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ABSTRACT. Both the original Temperley-Lieb algebras TLn and their dilute counterparts dTLn form families of filtered al-
gebras: TLn ⊂ TLn+1 and dTLn ⊂ dTLn+1, for all n ≥ 0. For each such inclusion, the restriction and induction of every
finite-dimensional indecomposable module over TLn (or dTLn) is computed. To accomplish this, a thorough description of
each indecomposable is given, including its projective cover and injective hull, some short exact sequences in which it appears,
its socle and head, and its extension groups with irreducible modules. These data are also used to prove the completeness of the
list of indecomposable modules, up to isomorphism. In fact, two completeness proofs are given, the first is based on elementary
homological methods and the second uses Auslander-Reiten theory. The latter proof offers a detailed example of this algebraic
tool that may be of independent interest.
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1. INTRODUCTION

One of the two main goals of this paper is to construct a complete list of non-isomorphic indecomposable modules of
the Temperley-Lieb algebras TLn(β ) and their dilute counterparts dTLn(β ). Both families of algebras are parametrised
by a positive integer n and a complex number β . These indecomposable modules are characterised using Loewy dia-
grams, from which socles and heads may be deduced, and their projective covers and injective hulls are determined. We
also compute some of their extension groups and detail some of the short exact sequences in which they appear. Many of
these results are new, but a subset of these extensive data has appeared in the literature, most of the time without proofs.
Due to the increasing role played by the representation theory of these two families of algebras, both in mathematics and
physics, we believe that a self-contained treatment is called for.

The second main goal concerns the fact that both the Temperley-Lieb and dilute Temperley-Lieb families of algebras
have a natural filtration: TLn(β )⊂TLn+1(β ) and dTLn(β )⊂ dTLn+1(β ), for n≥ 1. This first inclusion, for example, is
realised by using all the generators ei, 1≤ i≤ n, of TLn+1(β ), except en, to generate a subalgebra isomorphic to TLn(β ).
The restriction and induction of TLn(β )- and dTLn(β )-modules along these filtrations has grown to be a useful tool and
the paper identifies the results, up to isomorphism, for all indecomposable modules. To the best of our knowledge, these
results are also new.

The study of the representation theory of the Temperley-Lieb algebra was launched by Jones [1], Martin [2] and
Goodman and Wenzl [3]. They provided descriptions of the projective and irreducible TLn(β )-modules. Shortly there-
after, Graham and Lehrer [4] introduced a large class of algebras, the “cellular algebras”, that included both TLn(β ) and
dTLn(β ). They proved many general properties and obtained a beautiful description of the role that their “cell representa-
tions” play as intermediates between the irreducible and projective modules. Many cellular algebras have diagrammatic
descriptions that are closely related to their applications in statistical mechanics. In this setting, the cell representations
are often referred to as the “standard modules”. More recent works on the representation theory of TLn(β ) and dTLn(β )

have profited by combining Graham and Lehrer’s insights into these standard modules with diagrammatic presentations
[5–8].

The recent literature attests to the necessity of having a thorough understanding of the indecomposable modules of
the Temperley-Lieb algebras. We outline here three examples that have arisen in the mathematical physics literature. In
Appendix A, we discuss in more detail three models of significant physical interest in which “exotic” indecomposable
representations (by which we mean neither standard nor irreducible) of TLn(β ) naturally appear.

First, due to the close relationship between statistical lattice models and conformal field theories, it is believed that
an operation analogous to the fusion product of conformal field theory should exist at the level of the lattice. One
proposal for such a “lattice fusion product” appeared in the work of Read and Saleur [9] and explicit computations were
subsequently carried out over the Temperley-Lieb algebra by Gainutdinov and Vasseur [10]. Their method exploited the
well known relationship between the representation theories of TLn(β ) and the quantum group Uq(sl2), leading them
to the following simple but crucial observation: The lattice fusion product of a TLn(β )-module with a TLm(β )-module
does not depend on n or m, if both are sufficiently large.1 This observation is welcome since these integers have no
natural interpretation in the continuum limit where conformal field theory is believed to take over. Further examples
of lattice fusion products were computed in [11], for both TLn(β )- and dTLn(β )-modules, using powerful arguments
based on restriction and induction. The classification of indecomposables is important here because the lattice fusion of
an irreducible and a standard module may result in indecomposables that are neither irreducible, standard nor projective.
These computations assume some of the results that will be proved in Section 4 (and thereby provide one of the primary
motivations for the work reported in this paper).

1The fact that lattice fusion operates between modules over different algebras indicates that it should be thought of as an operation on modules over
the Temperley-Lieb categories.
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As a second example illustrating the importance of having a complete list of indecomposable modules, we mention the
work [12] of Morin-Duchesne, Rasmussen and Ruelle, who used the map between dimer and XXZ spin configurations to
introduce a new representation of TLn(β ), with β = 0. This representation was crucial for their analysis of dimer models
and their contention [13] that the continuum limit is described by a (logarithmic) conformal field theory of central charge
c =−2. In most models described by the XXZ spin-chain, the Temperley-Lieb generators act on two neighbouring sites.
In their new representation, the generators act on three consecutive sites and the decomposition of this representation
into a direct sum of indecomposable modules involves modules that are, generically, neither irreducible, standard nor
projective. We shall discuss this example in more detail in Appendix A.

Our last example points even further down the path that the present paper starts to explore. The Temperley-Lieb
algebras and their dilute counterparts are only two of the families of diagrammatic algebras encountered in mathematics
and physics. Other important variants of the Temperley-Lieb algebras include the affine (or periodic) families and
the one- and two-boundary families. The one-boundary Temperley-Lieb algebra (or blob algebra) was introduced by
Martin and Saleur [14] to describe statistical models wherein the physical field takes on various states along the domain
boundary. A discussion of the one-boundary representation theory may be found in [15]. Recent work [16] has shown
that in order to properly account for certain examples of integrable boundary conditions, called Kac boundary conditions,
one needs to consider instead a quotient of the one-boundary Temperley-Lieb algebra. By examining the bilinear forms
on the standard modules of these quotients and studying numerical data of the statistical models, the authors inferred the
structures of the Virasoro modules appearing in their conformal field-theoretic limits, finding that the Virasoro modules
were identified as certain finitely generated submodules of Feigin-Fuchs modules. Even if these observations remain
at the level of conjecture, the complexity of the modules over the one-boundary Temperley-Lieb algebras and their
quotients seems to go well beyond that of the indecomposable modules that will be classified in the present paper.
Hopefully, the methods developed here will also be fruitful for these other families.

The paper is organised as follows. Section 2 recalls the basic representation theory of the original and dilute
Temperley-Lieb algebras. It also introduces (twisted) dual modules, gives the restriction and induction of the standard,
irreducible and projective modules, and computes their Hom- and Ext-groups. Section 3 constructs recursively two fam-
ilies of new indecomposable modules and computes their extension groups with all the irreducibles. The calculations
show that, together with the projectives and irreducibles, these new families form a complete list of non-isomorphic in-
decomposable modules (Theorem 3.10). Section 4 gives the restriction and induction of these new families of modules,
relative to the inclusions described above. Finally, Section 5 repeats the construction of all indecomposable modules
and the proof of their completeness using a more advanced tool, namely Auslander-Reiten theory. We hope that reading
both Sections 3 and 5 in parallel will provide a comparison ground of standard methods for classifying indecomposable
modules over finite-dimensional associative algebras and show their relative advantages.
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2. STANDARD, IRREDUCIBLE AND PROJECTIVE MODULES

The definition of both the original and dilute Temperley-Lieb algebras, TLn(β ) and dTLn(β ), depends on a parameter
β taking values in a commutative ring. In what follows, this ring will always be the complex numbers C. Another
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parameter q ∈ C×, related to the first by β = q+ q−1, is also used. The standard modules of these algebras may be
introduced in several ways. In [2], bases for the standard modules are formed from walk diagrams, similar to Dyck paths.
In [3,17], the ties between the Temperley-Lieb, Hecke and symmetric group algebras lead naturally to standard tableaux.
Following early work [5] on tangles and knots, both the algebra and the standard modules were given diagrammatic forms
for which the action is simply concatenation of diagrams and the parameter β appears when a closed loop is formed.
This resulted in simplified proofs of many structural results [6] and led to the creation of the theory of cellular algebras
[4, 18]. This diagrammatic definition of standard modules was used in [7, 8] to construct the indecomposable projective
modules — these are also called the principal indecomposables — and their irreducible quotients. The present section
summarises the properties upon which the construction of the remaining indecomposable modules and the computation
of their restrictions and inductions will be based. (Many results are quoted in this section without proof; our presentation
follows [7, 8] and we direct the reader to these works for the missing proofs.)

2.1. Standards, irreducibles and projectives. We introduce a set of integers Λn for each algebra TLn or dTLn. This
set naturally parametrises the standard modules Sn,k, with k ∈ Λn. For dTLn, this set is simply {0,1, . . . ,n}; for TLn, it
is the subset of {0,1, . . . ,n} whose elements have the same parity as that of n. When q is not a root of unity or when it is
±1, both algebras TLn(β ) and dTLn(β ) are semisimple. Then, the standard modules Sn,k, for k ∈ Λn, form a complete
set of non-isomorphic irreducible modules of TLn (dTLn). Since the algebras are semisimple, these irreducible modules
exhaust the list of indecomposable modules. We will thus assume throughout that q is a root of unity other than ±1.

Let `≥ 2 be the smallest positive integer such that q2` = 1.

Unless otherwise specified, all modules will be complex finite-dimensional left modules.
The set Λn is partitioned as follows. If an element k satisfies k ≡ `− 1 mod `, then k is said to be critical and it

forms its own class in the partition. If the element k is not critical, then its class [k] consists of the images (in Λn) of k

generated by reflections with respect to the critical integers. Here, if kc is a critical integer, then 2kc− k is the reflection
of k through kc. The class of a non-critical k thus contains precisely one integer between each pair of consecutive
critical ones. We shall often need to refer to neighbouring elements in a non-critical class [k]. They will be ordered as
kL < · · · < k−− < k− < k < k+ < k++ < · · · < kR, so that kL ≥ 0 and kR ≤ n are the smallest and largest elements in
[k]⊂ Λn. The notation k j (k− j) is also used to refer to the j-th element to the right of k (to its left) so that, for example,
k−− = k−2 and k+++ = k3. We shall often refer to non-critical classes as orbits.

As an example of a partition, we take `= 4 and n = 12 so that the critical classes for dTL12 are [3] = {3}, [7] = {7}
and [11] = {11}, whereas the (non-critical) orbits are {0,6,8}, {1,5,9} and {2,4,10,12}. Note that the partition for
TL12, with `= 4, consists of just two non-critical classes, namely {0,6,8} and {2,4,10,12}. These are easily obtained
from the diagram

0 1 2 3 4 5 6 7 8 9 10 11 12,

where the dashed lines indicate the critical k. In what follows, we shall also find it convenient to reflect about a critical
k when the result does not belong to Λn, extending the notation k−, k+, and so on, in the obvious fashion. For instance,
if k = 9 in the above example, then k+ = 13 /∈ Λn.

The partition of the set Λn into classes under reflection is intimately related to the existence of distinguished central
elements. Both TLn and dTLn have a central element Fn whose exact form will not be needed (see [7] for its definition
for TLn and [8] for dTLn). Its crucial property here is the following ([7, Prop. A.2] and [8, Prop. B.3]):

Proposition 2.1. The element Fn acts as scalar multiplication by δk = qk+1 +q−k−1 on the standard module Sn,k.

It is easily shown that k and k′ belong to the same orbit in Λn if and only if they have the same parity and δk = δk′ . Thus,
all irreducible and standard modules labelled by an element of [k] have the same Fn-eigenvalue. Note that Fn has only
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one eigenvalue when acting on an arbitrary indecomposable module, although it need not then act as a multiple of the
identity.

The dilute algebra dTLn has other important central elements. In particular, there are central idempotents eid and oid

for which eid+oid is the unit of dTLn. (The subalgebra eid ·dTLn (oid ·dTLn) contains elements whose diagrammatic
representations have an even (odd) number of vacancies on each of their sides; see [8].) Any indecomposable module M
can be given a parity. This is defined to be even if eid ·M=M and odd otherwise. The standard module Sn,k over dTLn

has the parity of n− k.

Proposition 2.2. The composition factors of an indecomposable TLn- or dTLn-module are irreducible modules In,ki

whose labels ki belong to a single orbit [k] and, for dTLn, have the same parity.

We will construct these irreducible modules shortly.
It follows that if M and N are indecomposable, then Hom(M,N) = 0 whenever M and N have distinct parities (for

dTLn) or their Fn-eigenvalues are distinct.2 Similarly, Ext(M,N) = 0 under the same conditions, as otherwise there
would exist indecomposable modules possessing more than one Fn-eigenvalue or parity (see Section 2.4 for a primer on
these extension groups and Lemma 2.20 for additional conditions that imply Ext(M,N) = 0). This is how these central
elements will be used hereafter.

We now recall the theorems describing the basic structure of the standard modules. When not stated explicitly, these
results hold for the standards of both TLn and dTLn, as long as the index k on Sn,k belongs to the set Λn of the algebra.

We will use the symbol An to stand for either TLn or dTLn. Moreover, we will generally omit the label n on

the algebra An, its modules, and the set Λn, except when two different values are needed in the same statement.

The structure of the standard modules Sk ≡ Sn,k is conveniently investigated by employing a symmetric bilinear form〈
·, ·
〉

naturally defined on each. This form is invariant with respect to the algebra action in the sense that there exists an
involutive antiautomorphism † of A ≡An such that〈

x,u · y
〉
=
〈
u† · x,y

〉
, for all u ∈A and x,y ∈ Sk. (2.1)

We refer to [7, Sec. 3], for A = TL, and [8, Sec. 4.1], for A = dTL, for the definitions of
〈
·, ·
〉

and †, mentioning only
that † corresponds diagrammatically to a reflection. The point is that the invariance of this bilinear form means that its
radical Rk is a submodule of Sk. We denote the quotient by Ik = Sk/Rk.

Proposition 2.3.

(i) The standard modules Sk are indecomposable with Hom(Sk,Sk)' C.

(ii) Rk is the maximal proper submodule of Sk, for all k ∈ Λ, unless A = TL, β = 0 and k = 0. In this latter case, the

form
〈
·, ·
〉

is identically zero, so R0 = S0 and I0 = 0.

(iii) If k is critical, then the form
〈
·, ·
〉

is non-degenerate, so Rk = 0 and Sk = Ik is irreducible.

(iv) If k is non-critical, then Rk ' Ik+ , for all k < kR, and RkR = 0. The standard module SkR is therefore irreducible:

SkR ' IkR .

We remark that unless A = TL, β = 0 and k = 0, the module Ik is irreducible (and non-zero). In fact, all the irreducible
modules, up to isomorphism, may be obtained in this fashion.

Proposition 2.4. For all n≥ 1 and β ∈C, the irreducible modules Ik, with k ∈Λ, form a complete set of non-isomorphic

irreducible modules, except in the case of TLn with β = 0 and n even. In this latter case, I0 = 0 and the set of irreducibles

Ik with k ∈ Λ\{0} is complete.

2We remark that the elements of Hom-groups will be understood, unless otherwise specified, to be TLn- or dTLn-module homomorphisms, as
appropriate.
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We deal with the annoying possibility that Ik may be zero by introducing [4] a set Λn,0 ≡ Λ0 which is defined to be
Λ\{0}, if A=TL, β = 0 and n is even, and Λ otherwise. The set {Ik : k ∈ Λ0} is then a complete set of non-isomorphic
irreducible modules.

We conclude our discussion of standard modules by noting that Proposition 2.3 implies that the following sequence
is exact and non-split for k non-critical and k < kR:

0−→ Ik+ −→ Sk −→ Ik −→ 0. (2.2)

This sequence is also exact for k = kR if we assume that any module with a label k /∈ Λ is zero. For k = kR, so k+ /∈ Λ,
it reads 0→ 0→ SkR → IkR → 0, which simply states that SkR is its own irreducible quotient. With this understanding,
the composition factors of the non-critical standard module Sk are therefore Ik and Ik+ . This leads to a quick proof of the
following result, needed in Section 2.2.

Proposition 2.5. For each non-critical k ∈ Λ with k 6= kL, Hom(Sk,Sk−)' C.

Proof. By (2.2), Sk and Sk− only have one composition factor in common: Ik. It follows that if f ∈ Hom(Sk,Sk−), then
Sk/ker f ' im f is either 0 or isomorphic to Ik. Any non-zero f is therefore unique up to rescaling. But, Ik is a quotient
of Sk and a submodule of Sk− , so there exists a non-zero f given by the composition Sk� Ik ' Rk− ↪→ Sk− .

We turn now to the structure of the projective modules. For each k ∈ Λ0, let Pk ≡ Pn,k be the projective cover of the
irreducible module Ik. (The module Pk is thus indecomposable.) When Ik = 0, thus A = TL with n even and β = k = 0,
we could define Pk = 0 as well, but this is more trouble than it is worth.

Proposition 2.6.

(i) If k ∈ Λ0 is critical, then the irreducible Ik is projective: Ik ' Sk ' Pk.

(ii) If k ∈ Λ0 is non-critical, then the following sequence is exact:

0−→ Sk− −→ Pk −→ Sk −→ 0. (2.3)

If k = kL, then k− /∈ Λ, so Sk− is understood to be zero. The sequence, in this case, reads 0→ 0→ PkL → SkL → 0,
indicating that SkL is projective and, due to (2.2), has (at most) two composition factors, Ik and Ik+ . If k = kR 6= kL, then
SkR ' IkR , by Proposition 2.3(iv), and PkR has exactly three composition factors, Ik− and two copies of Ik. For all other
non-critical k ∈ Λ0, the projective Pk has precisely four composition factors, namely Ik− , Ik (twice) and Ik+ .3 We will
discuss this further in Section 2.6.

Finally, we record the following result for future use.

Proposition 2.7. For all k ∈ Λ0, Hom(Sk,Pk)' C.

Proof. If k is critical or k = kL, then Pk ' Sk, so Hom(Sk,Pk) ' C by Proposition 2.3(i). So, we may assume that k is
non-critical with k > kL. Then, Pk has precisely two composition factors isomorphic to Ik.

Let f ∈ Hom(Sk,Pk) and consider the composition Sk
f−→ Pk

π

� Ik, where π is the canonical quotient map. If π f 6= 0,
then it is a surjection, hence there exists a homomorphism g making

Sk Ik 0

Pk

π f

πg (2.4)

3When A = TL with n even and β = 0, these two statements must be modified for P2 because I0 = 0: P2,2 has only two composition factors and, for
n > 2, Pn,2 has three. The sequence (2.3) remains exact and non-split in both these cases.



RESTRICTION AND INDUCTION OF TL INDECOMPOSABLES 7

commute, by the projectivity of Pk. Now, π f g= π requires that f be surjective, as kerπ is the maximal proper submodule
of Pk. However, this is impossible as Pk has more composition factors than Sk.

We must therefore have π f = 0, hence that im f ⊆ kerπ . Now, kerπ has only one composition factor isomorphic
to Ik and it is a submodule: Ik ' Rk− ⊆ Sk− ⊆ kerπ . Thus, im f is either 0 or isomorphic to Ik, by (2.2). f is therefore
unique up to rescaling and the (non-zero) composition Sk� Ik ↪→ Sk− ↪→ Pk gives the result.

2.2. Their restriction and induction. This subsection describes how the families of modules introduced so far behave
under restriction and induction. We first fix an inclusion of algebras An ↪→ An+1 whose image is the subalgebra of
diagrams whose (n+1)-th nodes are connected by an identity strand (see [7, Sec. 4] and [8, Sec. 3.4] for details). If M
is an An-module, its restriction to an An−1-module will be denoted by M↓ and its induction to an An+1-module by M↑.

Proposition 2.8.

(i) The restriction of the standard module Sn+1,k satisfies the exact sequence

0−→ Sn,k−1 −→ Sn+1,k↓ −→ Sn,k+1 −→ 0 (An = TLn), (2.5a)

0−→ Sn,k−1⊕Sn,k −→ Sn+1,k↓ −→ Sn,k+1 −→ 0 (An = dTLn). (2.5b)

(ii) For all non-critical k, these sequences split:

Sn+1,k↓ '

{
Sn,k−1⊕Sn,k+1, if An = TLn,

Sn,k−1⊕Sn,k⊕Sn,k+1, if An = dTLn.
(2.6)

(iii) For critical k, the result is almost always projective:

Sn+1,k↓ '

{
Pn,k+1, if An = TLn and k 6= n+1,

Pn,k⊕Pn,k+1, if An = dTLn and k 6= n,n+1.
(2.7)

The exceptions are Sn+1,n+1↓ ' Sn,n for TLn and dTLn, as well as Sn+1,n↓ ' Sn,n−1⊕Sn,n for dTLn.

(iv) The induction and restriction of standard modules are related by

Sn−1,k↑ ' Sn+1,k↓, for all n≥ 2, (2.8)

except when β = 0 for the module S2,0↑ over TL3. In that case,

S2,0↑ ' S3,1⊕S3,3, but S4,0↓ ' S3,1. (2.9)

Again, if one of the indices of the direct summands does not belong to Λn, then this summand is understood to be 0. We
remark that the submodule Sn,k of Sn+1,k↓, for An = dTLn, is always a direct summand, because its parity differs from
that of Sn,k−1 and Sn,k+1. This proposition appeared in [7] for TLn and in [8] for dTLn (see also [6] where a part of the
proposition was first stated). Analogous results were proved in [8] for the restriction and induction of the irreducibles of
dTLn. The proofs can be extended straightforwardly to TLn.

Proposition 2.9. Suppose that k ∈ Λn+1,0.

(i) If An = dTLn and Rn+1,k 6= 0, then

In+1,k↓ '

{
In,k−1⊕ In,k, if k+1 is critical,

In,k−1⊕ In,k⊕ In,k+1, otherwise.
(2.10)

If, moreover, Rn−1,k 6= 0, then In−1,k↑ ' In+1,k↓.
(ii) If An = TLn, then the same statements hold if one deletes the In,k appearing on the right-hand side of (2.10).
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Of course, Rn±1,k = 0 implies that In±1,k = Sn±1,k, so these results were already given in Proposition 2.8. This proposition
also gives the behaviour of the critical principal indecomposables under restriction and induction, because then Pn,k '
Sn,k. The non-critical cases are rather more delicate and are covered by the following result.

Proposition 2.10.

(i) For non-critical k ∈ Λn+1,0, the principal indecomposables satisfy

Pn+1,k↓ '

{
Pn,k−1⊕Pn,k+1, if An = TLn,

Pn,k−1⊕Pn,k⊕Pn,k+1, if An = dTLn.
(2.11)

Here, any modules with indices not in Λn,0 are not set immediately to zero. We first make the following corrections

to the right-hand side of the above formula:

• If k+1 is critical, then Pn,k+1 is replaced by Pn,k+1⊕Pn,k−−1 ' Sn,k+1⊕Sn,k−−1.

• If k−1 is critical, then Pn,k−1 is replaced by 2Pn,k−1 ' 2Sn,k−1.

• Any remaining Pn,k′ with k′ > n non-critical is replaced by Sn,k′− .

Now, any modules with indices not in Λn,0 are set to zero.

(ii) In all cases (with n≥ 2), Pn−1,k↑ ' Pn+1,k↓.

