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Abstract. In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae
for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module
highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions
and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock
module as well as the Jack symmetric functions.

1. Introduction

AW-algebra is, generally speaking, a vertex operator algebrawhose set of generating fields includes conformal primaries
of conformal weights greater than 1. Aside from the Virasoro minimal models, such algebras were first considered by
Zamolodchikov [36] shortly after the genesis of conformal field theory [6]. We refer to [10] for an overview of W-algebras
and their role in conformal field theory.

Here, we focus on the so-calledWN algebras, whereN ≥ 2, whichwere first considered in [5]. They form a distinguished
family of W-algebras that are generated by N − 1 fields of conformal weights 2, 3, . . . ,N , where the generating field of
conformal weight 2 is the energy momentum tensor and all the remaining generators are conformal primaries. While these
algebras have received a lot of attention, there is much that remains poorly understood. Even for the case N = 3 there are
significant difficulties, see [9] for example.

The WN algebras were first proposed in the context of statistical mechanics, where they were linked to the continuum
limits of certain �N -symmetric lattice models [15]. In particular, W3 was first introduced to describe the extended
symmetry of the 3 state Potts model [36]. They enjoyed a period of intense popularity shortly thereafter as physicists
explored the possibilities in their largely unsuccessful quest to classify all rational conformal field theories. More recently,
under the name of minimal model holography, WN algebras (and their supersymmetric generalisations) have been the
focus of intense scrutiny because of their role in constructing the AdS/CFT duals of Vasiliev higher spin theories of gravity
on AdS3 [31], see [18] for an in depth review.

The WN algebras are also of great mathematical interest, since they are closely related to vertex operator algebras
constructed from affine Lie algebras through either cosets [4, 19] of the form

ŝl (N )k ⊗ ŝl (N )1
ŝl (N )k+1

(1.1)

or through quantum hamiltonian reductions associatedwith principal nilpotents of sl (N ) [11,17]. Although the equivalence
of the coset and principal reduction pictures is only now being established rigorously [1,2], this has the happy consequence
that even though WN algebras are quite different, structurally, to affine vertex operator algebras, Lie-theoretic ideas can
still be used to analyse them.

The purpose of this paper is to derive explicit formulae for singular vectors of theWN algebras. Recall that the (universal)
WN algebra may be realised as a subalgebra of the rank N − 1 Heisenberg vertex algebra and thus, by restriction, the Fock
spaces of the Heisenberg algebra become modules over the WN algebras. It is within these Fock spaces that we derive
explicit formulae for WN singular vectors.

The derivation uses the simple, but far-reaching, fact that the universal enveloping algebra of the creation operators of
a Heisenberg algebra is, as an associative algebra, isomorphic to the complexification of a ring of symmetric functions.1
The appeal of this fact is that it allows one to express complicated singular vectors, consisting of large linear combinations
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1We adhere to the convention that a symmetric polynomial in a countably infinite number of variables is called a symmetric function.

1



2 D RIDOUT, S SIU, AND S WOOD

of products of Heisenberg creation operators, as images of symmetric functions that have a very simple form under the
aforementioned isomorphism.

This identification of singular vectors with symmetric functions can be traced back to Wakimoto and Yamada [32],
who discovered that Virasoro singular vectors in Fock spaces for the rank 1 Heisenberg algebra of central charge c = 1
can be elegantly expressed in terms of Schur functions, a much studied basis of the ring of symmetric functions. This
work was later generalised to free field realisations of the Virasoro algebra at arbitrary central charge by Mimachi and
Yamada [24], with Schur functions being replaced by Jack symmetric functions [20]. We recall that the Jack functions
form a one-parameter family of bases of the ring of symmetric functions and that the Schur functions correspond to the
parameter being set to 1.

This work relied heavily on a construction by Tsuchiya and Kanie [28,29] of Virasoro module homomorphisms called
screening operators. With these, singular vectors may be realised as images of Fock space highest-weight vectors. These
screening operators are also the key ingredient in Dotsenko and Fateev’s Coulomb gas formalism [14]. Similar singular
vector constructions using screening operators have recently been detailed for the free field realisations of the vertex
operator algebras associated with ŝl (2) and the N = 1 superconformal algebras, with singular vectors being evaluated
using Jack symmetric functions, their supersymmetric generalisations and related families [7, 12, 13, 21, 26, 35].

The Jack symmetric function basis is indexed by partitions of integers and, interestingly, the singular vectors of Fock
spaces for the Virasoro algebra and ŝl (2) are always associated to a single Jack symmetric function indexed by a rectangular
partition, that is, a partition whose parts are all equal. It is therefore natural to try and find an interpretation for the Jack
symmetric functions indexed by non-rectangular partitions. One such interpretation was found by Awata, Odake, Matsuo
and Shiraishi [3] while studying a connection between the Calogero-Sutherland model, a model for a system of non-
relativistic particles on a circle with an inverse square potential, and the WN algebras. In [3], it is noted that WN singular
vectors can be realised using screening operators acting on rank N − 1 Fock spaces. However, these singular vectors were
not explicitly evaluated, but were instead projected onto a rank 1 Fock space, where they were identified as eigenstates of
the hamiltonian of the Calogero-Sutherland model. As the eigenstates of the Calogero-Sutherland model may be expressed
as products of a ground state wavefunction and Jack polynomials, the conclusion of [3] is then that WN singular vectors
can be used to construct arbitrary Jack polynomials.

Here, in contrast to [3], we do not project, but stay in the rank N − 1 Fock spaces, using symmetric function theory
to find explicit formulae for WN singular vectors. Our main result is that certain singular vectors in rank N − 1 Fock
spaces may be identified with linear combinations of Jack symmetric functions and their skew variants, parametrised by
sequences of partitions.

The motivation for this study of singular vectors is that they have proven invaluable in finding short elegant proofs of the
classification theorems for modules of rank 1 vertex operator algebras [8,25,26,30]. We believe that a solid understanding
of higher rank singular vectors will pave the way to similar classification theorems for higher rank vertex operator algebras.

This paper is organised as follows. Sections 2 to 4 form an overview of known results and serve to fix notation. In
Section 2, we review the rank r Heisenberg vertex algebra for later use. We show how energy-momentum tensors can
be constructed for arbitrary choices of central charge and discuss vertex operators and their compositions. In Section 3,
we give the standard free field realisation of the W3 algebras by explicitly constructing them as subalgebras of the rank 2
Heisenberg vertex algebra. We then determine their screening operators and identify the Fock spaces on which we can
consistently evaluate their action. Section 4 gives a brief overview of the ring of symmetric functions, with particular
emphasis on the Jack symmetric function bases, these being the bases required to evaluate the action of screening operators.

The main results, explicit formulae for WN singular vectors in certain Fock spaces in terms of the Jack symmetric
functions, are given in Sections 5 to 7— see Equation (5.11) for theW3 singular vector formula and Equation (7.17) for that
of WN . In Section 5, we give a detailed derivation of these formulae for the W3 algebras. This case already illustrates the
complexity of the general computations while keeping the formulae reasonably brief. This is followed by a discussion of
simple examples in Section 6 featuring low-grade singular vectors. Although we do not report the results of investigating
any really complicated examples, symbolic algebra packages incorporating symmetric functions, SageMath for example,
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allow such investigations to be straightforwardly performed to quite high grades. In Section 7, we generalise the singular
vector formulae of Section 5 to the WN algebras for all N ≥ 3.

2. The rank r Heisenberg algebra

The theory of r free chiral bosons, also known as the rank r Heisenberg vertex algebra Hr , is a staple of conformal field
theory and vertex operator algebra theory. Here, we construct the Heisenberg algebras by affinising abelian Lie algebras.

The rank r Heisenberg algebra is constructed from an r -dimensional complex vector space h together with a non-
degenerate symmetric bilinear form (−,−). We pick a basis {a1, . . . ,ar } of h such that the Gram matrix of (−,−) is the
Cartan matrix of sl (r + 1): (

ai ,aj
)
= 2δi, j − δi+1, j − δi, j+1, i, j = 1, . . . , r . (2.1)

Since (−,−) is non-degenerate, it defines a vector space isomorphism ι : h → h∗ by a 7→ (a,−). The induced non-
degenerate symmetric bilinear form will also be denoted by (−,−). We denote the images of the basis vectors ai by
α i = ι (ai ) and the elements of the basis of h∗ dual to {ai} by ωi . Thus, ωi (a

j ) = δ ji . The α i and ωi may therefore be
identified as simple roots and fundamental weights, respectively, of sl (r + 1). In this picture, the basis vectors ai ∈ h are
the simple coroots of sl (r + 1).

