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Abstract. The modular properties of the simple vertex operator superalgebra associated to the affine Kac-Moody super-
algebra ôsp(1 |2) at level − 5

4 are investigated. After classifying the relaxed highest-weight modules over this vertex operator
superalgebra, the characters and supercharacters of the simple weight modules are computed and their modular transforms
are determined. This leads to a complete list of the Grothendieck fusion rules by way of a continuous superalgebraic ana-
logue of the Verlinde formula. All Grothendieck fusion coefficients are observed to be non-negative integers. These results
indicate that the extension to general admissible levels will follow using the same methodology once the classification of
relaxed highest-weight modules is completed.

1. Introduction

The construction of conformal field theories from affine Kac-Moody algebras ĝ at fractional levels has a long
history. These theories were first proposed by Kent [1] for ĝ = ŝl (2) as a means of generalising the coset construction
of [2] to non-unitary Virasoro minimal models. Shortly thereafter, Kac and Wakimoto discovered [3] that for certain
fractional levels (called the admissible levels), ĝ possesses a finite set of simple highest-weight modules whose
characters span, in a sense, a representation of the modular group SL(2;�). It was natural then to expect that
one could build a rational conformal field theory from these highest-weight modules. However, Koh and Sorba
immediately noticed [4] that this expectation failed, even for ĝ = ŝl (2), because Verlinde’s formula [5] for the
(necessarily non-negative integer) fusion coefficients always returned at least one negative number.

Subsequent work [6–15] on this observation did little to ameliorate the confusion. However, physicists eventually
found reason to consider modules (again for ĝ = ŝl (2)) that were neither highest-weight [16–18] nor simple [19,20].
Indeed, it seemed that admissible level ŝl (2)-theories naturally allowed for a continuously parametrised family of
simple non-highest-weight modules, a fact that had been previously discovered [21] by Adamović and Milas.

The root cause of the negative fusion coefficients, predicted by the Verlinde formula, remained obscure until
recently. In [22], a careful analysis of ŝl (2) at the admissible level k = − 1

2 showed that the negative results
could be traced back to the fact that the simple module characters were not linearly independent. More precisely,
the fundamental error in the preceding analyses was demonstrated to be that the modular transformations of the
characters of Kac and Wakimoto did not respect their non-trivial convergence properties. Subsequent work [23–25]
extended this to all admissible levels for ŝl (2) and proved that properly accounting for convergence regions (by
treating characters as distributions, not meromorphic functions) indeed resulted in non-negative integer fusion
coefficients. Moreover, the corresponding Grothendieck fusion rules agreed perfectly with the fusion rules that were
known [19,26] from independent computations.

We remark that these successes were obtained as one instance of a rather more general methodology, dubbed the
standard module formalism [27, 28], for modular properties and Verlinde-like formulae in logarithmic conformal
field theories. Originating in work on theories based on the affine Kac-Moody superalgebra ĝl (1|1) [29–31], this
formalism has since been applied to a wide range of logarithmic conformal field theories [32–40], all of which are
in some sense related to rank 1 objects such as the A1 lattice.

There is therefore a need to explore higher rank logarithmic conformal field theories and the standard module
formalism is expected to be crucial to this endeavour. The analysis of higher rank theories constructed from affine
Kac-Moody algebras (and superalgebras) at admissible levels is particularly attractive because we expect that they
will play a central role in understanding logarithmic models, just as the Wess-Zumino-Witten models do in the
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rational case. However, this analysis is still in its infancy. The relevant simple highest-weight modules have been
identified by Arakawa [41] for all admissible levels, but a complete set of (positive-energy) simple modules has only
recently been described for ŝl (3) [42]. More generally, almost nothing is known aside from some partial level-specific
results for affine algebras [43–49] and superalgebras [50–57].

In this paper, we shall not embark immediately on a study of higher rank logarithmic conformal field theories.
Rather, we will describe in detail a particular example based on the affine Kac-Moody superalgebra ôsp(1|2) at
the admissible level k = − 5

4 . The aim here is to develop and test the standard module formalism in the presence
of fermionic degrees of freedom (and determine the precise role of the Ramond sector) before tackling the more
challenging, but also more physically interesting, cases of ŝl (2|1) and p̂sl (2|2).1 This particular level is an attractive
starting place for two reasons: first, it describes one of the “smallest” ôsp(1|2) minimal models (meaning that it has
very few simple highest-weight modules) and, second, it is an order 2 simple current extension of the ŝl (2) minimal
model of the same (admissible) level [25]. The latter property allows us to independently check our ôsp(1|2) results
against the known ŝl (2) results.

Of course, conformal field theories with ôsp(1|2) symmetry have been studied in the past, both at integer and
fractional levels [58–60]. However, these works only considered simple highest-weight modules in the Neveu-
Schwarz (untwisted) sector, ignoring the known issue of negative fusion coefficients. Here, we discuss a more
complete spectrum of simple modules (as well as some of the reducible but indecomposable ones) in both the
Neveu-Schwarz and Ramond sectors. We moreover emphasise the global parity of each module in order to be
able to distinguish the relative parities of the direct summands appearing in each Grothendieck fusion product. In
physics parlance, this is equivalent to computing both the even and odd Grothendieck fusion rules of Sotkov and
Stanishkov [61].

The results confirm that the standard module formalism applies to the affine superalgebra theory studied here:
characters and supercharacters close under modular transformations and the Grothendieck fusion coefficients are
verified to be non-negative integers. The methodology developed in this paper also applies to the other admissible
levels of ôsp(1|2), so extending these results to general admissible levels will be straightforward, assuming that one
can first classify the relaxed highest-weight modules. The latter classification has not yet been completed, though
we expect that it can be obtained using the methods developed in [62–65]. Because of this, the Grothendieck fusion
rules of the ôsp(1|2) models for general admissible levels will instead be addressed in a forthcoming paper [66] using
coset technology. A byproduct of this work will be the relaxed highest-weight module classification for ôsp(1|2)
models of general admissible level.

We begin, in Section 2, with a quick review of the simple Lie superalgebra osp(1|2) and its representation theory.
We prove, in particular, a classification result (Theorem 2) for all simple weight modules of osp(1|2) that have at least
one finite-dimensional weight space (wewere unable to find this result in the literature). This is followed, in Section 3,
by a quick review of the affine Kac-Moody superalgebra ôsp(1|2), its automorphisms (conjugation and spectral flow),
and the associated vertex operator superalgebras. We also discuss relaxed Verma modules over ôsp(1|2) and their
simple quotients, borrowing this notion from [16] where it was introduced for ŝl (2) (see [64, Sec. 2.1] for a general
definition of relaxed highest-weight modules).

Section 4 then specialises to the simple ôsp(1|2) vertex operator superalgebra of level k = − 5
4 that we study

in this work, denoting it by B0 |1 (2, 4). We first give an efficient characterisation of affine Zhu algebras, twisted
and untwisted, and identify those of the universal vertex operator superalgebras (Proposition 6) before explicitly
computing the Zhu algebras of B0 |1 (2, 4) (Propositions 7 and 8). This is then used to classify the simple relaxed
highest-weightB0 |1 (2, 4)-modules (Theorems 9 and 10) and identify some of the reducible ones. These are partitioned
into standard, typical and atypical modules as per the standard module formalism of [27, 28].

1We mention that the corresponding analysis for the ĝl (1 |1) logarithmic conformal field theory, carried out in [29], was restricted to the Neveu-
Schwarz sector as the simple characters of this sector closed on themselves under modular transformations. The same is not true for ôsp(1 |2)
conformal field theories.
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Having classified the simple (and standard) B0 |1 (2, 4)-modules, we turn to the computation of their characters
and supercharacters in Section 5. Such character formulae are easy to compute for the Neveu-Schwarz highest-
weight modules because the submodule structure of the associated Verma modules was determined by Iohara and
Koga [60]. Spectral flow automorphisms then allow us to deduce the analogous Ramond formulae (Proposition 11).
We explicitly note the convergence regions of these characters, treated as meromorphic functions, and use the results
to determine the characters of the relaxed highest-weight modules, treated as distributions (Propositions 12 and 13).
Supercharacter formulae follow easily (Proposition 14) and we conclude by introducing the Grothendieck group of
(an appropriate category of) B0 |1 (2, 4)-modules and showing explicitly that the images of the standard modules form
a basis of (a completion of) this Grothendieck group.

This last result (Corollary 16) is the key to computing the modular transforms of the B0 |1 (2, 4)-(super)characters,
the topic of Section 6. We begin by introducing slightly unfamiliar S and T coordinate transforms (following [35])
before computing the modular group action on the span of the standard B0 |1 (2, 4)-(super)characters. Of note is that
the S-transform amounts to a generalised Fourier transform on (a countably-infinite number of copies of) the real
vector space h� spanned by the fundamental weight of osp(1|2). The S-transforms are then extended to the simple
atypical (super)characters using Corollary 16. We remark that trying to compute these S-transforms directly from the
meromorphic characters would lead to nonsensical results (such as negative fusion coefficients) because the modular
S-transform does not preserve the convergence regions of the (super)characters.

Finally, Section 7 addresses the Grothendieck fusion rules of the simple (and standard) B0 |1 (2, 4)-modules. First,
we deduce a version (Theorem 21) of the standard Verlinde formula that works for this vertex operator superalgebra
— generally, Verlinde formulae are only expected to apply directly to (�-graded) vertex operator algebras. The
method follows the approach of [67] for the N = 1 minimal model vertex operator superalgebra (see also [39])
wherein one lifts the Verlinde formula from the bosonic orbifold using simple current technology. With this formula
in hand, we compute all Grothendieck fusion rules, including global parity information, among the simple and
standard B0 |1 (2, 4)-modules (Theorem 25).
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2. The basic Lie superalgebra osp(1|2)

In this section, we quickly review the theory of weight modules over sl (2) and osp(1|2). The latter algebra is
important because of its role as the horizontal subalgebra of the Neveu-Schwarz ôsp(1|2) algebra, the former plays
the same role for the Ramond ôsp(1|2) algebra.

2.1. A brief review of sl (2). The simple complex Lie algebra A1 = sl (2) has Cartan-Weyl basis {h, e, f }, satisfying
the commutation relations

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h. (2.1)

The Cartan subalgebra h = �h then gives rise to the root system {α̇ ,−α̇} ⊂ h∗ where α̇ (h) = 2 and we choose α̇ to
be the lone fundamental root. The non-zero entries of the (appropriately normalised) Killing form κ on sl (2), with
respect to the given basis, are

κ (h,h) = 2, κ (e, f ) = κ ( f , e ) = 1. (2.2)
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This induces an inner product on h∗, defined by (α̇ , α̇ ) = 2. From these data, one calculates the fundamental weight
to be ω = 1

2 α̇ and that the algebra has dual Coxeter number h∨ = 2. The Weyl group is isomorphic to �2, generated
by the root reflection α̇ 7→ −α̇ .

As with all complex semisimple Lie algebras, the finite-dimensional modules of sl (2) are necessarily semisimple
weight modules and the finite-dimensional simple modules are uniquely determined (up to isomorphism) by their
highest weight. For eachλ ∈ �≥0, we denote the unique (up to isomorphism) (λ+1)-dimensional simple sl (2)-module
of highest weight λω (and lowest weight −λω) by Fλ .

Extending to the infinite-dimensional case, we no longer have complete reducibility, though we can nevertheless
classify the simple weight modules. Here we include in the definition of a weight module that all of its weight
spaces are required to be finite-dimensional. The first class that we consider are the simple highest-weight modules
D
+

λ , where λ ∈ � \ �≥0, with highest weight λω and no lowest weight. It is straightforward to show that the weight
support (the set of weights with non-trivial weight spaces) of such a module is (λ − 2�≥0)ω and that all the weight
spaces are one-dimensional. Similarly, we also have the simple lowest-weight modulesD

−

λ where λ ∈ �\�≤0. Here,
the weight support is instead (λ + 2�≥0)ω and again all weight spaces are one-dimensional.

Finally, we have the dense modules EΛ,q , parametrised by q ∈ � and Λ ∈ �/2�. These are simple precisely
when q , 1

2λ(λ + 2) for all λ ∈ Λ. The weight support of EΛ,q is precisely Λω (that is, (λ0 + 2�)ω for some λ0),
again with all weight spaces one-dimensional. The parameter q is the (unique) eigenvalue of the Casimir element
Q = 1

2h
2 + e f + f e which generates the centre of the universal enveloping algebra and must therefore act as a

scalar multiple of the identity. We remark that dense modules are also referred to as cuspidal and torsion-free in the
literature.

Having introduced the above classes of modules, we can state the following result (see [68]).

Theorem 1 (Classification of simple sl (2) weight modules). Every simple sl (2) weight module is isomorphic to one
of the following mutually non-isomorphic modules:

(i) Fλ with λ ∈ �≥0;
(ii) D

+

λ with λ ∈ � \ �≥0;
(iii) D

−

λ with λ ∈ � \ �≤0;
(iv) EΛ,q with q ∈ �, Λ ∈ �/2� and q , 1

2λ(λ + 2) for all λ ∈ Λ.

We shall also need to consider the reducible, but indecomposable, dense modules that correspond to parameters
Λ and q, where q = 1

2λ(λ + 2) for some λ ∈ Λ. We note that these do not exhaust the reducible but indecomposable
dense modules of ŝl (2). The latter are classified (somewhat explicitly) in [68]. However, the others will not be
needed in what follows. If this condition is met, then either the unique (up to rescaling) state vλ of weight λω is
a highest-weight vector or evλ is a lowest-weight vector. Both possibilities occur independently:2 the first gives
rise to a highest-weight submodule isomorphic to the highest-weight module D

+

λ , while the second gives rise to a
lowest-weight submodule isomorphic to the lowest-weight module D

−

λ+2. The structures of these indecomposable
dense sl (2)-modules, which we denote by E

+

Λ,q and E
−

Λ,q , respectively, where Λ = λ + 2�, are thus determined by
the following non-split short exact sequences:

0 −→ D
+

λ−2 −→ E
+

λ+2�,λ (λ−2)/2 −→ D
−

λ −→ 0, 0 −→ D
−

λ+2 −→ E
−

λ+2�,λ (λ+2)/2 −→ D
+

λ −→ 0. (2.3)

We have shifted λ by 2 in the first sequence for clarity.
We recall a concrete construction of certain dense sl (2)-modules that will be useful when we generalise to

dense osp(1|2)-modules in Section 2.2. First, note that the elements of the universal enveloping algebra which
commute with h ∈ sl (2) (more generally, with the Cartan subalgebra) will preserve weight spaces. Such elements
form the centraliser C(h,U(sl (2))), which (by the Poincaré-Birkhoff-Witt theorem) is just the polynomial subalgebra
�[h,Q] ⊆ U(sl (2)). As this is abelian, its simple modules are all one-dimensional. Suppose that Wλ,q = �w is one

2We assume throughout that when λ solves the reducibility condition, then it is the unique element of Λ that does so. This need not be the case,
as for certain q there are two solutions for λ in Λ. However, the corresponding reducible modules will, again, not be needed here.
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such module, with h and Q acting as complex scalars λ and q, respectively. We can then induce from this to the full
U(sl (2))-module

Wλ,q = IndU(sl (2))
C(h,U(sl (2))) Wλ,q , (2.4)

which (again using the Poincaré-Birkhoff-Witt theorem) has basis

{w, enw, f nw : n ∈ �>0}. (2.5)

The induced moduleWλ,q obviously has weight support Λω, where Λ = λ+2�, and one-dimensional weight spaces,
hence it is dense. It is moreover clear that Wλ,q is a simple sl (2)-module, and is thus isomorphic to EΛ,q , unless
enw is a lowest-weight vector or f nw is a highest-weight vector, for some n ∈ �>0. When Wλ,q is not simple, it is
isomorphic to E

−

Λ,q or E
+

Λ,q , respectively.

2.2. A brief review of osp(1|2). The simple complex Lie superalgebra g = osp(1|2) has basis {h, e, f ,x ,y}, where
the elements of g(0) = span {h, e, f } and g(1) = span {x ,y} are declared to be even and odd, respectively. The even
subalgebra is (as its elements suggest) isomorphic to sl (2), thus (2.1) still holds. The remaining (anti)commutation
relations are:

[h,x] = x , [e,x] = 0, [f ,x] = −y,

[h,y] = −y, [e,y] = −x , [f ,y] = 0,

{x ,y} = h, {x ,x} = 2e, {y,y} = −2f .

(2.6)

In this basis, the (rescaled) Killing form has non-zero entries given by

κ (h,h) = 2, κ (e, f ) = κ ( f , e ) = 1, κ (x ,y) = −κ (y,x ) = 2. (2.7)

Due to the existence of a non-degenerate even supersymmetric bilinear form, osp(1|2) is an example of a basic Lie
superalgebra [69]. In the classification [70] of such algebras, the isomorphism class of osp(1|2) is denoted by B0 |1.

We consider the Cartan subalgebra h = �h, with root system {−2α ,−α ,α , 2α}, where α (h) = 1 (so 2α is identified
with α̇), and choose α to be positive (hence simple). The inner product on h∗ induced by the Killing form is given by
(α ,α ) = 1

2 , from which one can calculate that the dual Coxeter number is h∨ = 3
2 and that the fundamental weight is

α . Since the Weyl group of a Lie superalgebra is generated by reflections in the even roots, it is precisely the Weyl
group of its even subalgebra. As the even subalgebra of osp(1|2) is isomorphic to sl (2), its Weyl group is also of
order 2, generated by the reflection α 7→ −α .

As with all superalgebras, modules M of osp(1|2) are required to carry a compatible �2-grading: that is, they
must decompose as a direct sumM(0) ⊕M(1) , such that g(i )M(j ) ⊆ M(i+j ) , for all i, j ∈ �2. Having identified such an
M(0) andM(1) , these summands are then referred to as the even and odd subspaces, respectively. Similarly, elements
of the even and odd subspaces are said to have even and odd parity, respectively. However, it should be apparent
that reversing these labels, whilst maintaining the same module structure, still gives a valid grading. As such, on
any category of modules we might consider, we require there to be an involutive functor Π taking any module to its
parity reversal. In principle, a module may be isomorphic to its parity reversal. This does not happen for the simple
weight modules of osp(1|2).

All finite-dimensional osp(1|2)-modules are semisimple weight modules. The simple ones must have a unique
highest (and lowest) weight. Indeed, for each λ ∈ �≥0, there is a unique (up to isomorphism) (2λ + 1)-dimensional
simple osp(1|2)-module with highest weight λα and lowest weight −λα , for which the highest-weight vectors (and
thus also the lowest-weight vectors) are assigned even parity. We will denote this module by Aλ . It has weight
support {µα : µ ∈ �, |µ | ≤ λ}, with all weight spaces one-dimensional.

In addition, for each λ ∈ � \ �≥0, osp(1|2) has an infinite-dimensional simple highest-weight module B
+

λ ,
generated by an even highest-weight vector of weight λα , whose weight support is (λ − �≥0)α . Similarly, there is
also the simple lowest-weight module B

−

λ , for each λ ∈ � \�≤0. This module is generated by an even lowest-weight
vector of weight λα and its weight support is (λ + �≥0)α .
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The modules listed above, together with their parity reversals, exhaust the simple highest- and lowest-weight
modules of osp(1|2). The proof is elementary, following the same steps used to classify highest-weight sl (2)-
modules. Moreover, again as with sl (2), there is an additional infinite family of simple weight modules with no
highest nor lowest weights. However, a little care is needed here to characterise these in a meaningful way.

