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Abstract. We study the minimal models associated to osp(1 |2), otherwise known as the fractional-level Wess-Zumino-
Witten models of osp(1 |2). Since these minimal models are extensions of the tensor product of certain Virasoro and sl2
minimal models, we can induce the known structures of the representations of the latter models to get a rather complete
understanding of the minimal models of osp(1 |2). In particular, we classify the irreducible relaxed highest-weight modules,
determine their characters and compute their Grothendieck fusion rules. We also discuss conjectures for their (genuine)
fusion products and the projective covers of the irreducibles.

1. Introduction

This project is part of a programme to understand the admissible-level Wess-Zumino-Witten (WZW) models for
a Lie algebra or superalgebra g. While the theories with non-negative integer levels and simple Lie algebras lead to
rational conformal field theories and, as such, are very well understood, the situation is much more complicated and
rich for other levels or when superalgebras are involved. Indeed, the non-rational admissible-level WZWmodels are
expected to be prime examples of logarithmic conformal field theories, these being models that admit representations
on which the hamiltonian acts non-diagonalisably, leading to correlation functions with logarithmic singularities.
Another interesting feature of these models is that they have a continuous spectrum of modules.

We view our programme as complementary to older approaches. In particular, Quella, Saleur, Schomerus et al.
[1–9] approached supergroup WZW theories via free field realisations and semiclassical limits (the minisuperspace
analysis), the interest being rather in features of the WZW theory of the supergroup at integer levels. Another
approach employed was to learn more about the conformal field theory using the mock modular behaviour of certain
irreducible characters [10–12]. The relatively accessible case of g = gl(1|1) has also been studied from a more
algebraic perspective by two of us [13, 14].

Presently, we have a very good picture in the case of g = sl2 [15–23]. In order to extend our understanding to more
sophisticated theories, one has to develop some basic strategies. First, one has to study the general theory of relaxed
highest-weight modules. These natural generalisations of the usual highest-weight modules were introduced in the
conformal field theory literature in [24] for g = sl2, though they had already appeared in mathematics classifications
such as [15], but have only recently been formalised in a general setting [25]. Since then, the role played by irreducible
relaxed highest-weight modules in facilitating the study of general admissible-level WZW models has been widely
appreciated and the field has been rapidly developing, see [26–29] for example.

Second, one should develop techniques to reconstruct, at least in favourable circumstances, the representation
theory of the algebra of interest in terms of those of subalgebras. We call this technique the (inverse) coset
construction. This formalism has recently been developed in detail and rigour in [30–33] and, as a preparatory
example, we have studied the logarithmic parafermion algebras of sl2 at (negative) admissible levels [34]. The
present paper is concerned with the minimal models for g = osp(1|2), these being the admissible-level WZWmodels,
building on the insights obtained for a particular level in [35]. In a sequel, the results of this paper will be combined
with those of [34] in order to understand the minimal models of sl(2|1) at admissible levels.

Recently, vertex superalgebras and their modules have appeared as invariants of four-dimensional superconformal
theories. For example, those associated with sl2 and certain subregular W-algebras at various admissible levels arise
in the study of Argyres-Douglas theories [36–38]. Their vacuum characters coincide with the Schur indices of these
four-dimensional theories, while the indices of line defects are identified with characters of highest-weight modules
and those of surface indices seem to correspond to relaxed highest-weight characters [39].
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Further examples include topological twisted four-dimensional supersymmetric gauge theories. There, vertex
operator superalgebras appear at the junction of three-dimensional topological boundary conditions. Categories of
line defects ending on boundaries at which these conditions are imposed correspond to subcategories of modules
of the junction vertex operator superalgebra. The best understood example is the level-1 affine vertex operator
superalgebra of the exceptional simple Lie superalgebra d(2|1;α) which appears as a certain junction subalgebra in
SU (2) gauge theory [40]. But, an osp(1|2) vertex operator superalgebra also appears, specifically as a junction of the
so-calledD0,1 andN2,1 boundary conditions [41]. In fact, the coset studied here (see (1.1) below) has an interpretation
in gauge theory as the junction for osp(1|2) being obtained by concatenating the junctions corresponding to sl2 and
Virasoro. As above, the categories of line defects correspond to ordinary modules and spectrally flown images of
the vacuum, while one expects that relaxed highest-weight modules correspond to categories of surface defects.

1.1. The inverse coset construction. Our strategy in this article is to invert the coset construction. This is a rather
subtle story and needs a little bit of vertex algebra tensor category theory. We aim to understand the conformal field
theory of osp(1|2) at admissible level, whose symmetry algebra we denote by B0 |1(p,v). The coset of this theory
corresponding to the sl2 subtheory A1(u,v) is a rational Virasoro minimal model M(p,u):

M(p,u) ' Comm
(
A1(u,v),B0 |1(p,v)

)
≡

B0 |1(p,v)

A1(u,v)
(2u = p +v). (1.1)

This means that every module of B0 |1(p,v) is also a module of the tensor product of the two subalgebras A1(u,v) and
M(p,u). We thus want to construct the representations of B0 |1(p,v) from the known ones of these subalgebras. The
mathematical tool that accomplishes this is induction.

In vertex algebra language, the bigger algebra B0 |1(p,v) is a commutative superalgebra object in the category of
modules for the small algebra A1(u,v) ⊗ M(p,u) [31]. Moreover, there is a notion of local (and Ramond-twisted)
superalgebramodules and these are exactly theNeveu-Schwarz (and Ramond)modules ofB0 |1(p,v) [30,33]. Locality
here means that the operator product algebra with the currents of osp(1|2) is monodromy-free. Our task is thus to find
all these local (and Ramond-twisted) modules. Another result of [33] is that induction is a vertex tensor functor from
a subcategory of modules for the smaller algebra to this category of local modules. The objects of this subcategory
are exactly those that satisfy a certain locality condition that can be rephrased in terms of conformal dimensions,
giving us a clear procedure to search for, and identify, these modules. Even better, the induction functor is monoidal
[33] and hence it preserves the fusion rules, so we can easily compute the B0 |1(p,v) fusion rules from those known
for A1(u,v) [17, 20, 21, 23, 42] and M(p,u) [43, 44].

On physical grounds, conformal field theory is always expected to require a vertex tensor category in the sense of
Huang-Lepowsky-Zhang [45] and so one expects that an appropriate version of Verlinde’s formula holds. Verifying
the existence of a vertex tensor category structure and proving a Verlinde formula for non-rational vertex operator
algebras are two of the deepest problems in vertex algebra theory. In our case, both have recently been proven for the
subcategory of ordinary modules of A1(u,v) [42] (and all other simply-laced Lie algebras [42,46]) so that the results
reported here are completely rigorous within this subcategory. In general, our results depend on the conjectural
Verlinde formula for A1(u,v) of [21,23], developed in [13], and the conjectural existence of a vertex tensor category
structure on the A1(u,v)-modules.

1.2. Outline and Results. We start in Section 2 with the necessary background, meaning that we introduce the
Virasoro and sl2 minimal models and fix their notation. These are the building blocks of the osp(1|2)minimal models
which we set up in Section 2.1.3. Next, in Section 2.2, we explain the realisation of each minimal model of osp(1|2)
in terms of a vertex operator superalgebra extension of the tensor product of certain Virasoro minimal model with
an sl2 one. In particular, we review and explain the “character” proof of the coset (1.1) presented in [47]. In order
to deduce various facets of the representation theory of the osp(1|2) minimal models, we also have to explain some
basic properties of the theory of vertex algebra extensions using the language of induction and restriction. This is
done in Section 2.3.
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With this setup, we are now able to construct modules of the osp(1|2)minimal models via induction and so we start
Section 3 by finding all modules of the tensor product vertex operator subalgebra that induce to irreducible Neveu-
Schwarz and Ramond modules over ôsp(1|2). We then identify these modules by determining their global parities
and other characterising data for osp(1|2) (highest weights, conformal dimensions and super-Casimir eigenvalues).
Moreover, the construction makes it easy to explicitly state the characters and supercharacters of the induced
representations.

It is expected, but is a priori not clear, that one gets all irreducible modules of the osp(1|2) minimal models via
induction. In Section 4, we prove that this is so, for relaxed highest-weight modules, by combining the information
we get from the explicit constructions with some simple observations concerning Zhu’s algebra. This provides a
new, and relatively straightforward, proof of the recent classification [48] of Wood.

Finally, we use the fact that fusion respects induction to immediately deduce (conjectural) fusion rules for the
irreducible modules of the osp(1|2) minimal models, see Section 5. Presently, even in the case of the sl2 minimal
models, the projective covers of the irreduciblemodules are not known. We use this opportunity to list our conjectures
for their structures in Appendix A, explaining that they are consistent with the general expectations for fusion rules
in rigid tensor categories. This allows us to construct (conjectured) projectives for the osp(1|2) minimal models and
state some of their fusion rules (Section 5.2).
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2. Background

2.1. Conventions.

2.1.1. Virasoro minimal models. A minimal model [43] of the Virasoro algebra Vir

[LVirm ,L
Vir
n ] = (m − n)L

Vir
m+n +

m3 −m

12
δm+n,0cVir (2.1)

is denoted by M(p,u), where p,u > 2 are coprime integers parametrising the central charge

cVir = 1 − 6
(u − p)2

pu
. (2.2)

The irreducible M(p,u)-modules are the highest-weight Vir-modules Vr,s , where 1 6 r 6 p − 1 and 1 6 s 6 u − 1,
whose highest-weight states have conformal dimension

∆Vir
r,s =

(ur − ps)2 − (u − p)2

4pu
. (2.3)

Note that Vr,s = Vp−r,u−s .
The character of the irreducible M(p,u)-module Vr,s is given by

χ
p,u
r,s (q) = trVr ,s qL

Vir
0 −cVir/24 =

1
η(q)

∑
n∈�

[
q(2pun+ur−ps)

2/4pu − q(2pun+ur+ps)
2/4pu ] , (2.4)

where η(q) is the Dedekind eta function. The minimal model M(p,u) is rational [49, 50] and the fusion rules are

Vr,s × Vr ′,s ′ '

p−1⊕
r ′′=1

u−1⊕
s ′′=1

N(p,u) (r
′′,s ′′)

(r,s),(r ′,s ′) Vr ′′,s ′′, (2.5)
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where N(p,u) (r
′′,s ′′)

(r,s),(r ′,s ′) = N(p) r
′′

r,r ′ N(u) s
′′

s,s ′ and

N(t ) ki, j =

{
1, if |i − j | + 1 6 k 6 min{i + j − 1, 2t − i − j − 1} and i + j + k is odd,

0, otherwise.
(2.6)

We note that V1,1 = Vp−1,u−1 is the vacuum module and that when p and u are both greater than 2, Vp−1,1 = V1,u−1

is a (distinct) simple current of order 2: Vp−1,1 × Vp−1,1 ' V1,1.