To any vector a ∈ h, one assigns a field a(z) whose defining operator product expansions are

a(z)b (w ) ∼
(a,b)

(z −w )2
, a,b ∈ h. (2.2)

These fields admit Fourier expansions of the form

a(z) = ∑
n∈�

anz
−n−1, a ∈ h, (2.3)

whose modes satisfy the following commutation relations:[
am ,bn

]
=m(a,b)δm,−n1. (2.4)

The Heisenberg Lie algebra ĥ is the infinite-dimensional Lie algebra spanned by the central element 1 and the generators
am , for all a ∈ h andm ∈ �. We have chosen to denote the central element by 1, since we assume that it will act as the
identity on any ĥ-module. A basis of ĥ is then given by 1 and the aim , with i = 1, . . . , r andm ∈ �.

The Heisenberg Lie algebra admits a triangular decomposition

ĥ = ĥ− ⊕ ĥ0 ⊕ ĥ+, ĥ± =
r⊕
i=1

⊕
m≥1
�ai±m , ĥ0 =

r⊕
i=1
�ai0 ⊕ �1. (2.5)

Verma modules over ĥ are commonly referred to as Fock spaces. These are induced from the one-dimensional modules
�|ζ 〉, ζ ∈ h∗, over ĥ≥ = ĥ0 ⊕ ĥ+ that are defined by

1|ζ 〉 = |ζ 〉, an |ζ 〉 = δn,0ζ (a) |ζ 〉, a ∈ h, n ≥ 0. (2.6)

The Fock spaces

Fζ = U(ĥ) ⊗U(ĥ≥ )
�|ζ 〉 (2.7)

are well known to be simple ĥ-modules, for all ζ ∈ h∗.
As a module over itself, the Heisenberg vertex algebra Hr is identified with the Fock space F0 and the state-field

correspondence is given by

|0〉 ←→ 1, b1
−n1−1 · · ·b

k
−nk−1 |0〉 ←→ :

∂n1

n1!
b1 (z) · · ·

∂nk

nk !
bk (z):, (2.8)

where b1, . . . ,bk ∈ h and normal ordering is defined in the usual way.
The Heisenberg vertex algebra Hr can be endowed with the structure of a vertex operator algebra by choosing an

energy-momentum tensor. This choice is not unique. For the purposes of this note, we shall restrict our attention to the
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following one-parameter family of energy-momentum tensors:

T (z) =
r

∑
i=1

[
1
2

:ai (z)a∗i (z): + α0∂a
∗i (z)

]
, α0 ∈ �. (2.9)

Here, the a∗i ∈ h are dual to the coroots ai in the sense that ι (a∗i ) = ωi . We note that while the quadratic summand in the
above energy-momentum tensor is basis independent, the linear summand is not. The central charge corresponding to this
choice of energy-momentum tensor depends on the parameter α0:

c = r − r (r + 1) (r + 2)α2
0 . (2.10)

By definition, the coefficients of the Fourier expansion of the energy-momentum tensor satisfy the commutation relations
of the Virasoro algebra. Thus, formula (2.9) realises the Virasoro generators Ln , n ∈ �, as infinite sums of products of
Heisenberg generators:

T (z) = ∑
n∈�

Lnz
−n−2, Ln =

r

∑
i=1

[
1
2 ∑
m∈�

:aima∗in−m : − α0 (n + 1)a∗in

]
. (2.11)

This identification yields an action of the Virasoro algebra on the Fock spaces Fζ , ζ ∈ h∗. In this way, any highest-weight
vector |ζ 〉 ∈ Fζ is also a Virasoro highest-weight vector:

Ln |ζ 〉 = hζ δn,0 |ζ 〉, n ≥ 0, hζ =
1
2
(ζ , ζ − 2α0ϱ). (2.12)

Here, ϱ = ∑i ωi is the Weyl vector of sl (r + 1). We note that while the Fock spaces are simple as Heisenberg modules,
they need not be as Virasoro modules.

The primary fields of the free boson theory are called vertex operators (not to be confused with elements of the
Heisenberg vertex operator algebra). To define them, we first need to extend ĥ by �[h∗], the group algebra of h∗, treating h∗

as an abelian group under vector addition and �[h∗] as an abelian Lie algebra. We denote the group algebra basis element
corresponding to η ∈ h∗ by eη and define the commutation relations between the generators am and eη by[

am , eη
]
= δm,0η(a)eη , a ∈ h, η ∈ h∗, m ∈ �. (2.13)

It is easy to check that this extension of ĥ by �[h∗] is a semidirect sum of Lie algebras.
A standard computation now shows that eη maps the highest-weight vector |ζ 〉 ∈ Fζ to a highest-weight vector of

a0-eigenvalue ζ (a) +η(a) = (ζ +η) (a). Following usual practice, we shall identify eη |ζ 〉 with |ζ +η〉. The vertex operator
corresponding to |ζ 〉 = eζ |0〉 is

Vζ (z) = eζ za0 ∏
m≥1

exp
(a−m

m
zm
)

exp
(
−
am
m

z−m
)
, ζ = ι (a) ∈ h∗. (2.14)

These primary fields therefore define linear maps between Fock spaces:

Vζ (z) : Fη → z (ζ ,η)Fζ +ηJz, z−1K. (2.15)

It is easy to check from the Hr -primary operator product expansion

a(z)Vζ (w ) ∼
ζ (a)Vζ (w )

z −w
(2.16)

that a(z) and Vζ (w ) are mutually local for all a ∈ h and ζ ∈ h∗. The same is therefore true for an arbitrary field of Hr and
any vertex operator, by Dong’s lemma.

Finally, suppose that ζi = ι (bi ) ∈ h∗, for i = 1, . . . ,k. Then, a standard computation allows one to write the composition
of the k vertex operators Vζi (zi ) as

Vζ1 (z1) · · ·Vζk (zk ) =
k

∏
i=1

eζi ·∏
1≤i<j≤k

(zi − zj )
(ζi ,ζj ) ·

k

∏
i=1

z
b i0
i · ∏

m≥1
exp

(
1
m

k

∑
i=1

bi−mz
m
i

)
exp

(
−

1
m

k

∑
i=1

bimz
−m
i

)
. (2.17)

This explicit formula will be used many times in what follows.
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3. The Universal W3 Vertex Operator Algebra

In this section, we restrict ourselves to the rank 2 Heisenberg vertex algebra H2 and, in the vein of [16], define a family
of subalgebras, each denoted by W3, called the W3 vertex operator algebras, or W3 algebras for short. These algebras are
parametrised by α0 ∈ � and are strongly generated by the energy-momentum tensor defined in (2.9) and an additional
primary fieldW (z) of conformal weight 3.

In the basis {a1,a2} defined above, for which the Gram matrix of the inner product (−,−) is the Cartan matrix of sl (3),
the energy-momentum tensor T (z) is

T (z) =
1
3

:a1 (z)a1 (z): +
1
3

:a1 (z)a2 (z): +
1
3

:a2 (z)a2 (z): + α0∂za
1 (z) + α0∂za

2 (z) (3.1a)

and the central charge is c = 2 − 24α2
0 . The conformal primary of weight 3 is then

W (z) =

√
β

18
√

3

[
2:
(
a2 (z) − a1 (z)

)(
a1 (z) + 2a2 (z)

)(
2a1 (z) + a2 (z)

)
:

+9α0
(
:∂a2 (z)

(
a1 (z) + 2a2 (z)

)
: − :∂a1 (z)

(
2a1 (z) + a2 (z)

)
:
)
+ 9α2

0
(
∂2a2 (z) − ∂2a1 (z)

)]
, (3.1b)

where
β =

16
22 + 5c

=
2

4 − 15α2
0

(3.2)

in the conventional normalisation, appropriate for c , − 22
5 (α0 , ±

2√
15
). A somewhat involved computation now

determines the operator product expansion ofW (z) with itself to be

W (z)W (w ) ∼
c/3

(z −w )6
+

2T (w )

(z −w )4
+
∂T (w )

(z −w )3
+

3
10∂

2T (w ) + 2βΛ(w )

(z −w )2
+

1
15∂

3T (w ) + β∂Λ(w )

z −w
, (3.3)

where Λ(z) = :T (z)T (z): − 3
10∂

2T (z). This, along with the primary nature ofW (z), implies the commutation relations[
Lm ,Wn

]
= (2m − n)Wm+n , (3.4a)[

Wm ,Wn
]
= (m − n)

[
1
15

(m + n + 3) (m + n + 2) −
1
6
(m + 2) (n + 2)

]
Lm+n

+ β (m − n)Λm+n +
c

360
m(m2 − 1) (m2 − 4)δm+n,0, (3.4b)

whereW (z) = ∑n∈�Wnz
−n−3.

