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ABSTRACT. The parafermionic cosets Ck = Com(H,Lk(sl2)) are studied for negative admissible levels k, as
are certain infinite-order simple current extensions Bk of Ck . Under the assumption that the tensor theory
considerations of Huang, Lepowsky and Zhang apply to Ck , irreducible Ck- and Bk-modules are obtained from
those of Lk(sl2). Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck
fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk-modules. The
irreducible Ck- and Bk-characters are computed and the latter are shown, when supplemented by pseudotraces,
to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are
C2-cofinite vertex operator algebras.

1. INTRODUCTION

Logarithmic conformal field theory is of significant interest in both mathematics and physics. From its
earliest appearances [1, 2], it has found applications in both statistical physics and string theory whilst its
characteristic feature, reducible but indecomposable modules over a vertex operator algebra, poses signifi-
cant (but rewarding) challenges to representation theorists. As with the more familiar rational case, there are
certain logarithmic theories that may be regarded as somehow archetypal [3] including symplectic fermions
[4], the triplet model [5–7], bosonic ghosts [8] and admissible-level Wess-Zumino-Witten models [9–11].

It is of fundamental importance to develop a theory of good logarithmic conformal field theories. One
very natural class consists of those that are C2-cofinite [12] (or lisse), meaning that the corresponding
vertex operator algebra only possesses finitely many (isomorphism classes of) irreducible modules. It seems
plausible that the representation category of a C2-cofinite vertex operator algebra is a so-called log-modular
tensor category [13, 14], a mild non-semisimple generalisation of the modular tensor categories that arise
when restricting to the rational case [15]. We would like to gain better intuition about log-modular tensor
categories. Unfortunately, the only really well understood examples of C2-cofinite vertex operator algebras
are the triplet algebras [16,17] and their close relatives [18,19]. In particular, the other archetypes mentioned
above are not C2-cofinite, so there is an obvious need for more examples.

The picture advocated in [20, 21] for constructing new examples is as follows:

Ck = Com(H,Lk(g))

Lk(g)

Bk = Com(VL,Ek).

Ek =
⊕

σ∈S σ (Lk(g))
extension

coset

extension

coset (1.1)

Here, g is a simple Lie algebra, Lk(g) is the corresponding simple affine vertex operator algebra at a negative
admissible level k, and VL is a lattice vertex operator algebra extending the Heisenberg vertex operator
algebra H associated to the Cartan subalgebra of g. The vertex operator algebra Ek is a simple current
extension of Lk(g) by the images of the vacuum module under a subgroup S of spectral flow functors
(see Section 2). Bk is then an extension of the parafermion vertex operator algebra Ck governed by an
abelian intertwining algebra. The results of [21] suggest that both Ek and Bk have a good chance to be
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C2-cofinite. However, the former has the undesirable property that its conformal weights are unbounded
below, a property that is not shared by the latter if k < 0.

Parafermionic cosets Ck with k ∈ Z≥0 were introduced independently in the physics [22,23] and mathe-
matics literature [24,25]. Despite the fact that physicists have long regarded these parafermions as textbook
examples of rational conformal field theories, the nature of the underlying vertex algebras (C2-cofinite and
rational) has only recently been rigorously established [26–28]. More recent work [21, 29] indicates that
the traditional methods employed by physicists to analyse parafermions can also be made rigorous and that
these methods should also be applicable to the logarithmic parafermions that arise at admissible levels.

We mention that the physicists’ parafermion chiral algebras actually correspond to generalised vertex
operator algebras obtained as finite-order simple current extensions of the Ck cosets with k ∈ Z≥1. In par-
ticular, the generating fields (the parafermions themselves) for g= sl2 are Virasoro primaries of conformal
weight n(1− n

k ), where n = 1, . . . ,k− 1. When k = 1, the parafermion theory is trivial. When k = 2, it
follows that the parafermion chiral algebra is the free fermion, while C2 is the Ising model vertex opera-
tor algebra. (This generalisation from the free fermion is in fact the reason for the name “parafermions”.)
There are, of course, other finite-order simple current extensions of Ck, k ∈ Z≥1, that are C2-cofinite ver-
tex operator (super)algebras. However, these are rational and therefore have a very different flavour to the
admissible-level infinite-order extensions Bk that we study here.

For k admissible, the simplest case is, of course, g = sl2 for which Lk(sl2) is fairly well understood
[30–33]. Our objective is to better understand the extended parafermions Bk in the case where k is also
negative. In this article, we will determine (conjecturally all) the irreducible Bk-modules, as well as a few
reducible but indecomposable ones, and establish the modular properties of their characters. The results are
consistent with the Bk being C2-cofinite, but non-rational, vertex operator algebras. In subsequent work,
we plan to prove this C2-cofiniteness and study further properties of these vertex operator algebras with the
motivation being to gain a better understanding of C2-cofinite vertex operator algebras in general.

We mention two natural extensions of our study. First, one would like to understand the parafermions of
L−2+1/n(sl2) for positive integral n. These are non-admissible levels, but the affine vertex operator algebras
allow for large extensions that relate to the triplet algebras via quantum hamiltonian reduction [34]. We
suspect that their parafermionic cosets also allow for interesting and possibly C2-cofinite vertex operator
algebra extensions. Second, one has the closely related parafermionic cosets of Lk(osp(1|2)) at admissible
levels, also known as graded parafermions [35,36]. For general admissible levels, Lk(osp(1|2)) is currently
under investigation [37, 38]. The more familiar positive integer cases, together with their parafermionic
cosets, are addressed in [39], see also [40].

1.1. Schur-Weyl duality for Ck. Here, we summarise the relevant results of [21] concerning the Heisen-
berg coset Ck = Com(H,Lk(g)), where g is a simple Lie algebra. We are mainly interested in how the
decomposition of Lk(g) into H⊗Ck-modules allows us to determine the structures of the Ck-modules and,
consequently, those of the Bk-modules.

We note the following assumption that we consider to be in force throughout this paper.

Assumption 1. The vertex tensor category theory of Huang, Lepowsky and Zhang [41] may be applied to

the Ck-module categories that we study below.

We remark that the validity of [41] has been verified for the category of ordinary modules of Lk(sl2) at
admissible level k in [42] and for the Heisenberg vertex operator algebra H in [21]. Determining the ap-
plicability of [41] beyond C2-cofinite vertex operator algebras is in general a very important open problem.
The key conditions to prove are the closure of a given subcategory under the P(z)-tensor product and the
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convergence of products and iterates of intertwining operators. Work on the latter condition for Ck is un-
derway.

We now recall how the results of [21] apply to our setting.

Result 1.1. As an H⊗Ck-module, the simple affine vertex operator algebra Lk(g) decomposes as

Lk(g)↓ ∼=
⊕
λ∈Q

Fλ ⊗Cλ , (1.2)

where Q denotes the root lattice of g. Here, Fλ denotes the Fock space of H with highest weight λ and the

Cλ are irreducible Ck-modules.

Result 1.2 ([21, Thms. 2.6 and 3.1]). C0 is the vacuum module of the simple vertex operator algebra Ck

and the Cλ are simple currents whose fusion rules include

Cλ ⊗Ck
Cµ
∼= Cλ+µ . (1.3)

Throughout, we understand that a fusion rule refers to the original definition used by physicists, namely
the decomposition of the fusion product of two modules into isomorphism classes of indecomposables.
The multiplicities with which these indecomposables appear in a given fusion product are called the fusion

multiplicities.

Result 1.3. For k < 0, the decomposition (1.2) is multiplicity-free, meaning that Cλ � Cµ whenever λ 6= µ .

This last result follows [21, Sec. 3.2.1] from the fact that the conformal weights of Lk(g) are bounded below.
In fact Result 1.3 is also true for Lk(sl2) with k > 0 and k /∈ Z, by the criterion of [21, Sec. 3.2.2]. We are
neglecting the positive k cases as the convergence of the coset module characters is then rather subtle.

Result 1.4. If M is an indecomposable Lk(g)-module on which H acts semisimply, then its restriction to an

H⊗Ck-module is

M↓ ∼=
⊕

µ∈α+Q

Fµ ⊗Dµ , (1.4)

for some α ∈ C⊗Z Q. Moreover, this decomposition is structure-preserving: If M has socle series 0 ⊂
M1 ⊂ ·· · ⊂M`−1 ⊂M and we define Ck-modules Di

µ by

Mi↓ ∼=
⊕

µ∈α+Q

Fµ ⊗Di
µ , i = 1, . . . , `−1, (1.5)

then 0⊂D1
µ ⊂ ·· · ⊂D`−1

µ ⊂Dµ is the socle series of Dµ , for all µ ∈ α +Q.

Result 1.5. Given an indecomposable Ck-module D, there exists α ∈ C⊗ZQ such that the induction

(Fµ ⊗D)↑= Lk(g)⊗H⊗Ck
(Fµ ⊗D) (1.6)

is an (untwisted) Lk(g)-module if and only if µ ∈ α +Q′.

Here, Q′ denotes the dual lattice of Q with respect to the bilinear form defined by the operator product
expansions of the generating fields of H. This form is k times the Killing form of g, where we normalise
the latter so that the length squared of the highest root is 2.

We mention that when Fµ ⊗D does lift to an Lk(g)-module, as in the previous result, the lift will be
irreducible if and only if D is irreducible (by Result 1.4).

Given a lattice L⊆ C⊗ZQ, there is a simple current extension VL of H satisfying

VL↓ ∼=
⊕
λ∈L

Fλ . (1.7)
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This extension is a vertex operator algebra (superalgebra) if and only if VL is Z-graded ( 1
2Z-graded) by

conformal weight [25]. A theorem of Li [43] now implies that Ck has an extension Bk satisfying

Bk↓ ∼=
⊕
λ∈L

Cλ (1.8)

as a Ck-module. Moreover, Bk is a vertex operator algebra (superalgebra) if and only if it is Z-graded
( 1

2Z-graded) by conformal weight.
We now ask whether a given Ck-module D lifts to an untwisted Bk-module

D↑= Bk⊗Ck
D. (1.9)

Assuming that Bk is Z-graded for simplicity, the answer is that it lifts if and only if the monodromy of Cλ

and D is trivial for all λ ∈ L [20,44,45]. When these monodromies are scalars, which happens for example
when EndD∼=C, this triviality is decided by conformal weight considerations alone. We record this simple
conclusion for later use.

Result 1.6. If Bk is Z-graded by conformal weight, then the lift D↑ of a Ck-module D with EndD ∼= C is

an (untwisted) Bk-module if and only if it is Z-graded. Moreover, if D is irreducible as a Ck-module and it

lifts, then D↑ is irreducible as a Bk-module.

We remark that the second statement above is quite general, but must be interpreted with care when working
with simple current extensions of vertex operator superalgebras. Then, the statement fails if one is working
over Z2-graded modules (as one customarily does in this situation). Specific counterexamples may be found
by considering the N = 1 superconformal minimal model of central charge 1 whose order 2 simple current
extension is the N = 2 superconformal minimal model of level 1.

Finally, to compute the (Grothendieck) fusion rules of Ck and Bk, we also need the fact that the induction
functor ↑ is a tensor functor of vertex tensor categories. This is the main theorem of [29] and was previously
conjectured for simple current extensions in [46]. For this computation, we need a further assumption.

For k admissible, there is a category Ak of finite-length Lk(sl2)-modules that we define explicitly be-
low after Remark 2.8. If Ak is closed under fusion products and fusing with any module defines an exact
endofunctor on it, then fusion descends to a product on the Grothendieck group of Ak (in which a mod-
ule is identified with the sum of its composition factors). We shall refer to the decomposition of a given
Grothendieck fusion product into images of irreducibles as a Grothendieck fusion rule and to the multiplic-
ities of said irreducibles as Grothendieck fusion coefficients.

Assumption 2. For k admissible, the Grothendieck fusion rules of Ak are well defined and the Grothendieck

fusion coefficients are computed by the standard Verlinde formula of [46, 47].

With this highly non-trivial assumption, the Grothendieck fusion coefficients of Lk(sl2) have been computed
in [31, 32], see also Section 2.3. The results are consistent with the fusion rules that have been computed
[9,11] for k =− 4

3 and− 1
2 . We remark that this assumption is actually a theorem for the category of ordinary

Lk(sl2)-modules, for k admissible, by [42, Cor. 7.7].
With this assumption, we can compute the Grothendieck fusion rules for Ck and Bk from those of Lk(sl2)

using the following result.

Result 1.7. For any Ck-modules D and E, choose δ ,ε ∈ C⊗ZQ such that (Fδ ⊗D)↑ and (Fε ⊗E)↑ are

Lk(g)-modules. Then,

(Fδ ⊗D)↑⊗Lk(g)
(Fε ⊗E)↑ ∼=

(
Fδ+ε ⊗ (D⊗Ck

E)
)↑. (1.10)
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Moreover, if both D↑ and E↑ are Bk-modules, then

D↑⊗Bk
E↑ ∼= (D⊗Ck

E)↑. (1.11)

1.2. Outline and results. We begin in Section 2 with a detailed review of the admissible-level simple ver-
tex operator algebras Lk(sl2), their representation theories (category O and beyond), and their Grothendieck
fusion rules. This serves to fix notation and conventions as well as collect the various results that will be
needed for what follows. We adopt here the language of the standard module formalism (standard, typical
and atypical) introduced for logarithmic conformal field theories in [46, 47]. As it is also convenient for
describing the representation theory of the parafermion and extended parafermion coset vertex operator
algebras, we use this language throughout.