Recall from Section 2.1 the concrete construction of certain dense sl (2)-modules. For g = osp(1|2), the centre of
the universal enveloping superalgebra U(g) is still generated by a Casimir element

Q ′ =
1
2
h2 + e f + f e −

1
2
xy +

1
2
yx , (2.8)

which must therefore act as a scalar on any simple module, but the centraliser C(h,U(osp(1|2))) is not a polynomial
algebra in h and Q ′. For example, by rewriting the previous equation in the form

Q ′ =
1
2
h2 +

1
2
h − yx + 2(yx )2 − 2h(yx ), (2.9)

we see that yx cannot be expressed as a polynomial in these elements, though indeed (yx )h = h(yx ).
This motivates introducing the super-Casimir (or sCasimir) [71]

Σ = xy − yx +
1
2
∈ C(h,U(osp(1|2))). (2.10)

Though this element of U(g) is not central, it satisfies

[Σ, g(0)] = {Σ, g(1)} = 0, (2.11)

from which it follows that Σ is diagonalisable on a simple weight module, taking eigenvalues s and −s on the even
and odd subspaces, respectively, for some s ∈ �. We can now identify C(h,U(osp(1|2))) with the polynomial algebra
�[h, Σ]. In particular, we may write yx and Q ′ as polynomials in h and Σ as follows:

yx =
1
2

(
h − Σ +

1
2

)
, Q ′ =

1
2
Σ2 −

1
8
. (2.12)

We note that the eigenvalue of Σ is λ + 1
2 on a highest-weight vector of weight λα and −λ + 1

2 on a lowest-weight
vector of the same weight. As mentioned above, this eigenvalue is denoted by s if the highest-/lowest-weight vector
is even and −s if it is odd.

One can carry out an induction procedure analogous to that described by (2.4), giving weight g-modules W
′

λ,s

with bases
{w,xnw,ynw : n ∈ �>0}, (2.13)

where hw = λw and Σw = sw , for some λ, s ∈ �, assigning even parity to w . As in the ŝl (2) case, this is a dense
module: its weight support is λ + � and its weight spaces are one-dimensional.

W
′

λ,s is reducible if and only if it has either a highest- or a lowest-weight vector, thus if one of the basis elements
above is annihilated by either x or y. If s = µ + 1

2 , for some µ ∈ λ + 2� (so that the corresponding weight vector vµ
has even parity), then either vµ is a highest-weight vector or xvµ is a lowest-weight vector. Similarly, if s = −µ + 1

2 ,
for some µ ∈ λ + 2�, then either vµ is a lowest-weight vector or yvµ is a highest-weight vector.3 If neither constraint
is satisfied, that is if µ2 , (s − 1

2 )
2 for every µ ∈ λ+ 2�, thenW

′

λ,s is simple. In this instance, we can unambiguously
label these simple dense modules as CΛ,s , where Λ = λ + 2�, in analogy with the notation used for simple dense
sl (2)-modules. Clearly, CΛ,s has weight support (Λ + {0, 1})α and Σ acts as (−1) js on weight vectors whose weights
lie in (Λ + j )α . We also note the isomorphisms

CΛ,s � ΠCΛ+1,−s . (2.14)

This argument shows that the simple weight modules are classified in a manner entirely analogous to Theorem 1.
In particular we have:

3The analogous analysis in which vµ has odd parity leads to equivalent constraints on s .
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Theorem 2 (Classification of simple osp(1|2) weight modules). Every simple osp(1|2) weight module is isomorphic
to one of the following mutually non-isomorphic modules, or their parity reversals:

(i) Aλ with λ ∈ �≥0;
(ii) B

+

λ with λ ∈ � \ �≥0;
(iii) B

−

λ with λ ∈ � \ �≤0;
(iv) CΛ,s with s ∈ �, Λ ∈ �/2� and λ2 , (s − 1

2 )
2 for every λ ∈ Λ.

Proof. Let M be a simple weight module over osp(1|2) and suppose that w ∈ M is a vector of weight λα so that
hw = λw . If the even subspace of M is zero, then w is odd and both xw and yw vanish, so that M = �w � ΠA0.
Otherwise, without loss of generality, we may assume thatw is of even parity.

Simplicity implies that M = U(g)w and, in particular, that the weight space of weight λα is

M(λ) = C(h,U(osp(1|2)))w . (2.15)

Now, ifM(λ) had aC(h,U(osp(1|2)))-submodule, then this would generate a proper g-submodule ofM, contradicting
its simplicity. It therefore must be that M(λ) is a simple C(h,U(osp(1|2)))-module and, since C(h,U(osp(1|2))) is
abelian, M(λ) is thus one-dimensional. It follows that w is an eigenvector of Σ with, say, Σw = sw and, by the
Poincaré-Birkhoff-Witt theorem, M is spanned by

{w,xnw,ynw : n ∈ �>0}. (2.16)

By iterative application of the (anti)commutation relations (2.6), one can uniquely determine the action of any
element of g onM in terms of the parameters λ and s. If the spanning set (2.16) is linearly dependent, thenMmust be
highest- and/or lowest-weight and thus belongs to classes (i), (ii) or (iii), as discussed above. OtherwiseM � W

′

λ,s ,
so it belongs to class (iv).

Whilst all finite-dimensional osp(1|2)-modules are semisimple and can therefore be decomposed into a direct
sum of a finite number of the Aλ and ΠAλ , there are infinite-dimensional modules which are not. In particular, the
dense moduleW

′

λ,λ+1/2 is reducible, but indecomposable, and is characterised by the following non-split short exact
sequence:

0 −→ ΠB
−

λ+1 −→W
′

λ,λ+1/2 −→ B
+

λ −→ 0. (2.17a)

We shall denote this reducible moduleW
′

λ,λ+1/2 by C
−

Λ,s , whereΛ = λ+2� and s = λ+ 1
2 , to emphasise its denseness.

The superscript − refers to the existence of a lowest-weight submodule. Indeed, one similarly arrives at the non-split
short exact sequence

0 −→ ΠB
+

λ−1 −→W
′

λ,−λ+1/2 −→ B
−

λ −→ 0 (2.17b)

in an entirely analogous manner. We therefore denote W
′

λ,−λ+1/2 by C
+

Λ,s , where Λ = λ + 2�, s = −λ + 1
2 and the

superscript + indicates a highest-weight submodule.
It will turn out, in Section 4, that these reducible, but indecomposable, modules are the keys to the analysis of the

conformal field theory. We remark that if s ∈ �+ 1
2 \ { 1

2}, then the indecomposable structure of the induced module
W
′

λ,s is slightly more complicated that that discussed above. However, this case turns out not to be relevant for the
conformal field theory that we shall explore, hence it will not be considered any further. There are, in addition, many
other indecomposable dense osp(1|2)-modules beyond those discussed here which are likewise irrelevant to what
follows.

2.3. TheWeyl group. Although we have, in both Sections 2.1 and 2.2, treated the Weyl group W(h) associated with
a chosen Cartan subalgebra as the subgroup of GL(h∗) generated by (even) root reflections, it is possible (and useful)
to view it in a number of other ways. One equivalent definition (for any simple Lie superalgebra g with Cartan
subalgebra h) is

W(h) =
N(h)

Z(h)
, (2.18)
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where N(h) and Z(h) are the subgroups of the group Inn(g) of inner automorphisms of g given by

N(h) = {ϕ ∈ Inn(g) : ϕ (h) = h}, Z(h) = {ϕ ∈ Inn(g) : ϕ (x ) = x for all x ∈ h}. (2.19)

We recall that for a simple Lie superalgebra, the group of inner automorphisms is generated by exponentiating the
adjoint actions of the even subalgebra elements. Now, if the quotient (2.18) splits, so that

N(h) = Z(h) o W(h), (2.20)

then we may treat the Weyl group as a subgroup of Inn(g); in particular, one which preserves the choice of Cartan
subalgebra.

For example, for the Cartan subalgebra h of sl (2) used in Section 2.1, N(h) is the union of two disjoint subsets:
those maps taking h 7→ h and those taking h 7→ −h. The first is of course Z(h), so taking the quotient as in (2.18)
indeed gives a copy of the Weyl group �2. A choice of coset representatives are the identity map idg and the linear
involution defined by

h 7→ −h, e 7→ −f , f 7→ −e, (2.21)

demonstrating the splitting (2.20).
Now, for osp(1|2), with h as in Section 2.2, we again find that Z(h) is a normal subgroup of N(h) of index 2,

so that indeed the Weyl group is isomorphic to �2. However, this quotient no longer splits. We can see this by
again considering coset representatives. Here, we may choose these to be the identity map and the conjugation
automorphism w, which acts according to (2.21) on the even subalgebra and on odd elements as

wx = −y, wy = x . (2.22)

Note that w is not involutive, but rather squares to an element 1 ∈ Z(h) which acts as the identity on even elements
and minus the identity on odd ones. Indeed, no element of that coset squares to the identity, so unfortunately we
cannot here realise the Weyl group as a subgroup of Inn(g).

It is also useful to consider automorphisms of g as defining invertible functors on the categoryModg of g-modules.
Taking any φ ∈ Aut(g) and anyM ∈ Modg, let φ̃ : M→ φ̃M be an isomorphism of vector superspaces and let X ∈ g
act on φ̃ (m) ∈ φ̃M according to

Xφ̃ (m) = φ̃ (φ−1 (X )m). (2.23)

This gives φ̃M the structure of a g-module. We emphasise that φ̃M may or may not be isomorphic to M. The
assignment M 7→ φ̃M is called twisting by φ and indeed defines a functor on the category of g-modules (acting in
the obvious way on morphisms). The resulting homomorphism Aut(g) −→ Aut(Modg ) is then a strict Aut(g)-action
on Modg. These functors obviously commute with parity reversal: Πφ̃ = φ̃Π. For notational simplicity, we shall
drop the tildes that distinguish the automorphism from its induced functor in what follows.

Two notable properties of these twisting functors are that they preserve indecomposable structures and take weight
modules to weight modules, albeit with respect to possibly different Cartan subalgebras. Indeed, if M is a weight
module for h, then φ (h) is another Cartan subalgebra for which φM is a weight module. However, since all Cartan
subalgebras are related to one another by inner automorphisms, we are justified in restricting attention to φ ∈ N(h)

for a given h. Moreover, twisting by φ ∈ Z(h) takes (isomorphism classes of) weight modules to themselves, thus we
need only consider those twists defined (up to isomorphism) by the cosets in W(g). We have, in this way, obtained
an action of the Weyl group on the set of isomorphism classes of the objects of WModg, the category of weight
g-modules (with fixed Cartan subalgebra h). In general, one can also act with (equivalence classes of) those outer
automorphisms that preserve the chosen Cartan subalgebra. However, for sl (2) and osp(1|2), there are no such outer
automorphisms.

We illustrate this action of the Weyl group with the following two examples. If g = sl (2) and φ is the inner
automorphism defined in (2.21), then we have

φFλ � Fλ , φD
±

λ � D
∓

−λ , φEΛ,q � E−Λ,q . (2.24a)
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Similarly, for osp(1|2) we have

wAλ � Aλ , wB
±

λ � B
∓

−λ , wCΛ,s � C−Λ,s . (2.24b)

Note that in these examples, the induced action on the weight support of the module is precisely that of the
corresponding Weyl reflection. This generalises, with the twisting functor corresponding to a Weyl group element
acting on a module’s weight support via its standard linear action on the dual Cartan subalgebra.

We remark that it is possible to lift the action of the Weyl group from isomorphism classes of weight modules
to the category WModg. This is trivial for g = sl (2), because of (2.21), but not for g = osp(1|2) as w2 , 1.
In the latter case, we instead have natural isomorphisms ηM : w2

M → M, for each weight module M, given by
ηM

(
w2 (m)

)
= (−1) |m |m, for all homogeneous elements m ∈ M. Here, |m | ∈ {0, 1} denotes the parity of m. It

is now easy to check that these natural isomorphisms, along with the identity, satisfy the associativity constraints
required to give WModosp(1 |2) a Weyl group action. However, this action is not essential for much of the analysis to
follow because we will be chiefly concerned with identifying weight modules up to isomorphism.

3. The affine Kac-Moody superalgebra ôsp(1|2)

We now turn to the affinisation ôsp(1|2) in its Neveu-Schwarz and Ramond guises as well as the associated
vertex operator superalgebras. Verma modules and their generalisations, the relaxed Verma modules, are introduced
along with their simple quotients. The conjugation and spectral flow automorphisms are used to twist the latter
and thereby construct a large collection of simple smooth weight modules over ôsp(1|2), almost none of which are
positive-energy. We recall that a module being smooth means that for all j ∈ osp(1|2) and v in the module, jm · v
vanishes form sufficiently large (see below for notation).

3.1. The affine algebra. The affineKac-Moody superalgebra ôsp(1|2)may be defined, as a vector space, by choosing
a basis. The standard choice is

{hm , em , fm : m ∈ �} ∪ {xm ,ym : m ∈ � + ξ} ∪ {K ,L0}, (3.1)

where ξ is either 0 or 1
2 , giving what we will call the Neveu-Schwarz and Ramond ôsp(1|2) algebras, ĝNS and

ĝR, respectively. As we will demonstrate later, these two choices of indexing give isomorphic algebras, hence we
will generally suppress the subscripts and just write ĝ = ôsp(1|2). However, many of the representation-theoretic
constructions that we shall consider depend on this choice. In particular, the representation theory splits into two
sectors according to which algebra, Neveu-Schwarz or Ramond, is acting on the module. The modules on which ĝNS

acts constitute the Neveu-Schwarz sector and the ĝR-modules constitute the Ramond sector.
In both cases, the even subalgebra is defined to be spanned by the hm , em and fm , as well as K and L0. The

xm and ym are declared to be odd. Letting j, j ′ ∈ {h, e, f ,x ,y} denote arbitrary basis vectors of osp(1|2), the
(anti)commutation relations of the affine basis vectors (3.1) take the form

[jm , j ′n] = [j, j ′]m+n +mκ (j, j ′)δm+n,0K if j or j ′ is even,

{jm , j ′n} = {j, j ′}m+n +mκ (j, j ′)δm+n,0K if j and j ′ are odd,
[L0, j

′
n] = −nj ′n (3.2)

and K is central. We recall that the (anti)commutators of the basis elements of osp(1|2) were given in (2.1) and (2.6),
while the non-zero values taken by the (normalised) Killing form were listed in (2.2) and (2.7).

Note that the Neveu-Schwarz algebra ĝNS has a finite-dimensional subalgebra spanned by {h0, e0, f0,x0,y0},
isomorphic to osp(1|2). This is the horizontal subalgebra of ĝNS. The inclusion allows us to carry much of the
representation-theoretic data we have for osp(1|2) over to ôsp(1|2). The horizontal subalgebra of the Ramond algebra
ĝR is defined instead to be spanned by {h0, e0, f0} (because odd elements do not have zero modes in ĝR), hence it is
isomorphic to sl (2). Our study of the Ramond sector will therefore be closely related to sl (2) representation theory.

The Cartan subalgebra ĥ of both ĝNS and ĝR is defined to be the abelian subalgebra spanned by h0, K and L0. With
respect to ĥ, these algebras have root systems

{±2α + nδ : n ∈ �} ∪ {±α + nδ : n ∈ � + ξ} ∪ {nδ : n ∈ �,0}, (3.3)
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where the roots α ,δ ∈ ĥ∗ are defined by

α (h0) = 1, α (K ) = α (L0) = 0,

δ (h0) = δ (K ) = 0, δ (L0) = −1.
(3.4)

The positive roots are taken to be those in (3.3) with n > 0, along with α and 2α . The simple roots are then
{α ,−2α +δ} in the Neveu-Schwarz case and {2α ,−α + 1

2δ} in the Ramond case. These choices of simple roots give
rise to identical generating reflections for the Weyl group.

3.2. Generalised Verma modules and vertex operator superalgebras. Given the choice of positive roots above,
we obtain triangular decompositions for ĝ = ĝNS and ĝR:

ĝ = ĝ− ⊕ ĥ ⊕ ĝ+. (3.5)

Here, ĝ+ and ĝ− denote the subalgebras of ĝ spanned by the positive and negative root vectors, respectively. For
example, ĝ+NS is spanned by x0, e0 and all the jm , j = e,x ,h,y, f , withm ∈ �>0. Associated with each decomposition
is the Borel subalgebra b̂ = ĥ ⊕ ĝ+.

We define a weight space of an ôsp(1|2)-module to be a simultaneous eigenspace of h0 and K that is also
a generalised eigenspace of L0. We then define a weight module over ôsp(1|2) to be a �2-graded module that
decomposes (as a vector space) into a direct sum of finite-dimensional weight spaces. Note that although L0 is
permitted to act non-semisimply on a weight module, its Jordan blocks will have finite rank.

Consider now a one-dimensional b̂-module spanned by some v , 0 on which ĝ+ acts trivially and ĥ acts via

h0v = λv, Kv = kv, L0v = ∆v, (3.6)

for some k, λ,∆ ∈ �. We call k the level, λα the osp(1|2)-weight, and ∆ the conformal weight ofv. We then promote
this b̂-module to a ĝ-module via induction:

V
NS/R
k,λ = Ind̂g

b̂
�v, (3.7)

which we call a Verma module of (Neveu-Schwarz or Ramond, as indicated by the superscript) ôsp(1|2). Note, in
particular, that L0 acts diagonalisably on bothmodules. Moreover, they are clearly highest-weight modules, generated
by the highest-weight vectorv, whose weight spaces all have finite dimension. As usual, any highest-weight ĝ-module
can be written as a quotient of the Verma module of the same highest weight.

Let Ωk denote the highest-weight vector generating the Neveu-Schwarz Verma module VNS
k,0. The vector y0Ωk is

always singular in this module and it generates a proper Verma submodule. If the level k is non-critical, meaning that
k , −h∨ = − 3

2 , quotienting by this submodule gives a highest-weight module that carries the structure of a vertex
operator superalgebra, called the level k universal vertex operator superalgebra of ôsp(1|2) (the conformal structure
will be given in (3.10) below). We shall denote it by ôsp(1|2)k . For generic values of k, this proper submodule is
the unique maximal submodule, hence ôsp(1|2)k is simple as a vertex operator superalgebra.

The algebraic structure of the universal vertex operator superalgebra ôsp(1|2)k is completely determined by the
operator product expansions of the generating fields h(z), e (z), f (z), x (z) and y (z):

j (z) =
∑

n∈�+ξ

jnz
−n−1 (j = h, e, f ,x ,y). (3.8)

The operator product expansions themselves have the form

j (z)j ′(w ) ∼
κ (j, j ′)k

(z −w )2
+

[j, j ′](w )

z −w
(j, j ′ = h, e, f ,x ,y) (3.9)

and these are equivalent to the (anti)commutation relations (3.2). We remark that the vertex operator superalgebra
ôsp(1|2)k is universal in the sense that any vertex operator superalgebra whose fields are normally ordered products
of derivatives of generating fields satisfying these operator product expansions is a quotient of ôsp(1|2)k . This
follows immediately from the universality of Verma modules and the state-field correspondence of vertex algebras.
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The conformal structure of the vertex operator superalgebra ôsp(1|2)k is defined by the Sugawara construction.
Explicitly, the energy-momentum tensor is

T (z) =
∑
n∈�

Lnz
−n−2 =

1
2t

[
1
2

:h(z)h(z): + :e (z) f (z): + :f (z)e (z): −
1
2

:x (z)y (z): +
1
2

:y (z)x (z):
]
, (3.10)

where t = k +h∨ = k + 3
2 , and the generating fields are all weight 1 conformal primaries with respect to this structure.