Since Fock spaces are modules over the Heisenberg vertex operator algebra H2 and we have defined the W3 algebra as
a subalgebra of H2, each Fock space is a W3-module, by restriction. In particular, the highest-weight vector |ζ 〉 ∈ Fζ ,
ζ ∈ h∗, is also a highest-weight vector for W3:

Ln |ζ 〉 = δn,0hζ |ζ 〉, Wn |ζ 〉 = δn,0wζ |ζ 〉, n ≥ 0. (3.5)

Here, hζ was given in (2.12) and theW0-eigenvalue is given by

wζ =
√

3β (ζ ,ω2 − ω1)
(
(ζ ,ω1) − α0

)(
(ζ ,ω2) − α0

)
. (3.6)

Our main reason for introducing vertex operators in (2.14) is to construct linear maps between Fock spaces that
commute with the action of an appropriate subalgebra of the Heisenberg vertex algebra. Here, we wish to construct
maps that commute with W3, that is, W3-module homomorphisms. Such module homomorphisms are called screening
operators and they are constructed from screening fields, these being vertex operators whose operator product expansions
with the fields of W3 are total derivatives. For this, it clearly suffices to find fields whose operator product expansions with
the generating fields T (z) andW (z) are total derivatives.

As the vertex operator Vζ (w ) is a conformal primary of weight hζ , its operator product expansion with T (z) will be
a total derivative if and only if hζ = 1. Unsurprisingly, the analogous computation forW (z) is more involved (we used
Thielemans’OPEdefs package for Mathematica. We shall not give the unpleasant details, noting instead that a necessary
condition for the operator product expansionW (z)Vζ (w ) to be a total derivative is that the coefficient of (z −w )−1 in this
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expansion is a total derivative. Analysing this explicitly, for general ζ ∈ h∗, and recalling that hζ = 1, we conclude that
this coefficient will be a total derivative if ζ1 = 0, ζ2 = 0 or if ζ1 = ζ2 and α0 = 0 (where the ζi denote Dynkin labels:
ζ = ∑i ζiωi ). As we are only interested in screening operators that exist for all values of α0, it follows that there are exactly
four possible weights ζ that can be used to construct screening operators: ζ = α±α1,α±α

2. Here, we define

α+ =
1
2

(
α0 +

√
α2

0 + 4
)
, α− =

1
2

(
α0 −

√
α2

0 + 4
)

(3.7)

to be the solutions of the quadratic equations hζiα i = 1, for i = 1, 2. It only remains to confirm that the full operator
product expansionW (z)Vζ (w ), when ζ is one of the above weights, is indeed a total derivative:

W (z)Vα±α i (w ) ∼ −(−1)i
√

6
4 − 15α2

0
∂w

(
α0Vα±α i (w )

2(z −w )2
−

:a∗1 (w )Vα±α i (w ):
z −w

)
, i = 1, 2. (3.8)

Having identified screening fields for W3, we construct screening operators by taking residues:

S±i =

∮
0

Vα±α i (w ) dw . (3.9)

Here, the residue is indicated using a simple anticlockwise contour that encircles 0 once (we absorb the usual factor of 2π i
into the definition of the contour integral). These screening operators define W3-module homomorphisms since[

T (z), S±i
]
= −

∮
z
T (z)Vα±α i (w ) dw = 0,

[
W (z), S±i

]
= −

∮
z
W (z)Vα±α i (w ) dw = 0. (3.10)

These identities follow from the mutual locality of Heisenberg fields and vertex operators, see (2.16).
Taking the residue of a screening field Vα±α i (z) is of course only well defined when it is acting on a H2-module for

which the exponents of z in the Fourier expansion of Vα±α i (z) are all integers. In case the H2-module is the Fock space
Fη , this is satisfied if and only if α±

(
α i ,η

)
∈ �. Fortunately, one can also construct screening operators by integrating

compositions (2.17) of multiple screening fields. In particular, composing r2 copies of Vα±α 2 (w ) with r1 copies of Vα±α 1 (z)

and then acting on Fη gives

Vα±α 1 (z1) · · ·Vα±α 1
(
zr1

)
Vα±α 2 (w1) · · ·Vα±α 2

(
wr2

)∣∣∣
Fη

= ∏
1≤i<j≤r1

(
zi − zj

)2α 2
± · ∏

1≤i<j≤r2

(
wi −w j

)2α 2
± ·

r1

∏
i=1

r2

∏
j=1

(
zi −w j

)−α±2
·

r1

∏
i=1

z
α± (α 1,η)
i ·

r2

∏
j=1

w
α± (α 2,η)
j

· er1α±α 1+r2α±α 2
∏
m≥1

exp

[
α±

(
a1
−m

r1

∑
i=1

zmi
m
+ a2
−m

r2

∑
i=1

wm
i

m

)]
exp

[
−α±

(
a1
m

r1

∑
i=1

z−mi
m
+ a2

m

r2

∑
i=1

w−mi
m

)]
. (3.11)

Up to a complex phase, which we suppress, the first five multivalued factors in this expression can be rewritten in the form

∏
1≤i,j≤r1

(
1 −

zi
zj

)α 2
±

· ∏
1≤i,j≤r2

(
1 −

wi

w j

)α 2
±

·

r1

∏
i=1

r2

∏
j=1

(
1 −

w j

zi

)−α 2
±

·

r1

∏
i=1

z
α± (α 1,η)+α 2

± (r1−r2−1)
i ·

r2

∏
j=1

w
α± (α 2,η)+α 2

± (r2−1)
j , (3.12)

thereby isolating the non-integer exponents of the zi andw j in the last two factors.
Finding closed (multivariable) contours over which multivalued functions such as (3.12) can be integrated (to obtain

W3-module homomorphisms) is a highly non-trivial problem. Fortunately, Tsuchiya and Kanie solved this problem for
the rank 1 Heisenberg vertex algebra [29] by constructing cycles with non-trivial homology classes over which screening
operators can be integrated. These cycles, which we shall denote by Γ(m; t ) form ∈ �≥0 and t ∈ � \ �≤0,2 allow one to

2 The range of the parameter t could in principle be extended to � \ {0}. However, to avoid singularities in certain coefficients, this would require one
to use a different normalisation of the Jack symmetric function basis presented in Section 4. Moreover, some linear independence arguments would
become more complicated. For simplicity, we therefore avoid non-positive rational values of the parameter t .
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integrate expressions of the form ∫
Γ(m;t )

∏
1≤i,j≤m

(
1 −

zi
zj

)1/t
· f (z) dz1 · · · dzm , (3.13)

where f (z) is a Laurent polynomial in z1, . . . , zm which is invariant with respect to permuting the indices of its variables.
We shall not describe the construction of these cycles in any detail. It will, however, be convenient to normalise them by
requiring that ∫

Γ(m;t )
∏

1≤i,j≤m

(
1 −

zi
zj

)1/t dz1 · · · dzm
z1 · · · zm

= 1. (3.14)

The cycles Γ(m; t ) can be used to construct screening operators from the compositions (3.11) whenever the exponents
of the zi andw j are integers. If this is the case, then the screening operators are defined as

S[r1,r2]
± =

∫
Γ(r1;1/α 2

± )

∫
Γ(r2;1/α 2

± )
Vα±α 1 (z1) · · ·Vα±α 1

(
zr1

)
Vα±α 2 (w1) · · ·Vα±α 2

(
wr2

)
dz1 · · · dzr1dw1 · · · dwr2 . (3.15)

By construction, these screening operators are W3-module homomorphisms when acting on appropriate Fock spaces.
We parametrise the Fock space weights for which the screening operators (3.15) are defined as follows:

ζu1,v1;u2,v2 =
(
(1 − u1)α+ + (1 −v1)α−

)
ω1 +

(
(1 − u2)α+ + (1 −v2)α−

)
ω2, u1,u2,v1,v2 ∈ �. (3.16)

Considering the exponents of the last two factors of (3.12), we conclude that the screening operators define W3-module
homomorphisms between the following Fock spaces:

S[r1,r2]
+ : Fζr1−r2,s1;r2,s2

→ Fζ−r1,s1;r1−r2,s2
, r1, r2 ∈ �≥0, s1, s2 ∈ �,

S[s1,s2]
− : Fζr1,s1−s2;r2,s2

→ Fζr1,−s1;r2,s1−s2
, r1, r2 ∈ �, s1, s2 ∈ �≥0.