2.1.2. sl2 minimalmodels. The affineKac-Moody algebra ŝl2 has a standard basis inwhich the non-zero commutation
relations are

[hm , en] = +2em+n , [hm ,hn] = 2mδm+n,0k, [em , fn] = hm+n +mδm+n,0k, [hm , fn] = −2fm+n . (2.7)

The universal affine vertex algebra of level k associated to ŝl2 is not simple when [51]

k + 2 =
u

v
, u ∈ �>2, v ∈ �>1, gcd{u,v} = 1. (2.8)

Its simple quotient is referred to as the level-k sl2 minimal model and will be denoted by A1(u,v). The energy-
momentum tensor of this minimal model is given by the Sugawara construction [52, 53] as

T sl(z) =
1

2(k + 2)

[
1
2

:hh:(z) + :e f :(z) + :f e:(z)
]

(2.9)

and the central charge of A1(u,v) is

csl = 3 −
6v
u
. (2.10)

The generators of ŝl2 admit a number of automorphisms including [54] spectral flow σ `
sl, where ` ∈ �, which

preserves the level k and acts on the other generators by

σ `
sl(en) = en−`, σ `

sl(hn) = hn − δn,0`k, σ `
sl(fn) = fn+` . (2.11)

The zero mode Lsl0 of the energy momentum tensor, whose eigenvalue is the conformal dimension, satisfies

σ `
sl(L

sl
0 ) = Lsl0 −

1
2
`h0 +

1
4
`2k. (2.12)

Spectral flow also acts on A1(u,v)-modules through composition with the corresponding representations. We shall
denote the spectral flows of such a module M by σ `

sl(M).
The minimal model A1(u,v) is unitary when v = 1, in which case the level k is a non-negative integer. The

minimal model A1(u, 1) is rational [55], so has a finite number of irreducible modules Lr,0, where 1 6 r 6 u − 1,
which happen to be integrable and highest-weight. The h0-charge and conformal dimension of the highest-weight
state of Lr,0 are given by

λslr,0 = r − 1 and ∆sl
r,0 =

r 2 − 1
4u
, (2.13)

respectively. The spectral flows of these irreducibles satisfy

σsl(Lr,0) ' Lu−r,0 (2.14)

and their characters are given by

ch
[
Lr,0

] (
z; q

)
= tr

Lr ,0
zh0qL

sl
0 −csl/24 =

q∆
sl
r ,0−csl/24+1/8

iϑ1
(
z2; q

) ∑
j ∈�

(
z2uj+r − z−2uj−r

)
qj(uj+r ), (2.15)

where ϑ1 denotes a Jacobi theta function (see [18] for our conventions). Finally, the fusion rules are given by

Lr,0 × Lr ′,0 '

u−1⊕
r ′′=1

N(u) r
′′

r,r ′ Lr ′′,0. (2.16)

The vacuum module is L1,0 and, for u > 2, Lu−1,0 is a simple current of order 2. The A1(u, 1) conformal field
theories are commonly known as the WZW models on the Lie group SU2.
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When v , 1, the minimal model A1(u,v) is non-unitary and logarithmic [25] with fractional level k = u
v − 2 < �.

In this case, we generalise the parametrisation of the h0-charge and conformal dimensions from (2.13) to

λslr,s = r − 1 −
u

v
s, ∆sl

r,s =
(vr − us)2 −v2

4uv
. (2.17)

With this, the irreducible A1(u,v)-modules come in several different classes, including those in the following list:

• The Lr,0, where 1 6 r 6 u − 1. Each is an irreducible highest-weight module whose space of ground states is
finite-dimensional. The highest-weight state of each module has h0-charge λslr,0 and conformal dimension ∆sl

r,0.
• The D+r,s , where 1 6 r 6 u − 1 and 1 6 s 6 v − 1. Each is an irreducible highest-weight module whose highest-
weight state has charge λslr,s and conformal dimension ∆sl

r,s . The space of ground states forms an irreducible
infinite-dimensional Verma module for the horizontal subalgebra sl2.
• The D−r,s , where 1 6 r 6 u − 1 and 1 6 s 6 v − 1. These are defined to be the conjugates of the D+r,s , meaning
that D−r,s is obtained from D+r,s by twisting the A1(u,v)-action by the Weyl reflection of sl2. It follows that the
ground states of the D−r,s also have conformal dimension ∆sl

r,s .
• The Eλ;r,s , where 1 6 r 6 u−1, 1 6 s 6 v−1 and λ ∈ � satisfy λ , λslr,s , λslu−r,v−s (mod 2). Each is an irreducible
relaxed highest-weight module whose ground states have h0-charges equal to λ (mod 2) and conformal dimension
∆sl
r,s .

• Spectral flows of all of the irreducible modules above. This generally gives new irreducibles, though there are
some isomorphisms to note, in particular

σ±1
sl (Lr,0) ' D±u−r,v−1, σ∓1

sl (D
±
r,s ) ' D∓u−r,v−1−s (s , v − 1). (2.18)

Apart from the spectral flows, this classification originally appeared in [15]. More recent alternative proofs may be
found in [25, 29].

There exist additional classes of irreducible A1(u,v)-modules, for instance the Whittaker modules of [27].
However, these are not expected to be needed for the construction of the corresponding (logarithmic) conformal field
theories. One does, however, need certain reducible but indecomposable A1(u,v)-modules, in particular the relaxed
highest-weight modules E±r,s , where 1 6 r 6 u − 1 and 1 6 s 6 v − 1. These have ground states whose h0-charges
are equal to λslr,s (mod 2) and whose conformal dimension is ∆sl

r,s . Moreover, E±r,s has a submodule isomorphic to
D±r,s and its quotient by this submodule is isomorphic to D∓u−r,v−s . In other words, the following sequence is exact
and non-split:

0 −→ D±r,s −→ E±r,s −→ D∓u−r,v−s −→ 0. (2.19)

The characters of the A1(u,v)-modules introduced above are given by

ch
[
Lr,0

] (
z; q

)
=

q∆
sl
r ,0−csl/24+1/8

iϑ1(z2; q)

∑
j ∈�

(
z2uj+r − z−2uj−r

)
qv j(uj+r ), (2.20a)

ch
[
D±r,s

] (
z; q

)
=

z±(λr ,s+1)q∆sl
r ,s−csl/24+1/8

±iϑ1(z2; q)

∑
j ∈�

[
z±2ujqj(uv j+vr−us) − z±2(uj−r )q(uj−r )(v j−s)

]
, (2.20b)

ch
[
Eλ;r,s

] (
z; q

)
=

zλ χu,vr,s (q)
η(q)2

∑
n∈�

z2n , ch
[
E±r,s

] (
z; q

)
=

zλr ,s χu,vr,s (q)
η(q)2

∑
n∈�

z2n (2.20c)

where we recall that χu,vr,s in (2.20c) denotes the character of the irreducible M(u,v)-module Vr,s . The formula for
the Eλ;r,s was originally conjectured in [23] and was proven in [27], for generic values of the parameters, and in full
generality in [28]. The characters of the spectral flows of an A1(u,v)-moduleM are easily obtained from

ch
[
σ `
sl(M)

] (
z; q

)
= z`kq`

2k/4 ch
[
M

] (
zq`/2; q

)
, (2.21)

though one should be careful with convergence regions (see [18, 23]).
The fusion rules of the irreducible A1(u,v)-modules with v , 1 are only known for (u,v) = (2, 3) [17, 21] and

(u,v) = (3, 2) [20], where they were computed using the Nahm-Gaberdiel-Kausch algorithm [56, 57]. On the other
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hand, the Grothendieck fusion rules are known [21, 23], under the twin conjectures that the Grothendieck fusion
coefficients are well defined and that the standard Verlinde formula of [58,59] computes them. We list these rules in
Appendix A for convenience. Note that these conjectures imply the following fusion rules for general u and v:

Lr,0 × Lr ′,0 '

u−1⊕
r ′′=1

N(u) r
′′

r,r ′ Lr ′′,0, Lr,0 ×D
±
r ′,s ′ '

u−1⊕
r ′′=1

N(u) r
′′

r,r ′ D±r ′′,s ′, Lr,0 × Eλ;r ′,s ′ '

u−1⊕
r ′′=1

N(u) r
′′

r,r ′ Eλ+λr ,0;r ′′,s ′ .

(2.22)
We emphasise that the fusion rules that decompose Lr,0 × Lr ′,0 have recently been proven in [42]. It follows that
L1,0 and Lu−1,0 are again the vacuum module and a simple current of order 2 (if u > 2), respectively.

2.1.3. osp(1|2) minimal models. The affine Kac-Moody superalgebra ôsp(1|2) is generated by bosonic modes en , hn
and fn , as well as fermionic modes xn and yn . Their non-zero (anti)commutation relations are given by (2.7) (the
bosonic subalgebra of ôsp(1|2) is isomorphic to ŝl2) along with

[em ,ys ] = −xm+s , [hm ,xs ] = xm+s , [hm ,ys ] = −ym+s , [fm ,xs ] = −ym+s ,

{xr ,xs } = 2er+s , {xr ,ys } = hr+s + 2rδr+s,0k, {yr ,ys } = −2fr+s .
(2.23)

There are actually two different versions of ôsp(1|2), one with r , s ∈ � and another with r , s ∈ � + 1
2 . Modules of

the first version belong to the Neveu-Schwarz sector, while those of the second belong to the Ramond sector.
The level-k osp(1|2)minimal model B0 |1(p,v) is defined to be the simple quotient of the universal vertex operator

superalgebra associated to ôsp(1|2) with [51]

k = −
3
2
+

p

2v
, p ∈ �>2, v ∈ �>1,

p +v

2
∈ �, gcd

{
p,

p +v

2

}
= 1. (2.24)

The energy-momentum tensor provided by the Sugawara construction is

T osp(z) =
1

2k + 3

[
1
2

:hh:(z) + :e f :(z) + :f e:(z) −
1
2

:xy:(z) +
1
2

:yx :(z)
]

(2.25)

and the central charge is
cosp =

2k
2k + 3

= 1 −
3v
p
. (2.26)

Spectral flow acts on the generators of ôsp(1|2) and the Virasoro zero mode Losp0 obtained from (2.25) as follows:

σ `
osp(en) = en−`, σ `

osp(hn) = hn − δn,0`k, σ `
osp(fn) = fn+`

σ `
osp(xn) = xn−`/2, σ `

osp(yn) = yn+`/2

σ `
osp(L

osp
0 ) = L

osp
0 −

1
2
`h0 +

1
4
`2k.