The Virasoro modes Ln are thus expressed as infinite sums of normally ordered products of modes in (an appropriate
completion of) the universal enveloping algebra U (̂g). Note that we need not specify a completion, as for smooth
modules the action of each infinite sum truncates to a finite one.

Proposition 3 (The Sugawara Construction). In any smooth representation of ôsp(1|2) on which K acts as multipli-
cation by k ∈ � \ {− 3

2}, the operators
Lm =

1
2t

(
1
2

:hh: m + :e f : m + :f e: m −
1
2

:xy: m +
1
2

:yx : m
)

(3.11)

furnish a representation of the Virasoro algebra of central charge

c = 1 −
3
2t
=
k

t
(t = k +

3
2
). (3.12)

For the bosonic modes, normally-ordered products are defined by the usual formula

:AB: n =
∑
m≤−1

AmBn−m +
∑
m>−1

Bn−mAm (A,B = h, e, f ). (3.13a)

However, for the fermionic fields x (z) and y (z), there is some subtlety in defining normal-ordering, depending on
whether we are considering the Neveu-Schwarz or Ramond sector of the conformal field theory. The definition
follows from considering the generalised commutation relations:∑

r<0
xa+ryb−r −

∑
r ≥0

yb−rxa+r = +a(a − 1)δa+b,0K + aha+b + :xy: a+b ,∑
r<0

ya+rxb−r −
∑
r ≥0

xb−rya+r = −a(a − 1)δa+b,0K + aha+b + :yx : a+b ,
(3.13b)

which hold for all a,b ∈ � + ξ . In both sectors, the normally-ordered fields :xy: and :yx : have integer-indexed
modes (they are bosonic). Of course, there are also many other normally-ordered products involving x or y; for the
calculations below those given here are sufficient.

Note that the Virasoro mode L0 obtained from the Sugawara construction obeys the same commutation relations
as the ôsp(1|2) basis element of the same symbol. It is standard to identify these by restricting attention to modules
on which they act as the same endomorphism. Depending on whether we are considering Verma modules over the
Neveu-Schwarz or Ramond ôsp(1|2) algebra, this identification leads to

∆ =
λ(λ + 1)

4t
or ∆ =

1
2t

(
λ(λ + 2)

2
−
k

4

)
, (3.14)

respectively.
Of course, there are levels for which the universal vertex operator superalgebra ôsp(1|2)k is not simple. By

studying embedding diagrams, or Shapovalov-type forms on ôsp(1|2)k , one deduces that this happens precisely for
the (non-critical) levels satisfying the following condition [72]:

2t = 2
(
k +

3
2

)
=
u

v
(u ∈ �≥2, v ∈ �≥1, u −v ∈ 2� and gcd

{
u,

u −v

2

}
= 1). (3.15)

For these levels, called the admissible levels, ôsp(1|2)k has a maximal proper ideal generated by a single singular
vector χk . The simple quotient vertex operator superalgebra is the level k minimal model of ôsp(1|2), which we
denote by B0 |1 (u,v ).



12 J SNADDEN, D RIDOUT, AND S WOOD

The construction of affine Verma modules via induction of b̂-modules generalises so that one can induce from an
arbitrary module over the horizontal subalgebra. For this, we replace (3.5) by

ĝ = n̂ ⊕ ẑ ⊕ p̂, (3.16)

where n̂ and p̂ are the subalgebras spanned by the modes with negative and positive indices, respectively, and ẑ is the
subalgebra spanned by K and the modes with index 0 (the zero modes). Any module over the horizontal subalgebra
may be extended to a ẑ-module by requiring that K act as k times the identity, then to a ẑ ⊕ p̂-module by letting p̂
act as 0. If the module for the horizontal subalgebra is simple, then the result of inducing this ẑ ⊕ p̂-module to a
ĝ-module is called a generalised Verma module.

When the simplemodule is aVermamodule for the horizontal subalgebra, then the result of the induction described
above is just a Verma module for ĝ. When the simple module is the trivial module, then the generalised Verma
module may be identified as the ĝ-module underlying the universal vertex operator superalgebra ôsp(1|2)k . However,
there are many other possibilities for the initial simple module (see Theorem 2). We remark that generalised Verma
modules are examples of relaxed highest-weight modules [16], these being modules generated by a single weight
vector, called a relaxed highest-weight vector, that is annihilated by p̂. They are also examples of positive-energy
modules, these being weight modules for which the conformal weights are bounded from below.

In contrast to highest-weight modules, the conformal weight ∆ of a relaxed highest-weight vector is not necessarily
determined by the weight but rather by the eigenvalue s of the super-Casimir Σ, in the Neveu-Schwarz sector, and by
the eigenvalue q of the sl (2) Casimir Q , in the Ramond sector. The respective formulae are

∆ =
s2 − 1/4

4t
and ∆ =

q − k/4
2t

. (3.17)

3.3. Simple weightmodules. In what follows, we shall be chiefly interested, not in these generalisedVermamodules
over ôsp(1|2), but rather in their simple quotients. Our notation for these follows that used for the simple modules
of sl (2) and osp(1|2) in Theorems 1 and 2. More specifically, the simple quotients of the level k Neveu-Schwarz
generalised Verma modules induced from the simple osp(1|2)-modules Aλ , B

±

λ and CΛ,s will be denoted by Aλ , B±λ
and CΛ,s , respectively. Similarly, the simple quotients of the level k Ramond generalised Verma modules induced
from the simple sl (2)-modules Fλ , D

±

λ and EΛ,q will be denoted by Fλ , D±λ and EΛ,q , respectively. In all cases, the
level dependence will be implicit.

We shall also need to consider quotients of the Neveu-Schwarz ôsp(1|2)-modules that are induced from the
reducible, but indecomposable, osp(1|2)-modules C

±

Λ,s and the Ramond ôsp(1|2)-modules that are induced from the
reducible, but indecomposable, sl (2)-modules E

±

Λ,q . Specifically, we want the quotient by the (unique) maximal
submodule whose intersection with the subspace of vectors of minimal conformal weight is zero. We denote these
quotients by C±Λ,s , in the Neveu-Schwarz sector, and by E

±
Λ,q , in the Ramond sector. Their structures are determined,

up to isomorphism, by the following non-split short exact sequences (see (2.3) and (2.17)):4

0 −→ ΠB+λ−1 −→ C+λ+2�,−λ+1/2 −→ B−λ −→ 0, 0 −→ D+λ−2 −→ E+λ+2�,λ (λ−2)/2 −→ D−λ −→ 0,

0 −→ ΠB−λ+1 −→ C−λ+2�,+λ+1/2 −→ B+λ −→ 0, 0 −→ D−λ+2 −→ E−λ+2�,λ (λ+2)/2 −→ D+λ −→ 0.
(3.18)

In Section 5.1, we will compute the characters of (some of) these quotients. We shall focus initially on genuine
Vermamodules, for which this computation may be performed by constructing a resolution, in the sense of Bernšteı̆n-
Gel’fand-Gel’fand [74], of the simple quotient in terms of (direct sums of) Verma modules. Such a resolution was
constructed for the simple quotients of Neveu-Schwarz Verma modules over ôsp(1|2) by Iohara and Koga in [60].
For the simple quotient of a Neveu-Schwarz Verma module VNS, each Verma module that appears in the resolution
is generated by a singular vector of VNS. The fact that a singular vector generates a Verma submodule of VNS follows
from the fact that the universal enveloping algebra of ôsp(1|2) has no zero divisors [75].

The computation of the character of the simple quotient of a Neveu-Schwarz Verma moduleVNS therefore reduces
to the identification of its singular vectors. This is achieved by means of the Shapovalov form: an invariant bilinear

4 This is actually non-trivial to prove rigorously and we shall not do so here, instead referring to [73] for the details.
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Figure 1. Submodule inclusions in the k = − 5
4 Verma modules VNS

−5/4,0 (left) and VNS
−5/4,−1/2

(right). Each vertex indicates a singular vector generating a Verma submodule. The pairs (λ,∆)
attached to each vertex give the osp(1|2)-weight λ and conformal weight ∆ of the corresponding
singular vector.

form (·, ·) on VNS. We will not go here into the details of how it is defined, instead being content to simply state
and use some of its properties. If u,w ∈ VNS are weight vectors of distinct weights, then (u,w ) vanishes, so we may
separately consider the restriction of this to a form Fµ on each weight space VNS (µ ), µ ∈ ĥ∗. For singular vectors
u ∈ VNS (µ ) and their descendant vectors, the linear functional Fµ (u, ·) identically vanishes.

As we will show in Section 3.4, it is possible to relate Ramond Verma modules to Neveu-Schwarz ones in such a
way that all information concerning their submodule structure carries over. We therefore need only look for singular
vectors in the Neveu-Schwarz Verma modules, aided by the following formula.

Theorem 4 (Kac-Kazhdan Determinant Formula [50, 76]). Let Λ ∈ ĥ∗ denote the highest weight of the Neveu-
Schwarz Verma module VNS

k,λ over ôsp(1|2). Then, for any non-negative integer linear combination η of simple roots,
the determinant of the Shapovalov form restricted to the weight space VNS

k,λ (Λ − η) is given by

det
(
FΛ−η

)
=

∞∏
`=1




(
λ + 1 − `

2

)P (η−(2`−1)α ) ∞∏
n=1

[
(t (2n − 1))P (η−`(2n−1)δ )

·

(
λ + 1 + 2nt − `

2

)P (η−(2`−1) (α+nδ )) (
−λ + 2nt − `

2

)P (η−(2`−1) (−α+nδ ))

·

(
λ +

1
2
+ t (2n − 1) − `

)P (η−`(2α+(2n−1)δ )) (
−λ −

1
2
+ t (2n − 1) − `

)P (η−`(−2α+(2n−1)δ ))] 

, (3.19)

where P (µ ) is the number of ways that µ ∈ ĥ∗ can be written as a linear combination µ =
∑
nβ β of positive roots,

with coefficients nβ ∈ {0, 1} if 2β is itself a positive root and coefficients nβ ∈ �≥0 otherwise.

When det
(
FΛ−η

)
= 0, for some non-negative integer linear combination of positive roots η, the weight space

VNS
k,λ (Λ − η) contains an element of some proper submodule of VNS

k,λ . If the vanishing factor of (3.19) has an exponent
where the argument of P also vanishes, then the weight space contains a singular vector. Unfortunately, we do not
obtain all singular vectors of VNS

k,λ from such vanishing factors and instead obtain the rest by analysing the Kac-
Kazhdan determinant where the highest weight Λ is that of one of the singular vectors that we have already identified
(here it is important that the universal enveloping algebra of ôsp(1|2) has no zero divisors). We illustrate this
determination of singular vectors by depicting the corresponding submodule inclusions (also known as embedding
diagrams) of two k = − 5

4 Verma modules in Figure 1.
Unfortunately, an analogous determinant formula for generalised highest-weight modules over ôsp(1|2) does not

appear to have been considered in the literature, though there is some work pertaining to ŝl (2), for instance [77].
In the absence of structural data, we shall have to resort to indirect means to compute the characters of the simple
quotients of the generalised Verma modules (see Section 5.2).

3.4. Automorphisms. The Weyl group of an affine Kac-Moody superalgebra, defined as the subgroup of GL (̂h)
generated by the reflections about the hyperplanes orthogonal to the even roots, has a relatively simple structure which
can be understood in terms of data arising from its horizontal subalgebra, despite having infinite order. Abstractly,
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if W is the Weyl group of the horizontal subalgebra g, then the Weyl group Ŵ of the full affine superalgebra ĝ
decomposes as

Ŵ � W n Q∨0 , (3.20)

where Q∨0 is the coroot lattice of the even subalgebra g(0): the �-span of the coroots α∨j for any choice of simple
roots {α j} of g(0) . The semidirect product structure is defined by the standard linear action of W on this lattice, as a
subset of h.

In the case of osp(1|2), the (lone) simple coroot of the even subalgebra is (2α )∨, giving Q∨0 � �, with the Weyl
group W � �2 acting by inversion on this lattice. The Weyl group Ŵ of ôsp(1|2) is thus isomorphic to the non-trivial
semidirect product of �2 with �: the infinite dihedral group.

For both the Neveu-Schwarz and Ramond algebras, we define the conjugation automorphism w by

wen = −fn ,

wxn = −yn ,

whn = −hn ,

wK = K ,

wL0 = L0,

wfn = −en ,

wyn = xn ,
(3.21a)

where we note that the restriction to the horizontal subalgebra gives precisely the conjugation automorphism w of
osp(1|2), as defined in Section 2.3. Similarly, the spectral flow automorphism σ is defined by

σen = en−2,

σxn = xn−1,

σhn = hn − 2δn,0K ,

σK = K ,

σL0 = L0 − h0 + K ,

σ fn = fn+2,

σyn = yn+1.
(3.21b)

When we need to distinguish the algebra on which the automorphism is acting, we shall furnish it with a subscript,
as in wNS or wR. In addition, we define isomorphisms τ : ĝNS → ĝR and τ ′ : ĝR → ĝNS between the Neveu-Schwarz
and Ramond algebras, both of which act on the basis elements according to

en 7−→ en−1,

xn 7−→ xn−1/2,

hn 7−→ hn − δn,0K ,

K 7−→ K ,

L0 7−→ L0 −
1
2h0 +

1
4K ,

fn 7−→ fn+1,

yn 7−→ yn+1/2
(3.21c)

(the indices n are constrained to range over the appropriate domains for ĝNS and ĝR). It is not hard to see that
τ ′ ◦ τ = σNS and τ ◦ τ ′ = σR. As such, we will from here on denote both τ and τ ′ by σ 1/2, using a subscript to
distinguish (where necessary) which algebra is being acted upon.

Note that the automorphisms w and σ both preserve the Cartan subalgebra ĥ and that their restrictions to ĥ generate
the Weyl group Ŵ ⊆ GL (̂h). However, the automorphisms themselves satisfy w2 = (wσ )2 = 1 and therefore generate
a group isomorphic to �4 n �. As with osp(1|2), we cannot realise the Weyl group Ŵ as a subgroup of the inner
automorphisms of ôsp(1|2).

Nevertheless, just as we did in Section 2.3, we may promote both w and σ to functors on the module category of
either the Neveu-Schwarz or Ramond algebra. In fact, since σ is of infinite order, we get a functor σn for each n ∈ �.
We shall refer to the images of a module M under w and σn as the conjugate and spectral flow of M, respectively.
As in Section 2.3, it is clear that these functors commute with parity reversal. They moreover satisfy

wwM � M, σmσnM � σm+nM and wσnM � σ−nwM, (3.22)

for allm,n ∈ �, so we have indeed constructed a strict Ŵ-action on the set of ôsp(1|2)-module isomorphism classes.
As in Section 2.3, this action can be lifted to the category of weight ôsp(1|2)-modules. We may also carry this out
for the isomorphisms σ 1/2, constructing functors between the two categories. These satisfy

σ 1/2σ 1/2M � σM, (3.23)

so in fact we have spectral flow functors σn for each n ∈ 1
2�. The isomorphisms of (3.22) also hold form,n ∈ 1

2�.
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Because the functors w and σn , n ∈ 1
2�, are obviously invertible, they define equivalences between the corre-

sponding module categories. As a consequence, they preserve structure (submodules, quotients, Loewy diagrams,
and so on). These functors turn out to be incredibly useful in analysing the representation theory of ôsp(1|2) and
its associated vertex operator superalgebras. As an example, we remark that the claim made in Section 3.3 — that
the structures of the Ramond Verma modules may be deduced from those of the Neveu-Schwarz Verma modules —
now follows immediately from the identifications

VR
k,λ � wσ−1/2VNS

k,k−λ . (3.24)

Proving (3.24) is straightforward but illustrative. First, VNS
k,k−λ is generated by a highest-weight vector v of osp(1|2)-

weight (k − λ)α , so wσ−1/2VNS
k,k−λ is generated by wσ−1/2 (v ) (by the invertibility of the functors). Second, the

osp(1|2)-weight of wσ−1/2 (v ) is λα :

h0wσ−1/2 (v ) = wσ−1/2 (σ 1/2w(h0)v ) = wσ−1/2
(
(−h0 + K )v

)
= λwσ−1/2 (v ). (3.25)

Third, wσ−1/2 (v ) is a highest-weight vector (in the Ramond sector):

e0wσ−1/2 (v ) = wσ−1/2 (σ 1/2w(e0)v ) = wσ−1/2 (−f1v ) = 0,

y1/2wσ−1/2 (v ) = wσ−1/2 (σ 1/2w(y1/2)v ) = wσ−1/2 (x0v ) = 0.
(3.26)

Finally, VNS
k,k−λ is freely generated as a U (̂g−NS)-module so wσ−1/2VNS

k,k−λ is freely generated as a U (̂g−R)-module
(wσ−1/2 maps ĝ−NS onto ĝ−R). This completes the proof.

It is important to note that the conjugation and spectral flow automorphisms of Section 3.4 obviously extend to
automorphisms of the universal enveloping algebra of ôsp(1|2) and thereby define automorphisms of the (universal)
vertex superalgebra obtained from ôsp(1|2)k by forgetting the conformal structure. Twisting by conjugation or
spectral flow therefore preserves the property of being a module of this vertex superalgebra.5 In fact, these twists
also preserve the property of being a module of the vertex operator superalgebra. The only difference is that the
spectral flow images of certain modules may now be distinguished from the original modules because spectral flow
does not preserve the conformal structure (3.10), hence the conformal weights will change in general. In particular,
this is the case for the vacuum module which is the vertex operator superalgebra regarded as a module over itself.

Finally, note that because automorphisms necessarily preserve the maximal proper ideal of ôsp(1|2)k , regarded
as a vertex superalgebra, the arguments of the previous paragraph also apply to the minimal model vertex operator
superalgebras B0 |1 (u,v ). In particular, the category of B0 |1 (u,v )-modules is closed under twisting by conjugation
and spectral flow.

Proposition 5.

(i) If M is an ôsp(1|2)k module, then its twists by spectral flow and conjugation, σnM and wM respectively, are
also ôsp(1|2)k modules.

(ii) If M is an B0 |1 (u,v ) module, then its twists by spectral flow and conjugation, σnM and wM respectively, are
also B0 |1 (u,v ) modules.

4. The affine minimal model B0 |1 (2, 4): Modules

Proposition 5 is noteworthy because the spectral flows of a given positive-energy module M will not (usually)
be positive-energy for almost all n. It follows that the appropriate category of B0 |1 (u,v )-modules for constructing a
consistent conformal field theory is not likely to be a subcategory of the category of positive-energy weight modules.
Consequently, much of the representation theory of these vertex operator superalgebras cannot be detected directly
by Zhu’s algebra. Nevertheless, it appears [24,25,27,35] that combining positive-energy classifications with spectral
flow does lead to module categories that satisfy key consistency requirements, modular invariance for example.