(3.17)

Evaluating the action of these screening operators initially appears rather daunting. However, we know from (3.11) that
compositions of screening fields factorise into a product of a multivalued function and certain power series in the zi and
w j that are symmetric with respect to permuting the zi among themselves and, separately, the w j among themselves. The
theory of symmetric functions provides the tools that allow us to evaluate the action of these screening operators on certain
Fock spaces. We therefore turn to a discussion of these tools.

4. The ring of symmetric functions

The purpose of this section is to review various results from the theory of symmetric functions that will be used to
evaluate the action of screening operators on certain Fock spaces. The standard reference for symmetric functions and
their myriad properties is Macdonald’s book [23] to which we refer the reader for more details.

Let Λn denote the ring of symmetric polynomials in the n variables z1, . . . , zn . This is the subring of �[z1, ..., zn] that
consists of the polynomials that are invariant with respect to permuting the indices of the zi . It admits numerous interesting
generators such as the power sums

pk =
n

∑
i=1

zki , k ≥ 1. (4.1)

For 1 ≤ k ≤ n, the pk are algebraically independent and freely generate Λn , that is,

Λn = �[p1, · · · , pn]. (4.2)

We can therefore use partitions λ = [λ1, λ2, . . .], whose parts λi are bounded by n, to define

pλ = pλ1 · · · pλk . (4.3)

These power sums, labelled by partitions whose parts do not exceed n, thus form a basis of Λn :

Λn =
⊕

λ,λ1≤n

�pλ . (4.4)



8 D RIDOUT, S SIU, AND S WOOD

Another family of symmetric polynomials is given by the monomial symmetric polynomials

mλ =∑
σ
z
λσ (1)
1 · · · z

λσ (n )
n , (4.5)

where σ runs over all distinct permutations of the partition λ. In this case, λ is not constrained by a bound on its individual
parts, but by their number `(λ) (the length of λ) which is at most n. Note that each monomial summand of mλ has
coefficient 1. For example,

m[2,2]
(
z1, z2

)
= z2

1z
2
2, m[2,2]

(
z1, z2, z3

)
= z2

1z
2
2 + z

2
1z

2
3 + z

2
2z

2
3 . (4.6)

The monomial symmetric polynomials also form a basis of Λn :

Λn =
⊕

λ, `(λ)≤n

�mλ . (4.7)

The respective restrictions on parts and lengths of partitions in the definitions of these symmetric polynomials can be
avoided by taking a formal limit to infinitely many variables. The resulting ring Λ is called the ring of symmetric functions
and, unsurprisingly, its elements are called symmetric functions. The ring Λn of symmetric polynomials in n variables
can then be easily recovered from Λ by setting all but the first n variables to 0. This amounts to a projection

πn : Λ→ Λn , f (x1,x2, . . . ) 7→ f (x1, . . . ,xn , 0, 0, . . . ). (4.8)

In Λ, the power sums pk are algebraically independent for all k ≥ 1 and they freely generate Λ, that is,

Λ = �[p1, p2, . . . ]. (4.9)

Similarly, the restrictions on the sizes of the parts and the lengths of the partitions labelling power sums and monomial
symmetric functions, respectively, no longer apply. Both classes of symmetric functions give bases of Λ:

Λ =
⊕
λ

�pλ =
⊕
λ

�mλ . (4.10)

We note that πn (mλ ) = 0 if and only if `(λ) > n, but that no such truncations exist for the power sums pk : their images
under πn are all non-zero.

There exists another family of bases of Λ and Λn labelled by partitions, called the Jack symmetric functions and
Jack symmetric polynomials (or just Jack functions or polynomials for short), respectively. These are defined using the
dominance partial ordering of partitions: if λ and µ are both partitions of the same non-negative integer, then we write
λ ≥ µ (and say that λ dominates µ) if

λ1 + · · · + λi ≥ µ1 + · · · + µi , (4.11)

for all i ≥ 1.
For each t ∈ � \ �≤0 (the non-positive rationals are excluded to avoid certain normalisation problems), the Jack

functions Pt
λ are uniquely defined by the following two properties:

(1) For any partition λ, Pt
λ admits an upper triangular decomposition of the form

Pt
λ = mλ + ∑

λ>µ
vλ,µ (t )mµ , vλ,µ (t ) ∈ �. (4.12)

(2) The Jack functions form an orthogonal basis of Λ with respect to the inner product defined by〈
pλ , pµ

〉t
= t `(λ)δλµ ∏

i≥1
imimi !, (4.13)

wheremi denotes of number of parts of λ equal to i.

For each n ≥ 1, the Jack polynomials in Λn may be defined as the images of the corresponding Jack functions in Λ

under the projection πn . As with monomial symmetric polynomials, we have πn
(
Pt
λ

)
= 0 if and only if `(λ) > n. For

`(λ) ≤ n, the Jack polynomials

Pt
λ
(
z1, . . . , zn

)
= πn (Pt

λ ) (4.14)
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are linearly independent and form a basis of Λn . For the application to follow, we mention the following important
examples in Λn called the rectangular Jack polynomials. In these, the partition has the form λ = [mn] in which all n parts
are equal tom. Rectangular Jack polynomials have a very simple form:

Pt
[mn ]

(
z1, . . . , zn

)
= m[mn ]

(
z1, . . . , zn

)
=

n

∏
i=1

zmi . (4.15)

This follows because all partitions ofmn that are strictly dominated by [mn] have length greater than n. They also have
extremely simple products with other Jacks. For `(λ) ≤ n, denote by λ + [mn] the partition with parts λi +m. Then,

Pt
[mn ]

(
z1, . . . , zn

)
Pt
λ
(
z1, . . . , zn

)
= Pt

λ+[mn ]
(
z1, . . . , zn

)
. (4.16)

We emphasise that rectangular Jack polynomials are independent of the parameter t .
The Jack functions and polynomials satisfy many properties that shall be essential for what follows. We list some of

them here for convenience.

(1) We denote by Qt
λ the elements of the basis dual to the Pt

λ with respect to the inner product (4.13). Since the Jack
functions form an orthogonal basis, Pt

λ is proportional to Qt
λ :

Qt
λ = b

t
λPt

λ , btλ =
1〈

Pt
λ ,P

t
λ

〉t . (4.17)

The proportionality constant btλ is given explicitly by

btλ =∏
s ∈λ

a(s )t + l (s ) + 1
(a(s ) + 1)t + l (s )

, (4.18)

where a(s ) and l (s ) denote the arm and leg lengths, respectively, of the box s in the Young diagram of λ.
(2) The Jack functions and their duals admit a kind of generating function called the Cauchy kernel:

∏
i, j

(1 − yizj )−1/t = ∏
m≥1

exp

(
1
t

pm
(
y
)
pm
(
z
)

m

)
=∑

λ
Pt
λ
(
y
)
Qt
λ
(
z
)
. (4.19)

In this identity, the two alphabets {yi} and {zj} may be finite or infinite.
(3) Given partitions λ and µ, the skew Jack functions Pt

λ/µ and Qt
λ/µ are defined to be the unique symmetric functions

satisfying 〈
Pt
λ/µ ,Q

t
ν

〉t
=
〈

Pt
λ ,Q

t
µQt

ν

〉t
and

〈
Qt
λ/µ ,P

t
ν

〉t
=
〈

Qt
λ ,P

t
µPt

ν

〉t
(4.20)

for all partitions ν . Let us write µ ⊆ λ if the Young diagram of µ is contained in that of λ. Then, Pt
λ/µ = Qt