(2.27)

Note that restricting σosp to the bosonic subalgebra ŝl2 recovers σsl. As with A1(u,v)-modules, the spectral flow
σ `
osp(M) of a B0 |1(p,v)-module M is another B0 |1(p,v)-module. If ` ∈ 2�, then spectral flow preserves the sector

(Neveu-Schwarz or Ramond) of the module while these sectors are exchanged if ` ∈ 2� + 1.
The classification of irreducible relaxed highest-weight B0 |1(p,v)-modules has only recently been completed in

[48], see also [29]. Our aim here is to provide an alternative classification that relies on a coset construction. This
has the advantage that it will also allow us to easily deduce the characters, which were also only recently calculated
[28], as well as the Grothendieck fusion rules, which were previously unknown. To prepare for this classification
and to fix notation, we introduce the irreducible relaxed highest-weight ôsp(1|2)-modules following [35]:

• The NSAλ (RAλ), where λ ∈ �>0. Each is an irreducible highest-weight module in the Neveu-Schwarz (Ramond)
sector whose space of ground states forms an irreducible finite-dimensional module for osp(1|2) (sl2). The
highest-weight state of each module is bosonic with h0-charge λ and conformal dimension λ(λ+1)

2(2k+3) .
• The NSB+λ (RB+λ ), where λ < �>0. Each is an irreducible highest-weight module in the Neveu-Schwarz (Ramond)
sector whose space of ground states forms an irreducible infinite-dimensional Verma module for osp(1|2) (sl2).
The highest-weight state of each module is likewise bosonic with h0-charge λ and conformal dimension λ(λ+1)

2(2k+3) .
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• The NSB−λ (RB−λ ), where λ < �>0, that are the conjugates of the NSB+λ (RB+λ ). Conjugation for ôsp(1|2)-modules
also corresponds to twisting by the Weyl reflection of sl2 ↪→ osp(1|2).
• The NSCλ;Σ (RCλ;q), where λ ∈ � and Σ ∈ � (q ∈ �) satisfy λ , ±(Σ − 1

2 ) (mod 2) (λ , −1 ±
√

1 + 2q (mod 2)).
Each is an irreducible relaxed highest-weight module whose ground states have h0-charges equal to λ (mod 2)
and conformal dimension given by

NSCλ;Σ :
Σ2 − 1/4
2(2k + 3)

, RCλ;q :
q − k/4
2k + 3

. (2.28)

The ground state of h0-charge λ is bosonic. Here, Σ denotes the eigenvalue of the osp(1|2) super-Casimir [60]

ς = x0y0 − y0x0 +
1
2

(2.29)

on the bosonic ground states, while q denotes the ground state eigenvalue of the sl2 quadratic Casimir

Ω =
1
2
h2

0 + e0 f0 + f0e0. (2.30)

• The parity reversals of the above irreducibles obtained by declaring in each case that the ground state of h0-charge
λ is fermionic rather than bosonic. Parity reversal will be denoted by Π.

Of course, the spectral flows of these irreducible relaxed highest-weight modules will again be irreducible, though
they are usually not relaxed nor highest-weight.

We remark that this classification of irreducible relaxed highest-weight ôsp(1|2)-modules relies crucially on the
classification of irreducible weight osp(1|2)-modules with finite-dimensional weight spaces. The latter result seems
to have first appeared as part of the classification of all irreducible weight osp(1|2)-modules, due to Bavula and
van Oystaeyen [61]. An elementary proof treating only the case of finite-dimensional weight spaces may be found
in [35, Thm. 2].

2.2. The coset construction. It is well known, see [62] for an early instance and [63, Thm. 8.4] for a proof, that the
coset (commutant) of an osp(1|2) minimal model by its sl2 minimal model bosonic subalgebra (of the same level k)
is a Virasoro minimal model. Equating the expressions for k from (2.8) and (2.24) gives

k + 2 =
u

v
and k +

3
2
=

p

2v
, where p +v = 2u . (2.31)

The coset is then as in (1.1):

M(p,u) ' Comm
(
A1(u,v),B0 |1(p,v)

)
≡

B0 |1(p,v)

A1(u,v)
. (2.32)

Note that if B0 |1(p,v) is unitary, then both M(p,u) and A1(u,v) must be unitary. Thus, we must have p −u = ±1 and
v = 1. The only solution is p = 3, u = 2 and v = 1, hence the only unitary osp(1|2) minimal model is B0 |1(3, 1)
corresponding to k = 0 (this is the trivial one-dimensional vertex operator superalgebra).

In the remainder of the section, we shall discuss a proof of the coset identification (1.1). The only step which
we omit is that which establishes a particular character identity, (2.36) below, whose somewhat lengthy proof has
already been detailed in [47].

At the level of the generating fields, the sl2 fields e(z), h(z) and f (z) are identified with their namesakes in
B0 |1(p,v), while the Virasoro field is identified with

TVir(z) = T osp(z) −T sl(z). (2.33)

This guarantees that TVir has regular operator product expansions with e, h and f [64]. Let Vk denote the tensor
product of the universal Virasoro vertex operator algebra of central charge 1 − 6(p−u)2

pu and the universal sl2 vertex
operator algebra of level k. The field identifications above then define a homomorphism of Vk into B0 |1(p,v).

To show that this descends to an embedding

M(p,u) ⊗ A1(u,v) ↪−→ B0 |1(p,v) (2.34)
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and prove (1.1), we claim that it suffices to prove the following branching rule:

B0 |1(p,v)y ' u−1⊕
i=1

V1,i ⊗ Li,0. (2.35)

Here, we decompose B0 |1(p,v) as a Vk-module and note that the direct summands which appear are in fact M(p,u) ⊗
A1(u,v)-modules. The embedding (2.34) is now clear and the commutant of A1(u,v), here identified with its vacuum
module L1,0, is obviously V1,1, the vacuum module of M(p,u), as claimed.

As M(p,u) is rational [49, 50] and A1(u,v) is rational in category O [15, 16], (2.35) will be proven if we can
demonstrate its character analogue:

ch
[
B0 |1(p,v)

] (
z; q

)
= trB0|1(p,v)

zh0qL
osp
0 −cosp/24 =

u−1∑
i=1

χ
p,u
1,i (q) ch

[
Li,0

] (
z; q

)
. (2.36)

This is a straightforward, though somewhat lengthy, computation and is detailed in [47, Lem. 2.1]. Actually, this
calculation is performed at the level of meromorphic continuations of characters in z ∈ � and |q | < 1, rather than
as formal power series, hence its validity also requires the linear independence of these continuations (or careful
attention to convergence regions). Unfortunately, the continuations of the irreducible A1(u,v)-characters in category
O are not linearly independent ifv > 1 [18]. We can rectify this by replacing category O by its Kazhdan-Lusztig (or
ordinary) subcategory KL whose objects are the A1(u,v)-modules in O with finite-dimensional Lsl0 -eigenspaces.
The irreducible characters in KL , which are precisely those of the Li,0, have linearly independent meromorphic
continuations and so the above manipulations are justified and the proof is complete.

2.3. Vertex tensor categories. The theory of vertex algebra extensions allows one to analyse vertex algebra con-
structions, such as the coset construction, in a purely categorical way. This is based on the result that commutative
and associative algebras in a given vertex tensor category are the same as vertex algebra extensions (in this category)
[30]. In the case of vertex operator superalgebras, one has to work with commutative and associative superalgebras
[31]. We will not give precise definitions of the categorical terms here, instead referring to [33, 65] for details.

In this section, we summarise the results of [33] that are needed in what follows. The main result of that article is
that the category of extended vertex superalgebra modules is braided-equivalent to the category of local modules for
the corresponding algebra object. Moreover, there is an induction functor from the base category and this functor is
braided-tensor, meaning in particular that it preserves the fusion rules.

The setup is as follows. Let V be a simple vertex operator algebra with integer conformal weights and let W be
a simple vertex operator superalgebra. Assume that we have a parity-preserving embedding V ↪→ W, meaning that
the image is contained in the bosonic subalgebra of W. This means that W is an extension of V and so it decomposes
into V-modules as

Wy '⊕
i

Wi . (2.37)

Here and below, we assume that each of the Wi consists of either bosonic or fermionic states. An especially nice
situation is when the Wi appearing in this decomposition are irreducible and inequivalent. The notion Wy of the
restriction of W to a module of the smaller vertex operator superalgebra V generalises to arbitrary W-modules N as
we may also restrict them to V-modules:

Ny '⊕
j

Nj . (2.38)

The identification of a restricted W-module, as a V-module, is called a branching rule.
In this setup, there is a very closely related operation on modules called induction. For this, letM be a V-module

and consider its fusion product with theV-moduleWy. In many cases, the result has a natural structure as aW-module
and this W-module is called the induction ofM, denoted byM

x. The restriction of an induced module decomposes
as

M
xy '⊕

i

Wi ×M. (2.39)
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Not every module induces to a local (meaning Neveu-Schwarz) or twisted (meaning Ramond) module of W.
Fortunately, there is a nice criterion to study the result of inducing, assuming that the conformal dimensions of the
states of W are integers (which is the case we are interested in here). This criterion says that an induced module is
local if and only if the twist acts as a W-module morphism. The twist is given by the action of e2π iL0 , where L0

is the Virasoro zero mode of W. It follows that an irreducible induced module is Neveu-Schwarz if and only if its
conformal dimensions all differ by integers. Moreover, an irreducible induced module is Ramond if and only if the
conformal dimensions of its bosonic states differ from those of its fermionic ones by 1

2 modulo �.
Let now M1 and M2 be two irreducible V-modules that both induce to irreducible W-modules. We ask the

question of whether their inductions are isomorphic or not. For this, there is a useful criterion called Frobenius
reciprocity. For our purposes, we may take it to say that the space of homomorphisms between two induced modules
may be computed as

HomW(M1
x,M2

x) ' HomV(M1,M2
xy) '⊕

i

HomV(M1,Wi ×M2). (2.40)

One therefore needs only to verify if M1 appears as a submodule of the fusion product of any of the Wi with M2.
We however warn the reader that one has to be careful with parity: in this setup, Frobenius reciprocity does not
distinguish modules from their parity reversals.

We now come to the two most important statements of [33]; we formulate them as theorems. The first one gives
a criterion that guarantees that induced modules are irreducible. We shall apply it frequently in what follows.

Theorem 1 ([33, Prop. 4.4]). Let V ↪→ W be an embedding of a simple vertex operator algebra V into a simple vertex
operator superalgebra W under which Wy decomposes into a direct sum of irreducible V-modules Wi as in (2.37).
Suppose thatM is an irreducible V-module for which the fusion productsWi ×M are irreducible and inequivalent:
Wi ×M ; Wj ×M if i , j. Then, the induced W-moduleM

x = W ×M is irreducible.