5 We remark that our working definition of module of a vertex superalgebra follows that given by Frenkel and Ben-Zvi [78, Ch. 5.1], adding the
requirement to be �2-graded by parity (as in Section 2.2). In particular, a module over the level-k universal vertex superalgebra associated to
osp(1 |2) is just a smooth �2-graded level-k ôsp(1 |2)-module.
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We shall therefore proceed with the classification of simple positive-energy B0 |1 (u,v )-modules using Zhu tech-
nology, specialising to k = − 5

4 (u = 2, v = 4). The central charge of this minimal model is c = −5. We begin
by reviewing the theory of (twisted) Zhu algebras, emphasising their realisations in terms of zero modes of vertex
operator superalgebra elements.

4.1. Zhu’s algebra. The associative algebras now known as Zhu algebras [79] form an invaluable formalism for
classifying positive-energy modules over vertex operator superalgebras. Essentially, the Zhu algebra of a vertex
operator superalgebra is the associative unital algebra of zero modes (of all fields) restricted to only act on ground
states, these being vectors that are annihilated by all positive field modes (we will make this precise below). The
relaxed highest-weight vectors of Section 3.2 are salient examples of ground states. Zhu’s formalism then guarantees
that any moduleM over Zhu’s algebra can be induced to a vertex operator superalgebra moduleM, containingM in
its space of ground states. Further, if M is simple, then the space of ground states of the unique simple quotient of
M is precisely M. So simple positive-energy modules are classified by first classifying simple modules over Zhu’s
algebra and then taking the simple quotients of their inductions.

The Zhu algebra Zhu[V] for untwisted modules over a vertex operator superalgebra V was first studied in [80],
while the Zhu algebra Zhuτ [V] for modules twisted by a finite order automorphism τ was introduced in [81]. In the
case at hand, the untwisted modules form the Neveu-Schwarz sector and the Ramond sector corresponds to modules
twisted by the parity automorphism. We refer to [65, App. A] for an introduction to Zhu’s algebras for general vertex
operator superalgebras, in both the twisted and untwisted cases. This introduction emphasises the fact that Zhu’s
algebra is nothing but an abstraction of the algebra of zero modes acting on ground states.

With this fact in mind, the most straightforward way to define the untwisted Zhu algebra for affine vertex operator
superalgebras is as follows. Let Uk (ôsp(1|2)) denote the quotient of U(ôsp(1|2)) by the ideal generated byK −k1 and
let Uk (ôsp(1|2))0 be its conformal weight zero subalgebra (the centraliser of L0 in Uk (ôsp(1|2))). Then, there is a
projection π0 : Uk (ôsp(1|2))0 → U(osp(1|2)) whose kernel is spanned by the Poincaré-Birkhoff-Witt basis elements,
ordered by increasing mode index, that involve modes with non-zero indices (we identify zero modes with elements
of osp(1|2)). The untwisted Zhu algebra Zhu

[
ôsp(1|2)k

]
is then the image of the map

v ∈ ôsp(1|2)k 7−→ [v] = π0 (v0), (4.1)

where v0 is the zero mode of the field6 corresponding to v (and π0 has been extended to an appropriate completion
of Uk (ôsp(1|2))0). Zhu’s associative product ∗ is then given by

[u] ∗ [v] = π0 (u0v0). (4.2)

The equivalence of this definition with Zhu’s original one, in the case of affine vertex operator superalgebras,
follows from noting that π0 merely implements the constraint that the zero modes act on ground states. We refer
to [65, App. A] for further information.

The twisted Zhu algebra Zhuτ
[
ôsp(1|2)k

]
and its associative product are defined in almost precisely the same

manner using the same formulae. We shall distinguish the twisted image of an element v from its untwisted cousin
[v] by a superscript: [v]τ ∈ Zhuτ

[
ôsp(1|2)k

]
. The main difference is that we must restrict the defining map to the

bosonic orbifold of ôsp(1|2)k (the subalgebra of even elements) because the odd elements have no zero mode when
acting in the Ramond sector.

The following proposition was proved in [82] for affine Kac-Moody algebras and in [80] for the untwisted Zhu
algebras of affine Kac-Moody superalgebras. We are not aware of a source that proves the twisted Zhu algebra result
in the latter case though it is surely very well known.

Proposition 6. The untwisted and twisted Zhu algebras of ôsp(1|2)k are

Zhu
[
ôsp(1|2)k

]
= U(osp(1|2)), Zhuτ

[
ôsp(1|2)k

]
= U(sl (2)). (4.3)

6For v of definite conformal weight ∆v , we assume a mode expansion for the corresponding field of the form v (z ) =
∑
n vnz−n−∆v .
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Proof. By construction, Zhu
[
ôsp(1|2)k

]
lies in U(osp(1|2)). However, it is easy to check that any monomial

j1 · · · jn ∈ U(osp(1|2)) can be realised, up to a sign coming from parities, as the image in Zhu
[
ôsp(1|2)k

]
of an

element of ôsp(1|2)k , namely jn
−1 · · · j

1
−1Ωk (here, Ωk denotes the vacuum vector of ôsp(1|2)k ). This demonstrates

equality as vector spaces. To show equality as associative algebras, we only need show that the Zhu elements
j ≡ j0 = π0 (j0) = [j−1Ωk ], j = h, e, f ,x ,y, satisfy the same commutation rules with respect to ∗ as they do in
U(osp(1|2)). This is, of course, exactly how ∗ is defined:

j1 ∗ j2 − (−1) |j
1 | |j2 | j2 ∗ j1 = π0 (j

1
0 j

2
0 ) − (−1) |j

1 | |j2 |π0 (j
2
0 j

1
0 ) = π0 ([j10, j

2
0]) = π0 ([j1, j2]0) = [j1, j2]. (4.4)

We recall that |j | ∈ {0, 1} denotes the parity of j.
The argument identifying Zhuτ

[
ôsp(1|2)k

]
is practically identical once one has shown that it lies in U(sl (2)). All

that we can conclude at present is that Zhuτ
[
ôsp(1|2)k

]
lies in the even subalgebra of U(osp(1|2)) (which strictly

contains U(sl (2))). To show that it indeed lies in U(sl (2)), consider an even element u ∈ ôsp(1|2)k . Choosing a
Poincaré-Birkhoff-Witt ordering in which odd modes appear to the right of even modes (and are then ordered by
increasing index), u is expressed as a linear combination of monomials · · · j1

−m−1j
2
−n−1Ωk , where either the modes

appearing are all even or both j1
−m−1 and j2

−n−1 are odd withm,n ∈ �≥0.
Consider the image of each such monomial in the twisted Zhu algebra. If j1

−m−1 and j2
−n−1 are both odd, then we

apply the following identity (obtained by applying π0 to [65, Eq. (A.2)] with k =m + 1, n =m − 1
2 ):

[
· · · j1−m−1j

2
−n−1Ωk

]τ
= −

∞∑
`=0

(
1/2
` + 1

) [
· · · j1

−m+` j
2
−n−1Ωk

]τ
, m ∈ �≥0. (4.5)

Inductively, the index r of j1 can then be made non-negative at which point we note that

j1r j
2
−n−1Ωk = {j1r , j2−n−1}Ωk , r ≥ 0, (4.6)

replaces the two odd modes by an even one (and perhaps a constant). We conclude that a monomial with a pair of odd
modes is equivalent, in Zhuτ

[
ôsp(1|2)k

]
, to a linear combination ofmonomials inwhich these oddmodes are replaced

by an even mode. By performing this replacement for all odd modes, it follows as before that Zhuτ
[
ôsp(1|2)k

]
lies

in U(sl (2)). The rest of the argument is identical to the untwisted case.

For a given admissible level k, recall that χk denotes the singular vector that generates the (unique) maximal
proper ideal of ôsp(1|2)k by which one quotients in order to obtain the minimal model vertex operator superalgebra
B0 |1 (u,v ). By the Kac-Kazhdan formula of Theorem 4, one can determine that the conformal weight and osp(1|2)-
weight of χk are 1

2 (u − 1)v and (u − 1)α , respectively. Define ϕk = yu−1
0 χk and note that this descendant of χk has

osp(1|2)-weight 0.

Proposition 7. The untwisted and twisted Zhu algebras of B0 |1 (u,v ) are

Zhu
[
B0 |1 (u,v )

]
�

U(osp(1|2))〈[
ϕk

]〉 , Zhuτ
[
B0 |1 (u,v )

]
�

U(sl (2))〈[
ϕk

]τ 〉 , (4.7)

where
〈[
ϕk

]〉
and

〈[
ϕk

]τ 〉 are the two-sided ideals generated by the images of ϕk in Zhu
[
ôsp(1|2)k

]
� U(osp(1|2))

and Zhuτ
[
ôsp(1|2)k

]
� U(sl (2)), respectively.

Proof. Note that while ϕk is a zero mode descendant of χk , the converse is also true: χk is a zero mode descendant
of ϕk . This follows either by explicitly evaluating xu−1

0 ϕk or by noting that finite-dimensional osp(1|2) modules are
semisimple and that the space of vectors in ôsp(1|2)k of conformal weight 1

2 (u − 1)v is finite-dimensional. Thus,
every vector in the maximal proper ideal of ôsp(1|2)k is a descendant of ϕk by non-positive modes.

We have to show that the image of the maximal proper ideal in Zhu’s algebra is generated by the image of ϕk .
To this end, let j and v be homogeneous vectors in ôsp(1|2)k and suppose that j has conformal weight 1. In the
Neveu-Schwarz sector, the corresponding fields j (z) and v (z) will have zero modes, regardless of their parities, and



18 J SNADDEN, D RIDOUT, AND S WOOD

we have the following identities in Zhu
[
ôsp(1|2)k

]
:

[j0v] = [j] ∗ [v] − (−1) |j | |v |[v] ∗ [j], [j−m−1v] = (−1)m (−1) |j | |v |[v] ∗ [j], m ≥ 0. (4.8)

The first follows from [j0,v0] = (j0v )0, while the second follows from (j−m−1v ) (z) =
1
m! :∂m j (w )v (w ): . It follows

inductively that if the image of v in Zhu
[
ôsp(1|2)k

]
belongs to the image of the maximal proper ideal, then so do

the images of all the descendants of v by non-positive modes. Taking v = ϕk establishes the untwisted result.
In the Ramond sector, j (z) and v (z) will only have zero modes if they have even parity. In this case, the identities

(4.8) also hold in Zhuτ
[
ôsp(1|2)k

]
if we replace [·] by [·]τ . As above, we conclude that the images of all the

descendants of ϕk by non-positive evenmodes belong to the ideal generated by [ϕk ]τ in Zhuτ
[
ôsp(1|2)k

]
. However,

as in the proof of Proposition 6, even non-positive mode descendants of ϕk have images that are equivalent to a linear
combination of non-positive mode descendants in which all odd modes are zero modes. Since the action of the zero
modes on ϕk generates a simple weight osp(1|2)-module whose even subspace is a simple weight sl (2)-module, by
Theorem 2, each pair of odd zero modes may be replaced by an even zero mode. We conclude that the image of
every even non-positive mode descendant of ϕk is in the ideal of U(sl (2)) generated by [ϕk ]τ , as required.

Remark. We mention that in the proof of Proposition 6, we could remove the odd zero modes along with the positive
modes because they annihilate Ωk . In the proof of Proposition 7 above, ϕk need not be annihilated by the odd zero
modes, hence they are not removed.

Remark. This proposition remains true for Zhu
[
B0 |1 (u,v )

]
if we replace ϕk by χk throughout. The proof follows

along the same lines with minor adjustments. For Zhuτ
[
B0 |1 (u,v )

]
, we can make this replacement if χk is even.

The simple positive-energy Neveu-Schwarz modules of B0 |1 (u,v ) are the simple quotients of the inductions of
the simple Zhu

[
B0 |1 (u,v )

]
-modules, while the simple positive-energy Ramond modules of B0 |1 (u,v ) are the simple

quotients of the inductions of the simple Zhuτ
[
B0 |1 (u,v )

]
-modules. Moreover, the simple Zhu

[
B0 |1 (u,v )

]
-modules

are precisely those of Theorem 2 on which
[
ϕk

]
acts trivially, while the simple Zhuτ

[
B0 |1 (u,v )

]
-modules are those

of Theorem 1 on which
[
ϕk

]τ acts trivially.
The level of interest here is k = − 5

4 , thus u = 2 and v = 4 in the setup of (3.15), which implies that the singular
vector has conformal weight 2 and osp(1|2)-weight α . One choice of normalisation of this vector is

χ−5/4 = (x−2 − 4y−1e−1 + 2h−1x−1)Ω−5/4. (4.9)

Then,
ϕ−5/4 = y0χ−5/4 =

(
h−2 + 2h2

−1 + 8f−1e−1 + 6y−1x−1
)
Ω−5/4. (4.10)

Proposition 8. The images of ϕ−5/4 in the untwisted and twisted Zhu algebras are

[ϕ−5/4] = Σ(2Σ − 1), [ϕ−5/4]τ = 4Q +
15
8
, (4.11)

where Σ and Q are the super-Casimir of osp(1|2) and the Casimir of sl (2), respectively.

Proof. The proof is very similar to proofs in [62–65], so we will only briefly outline the reasoning. Since the
osp(1|2)-weight of ϕ−5/4 is 0, its images in the Zhu algebras will also have weight 0 and hence these images lie in the
centralisers of the Cartan subalgebras C(h,U(osp(1|2))) and C(h,U(sl (2))). Further, since these images are uniquely
determined by their action on weight spaces, all that remains to complete this proof is the computation of this action.

The field corresponding to ϕ−5/4 is

ϕ (z) = ∂h(z) + 2 :h(z)h(z): + 8 :f (z)e (z): + 6 :y (z)x (z): (4.12)

and thus its zero mode is
ϕ0 = −h0 + 2 :hh: 0 + 8 :f e: 0 + 6 :yx : 0. (4.13)

Evaluating ϕ0 on a Neveu-Schwarz ground state vector uλ,s of osp(1|2)-weight λα and Σ-eigenvalue s produces

ϕ0uλ,s =
(
−h0 + 2h2

0 + 8e0 f0 − 6x0y0
)
uλ,s = s (2s − 1)uλ,s , (4.14)
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where the normally ordered products were evaluated using (3.13a). Thus, the image of ϕ−5/4 in Zhu
[
ôsp(1|2)k

]
is

Σ(2Σ − 1), as required.
Similarly, evaluating ϕ0 on a Ramond ground state vλ,q of sl (2)-weight λα and Q-eigenvalue q produces

ϕ0vλ,q =

(
−h0 + 2h2

0 + 8e0 f0 + 6
(

5
16
−

1
2
h0

))
vλ,q =

(
4q +

15
8

)
vλ,q , (4.15)

where the odd normally ordered product :yx : 0 was evaluated using (3.13b). This, in turn, implies that the image of
ϕ−5/4 in Zhuτ

[
ôsp(1|2)k

]
is 4Q + 15

8 , completing the proof.

4.2. Classifying B0 |1 (2, 4)-modules. Given our explicit identifications of the untwisted and twisted Zhu algebras
Zhu

[
B0 |1 (2, 4)

]
and Zhuτ

[
B0 |1 (2, 4)

]
, we can now easily classify the simple relaxed highest-weight B0 |1 (2, 4)-

modules in both the Neveu-Schwarz and Ramond sectors.

Theorem 9. Any simple Neveu-Schwarz relaxed highest-weight B0 |1 (2, 4)-module is isomorphic to one of the
following mutually non-isomorphic modules:

A0, B+
−1/2, B−1/2,

ΠA0, ΠB+
−1/2, ΠB−1/2,

CΛ,0 (Λ ∈ �/2� \ {[± 1
2 ]}). (4.16)

We remark that the parity reversal of CΛ,0 is isomorphic to CΛ+1,0, by (2.14), so does appear in the list above.

Proof. The space of ground states of any simple Neveu-Schwarz relaxed highest-weight B0 |1 (2, 4)-module must be
isomorphic to one of the simple osp(1|2)-modules listed in Theorem 2 on which [ϕ−5/4] = Σ(2Σ − 1) acts trivially.
The given classification consists of precisely those simple quotients of the inductions of the osp(1|2)-modules for
which this is the case.

Remark. One potential source of confusion that is worth mentioning is that as 1
2 is an allowed eigenvalue of the

super-Casimir Σ, yet − 1
2 is not, any simple Zhu

[
B0 |1 (2, 4)

]
-module with a weight space on which the eigenvalue of

Σ is 1
2 cannot have any weight spaces of opposite parity. The only simple osp(1|2)-modules satisfying this constraint

are A0 and its parity reversal.

Remark. The gaps in the range of Λ, for CΛ,0, in the previous theorem are only to guarantee simplicity. The
reducible, but indecomposable, modules C±1/2+2�,0 and C±

−1/2+2�,0 have ground states that obviously satisfy the Zhu
constraints, hence they are also B0 |1 (2, 4)-modules (in the Neveu-Schwarz sector).

Given that all the C-type B0 |1 (2, 4)-modules have s = 0, we shall simplify notation in what follows by writing Cλ ,
C±1/2 and C±

−1/2 instead of Cλ+2�,0, C±1/2+2�,0 and C±
−1/2+2�,0, respectively. We shall also further abuse this notation

by identifying λ with Λ = λ + 2� when convenient, so that λ ∈ �/2� when parametrising a C-type module.

Theorem 10. Any simple Ramond relaxed highest-weight B0 |1 (2, 4)-module is isomorphic to one of the following
mutually non-isomorphic modules:

D+
−5/4, D+

−3/4, D−3/4, D−5/4 EΛ,−15/32,

ΠD+
−5/4, ΠD+

−3/4, ΠD−3/4, ΠD−5/4 ΠEΛ,−15/32
(Λ ∈ �/2� \ {[± 5

4 ]}). (4.17)

Proof. The space of ground states of any simple Ramond relaxed highest-weight B0 |1 (2, 4)-module must be isomor-
phic to one of the simple sl (2)-modules listed in Theorem 1 on which [ϕ−5/4]τ = 4Q + 15

8 acts trivially. The given
classification consists of those simple quotients of the inductions of the sl (2)-modules for which this is the case.

Remark. Again, the gaps in the range of Λ, for EΛ,−15/32, in the previous theorem guarantee simplicity. The
reducible, but indecomposable, modules E±λ+2�,−15/32, with λ = ±

5
4 , are also B0 |1 (2, 4)-modules (in the Ramond

sector).

Because all these E-type modules have q = − 15
32 , we shall again simplify notation in what follows by writing Eλ

instead of Eλ+2�,−15/32, for λ , 5
4 mod 2, and E±λ instead of E±λ+2�,−15/32, for λ = ±

5
4 . As above, we shall also abuse

this notation by identifying λ with Λ = λ + 2� when parametrising E-type modules.
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These theorems classify the simple positive-energy weight modules over B0 |1 (2, 4) because a weight vector of
minimal conformal weight in a simple module must generate the entire module and hence must be a relaxed highest-
weight vector. However, we can also twist each of these modules by conjugation and/or spectral flow (Proposition 5).
If we twist by conjugation, the result will again be a simple positive-energy weight module. Explicitly, we have

wA0 � A0, wB+
−1/2 � B−1/2, wCλ � C−λ (λ , ± 1

2 mod 2),

wD+
−5/4 � D−5/4, wD+

−3/4 � D−3/4, wEλ � E−λ (λ , ± 5
4 mod 2).