The parafermion cosets Ck, with k admissible and negative, are analysed in Section 3. We first determine
the decompositions of the standard and irreducible atypical Lk(sl2)-modules as H⊗Ck-modules, thereby
deducing the characters of the standard and irreducible atypical Ck-modules (Propositions 3.1 and 3.3). The
Grothendieck fusion rules of the irreducible Ck-modules are then presented (Propositions 3.9 and 3.11). We
conclude this section with a brief discussion of three “small” examples. After recalling that C−1/2 and C−4/3

have been previously identified [48,49] with the singlet vertex operator algebras S1,2 and S1,3, respectively,
we concentrate on C−2/3 and find that it is isomorphic to the bosonic orbifold of the N = 1 supersinglet
vertex operator superalgebra sS1,3 introduced by Adamović and Milas [19].

Section 4 then addresses the extended parafermion cosets Bk, again assuming that k is admissible and
negative. Identifying Bk as an infinite-order simple current extension of Ck, we show that the former has
only finitely many irreducible modules (Remark 4.4). After reporting on the Grothendieck fusion rules
(Propositions 4.5 and 4.6) and noting that B−1/2, B−4/3 and B−2/3 coincide with certain explicitly described
orbifolds of the (super)triplets W1,2, W1,3 and sW1,3, respectively, we compute the irreducible Bk-characters
(Propositions 4.7 and 4.11 and Remark 4.12).

We conclude with a detailed investigation of the modular properties of the Bk-characters. Those of the
standard modules are easily deduced (Proposition 4.8), whilst those of the atypical irreducibles are much
more subtle. Our main result here is Theorem 4.17 which states that the parts of the atypical irreducible
characters of modular weight 1 define a finite-dimensional vector-valued modular form. It also gives an
explicit upper bound for the dimension that we believe is sharp. As the remaining parts may be expressed
as linear combinations of standard characters, it follows that the irreducible Bk-characters and the objects
obtained by multiplying the weight 1 parts of the atypical irreducible characters by the modular parameter
τ , together span a finite-dimensional representation of the modular group. We expect that the latter objects
correspond to pseudotraces. As this is precisely how the irreducible characters of a C2-cofinite vertex
operator algebra [50] behave under modular transformations, we conjecture that the Bk are C2-cofinite for
all k admissible and negative (noting that this is already known for k = − 1

2 , − 4
3 and − 2

3 ). We intend to
prove this C2-cofiniteness in a sequel.
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2. THE SIMPLE VERTEX OPERATOR ALGEBRA Lk(sl2)

In this section, we review those aspects of the admissible-level vertex operator algebras Lk(sl2) that
will be required for our analysis of the corresponding parafermion cosets. Our main sources for this are
[30, 32, 33] to which we refer for additional details and references.

2.1. Representation theory. Recall the standard basis {e,h, f} of sl2 in which the Cartan subalgebra h is
spanned by h. The non-zero commutators are specified by

[h,e] = 2e, [e, f ] = h, [h, f ] =−2 f (2.1)

and the Killing form is normalised so that

(h,h) = 2, (e, f ) = 1. (2.2)

The affine Kac-Moody algebra ŝl2 is then defined to be the universal central extension of the loop algebra
sl2⊗C[x,x−1]. We choose generators en, hn and fn in ŝl2, for n ∈ Z, such that they project onto e⊗ xn,
h⊗ xn and f ⊗ xn, respectively, upon quotienting by the centre. The central element is denoted by K and its
eigenvalue is the level k.

Fix k ∈ C and consider the Verma module of ŝl2 whose highest weight is (k−λ )ω0 +λω1, for some
λ ∈ C, where ω0 and ω1 are the fundamental weights. Its irreducible quotient will be denoted by D+

λ
.

When λ ∈ Z≥0, we shall also denote this irreducible quotient by Lλ+1 to emphasise that its ground states
(the states of minimal conformal weight) form a finite-dimensional subspace of dimension λ + 1. The
irreducible ŝl2-module D+

0 = L1 is well known to carry the structure of a simple vertex operator algebra,
which we denote by Lk(sl2), provided that k 6=−2. We exclude this critical level from considerations.

We recall certain properties of the simple vertex operator algebra Lk(sl2) and its modules, when the level
k is admissible:

k+2 = t =
u
v
, u ∈ Z≥2, v ∈ Z≥1, gcd{u,v}= 1. (2.3)

We shall also define, for later convenience, w = −kv = 2v− u. The level k being admissible is equivalent
to the level k universal vertex operator algebra associated to ŝl2 being non-simple. The central charge of
Lk(sl2) is c = 3− 6

t .

Theorem 2.1 (Adamović-Milas [30] and Dong-Li-Mason [51]). Let k =−2+ u
v be an admissible level and

let

λr,s = r−1− ts. (2.4)

Then, the highest-weight Lk(sl2)-modules are exhausted, up to isomorphism, by those of the Lr = Lλr,0+1,

for r = 1, . . . ,u−1, and the D+
r,s =D+

λr,s
, for r = 1, . . . ,u−1 and s = 1, . . . ,v−1.

Remark 2.2. The weights (k− λr,s)ω0 + λr,sω1, for r = 1, . . . ,u− 1 and s = 0, . . . ,v− 1, are the highest
weights of the admissible level-k ŝl2-modules, as defined by Kac and Wakimoto [52]. This original defini-
tion of admissibility was motivated by the observation that these irreducible modules admit a generalisation
of the Weyl-Kac character formula for integrable modules.

The conformal weight of the ground states of each of these highest-weight Lk(sl2)-modules is determined
by its highest weight, hence by the parameters r and s. Specifically, the conformal weight of each ground
state of D+

r,s is given by

∆r,s =
(r− ts)2−1

4t
=

(vr−us)2− v2

4uv
, (2.5)

where r = 1, . . . ,u−1 and s = 0, . . . ,v−1. We note the symmetries

λu−r,v−s =−λr,s−2, ∆u−r,v−s = ∆r,s. (2.6)
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It turns out that for non-integer admissible levels, these being those with v > 1, it is not sufficient to
consider only highest-weight modules. Instead, one is forced [9, 11] to broaden the class of modules to
include, in particular, the relaxed highest-weight modules. These are defined as modules that are generated
by a relaxed highest-weight vector, this being a weight vector that is annihilated by every mode with positive
index. For ŝl2, this means an eigenstate of h0 (of definite level) which is annihilated by the positive modes
en, hn and fn, n > 0. A normal highest-weight vector for ŝl2 is therefore a relaxed highest-weight vector
that happens to be also annihilated by e0.

Before presenting the classification of irreducible relaxed highest-weight Lk(sl2)-modules, we recall
that the Cartan subalgebra-preserving automorphisms of ŝl2 define an infinite group, isomorphic to Z2nZ,
of invertible functors acting on Lk(sl2)-modules. This action is called twisting by the automorphism. This
group is isomorphic to the affine Weyl group, but the free part should actually be identified with translations
by the dual of the root lattice Q rather than the coroot lattice [53]. The torsion part of this group has a
generator w called conjugation that may be identified with the generator of the Weyl group of sl2. Twisting
by conjugation therefore negates sl2-weights but leaves conformal weights (and the level) unchanged.

Consider now an irreducible weight module over sl2 that is neither highest- nor lowest-weight. Identi-
fying sl2 with the horizontal subalgebra of ŝl2, we extend this to a module over the subalgebra generated
by the modes of non-negative index by requiring that its level is k and that the positive modes of ŝl2 act
trivially. Inducing to an ŝl2-module now results in a relaxed highest-weight module that is determined by
the class λω1 +Q of its sl2-weights, modulo Q, and the conformal weight ∆ of its ground states, which is
fixed by the eigenvalue of the quadratic Casimir on the original irreducible weight module.

We shall identify the root lattice Q of sl2 with 2Z throughout and will frequently abuse notation by
identifying λ ∈C with λω1 ∈ h∗. It follows that the level k relaxed highest-weight module just constructed
is parametrised by λ +Q ∈ h∗/Q = C/2Z and ∆ ∈ C. Let Eλ ;∆ denote the unique irreducible quotient
of this relaxed highest-weight module so that Eλ ;∆ = Eµ;∆ if λ = µ (mod Q). It is likewise a relaxed
highest-weight module.

Theorem 2.3 (Adamović-Milas [30], see also [33]). Let k = −2+ u
v be an admissible level. Then, the

irreducible relaxed highest-weight Lk(sl2)-modules are exhausted, up to isomorphism, by the following list:

• The Lr, for r = 1, . . . ,u−1;

• The D+
r,s, for r = 1, . . . ,u−1 and s = 1, . . . ,v−1;

• The conjugates D−r,s = w(D+
r,s), for r = 1, . . . ,u−1 and s = 1, . . . ,v−1;

• The Eλ ;∆r,s , for r = 1, . . . ,u−1, s = 1, . . . ,v−1 and λ ∈ h∗ with λ 6= λr,s,λu−r,v−s (mod Q).

Apart from the identifications Eλ ;∆r,s = Eλ ;∆u−r,v−s , that follow trivially from (2.6), and Eλ ;∆r,s = Eµ;∆r,s , if

λ = µ (mod Q), the modules in this list are all mutually non-isomorphic.

Remark 2.4. The caveat that λ 6= λr,s,λu−r,v−s (mod Q) in the classification of the irreducible relaxed
highest-weight Lk(sl2)-modules arises from the fact that an E-type module with parameters (λr,s;∆r,s) or
(λu−r,v−s;∆r,s) must be reducible. Indeed, the irreducible weight sl2-module from which we induced must
have either a highest- or lowest-weight vector. Of course, one may also induce from reducible weight
sl2-modules. For each r = 1, . . . ,u− 1 and s = 1, . . . ,v− 1, one thereby arrives at two distinct relaxed
highest-weight Lk(sl2)-modules, both reducible but indecomposable, by quotienting the induced module
by the (unique) maximal proper submodule whose intersection with the space of ground states is zero. We
denote these Lk(sl2)-modules by E+

r,s = E+
λr,s;∆r,s

and E−r,s = E−
λr,s;∆r,s

, noting that they are characterised, up to
isomorphism, by the following non-split short exact sequences:

0−→D+
r,s −→ E+

r,s −→D−u−r,v−s −→ 0, 0−→D−r,s −→ E−r,s −→D+
u−r,v−s −→ 0. (2.7)
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These exact sequences were originally stated in [33]. A rigorous justification will appear in [54].

Remark 2.5. We observe that the Lr, r = 1, . . . ,u−1, are self-conjugate: w(Lr)∼= Lr. The conjugates of
the relaxed highest-weight Lk(sl2)-modules are given by w(Eλ ;∆r,s)

∼= E−λ ;∆r,s and w(E±r,s)
∼= E∓r,s.

While Theorem 2.3 classifies the irreducible Lk(sl2)-modules in the category of relaxed highest-weight
ŝl2-modules, it is still easy to construct irreducible Lk(sl2)-modules that are not isomorphic to those intro-
duced so far. This construction uses the free part of the automorphism group Z2nZ, the elements of which
are called spectral flow automorphisms. We choose the generator σ of the free part as in [32, 33] so that
wσ = σ−1w and the following isomorphisms hold.

Proposition 2.6 ([32]). Fix an admissible level k =−2+ u
v and assume that v > 1. Then, we have

σ (Lr)∼=D+
u−r,v−1, σ

−1(Lr)∼=D−u−r,v−1,

σ
−1(D+

r,s)
∼=D−u−r,v−1−s,

r = 1, . . . ,u−1,

r = 1, . . . ,u−1, s = 1, . . . ,v−2.
(2.8)

Together with the isomorphisms of Remark 2.5, these generate a complete set of isomorphisms among twists

of the Lk(sl2)-modules introduced above.

Remark 2.7. When v = 1, so that k is a non-negative integer, the list of irreducible relaxed highest-weight
Lk(sl2)-modules in Theorem 2.3 collapses to just the Lr, with r = 1, . . . ,u−1 = k+1. The corresponding
conformal field theories are the rational Wess-Zumino-Witten models describing strings on SU

(
2
)

[55]. In
this case, the isomorphisms involving spectral flow are generated by σ (Lr)∼= Lu−r.

Because twisting by an automorphism is an invertible functor, it preserves structure. In particular, twist-
ing an irreducible module results in another irreducible module. Moreover, since these automorphisms lift
to automorphisms of the affine vertex algebra, it is easy to see that each twist of an Lk(sl2)-module results in
another Lk(sl2)-module. Spectral flow therefore gives us an infinite set of new irreducible Lk(sl2)-modules
for each of the irreducible Lk(sl2)-modules listed in Theorem 2.3.

Remark 2.8. Fix an admissible level k = −2+ u
v and assume that v > 1. Then, the irreducible Lk(sl2)-

modules of interest in this paper consist of the following:

• The σ `(D+
r,s), with ` ∈ Z, r = 1, . . . ,u−1 and s = 1, . . . ,v−1;

• The σ `(Eλ ;∆r,s), with ` ∈ Z, r = 1, . . . ,u−1, s = 1, . . . ,v−1 and λ ∈ (R/2Z)\{λr,s,λu−r,v−s}.