Obviously, a necessary condition for the inequivalence of the Wi ×M is that theWi are all inequivalent.
The second theorem gives a way to easily determine the fusion rules of induced modules. In categorical language,

it states that induction is a vertex tensor functor. The version below, which suffices for the application to follows,
eschews this language for simplicity.

Theorem 2 ([33, Thm. 3.68]). Let V ↪→ W be an embedding of a vertex operator algebra V into an vertex operator
superalgebra W and letM and N be V-modules. Then, the fusion rules of the induced W-modules satisfy

M
x ×Nx ' (M ×N)x. (2.41)

This method for computing fusion rules from (2.41) has also been proposed in the physics literature, for example in
[59, Eq. (3.3)].

3. Inverting the coset

Recall that the restriction of B0 |1(p,v) to an M(p,u) ⊗ A1(u,v)-module decomposes as in (2.35). The opposite
operation, the induction of an M(p,u) ⊗ A1(u,v)-moduleM to a B0 |1(p,v)-moduleM

x, is then defined by

M
x = B0 |1(p,v) ×M ⇒ M

xy ' u−1⊕
i=1
(V1,i ⊗ Li,0) ×M, (3.1)

where × denotes the fusion product of M(p,u) ⊗A1(u,v)-modules. In this section, we shall use induction to construct
B0 |1(p,v)-modules fromM(p,u)⊗A1(u,v)-modules and identify them as level-k ôsp(1|2)-modules. This is an instance
of what we call “inverting the coset”. In Section 4, we will show that, up to isomorphism, every irreducible relaxed
highest-weight B0 |1(p,v)-module may be obtained in this fashion.
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Westart by recalling the branching rule (2.35), inwhichB0 |1(p,v) is decomposed into irreducibleM(p,u)⊗A1(u,v)-
modules, and exploring the results of inducing its direct summands V1,i ⊗ Li,0. If i = 1, then it is straightforward to
identify the result, as an M(p,u) ⊗ A1(u,v)-module, using the fusion rules (2.5) and (2.22):

(V1,1 ⊗ L1,0)
xy ' u−1⊕

i=1
(V1,i ⊗ Li,0) × (V1,1 ⊗ L1,0) '

u−1⊕
i=1
(V1,i × V1,1) ⊗ (Li,0 × L1,0)

'

u−1⊕
i=1

V1,i ⊗ Li,0 ' B0 |1(p,v)y. (3.2)

The result, which is also obtained if i = u − 1, is consistent with (V1,1 ⊗ L1,0)
x ' B0 |1(p,v). However, this does not

by itself allow us to conclude that we have the corresponding isomorphism of B0 |1(p,v)-modules.
Of course, (V1,1 ⊗ L1,0)

x ' B0 |1(p,v) follows immediately from the definition of induction because V1,1 ⊗ L1,0

is just the vacuum module for M(p,u) ⊗ A1(u,v). However, this issue with identifying inductions is less trivial for
other modules. We shall therefore analyse this simple case in detail, describing a methodology that generalises
straightforwardly to all modules.

Before commencing this analysis, we note that the induction is quite different for all i , 1,u − 1. For example,
when u > 3, we have

(V1,2 ⊗L2,0)
xy ' u−1⊕

i=1
V1,i ⊗Li,0 ⊕

u−2⊕
i=2
(V1,i ⊗Li,0 ⊕V1,i−1 ⊗Li+1,0 ⊕V1,i+1 ⊗Li−1,0) ' B0 |1(p,v)y ⊕My, (3.3)

where M is some other, as yet uncharacterised, B0 |1(p,v)-module. These results are consistent with Theorem 1
which applies when i is such that the (V1,i ⊗ Li,0) × (V1, j ⊗ Lj,0) are inequivalent and irreducible for all j. If this
holds, then the result of inducing is an irreducible B0 |1(p,v)-module (which is clearly not the case in the previous
example).

3.1. The osp(1|2)minimal models B0 |1(p, 1). We start with the non-negative integer-level models B0 |1(p, 1). Here,
p is odd and greater than 1, so u = k + 2 = p+1

2 > 2. For these models, the only irreducible modules available for
induction are the Vr,s ⊗ Lr ′,0, where r = 1, . . . ,p − 1 and r ′, s = 1, . . . ,u − 1. Inspecting the fusion rules involving
these irreducibles and the V1,i ⊗ Li,0, using (2.5) and (2.16), it is easy to see that the result will be irreducible if
r ′, s ∈ {1,u − 1}. In this section, we shall first analyse the intricacies regarding the induction procedure in some
detail. We then explain how to identify the induced module, including its sector (Neveu-Schwarz or Ramond), given
the parameters r , s and r ′.

Taking r ′ = s = 1, we detail the determination of the decomposition of the induced module (Vr,1 ⊗L1,0)
x, which

we shall denote by Ar,0 for brevity:

Ar,0y ' u−1⊕
i=1
(V1,i ⊗ Li,0) × (Vr,1 ⊗ L1,0) '

u−1⊕
i=1

Vr,i ⊗ Li,0. (3.4)

The summands on the right-hand side are clearly inequivalent (and irreducible), hence Theorem 1 applies and we
conclude that Ar,0 is an irreducible B0 |1(p, 1)-module as claimed. However, taking r ′ = u − 1 and s = 1, r ′ = 1 and
s = u − 1, or r ′ = s = u − 1 gives inductions whose decompositions are identical to that in (3.4), though perhaps with
r replaced by p − r . For example, writing Ãr,0 for the irreducible B0 |1(p, 1)-module (Vr,1 ⊗ Lu−1,0)

x, we have
Ãp−r,0y ' u−1⊕

i=1
Vp−r,i ⊗ Lu−i,0 =

u−1⊕
i=1

Vp−r,u−i ⊗ Li,0 =

u−1⊕
i=1

Vr,i ⊗ Li,0. (3.5)

As before, however, this need not imply that Ar,0 and Ãp−r,0 are isomorphic as B0 |1(p, 1)-modules. As we shall see,
they need not be.

To answer this question of possible isomorphisms, and to identify the induced modulesAr,0 as ôsp(1|2)-modules,
we present two approaches. The first method uses Frobenius reciprocity (2.40). Start by noting that the isomorphism
(3.5) gives an inclusion of Vr,1 ⊗ L1,0 into Ãp−r,0y. Reciprocity then says that there is a non-zero map from
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Ar,0 = (Vr,1 ⊗ L1,0)
x to Ãp−r,0. As both modules are known to be irreducible, this map is an isomorphism by

Schur’s lemma.
But, we have stated that these modules need not be isomorphic! The problem arises because we really want

to determine if there is an isomorphism between Ar,0 and Ãp−r,0 that preserves the parity of the vectors (as we
distinguish between a B0 |1(p, 1)-module and its parity reversal). Our application of Frobenius reciprocity started
with the existence of a map between M(p,u) ⊗ A1(u, 1)-modules, which have no concept of parity, it follows that the
deduced map between B0 |1(p, 1)-modules need not respect parity. More precisely, it could respect or reverse parity.

To ameliorate this deficiency, we describe a second, more instructive, approach which relies on explicitly iden-
tifying the ground states of the (irreducible) induced module. This has the added advantage of allowing us to
compare with the list of irreducible ôsp(1|2)-modules given in Section 2.1.3 and thereby identify the induced module
completely.

The ground states of the irreducible induced module Ar,0 are easily found by determining which of the ground
states of the summands Vr,i ⊗ Li,0 appearing in (3.4) have the lowest conformal dimension. By (2.3) and (2.13), the
conformal dimension of the ground states of the i-th summand is

∆Vir
r,i + ∆

sl
i,0 =

1
2
i2 −

r

2
i +
(r 2 − 1)u

4p
. (3.6)

The global minimum therefore occurs when i = 1
2r , if r is even, and when i = 1

2 (r ± 1), if r is odd. This minimal
conformal dimension may now be written in the form

∆
osp
r,0 =

r 2 − 1
8p

−
1 + (−1)r

16
. (3.7)

Moreover, the ground states of minimal conformal dimension have a highest-weight state whose h0-charge is

λ
osp
r,0 =

r − 1
2
−

1 + (−1)r

4
. (3.8)

Ar,0 is therefore an irreducible highest-weight ôsp(1|2)-module of h0-charge λospr,0 . To determine its sector, note that
the conformal dimensions of the ground states of the i-th and j-th summands in (3.4) differ by 1

2 (i − j)(i + j − r ). If r
is odd, then this difference is always an integer soAr,0 belongs to the Neveu-Schwarz sector. Likewise,Ar,0 belongs
to the Ramond sector when r is even.

It only remains to determine the parity of the highest-weight state of Ar,0. To do so, note that the h0-charges of
the summands Vr,i ⊗ Li,0 in (3.4) are equal to i − 1 (mod 2). As the states of Vr,1 ⊗ L1,0 are bosonic (because
this is the module we are inducing from), it follows that Vr,i ⊗ Li,0 is bosonic for i odd and fermionic for i even.
For r odd, the highest-weight state corresponds to i = r+1

2 , hence it is bosonic if r = 1 (mod 4) and fermionic if
r = 3 (mod 4). For r even, we similarly conclude that we have a bosonic highest-weight state if r = 2 (mod 4) and
a fermionic one if r = 0 (mod 4). Comparing with the list of irreducible ôsp(1|2)-modules given in Section 2.1.3,
this then completes the identification of the Ar,0.

r (mod 4) 1 2 3 4
Ar,0

NSAλospr ,0
RAλospr ,0

ΠNSAλospr ,0
ΠRAλospr ,0

We recall that Π denotes parity reversal, meaning that the module has had its bosonic and fermionic subspaces
swapped. Note that (V1,1 ⊗ L1,0)

x = A1,0 '
NSA0 is indeed the vacuum module of B0 |1(p, 1), as expected.

This table describes a dictionary that identifies the irreducible B0 |1(p, 1)-modules, obtained by induction, as
irreducible level-k highest-weight ôsp(1|2)-modules, where k = p − 3

2 , with both parity and sector made explicit. We
shall find this dictionary, as well as those obtained in Section 3.2 for the irreducible B0 |1(p,v)-modules, extremely
useful in what follows.