λ/µ = 0
unless µ ⊆ λ. Finally, the ordinary and dual skew Jack functions are proportional:

Qt
λ/µ =

btλ
btµ

Pt
λ/µ . (4.21)

(4) Consider an alphabet z = (z1, z2, . . . ), partitioned into two subsets x = (x1,x2, . . . ) and y = (y1,y2, . . . ). Any
symmetric function in z may obviously be decomposed into symmetric functions in x and y. For Jack functions, this
decomposition is

Pt
λ
(
z
)
= Pt

λ
(
x ∪ y

)
=∑

ν
Pt
ν
(
x
)
Pt
λ/ν
(
y
)
, Qt

λ
(
z
)
= Qt

λ
(
x ∪ y

)
=∑

ν
Qt
ν
(
x
)
Qt
λ/ν
(
y
)
. (4.22)

Both sums may clearly be restricted to partitions satisfying ν ⊆ λ.
(5) The Jack polynomials Pt

λ

(
z1, . . . , zn

)
are orthogonal with respect to the inner product〈

f ,д
〉t
n =

∫
Γ(n;t )

Gt
n (x ) f (x )д(x )

dx1 · · · dxn
x1 · · · xn

, (4.23)

where Γ(n; t ) is the cycle normalised in (3.14), д(x1,x2, . . . ) = д(x
−1
1 ,x

−1
2 , . . . ) and

Gt
n (x ) = ∏

1≤i,j≤n

(
1 −

xi
x j

)1/t
(4.24)
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is called the integrating kernel. With respect to this integral inner product, the Jack polynomials satisfy〈
Pt
λ
(
x
)
,Qt

µ
(
x
)〉t

n
= δλ,µb

t
λ (n), btλ (n) =∏

s ∈λ

n + a′(s )t − l ′(s )

n + (a′(s ) + 1)t − l ′(s ) − 1
, (4.25)

where a′(s ) and l ′(s ) denote the arm and leg colengths, respectively, of the box s in the Young diagram of λ.

5. Explicit evaluation of W3 singular vectors

With this symmetric function technology under our belts, we now turn to the computation of singular vectors in Fock
spaces, the idea being to realise them as images of highest-weight vectors under a W3-module homomorphism (screening
operator). For definiteness, we shall choose the screening operator S[r1,r2]

+ defined in (3.15) that was constructed from r1

copies of Vα+α1 and r2 copies of Vα+α2 . The computation for S[r1,r2]
− is exactly the same and will be omitted. By (3.17),

S
[r1,r2]
+ has a well defined action on the Fock space Fη , where η = ζr1−r2,s1;r2,s2 , sending it into Fθ , where θ = ζ−r1,s1;r1−r2,s2 .
We can now explicitly evaluate the action of the screening operator S[r1,r2]

+ on the highest-weight vector |η〉 ∈ Fη . Using
(3.11), (3.12) and (3.16), this action is

S[r1,r2]
+ |η〉 =

∫
∆

Vα+α 1
(
z1

1
)
· · ·Vα+α 1

(
z1
r1

)
Vα+α 2

(
z2

1
)
· · ·Vα+α 2

(
z2
r2

)
|η〉

2

∏
k=1

rk

∏
i=1

dzki

=

∫
∆

2

∏
k=1

∏
1≤i,j≤rk

(
1 −

zki
zkj

)α 2
+

·

r1

∏
i=1

r2

∏
j=1

(
1 −

z2
j

z1
i

)−α 2
+

·

2

∏
k=1

rk

∏
i=1

(
zki
)α+ (αk ,η)+α 2

+ (rk−1)+1

·

r1

∏
i=1

(
z1
i
)−α 2

+r2
·

2

∏
k=1

∏
m≥1

exp

(
α+a

k
−m

m

rk

∑
i=1

(
zki
)m)

· |θ〉
2

∏
k=1

rk

∏
i=1

dzki
zki

=

∫
∆

2

∏
k=1

∏
1≤i,j≤rk

(
1 −

zki
zkj

)α 2
+

·

r1

∏
i=1

r2

∏
j=1

(
1 −

z2
j

z1
i

)−α 2
+

·

2

∏
k=1

rk

∏
i=1

(
zki
)sk
·

2

∏
k=1

∏
m≥1

exp

(
α+a

k
−mpm

(
zk
)

m

)
· |θ〉

2

∏
k=1

rk

∏
i=1

dzki
zki
. (5.1)

Here, the integrals are over the product cycle ∆ = Γ(r1;α−2
+ ) × Γ(r2;α−2

+ ), see Section 3.
To proceed, we note that the tensor product Λ ⊗� Λ is isomorphic to U(ĥ−) = �[ak−m : k = 1, 2, m ∈ �>0] as an

algebra, by (4.9). Concretely, lety1
i andy2

i denote the variables for the two factors of Λ⊗�Λ and consider the isomorphism

ρ+ : Λ ⊗� Λ −→ U(ĥ−), pm (yk ) 7−→
1
α+

ak−m , k = 1, 2, m ∈ �>0. (5.2)

Then, we may write

∏
m≥1

exp

(
α+a

k
−mpm

(
zk
)

m

)
= ρ+

(
∏
m≥1

exp
(
α2
+

pm (yk )pm (zk )

m

))
= ρ+

(
∏
i≥1

rk

∏
j=1

(1 − yki zkj )−α
2
+

)
, (5.3)

recognising the Cauchy kernel (4.19) with parameter t = α−2
+ .

For k = 1, we expand this Cauchy kernel in terms of Jacks and their duals as in (4.19):

∏
m≥1

exp

(
α+a

1
−mpm

(
z1)

m

)
= ρ+

(
∑
λ

Pt
λ
(
y1)Qt

λ
(
z1)). (5.4)

For k = 2, we first combine the Cauchy kernel with that appearing in the second factor of the integrand of (5.1):

ρ+

(
∏
i≥1

r2

∏
j=1

(1 − y2
i z

2
j )
−α 2
+

)
r1

∏
i=1

r2

∏
j=1

(
1 − (z1

i )
−1z2

j
)−α 2

+
= ρ+

(
∑
µ

Pt
µ
(
y2 ∪ (z1)−1)Qt

µ
(
z2)). (5.5)

Here, we have noted that the product is a Cauchy kernel in the alphabets {y2
i } ∪ {(z1

` )
−1} and {z2

j }. This may be further
simplified using skew-Jacks as in (4.22):

Pt
µ
(
y2 ∪ (z1)−1) =∑

ν
Pt
ν
(
z1
)
Pt
µ/ν
(
y2). (5.6)
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We recall that the skew-Jack Pt
µ/ν is 0 unless ν ⊆ µ.

Next, note that we also have the integrating kernels
2

∏
k=1

∏
1≤i,j≤rk

(
1 −

zki
zkj

)α 2
+

= Gt
r1 (z

1)Gt
r2 (z

2) (5.7)

of the symmetric polynomial inner product (4.23). Finally, the product ∏2
k=1 ∏rk

i=1
(
zki
)sk is a product of rectangular

Jack polynomials. However, here we have to be careful with the signs of the sk . Indeed, (2.12) and (3.16) show that the
conformal weights of the highest-weight vectors |η〉 and |θ〉 differ by

hη − hθ = −r1s1 − r2s2. (5.8)

This must be non-negative if the screening operator S[r1,r2]
+ is to map |η〉 to a singular descendant of |θ〉. We shall therefore

assume from here on that s1, s2 ∈ �≤0. Thus,
2

∏
k=1

rk

∏
i=1

(
zki
)sk = Pt

[−sr11 ]

(
z1
)

Pt
[−sr22 ]

(
z2
)
, (5.9)

using (4.15).
Putting all this back in (5.1), the integrand factorises and we get

S[r1,r2]
+ |η〉 = ∑

λ,µ,ν
ρ+
(
Pt
λ
(
y1)) ∫

Γ(r1;t )
Gt
r1 (z

1)Pt
[−sr11 ]

(
z1
)

Pt
ν
(
z1
)
Qt
λ
(
z1) r1

∏
i=1

dz1
i

z1
i

· ρ+

(
Pt
µ/ν
(
y2)) ∫

Γ(r2;t )
Gt
r2 (z

2)Pt
[−sr22 ]

(
z2
)
Qt
µ
(
z2) r2

∏
i=1

dz2
i

z2
i
· |θ〉

= ∑
λ,µ,ν

〈
Qt
λ ,P

t
ν+[−sr11 ]