(4.18)

The conjugates of the spectral flows of these modules now follow (formally) from (3.22).
However, twisting these simple positive-energy weight modules by spectral flow will not result in modules that are

positive-energy, in general. Naïvely, we arrive at the following list of (isomorphism classes of) simple Neveu-Schwarz
weight modules (we also include their parity reversals, recalling that ΠCλ � Cλ+1):

σ `A0, σ `B+
−1/2, σ `B−1/2, σ `Cλ (` ∈ � and λ , 1

2 mod 1),

σ `D+
−3/4, σ `D+

−5/4, σ `D−3/4, σ `D−5/4, σ `Eµ (` ∈ � + 1
2 and µ , ± 5

4 mod 2).
(4.19)

The simple Ramond weight modules are obtained from these by applying σ 1/2 to each of the above. It turns out
however, that these lists contain many pairs of isomorphic modules. In particular, it is easy to show (using similar
techniques to those used in the proof of (3.24)) that the following coincidences hold:

σ 1/2A0 � D+
−5/4, σ−1/2A0 � D−5/4,

σ 1/2B−1/2 � D+
−3/4, σ−1/2B+

−1/2 � D−3/4.
(4.20)

With these isomorphisms in mind, the list of (isomorphism classes of) mutually non-isomorphic simple weight
modules over B0 |1 (2, 4) reduces to

σ `A0, σ `B+
−1/2, σ `B−1/2, σ `Cλ , σ `Eµ (4.21)

and their parity reversals, where ` ∈ 1
2�, λ ,

1
2 mod 1 and µ , ± 5

4 mod 2. To establish that these isomorphism
classes are indeed distinct, one may observe that their spaces of extremal states are different, these being the weight
vectors of minimal conformal weight in each subspace of constant osp(1|2)-weight.

We shall assume that the physical category P relevant for constructing minimal model conformal field theories
has precisely the modules (4.21) as its simple objects. We shall also assume that the category is closed under
conjugation and fusion products. One of the main aims of this paper is to test this assumption by demonstrating
that it leads to satisfactory modular properties and that the standard Verlinde formula, introduced below in (7.6b),
returns non-negative integer Grothendieck fusion coefficients.

The assumption of closure under fusion is highly non-trivial from amathematical perspective because the modules
in P, in particular the relaxed highest-weight modules Cλ , Eµ and their spectral flows, are not all C1-cofinite. This
means that fusion products might not be finite-length (meaning that they have a finite number of composition factors).
However, the failure of C1-cofiniteness is also observed with relaxed modules for admissible-level sl (2) minimal
models and bosonic ghosts [35], whilst the known fusion calculations [19,26,35] all give finite-length results. These
calculations were performed using the Nahm-Gaberdiel-Kausch algorithm [83,84] whose (essential) equivalence to
the rigorous theory of Huang, Lepowsky and Zhang [85] will appear in [86]. The results give us confidence that our
assumptions on the B0 |1 (2, 4) fusion rules all hold, though they will be extremely difficult to establish rigorously.

The conjugates and spectral flow images of the reducible but indecomposable B0 |1 (2, 4)-modules identified above
are, likewise, reducible but indecomposable weight modules over B0 |1 (2, 4), by Proposition 5. The conjugates are
easily identified using (3.22):

wC+1/2 � C−
−1/2, wE+3/4 � E−

−3/4, wE+5/4 � E−
−5/4. (4.22)

Up to parity reversal, we therefore obtain the following mutually non-isomorphic reducible, but indecomposable,
modules:

σ `C+1/2, σ `C−
−1/2, σ `E+3/4, σ `E+5/4, σ `E−

−3/4, σ `E−
−5/4 (` ∈

1
2
�). (4.23)
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We record the defining non-split short exact sequences, easily deduced from (3.18), for future convenience:

0 −→ ΠB+
−1/2 −→ C+1/2 −→ B−1/2 −→ 0,

0 −→ D+
−5/4 −→ E+3/4 −→ D−3/4 −→ 0,

0 −→ D+
−3/4 −→ E+5/4 −→ D−5/4 −→ 0,

0 −→ ΠB−1/2 −→ C−
−1/2 −→ B+

−1/2 −→ 0,

0 −→ D−5/4 −→ E−
−3/4 −→ D+

−3/4 −→ 0,

0 −→ D−3/4 −→ E−
−5/4 −→ D+

−5/4 −→ 0.

(4.24)

Sequences for the spectral flows of these modules now follow because the σ ` induce exact covariant functors.
These results indicate that the minimal model B0 |1 (2, 4) provides another example of a conformal field theory

to which the standard module formalism of [27, 28] applies. To wit, the simple modules σ `Cλ and σ `Eµ comprise
the typical modules, while the reducible modules of (4.23) are examples of atypical modules. Together, the C- and
E-type modules, along with their spectral flows, constitute the standard modules of the minimal model. Subquotients
of atypical modules are also said to be atypical, hence the σ `A0 and σ `B∓

±1/2 are all atypical and thus so are the
σ `D∓

±3/4 and σ
`D∓
±5/4.

The standard module formalism is a collection of empirical observations, first described in [29], that coherently
organises the modular properties of a large number of logarithmic conformal field theories. To summarise, the
characters of the standard modules (which form a continuously parametrised family) transform rather simply under
a natural action of SL(2;�) with integral kernels replacing the familiar S- and T-matrices. The transforms of
the atypical characters, which include that of the vacuum module, are much more subtle, but may be deduced by
constructing infinite (one-sided) resolutions of each atypical module in terms of standard ones. This rich formalism
will provide the starting point for our investigation of the modular properties of the minimal model. First however,
we need to determine the characters of these modules.

5. The affine minimal model B0 |1 (2, 4): Characters

In this section, we determine the characters and supercharacters of all the simple B0 |1 (2, 4)-modules of category
P. We also introduce the Grothendieck group of this category and show explicitly that the images of the standard
B0 |1 (2, 4)-modules in the Grothendieck group form a basis (of a certain completion).

5.1. Highest-weight characters. Having identified themodules of interest, we nowwish to calculate their characters.
Formally, the character of a weight-module M of ôsp(1|2) is defined to be the power series

ch0
[
M

] (
y, z,q

)
= tr

M

(
ykzh0qL0−c/24

)
, (5.1)

where tr
M
(X ) denotes the trace of the image in End(M) of X ∈ ĥ under the given representation of ôsp(1|2). We

append the subscript 0 to our notation for characters to indicate that eigenvectors of different parities count equally
in the sum. The notation for supercharacters, where parity matters, will be introduced in Section 5.3. It is customary
to interpret such an expression as defining a (meromorphic) function, however some care is needed to make this
identification precise. In particular, we must additionally specify a domain for the variables z and q in order to avoid
misleading results (further discussion of this may be found in [22, 24]).

It is clear that
ch0

[
ΠM

]
= ch0

[
M

]
, (5.2)

for any weight module M over ôsp(1|2), so it might appear that we are justified in identifying modules with their
parity reversals, at least for the purposes of studying modular transformations. However, we shall see that the parity
of a module is completely determined by its character and supercharacter, so one can employ modular methods whilst
retaining parity information.

As discussed in Section 3.3, the characters of the simple highest-weight B0 |1 (2, 4)-modules can be expressed in
terms of Verma module characters using resolutions. As usual, the characters of Verma modules are very easy to
calculate. A straightforward application of the Poincaré-Birkhoff-Witt theorem gives, recalling that c = −5,

ch0
[
VNS

0

] (
y, z,q

)
= y−5/4q5/24

∞∏
m=1

(
1 + z−1qm−1

)
(1 + zqm )(

1 − z−2qm−1) (1 − qm )
(
1 − z2qm

) , (5.3)
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which can be re-expressed more compactly as

ch0
[
VNS

0

] (
y, z,q

)
= −iy−5/4z1/2q1/4 ϑ2 (z;q)

ϑ1 (z2;q) η(q)
, (5.4)

using the standard infinite product formulae for the Jacobi theta functions ϑj and the Dedekind eta function η. More
generally, a simple calculation shows that Neveu-Schwarz Verma characters are given by

ch0
[
VNS
λ

] (
y, z,q

)
= zλq∆ch0

[
VNS

0

] (
y, z,q

)
, (5.5)

where ∆ was given in (3.14). This relation holds for all non-critical k, simply by replacing the exponent of y by k.
From the embeddings of Verma modules shown in Figure 1, it follows that the characters of the simple Neveu-

Schwarz highest-weight B0 |1 (2, 4)-modules are given by

ch0
[
A0

] (
y, z,q

)
=

∑
n∈2�

ch0
[
VNS
−5/4,n

] (
y, z,q

)
−

∑
n∈2�+1

ch0
[
VNS
−5/4,n

] (
y, z,q

)
=

∑
n∈�

(−1)nznqn (n+1)ch0
[
VNS

0

] (
y, z,q

)
= y−5/4ϑ1 (z;q2) ϑ2 (z;q)

ϑ1 (z2;q) η(q)
, (5.6a)

ch0
[
B+
−1/2

] (
y, z,q

)
=

∑
n∈2�

ch0
[
VNS
n−1/2

] (
y, z,q

)
−

∑
n∈2�+1

ch0
[
VNS
n−1/2

] (
y, z,q

)
=

∑
n∈�

(−1)nzn−1/2qn
2−1/4ch0

[
VNS

0

] (
y, z,q

)
= −iy−5/4ϑ4 (z;q2) ϑ2 (z;q)

ϑ1 (z2;q) η(q)
. (5.6b)

In order to calculate the characters of B−1/2 � wB+
−1/2 and the other twists of these highest-weight modules, we

use the following relation:
trφ (M) (X ) = tr

M

(
φ−1 (X )

)
(φ ∈ Aut (̂g), X ∈ ĥ). (5.7)

Specialising to φ = w and σ ` , ` ∈ 1
2�, we obtain the useful formulae

ch0
[
wM

] (
y, z,q

)
= ch0

[
M

] (
y, z−1,q

)
, ch0

[
σ `M

] (
y, z,q

)
= ch0

[
M

] (
yz2`q`

2
, zq`,q

)
, (5.8)

the latter following from σ `h0 = h0 − 2`K and σ `L0 = L0 − `h0 + `
2K . Under the transformation z 7→ z−1, the

Jacobi theta functions ϑj (z;q), for j = 2, 3, 4, are invariant whilst ϑ1 (z
−1;q) = −ϑ1 (z;q). We therefore arrive at the

character of B−1/2 � wB+
−1/2:

ch0
[
B−1/2

] (
y, z,q

)
= ch0

[
B+
−1/2

] (
y, z−1,q

)
= iy−5/4ϑ4 (z;q2) ϑ2 (z;q)

ϑ1 (z2;q) η(q)
. (5.9)

Whilst it is tempting to treat the expressions in (5.6a), (5.6b) and (5.9) as defining meromorphic functions of
(y, z,q), doing so means that we must carefully restrict their domains. Outside of the appropriate domain of validity,
these meromorphic functions will give different power series expansions about the origin. Since characters are
defined precisely by such expansions, a given meromorphic function may correspond to a multitude of different
characters.

It turns out that (5.6a) is valid (and its right-hand side is convergent), for all y, z,q ∈ � with y , 0, 0 < |q | < 1
and z restricted to the annulus

|q |1/2 < |z | < |q |−1/2. (5.10)

In particular, this includes z = 1, which one should expect, given that the L0-eigenspaces of A0 are all finite-
dimensional. Similarly, (5.6b) and (5.9) are valid for y , 0, 0 < |q | < 1 and z restricted to the disjoint annuli

1 < |z | < |q |−1/2 and |q |1/2 < |z | < 1, (5.11)

respectively. Note that neither of the modules B±
∓1/2 has finite-dimensional L0-eigenspaces, so their characters must

indeed diverge at z = 1.
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In order to calculate the characters of the spectral flows of the above modules, we apply (5.8). For example, using
the properties of Jacobi theta functions, we obtain

ch0
[
σ `A0

] (
y, z,q

)
= (−1)`/2y−5/4ϑ1 (z;q2) ϑ2 (z;q)

ϑ1 (z2;q) η(q)
, (5.12a)

if ` is even, and

ch0
[
σ `A0

] (
y, z,q

)
= i(−1) (`−1)/2y−5/4ϑ4 (z;q2) ϑ2 (z;q)

ϑ1 (z2;q) η(q)
, (5.12b)

if ` is odd. It may seem, at first glance, that this sequence of characters holds a (perhaps surprising) four-fold
periodicity. This semblance breaks down however, once we take into account the domains on which these expressions
are valid. Specifically, (5.12a) and (5.12b) will only recover the appropriate characters, as formal power series, when
expanded in the domain 0 < |q | < 1 and

|q |1/2−` < |z | < |q |−1/2−`, (5.13)

as follows from Equations (5.8) and (5.10).
We can now apply (4.20) and (5.8) to the character formulae (5.6) and (5.9) in order to calculate the characters of

the Ramond highest-weight modules and their conjugates. We summarise the results, along with the Neveu-Schwarz
formulae presented above, in the following proposition.

Proposition 11. The characters of the highest-weight B0 |1 (2, 4)-modules are given by the following expressions,
valid for y , 0, 0 < |q | < 1 and z in the annuli given:

ch0
[
A0

] (
y, z,q

)
= y−5/4ϑ1 (z;q2) ϑ2 (z;q)

ϑ1 (z2;q) η(q)
(|q |1/2 < |z | < |q |−1/2),

ch0
[
B+
−1/2

] (
y, z,q

)
= −iy−5/4ϑ4 (z;q2) ϑ2 (z;q)

ϑ1 (z2;q) η(q)
(1 < |z | < |q |−1/2),

ch0
[
D+
−5/4

] (
y, z,q

)
= −iy−5/4z−1/4q1/16ϑ4 (zq

−1/2;q2) ϑ3 (z;q)
ϑ1 (z2;q) η(q)

(1 < |z | < |q |−1),

ch0
[
D+
−3/4

] (
y, z,q

)
= y−5/4z−1/4q1/16ϑ1 (zq

−1/2;q2) ϑ3 (z;q)
ϑ1 (z2;q) η(q)

(1 < |z | < |q |−1/2).

(5.14)

Remark. The characters of the conjugates of the highest-weight B0 |1 (2, 4)-modules are now easily computed using
Equation (5.8), noting that A0 is self-conjugate:

ch0
[
B−1/2

] (
y, z,q

)
= iy−5/4ϑ4 (z;q2) ϑ2 (z;q)

ϑ1 (z2;q) η(q)
(|q |1/2 < |z | < 1),

ch0
[
D−5/4

] (
y, z,q

)
= −y−5/4z−1/4q1/16ϑ1 (zq

−1/2;q2) ϑ3 (z;q)
ϑ1 (z2;q) η(q)

(|q | < |z | < 1),

ch0
[
D−3/4

] (
y, z,q

)
= iy−5/4z−1/4q1/16ϑ4 (zq

−1/2;q2) ϑ3 (z;q)
ϑ1 (z2;q) η(q)

(|q |1/2 < |z | < 1).

(5.15)

The characters of the remaining simple atypical B0 |1 (2, 4)-modules are similarly obtained using spectral flow.

5.2. Relaxed highest-weight characters. For ôsp(1|2), there seems to be no literature addressing the submodule
structure of relaxed Verma modules. Even though character formulae for relaxed Verma modules over ôsp(1|2) are
easy to obtain, we are therefore unable to deduce character formulae for their simple quotients. Instead, we resort to
an indirect method developed for ŝl (2)-modules in [24, 25] and rigorously justified in [73].

We start with the short exact sequences given in (4.24) for the reducible, but indecomposable, Neveu-Schwarz
relaxed highest-weight modules C±

±1/2, immediately deducing the following character formulae:

ch0
[
C±
±1/2

]
= ch0

[
B+
−1/2

]
+ ch0

[
B−1/2

]
. (5.16)

Of course, this only holds when treating these characters as formal power series. Since the two expressions (5.6b)
and (5.9) that we have derived for the characters on the right-hand side, are valid on disjoint domains, we must
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be careful to sum these characters as power series rather than as meromorphic functions — naïvely summing the
derived characters, as meromorphic functions, gives zero! For this, we appeal to the following (equivalent) identities,
originally derived by Kac and Wakimoto in [87]:

ϑ1 (uv;q) η(q)3

ϑ1 (u;q) ϑ1 (v;q)
= −i

∑
m∈�

um

1 −vqm
(|q | < |u | < 1, 0 < |v | < |q | < 1), (5.17a)

ϑ1 (uv;q) η(q)3

ϑ1 (u;q) ϑ1 (v;q)
= −i

∑
m∈�

umvqm

1 −vqm
(1 < |u | < |q |−1, 0 < |v | < |q | < 1). (5.17b)

We refer to [22, App. B] for the conventions on θ functions used here. Setting u = z2 and rearranging, these become

1
ϑ1 (z2;q)

= −i
ϑ1 (v;q)

ϑ1 (z2v;q) η(q)3
∑
m∈�

z2m

1 −vqm
(|q |1/2 < |z | < 1, 0 < |v | < |q | < 1), (5.18a)

1
ϑ1 (z2;q)

= −i
ϑ1 (v;q)

ϑ1 (z2v;q) η(q)3
∑
m∈�

z2mvqm

1 −vqm
(1 < |z | < |q |−1/2, 0 < |v | < |q | < 1). (5.18b)

We substitute (5.18a) into the character formula (5.9), noting that both have the same domain of validity, obtaining

ch0
[
B−1/2

] (
y, z,q

)
= y−5/4ϑ4 (z;q2) ϑ2 (z,q)

η(q)4
ϑ1 (v;q)
ϑ1 (z2v;q)

∑
m∈�

z2m

1 −vqm
. (5.19)

Performing the equivalent substitution of (5.18b) into (5.6b) (which also have the same domain of validity), we
instead get

ch0
[
B+
−1/2

] (
y, z,q

)
= −y−5/4ϑ4 (z;q2) ϑ2 (z,q)

η(q)4
ϑ1 (v;q)
ϑ1 (z2v;q)

∑
m∈�

z2mvqm

1 −vqm
. (5.20)

Treating these as formal power series in z, we may forget their domains and sum them, giving

ch0
[
C±
±1/2

] (
y, z,q

)
= y−5/4ϑ4 (z;q2) ϑ2 (z,q)

η(q)4
ϑ1 (v;q)
ϑ1 (z2v;q)

∑
m∈�

z2m . (5.21)

In this way, we have arrived at a character formula for the reducible Neveu-Schwarz relaxed highest-weight modules.
These are precisely the atypical standard modules in the Neveu-Schwarz sector.