If we repeat this analysis with the Ãr,0, we do not obtain any new B0 |1(p, 1)-modules except perhaps for parity
reversals. Indeed, the identification is as follows.
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r (mod 4) 1 2 3 4

Ãr,0
RAλospp−r ,0

NSAλospp−r ,0
ΠRAλospp−r ,0

ΠNSAλospp−r ,0

In particular, Ar,0 is isomorphic to Ãp−r,0, if p = 3 (mod 4), and to ΠÃp−r,0, if p = 1 (mod 4). We remark that
the fact that no new modules are encountered (except parity reversals) was guaranteed because the spectral flow
automorphisms of ŝl2 and ôsp(1|2) are consistent with the coset construction. Thus,

Ãr,0 = (Vr,1 ⊗ Lu−1,0)
x ' (

Vr,1 ⊗ σsl(L1,0)
)x ' σosp((Vr,1 ⊗ L1,0)

x) = σosp(Ar,0), (3.9)

a relation that is easy to verify directly. We conclude that inducing the Vr,1 ⊗ L1,0 and applying parity reversal will
give all the irreducibles that can be obtained by inducing an arbitrary M(p,u) ⊗A1(u,v)-module and parity-reversing.

The characters of the Ar,0 are now obtained by taking characters of modules on both sides of the branching rule
(3.4). This gives

ch
[
Ar,0

] (
z; q

)
= tr

Ar ,0
zh0qL

osp
0 −cosp/24 =

u−1∑
i=1

χ
p,u
r,i (q) ch

[
Li,0

] (
z; q

)
. (3.10)

One can expand this using the explicit forms (2.4) and (2.20) for the irreducible M(p,u)- and A1(u,v)-characters.
Since ôsp(1|2) is a superalgebra, it is appropriate to consider its supercharacters as well. As the highest-weight state
of the module Vr,1 ⊗ L1,0 is bosonic, its h0-charge differs from those of the fermionic states by an odd integer. The
supercharacter of Ar,0 is therefore simply given by

sch
[
Ar,0

]
(z; q) = tr

Ar ,0
(−1)F zh0qL

osp
0 −cosp/24 =

u−1∑
i=1
(−1)i−1χ

p,u
r,i (q) ch

[
Li,0

] (
z; q

)
, (3.11)

where F acts as 0 on a bosonic state and as multiplication by 1 on a fermionic one.

3.2. The osp(1|2) minimal models B0 |1(p,v) with v , 1. Following a similar method as in the v = 1 case, we
construct irreducible B0 |1(p,v)-modules from those of M(p,u) and A1(u,v) through induction. These modules are
then identified as ôsp(1|2)-modules using the list presented in Section 2.1.3. This identification uses h0-charges
and conformal dimensions and is therefore straightforward for all cases except that of the Neveu-Schwarz relaxed
highest-weight modules NSCλ;Σ for which the super-Casimir eigenvalue Σ on bosonic eigenstates is only determined
by the conformal dimension up to a sign, see (2.28).

To fix this sign, we must realise Σ in terms of M(p,u) and A1(u,v) data. Recall that the super-Casimir ς ,
defined in (2.29), of osp(1|2) (embedded in ôsp(1|2) as the horizontal subalgebra) commutes with e0, h0 and f0, but
anticommutes with x0 and y0. We therefore introduce the field

ς(z) = :xy:(z) − :yx :(z), (3.12)

noting that its zero mode ς0 acts on Neveu-Schwarz ground states as multiplication by ±Σ − 1
2 , where the sign is

positive for bosonic ground states and negative for fermionic ones. It is now straightforward to check that ς(z) is
realised as

ς(z) = 2T sl(z) −
2p
v
TVir(z), (3.13)

under the embedding (2.34). It follows that Σ may be computed in terms of the action of the zero modes of T sl(z)

and TVir(z) acting on a bosonic Neveu-Schwarz ground state ϕ:

Σϕ =

(
2Lsl0 −

2p
v
LVir0 +

1
2

)
ϕ . (3.14)

Having dealt with this minor subtlety, we can now follow the same procedure as in the v = 1 case and construct
irreducible B0 |1(p,v)-modules by inducing certain modules of M(p,u) ⊗ A1(u,v). We shall adopt the following
convention in defining our B0 |1(p,v)-modules:

Ar,0 = (Vr,1 ⊗ L1,0)
x, B±r,s = (Vr,1 ⊗ D±1,s )

x, Cλ;r,s = (Vr,1 ⊗ Eλ;1,s )
x, C±r,s = (Vr,1 ⊗ E±1,s )

x. (3.15)
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Here, r = 1, . . . ,p − 1 and s = 1, . . . ,v − 1, while λ ∈ � satisfies λ , λsl1,s , λ
sl
u−1,v−s (mod 2). The corresponding

branching rules are computed as in (3.4) and are given by

Ar,0y ' u−1⊕
i=1

Vr,i ⊗ Li,0, B±r,s
y ' u−1⊕

i=1
Vr,i ⊗D±i,s , Cλ;r,sy ' u−1⊕

i=1
Vr,i ⊗ Eλ+i−1;i,s , C±r,s

y ' u−1⊕
i=1

Vr,i ⊗ E±i,s .

(3.16)
It is now easy to check that Theorem 1 applies to the Ar,0, B±r,s and Cλ;r,s , hence that these are irreducible
B0 |1(p,v)-modules.

As before, the states in the M(p,u)⊗A1(u,v)-module being induced are bosonic in the resulting B0 |1(u,v)-module,
hence the states of the summands of (3.16) with i odd (even) are bosonic (fermionic). In each branching rule, we
determine the indices i for which the conformal dimension of the ground states of the M(p,u) ⊗ A1(u,v)-module is
minimised. In the Neveu-Schwarz sector, where r + s ∈ 2� + 1, the global minimum occurs for i = r+s±1

2 , while
in the Ramond sector, where r + s ∈ 2�, the minimum is at i = r+s

2 . (We take s = 0 for the Ar,0.) The conformal
dimensions of the ground states of the induced modules (3.15) are thereby found to be given by

∆
osp
r,s =

(vr − ps)2 −v2

8pv
−

1 + (−1)r+s

16
. (3.17)

This clearly reduces to (3.7) when v = 1 (forcing s = 0).
The Ar,0 and B+r,s are highest-weight B0 |1(p,v)-modules and the h0-charges of their highest-weight states are

easily seen to be

λ
osp
r,s =

1
2

(
r − 1 −

p

v
s
)
−

1 + (−1)r+s

4
. (3.18)

This likewise reduces to (3.8) when v = 1 and s = 0. The B−r,s are clearly the conjugates of the B+r,s , so it remains to
identify the Cλ;r,s and the C±r,s . In the Neveu-Schwarz sector, we use (3.14) to show that the super-Casimir eigenvalue
on the bosonic ground states is

Σr,s =
1
2
(−1)(r+s−1)/2

(
r −

p

v
s
)
, (3.19)

which is easily checked to be consistent with (2.28) and (3.17). In the Ramond sector, (2.28) and (3.17) lead to the
eigenvalue of the sl2 Casimir on the ground states being

qr,s =
1
8

(
r −

p

v
s
)2
−

1
2
. (3.20)

We now summarise the properties of the inducedB0 |1(p,v)-modules (3.15) in the following list, thereby identifying
them as ôsp(1|2)-modules. Modules with r + s odd (even), where s is understood to be 0 for the Ar,0, belong to the
Neveu-Schwarz (Ramond) sector. The global parities of these induced modules are determined as in Section 3.1.

• The Ar,0, with 1 6 r 6 p − 1, are irreducible highest-weight modules whose ground state spaces are finite-
dimensional. The highest-weight state of each module has h0-charge λospr,0 and conformal dimension ∆

osp
r,0 . The

sectors and global parities are found to follow the same pattern as for the case where v = 1.

r (mod 4) 1 2 3 4
Ar,0

NSAλospr ,0
RAλospr ,0

ΠNSAλospr ,0
ΠRAλospr ,0

• TheB+r,s , with 1 6 r 6 p−1 and 1 6 s 6 v −1, are irreducible highest-weight modules whose ground state spaces
are infinite-dimensional. The highest-weight state has charge λospr,s and conformal dimension ∆

osp
r,s . The B−r,s are

the conjugates of the B+r,s .

r + s (mod 4) 1 2 3 4
B±r,s

NSB±λr ,s
RB±λr ,s ΠNSB±λr ,s ΠRB±λr ,s

• The Cλ;r,s , with 1 6 r 6 p−1, 1 6 s 6 v−1 and λ , λsl1,s , λ
sl
u−1,v−s (mod 2) are irreducible relaxed highest-weight

modules whose ground state spaces are infinite-dimensional. There is a bosonic ground state of charge λ that is
characterised by its super-Casimir eigenvalue Σr,s (if r + s is odd) or its sl2 Casimir eigenvalue qr,s (if r + s is
even). In either case, the conformal dimension of the ground states is ∆osp

r,s .
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r + s (mod 4) 1 2 3 4
Cλ;r,s

NSCλ;Σr ,s
RCλ;qr ,s

NSCλ;Σr ,s ΠRCλ+1;qr ,s

It is easy to check that the restriction λ , λsl1,s , λ
sl
u−1,v−s (mod 2) translates into λ , ξ±r,s (mod 2), where

ξ±r,s =

{
±(Σr,s −

1
2 ), if r + s is odd,

−1 ±
√

1 + 2qr,s , if r + s is even.
(3.21)

For example, r + s = 1 (mod 4) implies that

λsl1,s = −
u

v
s =

1
2
(−s −

p

v
s) =

1
2
(r − 1 −

p

v
s) = Σr,s −

1
2
(mod 2) (3.22)

and, similarly, λslu−1,v−s = −(Σr,s −
1
2 ) (mod 2).

• The C±r,s , with 1 6 r 6 p − 1 and 1 6 s 6 v − 1, are reducible relaxed highest-weight modules with a bosonic
ground state of charge λospr,s and conformal dimension ∆

osp
r,s . They are characterised by the following short exact

sequences:
0 −→ B±r,s −→ C±r,s −→ ΠuB∓p−r,v−s −→ 0. (3.23)

Unpacking this, we find that the submodule S and quotient Q of C±r,s are identified as follows.

r + s (mod 4) 1 2 3 4
S NSB±λr ,s

RB±λr ,s ΠNSB±λr ,s ΠRB±λr ,s
Q ΠNSB∓λp−r ,v−s

RB∓λp−r ,v−s
NSB∓λp−r ,v−s ΠRB∓λp−r ,v−s

We emphasise that the parity reversals of the Ar,0, B±r,s , Cλ;r,s and C±r,s are also B0 |1(p,v)-modules, as are their
images under spectral flow.