Proof. We work with dTLn for definiteness, the argument for TLn being identical after removing modules whose indices
are not in Λn. We will moreover omit the routine checks that nothing untoward happens for k = kL, kR, as long as
k+1≤ n.

Since restriction is an exact functor, (2.3) gives the exactness of

0−→ Sn+1,k−↓ −→ Pn+1,k↓ −→ Sn+1,k↓ −→ 0, (2.12)

hence, by (2.2), that of

0−→ Sn,k−−1⊕Sn,k− ⊕Sn,k−+1 −→ Pn+1,k↓ −→ Sn,k−1⊕Sn,k⊕Sn,k+1 −→ 0. (2.13)

Considerations of parity and Fn-eigenvalues now force Pn+1,k↓ to decompose as M−1⊕M0⊕M+1, where Fn has eigen-
value δk+i on Mi, i ∈ {−1,0,+1}. The exact sequence (2.13) therefore decomposes into three exact sequences:

0−→ Sn,k−−i −→Mi −→ Sn,k+i −→ 0, i ∈ {−1,0,+1}. (2.14)

Note that (k+ i)− = k−− i since neighbouring elements of an orbit are obtained from one another by reflection (see
the beginning of Section 2.1). The goal is to prove that Mi ' Pn,k+i, for each i ∈ {−1,0,+1}, taking into account the
replacements noted in the statement of the proposition. These replacements are easily dealt with: Let i =±1 and assume
that k+ i is critical with ` 6= 2. Then, the exact sequence (2.14) shows that Mi is Sn,k+1⊕Sn,k−−1, if i =+1, and a direct
sum of two copies of the projective Sn,k−1 = Sn,k−+1, if i =−1. Furthermore, if k+ i > n, then Sn,k+i ' 0 and (2.13) tells
us that Pn+1,k↓ contains Sn−1,k−−i. In the case `= 2, the four summands Sn,k−−1, Sn,k−+1 ' Sn,k−1 and Sn,k+1 of (2.13)
are all projective and they will thus be direct summands of Pn+1,k↓. This takes care of the replacements. From now on,
we will therefore fix i ∈ {−1,0,+1} and assume that k+ i≤ n is not critical.

Consider the following diagram in which the rows are exact by (2.3) and (2.14):

0 Sn,k−−i Pn,k+i Sn,k+i 0

0 Sn,k−−i Mi Sn,k+i 0.

α β

γ δ

g f idh
(2.15)
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A map f must exist making the right square commute, δ f = β , as Pn,k+i is projective. Moreover, f then satisfies
δ f α = βα = 0. As im f α ⊆ kerδ = imγ and γ is injective, one may construct a unique homomorphism g that also
makes the left square commute. Because of Proposition 2.3(i), the map g is either 0 or an isomorphism. If it is the latter,
then the short five lemma implies that f is also an isomorphism, hence that Mi ' Pn,k+i as desired. The proof of (i) will
thus be complete if the case g = 0 can be ruled out.

Suppose then that g = 0. Because 0 = γg = f α , we have ker f ⊇ imα = kerβ , so there exists a homomorphism h

such that hβ = f . The commutativity of the right square then gives δhβ = δ f = β , so that δh acts as the identity on
imβ = Sn,k+i. Therefore, h splits the bottom row so that Mi ' Sn,k−−i⊕Sn,k+i. It follows that

Hom(Sn,k+i,Mi)' Hom(Sn,k+i,Sn,k−−i)⊕Hom(Sn,k+i,Sn,k+i) = C⊕C, (2.16)

the first Hom-group following from Proposition 2.5 and the second following from Proposition 2.3(i). However,

Hom(Sn,k+i,Mi)
(1)
' Hom(Sn,k+i,M−1⊕M0⊕M1)' Hom(Sn,k+i,Pn+1,k↓)
(2)
' Hom(Sn,k+i↑,Pn+1,k)' Hom(Sn+1,k+i−1⊕Sn+1,k+i⊕Sn+1,k+i+1,Pn+1,k)

(3)
' Hom(Sn+1,k,Pn+1,k), (2.17)

where, for (1), adding the two other modules does not change the Hom-group as their parities or Fn+1-eigenvalues
are different, (2) is Frobenius reciprocity, and (3) again follows from parity and Fn-eigenvalue considerations. But,
Proposition 2.7 gives Hom(Sn,k+i,Mi)' Hom(Sn+1,k,Pn+1,k)' C, contradicting (2.16). This rules out g = 0.

For (ii), the isomorphism of Pn−1,k↑ and Pn+1,k↓ follows by comparing with the induction results of [7, 8].

Recall that induction functors are always right-exact. Here, we show that the functor ↑ is not left-exact in general.
Choose k ∈ Λn such that k++ = n+1 or n+2, as parity dictates, so that Sn,k+ ' In,k+ and 0→ Sn,k+ → Sn,k→ In,k→ 0
is exact. Inducing results in the following exact sequence:

Sn,k+↑ −→ Sn,k↑ −→ In,k↑ −→ 0. (2.18)

By Proposition 2.8, Sn,k+↑ has a direct summand isomorphic to Sn+1,k++1 which has a submodule isomorphic to
In+1,k++−1. Because k++ = n+ 1 or n+ 2, this submodule is In+1,n or In+1,n+1, hence is non-zero. However, the same
proposition shows that Sn,k↑ does not have any composition factor isomorphic to In+1,n or In+1,n+1, so the left-most map
of (2.18) cannot be an inclusion and we conclude that ↑ is not left-exact.

2.3. Their duals. Given a left module M over A ≡ An, the dual vector space HomC(M,C) is naturally equipped with
the structure of a right A-module which we shall denote by M∗. However, the involutive antiautomorphism † may be
used to twist this action to obtain a left module structure on Hom(M,C); the corresponding twisted dual will be denoted
by M∨. Explicitly, this twisted action is

(u f )(m) = f
(
u†m

)
; u ∈A, f ∈M∨, m ∈M. (2.19)

We will have occasion to consider (untwisted) dual modules M∗ in Sections 4 and 5. Until then, it is understood that
when we speak of a dual module, it is the twisted dual that we are referring to. As above, all modules are therefore
assumed to be complex finite-dimensional left modules, unless otherwise specified.

Proposition 2.11. Every irreducible A-module is self-dual: I∨k ' Ik, for all k ∈ Λ0.

Proof. By Propositions 2.3 and 2.4, every irreducible module may be constructed as the quotient of a standard module
by the radical of its invariant bilinear form. Therefore, every irreducible module carries an invariant non-degenerate

bilinear form
〈
·, ·
〉
.
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For each x ∈ I, define fx ∈ I∨ by fx(y) =
〈
x,y
〉
. Then, x 7→ fx is a module homomorphism:

(u fx)(y) = fx
(
u†y
)
=
〈
x,u†y

〉
=
〈
ux,y

〉
= fux(y). (2.20)

Moreover, it is injective as fx = 0 implies that 0 = fx(y) =
〈
x,y
〉

for all y ∈ I, hence x = 0 by non-degeneracy. Since
dim I∨ = dim I, this map is an isomorphism.

Proposition 2.12. Duality is reflexive: M' (M∨)∨.

Proof. The proof is quite similar. Define the map x ∈ M 7→ φx ∈ (M∨)∨ by φx( f ) = f (x), for all f ∈ M∨. This is a
module homomorphism,

(uφx)( f ) = φx
(
u† f
)
=
(
u† f
)
(x) = f

(
u††x

)
= f (ux) = φux( f ), (2.21)

and it is injective,

φx = 0 ⇒ φx( f ) = 0 for all f ∈M∨ ⇒ f (x) = 0 for all f ∈M∨ ⇒ x = 0, (2.22)

hence it is an isomorphism for dimensional reasons.

Proposition 2.13. Duality is an exact contravariant functor: The sequence

0−→ L
ι−→M

π−→ N−→ 0 (2.23)

is exact if and only if the sequence

0−→ N∨
π∨−→M∨

ι∨−→ L∨ −→ 0 (2.24)

is exact, where ι∨ and π∨ are defined by

ι
∨(g)(`) = g(ι(`)), for all ` ∈ L and g ∈M∨; π

∨(h)(m) = h(π(m)), for all m ∈M and h ∈ N∨. (2.25)

Proof. Assume that (2.23) is exact. We first check that π∨ is a module homomorphism. This follows because(
uπ
∨(h)

)
(m) = π

∨(h)
(
u†m

)
= h
(
π
(
u†m

))
= h
(
u†

π(m)
)
= (uh)(π(m)) = π

∨(uh)(m), (2.26)

for all m ∈M and h ∈ N∨. The check for ι∨ is similar.
Second, we prove that π∨ is injective. Take h ∈ kerπ∨, so that 0 = π∨(h)(m) = h(π(m)) for all m ∈M. This implies

that h = 0 because π is a surjection.
Third, we show that ker ι∨ = imπ∨. Exactness gives ι∨(π∨(h))(`) = π∨(h)(ι(`)) = h(π(ι(`))) = 0, for all ` ∈ L and

h ∈ N∨. Thus, imπ∨ ⊆ ker ι∨. To prove the reverse inclusion, we take g ∈ ker ι∨, so that 0 = ι∨(g)(`) = g(ι(`)) for
all ` ∈ L. Thus, g annihilates im ι = kerπ . Now, define a functional h ∈ N∨ by h(n) = g(m), where π(m) = n. This
is well defined, because π(m) = π(m′) implies that m−m′ ∈ kerπ , hence that g(m−m′) = 0, thus g(m) = g(m′). But,
π∨(h)(m) = h(π(m)) = g(m) for all m ∈M, so we see that g ∈ imπ∨. This proves that ker ι∨ ⊆ imπ∨.

Last, ι∨ is surjective by the rank-nullity theorem of linear algebra:

dimim ι
∨ = dimM∨−dimker ι

∨ = dimM−dimimπ
∨ = dimM−dimN∨ = dimM−dimN= dimL

= dimL∨. (2.27)

This completes the proof, Proposition 2.12 providing the converse.

Indeed, taking (twisted) duals defines an autoequivalence of the category of finite-dimensional A-modules. Such equiv-
alences are always exact.
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We will refer to the duals of the standard modules as costandard modules, denoting them by Ck = S∨k . From Propo-
sitions 2.11 and 2.13, we learn that the dual of the exact sequence (2.2) is

0−→ Ik −→ Ck −→ Ik+ −→ 0 (2.28)

and that this sequence is also exact and non-split, by Proposition 2.12. Note that this failure to split uses the basic fact
that (M⊕N)∨ 'M∨⊕N∨ as modules. It follows that a standard module Sk is self-dual if and only if it is irreducible.
The corresponding result for the principal indecomposables is as follows:

Proposition 2.14. The critical principal indecomposables are self-dual, as are the non-critical Pk with k > kL. The

non-critical PkL are self-dual if and only if they are irreducible.

Proof. The case where k is critical or where k is non-critical with k = kL, hence Pk ' Sk, has already been dealt with.
We therefore assume that k is critical and prove that Pk+i is self-dual, for all n≥ k+ i, where i = 1, . . . , `−1. The proof
is by induction and we shall detail it for A = dTL, omitting the simple modifications required for TL.

The base cases of this induction are i = 0 and 1. The former is the critical case already dealt with, so we turn to
i = 1. The key tool for this case, and indeed for the extension to higher i, is the realisation that duality commutes with
restriction: (M∨)↓ and (M↓)∨ are the same vector space with the same algebra action. For i = 1, we use the criticality
of Pk and Proposition 2.8(iii) twice to arrive at

P∨n,k+1⊕Pn,k ' P∨n,k+1⊕P∨n,k ' (Sn+1,k↓)∨ = (S∨n+1,k)↓= Sn+1,k↓= Pn,k+1⊕Pn,k, (2.29)

hence the self-duality of Pk+1, for all n≥ k+1 (noting that k 6= n,n+1). Assuming that self-duality holds for Pk+i and
Pk+i−1, where i≤ `−2, a similar calculation using Proposition 2.10 now proves that Pk+i+1 is self-dual.

For k non-critical with k > kL, the dual of the non-split exact sequence (2.3) is therefore

0−→ Ck −→ Pk −→ Ck− −→ 0, (2.30)

which is likewise exact and non-split. For k = kL, Ck− = 0 but CkL is not projective, in general, because PkL need not be
self-dual. Rather, CkL ' P∨kL

is injective.

Corollary 2.15.

(i) When k ∈ Λ is critical, the standard module Sk is projective and injective.

(ii) When k ∈ Λ0 is non-critical and k > kL, the projective module Pk is injective.

(iii) When k ∈ Λ0 is non-critical and k = kL, the costandard module Ck is injective.

Proof. These follow from the exactness of duality, the modules being self-dual for (i) and (ii), and the reflexivity of
duality for (iii) (Propositions 2.12 to 2.14). For P being projective is equivalent to M→ P→ 0 splitting for all M, which
is equivalent to 0→ P∨→ N splitting for all N, which means that P∨ is injective.

We remark that for A = TL with n even and β = 0, the costandard module C0 coincides with I2, by (2.2), which is not
injective.

For each k ∈ Λ0, we let Jk denote the injective hull of Ik. The critical standard modules are irreducible, projective and
injective: Ik = Sk = Pk = Jk. Each critical Sk is therefore the unique indecomposable object in its block, this block being
semisimple. These statements continue to hold for non-critical k if the class [k]⊂Λ contains a single element: [k] = {k}.
Otherwise, the non-critical blocks are non-semisimple and we identify the injective hulls and projective covers of the
modules introduced so far in the following proposition.

Proposition 2.16. If k ∈ Λ0 is critical, then Ik = Sk = Pk = Jk. If k ∈ Λ0 is non-critical, then:

(i) The module Jk is Pk, if k > kL, and CkL , if k = kL.
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(ii) The projective cover of Ik, Sk and Pk is Pk. That of Ck is Pk, if k = kR, and otherwise it is Pk+ . That of Jk is Pk+ ,

if k = kL, and otherwise it is Pk.

(iii) The injective hull of Ik, Ck and Jk is Jk. That of Sk is Jk, if k = kR, and otherwise it is Jk+ . That of Pk is Jk+ , if

k = kL, and otherwise it is Jk.

Proof. All injective and projective modules appearing in Corollary 2.15 are indecomposable. Therefore, these injectives
(projectives) will automatically be the injective hull (projective cover) of their submodules (quotients). Moreover, the
proof of the previous corollary shows that the injective hull of a module M is the projective cover of its dual M∨; the
statement (iii) is thus a reformulation of (ii).

We remark that the definition of the projective cover (injective hull) of M should include the surjective (injective)
homomorphism: P�M (M ↪→ J). However, we shall see in Proposition 2.17 that these homomorphisms are unique, up
to rescaling, in each case addressed by Proposition 2.16, hence we shall usually leave them implicit.

2.4. Interlude: Ext-groups. In order to classify indecomposable modules, we need to know when we can “stitch”
existing modules together to build bigger ones. This knowledge is encoded in the extension group Ext1(M,N), where
M and N are the modules being stitched. We begin with a quick definition of these groups, usually referred to as Ext-
groups for short, before showing how they may be computed and what their relation is to indecomposable modules. In
this section, we assume that A is an arbitrary finite-dimensional associative algebra over some field K.

We have noted in the previous sections that the operations of restricting and taking the dual of a module are exact.
This means that, if 0→ K→ L→M→ 0 is a short exact sequence, applying these operations (functors) to each of the
constituent modules gives another short exact sequence (see Proposition 2.13 for an example). Not all functors are exact
however. At the end of Section 2.2, we observed that induction is right-exact, but not left-exact, by giving an explicit
example. The functors under study in the present section are the Hom-functors HomA(N,−) and HomA(−,N). The
first is covariant and the second contravariant. Both are left-exact, but neither need be right-exact in general. In a sense,
extension groups measure the failure of these functors to be right-exact. (A complete discussion of Ext-groups, covering
what is needed here, can be found, for example, in chapter III of [19] and chapter IX of [20].)

Let N be an A-module. The n-th extension functors ExtnA(N,−) and ExtnA(−,N,) are the n-th right derived functors
of HomA(N,−) and HomA(−,N), respectively. This means that for any short exact sequence of A-modules

0−→ K−→ L−→M−→ 0, (2.31)

there exist two long exact sequences of K-vector spaces called the Hom-Ext long exact sequences:4

0 HomA(N,K) HomA(N,L) HomA(N,M)

Ext1A(N,K) Ext1A(N,L) Ext1A(N,M) · · ·

· · · ExtnA(N,K) ExtnA(N,L) ExtnA(N,M) · · ·

(2.32a)

and
0 HomA(M,N) HomA(L,N) HomA(K,N)

Ext1A(M,N) Ext1A(L,N) Ext1A(K,N) · · ·

· · · ExtnA(M,N) ExtnA(L,N) ExtnA(K,N) · · · .

(2.32b)

4As we shall see, these Hom- and Ext-groups are actually K-vector spaces because we work over a field. If we were instead working over a general
commutative ring, then the Hom- and Ext-groups would only be abelian groups, whence their names.
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In what follows, we shall only be concerned with the first extension groups Ext1A(−,−); we therefore simply write ExtA
for Ext1A . We shall also omit the subscript A, as we do for Hom-groups, when it is clear from the context.

The following results are crucial tools for computing extension groups: Ext(P,−) = 0 if and only if P is projective,
while Ext(−,J) = 0 if and only if J is injective. To see how these are used, let K and M be A-modules and let

0−→ K−→ J−→ L−→ 0 and 0−→ R−→ P−→M−→ 0 (2.33)

be an injective presentation of K and a projective presentation of M, respectively.5 Once specialised to these cases, the
exact sequences (2.32a) and (2.32b) truncate, becoming

0−→ Hom(N,K)−→ Hom(N,J)−→ Hom(N,L)−→ Ext(N,K)−→ 0, (2.34a)

0−→ Hom(M,N)−→ Hom(P,N)−→ Hom(R,N)−→ Ext(M,N)−→ 0. (2.34b)

If the relevant Hom groups are known, then Ext(N,K) and Ext(M,N) can be identified.
The reason to introduce these extension groups here is the following: The (first) extension group Ext(M,N) describes,

roughly speaking, the inequivalent ways to “stitch” the modules M and N together to obtain a new module E with N

isomorphic to a submodule of E and M isomorphic to the quotient E/N. In other words, Ext(M,N) characterises the
(inequivalent) short exact sequences 0→N→ E→M→ 0. We then say that E is an extension of M by N. To state what
it means for two extensions to be equivalent, let E and E′ be two extensions of M by N:

e : 0−→ N
f−→ E

g−→M−→ 0 and e′ : 0−→ N
f ′−→ E′

g′−→M−→ 0. (2.35)

Then, e and e′ are said to be equivalent if there exists h : E→ E′ such that f ′ = h f and g = g′h. It can be shown that
this is an equivalence relation and that the set of inequivalent extensions of M by N is in one-to-one correspondence
with Ext(M,N). In this correspondence, the origin of the vector space Ext(M,N) corresponds to the split extension
E= N⊕M. Moreover, multiplying e by α ∈K× yields the extensions

αe : 0−→ N
α f−→ E

g−→M−→ 0 or 0−→ N
f−→ E

αg−→M−→ 0, (2.36)

which are easily seen to be equivalent. Finally, the sum e+ e′ is defined through an operation sometimes known as the
Baer sum, completing the K-vector space structure on the set of inequivalent extensions. As we will have no need of this
sum, we omit its definition and refer the reader to any standard text on homological algebra, for example [21, Sec. 3.4].

We remark that if the two extensions e and e′ of (2.35) are equivalent, then the middle modules E and E′ are isomor-
phic, by the short five lemma. However, the converse is not true: e and αe are not equivalent, for α 6= 1, despite both their
middle modules being E. In particular, if Ext(M,N) ' K, then there are precisely two extensions, up to isomorphism,
one split and one non-split. We shall use this conclusion many times in what follows.

2.5. Their Hom- and Ext-groups. We now have enough information to compute the homomorphism groups between
the modules Ik, Sk, Ck, Pk and Jk. This is quite straightforward, but there are various cases that have to be considered for
each pair of module types. For example, Hom(Ik,Sk′) = δk′,k−C because the image can only be the submodule Rk′ ' Ik′+

(or zero), unless k′ = k′R, in which case Sk′ = Ik′ and Hom(Ik,Sk′R
) = δk,k′R

C. We can avoid much of this case analysis by
agreeing to use the following conventions for the rest of this subsection:

• We will not consider Jk explicitly because, for every k, Jk is either Pk or Ck.
• The index k in Sk, Ck and Pk will be assumed to be non-critical because Pk ' Ck ' Sk ' Ik for critical k.
• The index k in Sk and Ck will exclude k = kR because CkR ' SkR ' IkR .
• The index k in Pk will exclude k = kL because PkL ' SkL .
• When A = TL, β = 0 and n is even, the index k in Sk and Ck will exclude k = 0 because C0 = S0 = I2.

5A injective (projective) presentation is a short exact sequence of the form (2.33), where the middle term is injective (projective).
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In the case A = TL, β = 0 and n even, we will also obviously exclude I0 = 0. The computation of Hom-groups is then
straightforward and uses the exact sequences (2.2), (2.3) and their duals.

Proposition 2.17. With these conventions, the groups Hom(M,N) between the irreducible, standard, costandard and

projective modules are summarised in the following table:

Hom(M,N)
N

Ik′ Sk′ Ck′ Pk′

M

Ik δk′,kC δk′,k−C δk′,kC δk′,kC
Sk δk′,kC

(
δk′,k +δk′,k−

)
C δk′,kC

(
δk′,k +δk′,k+

)
C

Ck δk′,k+C δk′,kC
(
δk′,k +δk′,k+

)
C

(
δk′,k +δk′,k+

)
C

Pk δk′,kC
(
δk′,k +δk′,k−

)
C

(
δk′,k +δk′,k−

)
C

(
2 δk′,k +δk′,k− +δk′,k+

)
C .

We remark that the entries of this table are related by the vector space isomorphisms Hom(M∨,N∨) ' Hom(N,M),
implemented by sending φ : N→M to φ∨ : M∨→ N∨, where φ∨( f )(n) = f (φ(n)) (see Proposition 2.13).

The extension groups involving these modules are now straightforward to compute. We assume the same conventions
on the index k as for the Hom-groups and note that this means that each Pk is projective and injective, hence any
Ext-group involving a Pk is zero.

Proposition 2.18. With these conventions, the groups Ext(M,N) between the irreducible, standard and costandard

modules may be summarised, with three exceptions, in the following table:

Ext(M,N)
N

Ik′ Sk′ Ck′

M

Ik
(
δk′,k− +δk′,k+

)
C (δk′,k−δk,kR +δk′,k−−)C δk′,k+C

Sk δk′,k−C
(
δk′,k− +δk′,k−−

)
C 0

Ck (δk′,k+δk′,k′R
+δk′,k++)C 0 (δk′,k+ +δk′,k++)C .

The exceptions occur for A = TL2 and β = 0, for which Ext(I2,2, I2,2)' C instead of 0, and for A = TL and β = 0, for

which Ext(I2,C2)' Ext(S2, I2)' C instead of 0.