We may simplify the character formula (5.21) further and eliminate the auxiliary variable v, but we must first
introduce an alternative set of variables for the characters. Instead of giving characters as power series in y, z,q, it is
standard (and essential for studying modular properties) to introduceψ , ζ and τ , defined by

y = e2π iψ , z = e2π iζ and q = e2π iτ . (5.22)

The relation between z and ζ will be used repeatedly in the following manipulations.
Identifying the sum on the right-hand side of (5.21) as defining a distribution in ζ , we can employ the Fourier-

theoretic identity ∑
n∈�

e2π inw =
∑
n∈�

δ (w − n) (5.23)

to make the following simplification:

ϑ1 (v;q)
ϑ1 (z2v;q)

∑
m∈�

z2m =
ϑ1 (v;q)

ϑ1 (e4π iζv;q)

∑
m∈�

δ (2ζ −m) =
∑
m∈�

ϑ1 (v;q)
ϑ1 (e2π imv;q)

δ (2ζ −m) =
∑
m∈�

e−π imδ (2ζ −m). (5.24)

Here, we have noted that ϑ1 (e2π iv;q) = eπ iϑ1 (v;q). Now,

ch0
[
C±
±1/2

] (
y, z,q

)
= y−5/4ϑ4 (z;q2) ϑ2 (z;q)

η(q)4

∑
m∈�

e−π imδ (2ζ −m)

= y−5/4 1
η(q)4

∑
m∈�

ϑ4 (eπ im ;q2) ϑ2 (eπ im ;q)
eπ im

δ (2ζ −m), (5.25)
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which can be split into sums over even and odd values ofm, giving

ch0
[
C±
±1/2

] (
y, z,q

)
= y−5/4 1

η(q)4

∑
n∈�

(−1)n
[
ϑ4 (1;q2) ϑ2 (1;q) δ (2ζ − 2n)

+ ϑ3 (1;q2) ϑ1 (1;q) δ (2ζ − 2n − 1)
]
. (5.26)

However, ϑ1 (1;q) vanishes identically, so that

ch0
[
C±
±1/2

] (
y, z,q

)
= y−5/4ϑ4 (1;q2) ϑ2 (1;q)

2η(q)4
∑
n∈�

eπ inδ (ζ − n) = y−5/4ϑ4 (1;q2) ϑ2 (1;q)
2η(q)4

∑
n∈�

zn+1/2. (5.27)

The q-dependent factor can be further simplified, using the product forms of the Jacobi theta functions, giving our
final result:

ch0
[
C±
±1/2

] (
y, z,q

)
=
y−5/4z1/2

η(q)2

√
ϑ2 (1;q)
2η(q)

∑
n∈�

zn . (5.28)

We remark that the decoupling of the z- and q-dependences of this character is expected for a module whose ground
states form a dense osp(1|2)-module.

It is convenient, at this point, to extract the q-dependent terms from (5.28) in the following definition:

Aj (q) =
1

η(q)2

√
ϑj (1;q)
η(q)

(j = 2, 3, 4). (5.29)

We can rewrite these factors explicitly as

A2 (q) =
√

2q−1/24
∞∏
i=1

1 + qi

(1 − qi )2
, A3 (q) = q

−5/48
∞∏
i=1

1 + qi−1/2

(1 − qi )2
, A4 (q) = q

−5/48
∞∏
i=1

1 − qi−1/2

(1 − qi )2
. (5.30)

Inserting into (5.28) and expanding, one finds that

ch0
[
C±
±1/2

] (
y, z,q

)
= y−5/4z1/2A2 (q)

√
2

∑
n∈�

zn = y−5/4z1/2q−1/24
∞∏
i=1

1 + qi

(1 − qi )2
·
∑
n∈�

zn

= y−5/4z1/2q−1/24
(
1 + 3q + 8q2 + 19q3 + 41q4 + 83q5 + · · ·

) ∑
n∈�

zn (5.31)

which indeed gives the correct weight multiplicities (shown for the first six conformal grades) of C±
±1/2. We mention

that the prefactor q−1/24 = q∆−c/24, requires that ∆ = − 1
4 (recall that c = −5), in accord with s = 0 and (3.17).

A similar calculation gives the characters of the atypical relaxed Ramond modules. We record these results in the
following proposition.

Proposition 12. The characters of the atypical relaxed B0 |1 (2, 4)-modules are (shifted) formal power series in z

whose coefficients are holomorphic functions of q for |q | < 1. Explicitly, we have

ch0
[
C±
±1/2

] (
y, z,q

)
=
y−5/4z1/2
√

2
A2 (q)

∑
n∈�

zn , (5.32a)

ch0
[
E±
±5/4

] (
y, z,q

)
= ch0

[
E∓
∓3/4

] (
y, z,q

)
=
y−5/4z±5/4

2
*
,
A3 (q)

∑
n∈�

zn +A4 (q)
∑
n∈�

(−z)n+
-
. (5.32b)

With (5.8), we can now compute the characters of all the atypical standard modules. However, we also need to
compute the characters of the typical standard modules: the Cλ , the Eµ and their spectral flows. Happily, these may
be deduced from those of the atypical standards merely by shifting the powers of z in (5.28) and (5.32b).

Proposition 13. The characters of the typical relaxed B0 |1 (2, 4)-modules are (shifted) formal power series in z

whose coefficients are holomorphic functions of q for |q | < 1. Explicitly, we have

ch0
[
Cλ

] (
y, z,q

)
=
y−5/4zλ
√

2
A2 (q)

∑
n∈�

zn (λ , ±
1
2

mod 2), (5.33a)
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ch0
[
Eµ

] (
y, z,q

)
=
y−5/4zµ

2
*
,
A3 (q)

∑
n∈�

zn +A4 (q)
∑
n∈�

(−z)n+
-

(µ , ±
5
4

mod 2). (5.33b)

We will not provide a proof of this assertion here, referring instead to recent work of Adamović [88, Sec. 11] who
proves (5.33a) using an explicit construction of these modules. A more general proof, that includes the Ramond
case (5.33b), appears in [73]. This approach works in the setting of affine Lie superalgebras and relies on Mathieu’s
theory of coherent families [89]. We expect it to also generalise to higher rank superalgebras.

Remark. Wenote that the Ramond characters (5.33b) aremanifestly 2-periodic in µ, in accordwith the isomorphisms
Eµ � Eµ+2. However, the Neveu-Schwarz characters (5.33a) are manifestly 1-periodic, despite Cλ and Cλ+1 being
non-isomorphic. Rather, we have Cλ � ΠCλ+1, by (2.14), explaining this 1-periodicity.

5.3. Supercharacters. As mentioned above, modular transformations require us to consider supercharacters in
addition to characters. The supercharacter of a weight module M of ôsp(1|2) is defined, analogously to the
definition of character in (5.1), to be the formal power series

ch1/2
[
M

] (
y, z,q

)
= str

M

(
ykzh0qL0−c/24

)
(5.34)

in which str
M
(X ) denotes the supertrace of the image in End(M) of X ∈ ĥ. This is, we recall, the trace of X on the

even subspaceM(0) minus the trace on the odd subspaceM(1) . The use of the subscript 1
2 turns out to be convenient

in Section 6, see Equation (6.6) for example. We clearly have

ch1/2
[
ΠM

]
= −ch1/2

[
M

]
(5.35)

and, similarly to characters, supercharacters of twisted modules are easily computed using

ch1/2
[
wM

] (
y, z,q

)
= ch1/2

[
M

] (
y, z−1,q

)
, ch1/2

[
σ `M

] (
y, z,q

)
= ch1/2

[
M

] (
yz2`q`

2
, zq`,q

)
, (5.36)

the latter holding for all ` ∈ 1
2�.

In fact, it is easy to deduce formulae for ôsp(1|2)-module supercharacters from their character formulae because x
and y have odd osp(1|2)-weights (measured in units of α) while e, h and f have even osp(1|2)-weights. The vectors
of an ôsp(1|2)-module M whose osp(1|2)-weights are even, relative to some chosen (even) vector, therefore span
M(0) while those with relative odd osp(1|2)-weights span M(1) . Replacing z by eiπz = −z everywhere in ch0

[
M

]
,

except in the prefactor that fixes the osp(1|2)-weight of the chosen vector, will therefore convert the character of M
into its supercharacter. The supercharacters of the relaxed highest-weight B0 |1 (2, 4)-modules are thereby deduced
from Propositions 11 to 13.

Proposition 14. The supercharacters of the simple B0 |1 (2, 4)-modules are specified, for |q | < 1, by

ch1/2
[
A0

] (
y, z,q

)
= y−5/4ϑ2 (z;q2) ϑ1 (z;q)

ϑ1 (z2;q) η(q)
(|q |1/2 < |z | < |q |−1/2),

ch1/2
[
B+
−1/2

] (
y, z,q

)
= −iy−5/4ϑ3 (z;q2) ϑ1 (z;q)

ϑ1 (z2;q) η(q)
(1 < |z | < |q |−1/2),

ch1/2
[
Cλ

] (
y, z,q

)
=
y−5/4zλ
√

2
A2 (q)

∑
n∈�

(−z)n (λ , ±
1
2

mod 2),

ch1/2
[
Eµ

] (
y, z,q

)
=
y−5/4zµ

2
*
,
A4 (q)

∑
n∈�

zn +A3 (q)
∑
n∈�

(−z)n+
-

(µ , ±
5
4

mod 2)

(5.37)

and (5.36) (conjugation and spectral flow). Similarly, the supercharacters of the atypical standardB0 |1 (2, 4)-modules
are specified by

ch1/2
[
C±
±1/2

] (
y, z,q

)
=
y−5/4z1/2
√

2
A2 (q)

∑
n∈�

(−z)n ,

ch1/2
[
E±
±5/4

] (
y, z,q

)
= ch1/2

[
E∓
∓3/4

] (
y, z,q

)
=
y−5/4z±5/4

2
*
,
A4 (q)

∑
n∈�

zn +A3 (q)
∑
n∈�

(−z)n+
-
.

(5.38)
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Remark. Note that ch1/2
[
Cλ

]
is 1-antiperiodic in λ and ch1/2

[
Eµ

]
is 2-periodic in µ, as expected.

5.4. The Grothendieck group. Given a category C of modules, each of which has finitely many composition
factors, one defines its Grothendieck group [C] as the free abelian group generated by the isomorphism classes of
the simple modules. The image [M] ∈ [C] of a module M ∈ C is then the sum of the images of its composition
factors. As characters and supercharacters are isomorphism invariants that do not distinguish between a module and
the direct sum of its composition factors, they define functions ch0 and ch1/2 on the Grothendieck group.

Neither of these functions is injective — in general, ch0 and ch1/2 do not distinguish [M] from [ΠM] and −[ΠM],
respectively — but their direct sum is, provided that the set of pairs (ch0[M], ch1/2[M]), where [M] ranges over the
isomorphism classes of the simple modules, is linearly independent (over �). If this is the case, which it is for the
physical category P of B0 |1 (2, 4)-modules, then it follows that the character and supercharacter of a module together
completely determine the class of the module in the Grothendieck group.

Whilst the set of isomorphism classes of the simple B0 |1 (2, 4)-modules should be regarded as a canonical basis
of the Grothendieck group, the standard module formalism suggests that another basis set will be useful. This is the
set of Grothendieck images of the standard modules, both typical and atypical, noting that

[
σ `C+1/2

]
=

[
Πσ `B+

−1/2

]
+

[
σ `B−1/2

]
=

[
Πσ `C−

−1/2

]
(5.39a)

in the Neveu-Schwarz sector, whilst in the Ramond sector we similarly have
[
σ `E+3/4

]
=

[
σ `E−

−5/4

]
,

[
σ `E+5/4

]
=

[
σ `E−

−3/4

]
(5.39b)

and their parity-reversed counterparts. To maintain linear independence among the images of the atypical standards,
we may consistently omit the Grothendieck images of standards with − superscripts in favour of those with +
superscripts. There is, of course, no issue with linear independence among typicals.

We assert that the Grothendieck images of the typicals and the atypical standards with + superscripts together
form a basis of a certain completion of the Grothendieck group of our B0 |1 (2, 4)-module category P. To justify this,
we must exhibit the images of the simple atypicals as a linear combination of images of atypical standards. This is
achieved by constructing resolutions for the former in terms of the latter. It clearly suffices to give the resolutions for
one member of each spectral flow orbit of simple atypicals.

Proposition 15. The simple modules A0 and B∓
±1/2 have the following resolutions:

· · · −→ Πσ 11/2E+3/4 −→ σ 5C+1/2 −→ σ 9/2E+5/4

−→ σ 7/2E+3/4 −→ Πσ 3C+1/2 −→ Πσ 5/2E+5/4

−→ Πσ 3/2E+3/4 −→ σC+1/2 −→ σ 1/2E+5/4 −→ A0 −→ 0, (5.40a)

· · · −→ Πσ 11/2E+5/4 −→ Πσ 9/2E+3/4 −→ σ 4C+1/2

−→ σ 7/2E+5/4 −→ σ 5/2E+3/4 −→ Πσ 2C+1/2

−→ Πσ 3/2E+5/4 −→ Πσ 1/2E+3/4 −→ C+1/2 −→ B−1/2 −→ 0, (5.40b)

· · · −→ σ 6C+1/2 −→ σ 11/2E+5/4 −→ σ 9/2E+3/4

−→ Πσ 4C+1/2 −→ Πσ 7/2E+5/4 −→ Πσ 5/2E+3/4

−→ σ 2C+1/2 −→ σ 3/2E+5/4 −→ σ 1/2E+3/4 −→ B+
−1/2 −→ 0. (5.40c)

Proof. The resolutions are constructed by repeatedly splicing the following short exact sequences, their parity
reversals and their spectrally flowed versions:

0 −→ σB−1/2 −→ σ 1/2E+5/4 −→ A0 −→ 0,

0 −→ ΠB+
−1/2 −→ C+1/2 −→ B−1/2 −→ 0,

0 −→ σA0 −→ σ 1/2E+3/4 −→ B+
−1/2 −→ 0.

(5.41)

These, in turn, are easily derived from the short exact sequences (4.24) and the identifications (4.20).
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The Euler-Poincaré principle now leads to the desired expressions for the images of the simple atypicals in an
appropriate completion of the Grothendieck group. Such a completion must admit the required infinite sums and so
we shall choose it to consist of (possibly infinite) linear combinations of the form

n∑
i=1

∑
`≥L

aiL
[
σ `Si

]
(n ∈ �≥0, L ∈ 1

2�, a
i
L ∈ �), (5.42)

where each Si is either a typical or an atypical standard with + superscript. The key requirement is that the spectral
flow indices be bounded below. The Grothendieck images of the typicals and atypical standards with + superscripts
form a basis of this completion, in the obvious sense, as claimed.

Remark. The above completion allows for the following interpretation. Let�
((
σ 1/2

))
be the ring of formal Laurent

series in the spectral flow functor σ 1/2. 7 These series can then be applied to finite sums of (Grothendieck images
of) standards to get infinite sums of the form (5.42). In other words, the set of all elements of the form (5.42) is just
the free �

((
σ 1/2

))
-module whose basis consists of all typicals and all atypical standards with + superscript.

Corollary 16. The following identities hold in the given completion of the Grothendieck group (as do their spectrally
flowed versions):

[
A0

]
=

∞∑
n=0

( [
σ 4n+1/2E+5/4

]
−

[
σ 4n+1C+1/2

]
+

[
Πσ 4n+3/2E+3/4

]

−
[
Πσ 4n+5/2E+5/4

]
+

[
Πσ 4n+3C+1/2

]
−

[
σ 4n+7/2E+3/4

])
, (5.43a)

[
B−1/2

]
=

∞∑
n=0

( [
σ 4nC+1/2

]
−

[
Πσ 4n+1/2E+3/4

]
+

[
Πσ 4n+3/2E+5/4

]

−
[
Πσ 4n+2C+1/2

]
+

[
σ 4n+5/2E+3/4

]
−

[
σ 4n+7/2E+5/4

])
, (5.43b)

[
B+
−1/2

]
=

∞∑
n=0

( [
σ 4n+1/2E+3/4

]
−

[
σ 4n+3/2E+5/4

]
+

[
σ 4n+2C+1/2

]

−
[
Πσ 4n+5/2E+3/4

]
+

[
Πσ 4n+7/2E+5/4

]
−

[
Πσ 4n+4C+1/2

])
. (5.43c)

Applying ch0 and ch1/2 to these identities then gives analogous identities for simple atypical (super)characters in
terms of atypical standard (super)characters.

It is easy to check that the infinite sums of (super)characters in these relations converge in the sense of formal power
series. This means that the coefficient of each monomial in the indeterminates only receives non-zero contributions
from finitely many of the terms in the infinite sum.

Remark. Note that one can also derive right-sided resolutions for the simple atypicals, for example by taking
contragredient duals of the left-sided ones of Proposition 15. The powers of spectral flow appearing in these
resolutions and the analogue of Corollary 16 would then be bounded above.

The natural completion of the Grothendieck group would now be the free �
((
σ−1/2

))
-module on the typicals and

atypical standards with + superscript. One can check that the results derived in what follows do not depend on the
choice of resolutions.

6. The affine minimal model B0 |1 (2, 4): Modular properties

We now study the modular properties of the simple and standard B0 |1 (2, 4)-modules. More precisely, we first
show that the action of the modular group closes on the span of the characters and supercharacters of the standard
modules. From Section 5.4, the characters and supercharacters of the simple atypical B0 |1 (2, 4)-modules belong to

7Recall that in rings of formal Laurent series, the powers of the indeterminate are assumed to be bounded below.
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this span, so their modular properties follow directly. These explicit modular transformations will be used to compute
the Grothendieck fusion rules in Section 7 using a version of the standard Verlinde formula.

6.1. Standard modular transforms. The modular group SL(2;�) admits the following well known presentation:

SL(2;�) =
〈
S, T : S2 = (ST)3, S4 = 1

〉
. (6.1)

On (super)characters, we define the action of the generating elements S and T to be the coordinate transforms

S(ψ |ζ |τ ) =
(
ψ −

ζ 2

τ
+

1
2πk

(
argτ −

π

2

) �����
ζ

τ

�����
−1
τ

)
, T(ψ |ζ |τ ) =

(
ψ +

1
12k

�����
ζ

�����
τ + 1

)
, (6.2)

where k = − 5
4 (and we recall Equation (5.22) for the definition ofψ , ζ and τ ). Though the transform forψ may appear

unfamiliar, it is chosen specifically to obtain an honest, as opposed to a projective, representation of SL(2;�) on
the span of the standard characters. Direct computation verifies that these generators do indeed satisfy the defining
relations (6.1) of SL(2;�).

The modular transformations of the standard characters can be computed from those of the auxiliary functions
A2 (q), A3 (q) and A4 (q) defined in (5.29):

S
{
A2 (q)

}
=

1
−iτ

A4 (q), S
{
A3 (q)

}
=

1
−iτ

A3 (q), S
{
A4 (q)

}
=

1
−iτ

A2 (q),

T
{
A2 (q)

}
= e−π i/12A2 (q), T

{
A3 (q)

}
= e−5π i/24A4 (q), T

{
A4 (q)

}
= e−5π i/24A3 (q).

(6.3)

These formulae follow directly from the well known transforms of the Jacobi theta functions and the Dedekind eta
function.

In preparation for the modular S-transforms below, we rewrite the formulae for the standard (super)characters
using the Fourier theoretic identity (5.23). For example,

ch0
[
Cλ

]
= ykzλ

A2 (q)
√

2

∑
n∈�

zn = yk
A2 (q)
√

2

∑
n∈�

zλδ (ζ − n) = yk
A2 (q)
√

2

∑
n∈�

e2π iλnδ (ζ − n) (6.4)

implies, using (5.8), that

ch0
[
σ `Cλ

]
= (yz2`q`

2
)k
A2 (q)
√

2

∑
n∈�

e2π iλnδ (ζ + `τ − n)

= yk
A2 (q)
√

2

∑
n∈�

e2π iλne2π ik`(2n−`τ )δ (ζ + `τ − n). (6.5a)

Similarly,

ch1/2
[
σ `Cλ

]
= yk

A2 (q)
√

2

∑
n∈�

e2π iλ (n−1/2)e2π ik`(2n−1−`τ )δ (ζ + `τ + 1
2 − n), (6.5b)

ch0
[
σ `Eµ

]
= yk *

,

A3 (q)

2

∑
n∈�

e2π iµne2π ik`(2n−`τ )δ (ζ + `τ − n)

+
A4 (q)

2

∑
n∈�

e2π iµ (n−1/2)e2π ik`(2n−1−`τ )δ (ζ + `τ + 1
2 − n)

+
-
, (6.5c)

ch1/2
[
σ `Eµ

]
= yk *

,

A4 (q)

2

∑
n∈�

e2π iµne2π ik`(2n−`τ )δ (ζ + `τ − n)

+
A3 (q)

2

∑
n∈�

e2π iµ (n−1/2)e2π ik`(2n−1−`τ )δ (ζ + `τ + 1
2 − n)

+
-
. (6.5d)

These formulae also cover the (super)characters of the atypical standard modules. Note that we can write these
formulae in the succinct forms

chε
[
σ `Cλ

]
= yk

A2 (q)
√

2

∑
n∈�+ε

e2π iλne2π ik`(2n−`τ )δ (ζ + `τ − n), (6.6a)
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chε
[
σ `Eλ

]
= yk*.

