl(2)−1/2-characters into

ĝl(1)-characters will indeed be M(2)-characters.

To check this, we first note that the ĝl(1) subalgebra generated by h has lorentzian signature. Denoting

its irreducible modules by Fλ , where λ is its common weight, the characters have the form

ch
[
Fλ

]
=

zλ q−λ 2/2

η (q)
, (4.13)

with z keeping track of the weight and q the conformal dimension. Next, we recall from Section 2.3 that

there are M(2)-modules Fµ (of central charge −2) which are generically irreducible, generic now meaning

that µ /∈ Z, whose characters have the form

ch
[
Fµ

]
=

q(µ−α0/2)2/2

η (q)
. (4.14)

Here, we recall that α0 = 1 for p = 2. We now have the following character decomposition, realising the

generic singlet characters as branching functions of the standard ŝl(2)−1/2 characters:

ch
[
E

s
λ

]
= ∑

n∈Z

z2n+λ−s/2q−(2n+λ−s/2)2/2

η (q)
· q(2n+λ )2/2

η (q)
= ∑

n∈Z
ch
[
F2n+λ−s/2

]
· ch

[
F2n+λ+1/2

]
. (4.15)

It is worth remarking that the branching functions (the M(2)-characters) do not depend upon the spectral

flow index s.

The computations for the non-generic irreducible singlet characters may be detailed explicitly, but they

follow more easily (and more elegantly) from the simple derivation above by noting that the non-generic

irreducible characters may be written as infinite linear combinations of standard characters (4.11) [CR1]:

ch
[
L

s
λ

]
=

∞

∑
ℓ=0

(−1)ℓ ch
[
E

2ℓ+s+1
λ+ℓ+1/2

]
(λ = 0,1). (4.16)

Applying (4.15), we therefore obtain

ch
[
L

s
λ

]
= ∑

n∈Z
ch
[
F2n+λ−s/2

] ∞

∑
ℓ=0

(−1)ℓ ch
[
F2n+λ+ℓ+1

]
(4.17)

in which we recognise, using (2.37) and (4.14), the sum over ℓ as a non-generic M(2)-character:

ch
[
L

s
λ

]
= ∑

n∈Z
ch
[
F2n+λ−s/2

]
· ch

[
M2n+λ+1,1

]
. (4.18)

We summarize this as

Proposition 13. The characters of the irreducible ŝl(2)-modules at level k = −1/2 decompose into ĝl(1)

and M(2) characters as follows:

ch
[
E

s
λ

]
= ∑

n∈Z
ch
[
F2n+λ−s/2

]
· ch

[
F2n+λ+1/2

]
, ch

[
L

s
λ

]
= ∑

n∈Z
ch
[
F2n+λ−s/2

]
· ch

[
M2n+λ+1,1

]
. (4.19)

The first decomposition also describes that of the reducible standard ŝl(2)-modules.

B2, the βγ ghost system, being a simple current extension of ŝl(2) at level k = −1/2, has modules Ls
0

and E
s
λ , for λ ∈ R/Z and s ∈ Z. The latter are irreducible unless λ = 1/2 mod 2. As ŝl(2)-modules, they
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decompose as

L
s
0 = L

s
0 ⊕L

s
1, E

s
λ = E

s
λ ⊕E

s
λ+1, (4.20)

hence we obtain:

Proposition 14. The characters of the irreducible B2-modules decompose into ĝl(1) and M(2) characters

as follows:

ch
[
E

s
λ

]
= ∑

n∈Z
ch
[
Fn+λ−s/2

]
· ch

[
Fn+λ+1/2

]
, ch

[
L

s
0

]
= ∑

n∈Z
ch
[
Fn−s/2

]
· ch

[
Mn+1,1

]
. (4.21)

The first decomposition also describes that of the reducible B2-modules Es
1/2

.

We remark that such a module decomposition was guaranteed by Theorem 11.