〉t
r1

〈
Qt
µ ,P

t
[−sr22 ]

〉t
r2
ρ+

(
Pt
λ
(
y1)Pt

µ/ν
(
y2))|θ〉

= ∑
ν ⊆[−sr22 ]
`(ν )≤r1

btν+[−sr11 ] (r1)b
t
[−sr22 ] (r2)ρ+

(
Pt
ν+[−sr11 ]

(
y1)Pt

[−sr22 ]/ν

(
y2))|θ〉, (5.10)

by using (4.16), (4.23) and (4.25). As the second factor is independent of ν (and non-zero), it may be absorbed into the
normalisation of the singular vector. Our final result is therefore

S[r1,r2]
+ |η〉 = ∑

ν ⊆[−sr22 ]
`(ν )≤r1

btν+[−sr11 ] (r1)ρ+

(
Pt
ν+[−sr11 ]

(
y1)Pt

[−sr22 ]/ν

(
y2))|θ〉. (5.11)

This form is now easily implemented in computer algebra packages.
The right-hand side of (5.11) is easily seen to be manifestly non-zero by noting that the total degree, with respect

to the a2
−m , of the summand corresponding to the empty partition ν = [ ] is maximal and that all other summands have

strictly lesser degrees. Since bt[−sr11 ] (r1), Pt
[−sr11 ]

(
y1) and Pt

[−sr22 ]

(
y2) are all non-zero, this summand is therefore linearly

independent of all others. The conclusion is that (5.11) defines a singular vector for every r1, r2 ∈ �≥0, s1, s2 ∈ �≤0 and
t ∈ � \ �≤0.

6. Examples

We now illustrate the W3 singular vector formula (5.11) with three examples.

6.1. Example 1. For our first example, we compute a singular vector for the case when t = 4
5 , so that

α+ =

√
5

2
, α− = −

2
√

5
, α0 =

1
2
√

5
, c =

4
5
. (6.1)

This central charge corresponds to that of the 3-state Potts model, described by the W3 minimal model W3 (4, 5) (the
parameters here are the numerator and denominator of t in reduced form). Take r1 = r2 = −s1 = −s2 = 1 for simplicity.
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Then, the map S
[1,1]
+ sends Fη , where η = ζ0,−1;1,−1, into Fθ , where θ = ζ−1,−1;0,−1. We note that

hη =
13
6
, hθ =

1
6
, wη =

187
9
√

390
, wθ = −

7
9
√

390
, (6.2)

by (2.12) and (3.6). The conformal weight hθ is not one of those associated with the 3-state Potts model. Nevertheless,
the Fock space Fθ has a singular vector at grade 2 in accordance with (5.8). Equation (5.11) writes it in the form

S[1,1]
+ |η〉 = ∑

ν ⊆[1]
b4/5
ν+[1] (1)ρ+

(
P4/5
ν+[1]

(
y1)P4/5

[1]/ν
(
y2))|θ〉. (6.3)

There are only two partitions ν to consider. Using (4.25), (5.2) and SageMath to write Jacks and skew-Jacks in terms
of power sums, we have

ν = [0] : b4/5
[0]+[1] (1) =

5
4
, ρ+

(
P4/5

[0]+[1]
(
y1)) = ρ+(p[1]

(
y1)) = 2

√
5
a1
−1,

ρ+

(
P4/5

[1]/[0]
(
y2)) = ρ+(p[1]

(
y2)) = 2

√
5
a2
−1.

ν = [1] : b4/5
[1]+[1] (1) =

5
4

9
8
, ρ+

(
P4/5

[1]+[1]
(
y1)) = ρ+(5

9
p[1,1]

(
y1) + 4

9
p[2]
(
y1))

=
4
5

5
9
a1
−1a

1
−1 +

2
√

5
4
9
a1
−2,

ρ+

(
P4/5

[1]/[1]
(
y1)) = ρ+(p[0]

(
y1)) = 1.

(6.4)

The singular vector is therefore explicitly identified as

S[1,1]
+ |η〉 =

(
a1
−1a

2
−1 +

5
8
a1
−1a

1
−1 +

√
5

4
a1
−2

)
|θ〉. (6.5)

Consider the W3 Verma module Vϑ whose highest-weight vector |ϑ 〉 has L0- andW0-eigenvalue hθ andwθ , as given in
(6.2). By direct calculation, Vϑ has a singular vector |χ〉, unique up to normalisation, at grade 2:

|χ〉 =

(
390
119

W−1W−1 −

√
390
17

W−2 +
10
√

390
119

L−1W−1 + L−1L−1

)
|ϑ 〉. (6.6)

The free field realisation f : W3 ↪→ H2 defined by (3.1) induces a W3-module homomorphism

fϑ : Vϑ −→ Fθ , fϑ (U |ϑ 〉) = f (U ) |θ〉. (6.7)

Here,U is an arbitrary element of the W3 mode algebra, this being the (unital) associative algebra generated by the Lm and
Wn subject to (3.4). Explicit calculation now verifies that the image of the singular vector |χ〉 under fϑ is, of course, that
constructed in (6.5):

fϑ ( |χ〉) =

(
5
4
a1
−1a

2
−1 +

25
32

a1
−1a

1
−1 +

5
√

5
16

a1
−2

)
|θ〉 =

5
4
S[1,1]
+ |η〉. (6.8)

6.2. Example 2. For our second example, we compute a grade three singular vector for general central charges. Let r1 = 2
and r2 = −s1 = −s2 = 1, so that η = ζ1,−1;1,−1 and θ = ζ−2,−1;1,−1. In order to evaluate the singular vector formula (5.11),
we need to compute

bt[1,1] (2) =
2

t + 1
1
t
, bt[2,1] (2) =

2
t + 1

1
t

t + 2
2t + 1

,

Pt
[1,1] =

1
2

p[1,1] −
1
2

p[2], Pt
[1]/[0] = p[1],

Pt
[2,1] =

1
t + 2

p[1,1,1] +
t − 1
t + 2

p[2,1] −
t

t + 2
p[3], Pt

[1]/[1] = 1,

(6.9)

again using (4.25), (5.2) and SageMath. The singular vector is thus

S[2,1]
+ |η〉 =

[
bt[1,1] (2)ρ+

(
Pt

[1,1]
(
y1)Pt

[1]/[0]
(
y2)) + bt[2,1] (2)ρ+

(
Pt

[2,1]
(
y1)Pt

[1]/[1]
(
y2))]|θ〉
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=

[
1

t (t + 1)

(
1
α2
+

a1
−1a

1
−1 −

1
α+

a1
−2

)
1
α+

a2
−1

+
2

t (t + 1) (2t + 1)

(
1
α3
+

a1
−1a

1
−1a

1
−1 +

t − 1
α2
+

a1
−2a

1
−1 −

t

α+
a1
−3

)]
|θ〉

=

[
2/α+

(t + 1) (2t + 1)
a1
−1a

1
−1a

1
−1 +

1/α+
t + 1

a1
−1a

1
−1a

2
−1

+
2(t − 1)

(t + 1) (2t + 1)
a1
−2a

1
−1 −

1
t + 1

a1
−2a

2
−1 −

1/α+
(t + 1) (2t + 1)

a1
−3

]
|θ〉. (6.10)

We note that the result is manifestly well defined and non-zero for all α+ such that t = α−2
+ ∈ � \ �≤0, as expected. This

region includes all central charges less than 98.

6.3. Example 3. Our final example concerns singular vectors for quite arbitrary central charges (including all c < 98).
This time, we fix θ = 0 and use (5.11) to construct singular vectors in the Fock space F0.