,

A3 (q)

2

∑
n∈�+ε

+
A4 (q)

2

∑
n∈�+1/2+ε

+/
-

e2π iλne2π ik`(2n−`τ )δ (ζ + `τ − n), (6.6b)

where ε ∈ {0, 1
2}. It will be useful in what follows to think of ε as living in the two element abelian group where

addition is taken mod 1.

Proposition 17. For ` ∈ 1
2�, and λ ∈ �, let

KT
` (λ) = e2π i`(k`+λ) . (6.7)

Then, the T-transforms of the standard (super)characters are given by the following formulae:

T
{
chε

[
σ `Cλ

]}
= eπ i/12KT

` (λ) chε+`
[
σ `Cλ

]
, (6.8a)

T
{
chε

[
σ `Eλ

]}
= e−π i/24KT

` (λ) chε+`+1/2
[
σ `Eλ

]
. (6.8b)

Proof. The proof follows by substituting the appropriate transformation formula from (6.3) into the (super)character
formulae (5.33). For example, the C-type (super)characters give

T
{
chε

[
σ `Cλ

]}
= eπ i/6yke−π i/12A2 (q)

√
2

∑
n∈�+ε

e2π iλne2π ik`(2n−`τ−`)δ (ζ + `τ + ` − n)

= eπ i/12yk
A2 (q)
√

2

∑
n∈�+ε+`

e2π iλ (n+`)e2π ik`(2n−`τ+`)δ (ζ + `τ − n)

= eπ i/12KT
` (λ) chε+`

[
σ `Cλ

]
. (6.9)

The E-type case proceeds in the same way.

We conclude that T acts diagonally on Neveu-Schwarz (super)characters, whilst in the Ramond sector, it takes
a character to (a multiple of) the supercharacter of the same module and vice versa. The behaviour of the (su-
per)characters under the S-transform is similar, though the explicit formulae are slightly more complicated.

Proposition 18. For `, `′ ∈ 1
2� and λ, λ′ ∈ �, let

KS
`,`′ (λ, λ

′) = e−2π i(2k``′+`′λ+`λ′) . (6.10)

Then, the S-transforms of the standard (super)characters are given by the following formulae:

S
{
chε

[
σ `Cλ

]}
=

1
√

2

∑
`′∈�+ε

∫
�/2�

KS
`,`′ (λ, λ

′) ch`+1/2
[
σ `′Eλ′

]
dλ′, (6.11a)

S
{
chε

[
σ `Eλ

]}
=

1
√

2

∑
`′∈�+ε+1/2

∫
�/�

KS
`,`′ (λ, λ

′) ch`
[
σ `′Cλ′

]
dλ′

+
1
2

∑
`′∈�+ε

∫
�/2�

KS
`,`′ (λ, λ

′) ch`
[
σ `′Eλ′

]
dλ′. (6.11b)

Proof. As a preparatory step, we record the S-transform of the common prefactoryk of the (super)character formulae:

S
{
yk

}
= e2π ik (ψ−ζ 2/τ )ei(arg τ−π /2) =

−iτ

|τ |
yke2π ik (−ζ 2/τ ) . (6.12)

The S-transforms of the proposition now follow by evaluating the left- and right-hand sides and comparing. For
example,

S
{
chε

[
σ `Cλ

]}
=
−iτ

|τ |
yke2π ik (−ζ 2/τ ) 1

−iτ

A4 (q)
√

2

∑
n∈�+ε

e2π iλne2π ik`(2n+`/τ )δ (
ζ − `

τ
− n)

= yk
A4 (q)
√

2

∑
n∈�+ε

e2π in (λ−knτ )δ (ζ − ` − nτ ), (6.13)
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where we have used the identity |a |δ (az) = δ (z), while
1
√

2

∑
`′∈�+ε

∫
�/2�

e−2π i(2k``′+`′λ+`λ′)ch`+1/2
[
σ `′Eλ′

]
dλ′

=
1
√

2

∑
`′∈�+ε

e−2π i`′ (2k`+λ)yk
∫
�/2�

*.
,

A3 (q)

2

∑
n∈�+`+1/2

e2π iλ′ (n−`)e2π ik`′ (2n−`′τ )δ (ζ + `′τ − n)

+
A4 (q)

2

∑
n∈�+`

e2π iλ′ (n−`)e2π ik`′ (2n−`′τ )δ (ζ + `′τ − n)+
-

dλ′

= yk
A4 (q)
√

2

∑
`′∈�+ε

e−2π i`′ (λ+k`′τ )δ (ζ − ` + `′τ ), (6.14)

where we have used the identity
∫
�/2� e2π iλ′mdλ′ = 2δm,0 form ∈ 1

2�. Setting `
′ = −n completes this case. The

Ramond case is similar.

By a slight abuse of nomenclature, we shall from here on refer to the integration kernels appearing in the integrals
(6.11) as S-matrix coefficients. The coefficient of the (super)character of a moduleM′ appearing in the S-transform
of the (super)character of a moduleM will be denoted by Sε,ε ′[M→M′], where ε and ε ′ take values 0 or 1

2 to refer
to the character or supercharacter of M and M′, respectively. With this convention, we may rewrite (6.11) in the
form

Sε,ε ′
[
σ `Cλ → σ `′Cλ′

]
= 0, Sε,ε ′

[
σ `Eλ → σ `′Cλ′

]
=

1
√

2
KS
`,`′ (λ, λ

′)1`=ε ′1`′,ε ,

Sε,ε ′
[
σ `Cλ → σ `′Eλ′

]
=

1
√

2
KS
`,`′ (λ, λ

′)1`,ε ′1`′=ε , Sε,ε ′
[
σ `Eλ → σ `′Eλ′

]
=

1
2
KS
`,`′ (λ, λ

′)1`=ε ′1`′=ε ,

(6.15)

where the condition in the index of the characteristic function 1• (which is 1 when • is true and 0 otherwise) is
always understood to be taken mod 1 whenever it involves an ε.

This notation allows us to define the transpose of the S-matrix elements in the obvious way:

Sε,ε ′
[
M→M′

] t
= Sε ′,ε

[
M′ →M

]
. (6.16)

The adjoint † is then defined to be the (complex) conjugate transpose, as usual. We now see that with respect to the
standard basis of characters and supercharacters,

{
chε

[
σ `Cλ

]
, chε

[
σ `Eµ

]
: ε ∈ {0, 1

2}, ` ∈ 1
2�, λ ∈ �/�, µ ∈ �/2�

}
, (6.17)

the S-matrix entries of Equation (6.15) are manifestly symmetric with respect to transposition. One can also check
that the S- and T-transforms are unitary in the sense that T†T = 1 = S†S. For example, the (C → C)-type entries of
S†S are (because Sε,ε ′′[σ `Cλ → σ `′′Cλ′′] = 0)∑

ε ′′

∑
`′′∈ 1

2�

∫
�/2�

Sε,ε ′′
[
σ `Cλ → σ `′′Eλ′′

]∗
Sε ′′,ε ′

[
σ `′′Eλ′′ → σ `′Cλ′

]
dλ′′

=
1
2

∑
ε ′′

∑
`′′∈ 1

2�

1`,ε ′′1`′′=ε1`′′=ε ′1`′,ε ′′e2π i(2k (`−`′)`′′+(λ−λ′)`′′
∫
�/2�

e2π i(`−`′)λ′′ dλ′′

= 1ε=ε ′1`=`′
∑

`′′∈�+ε

e2π i(λ−λ′)`′′ = δε,ε ′δ`,`′δ (λ = λ
′ mod 1)e2π iε (λ−λ′) . (6.18)

The result matches the corresponding entries of the identity operator because we should take λ = λ′ (choosing a
fundamental domain for �/� in the basis (6.17)), so that e2π iε (λ−λ′) = 1. If we had insisted on taking λ′ = λ + 1
instead, then we would have obtained an additional sign when ε = 1

2 . This sign is naturally explained by the fact that
the Neveu-Schwarz supercharacters satisfy ch1/2[σ `Cλ+1] = ch1/2[Πσ `Cλ] = −ch1/2[σ `Cλ].

6.2. Atypical modular transforms. Given the modular S- and T-transforms of the standard modules, it is now easy
to compute the corresponding transforms of a given atypical simple (super)character using Corollary 16. We could
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instead compute these transforms using the formulae of Section 5.1 which, after all, are already expressed in terms
of theta functions. However, these formulae only represent the correct character on an appropriate annulus in the
z-plane, which becomes a horizontal strip in the ζ -plane. It is easy to see that the modular S-transform does not
respect these strips, so one must meromorphically continue the character in ζ in order to get good modular properties.
Unfortunately, different strips correspond to different spectral flows of the atypical simple module. The upshot is, as
was first noted in [22], that meromorphically continuing the characters in ζ leads to a loss of linear independence.

The standard module formalism, expressing the atypical simple (super)characters as linear combinations of
standard (super)characters, neatly sidesteps this linear independence problem by treating all (super)characters as
formal power series in z whose coefficients are meromorphic functions of q (in the unit disc). We therefore combine
the results of Corollary 16 and Proposition 18 to deduce (extending the notation in an obvious way) the S-matrix
entries involving atypicals.

Proposition 19. The S-matrix entries describing the decomposition of the S-transforms of the atypical simple
modules are

Sε,ε ′
[
σ `A0 → σ `′Cλ′

]
=

KS
`,`′

(0, λ′)

2
√

2 cos(πλ′)
1`,ε ′1`′,ε ,

Sε,ε ′
[
σ `A0 → σ `′Eλ′

]
=

KS
`,`′

(0, λ′)

4 cos(πλ′) + 2
√

2
1`,ε ′1`′=ε ,

Sε,ε ′
[
σ `B±

∓1/2 → σ `′Cλ′
]
=

KS
`,`′

(∓ 1
2 , λ

′)

2
√

2 cos(πλ′)
1`,ε ′1`′,ε ,

Sε,ε ′
[
σ `B±

∓1/2 → σ `′Eλ′
]
=

(
1 +
√

2e∓π iλ
′
) KS

`,`′
(∓ 1

2 , λ
′)

4 cos(πλ′) + 2
√

2
1`,ε ′1`′=ε .

(6.19)

Proof. The calculations are all very similar, so we only detail one example:

Sε,ε ′
[
σ `A0 → σ `′Cλ′

]
=

∞∑
n=0

(
Sε,ε ′

[
σ `+4n+1/2E+5/4 → σ `′Cλ′

]
+ (−1)2εSε,ε ′

[
σ `+4n+3/2E+3/4 → σ `′Cλ′

]

−(−1)2εSε,ε ′
[
σ `+4n+5/2E+5/4 → σ `′Cλ′

]
− Sε,ε ′

[
σ `+4n+7/2E+3/4 → σ `′Cλ′

] )
=

e−2π i(`+2) (2k`′+λ′)
√

2

∞∑
n=0

e−8π iλ′n · 2i
(
(−1)2`

′

sin(3πλ′) + (−1)2ε sin(πλ′)
)
1`,ε ′1`′,ε

=
e−2π i`(2k`′+λ′)

√
2

sin(3πλ′) − sin(πλ′)
sin(4πλ′)

1`,ε ′1`′,ε

=
e−2π i`(2k`′+λ′)

√
2

1
2 cos(πλ′)

1`,ε ′1`′,ε . (6.20)

Note here that the denominator should be expanded in non-negative powers of e−π iλ′ .

7. The affine minimal model B0 |1 (2, 4): Grothendieck fusion rules

This final section applies the modular S-transforms, computed explicitly in the previous section, to the calculation
of the Grothendieck fusion rules of B0 |1 (2, 4). This requires a version of the Verlinde formula and we begin by
deducing such a formula, valid for vertex operator superalgebras like the one under consideration, from the standard
Verlinde formula of its bosonic orbifold. The latter is of course conjectural, but has (in this case) already passed one
very stringent consistency test: the coefficients computed by the standard Verlinde formula for the bosonic orbifold
of B0 |1 (2, 4) are all non-negative integers [25].

7.1. AVerlinde formula for B0 |1 (2, 4). The purpose of this section is to determine the standard Verlinde formula for
the B0 |1 (2, 4) Grothendieck fusion ring. This is a formula for the (super)characters of fusion products of B0 |1 (2, 4)-
modules that uses only the modular properties of the (super)characters as input data. As knowing the character and
supercharacter of a module in the category P amounts to knowing the image of the module in the Grothendieck group,



33

this formula allows us to compute fusion at the level of the Grothendieck group, thereby turning the Grothendieck
group into a ring. Of course, this ring structure will only be well defined if fusing with any module of P defines an
exact endofunctor of P. We conjecture that this is indeed the case, though we have no proof. The results obtained
below serve, among many things, as a consistency check on this conjecture.

We arrive at the standard Verlinde formula by interpreting B0 |1 (2, 4) as a simple current extension of its bosonic
orbifold — the vertex operator algebra formed by the even elements of B0 |1 (2, 4) — and then lifting the standard
Verlinde formula of the orbifold back to B0 |1 (2, 4). In the case at hand, the bosonic orbifold is actually isomorphic to
the ŝl (2) minimal model vertex operator algebra A1 (3, 4) of level − 5

4 , see [25, Sec. 10], although this identification is
not needed for what follows. The aim of the standard Verlinde formula is to determine the Grothendieck fusion rules
of B0 |1 (2, 4) directly without recourse to those of the orbifold. Of course, it is easy, in this particular example, to use
the orbifold’s Grothendieck fusion rules (which were computed in [25]), but the point is to develop the methodology
in a generality that applies for all admissible levels.

In order to be concise, we shall in this subsection denote the affine minimal model B0 |1 (2, 4) by V. Its bosonic
orbifold vertex operator algebra (isomorphic to A1 (3, 4)) will be denoted by O. Let × denote the fusion product
of V-modules and let ×O denote the fusion product of O-modules. Denote by ↓ the restriction of V-modules to
O-modules and by ↑ the induction of O-modules to V-modules. We note the following relevant properties and
assumptions (which are understood to be in force):

(i) The vertex operator superalgebra V is a order 2 simple current extension of O, that is, there exists a simple
O-module J such that J ×O J � O and V↓ � O ⊕ J. This property is expected for all bosonic orbifolds and has
been proven rigorously under certain hypotheses in [90,91]. While these works do not address vertex operator
superalgebras per se, their methods are easily adapted to this situation (see [92, App. A]). Unfortunately, the
required hypotheses are not known to be satisfied in our case, but this property was verified in [25, see Prop. 15
and Sec. 10] under the assumption that the standard Verlinde formula for O � A1 (3, 4) computes Grothendieck
fusion coefficients for O-modules.

(ii) V admits a set of even parity standard modules S = S0 ∪ S1/2, where S0 and S1/2 denote the sets of
even parity standard modules in the Neveu-Schwarz and Ramond sectors, respectively. This means that the
characters and supercharacters of the modules in S span a representation of the modular group and every
simple module admits a resolution in terms of these modules and their parity reversals. For ξ = 0, 1

2 , let
S O
ξ be the set of O-modules that are obtained as direct summands of restrictions of V-modules in Sξ . Then,

S O = S O
0 ∪S O

1/2 forms a set of standard O-modules.
(iii) The fusion products of V and O are compatible, that is, for any O-modules W and X,

W↑ × X↑ � (W ×O X)↑. (7.1)

This was proven in [28] under the assumption that × and ×O associate. This assumption may be removed [93]
if the O-modules form a vertex tensor category in the sense of Huang, Lepowsky and Zhang [85]. However,
this is not known for the categories we consider; nevertheless, we assume that (7.1) holds.

(iv) Fusing with a V-module from the given category P of V-modules defines an exact endofunctor on P. Similarly,
fusing with an O-module defines an exact endofunctor on the category obtained by applying the restriction
functor to P. In other words, the corresponding Grothendieck fusion products are well defined.

(v) The standard module formalism of [27, 28] applies to the orbifold vertex operator algebra O, so that

ch
[
W

]
�O ch

[
X

]
= ch

[
W ×O X

]
=

∫
S O

[
Y

W X

]

O
ch

[
Y

]
dY (7.2a)

for any (appropriate) O-modules W and X, where �O denotes the Grothendieck fusion product of O,
[

Y

W X

]

O
=

∫
S O

s
[
W→ Z

]
s

[
X→ Z

]
s

[
Y→ Z

]∗

s
[
O→ Z

] dZ (7.2b)
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is a Grothendieck fusion coefficient forO, and s
[
· → ·

]
denotes theS-matrix entries of theO-module characters

(in the basis of standard characters). This is the most important assumption that we are making. It was also
assumed in [25] when deriving the Grothendieck fusion rules for all admissible level ŝl (2) minimal models.
Equation (7.2b) is the standard Verlinde formula for O.

These assumptions imply the following easy consequences.

Corollary 20.

(i) The restriction of any V-moduleM decomposes as

M↓ � M(0) ⊕M(1) � M(0) ⊕ (J ×O M(0) ) � (O ⊕ J) ×O M(0) � V↓ ×O M(0), (7.3)

where M(0) and M(1) � J ×O M(0) denote the O-submodules consisting of the even and odd elements of M,
respectively.

(ii) The simple current J has no fixed points: ifW is a simple O-module, then J ×O W �W.
(iii) For any V-moduleM, the inductions of M(0) andM(1) are given by

M(0)↑ � M, M(1)↑ � ΠM. (7.4)

(iv) For any V-moduleM, we have

chε
[
M

]
= ch

[
M(0)

]
+ (−1)2εch

[
M(1)

]
=

(
ch

[
O

]
+ (−1)2εch

[
J

] )
�O ch

[
M(0)

]
. (7.5)

We now state the standard Verlinde formula for V. For this, it is convenient to treat the parameter ξ ∈ {0, 1
2} that

distinguishes the Neveu-Schwarz and Ramond sectors (see assumption (ii) above) as an element of �2.

Theorem 21. Let M and N be V-modules and let ξ and ξ ′ be 0 or 1
2 , depending on whether M and N are in the

Neveu-Schwarz or Ramond sector, respectively. Under the assumptions (i)–(v) above, we then have

chε
[
M

]
� chε

[
N

]
= chε

[
M × N

]
=

∫
Sξ +ξ ′

[
P

M N

]

ε
chε

[
P

]
dP, (7.6a)

where the Verlinde coefficients of V, indexed by ε = 0 (characters) or ε = 1
2 (supercharacters), are given by the

following standard Verlinde formula:
[

P

M N

]

ε
=

∫
Sε+1/2

Sε,ξ+1/2
[
M→ Q

]
Sε,ξ ′+1/2

[
N → Q

]
Sε,ξ+ξ ′+1/2

[
P→ Q

]∗

Sε,1/2
[
V→ Q

] dQ. (7.6b)

We refer to the
[

P
M N

]
ε
as Verlinde coefficients, rather than Grothendieck fusion coefficients, because they depend

upon whether we compute the character (ε = 0) or supercharacter (ε = 1
2 ) of the fusion product. Of course, knowing

both allows one to deduce the true Grothendieck fusion coefficients (Section 5.4) which will be denoted by
[

P
M N

]
.