Again, aside from σ `(Eλ ;∆r,s) = σ `(Eλ ;∆u−r,v−s) = σ `(Eµ;∆r,s), where λ = µ (mod Q), the modules in this
list are all mutually non-isomorphic. The restriction to real sl2 weights in R/2Z = h∗R/Q is physically
motivated and confirmed by modular considerations [31, 32].

We shall suppose throughout that we are working in the full subcategory Ak of Lk(sl2)-modules in which
the simple objects are the irreducibles of Remark 2.8 and every object is a subquotient of the (iterated) fusion
product of a finite collection of simple objects. This, of course, presupposes that these fusion products are
sufficiently nice (for instance, we believe that they all have finite composition length) and that each of
their irreducible subquotients is isomorphic to one of the irreducibles introduced above. For the admissible
levels k =− 4

3 and− 1
2 , the explicit fusion calculations reported in [9,11] lead us to expect that this niceness

continues to hold for all admissible levels (see Section 2.3 for some relevant results in this direction).
As discussed in [20], the category Ak is interesting because it is expected to contain the projective

covers of the irreducible Lk(sl2)-modules. Whilst rigorously identifying these projective covers remains
out of reach here (as is the case for almost all logarithmic vertex operator algebras), the corresponding
subcategory for the W(p)-triplet algebras does contain all of the indecomposable projectives, according to
[56, 57].
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Remark 2.9. For k admissible and non-integral, there are irreducible Lk(sl2)-modules besides those listed
in Theorem 2.3 and their spectral flows. In particular, there are the Whittaker-type modules constructed in
[58]. However, they seem to play no role in the modular properties of [32] and, being non-weight, they
cannot appear in fusion products of the irreducibles of Theorem 2.3 [59]. We shall therefore ignore these
non-weight modules in what follows.

2.2. Characters and modularity. The character of an ŝl2-module M is defined to be the following formal
power series in y, z and q:

ch
[
M
](

y,z,q
)
= tr

M
ykzh0qL0−c/24. (2.9)

At the level of characters, twisting an ŝl2-module M by conjugation or spectral flow yields

ch
[
w(M)

](
y,z,q

)
= ch

[
M
](

y,z−1,q
)
, ch

[
σ
`(M)

](
y,z,q

)
= ch

[
M
](

yz`q`
2/4,zq`/2,q

)
, (2.10)

assuming, of course, that M has finite-dimensional weight spaces (so that characters exist).
For u,v∈Z≥2 coprime, let M(u,v) denote the Virasoro minimal model vertex operator algebra of central

charge 1− 6(v−u)2

uv and, for r = 1, . . . ,u− 1 and s = 1, . . . ,v− 1, let (r,s) denote the irreducible M(u,v)-
module whose ground states have conformal weight

∆
M(u,v)
(r,s) =

(vr−us)2− (v−u)2

4uv
. (2.11)

The character of this module will be denoted by χ
M(u,v)
(r,s) (q). For completeness, we give an explicit formula:

χ
M(u,v)
(r,s) (q) =

1
η(q) ∑

n∈Z

[
q(2uvn+vr−us)2/4uv−q(2uvn+vr+us)2/4uv

]
. (2.12)

Proposition 2.10. Fix an admissible level k =−2+ u
v and assume that v > 1. Then, we have the following

character formulae:

ch
[
σ
`(Eλ ;∆r,s)

]
=

ykz`kq`
2k/4χ

M(u,v)
(r,s) (q)

η(q)2 ∑
µ∈λ+Q

zµ q`µ/2, (2.13a)

ch
[
σ
`(E+

r,s)
]
=

ykz`kq`
2k/4χ

M(u,v)
(r,s) (q)

η(q)2 ∑
µ∈λr,s+Q

zµ q`µ/2, (2.13b)

ch
[
σ
`(Lr)

]
=

v−1

∑
s′=1

(−1)s′−1
∞

∑
m=0

(
ch
[
σ

2mv+s′+`(E+
r,s′)
]
− ch

[
σ

2(m+1)v−s′+`(E+
u−r,v−s′)

])
, (2.13c)

ch
[
σ
`(D+

r,s)
]
=

v−1

∑
s′=s+1

(−1)s′−s−1 ch
[
σ

s′−s+`(E+
r,s′)
]
+(−1)v−1−s ch

[
σ

v−s+`(Lu−r)
]
. (2.13d)

If k < 0, then the infinite sum in (2.13c) converges in the sense of formal power series in z, meaning that the

coefficient of each power of z converges to a meromorphic function of q (for |q|< 1).

Remark 2.11. The character formulae given in Equations (2.13b) to (2.13d) were originally derived in
[32, Prop. 4 and Prop. 8], while (2.13a) was stated without proof. Recently, a proof for generic values of λ ,
r and s was given in [58] using an explicit construction of the modules. A full proof will appear in [54].

Remark 2.12. It is easy to check that ch
[
σ `(E−r,s)

]
= ch

[
σ `(E+

u−r,v−s)
]

using (2.7) and the exactness of the
spectral flow functor.

Remark 2.13. In the standard module formalism introduced in [46, 47], the irreducibles σ `(Eλ ;∆r,s) are
the typical Lk(sl2)-modules. The reducible but indecomposable modules σ `(E±r,s) are examples of atypical

Lk(sl2)-modules. Together, these two classes form the standard modules of Lk(sl2). The σ `(D+
r,s) are

likewise atypical, but are not standard: their characters are expressible as infinite linear combinations of
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(atypical) standard characters. However, these character formulae only converge as formal power series if
k < 0. The question of what this means for k > 0 will not be addressed here.

Remark 2.14. The character formulae given above for the irreducible atypicals were deduced from the
following resolutions [32]:

· · · −→ σ
3v−1(E+

r,v−1)−→ ·· · −→ σ
2v+2(E+

r,2)−→ σ
2v+1(E+

r,1)

−→ σ
2v−1(E+

u−r,v−1)−→ ·· · −→ σ
v+2(E+

u−r,2)−→ σ
v+1(E+

u−r,1)

−→ σ
v−1(E+

r,v−1)−→ ·· · −→ σ
2(E+

r,2)−→ σ (E+
r,1)−→ Lr −→ 0, (2.14a)

0−→ σ
v−s(Lu−r)−→ σ

v−1−s(E+
r,v−1)−→ ·· · −→ σ

2(E+
r,s+2)−→ σ (E+

r,s+1)−→D+
r,s −→ 0. (2.14b)

For s = v− 1, the latter resolution reduces to the isomorphism σ (Lu−r) ∼= D+
r,s. One can obtain other

resolutions by applying the conjugation and/or contragredient dual functors to (2.14) and these may lead to
somewhat different looking character formulae. For example, conjugating (2.14a) leads to

ch
[
σ
`(Lr)

]
=

v−1

∑
s′=1

(−1)s′−1
∞

∑
m=0

(
ch
[
σ
−2mv−s′+`(E−r,s′)

]
− ch

[
σ
−2(m+1)v+s′+`(E−u−r,v−s′)

])
=

v−1

∑
s′=1

(−1)s′−1
∞

∑
m=0

(
ch
[
σ
−2mv−s′+`(E+

u−r,v−s′)
]
− ch

[
σ
−2(m+1)v+s′+`(E+

r,s′)
])

, (2.15)

using Remarks 2.5 and 2.12.

2.3. Fusion. The fusion rules of the admissible-level Lk(sl2)-modules have only been (partially) computed
for k = − 4

3 [9] and k = − 1
2 [11, 53]. However, the Grothendieck fusion rules are known for all k [31, 32],

subject to two assumptions. The first is that fusing with an irreducible Lk(sl2)-module defines an exact
functor on the module category Ak (see Section 2.1), so that the fusion product induces a ring structure on
the Grothendieck group of Ak. The second is that the structure constants of the Grothendieck fusion product
are computed by the standard Verlinde formula of [46, 47], which we understood first in the example of
Vk (gl(1|1)) [3,60]. We shall assume that these Grothendieck fusion rules are correct, hence that the fusion
rules are known up to ambiguities involving non-trivial extensions. This was the content of Assumption 2,
as stated in Section 1.1.

In general, we let ⊗V denote the fusion product of a given vertex operator algebra V and �V its
Grothendieck fusion product. The image of a V-module M in the Grothendieck ring of V shall be denoted
by
[
M
]
.

Before stating the Lk(sl2) fusion rules, it is convenient to introduce some notation for the fusion rules
of the Virasoro minimal model vertex operator algebra M(u,v). Let

[ (r′′,s′′)
(r,s) (r′,s′)

]
M(u,v)

denote the fusion

coefficient involving the irreducible M(u,v)-modules (r,s), (r′,s′) and (r′′,s′′), so that

(r,s)⊗M(u,v) (r
′,s′)∼=

⊕
(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

(r′′,s′′). (2.16)

Here, the direct sum runs over the irreducible M(u,v)-modules (r′′,s′′) in the Kac table

Kac(u,v) =
{1, . . . ,u−1}×{1, . . . ,v−1}

(r,s)∼ (u− r,v− s)
. (2.17)

In what follows, sums indexed by irreducible M(u,v)-modules will always be assumed to run over Kac(u,v).
Note that because M(u,v) is rational, its fusion rules and Grothendieck fusion rules coincide.
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Proposition 2.15 ([32, Props. 14, 15 and 18]). Fix an admissible level k =−2+ u
v and assume that v > 1.

Given Assumption 2, the fusion rules of the irreducible Lk(sl2)-modules with the σ `(Lr) are then

σ
`(Lr)⊗Lk(sl2)

σ
`′(Lr′)∼=

u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

σ
`+`′(Lr′′), (2.18a)

σ
`(Lr)⊗Lk(sl2)

σ
`′(D+

r′,s′)
∼=

u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

σ
`+`′(D+

r′′,s′), (2.18b)

σ
`(Lr)⊗Lk(sl2)

σ
`′(Eλ ′;∆r′,s′

)∼=
u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

σ
`+`′(Er−1+λ ′;∆r′′ ,s′

). (2.18c)

When v = 1, the fusion rules are instead given by (2.18a) alone.

Remark 2.16. Because (1,1) and (u− 1,1) are simple currents of M(u,v), it follows from these fusion
rules that the σ `(L1) and σ `(Lu−1) are simple currents of the Lk(sl2)-module category Ak, for all ` ∈ Z.

Proposition 2.17 ([32, Props. 13 and 18]). Fix an admissible level k =−2+ u
v and assume that v> 1. Given

Assumption 2, the Grothendieck fusion rules involving the atypicals σ `(D+
r,s) and the typicals σ `(Eλ ;∆r,s)

then include[
σ
`(Eλ ;∆r,s)

]
�Lk(sl2)

[
σ
`′(Eλ ′;∆r′,s′

)
]

= ∑
(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

([
σ
`+`′+1(Eλ+λ ′−k;∆r′′,s′′

)
]
+
[
σ
`+`′−1(Eλ+λ ′+k;∆r′′,s′′

)
])

+ ∑
(r′′,s′′)

([
(r′′,s′′)

(r,s) (r′,s′−1)

]
M(u,v)

+

[
(r′′,s′′)

(r,s) (r′,s′+1)

]
M(u,v)

)[
σ
`+`′(Eλ+λ ′;∆r′′ ,s′′

)
]
, (2.19a)

[
σ
`(Eλ ;∆r,s)

]
�Lk(sl2)

[
σ
`′(D+

r′,s′)
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′+1)

]
M(u,v)

[
σ
`+`′(Eλ+λr′,s′ ;∆r′′ ,s′′

)
]

+ ∑
(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

[
σ
`+`′+1(Eλ+λr′,s′+1;∆r′′ ,s′′

)
]
. (2.19b)

If s+ s′ < v, then we have in addition[
σ
`(D+

r,s)
]
�Lk(sl2)

[
σ
`′(D+

r′,s′)
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

[
σ
`+`′+1(Eλr′′,s+s′+1;∆r′′ ,s′′

)
]

+
u−1

∑
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

[
σ
`+`′(D+

r′′,s+s′)
]
, (2.19c)

while if s+ s′ ≥ v, then we have instead[
σ
`(D+

r,s)
]
�Lk(sl2)

[
σ
`′(D+

r′,s′)
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s+1) (r′,s′+1)

]
M(u,v)

[
σ
`+`′+1(Eλr′′,s+s′+1;∆r′′,s′′

)
]

+
u−1

∑
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

[
σ
`+`′+1(D+

u−r′′,s+s′−v+1)
]
. (2.19d)

3. THE PARAFERMION COSET Ck

In this section, we study the parafermion vertex operator algebra Ck =Com(H,Lk(sl2)), where H denotes
the Heisenberg vertex operator subalgebra generated by the field h(z)∈ Lk(sl2) and the level k is admissible
and negative. We first decompose the characters of the Lk(sl2)-modules given in Proposition 2.10 into
characters of H⊗Ck-modules. This relies on the Schur-Weyl duality result summarised in Result 1.4. We
also obtain (Grothendieck) fusion rules for the Ck-modules, illustrating the results with examples.
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3.1. Decomposing characters. We start by recalling that the irreducible modules of the Heisenberg vertex
operator subalgebra H are the Fock spaces Fµ , µ ∈ C. Including the level, and identifying the Heisenberg
weight with the sl2-weight, the characters of the Fock spaces are given by

ch
[
Fµ

](
y,z,q

)
=

ykzµ qµ2/4k

η(q)
, (3.1)

where η is Dedekind’s eta function. As the central charge of H is 1, that of the parafermion vertex operator
algebra Ck is c̃ = 2− 6

t . Denoting the Virasoro zero mode of Ck by L̃0 (which in the coset realisation is
identified with L0− 1

4k h2
0), the character of a Ck-module M is defined to be

ch
[
M
](

q
)
= tr

M
qL̃0−c̃/24. (3.2)

Since all the irreducible modules of Ak may be resolved in terms of the standard Lk(sl2)-modules
σ `(Eλ ;∆r,s) and σ `(E+

r,s), the first natural step is to obtain the “coefficients” of the Fock space characters
in the Schur-Weyl decomposition of these standards.