Proof. We compute these extension groups using the Hom-Ext long exact sequences (2.32). To see how this works,
consider Ext(Sk,Sk′), for k non-critical, k 6= kR and k′ 6= k′R. We start from the short exact sequence (2.3), which is a
projective presentation of Sk, and examine the contravariant Hom-Ext long exact sequence (2.34b):

0−→ Hom(Sk,Sk′)−→ Hom(Pk,Sk′)−→ Hom(Sk− ,Sk′)−→ Ext(Sk,Sk′)−→ 0. (2.37)

Here, we have noted that the rightmost term is Ext(Pk,Sk′) = 0 because of projectivity. Substituting in the homomor-
phism groups from Proposition 2.17 gives

0−→
(
δk′,k +δk′,k−

)
C−→

(
δk′,k +δk′,k−

)
C−→

(
δk′,k− +δk′,k−−

)
C−→ Ext(Sk,Sk′)−→ 0. (2.38)

The Ext-group is therefore zero unless k′ = k− or k−−. In these cases, the exact sequence becomes

0−→ C−→ C−→ C−→ Ext(Sk,Sk−)−→ 0 and 0−→ 0−→ 0−→ C−→ Ext(Sk,Sk−−)−→ 0, (2.39)

respectively, and the Euler-Poincaré principle gives Ext(Sk,Sk−)' Ext(Sk,Sk−−)' C.
The computations for Ext(Ik,Sk′), Ext(Ik,Ck′), Ext(Sk, Ik′), Ext(Sk,Ck′), Ext(Ck, Ik′), Ext(Ck,Sk′) and Ext(Ck,Ck′)

are almost identical, utilising (2.2) or its dual (2.28) (which is an injective presentation of Ck). We only remark that,
for Ext(Ik,Sk′), one has to consider the case k′ = k−R separately because then Hom(Ik,Sk′+) = Hom(Ik, Ik′+). There is a
similar case to consider for Ext(Ck, Ik′).
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The computation for Ext(Ik, Ik′) is slightly different in that we instead start from the short exact sequence (2.2), which
is not a projective or injective presentation, to derive the Hom-Ext long exact sequence

0 Hom(Ik, Ik′) Hom(Sk, Ik′) Hom(Ik+ , Ik′)

Ext(Ik, Ik′) Ext(Sk, Ik′) Ext(Ik+ , Ik′) · · · .

(2.40)

Substituting for Hom(Ik+ , Ik′) and Ext(Sk, Ik′), we learn that Ext(Ik, Ik′) = 0, unless k′ = k±, and that the result is C in
either of the interesting cases.

Finally, the exceptions noted in the table are all related to the degenerate structure of the projective P2 when A =TL,
β = 0 and n is even. Specifically, the exact sequence (2.3) becomes

0−→ I2 −→ P2 −→ S2 −→ 0, (2.41)

explaining the non-triviality of Ext(S2, I2) and Ext(I2,C2). When n = 2, S2 ' I2, explaining the non-triviality of
Ext(I2, I2). The dimensionality of these Ext-groups is easily verified using projective presentations and Hom-Ext long
exact sequences, as above.

It is easy to show that the entries of the table in Proposition 2.18 are related by the vector space isomorphisms
Ext(M∨,N∨) ' Ext(N,M). This follows by noting that a projective presentation 0→ R→ P→M→ 0 of M gives an
injective presentation 0→M∨→ P∨→ R∨→ 0 of M∨, hence the exact sequence (2.34a) becomes

0−→ Hom(N∨,M∨)−→ Hom(N∨,P∨)−→ Hom(N∨,R∨)−→ Ext(N∨,M∨)−→ 0, (2.42)

upon replacing N by N∨. As Hom(N∨,K∨)' Hom(K,N), comparing with (2.34b) completes the proof.
An example of an application of these extension groups is the following result.

Corollary 2.19. If a module M is indecomposable with exact sequence 0→ Ik+ →M→ Ik→ 0, then M' Sk. Similarly,

if N is indecomposable with exact sequence 0→ Ik→ N→ Ik+ → 0, then N' Ck.

Proof. Since Ext(Ik, Ik+) ' C, there is a single isomorphism class of non-trivial extensions of Ik by Ik+ . Since Sk is
indecomposable and is therefore one such extension, M must be isomorphic to Sk. The second statement now follows
by duality.

It follows from Proposition 2.18 and Corollary 2.19 that we have classified all A-modules with two composition factors,
up to isomorphism. The complete list consists of the direct sums of two irreducibles, the (reducible) standard and
costandard modules, and the projective TL2-module P2,2 at β = 0.

We end this subsection by proving two useful lemmas. The first limits the number of non-trivial extension groups.

Lemma 2.20.

(i) Let M and N be A-modules whose composition factors have indices ki and k j, for some reference index k, where i

and j run over (multi)sets I and J, respectively, of integers. If |i− j|> 1 for all i ∈ I and j ∈ J, then Ext(M,N)'
Ext(N,M)' 0.

(ii) Let M be an A-module such that Ext(M, I)' 0 (Ext(I,M)' 0) for all semisimple modules I. Then Ext(M,N)' 0
(Ext(N,M)' 0) for all modules N.

Proof. The proof of (i) is by double induction, first on the length of M, that is the number of its composition factors
(including multiplicities), then on the length of N. First, suppose that N ' Ik j is irreducible. If the length of M is 1,
then M is also irreducible and Proposition 2.18 gives the result. If its length is greater than 1, let I be an irreducible
submodule of M. Then, 0→ I→M→M/I→ 0 is exact and the covariant Hom-Ext long exact sequence (2.32a) says
that so is Ext(Ik j , I)→ Ext(Ik j ,M)→ Ext(Ik j ,M/I). The two extreme extension groups are 0 by the induction hypothesis,
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hence Ext(Ik j ,M) = 0 as well. The contravariant Hom-Ext long exact sequence (2.32b) similarly yields Ext(M, Iki) = 0.
This now provides the base case for a similar induction on the length of N which completes the proof of (i). A similar
induction argument proves (ii).

A non-trivial extension group Ext(N,L) implies the existence of a module M such that the exact sequence

0−→ L−→M−→ N−→ 0 (2.43)

does not split. This, however, does not prove that M is indecomposable. Indeed, Proposition 3.9 will give examples of
non-trivial extensions that are decomposable. The second lemma gives an easy criterion to prove the indecomposability
of a given extension.

Lemma 2.21. Let L, M and N be the A-modules appearing in the short exact sequence (2.43). Suppose furthermore

that L and N are indecomposable and that Hom(L,N) = 0. Then, M is decomposable if and only if (2.43) splits.

Proof. Since the definition of the short exact sequence splitting is that M ' L⊕N, we only need show that decompos-
ability implies splitting under these hypotheses. Suppose then that M is decomposable. This implies that there exists a
non-trivial projection q : M→M, meaning that the morphism q satisfies q2 = q but is neither zero nor the identity.

Consider now the diagram

0 L M N 0

0 L M N 0,

f g

f g

p q r
(2.44)

in which both rows are exact. Because Hom(L,N) ' 0, the composition gq f must vanish, implying that there exist
unique morphisms p and r that make (2.44) commute. Now, f is injective and f pp = q f p = qq f = q f = f p, so it
follows that p2 = p. Similarly, g being surjective implies that r2 = r. The indecomposability of L and N therefore
requires that p and r must be either the zero morphism or the identity morphism. There are thus four subcases to study.

If both p and r are the identity, then so is q by the short five lemma. If, contrarily, both p and r are zero, then we have
q f = 0, hence im f ⊆ kerq, and gq = 0, hence imq ⊆ kerg. Combining these with exactness now gives imq ⊆ kerq,
which yields q = q2 = 0, a contradiction.

The remaining two cases are more interesting. If p is the identity and r is zero, then the snake lemma gives kerq '
N. On the other hand, the commuting left square of (2.44) implies that q acts as the identity on im f ' L. The two
eigenspaces of q are therefore isomorphic to L and N, hence M ' L⊕N and the sequence (2.43) splits. A similar
argument shows that (2.43) also splits when p is zero and r is the identity.

We remark that the conclusion of Lemma 2.21 is also true under the hypotheses that L and N are indecomposable and
that M has no subquotient6 isomorphic to a direct sum of two isomorphic irreducibles. For then the submodules of M
obey the distributive laws [22]

(A+B)∩C' (A∩C)+(B∩C), (A∩B)+C' (A+C)∩ (B+C), (2.45)

from which the lemma follows rather trivially. However, the hypotheses of Lemma 2.21 given above have the advantage
that they only require knowledge of L and N, and not of the subquotient structure of the extension M itself.

We will generally use Lemma 2.21 when the two indecomposable modules N and L have no composition factors in
common, so the Hom-groups between them necessarily vanish. Then the extension (2.43) will be non-trivial if and only
if M is indecomposable.

6We recall that a subquotient of a module M is a submodule of a quotient of M or, equivalently, a quotient of a submodule of M.
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To illustrate a typical usage of this result, consider the non-trivial extension group Ext(Sk+ ,Sk−) ' C of Proposi-
tion 2.18 (for k non-critical). As Sk+ and Sk− are indecomposable modules with no composition factors in common,
Hom(Sk− ,Sk+) = 0 and thus any non-trivial extension will be indecomposable by Lemma 2.21. This example demon-
strates the existence of indecomposable A-modules with (three or) four composition factors Ik− , Ik, Ik+ and Ik++ . We
remark that the only indecomposable modules with four composition factors that have been encountered thus far are pro-
jective and that these projectives always have a composition factor of multiplicity two. The indecomposable extension
described above cannot be one of these projectives, hence must be a new indecomposable A-module. This observation
will be the starting point of Section 3.

2.6. Their Loewy diagrams. It is sometimes convenient to visualise the structure of non-semisimple modules diagram-
matically, particularly when computing Hom-groups. A convention popular in the mathematical physics community is
to represent the structure as a graph in which the vertices are the composition factors of the module M and the arrows
represent the “action of the algebra”. More precisely, an arrow is drawn from the factor I to the factor I′ if M has a
subquotient isomorphic to a non-trivial extension of I by I′. In principle, one can also decorate the arrow with an extra
label if dimExt(I, I′)> 1, but Proposition 2.18 ensures that this never happens for A = TL or dTL.

The utility of this arrow notation is evidently limited. For example, suppose that M has a composition factor I

appearing as a submodule with multiplicity 2: I
ι1
↪→ M and I

ι2
↪→ M. Then, it has an infinite number of submodules

isomorphic to I, corresponding to linear combinations of ι1 and ι2 (modulo rescalings). An arrow indicating a submodule
L ⊂ M that is isomorphic to a non-trivial extension in Ext(I′, I) will then also require a label to identify which linear
combination of ι1 and ι2 describes the submodule I ⊂ L. The labelling of the arrows can therefore be unpleasantly
complicated in general. However, this issue also turns out to not be a problem for the indecomposable modules of TL or
dTL, so we will always decorate our diagrams with arrows in order to maximise the information conveyed.

We will refer to these structure graphs as Loewy diagrams. For the reasons already mentioned, the Loewy diagrams
defined by mathematicians tend not to have arrows; instead, the composition factors are arranged in horizontal layers
that have structural meaning. To make this precise, one introduces the radical radM and the socle socM of a module
M as the intersection of its maximal proper submodules and the sum of its simple submodules, respectively.7 The head

hdM of M is then the quotient by the radical: hdM = M/ radM. Just as socM is the (unique) maximal semisimple
submodule of M, hdM is the (unique) maximal semisimple quotient of M.

Radicals and socles lead to important examples of filtrations. Given a module M, define its radical series and socle

series to be the following strictly descending and strictly ascending chains of submodules:

M= rad0M⊃ rad1M⊃ rad2M⊃ ·· · ⊃ radn−1M⊃ radnM= 0,

0 = soc0M⊂ soc1M⊂ soc2M⊂ ·· · ⊂ socn−1M⊂ socnM=M.
(2.46)

Here, rad j M and soc j M are defined recursively, for j ≥ 1, to be rad(rad j−1M) and the unique submodule satisfying
soc j M/soc j−1M = soc(M/soc j−1M), respectively. Note that both chains contain the same number n of non-zero
submodules (this number is called the Loewy length of the module M) and that the successive quotients rad j M/ rad j+1M

and soc j M/soc j−1M are maximal semisimple.
For A =TL or dTL, the radical and socle series of any given A-module coincide: rad j M= socn− j M. We may there-

fore draw the Loewy diagram so that its composition factors are partitioned (uniquely) into horizontal layers according
to the following convention: the j-th layer (counting from bottom to top) indicates the composition factors that appear in
the maximal semisimple quotient soc j M/soc j−1M = radn− j M/ radn− j+1M. In addition to arranging our composition
factors thusly, we shall also use arrows as a means to indicate further refinements to the substructure. It moreover proves

7For the algebras TL and dTL, this notion of radical generalises that which was introduced in Section 2.1 for the standard modules Sk .
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convenient to arrange the composition factors so that their indices increase from left to right, as in the non-critical orbits
of Section 2.1.

As an example of the “annotated” Loewy diagrams that we shall use, we present the diagrams for the standard
modules:

Sk

(k critical)
: Ik

Sk

(k non-critical)
:

Ik

Ik+

. (2.47)

The left diagram obviously reflects the fact that critical standard modules are irreducible; the arrow in the right diagram
means that the action of A can map any element of Sk associated with the composition factor Ik to an element of the
factor Ik+ , but not vice versa. The factor Ik+ is then a submodule of Sk and the factor Ik represents the quotient Sk/Ik+ , as
in the exact sequence (2.2). Note that we are employing the convention that modules with k /∈ Λ are zero: when k = kR,
the diagram on the right degenerates to that of the left because Ik+R

= 0. In the language introduced above, the standard
modules Sk, with k non-critical and k 6= kR, have socSk = radSk = Rk ' Ik+ and hdSk ' Ik.

The short exact sequence (2.28) then gives the Loewy diagrams of the costandard modules:

Ck

(k critical)
: Ik

Ck

(k non-critical)
:

Ik

Ik+
. (2.48)

This illustrates the general rule that the Loewy diagram for M∨ is obtained from that of M by reversing all arrows
and flipping the diagram upside-down. In principle, one should also replace each composition factor by its dual as
well, but for A = TL and dTL, every irreducible is self-dual (Proposition 2.11). Moreover, because duality is an exact
contravariant functor (Proposition 2.13), it exchanges a module’s radical and socle series. In particular, it swaps the
socle with the head: soc(M∨)' hdM.

The Loewy diagrams for the projective modules are also easily constructed. The following cases are easy:

Pk

(k critical)
: Ik

Pk

(k non-critical with k = kL)
:

Ik

Ik+

. (2.49a)

The diagram for k non-critical and larger than kL follows from the exact sequence (2.3) and its dual (2.30), recalling that
these projectives are self-dual (Proposition 2.14). The submodules and quotients from these exact sequences lead to the
following Loewy diagram:

Pk

(k non-critical with k > kL)
: Ik−

Ik

Ik

Ik+ . (2.49b)

There is no arrow between the two Ik factors because such a self-extension would be a direct sum: Ext(Ik, Ik) = 0 (the
single exception for TL2, β = 0 and k = 2 is not relevant here as P2,2 has only two composition factors) and any arrows
between the Ik± are likewise ruled out by extension groups. More fundamentally, such an arrow would contradict the
fact that Pk has submodules isomorphic to Sk− and Ck. For example, an arrow from Ik− to Ik+ in (2.49b) would mean
that the submodule generated by the Ik− factor is not isomorphic to Sk− .

We mention the degenerate case k = kR, for which Ik+R
= 0. This factor and its incident arrows are therefore removed

from the Loewy diagram (2.49b) to obtain that of PkR . A different degeneration occurs when A = TL, with n even
and β = 0, as then Ik− = 0 for k = 2. Moreover, both degenerations occur simultaneously if, in addition, n = 2. For
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completeness, we draw the Loewy diagrams for each of these cases:

Pk

(k non-critical with
k = kR and n 6= 2)

: Ik−

Ik

Ik

P2

(n 6= 2 even,
A = TL, β = 0)

:

I2

I2

I4
P2,2

(A = TL2, β = 0)
:

I2,2

I2,2

. (2.49c)

It may be useful to translate the Loewy diagrams (2.49b) and (2.49c) of the Pk, with k non-critical and k 6= kL, into
the language of radicals and socles. The Loewy length of these modules is 3 (except for P2,2, for A = TL and β = 0).
The (unique) Loewy series for Pk takes the form

0⊂ Ik ⊂ Vk− ⊂ Pk, (2.50)

where Ik is (isomorphic to) the socle of Pk and the, as yet undescribed, module Vk− is its radical.8 The semisimple
quotient Vk/Ik = radPk/ rad2Pk = soc2Pk/socPk is (isomorphic to) Ik− ⊕ Ik+ . Finally, the head is also (isomorphic to)
Ik, consistent with the self-duality of Pk. We summarise this as follows:

Ik−

Ik

Ik

Ik+

radPk

hdPk

socPk

. (2.51)

We close this section by describing a suggestive use for Loewy diagrams: they help in determining the structure of
non-trivial extensions. In Section 2.5, we observed that Proposition 2.18 predicted the existence of indecomposable
modules with three and four composition factors. For example, the extension groups Ext(Sk, Ik−), Ext(Ik+ ,Sk−) and
Ext(Sk+ ,Sk−) are each isomorphic to C. We use dashed arrows in these drawings to indicate the extension itself; solid
arrows describing the submodule and quotient:

Ik−

Ik

Ik+

Ext(Sk, Ik−)

Ik−

Ik

Ik+

Ext(Ik+ ,Sk−)

Ik−

Ik

Ik+

Ik++

Ext(Sk+ ,Sk−)

. (2.52)

We shall prove in Section 3.4 that the Loewy diagrams of these extensions are obtained from these diagrams by replacing
the dashed arrows with solid ones. Moreover, representatives for the non-trivial isomorphism classes of the first two Ext-
groups will be constructed, in Section 3.3, as subquotients of the principal indecomposables, as their Loewy diagrams
suggest. In contrast, the third Loewy diagram is new, indicating that there are more indecomposables to be discovered
beyond the subquotients of the projectives and injectives.

3. A COMPLETE SET OF INDECOMPOSABLE MODULES

This section constructs a complete set of classes of indecomposable modules for TLn and dTLn, up to isomorphism,
using relatively elementary theory. Section 5 obtains the same set using a more advanced tool, namely Auslander-Reiten
theory. There, the main results of this theory will be reviewed (without proof) and then applied to TLn and dTLn.
It will turn out that both of these algebras are representation-finite, meaning that their inequivalent indecomposable
(finite-dimensional) modules are finite in number.

8The module Vk− will be studied in Section 3.3 where the reason for the chosen notation will become apparent.
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Here, we pick up from the observation that closed Section 2.5. The table of extension groups of Proposition 2.18
proves the existence of non-trivial extensions with three and four composition factors that, by Lemma 2.21, are inde-
composable. Our first step will exploit this observation further. It will define, recursively, a family of indecomposable
modules, the existence of the next member being granted by a non-trivial extension group involving the present one.
The second step will reveal the structure of these modules which we will summarise by computing their socles, radicals
and heads. This information suffices to draw their Loewy diagrams. The third step uses this information to construct
projective and injective presentations of the new indecomposables. These presentations allow us to compute their exten-
sion groups with irreducible modules in the fourth step. Lemma 2.20 tells us that these groups will detect if any further
extensions are possible. The fifth and last step will prove that the modules introduced in the first step form, together with
the projective and critical standard modules, a complete set of inequivalent indecomposable modules.

3.1. The modules Bl
n,k and Tl

n,k. Let k ∈ Λ0 be non-critical and define B0
k ≡ Ik. We state the obvious fact that this

module is irreducible, hence indecomposable, with a single composition factor Ik. From B0
k , we construct recursively a

family of indecomposable modules B2 j
k , j = 0,1, . . . , as follows (the range of j will be clarified below). The j-th step

constructs the module B2 j
k which has 2 j+1 composition factors Ik, Ik+ , Ik++ , . . . , Ik2 j . The following step of the recursion

then shows that the extension group Ext(Sk2 j+1 ,B
2 j
k ) is isomorphic to C and we name the non-trivial extension B

2( j+1)
k .

Note that the first step of this recursive definition follows easily from Proposition 2.18. Indeed, it shows that the ex-
tension group Ext(Sk+ ,B

0
k) = Ext(Sk+ , Ik) is C, hence that the short exact sequence 0→ Ik→ B2

k → Sk+ → 0 completely
characterises the non-trivial extension B2

k , up to isomorphism. Moreover, since the composition factors of Ik and Sk+ are
distinct, Lemma 2.21 proves that B2

k is indecomposable. Finally, its composition factors are clearly Ik, Ik+ and Ik++ , as
required.

Suppose then that the j-th recursive step has been completed, so that there exists an indecomposable module B2 j
k with

composition factors Ik, Ik+ , . . . , Ik2 j and non-split short exact sequence

0−→ B
2( j−1)
k −→ B2 j

k −→ Sk2 j−1 −→ 0. (3.1)

Our goal is to compute Ext(Sk2 j+1 ,B
2 j
k ). To do this, we first show that Hom(Sk2 j ,B

2 j
k ) ' C. This follows from the

Hom-Ext long exact sequence (2.32a), derived from (3.1):

0−→ Hom(Sk2 j ,B
2( j−1)
k )−→ Hom(Sk2 j ,B

2 j
k )−→ Hom(Sk2 j ,Sk2 j−1)−→ Ext(Sk2 j ,B

2( j−1)
k )−→ ·· · . (3.2)

Indeed, Sk2 j and B
2( j−1)
k have no common composition factor, hence their Hom-group is zero, and their Ext-group is

also zero because their composition factors are sufficiently separated (see Lemma 2.20(i)). As Hom(Sk2 j ,Sk2 j−1) ' C,
by Proposition 2.17, we obtain Hom(Sk2 j ,B

2 j
k )' C, as claimed.

The desired Ext-group is now computed from the exact sequence

0 = Hom(Pk2 j+1 ,B
2 j
k )−→ Hom(Sk2 j ,B

2 j
k )−→ Ext(Sk2 j+1 ,B

2 j
k )−→ Ext(Pk2 j+1 ,B

2 j
k ) = 0. (3.3)

This follows from the Hom-Ext sequence (2.32b), based on (2.3), by noting that the first Hom-group is zero, because
Ik2 j+1 is not a composition factor of B2 j

k , and that the last Ext-group is zero, because Pk2 j+1 is projective. It follows

that Ext(Sk2 j+1 ,B
2 j
k ) ' Hom(Sk2 j ,B

2 j
k ) ' C. This result leads to the definition of B2( j+1)

k as any representative of the
corresponding non-trivial extension. Its composition factors are clearly Ik, Ik+ , . . . , Ik2 j , Ik2 j+1 , Ik2( j+1) . Indecomposability
follows from Lemma 2.21 as usual, hence the ( j+1)-th step of the recursion is complete.