4.2.2. Branching functions and the triplet theory. We have seen that the candidate states for the triplet

generators W± do not correspond to fields of the affine algebra but instead belong to an extended algebra

that we have denoted by A2. The fusion orbits through the Es
λ give rise to (untwisted) extended algebra

modules when the weight λ has the form j/2, for j ∈ Z. We therefore obtain a family parametrised by

j = 0,1,2,3 and a spectral flow index r = 0,1,2,3 [CR1]. When j is even, the resulting A2-module is

irreducible, whereas those with j odd are reducible but indecomposable. Their characters take the form

∑
s∈4Z

ch
[
E

r+s
j/2

]
= ∑

m∈Z
ch
[
F2m+( j−r)/2

]
∑
n∈Z

ch
[
F2n+( j+1)/2

]
, (4.22)

from which we observe that the first sum gives characters of the lattice vertex algebra VD− ,

∑
m∈Z

ch
[
F2m+( j−r)/2

]
= ch

[
V[( j−r)/2]

]
, (4.23)

corresponding to the coset D−+β−( j− r)/4. The second sum (the branching functions) are the following

W(2)-characters:

∑
n∈Z

ch
[
F2n+1/2

]
= ch

[
V[α1,2]

]
= ch

[
W1,2

]
,

∑
n∈Z

ch
[
F2n+1

]
= ch

[
V[α2,1]

]
= ch

[
W1,1

]
+ ch

[
W2,1

]
,

∑
n∈Z

ch
[
F2n+3/2

]
= ch

[
V[α2,2]

]
= ch

[
W2,2

]
,

∑
n∈Z

ch
[
F2n+2

]
= ch

[
V[α1,1]

]
= ch

[
W1,1

]
+ ch

[
W2,1

]
.

(4.24)

This demonstrates that the A2-characters built from the Es
j/2

decompose as a VD− -character times a W(2)-

character. Similarly, the decomposition for the non-standard irreducibles follows immediately from (4.18):

∑
s∈4Z

ch
[
L

s+r
λ

]
= ∑

m∈Z
ch
[
F2m+λ−r/2

]
· ∑

n∈Z
ch
[
F2n+λ+1,1

]
= ch

[
V[λ−r/2]

]
· ch

[
Wλ+1,1

]
. (4.25)

Summarizing, we get:

Proposition 15. Characters of irreducible A2-modules decompose into VD− ⊗ ŝl(2)−1/2-characters as

∑
s∈4Z

ch
[
E

r+s
j/2

]
= ch

[
V[−r/2]

]
· ch

[
W1,2

]
, ∑

s∈4Z

ch
[
E

r+s
j/2

]
= ch

[
V[(2−r)/2]

]
· ch

[
W2,2

]
,

∑
s∈4Z

ch
[
L

s+r
0

]
= ch

[
V[−r/2]

]
· ch

[
W1,1

]
, ∑

s∈4Z

ch
[
L

s+r
1

]
= ch

[
V[1−r/2]

]
· ch

[
W2,1

]
.

(4.26)

In particular, we have

ch
[
A2

]
= ∑

s∈4Z

ch
[
L

s
0

]
= ch

[
V[0]

]
· ch

[
W1,1

]
. (4.27)

It is now straightforward to lift this analysis to the extension A2 of B2 by the simple current L4
0:

A2 =
⊕

s∈Z
L

4s
0 . (4.28)
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Proposition 16. Characters of irreducible A2-modules decompose into VD− ⊗B2-characters as

∑
s∈4Z

ch
[
E

r+s
0

]
= ch

[
V[1−r/2]

]
· ch

[
W2,2

]
+ ch

[
V[−r/2]

]
· ch

[
W1,2

]
,

∑
s∈4Z

ch
[
L

r+s
0

]
= ch

[
V[1−r/2]

]
· ch

[
W2,1

]
+ ch

[
V[−r/2]

]
· ch

[
W1,1

]
.

(4.29)

Here r ∈ {0,1,2,3}.

We remark that the special case

ch
[
A2

]
= ∑

s∈4Z

ch
[
L

s
0

]
= ch

[
V[0]

]
· ch

[
W1,1

]
+ ch

[
V[1]

]
· ch

[
W2,1

]
= ch

[
kerVD

(Q−)
]

(4.30)

is consistent with Theorem 5, so it is natural to conjecture that A2
∼= kerVD

(Q−).