Proposition 3.1. Given Assumption 1, the standard Lk(sl2)-modules decompose into H⊗Ck-modules as

σ
`(Eλ ;∆r,s)↓ ∼=

⊕
µ∈λ+Q

Fµ+`k⊗CE
µ;r,s (λ 6= λr,s,λu−r,v−s (mod Q)), (3.3a)

σ
`(E+

r,s)↓ ∼=
⊕

µ∈λr,s+Q

Fµ+`k⊗C+
µ;r,s, σ

`(E−r,s)↓ ∼=
⊕

µ∈λu−r,v−s+Q

Fµ+`k⊗C−µ;r,s, (3.3b)

where the CE
µ;r,s are irreducible highest-weight Ck-modules and the C±µ;r,s are length 2 indecomposable Ck-

modules. Their characters are given by

ch
[
CE

µ;r,s
](

q
)
= ch

[
C±µ;r,s

](
q
)
=

q−µ2/4kχ
M(u,v)
(r,s) (q)

η(q)
. (3.4)

Proof. Schur-Weyl duality (Result 1.4) immediately implies that

Eλ ;∆r,s↓ ∼=
⊕

µ∈λ+Q

Fµ ⊗CE
µ;r,s, (3.5)

where the CE
µ;r,s are irreducible Ck-modules. We obtain the parafermion characters by decomposing (2.13a)

(with `= 0):

ch
[
Eλ ;∆r,s

]
=

ykχ
M(u,v)
(r,s) (q)

η(q)2 ∑
n∈Z

z2n+λ = ∑
n∈Z

ykz2n+λ q(2n+λ )2/4k

η(q)
·

q−(2n+λ )2/4kχ
M(u,v)
(r,s) (q)

η(q)

= ∑
n∈Z

ch
[
F2n+λ

]q−(2n+λ )2/4kχ
M(u,v)
(r,s) (q)

η(q)
. (3.6)

The desired result now follows by identifying 2n+λ with µ ∈ λ +2Z= λ +Q.
Analogous decompositions hold for the σ `(Eλ ;∆r,s), so it remains to show that the parafermion modules

appearing in these decompositions may be identified with the CE
µ;r,s. This follows from the lifting condition

(Result 1.5). Indeed, this condition guarantees that there exists β ∈ Q⊗ZC = C such that Fν ⊗CE
µ;r,s lifts

to an Lk(sl2)-module if and only if ν ∈ β +Q′, where Q′ = kZ is the dual lattice of Q = 2Z (with respect
to the natural bilinear form (h,h) = 2k induced by the operator product expansion of h(z) and h(w)). As(
Fµ ⊗CE

µ;r,s
)↑ ∼= Eλ ;∆r,s is an Lk(sl2)-module, we may take β = µ .

It follows that for any ` ∈ Z, the lift
(
Fµ+`k⊗CE

µ;r,s
)↑=⊕µ∈λ Fµ+`k⊗CE

µ;r,s is an Lk(sl2)-module and
it is irreducible because CE

µ;r,s is (by Schur-Weyl duality). A calculation very similar to (3.6) shows that this
irreducible module has the same character as σ `(Eλ ;∆r,s), hence they are isomorphic. This therefore estab-
lishes the decomposition (3.3a) for all ` ∈ Z. The results for the atypical standard modules σ `(E±r,s) follow
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using similar arguments, the main difference being that the isomorphisms follow from the indecomposables
being completely characterised by their Loewy diagrams (the extension groups are 1-dimensional).

Remark 3.2. We point out that this result used the fact that the irreducible Lk(sl2)-modules are determined
(up to isomorphism) by their characters. The same is unfortunately not true for characters derived above
for the standard Ck-modules. For example, CE

µ;r,s and CE
−µ;r,s share the same character, despite being non-

isomorphic (for µ 6= 0). We can see this inequivalence as follows. First, as Fµ ⊗CE
µ;r,s lifts to the Lk(sl2)-

module Eµ;∆r,s , the lifting condition (Result 1.5) says that the tensor product Fν ⊗CE
µ;r,s lifts to an Lk(sl2)-

module if and only if ν ∈ µ +Q′. If CE
µ;r,s and CE

−µ;r,s were isomorphic, then there would have to exist
ν ∈ (µ+Q′)∩(−µ+Q′) which is empty unless 2µ ∈Q′. It follows that CE

µ;r,s and CE
−µ;r,s are not isomorphic

if 2µ /∈ Q′. But, if 2µ ∈ Q′ = kZ, then µ =−µ + `k, for some ` ∈ Z, and any isomorphism CE
µ;r,s
∼= CE

−µ;r,s

would lead to

Eµ;∆r,s
∼= (Fµ ⊗CE

µ;r,s)↑ ∼= (Fµ ⊗CE
−µ;r,s)↑ ∼= (F−µ+`k⊗CE

−µ;r,s)↑ ∼= σ
`(E−µ;∆r,s), (3.7)

which is a contradiction unless `= 0, hence µ = 0.

Combining this result with the character formulae given for the atypical irreducibles in Proposition 2.10
and/or the resolutions of Remark 2.14, we deduce the latter’s decompositions into (H⊗Ck)-modules and
character formulae for the resulting parafermion modules.

Proposition 3.3. Given Assumption 1, the atypical irreducible Lk(sl2)-modules decompose into (H⊗Ck)-

modules as

σ
`(Lr)↓ ∼=

⊕
µ∈λr,0+Q

Fµ+`k⊗CL
µ;r, σ

`(D+
r,s)↓ ∼=

⊕
µ∈λr,s+Q

Fµ+`k⊗CD
µ;r,s, (3.8)

where the CL
µ;r and CD

µ;r,s are irreducible highest-weight Ck-modules characterised by the following resolu-

tions:

· · · −→ C+
µ−(3v−1)k;r,v−1 −→ ·· · −→ C+

µ−(2v+2)k;r,2 −→ C+
µ−(2v+1)k;r,1

−→ C+
µ−(2v−1)k;u−r,v−1 −→ ·· · −→ C+

µ−(v+2)k;u−r,2 −→ C+
µ−(v+1)k;u−r,1

−→ C+
µ−(v−1)k;r,v−1 −→ ·· · −→ C+

µ−2k;r,2 −→ C+
µ−k;r,1 −→ CL

µ;r −→ 0, (3.9a)

0−→ CL
µ−(v−s)k;u−r −→ C+

µ−(v−1−s)k;r,v−1 −→ ·· · −→ C+
µ−2k;r,s+2 −→ C+

µ−k;r,s+1 −→ CD
µ;r,s −→ 0. (3.9b)

Their characters are given by

ch
[
CL

µ;r
](

q
)
=

v−1

∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

∞

∑
m=0

(
q−(µ−sk+2wm)2/4k−q−(µ+sk+2w(m+1))2/4k

)
, (3.10a)

ch
[
CD

µ;r,s
](

q
)
=

v−1

∑
s′=s+1

(−1)s′−s−1
χ
M(u,v)
(r,s′) (q)

η(q)
q−(µ−(s

′−s)k)2/4k +(−1)v−1−s ch
[
CL

µ−(v−s)k;u−r

]
. (3.10b)

Remark 3.4. It is easy to check from these formulae that CD
µ;r,v−1 and CL

µ−k;u−r have the same character,
consistent with the fact that these Ck-modules are isomorphic (by (3.9b) with s = v−1).

Remark 3.5. As an alternative to the resolutions (3.9), we present the following non-split short exact
sequences that characterise the atypical standard Ck-modules:

0−→ CD
µ;r,s −→ C+

µ;r,s −→ CD
µ+k;r,s−1 −→ 0 (s 6= 1), (3.11a)

0−→ CD
µ+k;u−r,v−1−s −→ C−µ;r,s −→ CD

µ;u−r,v−s −→ 0 (s 6= v−1). (3.11b)
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When s= 1, the rightmost module of the first sequence should be replaced by CL
µ+k;r. Similarly, the leftmost

module of the second sequence should be replaced by CL
µ+k;u−r when s = v−1.

Remark 3.6. If we had started with the resolution obtained from Equation (2.14a) by conjugating, then we
would have instead arrived at the following character formula:

ch
[
CL

µ;r
](

q
)
=

v−1

∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

∞

∑
m=0

(
q−(µ+sk+2vkm)2/4k−q−(µ−sk+2vk(m+1))2/4k

)
. (3.12)

Replacing µ by −µ and comparing with (3.10a), we conclude that CL
µ;r and CL

−µ;r have the same character,
despite being non-isomorphic (for µ 6= 0). The reason is exactly the same argument as in Remark 3.2.

The natural category of Ck-modules to consider is thus the full subcategory whose simple objects are the
irreducibles CL

µ;r, C
D
µ;r,s and CE

µ;r,s and whose objects are all realised as subquotients of the fusion product of
a finite collection of simple objects. We shall assume that no further irreducible Ck-modules are generated
as subquotients of such fusion products, hence that this category does indeed exist. It shall be denoted by
Ck.

Remark 3.7. We do not claim that the CL
µ;r, C

D
µ;r,s and CE

µ;r,s exhaust the irreducible Ck-modules because
of the Whittaker-type Lk(sl2)-modules mentioned in Remark 2.9. Indeed, H acts non-semisimply on these
Lk(sl2)-modules, so we cannot use Result 1.4 to easily check if decomposing into H⊗Ck-modules gives
anything new.

For future convenience, we collect the conformal weights of the ground states of these Ck-modules. For
the Ck-module denoted by C•µ;? (for appropriate • and ?), this weight will be denoted by δ •µ;?.

Proposition 3.8. The conformal weights of the ground states of the Ck-modules introduced above are

δ
E
µ;r,s = δ

±
µ;r,s = ∆r,s−

µ2

4k
, (3.13a)

δ
L
µ;r =


∆r,0−

µ2

4k
if |µ| ≤ λr,0,

∆r,0−
µ2

4k
+
|µ|−λr,0

2
if |µ| ≥ λr,0,

(3.13b)

δ
D
µ;r,s =


∆r,s−

µ2

4k
if µ ≤ λr,s,

∆r,s−
µ2

4k
+

µ−λr,s

2
if µ ≥ λr,s,

(s 6= v−1). (3.13c)

For s = v−1, we have instead δ
D
µ;r,v−1 = δ

L
µ−k;u−r, by Remark 3.4.

Proof. These results follow easily from the observation that any state of minimal conformal weight in an h0-
eigenspace of an ŝl2-module will be a highest-weight vector for both the Heisenberg and parafermion vertex
operator subalgebras. The conformal weight of such a state, with respect to Ck, is then its ŝl2 conformal
weight minus its Heisenberg conformal weight.

3.2. Fusion. Recall that we only know the (Grothendieck) fusion rules of Lk(sl2) up to the validity of
Assumption 2. To deduce the (Grothendieck) fusion rules of Ck from those of Lk(sl2) using Result 1.7
and Propositions 3.1 and 3.3, we also need Assumption 1, namely that the category Ck of Ck-modules
forms a vertex tensor category. We recall that this assumption is in force throughout.
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To illustrate the method, consider the Lk(sl2) fusion rule (2.18a). Applying Proposition 3.3 and Re-
sult 1.7, we deduce that(

Fµ ⊗CL
µ;r

)
↑⊗Lk(sl2)

(
Fµ ′ ⊗CL

µ ′;r′

)
↑ ∼=

u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

(
Fµ ′′ ⊗CL

µ ′′;r′′

)
↑

=⇒
(
Fµ+µ ′ ⊗

(
CL

µ;r⊗Ck
CL

µ ′;r′

))
↑ ∼=

(
Fµ ′′ ⊗

u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

CL
µ ′′;r′′

)
↑, (3.14)

whenever µ = r−1 (mod Q), µ ′ = r′−1 (mod Q) and µ ′′ = r′′−1 (mod Q). It follows that the H⊗Ck-
modules being induced on the left- and right-hand sides of (3.14) appear as direct summands of the same
Lk(sl2)-module upon restricting to H⊗Ck. As these direct summands are completely determined by their
Heisenberg weights, we can read off the Ck fusion rule by identifying µ ′′ with µ +µ ′.