We remark that this recursion may be continued as long as there are integers larger than k2 j in the (non-critical) orbit
of k, that is, as long as k2 j+1 ∈ Λ. In the case where k2 j+1 = kR, so that k2( j+1) /∈ Λ, the above computation remains
valid, but we shall denote the resulting module by B2 j+1

k to underline the fact that it only contains 2 j+ 2 composition

factors, instead of the 2 j+3 factors possessed by the other B2( j+1)
k .
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A similar recursive construction can be used to construct a second family of modules B2 j+1
k , j = 0,1, . . . , starting

now from B1
k ≡ Ck, for any non-critical k in Λ0 smaller than k−R . The module B2 j+1

k is then defined, if k2 j+1 < kR, to be
a non-trivial extension described by Ext(Ck,B

2 j−1
k++ ) ' C (when k ∈ Λ0 of course). The computation of this Ext-group

is again done recursively, uses now the sequence (2.30), and copies otherwise the previous argument. Note that, in the
first family, composition factors are added to the right of existing ones, but in this new family they are added to the
left. The composition factors of B2 j+1

k are thus Ik, Ik+ , . . . , Ik2 j , Ik2 j+1 and are even in number. For this second family, the
process stops whenever the index of the costandard module Ck that would be used to extend B2 j−1

k++ falls outside Λ0. The
constraints k < k−R for B1

k and k2 j+1 < kR for B2 j+1
k ensure that IkR is never a composition factor of an indecomposable

module of this second family. Note that the first family contains modules B2 j+1
k with an even number of composition

factors, but that they all have IkR as composition factor. In this way, these constructions never produce modules with the
same labels using different means: the notation Bl

k is well defined.
Finally, the duals of the modules that we have constructed above will be denoted by T j

k ≡ (B j
k)
∨. As duality is exact

contravariant (Proposition 2.13), this is equivalent to dualising the above inductive definitions: T2 j
k is realised through

the non-trivial extensions of Ext(T2( j−1)
k ,Ck2 j−1) and T2 j+1

k through those of Ext(T2 j−1
k++ ,Sk).

Proposition 3.1. Given the recursive constructions above, the Bl
k and Tl

k are indecomposable and appear in the follow-

ing non-split exact sequences:

0−→ B
2( j−1)
k −→ B2 j

k −→ Sk2 j−1 −→ 0, 0−→ Ck2 j−1 −→ T2 j
k −→ T

2( j−1)
k −→ 0, (3.4a)

0−→ B2 j−1
k++ −→ B2 j+1

k −→ Ck −→ 0, 0−→ Sk −→ T2 j+1
k −→ T2 j−1

k++ −→ 0 (k2 j+1 6= kR). (3.4b)

Moreover, the non-split exact sequences for B2 j+1
k and T2 j+1

k , when k2 j+1 = kR, are instead

0−→ B2 j
k −→ B2 j+1

k −→ Ik2 j+1 −→ 0, 0−→ Ik2 j+1 −→ T2 j+1
k −→ T2 j

k −→ 0 (k2 j+1 = kR). (3.4c)

The Bl
k and Tl

k have l + 1 composition factors, namely Ik, Ik+ , . . . , Ikl , and they represent mutually non-isomorphic

classes of indecomposable modules, except for B0
k = T0

k = Ik.

Proof. Only the last statement remains to be proved. The indices of the composition factors of the Bl
k and the Tl

k are
consecutive integers, from k to kl , in the non-critical orbit [k]. If two of these modules have the same indices, then
they must have the same values of k and l. Thus, only Bl

k and Tl
k could be isomorphic. For l > 0, Bl

k and Tl
k are both

reducible, but indecomposable, so they do not coincide with their socles. Let us first study the case with l even. Because
B0

k ' Ik and B
2( j−1)
k ⊂ B2 j

k , it follows that Ik is in the socle of B2 j
k . Since T2 j

k = (B2 j
k )∨, Ik is in its head (Section 2.6).

Thus, B2 j
k and T2 j

k cannot be isomorphic for j > 0. The same argument also takes care of the pair B2 j+1
k and T2 j+1

k when
k2 j+1 = kR. Finally, the argument for l odd copies the previous one, but uses the irreducible Ik2 j+1 that is in the head of
B2 j+1

k but in the socle of T2 j+1
k .

3.2. Their Loewy diagrams. This section clarifies the structure of the new modules Bl
k and Tl

k by identifying their
socles, radicals and heads (see Section 2.6). The Loewy diagrams for the Bl

k and Tl
k are easily drawn from these data.

Moreover, their injective hulls and projective covers will be obtained as immediate consequences of Proposition 2.16.

Proposition 3.2. The modules Bl
k and Tl

k, for l ≥ 1, all have Loewy length 2. The head, socle and radical of each are

given in the following table:

M B2 j
k B2 j+1

k T2 j
k T2 j+1

k

hdM
j−1⊕
i=0

Ik2i+1

j⊕
i=0

Ik2i+1

j⊕
i=0

Ik2i

j⊕
i=0

Ik2i

socM= radM
j⊕

i=0

Ik2i

j⊕
i=0

Ik2i

j−1⊕
i=0

Ik2i+1

j⊕
i=0

Ik2i+1 .
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Of course, B0
k ' T0

k ' Ik, hence in this case, the radical is 0 and the socle and the head are Ik.

Note that this table is consistent with the general result socM' hdM∨.
Before giving a proof, we use the proposition to draw the Loewy diagrams of the Bl

k and Tl
k, with l > 0, thus revealing

their “zigzag” structure:

k k++

k+ k2 j−1

k2 j

· · ·

· · ·

hdB2 j
k

socB2 j
k k k++

k+ k2 j+1

k2 j

· · ·

· · ·

hdB2 j+1
k

socB2 j+1
k

k

k+

k++ k2 j

k2 j−1

· · ·

· · ·

hdT2 j
k

socT2 j
k

k k++

· · ·

· · ·

k+

k2 j

k2 j+1

hdT2 j+1
k

socT2 j+1
k

.

(3.5)
To lighten the notation, we have replaced the composition factors Ik′ by dots, labelling (some of) them by the corre-
sponding index k′ (the missing labels should be clear). As before, the socle forms the bottom row and it is circled by a
solid line, while the head forms the top row and is circled by a dotted line. There can only be arrows from the head to
the socle between neighbouring composition factors as the extension groups Ext(Ik, Ik′) (Proposition 2.18) forbid other
possibilities. Finally, none of the arrows indicated in these diagrams may be omitted as the result would indicate a
decomposable module. We remark that the notation Bl

k (Tl
k) was chosen as a reminder that the composition factor Ik

appears in the bottom (top) layer of the Loewy diagram. The composition factor with the highest index is Ikl .

Proof of Proposition 3.2. We provide details for the first family of modules B2 j
k , those for the second family B2 j+1

k being
similar and the results for the Tl

k then being obtained by duality.
The socle of B2 j

k is obtained by induction on j. For j = 0, we have B0
k ≡ Ik, hence socB0

k = Ik as required. For general
j, we begin with the short exact sequence

0−→ B
2( j−1)
k

ι−→ B2 j
k

π−→ Sk2 j−1 −→ 0. (3.6)

Since the image of a semisimple module is semisimple, ι(socB2( j−1)
k ) ⊆ socB2 j

k and so the latter must contain the
composition factors Ik, Ik++ , . . . , Ik2( j−1) . Moreover, L ⊆ M implies that socL = L∩ socM, so socB2 j

k cannot contain
any of the composition factors Ik+ , Ik+++ , . . . , Ik2 j−3 . If Ik2 j−1 were in socB2 j

k , then π would map it into socSk2 j−1 ' Ik2 j ,

hence Ik2 j−1 would be in kerπ = im ι . This contradicts the fact that B2( j−1)
k does not have Ik2 j−1 as a composition factor,

so it follows that Ik2 j−1 is not in socB2 j
k . Suppose finally that Ik2 j is not in socB2 j

k . Then, we would have

socB2 j
k ' socB2( j−1)

k ' Ik⊕ Ik++ ⊕·· ·⊕ Ik2( j−1) . (3.7)

As the injective hull of a module coincides with that of its socle, that of B2 j
k would now be Jk⊕Jk++⊕·· ·⊕Jk2( j−1) . But,

this hull does not have Ik2 j as a composition factor, whereas B2 j
k does, another contradiction. We therefore conclude that

the socle of B2 j
k is Ik⊕ Ik++ ⊕·· ·⊕ Ik2 j , as required.

We now prove that the radical and socle of B2 j
k coincide, for j > 0, a consequence of this being that the head is

the direct sum of the composition factors that are not in the socle: hdB2 j
k ' Ik+ ⊕ ·· · ⊕ Ik2 j−1 . The proof will follow

immediately upon constructing an injection

B2 j
k

socB2 j
k

↪→
radJ[B2 j

k ]

socJ[B2 j
k ]

, (3.8)

where J[B2 j
k ]' Jk⊕Jk++ ⊕·· ·⊕Jk2 j denotes the injective hull of B2 j

k . To see why, recall from Proposition 2.16 that the
injective modules all have Loewy lengths at most 3. The quotient radJ[B2 j

k ]/socJ[B2 j
k ] therefore has Loewy length at
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most 1, meaning that it is semisimple. The injection (3.8) will therefore establish that B2 j
k /socB2 j

k is semisimple, hence
that B2 j

k has Loewy length 2 (it does not coincide with its socle, for j > 0), so its radical equals its socle.
It remains to construct the injection (3.8). Suppose first that k 6= kL. Then, Jk2i ' Pk2i has two composition factors

isomorphic to Ik2i , one contributing to the socle and the other to the head. As B2 j
k has a single composition factor

isomorphic to Ik2i , for each 0≤ i≤ j, any morphism f : B2 j
k → J[B2 j

k ]' Jk⊕Jk++⊕·· ·⊕Jk2 j will send this composition
factor to that of the socle of Jk2i (or to zero). Indeed, this composition factor belongs to the socle of B2 j

k , so it follows that
socB2 j

k is mapped into socJ[B2 j
k ]. Moreover, the image of f thus never includes the composition factors corresponding

to the heads of the Jk2i , hence it will lie in radJ[B2 j
k ]. This shows that any f : B2 j

k → J[B2 j
k ] will induce a map as in (3.8).

To find an injective map and complete the proof, it suffices to take f injective (which is always possible by the definition
of injective hulls) because then f maps socB2 j

k onto socJ[B2 j
k ].

If k = kL, the injective JkL is isomorphic to CkL whose Loewy length is 2. In this case, the argument goes through if
radJ[B2 j

k ]' rad(Jk⊕Jk++ ⊕·· ·⊕Jk2 j) is replaced throughout by Jk⊕ rad(Jk++ ⊕·· ·⊕Jk2 j).

As the projective cover P[M] (injective hull J[M]) of a module M is isomorphic to that of its head (socle), Proposi-
tion 3.2 immediately identifies these data for the Bl

k and Tl
k.

Corollary 3.3. The projective covers and injective hulls of the Bl
k and Tl

k, with l > 0, are as follows:

M B2 j
k B2 j+1

k T2 j
k T2 j+1

k

P[M]
j−1⊕
i=0

Pk2i+1

j⊕
i=0

Pk2i+1

j⊕
i=0

Pk2i

j⊕
i=0

Pk2i

J[M]
j⊕

i=0

Jk2i

j⊕
i=0

Jk2i

j−1⊕
i=0

Jk2i+1

j⊕
i=0

Jk2i+1 .

As B0
k ' T0

k ' Ik, the projective covers and injective hulls, when l = 0, are Pk and Jk, respectively.

We remark that, as in Section 2.3, we are again neglecting to specify the surjective (injective) morphisms that complete
the description of these projective covers (injective hulls). However, it is easy to check that these morphisms are unique,
up to a scaling factor for each projective (injective) indecomposable appearing in the cover (hull).

3.3. Their projective and injective presentations. This section establishes projective and injective presentations of the
Bl

k and Tl
k. More precisely, we determine the kernel (cokernel) of the projection (inclusion) from each of these modules

to its projective cover (injective hull). This will require precise relations between these families and the indecomposable
projectives and injectives. Define then, for each non-critical k 6= kL,kR, the A-modules Ak− and Vk− to be Pk/socPk and
radPk, respectively. These definitions immediately yield the following short exact sequences

0−→ Ik −→ Pk −→ Ak− −→ 0, 0−→ Vk− −→ Pk −→ Ik −→ 0, (3.9)

because socPk ' Pk/ radPk ' Ik for all non-critical k with k 6= kL.

Lemma 3.4. For k 6= kL, kR, we have the following non-split short exact sequences:

0−→ Ik− −→ Ak− −→ Sk −→ 0, 0−→ Sk− −→ Vk− −→ Ik+ −→ 0, (3.10a)

0−→ Ik+ −→ Ak− −→ Ck− −→ 0, 0−→ Ck −→ Vk− −→ Ik− −→ 0. (3.10b)

In particular, we have the identifications Ak− ' B2
k− and Vk− ' T2

k− .

Proof. We first prove that the sequence

0−→ Ik− −→ Ak− −→ Sk −→ 0 (3.11)
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is exact. The top row of the diagram

0 Ik Sk− Ik− 0

0 Ik Pk Ak− 0

ι π

ῑ π̄

id i φ φ̄
(3.12)

is the exact sequence (2.2). Let i denote the inclusion of (2.3), so that ῑ ≡ iι is injective. The left square thus commutes
and we may choose π̄ so that the bottom row is exact, because of Hom(Ik,Pk)'C (Proposition 2.17) and Equation (3.9).
Because π̄iι = π̄ ῑ = 0, one may now define φ so that the right square commutes. The snake lemma then gives

ker i = 0−→ kerφ −→ coker id = 0−→ coker i = Sk −→ cokerφ −→ 0, (3.13)

hence kerφ ' 0 and cokerφ ' Sk, which settles the exactness of (3.11).
We next show that (3.11) does not split. If it did, then there would exist φ̄ : Ak− → Ik− such that φ̄φ = id on Ik− .

But then φ̄ π̄ cannot be zero (both are surjective), contradicting Hom(Pk, Ik−) = 0 (Proposition 2.17). As non-split
extensions of Sk by Ik− are unique up to isomorphism (Proposition 2.18), it follows from the definitions in Section 3.1
that Ak− ' B2

k− .
The method is easily adapted to prove the remaining short exact sequences. The only conceptual difference for the two

in (3.10b) is that we use the duals of (2.2) and (2.3), remembering that duality is exact contravariant (Proposition 2.13),
and that the dual of the first sequence becomes the bottom row of the diagram rather than the top.

Before stating the main result of this section, Proposition 3.6, we need another lemma. It indicates that the two
recursively defined families, the B2 j

k and B2 j+1
k , are intimately related by proving the exactness of two sequences. The

first sequence shows that the first family may be constructed recursively by extending a costandard module (as in the
definition given for the second family in Section 3.1). The second sequence then shows that the first family may be
constructed by extending members of the second family by an irreducible.

Lemma 3.5. For j ≥ 1 such that k2 j ∈ Λ, the following short sequences are exact:

0−→ B
2( j−1)
k++ −→ B2 j

k −→ Ck −→ 0 and 0−→ Ik2 j −→ B2 j
k −→ B2 j−1

k −→ 0. (3.14)

Proof. We consider the exactness of the first of the two sequences, proceeding by induction on j. The first sequence of
(3.10b) establishes the case j = 1. Assume then the exactness for j and suppose that k2( j+1) ∈ Λ. In the diagram

0

0 B
2( j−1)
k++ B2 j

k Ck 0

0 B
2( j−1)
k++ B

2( j+1)
k cokerβ 0 ,

Sk2 j+1

0

γ γ

β β

id α δ δ ∗

α

(3.15)

the first row is thus assumed exact. We moreover define β = αγ , so that the left square commutes, and then β , so that
the second row is exact. Finally, the second column is exact, by the definition (3.4) of B2( j+1)

k . This setup guarantees that
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there exists a morphism δ making the right square commute. The snake lemma then gives kerδ = 0 and cokerδ ' Sk2 j+1 ,
proving that 0→ Ck→ cokerβ → Sk2 j+1 → 0 is exact. Since Ext(Sk2 j+1 ,Ck) = 0 (Proposition 2.18), this sequence splits
and there exists a surjection δ ∗ : cokerβ → Ck such that δ ∗δ is the identity on Ck.

Consider now the diagram

0 B
2( j−1)
k++ B2 j

k Ck 0

0 ker f B
2( j+1)
k Ck 0

γ γ

f
φ α id , (3.16)

in which f = δ ∗β . Both rows are thus exact and the right square commutes: f α = δ ∗βα = δ ∗δγ = γ . It now follows
from f αγ = γγ = 0 that there is a morphism φ making the left square commute. The snake lemma then gives the
exactness of 0→ B

2( j−1)
k++ → ker f → Sk2 j+1 → 0, as before. Lemma 2.21 and Ext(Sk2 j+1 ,B

2( j−1)
k++ ) =C (Section 3.1) now

imply that there are only two possibilities: either this sequence is non-split, in which case it gives ker f ' B2 j
k++ , by the

definition of the latter, or it splits and ker f ' B
2( j−1)
k++ ⊕Sk2 j+1 . However, if ker f ' B

2( j−1)
k++ ⊕Sk2 j+1 , then Sk2 j+1 would

be a submodule of ker f and thus also of B2( j+1)
k . It would then follow that B2( j+1)

k is the sum of two submodules, B2 j
k

and Sk2 j+1 , whose intersection is zero, contradicting its indecomposability. We conclude that ker f ' B2 j
k++ , hence that

the second row of (3.16) is the desired exact sequence.
The proof of the exactness of the second sequence proceeds in a similar inductive fashion. As the two sequences of

(3.14) coincide for j = 1, the base case has already been established. Assuming the exactness for j−1, we consider the
following diagram, similar to (3.15):

0

0 Ik2 j B
2( j−1)
k++ B2 j−3

k++ 0

0 Ik2 j B2 j
k cokerβ 0 .

Ck

0

γ γ

β

id α δ

α

(3.17)

The first row is exact by assumption and the second column is the first sequence of (3.14) (whose exactness has just
been proved). Since the left square commutes, there exists a morphism δ that makes the right square commute. The
snake lemma computes its kernel and cokernel which give the exact sequence 0→ B2 j−3

k++ → cokerβ → Ck → 0. This
time, Lemma 2.21 and Ext(Ck,B

2 j−3
k++ ) =C (Section 3.1) show that either cokerβ ' B2 j−1

k , by the definition of the latter,
or cokerβ splits as Ck⊕B2 j−3

k++ . Now, cokerβ splitting would entail the existence of a non-zero morphism from Ck to
cokerβ . However, Propositions 2.17 and 2.18 imply that the second row of (3.17) yields the following exact sequence:

0 = Hom(Ck, Ik2 j)−→ Hom(Ck,B
2 j
k )−→ Hom(Ck,cokerβ )−→ Ext(Ck, Ik2 j) = 0. (3.18)

Thus, Hom(Ck,B
2 j
k )'Hom(Ck,cokerβ ) could not be 0. But, any non-zero map of Hom(Ck,B

2 j
k ) must be injective since

hdCk ' Ik+ is not a submodule of B2 j
k (Proposition 3.2). Thus, cokerβ splitting would imply that the indecomposable B2 j

k



RESTRICTION AND INDUCTION OF TL INDECOMPOSABLES 26

is the sum of two submodules, Ck and B
2( j−1)
k++ , whose intersection is zero. This contradiction means that cokerβ 'B2 j−1

k ,
hence that the second row of (3.17) is the desired exact sequence.

With these lemmas in hand, we now turn to projective (injective) presentations. More specifically, we compute the
kernels (cokernels) of the projections (inclusions) that define the projective covers (injective hulls) of the modules Bl

k

and Tl
k. As usual, Loewy diagrams provide an intuitive description of the result to come.

k

k+ k7

k8

B8
k

B6
k+

k

k+ k7

k8

T6
k+

T8
k

(3.19)

The diagram on the left depicts the inclusion of B6
k+ in its injective hull J[B6

k+ ], the one on the right that of T8
k in J[T8

k ].
These injective hulls are direct sums of the indecomposable injectives Jk′ , with indices increasing in steps of 2, each
bringing (generically) four composition factors to the hull. Some are repeated, for example the composition factor Ik++

has multiplicity 2 in both J[B6
k+ ] and J[T8

k ], and we indicate this above by drawing two dots close together. The images
of the inclusion maps are depicted by dotted lines. Where it passes through a pair of “double dots”, this image will
contain a proper subspace, equivalent to one dot, of the subspace represented by these dots. The cokernels of these
inclusions are depicted by dashed lines with the same proviso regarding their passing through double dots. We note that
the cokernel J[B6

k+ ]/B
6
k+ has the same composition factors as B8

k and that J[T8
k ]/T

8
k has the same composition factors as

T6
k+ .

Proposition 3.6. For k ∈ Λ0 and kl ∈ Λ, let f l
k and gl

k denote the natural inclusions Bl
k ↪→ J[Bl

k] and Tl
k ↪→ J[Tl

k],

respectively. With a few exceptions, the cokernels of these inclusions are

coker f 2 j
k ' B

2( j+1−δL)−δ
2 j
R

k2δL−1 , cokerg2 j
k ' T

2( j−1)
k+ ,

coker f 2 j+1
k ' B

2( j−δL)+1
k2δL−1 , cokerg2 j+1

k ' T
2 j+1−δ

2 j+1
R

k+ ,

(3.20a)

where δL ≡ δk,kL and δ l
R ≡ δkl ,kR

. The exceptions occur for A = TL with n even and β = 0, specifically

coker f 2 j
2 ' T

2 j+1−δ
2 j
R

2 , coker f 2 j+1
2 ' T2 j

2 . (3.20b)

Proof. We prove, by induction on j, the result for coker f 2 j
k ' J[B2 j

k ]/B2 j
k , ignoring the exceptional cases at first. When

j = 0, the goal is to identify the cokernel in

0−→ Ik
f 0
k−→ Jk −→ coker f 0

k −→ 0. (3.21)

If k = kL, then Jk ' Ck and coker f 0
k ' Ik+ = B0

k+ , by (2.28). If kL < k < kR, then Jk ' Pk and we obtain coker f 0
k ' B2

k−

from (3.9) and Lemma 3.4. If k = kR, then Jk ' Pk again, but Ik ' Ck, thus (2.30) gives coker f 0
k ' Ck− = B1

k− . Note that
if kL = k = kR, then B0

k+ = B1
k− = 0 which is the correct cokernel ( f 0

k is an isomorphism in this case). It is easy to check
that the result in (3.20a) for coker f 0

k unifies all of these cases. The exceptional case A = TL with n even and β = 0 uses

instead the exact sequence (2.41) to conclude that coker f 0
2 ' S2 ' T

1−δ 0
R

2 , if n > 2, and I2 ' T0
2, if n = 2 (see also the

Loewy diagrams (2.49c)).
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Suppose now that j ≥ 1. The top row of the diagram

0 0 0

0 B
2( j−1)
k B2 j

k
Sk2 j−1 0

0 J[B
2( j−1)
k ] J[B2 j

k ] Jk2 j 0

0 coker f 2( j−1)
k coker f 2 j

k
Sk2 j 0

0 0 0

a α

b β

f 2( j−1)
k f 2 j

k ι

c γ

h2( j−1)
k h2 j

k π

(3.22)

is the exact sequence (3.4) defining B2 j
k , the two leftmost columns describe the inclusions of the appropriate Bl

k into their
injective hulls (the projections hl

k being chosen to make these columns exact), and the rightmost column is the exact

sequence (2.3) (note that k2 j 6= kL). Given coker f 2( j−1)
k , the goal is to identify coker f 2 j

k .

Because f 2( j−1)
k is injective, the injectivity of J[B2 j

k ] ensures that there exists b making the top-left square of (3.22)

commute. If b were not injective, then it would annihilate some composition factor in socJ[B2( j−1)
k ]' socB2( j−1)

k . But

then, f 2 j
k a would annihilate this factor in B

2( j−1)
k , contradicting the injectivity of the latter morphism. Thus, b is injective.