4.3. Branching functions for B3. We now turn to the case p = 3 and ŝl(2) of level k = −4/3. As with

k = −1/2, the irreducible modules may be described as being standard or non-standard. The irreducible

standard modules Es
λ again have spectral flow index s ∈ Z and weight label λ ∈ R/2Z, but now we require

that λ 6= ±2/3 mod 2. The non-standard irreducibles fall into two families Ls
0 and Ls

−2/3
. When λ =

±2/3 mod 2, the standard modules have the following non-split short exact sequences:

0 −→ L
s+1
0 −→ E

s
2/3,+ −→ L

s−1
−2/3

−→ 0, 0 −→ L
s+1
−2/3

−→ E
s
−2/3,+ −→ L

s−1
0 −→ 0. (4.31)

As before, the subindex + indicates that E±2/3,+ possesses a highest weight vector. Its conjugate module is

denoted by E∓2/3,−.

4.3.1. Branching functions and the singlet theory. We now verify explicitly that the M(3)-characters are

precisely the branching functions obtained by decomposing irreducible ŝl(2)−4/3-characters into irreducible

ĝl(1)-characters. Denoting the irreducible ĝl(1)-modules by Fλ , where λ is the common weight, the char-

acters are

ch
[
Fλ

]
=

zλ q−3λ 2/16

η (q)
. (4.32)

Moreover, we recall from Section 2.3 that the M(3)-modules Fµ (of central charge c =−7) are irreducible

when µ /∈ Z and that their characters have the form

ch
[
Fµ

]
=

q(µ−α0/2)2/2

η (q)
, (4.33)

where α0 =
√

8/3 for p = 3. The character decomposition realising the generic singlet characters as

branching functions is then

ch
[
E

s
λ

]
= ∑

n∈Z

z2n+λ−4s/3q−3(2n+λ−4s/3)2/16

η (q)
· q3(2n+λ )2/16

η (q)

= ∑
n∈Z

ch
[
F2n+λ−4s/3

]
· ch

[
F(2n+λ )/α0+α0/2

]
.

(4.34)

For the non-generic irreducible characters, there are again expressions in terms of infinite linear combi-

nations of characters of the forms (4.11) [CR1]:

ch
[
L

s
0

]
=

∞

∑
ℓ=0

(
ch
[
E

3ℓ+s+1
−2/3

]
− ch

[
E

3ℓ+s+2
2/3

])
, ch

[
L

s
−2/3

]
=

∞

∑
ℓ=0

(
ch
[
E

3ℓ+s+1
2/3

]
− ch

[
E

3ℓ+s+3
−2/3

])
.

(4.35)

Applying (4.34), we therefore obtain

ch
[
L

s
0

]
= ∑

n∈Z
ch
[
F2n−2−4s/3

] ∞

∑
ℓ=0

(
ch
[
F(2n+4ℓ−2/3)/α0+α0/2

]
− ch

[
F(2n+4ℓ+2/3)/α0+α0/2

])
,

ch
[
L

s
−2/3

]
= ∑

n∈Z
ch
[
F2n−8/3−4s/3

] ∞

∑
ℓ=0

(
ch
[
F(2n+4ℓ−4/3)/α0+α0/2

]
− ch

[
F(2n+4ℓ+4/3)/α0+α0/2

])
.

(4.36)



20 T CREUTZIG, D RIDOUT, AND S WOOD

Simplifying, we arrive at:

Proposition 17. Characters of ŝl(2)-modules at level k =−4/3 decompose into ĝl(1) and M(3) characters

as follows:

ch
[
E

s
λ

]
= ∑

n∈Z
ch
[
F2n+λ−4s/3

]
· ch

[
F(2n+λ )/α0+α0/2

]
,

ch
[
L

s
0

]
= ∑

n∈Z
ch
[
F2n−2−4s/3

]
· ch

[
Mn,1

]
, ch

[
L

s
−2/3

]
= ∑

n∈Z
ch
[
F2n−8/3−4s/3

]
· ch

[
Mn,2

]
.

(4.37)

Note that this again reflects Theorem 11.