Proposition 3.9. Given Assumptions 1 and 2, the fusion rules of the irreducible Ck-modules with the CL
µ;r

are

CL
µ;r⊗Ck

CL
µ ′;r′
∼=

u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

CL
µ+µ ′;r′′ , (3.15a)

CL
µ;r⊗Ck

CD
µ ′;r′,s′

∼=
u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

CD
µ+µ ′;r′′,s′ , (3.15b)

CL
µ;r⊗Ck

CE
µ ′;r′,s′

∼=
u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

CE
µ+µ ′;r′′,s′ . (3.15c)

Remark 3.10. Note that the CL
µ;1 with µ ∈ Q and the CL

µ;u−1 with µ ∈ u+Q are all simple currents in the

Ck-module category Ck. The vacuum Ck-module CL
0;1 is the fusion unit, as expected. Excluding the vacuum

module, the simple currents of minimal conformal weight are either CL
±2;1 or one of CL

0;u−1 and CL
±1;u−1,

according as to whether u is even or odd, respectively. These minimal conformal weights are

δ
L
±2;1 = 1+

v
w
, δ

L
0;u−1 =

(u−2)v
4

, δ
L
±1;u−1 =

(u−2)v
4

+
v

4w
, (3.16)

by Proposition 3.8 (recall that w = 2v−u). The order of CL
0;u−1 is 2, assuming that u > 2, whilst the other

(non-vacuum) simple currents all have infinite orders.

Proposition 3.11. Given Assumptions 1 and 2, the Grothendieck fusion rules involving the atypicals CD
µ;r,s

and the typicals CE
µ;r,s include[

CE
µ;r,s
]
�Ck

[
CE

µ ′;r′,s′
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

([
CE

µ+µ ′−k;r′′,s′′
]
+
[
CE

µ+µ ′+k;r′′,s′′
])

+ ∑
(r′′,s′′)

([
(r′′,s′′)

(r,s) (r′,s′−1)

]
M(u,v)

+

[
(r′′,s′′)

(r,s) (r′,s′+1)

]
M(u,v)

)[
CE

µ+µ ′;r′′,s′′
]
, (3.17a)

[
CE

µ;r,s
]
�Ck

[
CD

µ ′;r′,s′
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′+1)

]
M(u,v)

[
CE

µ+µ ′;r′′,s′′
]

+ ∑
(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

[
CE

µ+µ ′−k;r′′,s′′
]
. (3.17b)

If s+ s′ < v, then we have in addition[
CD

µ;r,s
]
�Ck

[
CD

µ ′;r′,s′
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

[
CE

µ+µ ′−k;r′′,s′′
]
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+
u−1

∑
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

[
CD

µ+µ ′;r′′,s+s′
]
, (3.17c)

while if s+ s′ ≥ v, then we have instead[
CD

µ;r,s
]
�Ck

[
CD

µ ′;r′,s′
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s+1) (r′,s′+1)

]
M(u,v)

[
CE

µ+µ ′−k;r′′,s′′
]

+
u−1

∑
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

[
CD

µ+µ ′−k;u−r′′,s+s′−v+1

]
. (3.17d)

Remark 3.12. One can also determine the modular transformations of the characters of the irreducible
Ck-modules and check that the standard Verlinde formula reproduces the Grothendieck fusion rules given
here. These modular properties may either be computed directly or, more easily, from the known modular
properties of the irreducible Lk(sl2)- and H-modules. We will not pursue these straightforward computations
here. Instead, we shall study the much more interesting modular properties of an infinite-order simple
current extension of Ck, in Section 4.

3.3. Examples. The parafermion coset construction for the levels k = − 1
2 and k = − 4

3 has already been
discussed in detail [48, 49] with the result being that C−1/2 and C−4/3 may be identified as the well known
singlet vertex operator algebras S1,2 and S1,3 of central charges c̃ = −2 and c̃ = −7, respectively. The
decomposition of Lk(sl2)-modules into Ck-modules is given very explicitly in [61, Sec. 4] and singlet fusion
rules have been computed (within the conjectural standard module formalism) in [47, 62, 63]. A rigorous
computation of certain fusion coefficients for the p = 2 singlet has also recently appeared [64]. All these
computations are consistent with the (Grothendieck) fusion rules reported here. We add that for these levels,
much is known about the category Ck of Ck-modules. In particular, it is a vertex tensor category provided
that a C1-cofiniteness condition and a finite Jordan-Hölder length condition hold, see [65, Thm. 17].

An important family of parafermion cosets Ck are those with k = − n−1
n , for n ∈ Z≥2. Since u = n+ 1

and v = n in these cases, the Virasoro characters appearing in the parafermion characters and the Virasoro
fusion coefficients appearing in the parafermion fusion rules are those of the unitary Virasoro minimal
models. One reason for this importance is their relation to the vertex operator superalgebras Lk′(sl(2|1))
with k′ a positive integer [66]. We intend to report on this in the near future. A second reason is that it is
also expected that C2-cofinite extensions of orbifolds of this family of parafermion cosets Ck coincide with
certain cosets of the minimal W-algebras of so2(n+1) at level zero [67].

Here, we list the inequivalent irreducible C−(n−1)/n-modules explicitly, recalling Remark 3.4:

• the CL
µ;r with r = 1, . . . ,n and µ ∈ 2Z+ r−1;

• the CD
µ;r,s with r = 1, . . . ,n, s = 1, . . . ,n−2 and µ + s

n ∈ 2Z+ r+ s−1;

• the CE
µ;r,s with either r = 1, . . . , n

2, s = 1, . . . ,n−1 and µ± s
n /∈ 2Z+ r+ s−1, if n is even, or

r = 1, . . . ,n, s = 1, . . . , n−1
2 and µ± s

n /∈ 2Z+ r+ s−1, if n is odd.

In terms of conciseness, it would be convenient to replace the CL
µ;r by the CD

µ;r,n−1 in the above list. However,
we prefer to distinguish the L-type modules explicitly as they include all the simple currents (including the
vacuum module).

The first member, n= 2, of this family of vertex operator algebras is, as was mentioned above, the singlet
C−1/2

∼= S1,2. The above list recovers the known [47] module spectrum. Specifically, there are two series of
L-type modules CL

2m;1 and CL
2m+1;2, m∈Z, which are all simple currents, no (inequivalent) D-type modules

and one series of E-type modules CE
µ;1,1, µ ∈ Z+ 1

2 . The minimal conformal weight is ∆1,1 =− 1
8 .
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A more interesting (and less familiar) example is n = 3, thus k = − 2
3 and c̃ = − 5

2 . This central charge
matches that of the N = 1 logarithmic superconformal minimal model sLM(1,3) [68–70]. Up to isomor-
phism, we now have six families of irreducible atypicals

CL
2m;1
∼= CD

2m−2/3;3,2 CL
2m+1;2

∼= CD
2m+1/3;2,2 CL

2m;3
∼= CD

2m−2/3;1,2

CD
2m+2/3;1,1 CD

2m−1/3;2,1 CD
2m+2/3;3,1

(m ∈ Z) (3.18a)

and three families of typicals

CE
µ;1,1
∼= CE

µ;3,2 CE
µ;2,1
∼= CE

µ;2,2 CE
µ;3,1
∼= CE

µ;1,2, (3.18b)

where µ /∈ 2Z± 2
3 , µ /∈ 2Z± 1

3 and µ /∈ 2Z± 2
3 , respectively. The simple currents are the CL

2m;1 and CL
2m;3;

their conformal weights are δ
L
2m;1 =

3
2 |m|(|m|+1), δ

L
2m;3 =

3
2 (|m|+

1
3 )

2 + 1
3 , if m 6= 0, and δ

L
0;3 =

3
2 .

The conformal weight 3
2 simple current G= CL

0;3 has order 2: G⊗C−2/3
G∼= C−2/3. As the dimension of

the space of ground states of G is 1, the corresponding simple current extension of C−2/3 contains precisely
one copy of the vertex operator superalgebra sLM(1,3). We denote this extension by sC−2/3 so that

sC−2/3↓ ∼= C−2/3⊕G. (3.19)

The character of this extended parafermionic vertex operator superalgebra is easy to determine using
(3.10a):

ch
[
sC−2/3

](
q
)
= ch

[
CL

0;1

](
q
)
+ ch

[
CL

0;3

](
q
)

=
χ
M(4,3)
(1,1) (q)+χ

M(4,3)
(1,2) (q)

η(q)

∞

∑
m=0

[
q3(2m+2/3)2/8−q3(2m+4/3)2/8

]
=

1
η(q)

√
ϑ3(1,q)

η(q)

∞

∑
m=0

[
q(3m+1)2/6−q(3m+2)2/6

]
(3.20)

= q−c̃/24
(

1+q3/2 +q2 +2q5/2 +2q3 +3q7/2 +4q4 +5q9/2 +6q5 + · · ·
)
.

This shows that sC−2/3 � sLM(1,3) because the coefficients of q5/2 and q3 in the latter’s character are only
1. However, this extra state of conformal weight 5

2 leads us to the decomposition

ch
[
sC−2/3

](
q
)
=

∞

∑
m=0

χ
sLM(1,3)
(2m+1,1)(q) = ch

[
sS1,3

](
q
)
, (3.21)

where χ
sLM(1,3)
(2m+1,1)(q) denotes the character of the irreducible sLM(1,3)-module whose highest-weight vector

has conformal weight ∆
sLM(1,3)
(2m+1,1) =

1
2 m(3m+2) and sS1,3 denotes the N = 1 singlet vertex operator superal-

gebra [19, 71] of central charge − 5
2 .

It is now straightforward to verify, with the aid of a computer, that the operator product algebras of
the bosonic orbifold of the N = 1 supersinglet sS1,3 and the parafermion vertex operator algebra C−2/3

coincide. Since both vertex operator algebras are simple, they must be isomorphic. We therefore identify
the parafermion vertex operator algebra C−2/3 as the bosonic orbifold of the N = 1 supersinglet sS1,3 and
its simple current extension sC−2/3 as sS1,3.

We conclude this example by considering the induction of C−2/3-modules M to (twisted) sC−2/3-modules
via

M↑= sC−2/3⊗C−2/3
M =⇒ (M↑)↓ ∼=M⊕

(
G⊗C−2/3

M
)
. (3.22)

Whether the resulting module is twisted or not (Ramond or Neveu-Schwarz) depends only on the difference
mod Z of the conformal weights of M and G⊗C−2/3

M. Noting that the fusion rules of Proposition 3.9
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specialise to

G⊗C−2/3
CL

µ;r
∼= CL

µ;4−r, G⊗C−2/3
CD

µ;r,1
∼= CD

µ;4−r,1, G⊗C−2/3
CE

µ;r,1
∼= CE

µ;4−r,1, (3.23)

it easy to check that this difference is r
2 (mod Z). The nine families of irreducible C−2/3-modules listed in

(3.18) therefore lift to six families of irreducible sC−2/3-modules in the Neveu-Schwarz sector (r odd), three
of which are just parity-reversed copies of the other three, and three families of irreducible sC−2/3-modules
in the Ramond sector (r even), each of which is isomorphic to its parity reversal.

Remark 3.13. In the early W-algebra literature, the vertex operator superalgebra sS1,3 is referred to as
the N = 1 super-W3 algebra because the additional fields of conformal weights 5

2 and 3 naturally form a
superfield generalising the weight 3 field of the Casimir W-algebra of sl3. It was one of the first examples
found of an “exotic” W-algebra, meaning that it only exists for a discrete set of central charges, in this
case − 5

2 and 10
7 [72]. The latter central charge received much attention, see [73] and references therein, as

it corresponds to a unitary value for both the N = 1 superconformal minimal models and the Casimir W-
algebras of sl3. However, we are not aware of any detailed study of the non-unitary (and in fact logarithmic)
c̃ =− 5

2 super-W3 algebra in the literature.

4. THE EXTENDED PARAFERMION COSET Bk

We now study a larger vertex operator algebra Bk as a coset of an extension of Lk(sl2) or, as advocated
in (1.1) of the introduction, as a simple current extension of Ck. As we shall show, the Bk are not ratio-
nal, because they admit reducible but indecomposable modules, but have a finite number of irreducibles,
up to isomorphism. Moreover, the characters of the irreducible Bk-modules will be shown to define a
finite-dimensional vector-valued modular form. We therefore conjecture that the Bk are C2-cofinite. As in
the previous section, the level k will be assumed throughout to be admissible and negative. Throughout,
Assumptions 1 and 2 are understood to be in force.

4.1. Bk as a coset and a simple current extension. Recall that the vacuum module of Lk(sl2) is L1 and
that its images σ `(L1) under spectral flow are simple currents. We consider the module

⊕
`∈Zσα`(L1),

where α ∈ Z. It is easy to check that this simple current extension of Lk(sl2) will be a vertex operator
algebra if and only if it is Z-graded, which happens if and only if kα2 ∈ 4Z. This implies that α needs
to be an integer multiple of v and a convenient choice that works for all admissible levels is α = 2v. We
thus define the vertex operator algebra Ek as the simple current extension which decomposes into Lk(sl2)-
modules as follows:

Ek↓ ∼=
⊕
`∈Z

σ
2v`(L1). (4.1)

We remark that because the conformal weights of σ `(L1) are not bounded below whenever |`| ≥ 2, the
vertex operator algebra Ek is not Z≥0-graded by its conformal weights.