Similarly, the injectivity of f 2 j
k and Jk2 j ensures that there exists β making the top-right square commute. If β were not

surjective, then it must annihilate the composition factor of socJ[B2 j
k ] that is isomorphic to hdJk2 j ' Ik2 j . As ια does

not annihilate this factor in B2 j
k , this is a contradiction, hence β is surjective. Finally, we conclude that the middle row

of the diagram (3.22) is exact by comparing composition factors.
The snake lemma now gives the exactness of the bottom row by defining morphisms c and γ that make the bottom

two squares commute. If the bottom row of the commutative diagram (3.22) does not split, then coker f 2 j
k will be a

non-trivial extension of Sk2 j by coker f 2( j−1)
k . By the induction hypothesis, this latter cokernel will be isomorphic to

B
2( j−δL)

k2δL−1 (as k2( j−1) 6= kR), so the bottom row will give coker f 2 j
k = B

2( j+1−δL)−δ
2 j
R

k2δL−1 , by definition, the correction −δ
2 j
R

being necessary when k2 j = kR, hence Sk2 j ' Ik2 j . It thus remains to prove that the bottom row of (3.22) does not split.
Suppose then that the bottom row does split, so that there exists an injection γ∗ : Sk2 j → coker f 2 j

k such that γγ∗ is the
identity on Sk2 j . Moreover, this splitting means that

Hom(Jk2 j ,coker f 2 j
k )' Hom(Jk2 j ,coker f 2( j−1)

k )⊕Hom(Jk2 j ,Sk2 j)' C, (3.23)

by Proposition 2.17 and the induction hypothesis (coker f 2( j−1)
k ' B

2( j−δL)

k2δL−1 ). Since the modules in the middle row are

all injective, this row splits and there exists an injection β ∗ : Jk2 j → J[B2 j
k ] such that ββ ∗ is the identity on Jk2 j . If h2 j

k β ∗

were identically zero, then we would have Jk2 j ' imβ ∗ ⊆ kerh2 j
k = im f 2 j

k ' B2 j
k . However, Jk2 j has two composition

factors isomorphic to Ik2 j whereas B2 j
k has but one, a contradiction. It follows that h2 j

k β ∗ 6= 0.
As γ∗π 6= 0, by the surjectivity of π , (3.23) shows that γ∗π and h2 j

k β ∗ are equal, up to some non-zero multiplicative
constant. In particular, h2 j

k β ∗ι = 0, so im(β ∗ι) ⊆ im f 2 j
k and there exists a morphism α∗ : Sk2 j−1 → B2 j

k such that
f 2 j
k α∗ = β ∗ι . But now, ι = ββ ∗ι = β f 2 j

k α∗ = ιαα∗ and, since ι is injective, αα∗ is the identity on Sk2 j−1 . The top row
therefore splits, contradicting the indecomposability of B2 j

k . This contradiction shows that the bottom row is not split,
completing the identification of coker f 2 j

k .
This identification of coker f 2 j

k proceeds inductively until k2 j approaches kR. It is easy to check that the above
argument requires no significant changes if k2 j = kR; however, changes are required if k2 j−1 = kR. In the latter case, the
recursive construction of Section 3.1 produces B2 j−1

k from B
2( j−1)
k and so the first row of (3.22) has to be replaced by
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the defining exact sequence 0→ B
2( j−1)
k → B2 j−1

k → Ik2 j−1 → 0. Unfortunately, the first two injective hulls of the second

row then become J[B
2( j−1)
k ] and J[B2 j−1

k ], which are isomorphic by Corollary 3.3. We can still deduce that there exists
an injection, hence an isomorphism, b making the top left square commute. However, to make the second row of (3.22)
exact, we must replace Jk2 j by 0. Applying the snake lemma to these replaced rows yields the morphism c that makes the
bottom left square commute and the short exact sequence 0→ Ik2 j−1 → coker f 2( j−1)

k → coker f 2 j−1
k → 0. But, induction

identifies coker f 2( j−1)
k as B2( j−δL)

k2δL−1 . As this module has a unique submodule isomorphic to Ik2 j−1 , comparing this exact

sequence with the second of Lemma 3.5 yields the desired conclusion: coker f 2 j−1
k ' B

2( j−δL)−1
k2δL−1 .

Similar arguments and duality identify the other cokernels in (3.20). We remark that the proof for coker f 2 j+1
k is

somewhat easier because the restriction put on k in the definition of the remaining B2 j+1
k avoids the technicalities that

would arise should k2 j+1 approach kR.

These cokernels give injective presentations for the Bl
k, for example 0→ B2 j

k → J[B2 j
k ]→ B

2( j+1−δL)−δ
2 j
R

k2δL−1 → 0. Anal-
ogous projective presentations now follow by taking duals.

Proposition 3.7. For k ∈ Λ0 and kl ∈ Λ, let pl
k and ql

k denote the natural projections P[Bl
k]� Bl

k and P[Tl
k]� Tl

k,

respectively. With a few exceptions, the kernels of these projections are

ker p2 j
k ' B

2( j−1)
k+ , kerq2 j

k ' T
2( j+1−δL)−δ

2 j
R

k2δL−1 ,

ker p2 j+1
k ' B

2 j+1−δ
2 j+1
R

k+ , kerq2 j+1
k ' T

2( j−δL)+1
k2δL−1 ,

(3.24a)

in the notation of Proposition 3.6. The exceptions occur for A = TL with n even and β = 0, specifically

kerq2 j
2 ' B

2 j+1−δ
2 j
R

2 , kerq2 j+1
2 ' B2 j

2 . (3.24b)

3.4. Their extension groups with irreducible modules. Lemma 2.20(ii) has shown that computing Ext(M, Ik) and
Ext(Ik,M) is sufficient to see when a module M can appear in any non-trivial extension. We shall therefore limit
ourselves to these extension groups. With the presentations derived in the previous section, it is easy to compute them.

Proposition 3.8. Let k,k′ ∈ Λ0. The extension groups of the Bl
k, for l ≥ 2, with an irreducible are given by

(a) Ext(Ik′ ,B
2 j
k )'

j+1⊕
i=0

δk′,k2i−1C,

(b) Ext(B2 j
k , Ik′)'

j−1⊕
i=1

δk′,k2iC,

(c) Ext(Ik′ ,B
2 j+1
k )'

j⊕
i=0

δk′,k2i−1C,

(d) Ext(B2 j+1
k , Ik′)'

j+1⊕
i=1

δk′,k2iC.

(3.25)

Those of the Tl
k with an irreducible are then given by Ext(Ik′ ,Tl

k) ' Ext(Bl
k, Ik′) and Ext(Tl

k, Ik′) ' Ext(Ik′ ,Bl
k). The

extension groups for l = 0 and 1 were given in Proposition 2.18.

Proof. The relationship between the extension groups involving the Bl
k and the Tl

k is just duality. The computations for
each of the four cases above are very similar, so we shall only present the details for (a), ignoring the exceptional case
where A = TL with n even, β = 0 and k = 2 (the results for these exceptional cases are also as given in (3.25) above).

Recall that Proposition 3.6 gives an injective presentation of B2 j
k :

0−→ B2 j
k −→ J[B2 j

k ]−→ B
2( j+1−δL)−δ

2 j
R

k2δL−1 −→ 0. (3.26)

This gives the long exact sequence

0−→ Hom(Ik′ ,B
2 j
k )−→ Hom(Ik′ ,J[B

2 j
k ])−→ Hom(Ik′ ,B

2( j+1−δL)−δ
2 j
R

k2δL−1 )−→ Ext(Ik′ ,B
2 j
k )−→ 0, (3.27)
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where we recall that Ext(Ik′ ,J[B
2 j
k ]) = 0, by injectivity. Now, Hom(Ik′ ,M) ' Hom(Ik′ ,socM), for any module M, and

socB2 j
k ' socJ[B2 j

k ]. The two leftmost Hom-groups of (3.27) are therefore isomorphic, hence we have

Ext(Ik′ ,B
2 j
k )' Hom(Ik′ ,B

2( j+1−δL)−δ
2 j
R

k2δL−1 )' Hom(Ik′ ,socB2( j+1−δL)−δ
2 j
R

k2δL−1 )'
j+1−δL−δ

2 j
R⊕

i=0

δk′,k2i−1+2δLC, (3.28)

by Propositions 2.17 and 3.2. It is easy to check that the condition k′ ∈ Λ0 allows this to be simplified to the statement
of (a). The proof of (c) follows the same argument whilst (b) and (d) instead use projective presentations.

3.5. Identification of non-trivial extensions and completeness. Proposition 3.8 shows that the modules Bl
k and Tl

k

have non-trivial extensions with irreducibles. The next proposition shows that, in fact, every one of these non-trivial
extensions is isomorphic to one (or a direct sum) of the modules that have already been introduced. This will then imply
that we have identified a complete list of indecomposable A-modules.

Proposition 3.9. Let k,k′ ∈ Λ0 and k2 j ∈ Λ. The following short exact sequences identify a representative, unique up to

isomorphism, of the non-trivial extensions of the Bl
k and Ik′ defined by (a), (b), (c) and (d) of Proposition 3.8:

(a1) 0−→ B2 j
k −→ B2i−1

k ⊕T
2( j−i)+1
k′ −→ Ik′ −→ 0, for k′ = k2i−1, 1≤ i≤ j,

(a2) 0−→ B2 j
k −→ T2 j+1

k′ −→ Ik′ −→ 0, for k′ = k−,

(a3) 0−→ B2 j
k −→ B2 j+1

k −→ Ik′ −→ 0, for k′ = k2 j+1,

(b) 0−→ Ik′ −→ B2i
k ⊕B

2( j−i)
k′ −→ B2 j

k −→ 0, for k′ = k2i, 1≤ i≤ j−1,

(c1) 0−→ B2 j+1
k −→ B2i−1

k ⊕T
2( j−i+1)
k′ −→ Ik′ −→ 0, for k′ = k2i−1, 1≤ i≤ j,

(c2) 0−→ B2 j+1
k −→ T

2( j+1)
k′ −→ Ik′ −→ 0, for k′ = k−,

(d1) 0−→ Ik′ −→ B2i
k ⊕B

2( j−i)+1
k′ −→ B2 j+1

k −→ 0, for k′ = k2i, 1≤ i≤ j,

(d2) 0−→ Ik′ −→ B
2( j+1)
k −→ B2 j+1

k −→ 0, for k′ = k2( j+1).

(3.29)

Dualising these sequences gives representatives for the non-trivial extensions of the Tl
k and Ik′ .

We remark that we have already established (d2) as the second exact sequence of (3.14).
Before turning to the proof, we exemplify one of these exact sequences with Loewy diagrams. Consider (c1), with

i = 2, j = 3 and k′ = k3. It takes the form 0→ B7
k → B3

k⊕T4
k3 → Ik3 → 0 and may be depicted thus:

0 −→
k7

k

−→
k3

k

⊕
k3 k7

−→ k3 −→ 0. (3.30)

The composition factors are depicted by dots, as usual, and only the extreme ones are labelled. It is easy to see that
morphisms from B7

k to B3
k and T4

k3 exist (the latter are quotients of the former). If we can show that the direct sum
B7

k → B3
k⊕T4

k3 of these morphisms is injective, then its cokernel must be isomorphic to the irreducible Ik3 , by counting
composition factors. There cannot be a non-zero morphism Ik3 → B3

k⊕T4
k3 since soc(B3

k ⊕T4
k3) has no submodule

isomorphic to Ik3 . The sequence (3.30) is therefore non-split and B3
k⊕T4

k3 represents the (isomorphism class of the)
non-trivial extensions of Ext(Ik3 ,B7

k)' C, even though it is reducible.

Proof of Proposition 3.9. Each of these sequences are established using similar arguments, though the proofs differ
slightly depending on whether the irreducible Ik′ is a submodule or a quotient. We will illustrate the method of proof by
detailing the arguments for (b), where the irreducible is a submodule, and only comment on the changes required when
the irreducible is a quotient.
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To prove (b), take 1≤ i≤ j−1 and consider the diagram

0 B
2( j−1)
k+ P[B2 j

k ] B2 j
k 0

0 Ik2i B2i
k ⊕B

2( j−i)
k2i coker ι 0,

r p

ι π

α β γ
(3.31)

in which the top row is the projective presentation of B2 j
k , given in Proposition 3.7, and is therefore exact. As Ik2i is a

composition factor of hdB2( j−1)
k+ , we may choose α to be non-zero, hence surjective. Since B2i

k ⊕B
2( j−i)
k2i and B2 j

k have
isomorphic heads, their projective covers are isomorphic. We may therefore choose β to also be surjective in (3.31).
Indeed, we may choose the kernel so that

B
2(i−1)
k+ ⊕Bk2( j−i−1)

k2i+1 ' kerβ ⊂ ker p' B
2( j−1)
k+ (3.32)

and the kernels only differ in that ker p has one composition factor isomorphic to Ik2i while kerβ has none.
As socB2i

k ⊕B
2( j−i)
k2i has two composition factors isomorphic to Ik2i , the inclusion ι belongs to a two-dimensional

Hom-group. We will choose ι so that the left square of (3.31) commutes. To see that this is possible, note that kerβ ⊂
ker p = imr, so that kerβ r = imr∩kerβ = kerβ ' B

2(i−1)
k+ ⊕Bk2( j−i−1)

k2i+1 , hence

imβ r '
B

2( j−1)
k+

B
2(i−1)
k+ ⊕Bk2( j−i−1)

k2i+1

' Ik2i . (3.33)

It follows that there exists ι making the left square commute. π can now be chosen to make the bottom row of (3.31)
exact. Since πβ r = πια = 0, there is a map γ that makes the right square of (3.31) commute. It is surjective, as both β

and π are, hence it is an isomorphism because the composition factors of B2 j
k and coker ι coincide. The bottom row is

thus the required short exact sequence (b).
When the irreducible Ik′ appearing in a sequence in (3.29) is a quotient, instead of a submodule, there is a minor

change to the method of proof. The diagram (3.31) is replaced by one in which the bottom row is an injective presentation
of the module that is extending Ik′ and the top row is the sequence whose exactness is to be established. For example the
proof of the dual of (d2) would use the following diagram.

0 kerπ T
2( j+1)
k

Ik2( j+1) 0

0 T2 j+1
k J[T2 j+1

k ] T2 j+1
k+ 0.

ι π

f h

γ β α (3.34)

Otherwise, one proves the commutativity of the diagram as before.

Theorem 3.10. Let A be TLn or dTLn. Then, any finite-dimensional indecomposable module over A is isomorphic to

one of the following:

(i) Sk, for k a critical integer in Λ;

(ii) Pk, for k ∈ Λ non-critical and larger than kL in the orbit [k];

(iii) Bl
k or Tl′

k , for k non-critical in Λ0 and l ≥ 0 and l′ > 0 such that kl , kl′ ∈ Λ.

These indecomposables are distinct in that there are no isomorphisms among different elements of the above list.

Proof. The modules appearing in the above list have already been shown to be indecomposable and pairwise non-
isomorphic. To show that the list given is complete, note that any finite-dimensional indecomposable module M may be
constructed iteratively by adding one composition factor at a time. Indeed, one could start from the head of M, which is
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semisimple, and then add the composition factors of the head of its radical, and then add those of the head of the radical
of the radical, and so on. Therefore, every finite-dimensional indecomposable A-module may be constructed by adding,
one at time, irreducible modules to a direct sum of modules in the above list. However, Propositions 2.18 and 3.9 show
that any such extension of these modules is already a direct sum of modules in the list. This list therefore constitutes a
complete set of finite-dimensional indecomposable A-modules, up to isomorphism.

The above list is also complete for the exceptional case A = TL with n even and β = 0. Two remarks are useful to
reach this conclusion in this case. First, the sublist (i) is empty. Second, kL is omitted from (ii) not to avoid coincidence
with B1

kL
, as in the generic case, but because kL is then 0 and does not belong to Λ0 (P0 is not defined). The leftmost

irreducible module of the orbit is then I2 and its projective cover P2 is distinct from B1
2.

4. THE RESTRICTION AND INDUCTION OF THE MODULES Cn,k , Bl
n,k AND Tl

n,k

The action of the induction and restriction functors on the standard, irreducible and projective modules was obtained
(or recalled) in Section 2.2. This section extends those calculations to the remaining classes of indecomposable modules,
namely the costandards Ck and the Bl

k and Tl
k, with l > 1, thus completing the description of these functors on all

indecomposable A-modules. In this section, the algebra label n will be made explicit, so we shall write, for example,
B j

n,k instead of B j
k. We also write Λn,0 for the set Λ0 corresponding to An.

4.1. Restriction. We begin with the restriction of the Cn+1,k. This follows immediately from Proposition 2.8 and the
fact that restriction commutes with duality.

Proposition 4.1. For all non-critical k ∈ Λn+1,0, the restriction of the costandard modules is given by

Cn+1,k↓ '

{
Cn,k−1⊕Cn,k+1, if An = TLn,

Cn,k−1⊕Cn,k⊕Cn,k+1, if An = dTLn.
(4.1)

For critical k, Cn+1,k ' Sn+1,k and the result was given in Proposition 2.8(iii).

Identifying the restrictions of the Bl
n+1,k requires considerably more work.

Proposition 4.2. For k non-critical and k,kl ∈ Λn+1,0, the restriction of Bl
n+1,k is given by

Bl
n+1,k↓ '


bl/2c⊕
j=0

Pn,k2 j−1, if k−1 is critical,

Bl
n,k−1, otherwise

⊕
{
Bl

n,k, if A = dTL,

0, otherwise

}

⊕


b(l−1)/2c⊕

j=0

Pn,k2 j+1, if k+1 is critical,

Bl
n,k+1, otherwise

, (4.2)

where it is understood that each summand of the form Bl
n,κ should be replaced by Bl−1

n,κ whenever κ l /∈ Λn,0.

We remark that the projectives appearing in (4.2) are all critical, hence irreducible.

Proof. The proofs for l even and l odd are (slightly) different; we first detail that for l even and then explain how the
arguments may be changed for l odd.

The proof for l even proceeds by induction on l. The case l = 0 is covered by Proposition 2.9, so assume that l ≥ 2.
Since restriction is an exact covariant functor, (3.1) gives the exact sequence

0−→ Bl−2
n+1,k↓ −→ Bl

n+1,k↓ −→ Sn+1,kl−1↓ −→ 0. (4.3)
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As in the proof of Proposition 2.10, this sequence can be decomposed into two or three exact sequences, according as
to whether A = TL or dTL, respectively, by selecting a parity for the direct summands of the modules (for dTL) and
distinguishing their Fn-eigenvalues. These sequences are analysed using similar arguments, so we shall only focus on
one of them, namely

0−→ (Bl−2
n+1,k↓)+1 −→ (Bl

n+1,k↓)+1 −→ Sn,kl−1−1 −→ 0, (4.4)

where (M)i, for i ∈ {−1,0,+1}, is the direct summand of M on which Fn has the same eigenvalue as on Sn,k+i (see the
proof of Proposition 2.10 where this notation was first introduced). This choice of Fn-eigenvalue will lead to the third
direct summand (enclosed in braces) of (4.2).

The diagram below illustrates the argument. It assumes that `= 4 and describes the restriction of the TLn+1-module
B4

n+1,2, hence k = 2 and l = 4. The indices of the composition factors of this module are typeset in bold and appear in
the bottom line; those of B4

n+1,2↓ appear in the top line.

0
1

2

k

3
4

k+

5
6

7
8

9
10

kl−2

11
12

kl−1

13
14

15
16

17
18

kl

19
20

. . .
. . .

We first discuss the subcase in which k+ 1 is critical (as in the diagram). Then so is kl−1− 1 = kl−2 + 1, hence the
standard module Sn,kl−1−1 is projective and (4.4) must split. The induction hypothesis therefore gives

(Bl
n+1,k↓)+1 ' Sn,kl−1−1⊕ (Bl−2

n+1,k↓)+1 ' Pn,kl−2+1⊕
l/2−2⊕

j=0

Pn,k2 j+1 =

l/2−1⊕
j=0

Pn,k2 j+1, (4.5)

as in (4.2). If k+1 is not critical, then the sequence (4.4) cannot split because

Hom(Sn,kl−1−1,B
l
n+1,k↓)

(1)
' Hom(Sn,kl−1−1

↑,Bl
n+1,k)

(2)
' Hom(Sn+1,kl−1 ,Bl

n+1,k)
(3)
= 0. (4.6)

Here, the isomorphism (1) is Frobenius reciprocity, (2) follows from Proposition 2.8 and the eigenvalues of Fn, and (3)
amounts to noting that any such non-zero morphism would have to be injective, contradicting the fact that Bl

n+1,k has no
submodule isomorphic to Sn+1,kl−1 . (If it did, then the inclusion would split the defining exact sequence (3.1) and Bl

n,k

would be decomposable.) The induction hypothesis gives (Bl−2
n+1,k↓)+1 ' Bl−2

n,k+1, so the non-split exact sequence (4.4) is
then that defining Bl

n,k+1, whence we conclude that (Bl
n+1,k↓)+1 ' Bl

n,k+1. Note that this assumes that (k+1)l ≤ n, for
otherwise (4.4) gives instead(Bl

n+1,k↓)+1 ' Bl−1
n,k+1, by Proposition 3.9. This completes the identification of (Bl

n+1,k↓)+1

and similar arguments identify (Bl
n+1,k↓)0 and (Bl

n+1,k↓)−1, completing the proof for l even.
When l is odd, the induction instead starts at l = 1, for which the statement is obtained from Proposition 2.8 by noting

that
Cn+1,k↓ '

(
S∨n+1,k

)
↓ '

(
Sn+1,k↓

)∨
, (4.7)

since restriction and duality commute. In the inductive step, the sequence 0→ Bl−2
n+1,k2 → Bl

n+1,k→ Cn+1,k→ 0 is used
instead of (3.1) (see Proposition 3.1) and the rest of the arguments proceed as before.

The restrictions of the Tl
n+1,k are now obtained by duality.

Proposition 4.3. For k non-critical and k,kl ∈ Λn+1,0, the restriction of Tl
n+1,k is given by

Tl
n+1,k↓ '


bl/2c⊕
j=0

Pn,k2 j−1, if k−1 is critical,

Tl
n,k−1, otherwise

⊕
{
Tl

n,k, if A = dTL,

0, otherwise

}
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⊕


b(l−1)/2c⊕

j=0

Pn,k2 j+1, if k+1 is critical,

Tl
n,k+1, otherwise

, (4.8)

where it is understood that each summand of the form Tl
n,κ should be replaced by Tl−1

n,κ whenever κ l /∈ Λn,0.

4.2. Interlude: Tor-groups. The method used to compute these restrictions, as well as those of Section 2.2, relies on the
fact that the restriction functor is exact, so restricting each module in a short exact sequence results in another short exact
sequence. But, as we saw at the end of Section 2.2, the induction functor is only right-exact, meaning that identifying
induced modules will require more sophisticated arguments. We also note that induction does not commute with duality,
in general, hence Proposition 2.8 does not immediately identify, for instance, the induced costandard modules.

Inducing a An-module M to an An+1-module amounts to taking the tensor product An+1⊗An M, where An+1 is
regarded as a left An+1-module and a right An-module. Just as the failure of Hom-functors to be exact is measured by
extension groups, the failure of tensor products to be exact is measured by torsion groups. In particular, a short exact
sequence

0−→ N′′ −→ N−→ N′ −→ 0 (4.9)

of left An-modules gives rise, upon induction, to the long exact sequence

· · · −→ Tor(An+1↓,N′′)−→ Tor(An+1↓,N)−→ Tor(An+1↓,N′)−→ N′′↑ −→ N↑ −→ N′↑ −→ 0, (4.10)

in which An+1 is viewed as a right An-module. As with the Hom-Ext long exact sequences (2.32a) and (2.32b), this
sequence continues with higher torsion groups Torm(An+1↓,−). Because we have no need for these higher groups, we
omit the index m and write Tor1 ≡ Tor, for brevity. We remark that as An+1 is also a left An+1-module, each of the
torsion groups in (4.10) is also a left An+1-module (as are the induced modules).