4.3.2. Branching functions and the triplet theory. The candidates for the triplet generators W± have been

identified as belonging to the extended algebra A3. This time, the fusion orbits through the standard modules

Es
λ of ŝl(2)−4/3 give rise to (untwisted) extended algebra modules if the weight λ is in {0,±2/3}. We

therefore obtain a family of extended modules parametrised by λ = 0,±2/3 and the spectral flow index

r = 0,1,2 [CR1]. When λ = 0, the resulting A3-module is irreducible; otherwise, they are reducible but

indecomposable. Their characters take the form

∑
s∈3Z

ch
[
E

s+r
λ

]
= ∑

n,s∈Z
ch
[
F2n+λ−4r/3−4s

]
· ch

[
F(2n+λ )/α0+α0/2

]

= ch
[
V[λ−4r/3]

]
· ch

[
V[α2,3λ/2]

]
+ ch

[
V[λ+2−4r/3]

]
· ch

[
V[α1,3λ/2]

] (4.38)

Here, as in the last section, the V[λ−4r/3] are the modules of the lattice vertex algebra VD− corresponding to

the coset D−+β−α+(λ −4r/3)/4:

∑
m∈Z

ch
[
F4m+λ−4r/3

]
= ch

[
V[λ−4r/3]

]
. (4.39)

The branching functions are the W(3)-characters

∑
n∈Z

ch
[
F(4n+λ )/α0+α0/2

]
= ∑

n∈Z
ch
[
Fα2n,3λ/2

]
= ch

[
V[α1,3λ2

]

]
(4.40)

which are, in terms of irreducible W(3)-characters,

ch
[
V[α2,0]

]
= ch

[
W1,3

]
, ch

[
V[α1,0]

]
= ch

[
W2,3

]
,

ch
[
V[α1,1]

]
= ch

[
W1,1

]
+ ch

[
W2,2

]
, ch

[
V[α2,1]

]
= ch

[
W2,1

]
+ ch

[
W1,2

]
,

ch
[
V[α1,−1]

]
= ch

[
W1,1

]
+ ch

[
W2,2

]
, ch

[
V[α2,−1]

]
= ch

[
W2,1

]
+ ch

[
W1,2

]
.

(4.41)

This demonstrates that the A3-characters built from the Es
λ decompose as a VD−-character times a W(3)-

character. Similarly, the non-standard irreducibles L0 and L−2/3 give rise, via (4.36), to

∑
s∈3Z

ch
[
L

s+r
0

]
= ∑

m,s∈Z
ch
[
F2m−2−4r/3−4s

]
· ch

[
Mm,1

]
,

∑
s∈3Z

ch
[
L

s+r
−2/3

]
= ∑

m,s∈Z
ch
[
F2m−8/3−4r/3−4s

]
· ch

[
Mm,2

]
.

(4.42)

Simplifying now gives

Proposition 18. Characters of A3-modules decompose into VD− ⊗ ŝl(2)−4/3-characters as

∑
s∈3Z

ch
[
E

s+r
0

]
= ch

[
V[−4r/3]

]
· ch

[
W1,3

]
+ ch

[
V[2−4r/3]

]
· ch

[
W2,3

]
,

∑
s∈3Z

ch
[
L

s+r
0

]
= ch

[
V[2−4r/3]

]
· ch

[
W2,1

]
+ ch

[
V[−4r/3]

]
· ch

[
W1,1

]
,

∑
s∈3Z

ch
[
L

s+r
−2/3

]
= ch

[
V[4/3−4r/3]

]
· ch

[
W2,2

]
+ ch

[
V[−2/3−4r/3]

]
· ch

[
W1,2

]
.

(4.43)

Here r ∈ {0,1,2}.
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This result, together with Theorem 5, suggests that A3
∼= kerVD

(Q−) because

ch
[
A3

]
= ∑

s∈3Z

ch
[
L

s
0

]
= ch

[
V[0]

]
· ch

[
W1,1

]
+ ch

[
V[2]

]
· ch

[
W2,1

]
= ch

[
kerVD

(Q−)
]
. (4.44)
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