Inserting the decomposition of Proposition 3.3, Equation (4.1) becomes

Ek↓ ∼=
⊕
`∈Z

⊕
µ∈Q

Fµ+2vk`⊗CL
µ;1. (4.2)

Consider the lattice vertex operator algebra

VL =
⊕
λ∈L

Fλ , (4.3)
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where L = −2vkZ = wQ (recall that w = −vk = 2v− u). By considering the modules with µ = 0, we see
that (4.2) may be rewritten as

Ek↓ ∼=
⊕
µ∈Q

Vµ+L⊗CL
µ;1 =

⊕
λ∈L′/L

Vλ+L⊗

[⊕
µ∈L

CL
λ+µ;1

]
, (4.4)

where Vλ+L denotes the VL-module
⊕

`∈ZFλ+2w` with λ ∈ L′ = 1
vZ. Note that L′ is the dual lattice of L

with respect to the normalisation (h,h) = 2k induced from the operator product expansion of h(z) and h(w).
The coset construction applied to VL ⊂ Ek now defines the vertex operator algebra Bk = Com(VL,Ek)

whose decomposition into Ck-modules takes the form

Bk↓ ∼=
⊕
µ∈L

CL
µ;1. (4.5)

For µ ∈ L, the CL
µ;1 = CL

2w`;1 with ` ∈ Z are simple currents (Proposition 3.9), so we conclude that Bk is also
a simple current extension of Ck.

Remark 4.1. By Proposition 3.8, the conformal dimension of the ground states of CL
±2w;1 and CL

±4w;1 are

δ
L
±2w;r = (2v−u)(v+1) and δ

L
±4w;r = 2(2v−u)(2v+1)≥ 2δ

L
2w;r. (4.6)

It follows that the primary field of CL
±4w;1 appears in the regular terms of the operator product algebra

obtained by extending the strong generators of Ck by the primary fields of CL
±2w;1. Generalising this obser-

vation, we see that this extended set strongly generates Bk.

This development completes the picture described in the introduction and summarised in the diagram
(1.1). The aim of the rest of this section is to identify Bk-modules, compute their characters and fusion
rules, and then prove the modularity of the irreducible characters: their linear span extends to a finite-
dimensional representation of the modular group.

Remark 4.2. The choice α = 2v, leading to L= 2vkZ= 2wZ, is not always minimal. For instance, when
k =− 4

3 , the constraint kα2 ∈ 4Z is satisfied by α = v = 3, which would lead to L= wZ= 4Z instead of 8Z.
The upshot is that the extension B−4/3 studied here has an order two simple current of integer conformal
weight. Indeed, Proposition 3.8 gives the conformal weight of this simple current as δ

L
4;1 = 5 — the resulting

simple current extension of B−4/3 is, of course, the c =−7 triplet vertex operator algebra W1,3.

Given the decomposition (4.5), it is now straightforward to lift a Ck-module M to a (possibly twisted)
Bk-module M↑ using the fusion rules of Proposition 3.9. Indeed,

M↑= Bk⊗Ck
M =⇒ (M↑)↓ ∼=

⊕
λ∈L

CL
λ ;1⊗Ck

M. (4.7)

If EndM∼=C, then this lift will be an (untwisted) Bk-module if and only if it is Z-graded (Result 1.6). This
condition is obviously satisfied for all irreducibles as well as the atypical standards.

Let us illustrate the procedure by using the fusion rule (3.15c) to analyse the lift of a typical Ck-module
CE

µ;r,s with r = 1, . . . ,u−1, s = 1, . . . ,v−1 and µ 6= λr,s,λu−r,v−s (mod Q):

BE
µ;r,s = Bk⊗Ck

CE
µ;r,s, BE

µ;r,s↓ ∼=
⊕
λ∈L

CL
λ ;1⊗Ck

CE
µ;r,s
∼=

⊕
λ∈µ+L

CE
λ ;r,s. (4.8)

Proposition 3.8 makes it easy to check that this lift will be untwisted if and only if µ ∈ L′ = 1
vZ, assum-

ing that µ 6= λr,s,λu−r,v−s (mod Q). It is also simple, by Result 1.6. We note that BE
λ ;r,s coincides with

BE
λ ;u−r,v−s and BE

µ;r,s when λ = µ (mod L).
Applying this same procedure to the atypical standard and irreducible Ck-modules gives the decomposi-

tions of the resulting Bk-modules.
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Proposition 4.3. Given Assumptions 1 and 2, the typical Ck-modules CE
µ;r,s lift to irreducible highest-

weight Bk-modules, denoted by BE
µ;r,s, only if µ ∈ L′. The atypical irreducible Ck-modules CL

µ;r and CD
µ;r,s

always lift to irreducible highest-weight Bk-modules, denoted by BL
µ;r and BD

µ;r,s, respectively. The atypical

standard Ck-modules C±µ;r,s likewise always lift to length 2 indecomposable Bk-modules, denoted by B±µ;r,s.

The corresponding decompositions as Ck-modules take the unified form

B•µ;?↓ ∼=
⊕

λ∈µ+L

C•
λ ;?, (4.9)

for appropriate • and ?, and we have B•
λ ;? =B•µ;? when λ = µ (mod L).

Remark 4.4. Note that the isomorphism classes of the typical Bk-modules are parametrised by r and s,
which take finitely many values, as well as (a subset of) the finite quotient L′/L. Similarly, those of the
atypical irreducibles are parametrised by r, s and the finite quotient Q/L. We conclude that the Bk-module
category Bk obtained from Ck by simple current extension has finitely many simple objects, up to isomor-
phism. It is not, however, clear if Bk has finitely many irreducible modules, up to isomorphism. Neverthe-
less, we are confident that this is so (see Conjecture 4.19 below).

4.2. Fusion. Recall that in this work we are assuming that the Ck-module category Ck can be given the
structure of a vertex tensor category. Combining Result 1.7 with Propositions 3.9 and 3.11 therefore imme-
diately leads to the following (Grothendieck) fusion rules.

Proposition 4.5. Given Assumptions 1 and 2, the fusion rules of the irreducible Bk-modules with the BL
µ;r

are

BL
µ;r⊗Bk

BL
µ ′;r′
∼=

u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

BL
µ+µ ′;r′′ , (4.10a)

BL
µ;r⊗Bk

BD
µ ′;r′,s′

∼=
u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

BD
µ+µ ′;r′′,s′ , (4.10b)

BL
µ;r⊗Bk

BE
µ ′;r′,s′

∼=
u−1⊕
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

BE
µ+µ ′;r′′,s′ . (4.10c)

In particular, the BL
µ;1 with µ ∈ Q/L and the BL

µ;u−1 with µ ∈ u +Q/L are all simple currents in the

Bk-module category Bk.

Proposition 4.6. Given Assumptions 1 and 2, the Grothendieck fusion rules involving the atypicals BD
µ;r,s

and the typicals BE
µ;r,s include[

BE
µ;r,s
]
�Bk

[
BE

µ ′;r′,s′
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

([
BE

µ+µ ′−k;r′′,s′′
]
+
[
BE

µ+µ ′+k;r′′,s′′
])

+ ∑
(r′′,s′′)

([
(r′′,s′′)

(r,s) (r′,s′−1)

]
M(u,v)

+

[
(r′′,s′′)

(r,s) (r′,s′+1)

]
M(u,v)

)[
BE

µ+µ ′;r′′,s′′
]
, (4.11a)

[
BE

µ;r,s
]
�Bk

[
BD

µ ′;r′,s′
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′+1)

]
M(u,v)

[
BE

µ+µ ′;r′′,s′′
]

+ ∑
(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

[
BE

µ+µ ′−k;r′′,s′′
]
. (4.11b)

If s+ s′ < v, then we have in addition[
BD

µ;r,s
]
�Bk

[
BD

µ ′;r′,s′
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s) (r′,s′)

]
M(u,v)

[
BE

µ+µ ′−k;r′′,s′′
]
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+
u−1

∑
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

[
BD

µ+µ ′;r′′,s+s′
]
, (4.11c)

while if s+ s′ ≥ v, then we have instead[
BD

µ;r,s
]
�Bk

[
BD

µ ′;r′,s′
]
= ∑

(r′′,s′′)

[
(r′′,s′′)

(r,s+1) (r′,s′+1)

]
M(u,v)

[
BE

µ+µ ′−k;r′′,s′′
]

+
u−1

∑
r′′=1

[
(r′′,1)

(r,1) (r′,1)

]
M(u,v)

[
BD

µ+µ ′−k;u−r′′,s+s′−v+1

]
. (4.11d)

4.3. Examples. As noted in Section 3.3, the parafermion coset C−1/2 is isomorphic to the singlet vertex
operator algebra S1,2. It is therefore not surprising that the extension B−1/2 is isomorphic to the triplet
W1,2. This is consistent with L = 2Z and δ

L
±2;1 = 3; for more detail, see [61]. We also recalled that C−4/3

is isomorphic to the singlet S1,3. However, B−4/3 is not W1,3: as discussed in Remark 4.2, it is rather a
Z2-orbifold of W1,3.

Consider the extended parafermion coset B−2/3, remembering that C−2/3 has been identified with the
bosonic orbifold of the supersinglet vertex operator superalgebra sS1,3. Since L= 4Z and δ

L
±4;1 = 9, B−2/3

is not the bosonic orbifold of the super-triplet vertex operator superalgebra sW1,3 [19]. Indeed, B−2/3 has
three simple currents BL

0;3, BL
2;1 and BL

2;3 whose spaces of ground states have dimensions and conformal
weights 1 and 3

2 , 2 and 5
2 , and 2 and 3, respectively. Under fusion, they form (along with the vacuum module

BL
0;1) a group isomorphic to Z2⊕Z2:

BL
µ;r⊗B−2/3

BL
µ ′;r′ =BL

µ+µ ′;r+r′−1 (mod 4) (µ,µ ′ ∈ {0,2}, r,r′ ∈ {1,3}). (4.12)

The simple current extension of B−2/3 by this group of simple currents is a vertex operator superalgebra
with strong generating fields of conformal dimensions 3

2 , 2, 5
2 , 5

2 , 5
2 , 3, 3 and 3. This vertex operator

superalgebra and the super-triplet sW1,3 are thus extensions of the same vertex operator superalgebra sS1,3

with same type of strong generators. We expect that one can now prove that they have to coincide by using
the Jacobi identity to show that sS1,3 admits at most one such extension. We omit this long computation
and refer to the proofs of [67, Thm. 3.1] and [74, Lem. 8.2] for similar arguments.

We shall instead demonstrate this coincidence of vertex operator superalgebras by proving that the simple
current extension of B−2/3 is a subalgebra of sW1,3. Since both vertex operator algebras have the same
type of minimal strong generating set, they must therefore coincide. We noted in Section 3.3 that BL

0;3 is
contained in sS1,3. Hence, we only need find one other generator of the group of simple currents inside
sW1,3. We will now show that indeed BL

2;1 is contained in sW1,3.
For this, we use the notation of [19], while the spirit of the proof is closer to the arguments in [61]. Let

F be the vertex superalgebra of a single free fermion. Consider the lattice αZ⊕βZ, with α2 = −β 2 = 3
and αβ = 0. The sW1,3-algebra is defined [19] as the kernel of a screening operator Q acting on the tensor
product of F and the lattice vertex operator algebra VαZ:

sW1,3 = kerQ(VαZ⊗F) =
⊕
n∈Z

kerQ(Fnα ⊗F). (4.13)

In particular, it is a subalgebra of VαZ⊕βZ⊗F.
We denote the vertex operator corresponding to the highest-weight vector of the Fock module Fnα+mβ

by enα+mβ . The odd triplet fields of conformal weight 5
2 are denoted by E, H and F in [19] and they belong

to Fα ⊗F, F0⊗F and F−α ⊗F, respectively. Now, sW1,3 is simple [19, Cor. 10.1], so it admits a non-
degenerate invariant bilinear form [75] and thus every field of conformal weight h must possess a conjugate
field of same conformal weight such that their operator product expansion involves the identity field. For
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the super-triplet field E, the only possibility for the conjugate field is F , so we have

E(z)F(w)∼ a
(z−w)5 +

0
(z−w)4 + · · · , (4.14)

for some non-zero a. We rescale E and/or F so that a =− 2
3 .

Define now the fields e(z) = E(z)eβ ∈ Fα+β ⊗F and f (z) = F(z)e−β ∈ F−α−β ⊗F whose conformal
weights are both 5

2 −
3
2 = 1. Let h(z) be the Heisenberg field of VZβ , normalised such that

h(z)e(w)∼ 2e(w)
z−w

, h(z) f (w)∼ −2 f (w)
z−w

so that h(z)h(w)∼ −4/3
(z−w)2 . (4.15)

Then, the fields e, h and f generate an affine vertex operator algebra X with g = sl2 and level k = − 2
3 .

Suppose that X is not simple, hence that it has a non-trivial proper ideal I. Let v be a vector of minimal
conformal weight in I. Applying the zero-modes of e or f if necessary, we may assume that v has sl2-
weight zero and hence belongs to the commutant of the Heisenberg field h in X. However, we identified
this commutant as the simple supersinglet algebra sS1,3 in Section 3.3, which obviously has no non-trivial
proper ideals. This contradiction proves that X is simple, hence that X∼= L−2/3(sl2).