The characters and supercharacters of the induced B0 |1(p,v)-modules follow from (3.16) as in the v = 1 case.
The characters are given by

ch
[
Ar,0

] (
z; q

)
=

u−1∑
i=1

χ
p,u
r,i (q) ch

[
Li,0

] (
z; q

)
, ch

[
B±r,s

] (
z; q

)
=

u−1∑
i=1

χ
p,u
r,i (q) ch

[
D±i,s

] (
z; q

)
(3.24a)

ch
[
Cλ;r,s

] (
z; q

)
=

u−1∑
i=1

χ
p,u
r,i (q) ch

[
Eλ+i−1;∆i,s

] (
z; q

)
, ch

[
C±r,s

] (
z; q

)
=

u−1∑
i=1

χ
p,u
r,i (q) ch

[
E±i,s

] (
z; q

)
(3.24b)

and the supercharacters by the same formulae, but with (−1)i−1 inserted into each sum. More explicit formulae may
now be obtained by substituting (2.4) and (2.20). As usual, the characters and supercharacters of parity reversals are
obtained from

ch
[
ΠM

]
= ch

[
M

]
, sch

[
ΠM

]
= − sch

[
M

]
. (3.25)

We remark that substituting the formula (2.20c) for the irreducible relaxed A1(u,v)-characters gives the following
form for the irreducible relaxed B0 |1(p,v)-characters:

ch
[
Cλ;r,s

] (
z; q

)
=

1
η(q)2

u−1∑
i=1

zλ+i−1χ
p,u
r,i (q) χ

u,v
i,s (q)

∑
j ∈�

z2j . (3.26)

Comparing with the character formulae recently proved in [28], we deduce the following remarkable identities:

u−1∑
i=1

χ
p,u
r,i (q) χ

u,v
i,s (q) =


ψ
p,v
r,s (q)

√
ϑ3(1; q)
η(q)

, if r + s ∈ 2�,

2ψp,v
r,s (q)

√
ϑ2(1; q)
2η(q)

, if r + s ∈ 2� + 1,

(3.27a)

u−1∑
i=1
(−1)i−1χ

p,u
r,i (q) χ

u,v
i,s (q) =


ψ̃
p,v
r,s (q)

√
ϑ4(1; q)
η(q)

, if r + s ∈ 2�,

0, if r + s ∈ 2� + 1.

(3.27b)
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Here,ψp,v
r,s and ψ̃p,v

r,s denote the characters and supercharacters of the N = 1 superconformal minimal model SM(p,v)
of central charge 3

2 −
3(v−p)2

pv :

ψ
p,v
r,s (q) =


1

η(q)

√
ϑ3(1; q)
η(q)

∑
n∈�

[
q(2npv+vr−us)

2/8pv − q(2npv+vr+us)
2/8pv

]
, if r + s ∈ 2�,

1
η(q)

√
ϑ2(1; q)
2η(q)

∑
n∈�

[
q(2npv+vr−us)

2/8pv − q(2npv+vr+us)
2/8pv

]
, if r + s ∈ 2� + 1,

(3.28a)

ψ̃
p,v
r,s (q) =


1

η(q)

√
ϑ4(1; q)
η(q)

∑
n∈�

(−1)np
[
q(2npv+vr−us)

2/8pv − (−1)rq(2npv+vr+us)
2/8pv

]
, if r + s ∈ 2�,

0, if r + s ∈ 2� + 1.
(3.28b)

The identities (3.27)may be understood as resulting from the branching rules for the coset described by the embedding

M(p,u) ⊗ M(u,v) ↪−→ SM(p,v) ⊗ F, (3.29)

where F denotes the free fermion vertex operator superalgebra. Indeed, this is strongly suggested by the character
decomposition (3.27a) with r = s = 1 and is easily confirmed by explicitly constructing the two commuting Virasoro
subalgebras. A version of this coset was previously considered, but deduced heuristically, in [66, 67] — however,
there F was incorrectly replaced by its bosonic orbifold M(3, 4). From our perspective, it is natural to regard this
beautiful coset as the quantum hamiltonian reduction of the coset (1.1) (this is explained in [41, Thm. 2.10] and
[68]).

4. Completeness of the irreducible spectrum

In the previous section, we have constructed several families of irreducible B0 |1(p,v)-modules using M(p,u)- and
A1(u,v)-modules as building blocks. A natural question to ask is whether this procedure has in fact constructed
all the irreducible B0 |1(p,v)-modules, up to isomorphism. The answer to this is surely no, because one expects
to be able to similarly construct irreducible Whittaker modules for B0 |1(p,v) from those known for A1(u,v) when
v > 1 [27]. However, we can refine our question to instead ask whether we have constructed all the irreducible
B0 |1(p,v)-modules in some physically relevant, and hopefully consistent, class (category) of ôsp(1|2)-modules.

When v = 1, this question was asked and answered in [47] using the notion of Perron-Frobenius dimensions for
the ôsp(1|2)-analogue of the Kazhdan-Lusztig categoryKL discussed at the end of Section 2.2. This relied crucially
on there being only finitely many irreducible highest-weight B0 |1(p,v)-modules, up to isomorphism. As such, this
dimension argument should also succeed when v > 1 as long as we only want to know if we have constructed all the
irreducible highest-weight B0 |1(p,v)-modules with finite-dimensional Losp0 -eigenspaces. It will not obviously help
with the completeness question for more general classes of modules.

Here, we shall instead use a different tool, Zhu’s algebras, to prove that the lists of irreducible relaxed highest-
weight B0 |1(p,v)-modules constructed in Section 3 are complete. We strongly believe that there is a physically
consistent category for these vertex operator superalgebras in which the simple objects are precisely the spectral
flows of the irreducible relaxed highest-weight modules. It therefore suffices to complete the classification of
irreducible relaxed highest-weight B0 |1(p,v)-modules. We shall first do this for the case v = 1, for which there is
an easy argument, independent of our constructions, that trivially recovers the classification result of [47]. We shall
then present a slightly more involved argument for v > 1 that relies on our constructions to provide a quick proof of
the general classification. This classification was originally proved in [48, Thm. 3.7] using symmetric functions.

4.1. Zhu’s algebra. There are two basic observations, both very familiar to physicists, that underlie the formalism
developed by Zhu [69], see also [44,70,71], to classify suitably nice vertex operator superalgebra modules. The first
is that for irreducible relaxed highest-weight modules (see [25] for a general definition), one can completely identify
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the module from the action of the zero modes of the algebra on the ground states (relaxed highest-weight states) of
the module. Here, the zero mode of the field v(z), assumed to have definite conformal dimension ∆, is given by

v0 =

∮
0
v(z)z∆−1 dz

2π i
, (4.1)

as usual. The second observation is that “setting singular vectors to zero” in the vacuum module, hence in the
vertex operator superalgebra, results in zero modes that must annihilate the ground states, thereby constraining the
representation theory. This was implicitly used in Gepner and Witten’s analysis [72] of WZWmodels and was made
explicit in Feigin, Nakanishi and Ooguri’s work on Virasoro minimal models [73].

Zhu’s algebra is thus nothing more than the algebra of zero modes of the vertex operator superalgebra, constrained
to act on ground states. In fact, there are two Zhu algebras in the super-setting, one for Neveu-Schwarz ground
states and another for Ramond ones (the difference lies in which fields actually have zero modes). The first basic
observation above is now formalised as the following beautiful correspondence between vertex operator superalgebra
modules and Zhu algebra modules.

Theorem 3 ([69]). Let V be a vertex operator superalgebra and let Zhu[V] be its Zhu algebra (Neveu-Schwarz or
Ramond). Then:

(i) The ground states of an irreducible relaxed highest-weight V-module naturally form an irreducible weight
Zhu[V]-module.

(ii) An irreducible weight Zhu[V]-module may always be induced to an irreducible relaxed highest-weight V-
module whose ground states realise the original Zhu[V]-module.

(iii) These correspondences give rise to a bĳection between the isomorphism classes of irreducible relaxed highest-
weight V-modules and irreducible weight Zhu[V]-modules.

This shifts the question of classifying irreducible relaxed highest-weight modules for a vertex operator superalgebra
to the (hopefully easier) question of classifying irreducible weight modules for an associative algebra.

The formal definitions [69, 71] of the Zhu algebras are, unfortunately, usually given in a form which obfuscates
this simple origin. We shall therefore not discuss these general definitions, but instead use the equivalent, but
more practical, definition described in [35, Sec. 4.1] (for example) for affine vertex operator superalgebras. The
equivalence of the zero mode and formal definitions is discussed, in varying degrees of detail, in [74, Lect. 18.5–6],
[25, App. B] and [75, App. A].

Let Vk denote the universal level-k vertex operator superalgebra associated to osp(1|2), where k , − 3
2 is non-

critical. Let Ûk denote the quotient of the universal enveloping algebra of ôsp(1|2) by the ideal generated by K − k1
and let Û0

k be its conformal weight zero subalgebra (the centraliser of L0 in Ûk). Then, there is a projection π0 from Û0
k

into U(osp(1|2)), the universal enveloping algebra of osp(1|2), whose kernel is spanned by the Poincaré-Birkhoff-Witt
(PBW) basis elements, ordered by increasing mode index, that involve at least one mode with a non-zero index.
(Here, we are identifying zero modes with elements of osp(1|2).) The Neveu-Schwarz Zhu algebra ZhuNS[Vk] is
then the image of the map v ∈ Vk 7→ [v] = π0(v0), equipped with the product [u] ∗ [v] = π0(u0v0).

It is clear that the image of v is precisely the zero mode of the corresponding field, modified to remove any
(PBW-ordered) terms that annihilate all ground states. The product ∗ is then just the product of the zero modes,
with annihilating terms then removed. The Ramond Zhu algebra ZhuR[Vk] is obtained in exactly the same way, but
restricted to the bosonic orbifold of Vk (as fermionic fields will not have zero modes in the Ramond sector).

Let k = − 3
2 +

p
2v , with the restrictions on p and v given in (2.24), and let χp,v denote the singular vector of Vk

that generates the ideal by which one quotients to obtain B0 |1(p,v). We have the following useful results.

Proposition 4.

(i) [70, Lem. 2.1] ZhuNS[Vk] ' U(osp(1|2)).
(ii) [35, Prop. 6] ZhuR[Vk] ' U(sl2).
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(iii) [76] χp,v has conformal dimension 1
2 (p − 1)v and h0-charge p − 1.

(iv) [35, Prop. 7] Zhu•
[
B0 |1(p,v)

]
'

Zhu•[Vk]〈
[y

p−1
0 χp,v ]

〉 , for • = NS, R.

(v) [48, Lem. 3.3] The (Neveu-Schwarz and Ramond) Zhu ideals
〈
[y

p−1
0 χp,v ]

〉
are not zero.