We shall prove Theorem 21 below after recording some additional identities as preparatory lemmas. First however,
we note that (7.6b) may be simplified by noting that all the S-matrix elements (6.15) and (6.19) may be factored as
follows:

Sε,ε ′
[
M→ N

]
= Σ

[
M→ N

]
1ξ,ε ′1ξ ′,ε . (7.7)

Here, ξ is 0 or 1
2 according as to whetherM is in the Neveu-Schwarz or Ramond sectors, respectively, and ξ ′ similarly

indicates the sector of N. The simplified standard Verlinde formula is therefore
[

P

M N

]

ε
= 1P∈Sξ +ξ ′

∫
Sε+1/2

Σ
[
M→ Q

]
Σ

[
N → Q

]
Σ

[
P→ Q

]∗

Σ
[
V→ Q

] dQ, (7.8)

where the characteristic function takes care of the fact that this Grothendieck fusion coefficient is 0 if P < Sξ+ξ ′ .

Lemma 22. Let W and X be standard O-modules. Then, we have

s
[
W→ X

]
=

1
2

∑
ε,ε ′

Sε,ε ′
[
W↑ → X↑

]
, s

[
J ×O W→ X

]
=

1
2

∑
ε,ε ′

(−1)2εSε,ε ′
[
W↑ → X↑

]
, (7.9a)
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where ε and ε ′ are summed over 0 and 1
2 . If W ∈ S O

ξ and X ∈ S O
ξ ′ , then we may write the first of these relations in

the equivalent form
Sε,ε ′

[
W↑ → X↑

]
= 2s

[
W→ X

]
1ξ,ε ′1ξ ′,ε . (7.9b)

Proof. To establish the first relation of (7.9a), we note that

S
{
ch

[
W

]}
=

1
2

∑
ε

S
{
chε

[
W↑

]}
=

1
2

∑
ε,ε ′

∫
S

Sε,ε ′
[
W↑ → N

]
chε ′

[
N

]
dN

=
1
2

∑
ε,ε ′

∫
S

Sε,ε ′
[
W↑ → N

] (
ch

[
N( 0)

]
+ (−1)2ε

′

ch
[
J ×O N(0)

] )
dN

=
1
4

∑
ε,ε ′

∫
S O

Sε,ε ′
[
W↑ → X↑

] (
ch

[
X

]
+ (−1)2ε

′

ch
[
J ×O X

] )
dX

(dN = 1
2dX because X and J ×O X are distinct, by Corollary 20(ii), yet only one has a lift in S because of the even

parity requirement, see assumption (ii) above)

=
1
4

∑
ε,ε ′

∫
S O

(
Sε,ε ′

[
W↑ → X↑

]
+ (−1)2ε

′

Sε,ε ′
[
W↑ → (J ×O X)↑

] )
ch

[
X

]
dX

(since the square of J ×O − is equivalent to the identity functor)

=
1
2

∑
ε,ε ′

∫
S O

Sε,ε ′
[
W↑ → X↑

]
ch

[
X

]
dX, (7.10)

(since (J ×O X)↑ � Π(X↑), by Corollary 20(iii)). The second relation follows using the same technique. To deduce
(7.9b), note from (6.15) that the S-matrix elements of V are all proportional to 1ξ,ε ′1ξ ′,ε and so the sums in (7.9a)
each have a single contributing summand.

Lemma 23. Let W ∈ S O
ξ and X ∈ S O

ξ ′ be standard O-modules, for some ξ , ξ ′ ∈ {0, 1
2}. Then, we have

s
[
J ×O W→ X

]
= −(−1)2ξ

′

s
[
W→ X

]
, s

[
W→ J ×O X

]
= −(−1)2ξ s

[
W→ X

]
. (7.11)

Proof. These identities follow, almost immediately, from the general theory of simple currents due to Schellekens
and Yankielowicz [94, Sec. 4]. Indeed, they show8 that

s
[
J ×O W→ X

]
=

s
[
J→ X

]

s
[
O→ X

] s
[
W→ X

]
(7.12)

and that the X-dependent proportionality factor is just a sign, as J is an order two simple current. They moreover
show that, up to a global X-independent sign, this proportionality constant is determined by the difference in the
conformal weights (mod 1) of X and J ×O X. As this difference is 0 if X↑ is Neveu-Schwarz and 1

2 if X↑ is Ramond,
the proportionality factor is ±(−1)2ξ ′ .

To determine the global sign, we compute the right-hand sides of both identities in (7.9a) in a simple case and
compare. TakingW↑ = Cλ′ andX↑ = Eλ′ , so that both sides are non-zero, it is obvious that the proportionality factor
in (7.12) is 1. Since Eλ′ is Ramond (ξ ′ = 1

2 ), the global sign is thus −1. This completes the proof as the second
identity follows from the first by the symmetry of the orbifold S-matrix.

Proof of Theorem 21. First, we combine (7.1) with (7.4) to give

M × N � M(0)↑ × N(0)↑ � (M(0) ×O N(0) )↑, (7.13)

which implies that
(M × N)↓ � V↓ ×O (M(0) ×O N(0) ). (7.14)

8Strictly speaking, the material in [94] assumes the setting of a rational vertex operator algebra. However, it is possible to generalise many of
their results to the standard module formalism, see [95] for details.
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As V↓ � O ⊕ J (item (i) above), this implies the (super)character identity

chε
[
M ×N

]
=

(
ch

[
O

]
+ (−1)2εch

[
J

] )
�O ch

[
M(0) ×O N(0)

]

=

∫
S O

[
W

M(0) N(0)

]

O

(
ch

[
O

]
+ (−1)2εch

[
J

] )
�O ch

[
W

]
dW

=

∫
S O

[
W

M(0) N(0)

]

O
chε

[
W↑

]
dW

=

∫
S

( [
P(0)

M(0) N(0)

]

O
chε

[
P

]
+

[
J ×O P(0)

M(0) N(0)

]

O
chε

[
ΠP

])
dP

=

∫
S

( [
P(0)

M(0) N(0)

]

O
+ (−1)2ε

[
J ×O P(0)

M(0) N(0)

]

O

)
chε

[
P

]
dP, (7.15)

where we set P =W↑, hence P(0) � W, and recall that S consists of only the even parity standard V-modules (item
(ii) above). Using Lemma 23, the contribution of the standard V-module P to chε

[
M × N

]
is therefore

[
P

M N

]

ε
=

[
P(0)

M(0) N(0)

]

O
+ (−1)2ε

[
J ×O P(0)

M(0) N(0)

]

O

=

∫
S O

s
[
M(0) → X

]
s

[
N(0) → X

]

s
[
O→ X

]
(
s

[
P(0) → X

]
+ (−1)2εs

[
J ×O P(0) → X

] )∗
dX

= 2
∫

S O
ε+1/2

s
[
M(0) → X

]
s

[
N(0) → X

]
s

[
P(0) → X

]∗

s
[
O→ X

] dX

= 2
∫

Sε+1/2

*.
,

s
[
M(0) → Q(0)

]
s

[
N(0) → Q(0)

]
s

[
P(0) → Q(0)

]∗

s
[
O→ Q(0)

]

+
s

[
M(0) → J ×O Q(0)

]
s

[
N(0) → J ×O Q(0)

]
s

[
P(0) → J ×O Q(0)

]∗

s
[
O→ J ×O Q(0)

] +/
-

dQ. (7.16)

Again using Lemma 23, the integrand can only be non-zero if P ∈ Sξ+ξ ′ . Assuming this, we have

[
P

M N

]

ε
= 4

∫
Sε+1/2

s
[
M(0) → Q(0)

]
s

[
N(0) → Q(0)

]
s

[
P(0) → Q(0)

]∗

s
[
O→ Q(0)

] dQ

=

∫
Sε+1/2

Sε,ξ+1/2
[
M→ Q

]
Sε,ξ ′+1/2

[
N → Q

]
Sε,ξ+ξ ′+1/2

[
P→ Q

]∗

Sε,1/2
[
V→ Q

] dQ (7.17)

by (7.9b), as required.

7.2. Evaluating the Verlinde formula. In this section, we assume that B0 |1 (2, 4) (and its bosonic orbifold) satisfy
the assumptions laid out at the beginning of Section 7.1. The aim is to use Theorem 21 to compute the Grothendieck
fusion rules of the simple B0 |1 (2, 4)-modules in the category P. To simplify the calculations, we shall make use of
the following observations, writing A[M] for [AM], A = σ ,w,Π, when convenient.

Proposition 24. LetM and N be B0 |1 (2, 4)-modules in the category P. Then, under the assumptions (i)–(v) above,
for allm,n ∈ 1

2�, we have
[
ΠM

]
�

[
N

]
= Π

( [
M

]
�

[
N

] )
, (7.18a)

[
wM

]
�

[
wN

]
= w

( [
M

]
�

[
N

] )
, (7.18b)

[
σmM

]
�

[
σnN

]
= σm+n

( [
M

]
�

[
N

] )
. (7.18c)

Proof. Note that the standard Verlinde formula (7.6b) for the Verlinde coefficients is bilinear in M and N. We may
therefore restrict toM and N simple (or standard).
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Equation (7.18a) is clear from (5.2) and (5.35): chε [ΠM] = (−1)2εchε [M]. For (7.18b), note that combining
(4.18) with (6.15) and (6.19) yields

Sε,ε ′
[
wM→ wQ

]
= Sε,ε ′

[
M→ Q

]
. (7.19)

Since Q 7→ wQ is a bijection of Sε+1/2 and V = B0 |1 (2, 4) is self-conjugate, it follows from the standard Verlinde
formula (7.6b) that [

wP
wM wN

]

ε
=

[
P

M N

]

ε
, (7.20)

as required.
The key to (7.18c) is to note from (6.15) and (6.19) that

Σ
[
σ `M→ Q

]
= e−2π iα (Q)`Σ

[
M→ Q

]
, (7.21)

where α (Q) ∈ � does not depend on M or `. As Q is the same in all Σ-factors appearing in the integrand of the
simplified standard Verlinde formula (7.8), the exponential factors involving α (Q) cancel and we have

[
σ `+`′P

σ `M σ `′N

]

ε
= 1σ `+`′P∈Sξ +ξ ′+`+`′

∫
Sε+1/2

Σ
[
σ `M→ Q

]
Σ

[
σ `′N → Q

]
Σ

[
σ `+`′P→ Q

]∗

Σ
[
V→ Q

] dQ

= 1P∈Sξ +ξ ′

∫
Sε+1/2

Σ
[
M→ Q

]
Σ

[
N → Q

]
Σ

[
P→ Q

]∗

Σ
[
V→ Q

] dQ =
[

P

M N

]

ε
. (7.22)

Here, ξ and ξ ′ indicate whether M and N belong to the Neveu-Schwarz or Ramond sector, as usual.

Theorem 25. Under the assumptions (i)–(v) above, the image [A0] of the vacuum module is the unit of the
Grothendieck fusion ring of B0 |1 (2, 4). Moreover, the Grothendieck fusion rules of the remaining simple B0 |1 (2, 4)-
modules are then specified by

[
B+
−1/2

]
�

[
B+
−1/2

]
=

[
ΠσB−+1/2

]
+

[
σ 1/2E1/4

]
,

[
B+
−1/2

]
�

[
B−+1/2

]
=

[
A0

]
+

[
C0

]
,

(7.23a)

[
B+
−1/2

]
�

[
Cλ

]
=

[
σ 1/2Eλ−k−1/2

]
+

[
Πσ 1/2Eλ−k+1/2

]
+

[
Cλ−1/2

]
,

[
B+
−1/2

]
�

[
Eλ

]
=

[
σ 1/2Cλ−k−1/2

]
+

[
Eλ−1/2

]
,

(7.23b)

[
Cλ

]
�

[
Cµ

]
=

[
Πσ 1/2Eλ+µ−k−1

]
+

[
σ 1/2Eλ+µ−k

]
+ 2

[
Cλ+µ

]
+

[
σ−1/2Eλ+µ+k

]
+

[
Πσ−1/2Eλ+µ+k+1

]
,

[
Cλ

]
�

[
Eµ

]
=

[
σ 1/2Cλ+µ−k

]
+

[
Eλ+µ

]
+

[
ΠEλ+µ+1

]
+

[
σ−1/2Cλ+µ+k

]
,

[
Eλ

]
�

[
Eµ

]
=

[
σ 1/2Eλ+µ−k

]
+

[
Cλ+µ

]
+

[
σ−1/2Eλ+µ+k

]
,

(7.23c)

together with Proposition 24.

Proof. These Grothendieck fusion rules are grouped into three classes: atypical by atypical, atypical by typical
and typical by typical. The rules are also correct whenever a typical module should be replaced by an atypical
standard module (on the left-hand or right-hand sides). They all follow by evaluating the standard Verlinde formula
of Theorem 21. We discuss the evaluation for two examples, one from each of the last two classes, and explain how
to then deduce the rules for the remaining class. The omitted calculations are similar to those presented.

First, we compute [Cλ] � [Cµ ]. Using the simplified standard Verlinde formula (7.8), the Verlinde coefficient of
[σ `Cν ] in this fusion product is

[
σ `Cν

Cλ Cµ

]

ε
= 1σ `Cν ∈S0

∫
Sε+1/2

Σ
[
Cλ → Q

]
Σ

[
Cµ → Q

]
Σ

[
σ `Cν → Q

]∗

Σ
[
A0 → Q

] dQ

= 1`∈�

∑
m∈�+ε

∫
�/2�

Σ
[
Cλ → σmEρ

]
Σ

[
Cµ → σmEρ

]
Σ

[
σ `Cν → σmEρ

]∗

Σ
[
A0 → σmEρ

] dρ
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(since Q = σmCρ gives no contribution)

= 1`∈�

∑
m∈�+ε

e−2π i(λ+µ−ν−2k`)m
∫
�/2�

e2π i`ρ
(

1
√

2
eπ iρ +

1
√

2
e−π iρ + 1

)
dρ

= 2δ`,0e−2π i(λ+µ−ν )εδ (ν = λ + µ mod 1) (7.24)

(as the terms involving e±π iρ lead to ` = ∓ 1
2 < �). The contribution to the (super)character of Cλ × Cµ , as specified

in (7.6a), is thus ∑
`∈ 1

2�

∫
�/�

[
σ `Cν

Cλ Cµ

]

ε
chε

[
σ `Cν

]
dν = 2chε

[
Cλ+µ

]
. (7.25)

The contribution to the Grothendieck fusion rule [Cλ] � [Cµ ] is therefore 2[Cλ+µ ].
A very similar calculation gives

[
σ `Eν

Cλ Cµ

]

ε
= δ`,1/2e−2π i(λ+µ−ν−k )εδ (ν = λ + µ − k mod 1)

+ δ`,−1/2e−2π i(λ+µ−ν+k )εδ (ν = λ + µ + k mod 1). (7.26)

To compute the contribution to the (super)character, we must account for the fact that σ `Eν is 2-periodic in ν :∑
`∈ 1

2�

∫
�/2�

[
σ `Eν

Cλ Cµ

]

ε
chε

[
σ `Eν

]
dν = chε

[
σ 1/2Eλ+µ−k

]
+ (−1)2εchε

[
σ 1/2Eλ+µ−k−1

]

+ chε
[
σ−1/2Eλ+µ+k

]
+ (−1)2εchε

[
σ−1/2Eλ+µ+k+1

]
. (7.27)

The signs (−1)2ε therefore indicate parity reversal in the contribution to the Grothendieck fusion rule. Putting this
together with the contribution from the previous calculation completes the determination of [Cλ] � [Cµ ].

For our second example, we consider [B+
−1/2] � [Eλ]. The contributions from the [σ `Cµ ] are calculated as in the

previous example, hence are omitted. We instead consider the contributions from the [σ `Eµ ]. This requires us to
take both Q = σmCρ and Q = σmEρ in the simplified standard Verlinde formula, giving (after some familiar steps)
the result that [

σ `Eµ

B+
−1/2 Eλ

]

ε

=
1
2
(
1 + e−π i(λ−µ−1/2)

)
δ`,0e−2π i(λ−µ−1/2)εδ (µ = λ − 1

2 mod 1). (7.28)

Integrating over �/2� to get the contribution to the (super)character, the first factor is 1 when µ = λ − 1
2 mod 2 but

is 0 when µ = λ + 1
2 mod 2. In this way, we avoid introducing a parity-reversed module in the contribution [Eλ−1/2]

to the Grothendieck fusion rule.
Finally, we note that the most straightforward way to compute the atypical by atypical Grothendieck fusion rules

(7.23a) is to combine the identities of Corollary 16 with the atypical by standard rules (7.23b) that have already been
computed. (One can also use the same method to compute the atypical by standard rules in terms of the standard by
standard ones (7.23c), but the former are easy to calculate directly as we have seen.) This completes the proof.

Remark. We note that the reason why one can use the identities of Corollary 16 in this proof is that the Grothendieck
fusion product extends to the given completion (5.42) of the Grothendieck group. This follows easily from Equa-
tions (7.18c) and (7.23c) upon recalling that the completion only admits infinite-linear combinations of images of
standards in which the spectral flow indices are bounded below.

Remark. Of course, one can easily confirm that the B0 |1 (2, 4) Grothendieck fusion rules computed here are
reproduced by combining (7.1) with the A1 (3, 4) Grothendieck fusion rules reported in [25, Tab. 3]. When doing
so, note that one “unit” of spectral flow for B0 |1 (2, 4) amounts to two units of spectral flow for A1 (3, 4) (with the
conventions used here and in [25]).
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1994. arXiv:hep-th/9310004.
[11] O Andreev. Operator algebra of the SL(2) conformal field theories. Phys. Lett., B363:166–172, 1995. arXiv:hep-th/9504082.
[12] J Petersen, J Rasmussen, and M Yu. Fusion, crossing and monodromy in conformal field theory based on SL(2) current algebra with

fractional level. Nucl. Phys., B481:577–624, 1996. arXiv:hep-th/9607129.
[13] C Dong, H Li, and G Mason. Vertex operator algebras associated to admissible representations of ŝ l2. Comm. Math. Phys., 184:65–93,
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Angew. Math., 531:1–34, 2001.
[61] G Sotkov and M Stanishkov. N = 1 superconformal operator product expansions and superfield fusion rules. Phys. Lett., B177:361–367,

1986.
[62] A Tsuchiya and S Wood. On the extendedW -algebra of type sl2 at positive rational level. Int. Math. Res. Not., 2015:5357–5435, 2015.

arXiv:1302.6435 [hep-th].
[63] D Ridout and S Wood. From Jack polynomials to minimal model spectra. J. Phys., A48:045201, 2015. arXiv:1409.4847 [hep-th].
[64] D Ridout and S Wood. Relaxed singular vectors, Jack symmetric functions and fractional level ŝl (2) models. Nucl. Phys., B894:621–664,
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