First, we note that θ = ζ−r1,s1;r1−r2,s2 = 0 may be solved for r1 and s1:

r1 = −1 + (−s1 + 1)t , r2 = −2 + (−s1 − s2 + 2)t . (6.11)

Since r1, r2, s1, s2 ∈ �, we will only find singular vectors when t ∈ �>0. Writing t = u
v , where u and v are coprime

integers, it follows that

r1 =mu − 1, −s1 =mv − 1, r2 = nu − 2, −s2 = (n −m)v − 1, (6.12)

for somem,n ∈ �. Given that r1, r2 ∈ �≥0 and s1, s2 ∈ �<0, we conclude thatm, n and n−mmust be positive integers. We
thereby obtain, for each fixed t ∈ �>0, an infinite sequence of singular vectors, generically indexed by integers n > m > 0,
of the form S

[mu−1,nu−2]
+ |ζ (m−n)u+1,−mv+1;nu−2,−(n−m)v+1〉. Among these, the singular vector of lowest grade corresponds,

assuming that u > 1, to (m,n) = (1, 2). Moreover, the grade of S[u−1,2(u−1)]
+ |ζ−(u−1),−(v−1);2(u−1),−(v−1)〉 is 3(u − 1) (v − 1),

by (5.8).
It is not clear if these singular vectors of the Fock space F0 correspond, in the sense of Example 6.1 to singular vectors

in the W3 vacuum Verma module V0 or not. However, there are five other Fock spaces Fζ whose highest-weight vectors
|ζ 〉 have hζ = wζ = 0. This follows from the easily verified fact that both hζ and wζ are left invariant by the following
shifted action of the Weyl group S3:

σ · ζ = σ (ζ − α0ϱ) + α0ϱ, σ ∈ S3. (6.13)

Each of these five other Fock spaces has an infinite sequence of singular vectors given by (5.11) and it is interesting to ask
whether these also correspond to singular vectors in V0 or not. We shall not investigate this question here. We only note
the following observation: F2α0ϱ has such a singular vector at grade 3 and it corresponds to just one of the two linearly
independent grade 3 singular vectors of V0. Which one is obtained depends on the branch of the square root of β chosen
in (3.1).

We conclude by remarking that the question of whether the Fock space singular vectors constructed here exhaust the
singular vectors of V0 is much easier to answer. They do not. We cannot obtain the two linearly independent singular
vectors at grade 1 using (5.11) (for c , 2; when c = 2,W0 acts non-diagonalisably). Nor can we obtain, when t = u

v ∈ �>0,
the grade (u − 2) (v − 2) singular vector whose image is non-zero in the universal W3 vacuum module. This singular vector
can be constructed formally using screening operators, but we do not know how to actually evaluate the integral in this
case. What is needed is a certain sl (3) analogue of the theory of Jack functions, something which does not appear to have
yet been developed (see [27, 33, 34] for work in this direction). We hope to return to this important point in the future.

7. Explicit evaluation of WN singular vectors

In the previous section, we computed explicit formulae for W3 singular vectors in Fock spaces. In this section we
generalise the results of Section 5 and derive explicit formulae for WN singular vectors in Fock spaces. Continuing the
pattern of ranks 1 and 2, the rank N −1 Heisenberg vertex operator algebra, with choice of energy-momentum tensor (2.9),
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has 2(N − 1) screening operators, Vζ (w ) for ζ = α±α i , where α± was defined in (3.7) and the α i are the simple roots of
sl (N ).

The WN vertex operator algebra WN is usually described as being generated by the Virasoro field T (z) and N − 2
Virasoro primary fieldsW 3 (z), . . . ,W N (z) of conformal weights 3, . . . ,N , respectively. Unfortunately, explicit formulae
for these primaries, for example in terms of Heisenberg fields, rapidly increase in complexity as N increases and there are
no known closed formulae for general N . Fortunately our computations do not require explicit expressions for theW k (z),
only the fact that they commute with the screening operators.

We therefore turn to the definition of the WN vertex operator algebra [22] in terms of a generating function called the
quantum Miura transform. This constructs a different set of generators of WN that are not conformal primaries in general,
but which are easily verified to commute with screening operators. We denote these new generating fields byU 2 (z) = T (z),
U 3 (z), . . . ,U N (z) and their generating function by

RN (z) = −
N

∑
k=0

Uk (z) (α0∂)
N−k = :(α0∂z − ϵ

1 (z)) · · · (α0∂z − ϵ
N (z)):, (7.1)

where the ϵ i are the weights of the defining representation of sl (N ) so that ϵ1 + · · · + ϵN = 0 and α i = ϵ i − ϵ i+1, for
i = 1, . . . ,N − 1.

With the WN algebra now defined explicitly as the algebra generated by theU i (z), i = 2, . . .N , we construct screening
fields in a manner similar to W3. As mentioned above, the vertex operators Vζ (w ) with Heisenberg weights ζ =
α±α1, . . . ,α±αN−1 are screening fields, because their operator product expansions with RN (z) are total derivatives:

RN (z)Vα±αi (w ) ∼ ∂w

(
:RiN (w )Vα±αi (w ):

z −w

)
. (7.2)

Here, RiN (z) is defined as the product in (7.1), but without the factors involving ϵ i and ϵ i+1.
As in the rank 2 case, the residues of the screening fields, when defined, commute with the WN algebra, because

their operator product expansions with the generating U i fields are total derivatives, and therefore define module homo-
morphisms. Also as in the rank 2 case, one can compose screening fields and integrate them over suitable contours to
construct yet more module homomorphisms. Note that it is sufficient to only compose screening fields whose weights are
all rescalings of simple sl (N ) roots by either α+ or α−. This is because the two screening operators corresponding to the
residues of Vα+α i (w ) and Vα−α j (w ) commute and can thus be considered independently. We shall therefore only present
calculations involving the Vα+α i (w ); those involving the Vα−α j (w ) work in exactly the same way.

We therefore compose r1 copies of Vα+α 1
(
z1) with r2 copies of Vα+α 2

(
z2) and so on, evaluating this composition on a

Fock space of weight η, to obtain
r1

∏
i=1

Vα+α 1
(
z1
i
)
· · ·

rN−1

∏
i=1

Vα+αN−1
(
zN−1
i
)∣∣∣

Fη

=
N−1

∏
k=1

∏
1≤i<j≤rk

(zki − z
k
j )

2α 2
+ ·

N−2

∏
k=1

rk

∏
i=1

rk+1

∏
j=1

(zki − z
k+1
j )−α

2
+ ·

N−1

∏
k=1

rk

∏
i=1

(zki )
α+ (αk ,η)

·

N−1

∏
k=1

erkα+α
k
·

N−1

∏
k=1

∏
m≥1

exp

(
α+a

k
−m

m

rk

∑
i=1

(zki )
m

)
exp

(
−
α+a

k
m

m

rk

∑
i=1

(zki )
−m

)

=
N−1

∏
k=1

∏
1≤i,j≤rk

(
1 −

zki
zkj

)α 2
+

·

N−1

∏
k=2

rk

∏
i=1

rk+1

∏
j=1

(
1 −

zkj

zk−1
i

)−α 2
+

·

N−1

∏
k=1

rk

∏
i=1

(zki )
α 2
+ (rk−rk+1−1)+α+ (αk ,η)

·

N−1

∏
k=1

erkα+α
k
·

N−1

∏
k=1

∏
m≥1

exp

(
α+a

k
−m

m

rk

∑
i=1

(zki )
m

)
exp

(
−
α+a

k
m

m

rk

∑
i=1

(zki )
−m

)
, (7.3)

where we define rN = 0. In analogy to the reasoning presented for the W3 algebra in Section 3, one can construct a
WN -module homomorphism by choosing an appropriate contour. Integrating over the contours of Tsuchiya and Kanie [29]
is well defined whenever

α2
+ (rk − rk+1 − 1) + α+

(
αk ,η

)
∈ �, for all k = 1, . . . ,N − 1. (7.4)
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To parametrise the weights satisfying these constraints, we define

ζu,v =
N−1

∑
i=1

((1 − ui )α+ + (1 −vi )α−)ωi , u = (u1, . . . ,uN−1), v = (v1, . . . ,vN−1) ∈ �
N−1, (7.5)

and define screening operators

S[r]
+ =

∫
Γ(r1;1/α 2

+ )
· · ·

∫
Γ(rN−1;1/α 2

+ )

r1

∏
i=1

Vα±α 1
(
z1
i
)
· · ·

rN−1

∏
i=1

Vα+αN−1
(
zN−1
i
)
·

N−1

∏
k=1

rk

∏
i=1

dzki , r ∈ �N−1
≥0 . (7.6)

These, in turn, induce WN -module homomorphisms

S[r]
+ : Fη+r,s → Fθ+r,s , r ∈ �N−1

≥0 , s ∈ �N−1, (7.7)

where η+r,s = ζ (r1−r2, ...,rN−2−rN−1,rN−1 ),s and θ+r,s = ζ (−r1,r1−r2, ...,rN−2−rN−1 ),s. Similar screening operators S[s]
− are obtained by

swapping the roles of α+ and α−, as well as r and s, in this development.
If we apply the screening operator S[r]