The following two facts about Tor-groups will be essential. First, Tor-groups are trivial when either of their arguments
is flat. A projective module P is always flat, so Tor(P,−) ' Tor(−,P) ' 0. Second, if M is a finite-dimensional right
module and N a left one over the same finite-dimensional algebra A (over a field), then the Tor-groups and Ext-groups
are related by [20, Cor. IX.4.12]

Tor(M,N)' Ext(M,N∗)∗ ' Ext(N,M∗), (4.11)

where M∗ denotes the vector space dual module of M (see Section 2.3).9

Now, An+1 is free, hence projective, as a left An+1-module. However, it might not be projective as a right An-module.
If it is, then the torsion groups in (4.10) vanish and the induction functor is exact. To analyse this, note that the left and
right representation theories of TLn and dTLn are identical,10 so we may combine Propositions 2.8 and 2.10 with the
(left An-module) decomposition

An+1↓=
⊕

k∈Λn+1,0

(dim In+1,k)Pn+1,k↓ (4.12)

to explore the projectivity of the left An-module An+1 (the answer will be the same as a right An-module). Introducing

the symbol
P
' to indicate an isomorphism up to projective direct summands, the results of this exploration may be

9With no other hypotheses, this is an isomorphism of vector spaces (over the field), hence the additional dual on the right-hand side is superfluous.
However, in the case (4.10) of interest, M is also a left module over a different algebra B. This means that Tor(M,N) is naturally a left B-module,
whilst Ext(M,N∗) is a right B-module, whence the required extra dual.
10This is clear from the diagrammatic definitions of these algebras.
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summarised by noting that Pn+1,k↓ is always projective for k < n and is otherwise given by

Pn+1,n↓
P
'

{
0, if n+1 is critical,

In,(n+1)− , otherwise,
Pn+1,n+1↓

P
'


In,n, if n+1 is critical,

In,(n+1)− , if n+2 is critical,

In,(n+1)− ⊕ In,(n+2)− , otherwise.

(4.13)

Here, we of course ignore modules whose indices have different parities if A = TL. Since dim In+1,n = n+ 1 and
dim In+1,n+1 = 1, (4.12) becomes

An+1↓
P
'


In,n, if n+1 is critical,

(n+2) In,(n+1)− , if n+2 is critical,

(n+2) In,(n+1)− ⊕ In,(n+2)− , otherwise.

(4.14)

Thus, dTLn+1↓ is projective as a dTLn-module, hence the induction functor for dTLn-modules is exact, if and only if
dTLn is semisimple. On the other hand, this holds for TLn+1↓ if and only if TLn+1 is semisimple or n+2 is critical.

In any case, the key observation to take away from these computations is that whenever An+1↓ has non-projective
summands, they are irreducibles In,k with k = kR. This observation will be crucial when we identify the inductions of the
Cn,k, Bl

k and Tl
k, a task to which we now turn.

4.3. Induction. We begin with the inductions of the costandard modules, recalling our convention that any module with
an index k not in Λn+1,0 is set to zero, as are those, for An+1 = TLn+1, whose indices n+1 and k have different parities.

Proposition 4.4. If k is non-critical and k,k+ ∈ Λn,0, then the induction of Cn,k is given by

Cn,k↑ '


Pn+1,k−1, if k−1 is critical,

B2
n+1,k−1, if k−1 is non-critical and k++ = n+1 or n+2,

Cn+1,k−1, otherwise


⊕

{
B2

n+1,k, if k++ = n+1,

Cn+1,k, otherwise

}
⊕

{
Pn+1,k+1, if k+1 is critical,

Cn+1,k+1, otherwise

}
. (4.15)

Proof. The long exact sequence (4.10) derived from the exact sequence (2.28) is

· · · −→ Tor(An+1↓, In,k)−→ Tor(An+1↓,Cn,k)−→ Tor(An+1↓, In,k+)−→ In,k↑ −→ Cn,k↑ −→ In,k+↑ −→ 0. (4.16)

Since Tor-groups involving projective modules vanish, we may replace An+1↓ by the right-hand side of (4.14), or rather
the right module version of it, when calculating the Tor-groups in this sequence. Let I∗ denote the right module version,
that is the vector space dual, of the right-hand side of (4.14). Then, (4.11) gives Tor(An+1↓,M)'Ext(M, I). We therefore
have to compute Ext(In,k, I), Ext(Cn,k, I) and Ext(In,k+ , I).

Recall from Section 4.2 that I is a direct sum of irreducibles whose indices are always the rightmost in their orbit.
Consulting Proposition 2.18, we see that Ext(In,k+ , I) may only be non-zero if k = k−−R . But then, Ext(In,k, I) = 0 and
Ext(Cn,k, I)' Ext(In,k+ , I)' E (say). Thus, if k 6= k−−R , then (4.16) reduces to the short exact sequence

0−→ In,k↑ −→ Cn,k↑ −→ In,k+↑ −→ 0. (4.17)

However, if k = k−−R , then (4.16) reduces to

0−→ E−→ E−→ In,k↑ −→ Cn,k↑ −→ In,k+↑ −→ 0, (4.18)

which also implies the exactness of (4.17).
From this point on, the proof follows familiar arguments. The exact sequence (4.17) is decomposed into (two or)

three exact sequences corresponding to the eigenvalues of the central element Fn. Here is an example. Suppose first that
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neither k−1 nor k+1 are critical and that k+ 6= kR, so that Sn,k+ 6' In,k+ . Then, all three short exact sequences will have
the same form, namely

0−→ In+1,k+i −→ (Cn,k↑)i −→ In+1,k+−i −→ 0 (i = 0,±1), (4.19)

by Proposition 2.9. None of these sequences can split because

Hom(Cn,k↑, In+1,k+i)' Hom(Cn,k, In+1,k+i↓)' Hom(Cn,k, In,k+i−1⊕ In,k+i⊕ In,k+i+1)' 0, (4.20)

by Frobenius reciprocity and Propositions 2.9 and 2.17. Proposition 2.18 and Corollary 2.19 now give the conclusion:
(Cn,k↑)i ' Cn,k+i, hence Cn,k↑ ' Cn,k−1⊕Cn,k⊕Cn,k+1.

When either k− 1 or k+ 1 is critical, but still k+ 6= kR, some of the irreducibles in the three exact sequences (4.19)
are critical, hence projective, and some are replaced by 0, according to Proposition 2.9. The results are as before, except
that (Cn,k↑)−1 ' Pn+1,k−1 or (Cn,k↑)+1 ' Pn+1,k+−1 = Pn+1,k+1, respectively.

Finally, the case k+ = kR leads to the novel summands B2
n+1,k′ in (4.15). Proposition 2.9 may be used only when

In,k+ 6' Sn,k+ ; otherwise, Proposition 2.8 applies instead and In,k+↑ ' Sn+1,k+−1⊕Sn+1,k+ ⊕Sn+1,k++1. The question is
whether these standard modules are irreducible or not, for if so, then the analysis proceeds as above. Now, Sn+1,k++1

is only reducible when k++ 1 is non-critical and (k++ 1)+ = k++− 1 ∈ Λn+1,0, that is, when k++ = n+ 1 or n+ 2.
Similarly, Sn+1,k+ is only reducible when k++ = n+ 1 and Sn+1,k+−1 is never reducible. In these few cases, some of
the three short exact sequences, obtained by decomposing (4.17), describe non-split extensions of an irreducible by a
reducible standard. Propositions 2.18 and 3.1 and Lemma 2.21 identify the extensions as being isomorphic to B2

n+1,k−1

or B2
n+1,k, completing the proof.

Proposition 4.5. Let k be non-critical with k,kl ∈ Λn,0. If l is even, then the induction of Bl
n,k is given by

Bl
n,k
↑ ' Bl

n+2,k↓. (4.21a)

If l = 2i+1 is odd, then the induction is instead given by

Bl
n,k
↑ '



i⊕
j=0

Pn+1,k2 j−1, if k−1 is critical,

Bl+1
n+1,k−1, if k−1 is non-critical and kl+1 = n+1 or n+2,

Bl
n+1,k−1, otherwise


⊕

{
Bl+1

n+1,k, if kl+1 = n+1,

Bl
n+1,k, otherwise

}
⊕


i−1⊕
j=0

Pn+1,k2 j+1, if k+1 is critical,

Bl
n+1,k+1, otherwise

. (4.21b)

Proof. The proof is by induction on l, distinguishing the two parities. If l = 0, then B0
n,k = In,k and the result was given

in Propositions 2.8 and 2.9. If l = 1, then B1
n,k = Cn,k and the result was given in Proposition 4.4.

So, let l ≥ 2 be an even integer. The long exact sequence obtained by inducing the defining sequence

0−→ Bl−2
n,k −→ Bl

n,k −→ Sn,kl−1 −→ 0 (4.22)

of Proposition 3.1 has Tor(An+1↓,Sn,kl−1) = 0. Indeed, this torsion group is isomorphic to Ext(Sn,kl−1 , I), where I

is a direct sum of non-critical irreducibles whose indices have the form k′R, and Ext(Sn,kl−1 , Ik′R) is always zero, by
Proposition 2.18. We therefore arrive at the short exact sequence

0−→ Bl−2
n,k
↑ −→ Bl

n,k
↑ −→ Sn,kl−1↑ −→ 0. (4.23)

The submodule here is known, by the induction hypothesis, and the quotient is known by Proposition 2.8. The identifi-
cation of Bl

n,k
↑ now follows the same arguments as in the proof of Proposition 4.4. In particular, (4.23) is decomposed
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into (at most) three exact sequences whose nature, split or non-split, is established through the presence of projectives
or by calculating Hom-groups. For example, if k−1 and k are not critical, then

Hom(Bl
n,k
↑,Bl−2

n+1,k−1)' Hom(Bl
n,k,B

l−2
n+1,k−1↓)' Hom(Bl

n,k,B
l−2
n,k ) = 0, (4.24)

as otherwise Bl
n,k would be decomposable. Lemma 2.21 and Proposition 3.1 then complete the identification.

One case with l odd also fits into this induction argument, that with kl = kR. Then, (4.22) is replaced by the defining
exact sequence

0−→ Bl−1
n,k −→ Bl

n,k −→ Sn,kl −→ 0 (4.25)

and the subsequent analysis follows similar lines to that performed for Cn,k↑ (for these values of k). This case leads to
the result for Bl

n,k
↑, when kl+1 = n+1 or n+2, in (4.21b).

The induction process for l = 2i+ 1 ≥ 3 odd starts with the computation of the Tor-groups related to the defining
sequence of B2i+1

n,k :
0−→ B2i−1

n,k++ −→ B2i+1
n,k −→ Cn,k −→ 0. (4.26)

Lemma 2.20 indicates that each Ext(Cn,k, Ik′R) is always zero because the composition factors of the two modules are
sufficiently separated in their orbit (for example, k++ stands between them). The long exact sequence thus reduces to

0−→ B2i−1
n,k
↑ −→ B2i+1

n,k
↑ −→ Cn,k↑ −→ 0 (4.27)

and, from this point on, the proof closely follows that for l even.

Our final induction result does not require any new techniques, so we omit the proof.

Proposition 4.6. Let k be non-critical with k,kl ∈ Λn,0. If l is odd, then the induction of Tl
n,k is given by

Tl
n,k
↑ ' Tl

n+2,k↓. (4.28a)

If l = 2i is even, then the induction is instead given by

Tl
n,k
↑ '


i⊕

j=0

Pn+1,k2 j−1, if k−1 is critical,

Tl
n+1,k−1, otherwise

⊕
{
Tl+1

n+1,k, if kl+1 = n+1,

Tl
n+1,k, otherwise

}

⊕



i−1⊕
j=0

Pn+1,k2 j+1, if k+1 is critical,

Tl+1
n+1,k+1, if k+1 is non-critical and kl+1 = n+1 or n+2,

Tl
n+1,k+1, otherwise


. (4.28b)

5. THE AUSLANDER-REITEN QUIVER FOR TLn AND dTLn

Section 3.5 completed the classification of all indecomposable modules, up to isomorphism, over A =TLn and dTLn.
The tools required included basic homological algebra and the representation theory of associative algebras: properties
of injective and projective modules, extension groups and diagram chasing. The input, summed up in Section 2, was the
list of irreducible, projective and injective modules, their structures, and those of the standard and costandard modules,
as captured either by short exact sequences or Loewy diagrams.

There are more advanced techniques to perform the same task. One of them is Auslander-Reiten theory. The method
it underlies is purely algorithmic, at least in the case of TLn and dTLn, and its input is again the data recalled in Section 2.
The current section presents the application of this method to TLn and dTLn.

First, we review the theoretical results of Auslander-Reiten theory. Then, we show how these abstract results may be
applied algorithmically and carry this out on the simple case of an orbit [k] of non-critical integers that contains only 3
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elements. We conclude by giving the result of applying this algorithm in the general case, providing only sketches of
proofs, and thereby recover the classification of indecomposable A-modules.

5.1. The main results of Auslander-Reiten theory. This subsection reviews the main ideas and results of Auslander-
Reiten theory that we shall need to build a complete list of indecomposable modules of the algebras TLn and dTLn. Our
summary closely follows Chapter IV of [23], though the results are not necessarily presented in the same order that they
are proved there.

In this subsection, A stands for any finite-dimensional K-algebra, where K is an algebraically closed field.

Homological algebra studies modules through their Hom-groups. We first recall that a monomorphism (injective
homomorphism) f : U→ V is split if there exists g : V→ U such that g f is the identity on U. Similarly, an epimorphism
(surjective homomorphism) f : U→ V is split if there exists g : V→ U such that f g is the identity on V. A morphism is
said to be split if it is either a split monomorphism or a split epimorphism. Auslander-Reiten theory studies refinements
of these concepts.

Definition 5.1. Let f : U→ V be a morphism between two A-modules.

• The morphism f is left minimal almost split if

(i) f is not a split monomorphism;

(ii) for any morphism g : U→W that is not a split monomorphism, there exists a morphism f̄ : V→W such that

f̄ f = g;

(iii) for any h : V→ V, h f = f implies that h is an isomorphism.

• The morphism f is right minimal almost split if

(i) f is not a split epimorphism;

(ii) for any morphism g : W→ V that is not a split epimorphism, there exists a morphism f̄ : W→ U such that

f f̄ = g;

(iii) for any h : U→ U, f h = f implies that h is an isomorphism.

• The morphism f is irreducible if

(i) f is not a split morphism;

(ii) given any morphisms f1 : U→ Z and f2 : Z→ V satisfying f = f2 f1, then either f2 is a split epimorphism or f1

is a split monomorphism.

Definition 5.2. A short exact sequence

0−→ U
ι−→ V

π−→ V/U−→ 0 (5.1)

is said to be an almost split exact sequence if

• ι is left minimal almost split;

• π is right minimal almost split.

In fact, it can be shown that either of these two conditions implies the other.

It is useful to draw a parallel between irreducible morphisms and semisimple modules. Intuitively, a morphism
is irreducible if it cannot be expressed as a composition of non-split morphisms, just as a module is semisimple if it
cannot be expressed as a non-trivial extension of one module by another. Similarly, finite-dimensional modules can be
studied through their Loewy diagrams in terms of extensions of simple modules, while morphisms between modules
in a representation-finite algebra can be expressed as sums of compositions of irreducible morphisms. As for the left
(right) minimal almost split morphisms, they turn out to be in one-to-one correspondence with the non-injective (non-
projective) finite-dimensional indecomposable modules. In particular, the following proposition notes that the domain
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of every left minimal almost split morphism is indecomposable, while Proposition 5.10 below states that every non-
injective finite-dimensional indecomposable module is the domain of a left minimal almost split morphism.

Proposition 5.3. Let U and V be A-modules. If f : U→ V is a left minimal almost split morphism, then

(i) U is indecomposable;

(ii) f is irreducible;

(iii) if f ′ : U→V′ is also left minimal almost split, for some A-module V′, then there exists an isomorphism g : V→V′

such that g f = f ′;

(iv) a morphism f ′ : U→ V′ of A-modules is irreducible if and only if V′ 6= 0, V ' V′⊕V′′ for some module V′′, and

there exists f ′′ : U→ V′′ such that f ′⊕ f ′′ : U→ V′⊕V′′ is left minimal almost split. In particular, composing f

with the projection onto a (non-zero) direct summand always gives an irreducible morphism.

A similar result holds for right minimal almost split morphisms.
Note that while irreducible and almost split morphisms are very useful, identifying and constructing them is far from

trivial. Fortunately Auslander-Reiten theory provides a few irreducible morphisms to get one started (the next result), a
way of building new ones out of old ones, and tools for classifying them. First, however, it is convenient to introduce
two more definitions.

Definition 5.4.

• For two A-modules U and V, define the radical of HomA(U,V) to be the vector space r(U,V) spanned by the mor-

phisms f : U→ V such that for all indecomposable A-modules Z and all morphisms g : Z→ U and h : V→ Z, the

composition h f g is not an isomorphism.

• Define the second radical of HomA(U,V) to be the vector subspace r2(U,V) ⊆ r(U,V) consisting of the morphisms

f : U→ V which may be factored as f = gh, where g ∈ r(Z,V) and h ∈ r(U,Z), for some A-module Z.

We remark that if U and V are indecomposable, then r(U,V) is the subspace of non-isomorphisms in Hom(U,V).

Proposition 5.5.

(i) If P is a non-simple projective indecomposable and J a non-simple injective indecomposable, then the canonical

inclusion and projection,

radP ↪−→ P and J−� J

socJ
, (5.2)

are irreducible. Furthermore, these are the only irreducible morphisms with target P and source J, respectively,

up to rescaling.

(ii) If Q is a non-simple projective and injective indecomposable with radQ 6= socQ, then the canonical projection

and inclusion,

radQ−� radQ
socQ

and
radQ
socQ

↪−→ Q

socQ
, (5.3)

are irreducible.

(iii) When U and V are indecomposable, f : U→ V is irreducible if and only if f ∈ r(U,V) but f /∈ r2(U,V).

Recall that the radicals of the projectives and the socles of the injectives are known for A = TLn and dTLn. Moreover,
if [k] is a non-critical orbit, then each projective Pk′ , with k′ ∈ [k] \ {kL}, is also injective. The previous proposition
therefore provides several irreducible morphisms for these algebras.

Definition 5.6. Let U be a left (or right) A-module.

• The vector space dual U∗ ≡ HomK(U,K) (introduced in Section 2.3 for K = C) is a right (or left) A-module with

action ( f a)(x) = f (ax) (or (a f )(x) = f (xa)), for all f ∈ U∗ and a ∈A.
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• The algebra dual Ut ≡ HomA(U,A) is a right (or left) A-module with action ( f a)(x) = f (x)a (or (a f )(x) = a f (x)),

for all f ∈ Ut and a ∈A.

As with the twisted dual of Section 2.3, the vector space dual defines a contravariant exact functor. The functor for the
algebra dual, on the other hand, is contravariant but only left-exact.

Recall that a projective presentation of a module U is a short exact sequence 0→ ker p→ P
p−→ U→ 0 in which P

is projective. Replacing ker p by another projective Q, its projective cover for example, gives another exact sequence:
Q

q−→ P
p−→ U→ 0. This sequence is said to be a minimal projective presentation of U if p : P→ U is a projective cover

of U and q : Q→ ker p is a projective cover of ker p. Apply the functor (−)t to obtain one last exact sequence:

0−→ Ut pt

−→ Pt qt

−→ Qt −→ cokerqt −→ 0. (5.4)

Definition 5.7. The Auslander-Reiten transpose of the left (right) A-module U is the right (left) A-module

TrU= cokerqt . (5.5)

We remark that the isomorphism class of the Auslander-Reiten transpose does not depend upon the choice of minimal
projective presentation.

The algebra dual Ut may be quite different to the vector space dual U∗, even as vector spaces. Here is a simple
example for A = TLn. Consider the irreducible left TLn-module IkL corresponding to the smallest integer in a non-
critical orbit [k] that contains at least two integers. Of course, I∗kL

is the corresponding irreducible right TLn-module,
a fact that we exploited in Section 4.3. On the other hand, ItkL

is the space of all homomorphisms from IkL to the left
TLn-module TLn. However TLn is a direct sum of indecomposable projectives, none of which contain IkL in their socles.
Therefore, the only such homomorphism is zero and ItkL

= 0.
Computing Ut can thus be tricky. Fortunately, we shall only need to compute this dual when U is projective and, in

this case, the next result gives the answer.

Proposition 5.8.

(i) If P is a finitely generated projective A-module, then so is Pt . In particular, if P=Ae for some idempotent e ∈A,

then Pt ' eA.

(ii) An indecomposable U is projective if and only if TrU= 0;

(iii) If U is indecomposable and not projective, with minimal projective presentation Q
q−→ P

p−→ U−→ 0, then

• the exact sequence

Pt qt

−→ Qt −→ TrU−→ 0 (5.6)

is a minimal projective presentation of TrU;

• the module TrU is indecomposable and not projective;

• Tr(TrU)' U.

Of course, the Auslander-Reiten transpose of a left module is a right module, when we are really only interested in
classifying left modules. We therefore modify this construction one last time.

Definition 5.9. Let U be an indecomposable left (right) module. The Auslander-Reiten translation of U is the left (right)

module

τU= (TrU)∗ (5.7a)

and the inverse Auslander-Reiten translation of U is the left (right) module

τ
−1U= Tr(U∗). (5.7b)
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Since (−)∗ preserves indecomposability, Proposition 5.8 shows that a non-projective (non-injective) indecomposable
U has an indecomposable translation τU (inverse translation τ−1U). This is a key feature of Auslander-Reiten translation
because it allows one to construct new indecomposable modules from known ones. Another key feature is that it can
also reveal new irreducible morphisms. The next proposition sums up these features.

Proposition 5.10. Let U and V be indecomposable A-modules and denote the set of isomorphism classes of finite-

dimensional indecomposable A-modules by Ω.

(i) If V is not projective, then

• τV is indecomposable and not injective, with τ−1(τV)' V;

• As vector spaces, r(U,V)/r2(U,V)' r(τV,U)/r2(τV,U);

• there exists a unique, up to isomorphism, almost split short exact sequence

0−→ τV −→
⊕
M∈Ω

s(M) ·M−→ V −→ 0, (5.8a)

where s(M) = dim(r(M,V)/r2(M,V)).

(ii) If U is not injective, then

• τ−1U is indecomposable and not projective, with τ(τ−1U)' U;

• As vector spaces, r(U,V)/r2(U,V)' r(V,τ−1U)/r2(V,τ−1U);

• there exists a unique, up to isomorphism, almost split short exact sequence

0−→ U−→
⊕
M∈Ω

t(M) ·M−→ τ
−1U−→ 0, (5.8b)

where t(M) = dim(r(U,M)/r2(U,M)).

As we shall see, the non-negative integers s(M) and t(M) usefully measure the “sizes” of the sets r(M,V)\r2(M,V) and
r(U,M)\ r2(U,M) of irreducible morphisms from M to V and from U to M, respectively.11 One of the key assertions of
the previous proposition is then that the set of irreducible morphisms from U to V has the same size as that from τV to
U, if V is not projective, and as that from V to τ−1U, if U is not injective.