In part iv, we can always replace yp−1
0 χp,v by χp,v in the Neveu-Schwarz case. However, this is only valid in the

Ramond case if p is odd because, otherwise, χp,v is fermionic and so has no zero mode. We remark that one can
easily prove the Neveu-Schwarz case of part v in an identical fashion to the corresponding Neveu-Schwarz proof
for the N = 1 superconformal minimal models, given in [75, Lem. 4.6]. Here, the Ramond proof follows from the
Neveu-Schwarz one by spectral flow (this proof is much more subtle in the N = 1 case).

4.2. Completeness when v = 1. We suppose first that v = 1, hence that p = 2k + 3 is odd (and at least 3), so that
k ∈ �>0. The singular vector χp,1 is therefore bosonic and thus its zero mode generates the ideal in Proposition 4iv
(by the remark following it). The corresponding field may be taken to have the form

χp,1(z) = :e(z)k+1:, (4.2)

where :· · ·: denotes normal ordering. Since the field involves no fermions, we may compute its zero mode in both the
Neveu-Schwarz and Ramond sectors by inductively using the standard formula for the modes of a normally ordered
product of fields. In both cases, the result is

[χp,1] = ek+1. (4.3)

We mention that this calculation simplifies greatly because all the em commute among themselves.
Consider now the Neveu-Schwarz sector. By Theorem 3 and Proposition 4, parts i and iv, we know that M will

be an irreducible Neveu-Schwarz relaxed highest-weight B0 |1(p, 1)-module if and only if its space of ground states
is an irreducible weight osp(1|2)-module annihilated by ek+1 = x2(k+1). Because x acts nilpotently, it follows that
this ground state osp(1|2)-module is actually highest-weight and, by comparing with the irreducible Neveu-Schwarz
highest-weight ôsp(1|2)-modules listed in Section 2.1.3, we conclude that M = Aλ or ΠAλ , for some λ 6 k.
In the language of Section 3.1, we thereby obtain the irreducible Neveu-Schwarz B0 |1(p, 1)-modules Ar,0, with
r = 1, 3, . . . , 2k + 1 = p − 2, and their parity reversals. These are therefore the only irreducible Neveu-Schwarz
relaxed highest-weight B0 |1(p, 1)-modules, up to isomorphism.

Adapting this argument to the Ramond sector, we must replace Proposition 4i by part ii. Thus,M is an irreducible
relaxed highest-weight B0 |1(p, 1)-module if and only if its space of ground states is an irreducible weight sl2-module
annihilated by ek+1. Again, this means that the ground state module is highest-weight and an otherwise identical
analysis concludes that the only irreducible Ramond relaxed highest-weight B0 |1(p, 1)-modules are the Ar,0, with
r = 2, 4, . . . , 2k + 2 = p − 1, and their parity reversals, again up to isomorphism.

We remark that the preceding analysis did not actually make use of the explicit constructions of irreducible
B0 |1(p,v)-modules reported in Section 3.1. Nevertheless, it is worth pointing out that we now know, after performing
the Zhu analysis, that our constructions resulted in a complete set of irreducibles, for each p ∈ 2� + 3, up to parity.

4.3. Completeness for general v. For general v, the direct classification argument used in the previous section
becomes much more difficult because an explicit formula for the singular vector χp,v is not so easily determined.
(An implicit formula in terms of symmetric functions is used in [48]; we expect that it may also be possible to use the
implicit Malikov-Feigin-Fuchs formula [77] as well.) We therefore describe a different approach that relies on the
fact that we have already constructed many irreducible B0 |1(p,v)-modules. Our strategy is to show that the existence
of any additional B0 |1(p,v)-modules would violate a bound that we derive from Zhu considerations, thereby proving
completeness.

We first analyse the Neveu-Schwarz sector. By Proposition 4i and iv, the Zhu ideal is generated by the image [ψ ]
of the state ψ = yp−1

0 χp,v in ZhuNS[Vk] ' U(osp(1|2)). This image is not zero, by Proposition 4v. By considering
the conformal dimension of ψ , we deduce that the number of modes in each of its PBW-monomials cannot exceed
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1
2 (p − 1)v (Proposition 4iii), hence the same must be true for ψ0 (using the standard normal ordering formulae) and
[ψ ]. On the other hand, ψ has h0-charge 0, so [ψ ] ∈ U(osp(1|2)) may be expressed [35, Sec. 2.2] as a non-zero
polynomial P(h, ς) in h and the super-Casimir ς . We assign degrees 1 to both h and ς so as to get a bound on the
total degree of P :

t-deg P 6
(p − 1)v

2
. (4.4)

The reason for deg ς = 1 is a little subtle. Naïvely, one would think this degree should be 2 as ς is quadratic in x
and y, see (2.29). The point here is that we are not grading U(osp(1|2)), but just the part of h0-charge 0. So, while
xy = 1

2 (h + ς −
1
2 ) suggests that ς should be degree 2, because two modes results in one ς , we also have

e f = −x2y2 = −
1
2
x

(
h + ς −

1
2

)
y = −

1
4

(
h + ς −

1
2

) (
h − ς −

3
2

)
, (4.5)

which makes it clear that two modes can result in a ς2. Thus, deg ς = 1 is the correct choice.
As we have constructed the Neveu-Schwarz B0 |1(p,v)-modules Cλ;r,s and ΠCλ;r,s , for an infinitude of λ and all

r = 1, . . . ,p − 1 and s = 1, . . . ,v − 1 with r + s odd, their ground states must be annihilated by ψ0, hence we have
P(λ,±Σr,s ) = 0 (see (3.19) for the definition of Σr,s ). Considering P as a function of λ alone (so holding r and s

constant), this becomes P(h,±Σr,s ) = 0 which implies that ς ± Σr,s is a factor of P(h, ς) for all r and s in the above
range. Now, Σr,s , 0 in this range, unless p and v are even and (r , s) = (p2 ,

v
2 ) (so r + s =

p+v
2 is odd). We may

therefore write

P(h, ς) =

{
Q(h, ς)

∏(
ς2 − Σ2

r,s
)
, if p is odd,

Q(h, ς)ς
∏(

ς2 − Σ2
r,s

)
, if p is even,

(4.6)

for some polynomial Q , where the products are over the pairs (r , s) that give distinct non-zero values of Σ2
r,s . It is

easy to check that Σ2
r,s = Σ2

r ′,s ′ if and only if (r ′, s ′) = (r , s) or (p − r ,v − s). Moreover, (r , s) = (p − r ,v − s) is
excluded as it gives Σr,s = 0. A careful count therefore shows that the number of pairs contributing to the products
in (4.6) is 1

4 (p − 1)(v − 1), if p is odd, and 1
4
[
(p − 1)(v − 1) − 3

]
, if p is even. It now follows from (4.4) and (4.6) that

t-degQ 6

p−1

2 , if p is odd,
p
2 , if p is even.

(4.7)

We next use the fact that Neveu-Schwarz B0 |1(p,v)-modules Ar,0 and ΠAr,0, with r = 1, . . . ,p − 1 odd, have
also been constructed. (The construction of the B±r,s and ΠB±r,s does not help because their ground states have
ς-eigenvalues ±Σr,s .) Using (2.29) or (3.19), we find that their ground state ς-eigenvalues are distinct, being of the
form ± r2 , and that they never coincide with any of the Σr ′,s ′ with r ′ = 1, . . . ,p − 1, s ′ = 1, . . . ,v − 1 and r ′ + s ′ odd
— the only possibility occurs when p is even and (r ′, s ′) = (r + p

2 ,
v
2 ), but then r

′ + s ′ is even. These ground states
therefore do not give zeroes of the products in (4.6), so they must give zeroes ofQ . In particular, the annihilation by
ψ0 of the highest-weight states of the Ar,0 and ΠAr,0, which have h0-charge λr,0 = 1

2 (r − 1), leads to

R±(r ) = Q

(
r − 1

2
,±

r

2

)
= 0, r = 1, . . . ,p − 1 odd. (4.8)

We conclude that

t-degQ > degR± >

p−1

2 , if p is odd,
p
2 , if p is even,

(4.9)

hence that the inequalities in (4.7) and (4.9) are actually equalities.
This allows us to finally prove the completeness of the set of (isomorphism classes of) irreducible Neveu-

Schwarz relaxed highest-weight B0 |1(p,v)-modules constructed in Section 3.2. Any irreducible Neveu-Schwarz
relaxed highest-weight B0 |1(p,v)-module M is, a priori, an ôsp(1|2)-module, so must be one of those introduced in
Section 2.1.3. IfM is one of the NSB±λ ,

NSCλ;Σ or their parity reversals, then its bosonic ground states describe zeroes
of P(h, ς) for infinitely many distinct h0-charges. As the ς-eigenvalue of these states must all be the same, we must
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have Σ = ±Σr,s , for some r = 1, . . . ,p − 1, s = 1, . . . ,v − 1 with r + s odd, because Q(h, ς) cannot have infinitely
many h-roots. M is thus one of the modules that we have constructed.

Alternatively, ifM is one of the NSAλ , with λ ∈ �>0, or their parity reversals, then its highest-weight state likewise
describes a zero of P(h, ς). Its h0-charge is λ and its ς-eigenvalue is λ + 1

2 ∈ � +
1
2 which never coincides with any

of the ±Σr,s — again, the only possible solution is (r , s) = (p2 + 2λ + 1, v2 ), but then r + s is even. To get a zero of P ,
we must therefore have R±(2λ + 1) = Q(λ,±(λ + 1

2 )) = 0. However, we know the degree of R± and that all its roots
correspond to λ = λr,0, for r = 1, . . . ,p − 1 odd. Thus,M must likewise be one of the modules we have constructed.
The proof for the Neveu-Schwarz sector is complete.

The proof in the Ramond sector is almost identical, so we only comment on the numerology and leave the details to
the reader. First, [ψ ] is now an h0-charge 0 element of ZhuR[Vk] ' U(sl2), hence [ψ ] = P(h,Ω) for some polynomial
P , where Ω is the sl2 Casimir (2.30). We again have (4.4), though this requires consideration of generalised
commutation relations in place of the usual prescription for normal ordering, with degh = 1 and deg Ω = 2. The
existence of infinitely many Ramond B0 |1(p,v)-modules Cλ;r,s , with r + s even, now implies that P decomposes as
some polynomial Q times a product of factors (Ω − qr,s ), where qr,s was defined in (3.20). The number of factors is
the number of distinct values that qr,s takes: 1

4 (p − 1)(v − 1), if p is odd, and 1
4
[
(p − 1)(v − 1)+ 1

]
, if p is even. This

then gives upper bounds on t-degQ , being p−1
2 , if p is odd, and p−2

2 , if p is even. Again, consideration of the Ar,0,
with r even, saturates these bounds and the rest of the proof follows as before.