+ to the HN−1 highest-weight vector |η+r,s〉, we get

S[r]
+ |η

+
r,s〉 =

∫
Γ(r1;1/α 2

+ )
· · ·

∫
Γ(rN−1;1/α 2

+ )

r1

∏
i=1

Vα+α 1
(
z1
i
)
· · ·

rN−1

∏
i=1

Vα+αN−1
(
zN−1
i
)
· |η+r,s〉

N−1

∏
k=1

rk

∏
i=1

dzki

=

∫
Γ(r1;1/α 2

+ )
· · ·

∫
Γ(rN−1;1/α 2

+ )

N−1

∏
k=1

∏
1≤i,j≤rk

(
1 −

zki
zkj

)α 2
+

·

N−1

∏
k=2

rk−1

∏
i=1

rk

∏
j=1

(
1 −

zkj

zk−1
i

)−α 2
+

·

N−1

∏
k=1

rk

∏
i=1

(
zki
)α+ (αk ,η+r,s)+α 2

+ (rk−1)+1
·

N−1

∏
k=2

rk

∏
i=1

(
z1
i
)−α 2

+rk

·

N−1

∏
k=1

∏
m≥1

exp

(
α+a

k
−m

m

rk

∑
i=1

(
zki
)m)

· |θ+r,s〉
N−1

∏
k=1

rk

∏
i=1

dzki
zki

=

∫
Γ(r1;1/α 2

+ )
· · ·

∫
Γ(rN−1;1/α 2

+ )

N−1

∏
k=1

∏
1≤i,j≤rk

(
1 −

zki
zkj

)α 2
+

·

N−2

∏
k=1

rk−1

∏
i=1

rk

∏
j=1

(
1 −

zkj

zk−1
i

)−α 2
+

·

N−1

∏
k=1

rk

∏
i=1

(
zki
)sk
·

N−1

∏
k=1

∏
m≥1

exp

(
α+a

k
−mpm

(
zk
)

m

)
· |θ+r,s〉

N−1

∏
k=1

rk

∏
i=1

dzki
zki
. (7.8)

As in the W3 case, we can evaluate these integral formulae for singular vectors in terms of symmetric functions. Recall
that the tensor product of N − 1 copies of the ring of symmetric functions Λ⊗N−1 is isomorphic to

U(ĥ−) = �[ak−m : k = 1, . . . ,N − 1, m ∈ �>0] (7.9)

as an algebra, by (4.9). Distinguishing the alphabets of the tensor factors by superscripts, so that the alphabet in the i-th
tensor factor is denoted by yi , we define the following algebra isomorphism generalising that of (5.2):

ρ+ : Λ⊗N−1 → U(ĥ⊗N−1
− ), pn

(
yk
)
7→

1
α+

ak−n . (7.10)

This isomorphism allows us to write

∏
m≥1

exp

(
α+a

k
−mpm

(
zk
)

m

)
= ρ+

(
∏
m≥1

exp
(
α2
+

pm (yk )pm (zk )

m

))
= ρ+

(
∏
i≥1

rk

∏
j=1

(1 − yki zkj )−α
2
+

)
, (7.11)

for k = 1, . . . ,N − 1. We now identify, with t = α−2
+ ,

N−1

∏
k=1

∏
1≤i,j≤rk

(
1 −

zki
zkj

)α 2
+

=
N−1

∏
k=1

Gt
rk (z

k ) (7.12)

as the product of the integrating kernels for the variables zk . For k = 1, as in (5.4), we write

∏
m≥1

exp

(
α+a

1
−mpm

(
z1)

m

)
= ρ+

(
∑
µ1

Pt
µ1

(
y1)Qt

µ1

(
z1)). (7.13)
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For k = 2, . . . ,N − 1, similar to (5.5), we have instead

∏
m≥1

exp

(
α+a

k
−mpm

(
zk
)

m

)
·

rk−1

∏
i=1

rk

∏
j=1

(
1 −

zkj

zk−1
i

)−α 2
+

= ρ+

(
∑
µk

Pt
µk

(
yk ∪ (zk−1)−1)Qt

µk

(
zk
))

= ρ+

(
∑
µk ,νk

Pt
νk

(
zk−1

)
Pt
µk /νk

(
yk
)
Qt
µk

(
zk
))
. (7.14)

Putting everything together, we have

S[r]
+ |η

+
r,s〉 = ∑

µ1,µ2, ...,µN−1
ν2, ...,νN−1

ρ+

(
Pt
µ1

(
y1)) ∫

Γ(r1;t )
Gt
r1 (z

1)Pt
[−sr11 ]

(
z1
)

Pt
ν2

(
z1
)
Qt
µ1

(
z1) r1

∏
i=1

dz1
i

z1
i

· ρ+

(
Pt
µ2/ν2

(
y2)) ∫

Γ(r2;t )
Gt
r2 (z

2)Pt
[−sr22 ]

(
z2
)

Pt
ν3

(
z2
)
Qt
µ2

(
z2) r2

∏
i=1

dz2
i

z2
i

...

· ρ+

(
Pt
µN−2/νN−2

(
yN−2)) ∫

Γ(rN−2;t )
Gt
rN−2 (z

N−2)Pt
[−srN−2

N−2 ]

(
zN−2

)
Pt
νN−1

(
zN−2

)
Qt
µN−2

(
zN−2) rN−2

∏
i=1

dzN−2
i

zN−2
i

· ρ+

(
Pt
µN−1/νN−1

(
yN−1)) ∫

Γ(rN−1;t )
Gt
rN−1 (z

N−1)Pt
[−srN−1

N−1 ]

(
zN−1

)
Qt
µN−1

(
zN−1) rN−1

∏
i=1

dzN−1
i

zN−1
i

· |θ+r,s〉

= ∑
µ1,µ2, ...,µN−1

ν2, ...,νN−1

N−2

∏
k=1

〈
Qt
µk ,P

t
νk+1+[−srkk ]

〉t
rk
·

〈
Qt
µN−1 ,P

t
[−srN−1

N−1 ]

〉t
rN−1

ρ+

(
Pt
µ1

(
y1)) N−1

∏
k=2

ρ+

(
Pt
µk /νk

(
yk
))
· |θ+r,s〉

= ∑
ν2, ...,νN−1

(
N−2

∏
k=1

bt
νk+1+[−srkk ] (rk ) · b

t
[−srN−1

N−1 ] (rN−1)

)

· ρ+

(
Pt
ν2+[−sr11 ]

(
y1)) N−2

∏
k=2

ρ+

(
Pt(

νk+1+[−srkk ]
)
/νk

(
yk
))
· ρ+

(
Pt

[−srN−1
N−1 ]/νN−1

(
yN−1))|θ+r,s〉. (7.15)

As before, the factor bt
[−srN−1

N−1 ]
(rN−1) does not depend on the summation indices ν2, . . . ,νN−1, appears in every summand,

and is non-zero, so it can be suppressed. Moreover, the skew-Jack polynomials vanish unless the summation indices
ν2, . . . ,νN−1 satisfy the relations

νk ⊆ νk+1 + [−srkk ], k = 2, . . . ,N − 2, νN−1 ⊆ [−srN−1
N−1 ]. (7.16)

Thus, the singular vector S[r]
+ |η

+
r,s〉 ∈ Fθ+r,s is proportional to

∑
ν2, ...,νN−1

(
N−2

∏
k=1

bt
νk+1+[−srkk ] (rk )

)
ρ+

(
Pt
ν2+[−sr11 ]

(
y1))

·

N−2

∏
k=2

ρ+

(
Pt(

νk+1+[−srkk ]
)
/νk

(
yk
))
· ρ+

(
Pt

[−srN−1
N−1 ]/νN−1

(
yN−1))|θ+r,s〉. (7.17)

This is our final formula for Wn singular vectors generalising the n = 3 case in (5.11). As before, considering the summand
with ν2 = · · · = νN−1 = [ ] shows that the right-hand side is non-zero for every r ∈ �N−1

≥0 , s ∈ �N−1
≤0 and t ∈ � \ �≤0.

This singular vector formula also has the nice property of being comparatively easy to evaluate using computer algebra
packages such as SageMath.
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