Starting with a single irreducible morphism U→ V, Auslander-Reiten translation therefore infers an iterative se-
quence of irreducible morphisms between indecomposable modules that may be composed to form a chain:

· · · −→ τ(τV)−→ τU−→ τV −→ U−→ V −→ τ
−1U−→ τ

−1V −→ τ
−1(τ−1U)−→ ·· · . (5.9)

This chain terminates if either τmV or τmU is projective or if τ−mV or τ−mU is injective. Note that it may also happen
that τmU ' U and τmV ' V, for some m ∈ Z, in which case the chain (5.9) becomes a cycle of irreducible morphisms.
The algebras TLn and dTLn will provide examples of both possibilities.

Proposition 5.10 gives more than just a way to construct new indecomposable modules and irreducible morphisms.
It can also be used to verify the completeness of a set of indecomposable modules. To see this, suppose that a set Ω′

of inequivalent finite-dimensional indecomposable modules has been identified, along with the irreducible morphisms
between them. We can test for its completeness as follows. For each non-projective module V ∈ Ω′, one can list the
known (linearly independent) irreducible morphisms whose targets are V. If s′(M) is the number of these morphisms
with source M, then one can count composition factors to check whether the sequence

0−→ τV −→
⊕
M∈Ω′

s′(M) ·M−→ V −→ 0 (5.10)

11Recall that the set of irreducible morphisms does not form a vector space, see Proposition 5.5(iii), explaining the slightly awkward language
employed here.
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could be exact. If τV and V have too many composition factors, (5.8a) tells us that the set Ω′ is not complete or that we
have not found all the irreducible morphisms.

A second test, based on (5.8b), checks if, for every non-injective U, the composition factors of U and τ−1U match
those of

⊕
M∈Ω′ t

′(M) ·M, where t ′(M) is the number of known (linearly independent) irreducible morphisms with source
U and target M. Again, if this test fails for a single U, then either Ω′ is not complete or some irreducible morphisms are
missing.

Suppose however, that the algebra A is connected, meaning that it cannot be written as a direct sum of more than one
block (non-trivial indecomposable two-sided ideal). If both tests pass, for all non-injectives U and non-projectives V,
then Ω′ indeed yields a complete set of isomorphism classes of indecomposable modules. If A is not connected, then
one simply restricts these tests to each block.

For clarity, the indecomposable modules and irreducible morphisms of A are often represented graphically as a quiver
(graph).

Definition 5.11. Let A be a finite-dimensional associative K-algebra. The Auslander-Reiten quiver Γ(A-mod) of the

category A-mod of finite-dimensional left A-modules is defined as follows:

• The vertices of Γ(A-mod) are the isomorphism classes [U] of indecomposable modules U in A-mod.

• The arrows [U]→ [V], for U,V in A-mod, are in one-to-one correspondence with basis vectors of the K-vector space

r(U,V)/r2(U,V).

Proposition 5.12.

(i) If A is a connected finite-dimensional K-algebra, then Γ(A-mod) is connected and the number of arrows between

any two vertices is finite.

(ii) A is of finite-representation type if and only if Γ(A-mod) is a finite quiver.

(iii) If the algebras A1 and A2 have equivalent module categories, then their Auslander-Reiten quivers are identical.

(iv) If A is not connected, then Γ(A-mod) is the disjoint union of the Auslander-Reiten quivers of its blocks.

Of course, one can similarly study the Auslander-Reiten quiver Γ(mod-A) of the category mod-A of finite-dimensional
right A-modules. For TLn and dTLn, the left and right quivers are isomorphic.

5.2. A detailed example. As an example of the algorithmic construction afforded by the abstract results of the previous
subsection, we compute the Auslander-Reiten quiver for a block of A corresponding to a non-critical orbit containing
three elements {k1 = kL,k2,k3 = kR}. (We omit the case where n is even and β = 0, for A = TLn, deferring its study
to the end of the next subsection.) In what follows, we shall use the notation Bl

k and Tl
k for every module that is not

projective, injective or irreducible, slightly modified for brevity so that the index k = ki is replaced by the label i. The
same modification will be applied to the projectives, injectives and irreducibles. Thus, I2, P3, B1

2 and T2
1 now stand

for Ik2 , Pk3 , B1
k2

and T2
k1

, respectively, whilst we shall prefer P1 and J1 over S1 ' T1
1 and C1 ' B1

1, respectively. This
notation extends in an obvious fashion to orbits of arbitrary length.

We break down the construction of the Auslander-Reiten quiver into three steps: The computation of the translation
τ on indecomposable modules, the identification of irreducible morphisms, and the drawing and check of completeness
of the Auslander-Reiten quiver (and therefore of the list of isomorphism classes of indecomposable A-modules).

The action of τ on indecomposable modules — We assume the results of Section 2, that is the existence of the irreducible,
standard, costandard, injective and projective modules, as well as their Loewy diagrams. The translation τ will be applied
to all non-projectives of this list, and then on the new ones thus obtained, until the process does not introduce any new
non-projective indecomposable modules.
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Let us start with the (left) injective module J1 = C1 = B1
1. The first step is to construct a minimal projective presen-

tation Q→ P→ J1→ 0. It is
3

2

3

q−→
2

1 3

2

p−→
2

1
−→ 0. (5.11)

(We have replaced the names of the modules by their Loewy diagrams and each composition factor by its index i. We
have also omitted the arrowheads on the Loewy diagrams for clarity — they all point down.) To see that this is a minimal
projective presentation, note first that the projective cover of J1 is P2

p→ J1, by Proposition 2.16(ii), and that ker p' B1
2,

by (2.30). Then, Q = P[B1
2] ' P3, again by Proposition 2.16(ii). The next step is to identify the cokernel of Pt qt

→ Qt .
By Proposition 5.8(i), the modules Pt

2 and Pt
3 are the (right) modules P∗2 and P∗3, respectively. Moreover, the morphism

qt is non-zero because qt = 0 would imply that TrJ1 was projective, by part (iii) of the same proposition, contradicting
part (ii). The cokernel cokerqt is thus easily identified:

TrJ1 = coker

[ 2

1 3

2

qt

−→
3

2

3

]
' I∗3. (5.12)

The Auslander-Reiten translation of J1 is therefore τJ1 = (TrJ1)
∗ ' I3. Replacing J1 by I3, a similar computation shows

that τI3 = (Tr I3)∗ ' P1. Since P1 is projective, the process started with J1 stops here. Moreover, since J1 is injective,
we cannot use τ−1 to construct any other new indecomposables. If we indicate M1 = τM2 by M1  M2, then these
computations may be summarised as the following chain:

P1 I3 J1. (t0)

(The label (t0) will be explained in the next subsection.)
The choice of arrow direction, following the action of τ−1 rather than τ , was made so as to agree with the direction

of the irreducible morphisms in the chain (5.9). Indeed, we may redraw this chain in a zigzag pattern, adding squiggly
arrows representing τ−1 as follows:

τ2U τU U τ−1U τ−2U

· · ·

τ2V τV V τ−1V τ−2V

· · · . (5.13)

In this way, we see how to combine the τ-orbits of U and V, when we have prior knowledge of an irreducible morphism
from U to V, into a chain of irreducible morphisms. We will refer to this combination process as weaving.

We continue with the identification of the τ-orbits of indecomposables, illustrating the method one more time by
computing the repeated action of τ on I2. The projective cover of I2 is P2 and the kernel of the covering map p has head
I1⊕ I3 (we know that ker p ' T2

1, by (3.9) and Lemma 3.4, but we are only using the results of Section 2 here). The
projective cover of ker p is therefore P1⊕P3 (in agreement with Corollary 3.3), so the minimal projective presentation
of I2 is

Q=
1

2
⊕

3

2

3

q−→ P=

2

1 3

2

p−→ I2 −→ 0. (5.14)

We know that the transpose Tr I2 is indecomposable, by Proposition 5.8(iii), and is characterised by the following exact
sequence (of right A-modules):

Pt =

2

1 3

2

qt

−→ Qt =
1

2
⊕

3

2

3

−→ Tr I2 −→ 0. (5.15)



RESTRICTION AND INDUCTION OF TL INDECOMPOSABLES 43

As before, qt 6= 0, so Tr I2 must have precisely three composition factors: I∗1 and I∗3 in its head and I∗2 in its socle. Indeed,
the only other possibility is that qt maps hdPt onto socP∗1, contradicting the indecomposability of Tr I2. Tr I2 is therefore
not one of the indecomposables considered in Section 2. It must be, of course, the (right version of the) module T2

1

introduced in Section 3. Because taking the (vector space) dual of a module exchanges its socle and head, the dual of
the right module version of T2

1 is the left module B2
1 and, thus, τI2 = (Tr I2)∗ ' B2

1. Iterating the action of τ , we obtain

· · · I2 T2
1 B2

1 I2 · · · (i2)

Note that the Auslander-Reiten translation of T2
1 is the irreducible I2 that we started with: this sequence of translated

modules forms a cycle. The computations for the translations of I1 are similar to those detailed above and result in

· · · I1 T1
2 B1

2 I1 · · · (t2)

At this point, all of the indecomposable modules known from Section 2 (the “input data”) have appeared in either
(t0), (i2) or (t2), except for those that are both projective and injective: P2 and P3. By Proposition 5.8(ii), τM and τ−1M

are both the zero module if M is projective and injective. We have thus exhausted the possibility of constructing new
indecomposables from the ones we know. It is not clear at this point whether the list of indecomposables that we have
constructed, {

I1, I2, I3,P1,P2,P3,J1,B
2
1,B

1
2,T

2
1,T

1
2
}
, (5.16)

is complete. Proving completeness is the goal of the third step. But first, the irreducible morphisms between the known
indecomposables must be counted.

Irreducible morphisms and weaving — Proposition 5.5(i) gives some irreducible morphisms: including the radical in
a projective indecomposable and projecting an injective indecomposable onto the quotient by its socle. In the present
case, we obtain six irreducibles morphisms this way, conveniently summarised thus:

J1 −→ I2 −→ P1, T2
1 −→ P2 −→ B2

1, T1
2 −→ P3 −→ B1

2. (5.17a)

When an indecomposable module is projective and injective, with its socle strictly contained in its radical, Proposi-
tion 5.5(ii) gives further irreducible morphisms. Only the Pi, with i > 1, have these properties. We compute the quotients
radP2/socP2 ' I1⊕ I3 and radP3/socP3 ' I2, thereby adding six irreducible morphisms to those of (5.17a):

T2
1 −→ I1 −→ B2

1, T1
2 −→ I2 −→ B1

2, T2
1 −→ I3 −→ B2

1. (5.17b)

We remark that the decomposability of radP2/socP2 allowed us to construct four irreducible morphisms for P2, instead
of two, using Proposition 5.3(iv).

The non-projective modules J1 and I2 from the first irreducible morphism of (5.17a) belong to the distinct trans-
lation sequences (t0) and (i2), respectively. Weaving these sequences, as in (5.13), thus gives many other irreducible
morphisms:

P1 I3 J1 P1 I3 J1

· · ·
I2 T2

1 B2
1 I2 T2

1 B2
1 I2

· · · . (5.18)

Here, the top row is the translation chain (t0) (repeated) and the bottom row is the translation cycle (i2). The irreducible
morphisms form the following cycle:

· · · −→ I3 −→ B2
1 −→ J1 −→ I2 −→ P1 −→ T2

1 −→ I3 −→ ·· · . (5.19)

Of these irreducible morphisms, J1 → I2 → P1 and T2
1 → I3 → B2

1 have appeared already in (5.17), but B2
1 → J1 and

P1→ T2
1 are new.
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We continue weaving to find further irreducible morphisms. Of those in (5.17a), the first two were analysed above and
the remaining four involve an indecomposable that is both projective and injective, so give nothing new. We therefore
turn to the first four morphisms in (5.17b), the last two having also appeared in the previous analysis. From T2

1→ I1, we
weave the translation cycles (i2) and (t2) together and arrive at the following cycle of irreducible morphisms:

· · · −→ I2 −→ B1
2 −→ T2

1 −→ I1 −→ B2
1 −→ T1

2 −→ I2 −→ ·· · . (5.20)

These include the remaining morphisms of (5.17b) as well as B1
2→ T2

1 and B2
1→ T1

2, which are new. Having exhausted
our stock of irreducible morphisms, it is reasonable to conjecture that we have found a complete set. Testing this is the
content of the last step.

The Auslander-Reiten quiver and completeness — All indecomposable modules constructed using Auslander-Reiten
translation and all irreducible morphisms obtained in the previous step are drawn in the quiver of Figure 1, along with
the quivers for orbits of lengths 2, 4 and 5. This quiver combines the morphisms of the cycles (5.19) and (5.20) with
those of the chains in (5.17a) involving the projective injectives P2 and P3.

Proposition 5.10 gives two sets of checks to perform: whether, for all non-projective indecomposables V, every
irreducible morphism with target V has been obtained and whether, for all non-injective indecomposables U, every
irreducible morphism with source U has been obtained. Here is one example of the many verifications required by these
checks. The module B1

2 is not projective, its translation is τB1
2 = T1

2, and it is the target of at least two irreducible
morphisms: P3→ B1

2 and I2→ B1
2. Proposition 5.10 now states that there is an (almost split) exact sequence of the form

0−→ T1
2 −→ I2⊕P3⊕ ?−→ B1

2 −→ 0, (5.21)

where “?” will be non-zero if and only there are additional independent irreducible morphisms with target B1
2. However,

the composition factors of T1
2 and B1

2 together are I2 and I3, both appearing with multiplicity two, which precisely
matches the factors of I2⊕P3. Thus, “?” is the zero module and a complete set of irreducible morphisms with target B2

1

has been obtained. The remaining verifications are numerous, but the quiver makes them expeditious.
We remark that as P2 and P3 are both projective and injective, they escape the checks of Proposition 5.10. How-

ever, Proposition 5.5(i) assures us that all irreducible morphisms with these modules as source or target have already
appeared in (5.17a). Thus, the top right quiver drawn in Figure 1 depicts all the irreducible morphisms between those
indecomposables that have been identified, thus far.

Our last task is to ascertain whether the list of (isomorphism classes of) indecomposable modules that has been
obtained is complete. Since the list of projectives is complete, any missing indecomposable V would have to be non-
projective. Proposition 5.10 would then state the existence of an almost split exact sequence

0−→ τV −→⊕iMi −→ V −→ 0, (5.22)

for some modules Mi, and more irreducible morphisms. None of these new morphisms could have any of the inde-
composables already found as source or target, because we have already determined that the second quiver in Figure 1
already contains all such irreducible morphisms. A new irreducible morphism would therefore imply that the quiver for
this block of A is disconnected, contradicting Proposition 5.12(i). Thus, we have obtained a complete list of isomor-
phism classes of indecomposables.

5.3. Algorithmic construction of Auslander-Reiten quivers for TLn and dTLn. The goal of this last subsection is to
present an algorithmic construction of the Auslander-Reiten quiver for the algebras TLn and dTLn. A detailed proof of
this result is long, but does not involve any argument not yet covered in the example of the previous subsection. We shall
only indicate how to construct the quiver and sketch the proofs. As usual, we shall assume that the case of TLn, with n

even and β = 0, is not under consideration, its study being deferred to the end of the section.
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FIGURE 1. The Auslander-Reiten quivers of TLn and dTLn for orbits [k] of lengths 2, 3, 4 and 5. The
quivers for TLn, with n even and β = 0, are different and are instead illustrated in Figure 2. Reflecting
about vertical bisectors amounts to taking the twisted dual of Section 2.3.

Let s denote the length of the non-critical orbit of k ∈ Λn. If s = 1, then Pk = Jk = Ik and this is the only indecom-
posable module for the corresponding block. We shall therefore assume that s ≥ 2. Order the integers in [k] from the
smallest to the largest and label them by k1 = kL, k2, . . . , ks = kR. Our goal is to construct the Auslander-Reiten quiver
of the corresponding block. Its vertices are precisely the indecomposable A-modules which have the property that each
of their composition factors is isomorphic to one of the irreducibles I1, I2, . . . , or Is (as in Section 5.2, we shall replace
k j by j for clarity). We will also find it convenient to write s = 2i, if s is even, and s = 2i+1, if it is odd.

The orbits of the translation τ — As in the previous example, the first step is to characterise the τ-orbits. Recall that the
Auslander-Reiten translation τM of an indecomposable module M is zero if (and only if) M is projective. The use of the
word “orbit” for the action of the translation τ is thus somewhat abusive. We shall use the word regardless, qualifying it
as a τ-orbit to avoid confusion with the orbit of a non-critical k. We will also describe τ-orbits as chains and cycles, as
in Section 5.2. We note that τ-orbits are disjoint: no indecomposable appears in more than one.

It is easy to show that there is always a τ-orbit, denoted by (t0), that takes the form of the following chain:

P1 = T1
1 T1

3 T1
5 · · ·

{
T1

2i−1 B1
2i−1

T1
2i−1 I2i+1 B1

2i−1

}
 · · · B1

5 B1
3 B1

1 = J1,

{
s even,
s odd.

(t0)

We recall that denotes the action of τ−1. For s = 3 (i = 1), this chain indeed reduces to the chain (t0) obtained in the
previous subsection. Explicit examples of τ-orbits are given in Appendix B.
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The description of the other τ-orbits requires a systematic use of the following “trick”. Let B j
k, with k ∈ Z and j a

positive odd integer, denote the zigzag represented graphically as

k

k+1

k+2
· · ·

j+k−1

j+k
. (5.23)

Of course, this need not be the Loewy diagram of an indecomposable module as, in general, the integers appearing in
this zigzag might be smaller than 1 or larger than s. In order to simplify the following discussion, we shall suppose that
j and k satisfy

0≤ j ≤ 2s+1, −s≤ k ≤ s, 1≤ j+ k ≤ 2s+1. (5.24)

These conditions will be satisfied in the applications to come. For all indices m ≤ 0 appearing in this zigzag, construct
the pair (m,r(m)), where r(m) =−m is the reflection of m through a mirror at 0. Similarly, for all m≥ s+1 in the zigzag,
construct the pair (m,r′(m)), where r′(m) = 2(s+ 1)−m is now the reflection of m through a mirror at s+ 1. Finally,
delete from the zigzag every integer that appears in one of the pairs (m,r(m)) or (m,r′(m)) and denote the resulting
zigzag by rd

[
B j

k

]
. The conditions (5.24) ensure that the result is either empty or that it is the Loewy diagram of one of

the indecomposable modules found in Section 3.12 In particular, the composition factors of this module have labels in
the set {1,2, . . . ,s}. Using the nomenclature of Section 3, this module can be of type B, T or I. We shall call the process
of constructing rd

[
B j

k

]
from B j

k the reflection-deletion trick.
Here are two examples of this process. If s = 8, then rd

[
B9
−3

]
is T2

4 because the pairs (0,0), (−1,1), (−2,2) and
(−3,3) are to be deleted, leaving only the composition factors labelled by 4,5 and 6:

−3

−2

−1

0

1

2

3

4

5

6
. (5.25)

(The dashed lines indicate the mirror through which integers have been reflected.) Similarly, rd
[
B6

0
]
=T2

1, if s = 4, since
the pairs to be deleted are now (0,0), (5,5) and (6,4):

0

1

2

3

4

5

6
. (5.26)

We now construct the remaining τ-orbits, beginning with those that we denote by (t2l), where 1 ≤ l ≤ b 1
2 (s− 1)c.

First, for each l in this range, construct the following sequence of i or i+1 zigzags, according as to whether s is even or
odd, respectively:

B2m+1
2i+1−m ︸ ︷︷ ︸

if s = 2i+1 is odd

B2m+1
2i−1−m · · · B2m+1

3−m  B2m+1
1−m . (5.27)

Here, we write m = 2l for later convenience. Second, apply the reflection-deletion trick to each zigzag in (5.27). Note
that rd

[
B2m+1

1−m

]
= T2

m = T2
2l (except when s is odd and m = s−1, in which case rd

[
B2m+1

1−m

]
= T1

m = T1
2l), explaining our

choice of label (t2l). Note also that when s is odd, rd
[
B2m+1

2i+1−m

]
is I2i+1−m. Third, extend the reflected-deleted sequence to

the left by adding the (twisted) duals of the rd
[
B2m+1

j

]
in reverse order (if s is odd, the self-dual I2i+1−m is not repeated).

12It is clear that this reflection-deletion trick has its origins in a signed action of the affine Weyl group A
(1)
1 = Z2 nZ on the integers Z with

“fundamental alcove” {1,2, . . . ,s} (see [3]). This action reflects and translates each zigzag vertex into the fundamental alcove, picking up a formal
sign with every reflection. However, the resulting zigzag may have vertices appearing with negative coefficients in general, ruining its interpretation
as the Loewy diagram of a module. We have imposed the conditions (5.24) in order to ensure that this does not happen.
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The complete τ-orbit is then obtained from this extended sequence by closing it to form a cycle:

I2i+1−m

rd
[
B2m+1

2i−1−m

]
· · · rd

[
B2m+1

3−m

]
rd
[
B2m+1

1−m

]

rd
[
B2m+1

2i−1−m

]∨ · · · rd
[
B2m+1

3−m

]∨ rd
[
B2m+1

1−m

]∨
if s is
even

is odd

if s

. (t2l)

It contains s distinct indecomposables. Taking s = 3 and l = 1, hence i = 1 and m = 2, we note that rd
[
B5
−1
]
= T2

1,
thereby recovering the cycle (t2) obtained in the previous subsection.

The remaining τ-orbits will be denoted by (i2l), where 1≤ l ≤ b 1
2 sc, because they contain the irreducible module I2l .

Their construction is similar to that of the (t2l). First, we have the following sequences of i+1 zigzags:

B2m−1
2i+1−m . . . B2m−1

3−m  B2m−1
1−m . (5.28)

If s is odd, then m takes the values m = 2l, for 1 ≤ l ≤ i. If it is even, then m = 2i+ 1− 2l with, again, 1 ≤ l ≤ i.
Second, apply the reflection-deletion trick to each zigzag of each sequence. Note that rd

[
B2m−1

1−m

]
= Im, which is I2l , if s

is odd, and Is+1−2l , if it is even. Moreover, rd
[
B2m−1

2i+1−m

]
= I2l , if s is even. Third, we again extend the reflected-deleted

sequence to the left by adding the (twisted) duals in reverse order. When an endpoint of the sequence is irreducible,
hence self-dual, it does not get repeated. The result is the cycle

rd
[
B2m−1

2i+1−m

]
I2l

rd
[
B2m−1

2i−1−m

]
· · · rd

[
B2m−1

5−m

]
rd
[
B2m−1

3−m

]
Im

rd
[
B2m−1

2i+1−m

]∨
rd
[
B2m−1

2i−1−m

]∨ · · · rd
[
B2m−1

5−m

]∨ rd
[
B2m−1

3−m

]∨even

if s is

odd

s is

if

. (i2l)

It likewise contains s distinct indecomposables.

Lemma 5.13. Let [k] be a non-critical orbit of length s≥ 2 (omitting the case of A = TLn, with n even and β = 0) and

write s = 2i or 2i+1, according as to whether s is even or odd, respectively. Then, the s τ-orbits

(t0),(t2), . . . ,(t2i−2),(t2i),︸︷︷︸
if s is odd

(i2),(i4), . . . ,(i2i) (5.29)

are all cycles, except for (t0) which is a chain. They each contain s distinct indecomposable modules and are disjoint in

the sense that no indecomposable appears in more than one such τ-orbit.