We thus have the following inclusion of vertex operator algebras:

L−2/3(sl2)⊂ kerQ(V(α+β )Z⊗F). (4.16)

Here, we have noted that Q annihilates both e and f . Decomposing the lattice vertex operator algebra into
Fock spaces now gives

kerQ(V(α+β )Z⊗F)∼=
⊕
n∈Z

kerQ(Fnα+nβ ⊗F)∼=
⊕
n∈Z

kerQ(Fnα ⊗F)⊗F2n, (4.17)

whilst the decomposition of the affine vertex operator algebra into H⊗C−2/3-modules is

L−2/3(sl2)∼=
⊕
n∈Z

CL
2n;1⊗F2n. (4.18)

It follows that CL
2n;1 ⊂ kerQ(Fnα ⊗F), for all n ∈ Z, and so the simple current BL

2;1 satisfies

BL
2;1 =

⊕
n∈2Z+1

CL
2n;1 ⊂

⊕
n∈Z

CL
2n;1 ⊂

⊕
n∈Z

kerQ(Fnα ⊗F) = sW1,3, (4.19)

by (4.13). This proves that the simple current extension of B−2/3 introduced above is isomorphic to sW1,3,
as claimed.

We conclude by noting that the spectrum of irreducible B−2/3-modules comprises 6 of L-type, 6 (in-
equivalent) of D-type and 24 of E-type. Summing over the orbits of the group of simple currents, we arrive
at 2, 2 and 8 inequivalent sW1,3-modules (not accounting for global parities) whose properties are sum-
marised in the following table:

CL
0;1 CL

1;2 CD
2/3;1,1 CD

5/3;2,1 CE
0;1;1 CE

1/3;1;1 CE
1;1;1 CE

5/3;1,1 CE
0;2,1 CE

2/3;2,1 CE
1;2,1 CE

4/3;2,1

∆ 0 15
16

1
2 − 1

16 − 1
6 − 1

8
5
24 − 1

8 − 5
48

1
16

13
48

1
16

Sector (NS,NS) (R,R) (NS,NS) (R,R) (NS,NS) (NS,R) (R,R) (NS,R) (R,NS) (R,NS) (R,R) (R,NS)

Here, ∆ denotes the conformal weight of the ground states and “Sector” gives the N = 1 and super-W3 sec-
tors as an ordered pair.

Finally, let us remark that our construction nicely compares to the very recent study of [58, Sec. 8].
There, the sW1,3 vertex operator superalgebra was realised as a coset of an N = 3 superconformal algebra
which is itself a simple current extension of L−2/3(sl2) [32]. While our construction is instead to first take
the coset and then perform the simple current extension, the realisations are otherwise the same.
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4.4. Standard Bk-characters and modularity. Given the decompositions (4.8), we can clearly sum the
characters (3.4) of the standard Ck-modules to obtain those of the standard Bk-modules.

Proposition 4.7. Given Assumptions 1 and 2, the characters of the standard Bk-modules are

ch
[
BE

µ;r,s
](

q
)
= ch

[
B±µ;r,s

](
q
)
=

χ
M(u,v)
(r,s) (q)

η(q) ∑
λ∈µ+L

q−λ 2/4k. (4.20)

To investigate the modularity of these characters, we introduce the following theta functions associated
to the lattice L:

ϑµ+L(z,q) = ∑
λ∈µ+L

zλ q−λ 2/4k (µ ∈ L′). (4.21)

Writing z = e2πiζ and q = e2πiτ as usual, the modular S-transforms of these theta functions are given by

ϑµ+L(ζ/τ | −1/τ) =

√
−iτ e−2πikζ 2/τ√
|L′/L| ∑

λ∈L′/L
eiπλ µ/k

ϑλ+L(ζ | τ). (4.22)

To compare with characters, we shall need to set ζ = 0 (z = 1) and will then drop ζ (or z) from the
list of arguments. With this convention, it is obvious that the theta functions are invariant under reflection
about zero, ϑ−µ+L(τ) = ϑµ+L(τ), and translations in L. We shall refer to these properties as the affine Weyl
symmetry of the theta functions. Moreover, if we set p = 1

2 |L
′/L|= vw, then (4.22) becomes

ϑm/v+L(−1/τ) =

√
−iτ√
2p

2p−1

∑
`=0

e−iπ`m/p
ϑ`/v+L(τ) =

√
−iτ

p

∑
`=0

Sϑ

m`ϑ`/v+L(τ), (4.23)

where

Sϑ

m` =


√

1
2p cos π`m

p if ` ∈ pZ,√
2
p cos π`m

p otherwise
(4.24)

and we may restrict m to 0,1, . . . , p.
Since the standard Bk-characters (4.20) can be written in the form

ch
[
BE

µ;r,s
](

τ
)
=

χ
M(u,v)
(r,s) (τ)

η(τ)
ϑµ+L(τ), (4.25)

it is now easy to obtain their modular S-transforms. We recall that the S-matrix of the Virasoro minimal
model M(u,v) is

SM(u,v)
(r,s) (r′,s′) =−2

√
2
uv

(−1)rs′+r′s sin
vπrr′

u
sin

uπss′

v
, (4.26)

where the entries (r,s) and (r′,s′) run over the irreducible M(u,v)-modules of the Kac table Kac(u,v), see
(2.17). As before, sums indexed by M(u,v)-modules will always be assumed to run over Kac(u,v).

Proposition 4.8. Given Assumptions 1 and 2, the modular S-transforms of the standard Bk-characters are

ch
[
BE

m/v;r,s

](
−1/τ

)
= ∑

(r′,s′)

p

∑
`=0

SM(u,v)
(r,s) (r′,s′)S

ϑ

m` ch
[
BE

`/v;r′,s′
](

τ
)
. (4.27)

Remark 4.9. Note that the S-matrix appearing in (4.22) is symmetric whilst that of (4.24) is not. This is
not unexpected because the standard Bk-characters, as we have defined them, are not linearly independent.

4.5. Atypical Bk-characters. In principle, the decompositions of Proposition 4.3 also yield character for-
mulae for the irreducible atypical Bk-modules BL

µ;r and BD
µ;r,s. For example, substituting the resolution

formulae from (3.10) results in the following expression for the former:

ch
[
BL

µ;r
]
=

v−1

∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q) ∑
λ∈µ+L

∞

∑
m=0

(
q−(λ+2mw−sk)2/4k−q−(λ+2(m+1)w+sk)2/4k

)
. (4.28)
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Consider the double sum in this expression, rewritten in the form

∑
`∈Z

∞

∑
m=0

(
q−(µ−sk+2w(`+m))2/4k−q−(µ+sk+2w(`+m+1))2/4k

)
. (4.29)

This sum is clearly not absolutely convergent, so we must take care in how we manipulate its terms.
Note first that the left-hand side of (4.28) is invariant under µ 7→−µ , by Remark 3.6 and Proposition 4.3.

The same must therefore be true for the right-hand side. Replacing ch
[
BL

µ;r
]

by 1
2 (ch

[
BL

µ;r
]
+ ch

[
BL
−µ;r

]
)

transforms the double sum into 1
2

(
Aµ+sk(q)+A−µ+sk(q)

)
, where

Aλ (q) = ∑
`∈Z

∞

∑
m=0

(
q−(λ−2w(`+m))2/4k−q−(λ+2w(`+m+1))2/4k

)
. (4.30)

This will be identified (see Lemma 4.10 below) with a linear combination of the theta functions ϑµ+L,
µ ∈ L′, of (4.21) and their derivatives

ϑ
′
µ+L(z,q) =−

z∂z

2w
ϑµ+L(z,q) =−

µ

2w
ϑµ+L(z,q)+ ∑

`∈Z
`zµ−2w`q−(µ−2w`)2/4k. (4.31)

As usual, we may omit z (or ζ ) from the argument of these theta functions, understanding that it is then
evaluated at z = 1 (or ζ = 0). These specialised derivatives are affine Weyl-antisymmetric, being L-periodic
and anti-invariant under reflection: ϑ ′−µ+L(q) =−ϑ ′

µ+L(q).
We record the following easily proven identities for the lemma that follows:

ϑµ+L(q) =
∞

∑
`=0

(
q−(µ−2w`)2/4k +q−(µ+2w(`+1))2/4k

)
, (4.32a)

ϑ
′
µ+L(q) =−

µ

2w
ϑµ+L(q)+

∞

∑
`=0

(`+1)
(

q−(µ−2w`)2/4k−q−(µ+2w(`+1))2/4k
)
−

∞

∑
`=0

q−(µ−2w`)2/4k. (4.32b)

Lemma 4.10. For any λ ∈ L′, we have

Aλ (q) = 2ϑ
′
λ+L(q)+

(
1+

λ

w

)
ϑλ+L(q). (4.33)

Proof. Consider first the partial sum

A+
λ
(q) =

∞

∑
`=0

∞

∑
m=0

(
q−(λ−2w(`+m))2/4k−q−(λ+2w(`+m+1))2/4k

)
. (4.34)

Replacing m by n = `+m and swapping the order of summation gives

A+
λ
(q) =

∞

∑
n=0

(n+1)
(

q−(λ−2wn)2/4k−q−(λ+2w(n+1))2/4k
)

= ϑ
′
λ+L(q)+

λ

2w
ϑλ+L(q)+

∞

∑
n=0

q−(λ−2wn)2/4k, (4.35)

by (4.32b).
Sending ` to −`−1 and setting m = n+2`+1 in the complementary partial sum

A−
λ
(q) =

−1

∑
`=−∞

∞

∑
m=0

(
q−(λ−2w(`+m))2/4k−q−(λ+2w(`+m+1))2/4k

)
, (4.36)

we instead arrive at

A−
λ
(q) = A+

λ
(q)+

∞

∑
`=0

−1

∑
n=−2`−1

(
q−(λ−2w(`+n))2/4k−q−(λ+2w(`+n+1))2/4k

)
. (4.37)
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Noting that for fixed `, the summand indexed by n precisely cancels that indexed by −2`− 1− n, we see
that only the n =−2`−1 summand contributes. We conclude that

A−
λ
(q) = A+

λ
(q)+ϑλ+L(q)−2

∞

∑
`=0

q−(λ−2w`)2/4k, (4.38)

by (4.32a). Since Aλ (q) = A+
λ
(q)+A−

λ
(q), the proof is complete.

Recalling that ϑµ+L and ϑ ′
µ+L are Weyl-symmetric and Weyl-antisymmetric, respectively, we can use

this result to express the character formula (4.28) as follows.

Proposition 4.11. Given Assumptions 1 and 2, we have

ch
[
BL

µ;r
](

q
)
=

v−1

∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

[
ϑ
′
µ+sk+L(q)−ϑ

′
µ−sk+L(q)

+
µ− (v− s)k

2w
ϑµ+sk+L(q)−

µ +(v− s)k
2w

ϑµ−sk+L(q)
]
, (4.39)

for all r = 1, . . . ,u−1 and µ = λr,0 = r−1 (mod Q).

Remark 4.12. Equation (3.10b) and Proposition 4.3 imply that the characters of the remaining atypical
irreducible Bk-modules are given by

ch
[
BD

µ;r,s
](

q
)
=

v−1

∑
s′=s+1

(−1)s′−s−1 ch
[
BE

µ−(s′−s)k;r,s′
](

q
)
+(−1)v−1−s ch

[
BL

µ−(v−s)k;u−r

](
q
)
. (4.40)

We shall not try to simplify this expression. As the standard Bk-characters close on themselves under mod-
ular transformations, those of the D-type Bk-characters will transform as a linear combination of standard
and L-type Bk-characters if the L-type Bk-characters do. We therefore only need to demonstrate this result
for L-type Bk-characters.

4.6. Interlude: linear dependences. Now that we have the characters of the BL
µ;r in terms of theta func-

tions and their derivatives, it is in principle straightforward to determine their modular S-transforms. To
this end, we shall analyse certain linear dependences that arise in the terms that appear in these characters.

We first note that we may restrict attention to the terms that involve the theta function derivatives in the
character formula (4.39) — the other terms may be expressed in terms of standard Bk-characters and these
S-transform into one another, by Proposition 4.8. We isolate these terms in the following definition:

Γµ;r(q) =
v−1

∑
s=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

[
ϑ
′
µ+sk+L(q)−ϑ

′
µ−sk+L(q)

]
, µ = r−1 (mod Q). (4.41)

Note that these terms constitute the part of the atypical module characters of modular weight 1. The re-
maining part has modular weight 0 so there can be no (non-trivial) linear dependences between the parts.

Lemma 4.13. Given r = 1, . . . ,u−1 and µ = r−1 (mod Q), we have

Γµ;r = Γµ+2w;r, Γµ;r = Γ−µ;r, Γµ;r = (−1)v−1
Γw+µ;u−r, Γµ;r = (−1)v−1

Γw−µ;u−r, (4.42)

where we recall that w =−vk = 2v−u.