Sketch of proof. First, the Auslander-Reiten translation of the modules that are “far” from the boundary of the class [k]
are computed. For a module to be “far enough”, it is sufficient that neither the composition factor kL = k1 nor kR = ks

appear in the minimal projective presentation used to compute its Auslander-Reiten translation. This computation is
then straightforward and does not depend on the parity of s. Second, the translation of the modules whose projective
presentation involves k1 or ks is studied. In most cases, the result depends on the parity of s. Consequently, the analysis
involves many subcases (and is rather tedious). Third, when sufficiently many subcases have been computed, it is
straightforward to check that the “boundary cases” in the τ-orbits (t2l) and (i2l), with l > 0, are correctly predicted by the
reflection-deletion trick. Finally, the disjointness, number and lengths of the τ-orbits are obtained by inspection. Again,
the parity of s plays a role.

It will turn out that every indecomposable A-module, except the projective injectives P j, j > 1, will appear in one of the
τ-orbits (t2l) or (i2l). As was noted above, P1 and J1 both appear in the chain (t0).
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Irreducible morphisms and the weaving of τ-orbits — The second goal is to construct the irreducible morphisms between
the indecomposable modules that have been constructed.

As [k] contains s elements, Proposition 5.5(i) gives 2s irreducible morphisms, namely rad(P j) ↪→ P j and J j �

J j/soc(J j), for 1≤ j ≤ s. Explicitly, these are

I2 −→ P1, J1 −→ I2; T2
j−1 −→ P j −→ B2

j−1 (1 < j < s); T1
s−1 −→ Ps −→ B1

s−1. (5.30)

Moreover, since the P j, with j > 1, are non-simple, projective and injective, part (ii) of the same proposition, combined
with Proposition 5.3(iv), gives another 4s−6 irreducible morphisms:

T2
j−1 −→ I j−1 −→ B2

j−1, T2
j−1 −→ I j+1 −→ B2

j−1 (1 < j < s); T1
s−1 −→ Is−1 −→ B1

s−1. (5.31)

The next step is to identify pairs of τ-orbits that may be weaved together. This happens when there exists an irre-
ducible morphism U →V from an indecomposable U of one τ-orbit to an indecomposable V of another. Such pairs are
then weaved together as in (5.13).

Suppose first that s is odd. Then, the sequence (t0) contains the irreducible I2i+1 = Is and the sequence (i2) contains the
indecomposable rd

[
B3

s−2
]
= B2

s−2 and its dual T2
s−2. The irreducible morphisms T2

s−2→ Is→ B2
s−2 of (5.31) therefore

allow us to weave (t0) and (i2) together. Moreover, (t2) contains Is−2 and (5.31) includes T2
s−2→ Is−2→ B2

s−2, hence
we may also weave (i2) and (t2) together. Continuing, we find that we can recursively weave contiguous pairs in the
following sequence, read from left to right:

(t0)←→ (i2)←→ (t2)←→ (i4)←→ (t4)←→ ··· ←→ (i2i)←→ (t2i). (5.32)

For s even, we can also recursively weave contiguous pairs from (5.32), though the final τ-orbit (t2i) is omitted. The
justification for this weaving is slightly different to that for s odd because the (t2l) no longer contain any irreducibles.
To start, note that the irreducible morphisms T1

s−1→ Is−1→ B1
s−1 of (5.31) allow us to weave (t0) with (i2), as before.

To obtain the weave with (t2), we note that Proposition 5.10 implies the exactness of

0−→
s−3

s−2

s−1

s
−→ ? ⊕

s−1

s
−→ Is−1 −→ 0, (5.33)

for some unknown module ?, because Is−1 is not projective, τIs−1 ' T3
s−3, and there is an irreducible morphism from

T1
s−1 to Is−1. The identity of the unknown module is now determined by the fact that its composition factors are Is−3,

Is−2, Is−1 and the fact that ?⊕T1
s−1 has a submodule isomorphic to T4

s−3: the only possible module is ? ' T2
s−3. But

now, Proposition 5.10 gives the existence of another irreducible morphism, this time from T2
s−3 to Is−1. This morphism

allows us to weave (i2) and (t2).
The iteration for s even now proceeds in the following fashion: When weaving (t2l) with (i2(l+1)), the procedure is the

same as that described in the s odd case. However, when weaving (i2l) with (t2l), the procedure follows that described
in the previous paragraph. We remark that this latter procedure would obviously fail when s = 2; however, the only
τ-orbits in this case are (t0) and (i2), so no such weaving is required.

Lemma 5.14. The only weaves between τ-orbits are those between contiguous pairs of the sequence

(t0)←→ (i2)←→ (t2)←→ (i4)←→ (t4)←→ ··· ←→ (i2i)←→ (t2i)︸ ︷︷ ︸
if s is odd

. (5.34)

Together with the morphisms (5.30), the morphisms obtained from these weaves form a complete list of all irreducible

morphisms between indecomposable modules. The list of indecomposable modules is likewise complete.

Sketch of proof. There are two steps to this proof. First, one has to check that the irreducible morphisms described in the
above procedures do actually appear in the previously woven pair. Second, one has to check that the tests described after
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FIGURE 2. The Auslander-Reiten quivers of TLn, with β = 0, for n = 2, 4, 6 and 8 (left to right).
Reflecting about vertical bisectors again amounts to taking the twisted dual of Section 2.3.

Proposition 5.10 are satisfied, for all non-projective and non-injective indecomposable modules. While both steps are
required to conclude that all the irreducible morphisms have been constructed, they each require nothing but patience.
As in the example of Section 5.2, completeness follows from Proposition 5.12 and the fact that blocks are connected, by
definition. The proof of completeness of the set of indecomposables also follows as in Section 5.2.

The complete Auslander-Reiten quiver of TLn and dTLn — The last step of the algorithm is to put together the quivers
for each block of A. Recall that a block corresponds to the partition into classes of critical and non-critical integers (see
Section 2.1). Recall that if k is critical or if its (non-critical) orbit has length 1 ([k] = {k}), then all its extension groups
are trivial and the only indecomposable with Ik as a composition factor is Ik itself.13

Theorem 5.15. The Auslander-Reiten quiver of A = TLn or dTLn (omitting TLn, when n is even and β = 0) is the

disjoint union of c connected graphs where c is the number of distinct classes [k], for k ∈ Λn.

(i) If a class [k] contains the single integer k, then the corresponding connected subgraph consists of a single vertex,

labelled by the irreducible Ik, and has no arrows.

(ii) If a class [k] contains s ≥ 2 integers, then the connected subgraph associated with this class is constructed by

computing the τ-orbits, weaving them, and then adding the injective projectives and their irreducible morphisms,

as described in Lemmas 5.13 and 5.14.

We have put aside the case of A = TLn, with n even and β = 0. However, the result for this case is now easily stated.
For A = TLn, with n even and β = 0, every k ∈ Λn,0 is even and belongs to the same class {2,4, . . . ,n}. In the notation
of this section, these integers are replaced by the labels 1,2, . . . ,n/2. The quiver for this class is then identical to the
quiver described above for a class of length s = n/2, except for the following changes: P1 and J1 are replaced by T1

1

and B1
1, respectively (in this case, neither are projective nor injective), a new P1 is introduced in the center of the quiver

(under I2), and the irreducible morphisms B1
1→ P1→ T1

1 are added. For completeness, we draw the quivers for n = 2,
4, 6 and 8 in Figure 2. Interestingly, they coincide with those of a zigzag algebra discussed in [24].

13In general, the case TL2, with β = 0, provides the only counterexample to this statement.
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APPENDIX A. SOME PHYSICAL APPLICATIONS OF INDECOMPOSABLE TEMPERLEY-LIEB MODULES

As discussed in the Introduction, we shall detail here some of the uses of non-semisimple Temperley-Lieb modules in
specific examples of physically important integrable lattice models. First, it is important to recall why non-semisimple
modules appear in the first place. In a semisimple algebra, like the complex group algebras of the symmetric groups or
the Temperley-Lieb algebras with β generic, determining the structure of any given module is equivalent to determining
its composition factors. In the non-semisimple case, this is not always so. A simple example is provided by the two-
dimensional algebra TL2(β ) with β = 0. A basis for this algebra is {id,e1} with unit id and the relation e1 · e1 = 0. The
regular module, wherein TL2 acts on itself, is given in this basis by

id 7→

(
1 0
0 1

)
and e1 7→

(
0 0
1 0

)
. (A.1)

Clearly Ce1 is a submodule, but it does not have a complement that would be itself a submodule. This representation is
indecomposable, even though it has a proper submodule. It has two (isomorphic) composition factors in which id and e1

act as (1) and (0) respectively. This information is however insufficient to completely characterise the regular module.
For non-semisimple algebras, one must also determine how these composition factors are “glued together” to form
indecomposable summands. In favourable cases, including indecomposable Temperley-Lieb modules for β = q+ q−1

with q a root of unity, this can be achieved by determining how the composition factors are arranged in the Loewy
diagram of the module.

In many physical problems, the analysis proceeds most efficiently and elegantly when one is able to precisely identify
which module of the symmetry algebra is defined by the states of the system. This not only facilitates computations of
physically interesting quantities, it may also demonstrate otherwise obscured relationships with other physical problems,
perhaps even some with known solutions. However, if the algebra is not semisimple and the physically relevant module
has many composition factors, correctly identifying it through the pattern of its Loewy diagram can be very difficult.
Having a complete list of all the patterns that can appear is therefore a very valuable aide that reduces this identification
problem to a (hopefully) simple process of elimination. In particular, for the Temperley-Lieb algebras, there is always
a finite number of (isomorphism classes of) modules possessing any given finite set of composition factors. Moreover,
these modules are each characterised (up to isomorphism) by a finite number of properties, so we can verify which of
these properties are satisfied and thereby perform the identification algorithmically.

A.1. Example I: the XXZ spin chain. The open XXZ spin chain is a well known physical model on the n site Hilbert
space C2n = (C2)⊗n that is described by the Hamiltonian

HXXZ =−
n−1

∑
i=1

ei, ei =−
1
2

(
σ

x
i σ

x
i+1 +σ

y
i σ

y
i+1 +

q+q−1

2
(σ z

i σ
z
i+1−1C⊗2n)+

q−q−1

2
(σ z

i −σ
z
i+1)

)
, (A.2)

where σ x
i , σ

y
i and σ

z
i denote the Pauli matrices acting on the i-th copy of C2 while acting as the identity on the remaining

n− 1 copies. One can verify using the standard Pauli relations that the ei generate a representation of TLn(β ) with
β = q+q−1. According to the general strategy outlined above, we should ask how to decompose it into indecomposable
Temperley-Lieb modules.

Martin [25] was the first to tackle this problem. More recently, Gainutdinov and Vasseur [10] used their lattice fusion
product to determine the explicit decomposition and Provencher and Saint-Aubin [26] confirmed it by computing the
projections onto each indecomposable summand. If ` denotes the smallest positive integer such that q2` = 1, the result
is

C⊗2n '
n⊕

k=0

M(k,n− k), (A.3)
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where we set, for r and s non-negative integers and i and j integers satisfying 0≤ i, j < `,

M(r`−1+ i,s`−1+ j)'
r+s−1⊕

t=|r−s|+1
step=2

`−|i− j|−1⊕
k=µ(`−|i− j|−1)

step=2

Pt`−1+k⊕
r+s⊕

t=|r−s−sign(i− j)|+1
step=2

|i− j|−1⊕
k=µ(|i− j|−1)

step=2

Pt`−1+k

⊕
i+ j−`−1⊕

k=µ(i+ j−`−1)
step=2

P(r+s)`−1+k⊕
`−|`−i− j|−1⊕

k=|i− j|+1
step=2

S(r+s)`−1+k, (A.4)

with µ(x) ∈ {0,1} defined to agree with x mod 2. Here, it is understood that sums over empty sets correspond to the
zero module. We give a few examples for n = 8:

(`= 4 so β =±
√

2) C⊗16 ' 6P8⊕P6⊕3P4⊕3S8⊕2S4,

(`= 3 so β =±1) C⊗16 ' 9P8⊕4P6⊕P4⊕3P2⊕3S6,

(`= 2 so β = 0) C⊗16 ' 4P8⊕3P6⊕2P4⊕P2⊕5S8.

(A.5)

Note that many indecomposable representations appear multiple times. The number of times that each module appears
is the dimension of an irreducible module of the quantum group Uq(sl2), a manifestation of the so-called quantum

Schur-Weyl duality.

A.2. Example II: the Dimer model. Whereas the XXZ model decomposes into standard and projective modules, the
decomposition of the state space of our next example requires the less familiar indecomposables introduced in Section 3.
The dimer model, see [27] for example, is another physical model that may be formulated [12] in terms of a spin chain,
this time on n−1 sites, with Hamiltonian

Hdimer =−
n−1

∑
j=1

e j, e j = σ
−
j−1σ

+
j +σ

+
j σ
−
j+1, 2σ

±
j ≡ σ

x
j ∓ iσ y

j , σ
±
0 ≡ σ

±
n ≡ 0. (A.6)

Here, the σ k
j are defined as for the XXZ example above. One can again verify that the e j generate a representation

of the Temperley-Lieb algebra TLn(β ), this time with β = 0. It was proven in [12] that this spin chain representation
decomposes as

C⊗2(n−1) '
1
2 (n−1)⊕

ν=− 1
2 (n−1)

Eν
n , (A.7)

where one sets

Eν
n '

B
1
2 (n−1)−ν

2ν+1 if ν ≥ 1
2 ,

T
1
2 (n−1)+ν

−2ν+1 if ν ≤− 1
2 ,
, (A.8)

if n is even, and

Eν
n '
b 1

4 (n−1−2|ν |)c⊕
i=0

P2|ν |+1+4i, (A.9)

if n is odd. For example, we have the following decompositions:

(n = 8) C⊗14 ' S6⊕T2
4⊕T3

2⊕B3
2⊕B2

4⊕C6⊕2I8,

(n = 9) C⊗16 ' 5P9⊕4P7⊕3P5⊕2P3⊕P1,

(n = 10) C⊗18 ' S8⊕T2
6⊕T3

4⊕T4
2⊕B4

2⊕B3
4⊕B2

6⊕C8⊕2I10.

(A.10)
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Note that this model can also be seen has a module for another algebra: the type B Temperley-Lieb algebra14 b̃n(q,δ ),
also called the one-boundary Temperley-Lieb algebra. This algebra is very similar to TLn(β ) except that it has another
generator b and another parameter δ that satisfy the following relations:

e1be1 = (qδ
−1−q−1

δ )e1, b2 = (δ −δ
−1)b, eib = bei for all i≥ 2. (A.11)

In the dimer model, one simply considers the same model on n sites (instead of n−1), defining b = 2ie1 and ui = ei+1

for i = 1, . . . ,n−1. This produces a representation of the one-boundary Temperley-Lieb algebra with δ = 1 and q = i.
If one “forgets” the boundary operator b, meaning that we restrict to the TLn+1(0) subalgebra generated by the ui, then
one can verify that combining the formulae in Section 4.1 with Equation (A.8) results in the ordinary XXZ spin chain at
q = i. From a physical point of view, this shows that the dimer model on n sites is isomorphic to an XXZ spin chain on
which one imposes somewhat unusual boundary conditions by adding the operator b.

A.3. Example III: the twisted XXZ spin chain. Our final example discusses a well known physical model for which
the Temperley-Lieb symmetry is augmented to a significantly larger associative algebra. The twisted XXZ spin chain
is a closed version of the open spin chain discussed in section A.1. Its Hilbert space is also isomorphic to C⊗2n, but its
Hamiltonian is given by

H tw.
XXZ =−

n

∑
i=1

ei, (A.12)

where this time the ei are defined by

ei =


−1

2

(
σ

x
i σ

x
i+1 +σ

y
i σ

y
i+1 +

q+q−1

2
(σ z

i σ
z
i+1−1C⊗2n)+

q−q−1

2
(σ z

i −σ
z
i+1)

)
, for i < n,

−1
2
e−iφσ

z
1/2
(

σ
x
n σ

x
1 +σ

y
n σ

y
1 +

q+q−1

2
(σ z

nσ
z
1−1C⊗2n)+

q−q−1

2
(σ z

n−σ
z
1)

)
eiφσ

z
1/2, for i = n.

(A.13)

Here, φ is a twist parameter and, again, the σ k
i are defined as in the open case. One can show that this defines a

representation of the affine Temperley-Lieb algebra aTLn [18]. The defining relations of this algebra are

eiei = (q+q−1)ei, eiei±1ei = ei, eie j = e jei if |i− j|> 1,

uei = ei+1u, u2en−1 = e1e2 . . .en−1,
(A.14)

where we understand that e0 ≡ en, en+1 ≡ e1, and so on. In this representation, the generator u is given by

u = ine−iφσ
z
1/2s1s2 · · ·sn, si ≡

1
2
(1C⊗2n +σ

x
i σ

x
i+1 +σ

y
i σ

y
i+1 +σ

z
i σ

z
i+1). (A.15)

The representation theory of the affine Temperley-Lieb algebra is significantly more complicated than in the regular
case, so we simply mention that its standard modules Wk,z and its irreducible modules χk,z are indexed by two parame-
ters: an integer 0 ≤ k ≤ n and a non-zero complex parameter z. If q is generic, then one can show [28] that the Hilbert
space decomposes as

C⊗2n '
n⊕

j=−n
step=2

M j,z, (A.16)

where z = (−1)ne−iφ/2 and M j,z is the standard module W j,z, if j ≥ 0, and is its dual W∗j,z, if j < 0. If e−iφ is not
an integer power of q, then the model is semisimple; if it is an integer power of q, then each standard module has, in
general, one or two composition factors. If q is a root of unity, the decomposition (A.16) still holds but the identification
of the M j,z is presently unknown in general. In this case, the structure of the standard modules is significantly more
complicated, so it is harder to identify them or their various subquotients. For instance, Figure 3 shows the Loewy

14This name comes from the fact that it can be obtained from the type Bn Hecke algebra in the same way that regular Temperley-Lieb is obtained from
the type An Hecke algebra.
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(2,z2)

(4,z1)

W2,z2

(4,z2)

W4,z2

(6,z2)

W6,z2

FIGURE 3. Some Loewy diagrams for the standard modules W j,z for n = 16 and q generic. The
notation ( j,z) denotes the composition factor isomorphic to the simple quotient of W j,z. We set zk =

(−q)k for convenience.

(2,z2)

(8,z−1) (4,z1)

(10,z−2) (14,z2)

(16,z1)

W2,z2

(4,z2)

(10,z−1)

(14,z1)

(16,z2)

W4,z2

(6,z2)

(8,z3) (10,z0)

(12,z−2) (12,z2)

(14,z3) (16,z0)

W6,z

FIGURE 4. Some Loewy diagrams for the standard modules W j,z for n = 16 and ` = 3 (so q6 = 1).
The notation ( j,z) denotes the composition factor isomorphic to the simple quotient of W j,z. We set
zk = (−q)k for convenience.

diagrams for some standard modules with n = 16, and e−iφ/2 = q2; in contrast, Figure 4 shows the Loewy diagrams of
the same modules if `= 3 (so q6 = 1).

APPENDIX B. τ -ORBITS FOR s = 6 AND 7

The τ-orbits for s = 6 are

P1 T1
3 T1

5 B1
5 B1

3 J1, (t0)

B2
2 T5

1 T2
3 B2

3 B5
1 T2

2, (t2)

B2
1 T3

2 T2
4 B2

4 B3
2 T2

1, (t4)

T3
1 T3

3 I5 B3
3 B3

1 I2, (i2)

B4
1 T4

2 I4 B4
2 T4

1 I3, (i4)

T1
2 T1

4 I6 B1
4 B1

2 I1. (i6)

(B.1)

All τ-orbits are cycles except (t0), that is, the τ-translation of the leftmost module in each orbit is the rightmost one.
Their weaves are as follows:

P1 −→ T3
1 −→ T1

3 −→ T3
3 −→ T1

5 −→ I5 −→ B1
5 −→ B3

3 −→ B1
3 −→ B3

1 −→ J1 −→ I2 −→ P1, ((t0)↔ (i2))

B2
2 −→ T3

1 −→ T5
1 −→ T3

3 −→ T2
3 −→ I5 −→ B2

3 −→ B3
3 −→ B5

1 −→ B3
1 −→ T2

2 −→ I2 −→ B2
2, ((i2)↔ (t2))

B2
2 −→ B4

2 −→ T5
1 −→ T4

1 −→ T2
3 −→ I3 −→ B2

3 −→ B4
1 −→ B5

1 −→ T4
2 −→ T2

2 −→ I4 −→ B2
2, ((t2)↔ (i4))

B2
4 −→ B4

2 −→ B3
2 −→ T4

1 −→ T2
1 −→ I3 −→ B2

1 −→ B4
1 −→ T3

2 −→ T4
2 −→ T2

4 −→ I4 −→ B2
4, ((i4)↔ (t4))

B2
4 −→ B1

4 −→ B3
2 −→ B1

2 −→ T2
1 −→ I1 −→ B2

1 −→ T1
2 −→ T3

2 −→ T1
4 −→ T2

4 −→ I6 −→ B2
4. ((t4)↔ (i6))
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The τ-orbits for s = 7 are

P1 T1
3 T1

5 I7 B1
5 B1

3 J1, (t0)

B2
2 T5

1 T4
3 I5 B4

3 B5
1 T2

2, (t2)

B2
4 B5

2 T4
1 I3 B4

1 T5
2 T2

4, (t4)

B1
6 B1

4 B1
2 I1 T1

2 T1
4 T1

6, (t6)

T3
1 T3

3 T2
5 B2

5 B3
3 B3

1 I2, (i2)

B4
2 T6

1 T2
3 B2

3 B6
1 T4

2 I4, (i4)

B3
4 B3

2 T2
1 B2

1 T3
2 T3

4 I6. (i6)

(B.2)

Again, all τ-orbits are cyclic except (t0). Their weaves are:

P1→ T3
1→ T1

3→ T3
3→ T1

5→ T2
5→ I7→ B2

5→ B1
5→ B3

3→ B1
3→ B3

1→ B1
1→ I2→ P1, ((t0)↔ (i2))

B2
2→ T3

1→ T5
1→ T3

3→ T4
3→ T2

5→ I5→ B2
5→ B4

3→ B3
3→ B5

1→ B3
1→ T2

2→ I2→ B2
2, ((i2)↔ (t2))

B2
2→ B4

2→ T5
1→ T6

1→ T4
3→ T2

3→ I5→ B2
3→ B4

3→ B6
1→ B5

1→ T4
2→ T2

2→ I4→ B2
2, ((t2)↔ (i4))

B2
4→ B4

2→ B5
2→ T6

1→ T4
1→ T2

3→ I3→ B2
3→ B4

1→ B6
1→ T5

2→ T4
2→ T2

4→ I4→ B2
4, ((i4)↔ (t4))

B2
4→ B3

4→ B5
2→ B3

2→ T4
1→ T2

1→ I3→ B2
1→ B4

1→ T3
2→ T5

2→ T3
4→ T2

4→ I6→ B2
4, ((t4)↔ (i6))

B1
6→ B3

4→ B1
4→ B3

2→ B1
2→ T2

1→ I1→ B2
1→ T1

2→ T3
2→ T1

4→ T3
4→ T1

6→ I6→ B1
6. ((i6)↔ (t6))
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