Proof. The first two identities reflect the affine Weyl-antisymmetry of the theta function derivatives. The
third uses, in addition, the Kac symmetry of the Virasoro minimal model characters:

Γµ;r(q) =
s−1

∑
v=1

(−1)s−1
χ
M(u,v)
(r,s) (q)

η(q)

[
ϑ
′
µ+sk+L(q)−ϑ

′
µ−sk+L(q)

]
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=
s−1

∑
v=1

(−1)v−s−1
χ
M(u,v)
(r,v−s)(q)

η(q)

[
ϑ
′
µ+(v−s)k+L(q)−ϑ

′
µ−(v−s)k+L(q)

]

= (−1)v−1
s−1

∑
v=1

(−1)s−1
χ
M(u,v)
(u−r,s)(q)

η(q)

[
ϑ
′
µ+w+sk+L(q)−ϑ

′
µ+w−sk+L(q)

]
. (4.43)

Note that µ = r− 1 (mod Q) implies that µ +w = r− 1+ 2v− u = u− r− 1 (mod Q), as required. The
fourth is obtained by combining the second and third.

The first two relations of (4.42) allow us to restrict µ to a fundamental domain of the affine Weyl group
Z2n2wZ. We choose 0≤ µ ≤ w, remembering that µ must match r−1 in parity. Next, the fourth relation
states that we can always exchange r for u− r, hence we may impose r ≤ u

2 . If u is odd, then we are done.
If u is even, however, then we can slightly refine the analysis by noting that when r = u

2 , the fourth relation
lets us exchange µ for w−µ , hence we may insist that µ ≤ w

2 in this case (note that u even implies that w

is also even).
Consider the vector space Vk spanned by the Γµ;r, with r = 1, . . . ,u− 1 and µ = r− 1 (mod Q). The

assertions above allow us to significantly reduce this spanning set.

Proposition 4.14. A spanning set of Vk is given by the elements Γµ;r with

u odd: µ = 0,1, . . . ,w, r = 1,2, . . . , 1
2 (u−1),

u even:
µ = 0,1, . . . ,w, r = 1,2, . . . , 1

2 u−1 and

µ = 0,1, . . . ,
w
2
, r = 1

2 u,

subject to µ = r−1 (mod Q).

We let Bk denote the set of pairs (µ;r) satisfying these conditions.

Corollary 4.15. dimCVk ≤ |Bk|=

{ 1
4 (u−1)(w+1) if u is odd,
1
4 uw− 1

2 (v−1−u) if u is even.

Remark 4.16. We believe that the spanning set {Γµ;r : (µ;r)∈Bk} of Proposition 4.14 is actually a basis,
hence that the upper bound of Corollary 4.15 is actually an equality. However, we have not tried to prove
this as it is not needed for the modularity result that follows.

4.7. Modularity of atypical Bk-characters. We turn now to the modular properties of the weight 1 terms
Γµ;r of the characters of the BL

µ;r, first determining the S-transform of the theta function derivatives

ϑ
′
µ+L(ζ | τ) =−

∂ζ

2πi ·2w
ϑµ+L(ζ | τ). (4.44)

This is easily derived by differentiating Equation (4.22) with respect to ζ , resulting in

ϑ
′
µ+L(ζ/τ | −1/τ) =

√
−iτ√
|L′/L|

e−2πikζ 2/τ
∑

λ∈L′/L
eiπλ µ/k

[
τϑ
′
λ+L(ζ | τ)−

ζ

v
ϑλ+L(ζ | τ)

]
. (4.45)

Specialising to ζ = 0 and µ = m/v therefore gives

ϑ
′
m/v+L(−1/τ) =

τ
√
−iτ√
2p

2p−1

∑
`=0

e−iπ`m/p
ϑ
′
`/v+L(τ) = (−iτ)3/2

p−1

∑
`=1

S′m`ϑ
′
`/v+L(τ), (4.46)

where we recall that p = vw = v(2v−u) and have set

S′m` =

√
2
p

sin
π`m

p
. (4.47)
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Because ϑ ′`/v+L(τ) = 0, for ` = 0 or p, it is natural to restrict the range of ` to 1, . . . , p− 1. However, the
S-matrix entries S′m` are 0 for both `= 0 and `= p, so these values may be included in the summation range
when convenient.

Theorem 4.17. Given Assumptions 1 and 2, the elements of Vk define a finite-dimensional vector-valued

modular form with

Γµ;r(−1/τ) =−iτ ∑
(µ ′;r′)∈Bk

SΓ

(µ;r)(µ ′;r′)Γµ ′;r′(τ), Γµ;r(τ +1) = e2πi(δL
µ;r−c̃/24)

Γµ;r(τ), (4.48a)

where δ
L
µ;r was given in (3.13b), c̃ = 2− 6

t , Bk was given in Proposition 4.14 and

SΓ

(µ;r)(µ ′;r′) =
2Aµ ′;r′√

uw
sin

πrr′

t
cos

πµµ ′

k
, Aµ ′;r′ =


1
2 if r′ = u

2 and µ ′ ∈ wZ,

2 if r′ 6= u
2 and µ ′ /∈ wZ,

1 otherwise.

(4.48b)

Proof. The behaviour under the modular T-transform τ 7→ τ + 1 follows immediately from the relation
between Γµ;r and the character of BL

µ;r, noting that the conformal weights of the latter match those of CL
µ;r

(up to an integer) which were given in Proposition 3.8. We therefore turn to the S-transform.
From the definition (4.41) of the weight 1 parts of the atypical characters, we deduce that

Γµ;r(−1/τ) =−iτ
v−1

∑
s=1

(−1)s−1
∑(r′,s′) SM(u,v)

(r,s) (r′,s′)χ
M(u,v)
(r′,s′) (τ)

η(τ)
· −2√

2p

2p−1

∑
`=0

e−iπ`µ/w sin
π`s
v

ϑ
′
`/v+L(τ), (4.49)

where the modular S-matrix of M(u,v) was given in (4.26) and we have used the first equality of (4.46).
The sum over s is easily evaluated:

v−1

∑
s=1

(−1)s−1(−1)r′s sin(πts′s)sin
π`s
v

=
v−1

∑
s=1

cos(π(r′−1)s)sin(−πts′s)sin
π`s
v

=
v−1

∑
s=1

sin(πλr′,s′s)sin
π`s
v

=
1
2

v−1

∑
s=1

[
cos(π(λr′,s′ − `/v)s)− cos(π(λr′,s′ + `/v)s)

]
=

{
± v

2 if `/v =±λr′,s′ (mod Q),

0 otherwise.
(4.50)

We mention that the case `/v = λr′,s′ (mod Q) and `/v = −λr′,s′ (mod Q), which would give 0 for this
sum, does not occur because it would require that 2λr′,s′ ∈ Q, hence that us′ ∈ 2vZ, hence s′ ∈ vZ.

The contribution to Γµ;r(−1/τ) from the ` satisfying `/v = λr′,s′ (mod Q) is therefore

− iτ
2√
uw ∑

(r′,s′)

2p−1

∑
`=0

`/v=λr′,s′ (mod Q)

(−1)rs′ sin
πrr′

t
e−iπ`µ/w

χ
M(u,v)
(r′,s′) (τ)

η(τ)
ϑ
′
`/v+L(τ). (4.51)

As the summands are manifestly 2p-periodic in `, the `-sum is over a full period — this is the reason we
use (4.46) above instead of (4.47). Writing `/v = r′−1− ts′ = r′−1− ks′ (mod Q), we set µ ′ = `/v+ ks′

so that µ ′ = r′−1 (mod Q) and µ ′ is 2w-periodic. The contribution (4.51) now becomes

− iτ
−2√
uw ∑

(r′,s′)

2w−1

∑
µ ′=0

µ ′=r′−1 (mod Q)

(−1)s′−1 sin
πrr′

t
eiπµµ ′/k

χ
M(u,v)
(r′,s′) (τ)

η(τ)
ϑ
′
µ ′−s′k+L(τ), (4.52)

where we have noted that (−1)rs′e−iπs′µ = (−1)(µ−r)s′ =−(−1)s′−1, since µ = r−1 (mod Q).
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For the contribution from the ` satisfying `/v = −λr′,s′ (mod Q), we likewise write µ ′ = `/v− ks′ so
that again µ ′ = −r′+ 1 = r′− 1 (mod Q) and µ ′ is 2w-periodic. This contribution now evaluates to the
same form as (4.52) but multiplied by −1, because of the sign in (4.50), and with ϑ ′

µ ′−s′k+L replaced by
ϑ ′

µ ′+s′k+L. We therefore conclude that

Γµ;r(−1/τ) =−iτ 2√
uw ∑

(r′,s′)

2w−1

∑
µ ′=0

µ ′=r′−1 (mod Q)

(−1)s′−1 sin
πrr′

t
eiπµµ ′/k

χ
M(u,v)
(r′,s′) (τ)

η(τ)

[
ϑ
′
µ ′+s′k+L(τ)−ϑ

′
µ ′−s′k+L(τ)

]
.

(4.53)
Suppose now that u is odd. Then, the (r′,s′)-sum over the Virasoro Kac table Kac(u,v) may be expressed

as a double sum where r′ ranges from 1 to 1
2 (u−1) and s′ ranges from 1 to v−1. In this case,

Γµ;r(−1/τ) =−iτ 2√
uw

1
2 (u−1)

∑
r′=1

2w−1

∑
µ ′=0

µ ′=r′−1 (mod Q)

sin
πrr′

t
eiπµµ ′/k

Γµ ′;r′(τ). (4.54)

We can write this as a sum over the spanning set Bk of Proposition 4.14 by combining the terms with
µ 6= 0,w using Γµ ′;r′ = Γ2w−µ ′;r′ , which follows from the first two identities of (4.42). This gives the values
of Aµ ′;r′ and the modular S-transform of the theorem for u odd.

If u is even, so v is odd, then the (r′,s′)-sum may be expressed as the sum of two contributions, the first
being a double sum with r′ ranging from 1 to u

2 − 1 and s′ ranging from 1 to v− 1 while the second is a
single sum with r′ fixed at u

2 and s′ ranging from 1 to v−1
2 . The contribution from r′ < u

2 is analysed as in
the u odd case with the same result (the upper limit of the r′-sum is now u

2 −1).
The analysis of the contribution from r′ = u

2 is a little more intricate. First, note that if r is even, then
this contribution vanishes because sin(πrr′t−1) = 0. We may therefore assume that r is odd, hence that µ

is even. We now compare the r′ = u
2 contribution to (4.53) from a given s′ to that from v− s′. The latter is

− iτ
2√
uw

2w−1

∑
µ ′=0

µ ′=u/2−1 (mod Q)

(−1)v−s′−1 sin
πrv
2

eiπµµ ′/k
χ
M(u,v)
(u/2,v−s′)(τ)

η(τ)

[
ϑ
′
µ ′+(v−s′)k+L(τ)−ϑ

′
µ ′−(v−s′)k+L(τ)

]

=−iτ 2√
uw

2w−1

∑
µ ′=0

µ ′=u/2−1 (mod Q)

(−1)s′−1 sin
πrv
2

eiπµµ ′/k
χ
M(u,v)
(u/2,s′)(τ)

η(τ)

[
ϑ
′
µ ′+w+s′k+L(τ)−ϑ

′
µ ′+w−s′k+L(τ)

]

=−iτ 2√
uw

2w−1

∑
µ ′=0

µ ′=u/2−1 (mod Q)

(−1)s′−1 sin
πrv
2

eiπµµ ′/k
χ
M(u,v)
(u/2,s′)(τ)

η(τ)

[
ϑ
′
µ ′+s′k+L(τ)−ϑ

′
µ ′−s′k+L(τ)

]
, (4.55)

where we have used the following facts: v is odd, w and µ are even, the theta function derivatives are
2w-periodic, and the µ ′-sum is over a full period. The contributions from s′ and v− s′ therefore coincide
for r odd and r′ = u

2 . The r′ = u
2 contribution to Γµ;r(−1/τ) is then half that obtained by summing s′ from

1 to v−1. It therefore has exactly the same form as the generic case r′ 6= u
2 analysed above except for the

additional factor of 1
2 .

An obvious consequence of this result is that the vector space spanned by the Γµ;r and −iτΓµ;r carries a
representation of the modular group. Recasting the character formula of Proposition 4.11 in the form

ch
[
BL

µ;r
]
= Γµ;r +

v−1

∑
s=1

(
µ− (v− s)k

2w
ch
[
BE

µ+sk;r,s

]
− µ +(v− s)k

2w
ch
[
BE

µ−sk;r,s

])
(4.56)
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and recalling Remark 4.12, we conclude that the direct sum of this vector space and the span of the standard
characters ch

[
BE

µ;r,s
]
, with µ ∈ L′/L and (r,s) ∈ Kac(u,v), contains the characters of all the irreducible

Bk-modules and carries a PSL
(
2;Z
)
-representation.

Corollary 4.18. Given Assumptions 1 and 2, it follows that the characters of the irreducible Bk-modules

are modular: they generate a representation of PSL
(
2;Z
)

of dimension p(u−1)(v−1)+2dimVk < ∞.

Conjecture 4.19. The vertex operator algebra Bk is C2-cofinite.

Remark 4.20. The C2-cofiniteness of triplet and super-triplet algebras is known [16, 19]. Moreover, orb-
ifolds by finite abelian groups of C2-cofinite vertex operator algebras are also known to be C2-cofinite [76].
It follows that C2-cofiniteness is established for B−1/2 because is it isomorphic to the triplet W1,2, B−4/3

because it is isomorphic to a Z2-orbifold of W1,3, and B−2/3 because it is isomorphic to a Z2⊕Z2-orbifold
of sW1,3 (assuming that the main result of [76] also holds for appropriate vertex operator superalgebras).
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