We conclude with two comments. First, the completeness proof given here also works for v = 1 where we
only have the Ar,0. We presented the more direct v = 1 proof in Section 4.2 primarily to illustrate how easy it is.
Second, we mention that for general v, it is actually fairly straightforward now to completely identify generators
of the Neveu-Schwarz and Ramond Zhu ideals using χp,v and [48, Lem. 3.4]. In this way, we can derive explicit
presentations for both Zhu’s algebras, thereby arriving at a relatively painless proof of [48, Thm. 3.6].

5. Fusion

5.1. Grothendieck fusion rules for B0 |1(p,v). One of the most convenient ways to compute the fusion rules of a
rational bosonic conformal field theory involves substituting its S-matrix entries into the Verlinde formula for fusion
coefficients. For fermionic theories, one can derive variations of the Verlinde formula as in [78, 79]. For certain
non-rational theories, there is a generalisation called the standard Verlinde formula [58,59] that is conjectured to give
the Grothendieck fusion coefficients of the theory, these being the structure constants of the Grothendieck group of
the fusion ring. We recall that the Grothendieck group is defined to be the �-span of the isomorphism classes of the
irreducibles and that the image of a module in the Grothendieck group is the sum of the isomorphism classes of its
composition factors. A fermionic version of the standard Verlinde formula was recently tested successfully in [35] for
the osp(1|2) minimal model B0 |1(2, 4). We are thus confident that their result may be generalised straightforwardly
to B0 |1(p,v) using the (super)character formulae derived here and the known S-matrices of the Virasoro and sl2
minimal models [23].

We shall, however, present an alternative approach to computing the (Grothendieck) fusion rules using Theorem 2,
the coset (1.1) and the known (Grothendieck) fusion rules of theVirasoro and sl2 minimalmodelsM(p,u) andA1(u,v).
We shall illustrate the idea by computing the fusion ofAr,0 andB+r ′,s ′ . Both of these modules are defined, see (3.15),
as inductions of M(p,u) ⊗ A1(u,v)-modules. Thus,

Ar,0 ×B
+
r ′,s ′ = (Vr,1 ⊗ L1,0)

x × (Vr ′,1 ⊗ D+1,s ′)
x ' (

(Vr,1 ⊗ L1,0) × (Vr ′,1 ⊗ D+1,s ′)
)x, (5.1)

as induction is preserved by fusion (Theorem 2). Using the Virasoro fusion rules (2.5) and the A1(u,v) fusion rules
(2.22), this becomes

Ar,0 ×B
+
r ′,s ′ '

(
(Vr,1 × Vr ′,1) ⊗ (L1,0 ×D

+
1,s ′)

)x ' p−1⊕
r ′′=1

N(p) r
′′

r,r ′ (Vr ′′,1 ⊗ D+1,s ′)
x
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=

p−1⊕
r ′′=1

N(p) r
′′

r,r ′ B+r ′′,s ′, (5.2)

where we have identified the final induced module using (3.15). Note that with the dictionaries presented in
Sections 3.1 and 3.2, these fusion rules completely capture the module structure of the fusion products, including
the sector and relative parities.

In an identical fashion, Theorem 2 gives the following B0 |1(p,v) fusion rules:

Ar,0 ×Ar ′,0 =

p−1⊕
r ′′=1

N(p) r
′′

r,r ′ Ar ′′,0, (5.3a)

Ar,0 ×B
±
r ′,s ′ =

p−1⊕
r ′′=1

N(p) r
′′

r,r ′ B±r ′′,s ′, (5.3b)

Ar,0 × Cλ′;r ′,s ′ =

p−1⊕
r ′′=1

N(p) r
′′

r,r ′ Cλ′;r ′′,s ′ . (5.3c)

Because fusion respects parity reversal and should respect spectral flow [80, Prop. 2.11 and Eq. (3.6)],

M × ΠN ' Π(M ×N) ' ΠM ×N, M × σosp(N) ' σosp(M ×N) ' σosp(M) ×N, (5.4)

these fusion rules imply many others. We remark that the fusion rules of the rational osp(1|2) minimal models
B0 |1(p, 1) are given by (5.3a) alone.

Unfortunately, a complete set of irreducible B0 |1(p,v) fusion rules cannot be obtained in this way because the
required A1(u,v) fusion rules are not known. Instead, we have their Grothendieck versions [23] which are reproduced
for convenience in (A.2). We shall denote the Grothendieck fusion operation by � and the image of a module M in
the Grothendieck fusion ring by [M].

The fact that � is well defined is not at all obvious. A sufficient condition for this is that fusing with any fixed
module from our category is exact, meaning that it respects the exactness of sequences. For rational theories, such
as the B0 |1(p, 1), this is a theorem in the formalism of Huang, Lepowsky and Zhang [45]. However, for the B0 |1(p,v)

with v , 1, we have to assume that fusion is exact on a suitable module category. Granting this, it follows that the
fusion and Grothendieck fusion products of two modules M and N are related by[

M ×N
]
=

[
M

]
�

[
N

]
. (5.5)

(This is, in fact, how � is defined.) The exactness assumption being made is strong, but is not expected to be
problematic. Unfortunately, tools to verify it seem to be out of reach at present.

In any case, taking Grothendieck images respects tensor products and induction, the latter because it is defined in
terms of fusion, hence the methods that led to the fusion rules (5.3) apply equally well to Grothendieck fusion rules.
This procedure thus determines the Grothendieck fusion rules involving all the irreducible B0 |1(p,v)-modules of
(3.15). Those that are not just the Grothendieck images of (5.3) (or its parity-reversed and spectral-flowed versions)
are:

[
B+r,s

]
�

[
B+r ′,s ′

]
=


∑
r ′′,s ′′

N(p,v) (r
′′,s ′′)

(r,s),(r ′,s ′)

( [
σ (Cλ1,s+s′+1;r ′′,s ′′)

]
+

[
B+r ′′,s+s ′

] )
, if s + s ′ < v,∑

r ′′,s ′′
N(p,v) (r

′′,s ′′)
(r,s+1),(r ′,s ′+1)

(
σ
[
Cλ1,s+s′+1;r ′′,s ′′

]
+ σ 2 [B+r ′′,2v−2−s−s ′

] )
, if s + s ′ > v,

(5.6a)

[
B+r,s

]
�

[
Cλ′;r ′,s ′

]
=

∑
r ′′,s ′′

N(p,v) (r
′′,s ′′)

(r,s+1),(r ′,s ′)
[
Cλ′+λ1,s ;r ′′,s ′′

]
+

∑
r ′′,s ′′

N(p,v) (r
′′,s ′′)

(r,s),(r ′,s ′) σ
[
Cλ′+λ1,s+1;r ′′,s ′′

]
, (5.6b)[

Cλ;r,s
]
�

[
Cλ′;r ′,s ′

]
=

∑
r ′′,s ′′

N(p,v) (r
′′,s ′′)

(r,s),(r ′,s ′)

(
σ
[
Cλ+λ′−k ;r ′′,s ′′

]
+

[
Cλ+λ′+k ;r ′′,s ′′

] )
+

∑
r ′′,s ′′

(
N(p,v) (r

′′,s ′′)
(r,s),(r ′,s ′−1) + N(p,v) (r

′′,s ′′)
(r,s),(r ′,s ′+1)

) [
Cλ+λ′;(r ′′,s ′′)

]
. (5.6c)
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Here, the sums over r ′′ always run from 1 to p − 1 while the sums over s ′′ always run from 1 to v − 1. These fusion
rules can be extended to include parity reversals and spectral flows using the Grothendieck versions of (5.4).

5.2. Projective modules. In Appendix A, we conjecture structures, in the form of Loewy diagrams, for the staggered
modules S±r,s ofA1(u,v) (recalling that these are indecomposablemodules onwhich Lsl0 acts non-semisimply [58,81]).
We also conjecture that they are projective. Note that projective modules induce to projective modules.1 We may
therefore immediately lift these conjectures to B0 |1(p,v). The lifts of these proposed projective modules will be
denoted by P±r,s and are defined by

P±r,s = (Vr,1 ⊗ S±1,s )
x, 1 ≤ r ≤ p − 1 and 0 ≤ s ≤ v − 1. (5.7)

Their restrictions are then

P±r,s
y ' u−1⊕

i=1
Vr,i ⊗ S±i,s (5.8)

and the corresponding Loewy diagrams take the form

B±r,s

σ−1
osp(B

±
r,s−1) σosp(B

±
r,s+1)

B±r,s

P±r,s (s = 0, 1, . . . ,v − 1). (5.9)

where we have introduced the following convenient notation:

B±r,−1 = B∓r,1, B+r,0 ≡ Ar,0 ≡ B−r,0 and B±r,v = σ
±1
osp(B

±
u−r,1). (5.10)

Of course, the P±r,s are staggered and are expected to be projective. There are also analogous statements obtained by
applying parity reversal.

For completeness, we also lift the conjectured A1(u,v) fusion rules (A.5) to B0 |1(p,v) fusion rules in order to
show how the P±r,s arise. Let λ , ξ±1,1 (mod 2) and µ , ξ±r,s (mod 2), where we recall the definition in (3.21). Then,
for all 1 6 r 6 p − 1 and 2 6 s 6 v − 2 (which requires that v > 4), we have the fusion rules

Cλ;1,1 × Cµ ;r,s =



P+r,s−1 ⊕ σ
−1
osp(Cλ+µ+k;r,s ) ⊕ Cλ+µ ;r,s+1, if λ + µ = −p+v2v (s − 1),

P+u−r,v−s−1 ⊕ σ
−1
osp(Cλ+µ+k;r,s ) ⊕ Cλ+µ ;r,s−1, if λ + µ = p+v

2v (s + 1),

P−u−r,v−s−1 ⊕ σosp(Cλ+µ−k;r,s ) ⊕ Cλ+µ ;r,s−1, if λ + µ = −p+v2v (s + 1),

P−r,s−1 ⊕ σosp(Cλ+µ−k;r,s ) ⊕ Cλ+µ ;r,s+1, if λ + µ = p+v
2v (s − 1),

σosp(Cλ+µ−k;r,s ) ⊕ σ
−1
osp(Cλ+µ+k;r,s ) ⊕ Cλ+µ ;r,s−1 ⊕ Cλ+µ ;1,s+1, otherwise,

(5.11)

where λ + µ is always understood (mod 2).

Appendix A. Grothendieck fusion rules for the sl2 minimal models

The Grothendieck fusion rules for the non-unitary minimal model A1(u,v) were computed in [23] using the
conjectural standard Verlinde formula of [23,59]. The fusion rules of type Lr,0 ×Lr ′,0 were recently proven in [42]
and confirm the Verlinde conjectures. The results, which were shown to be consistent with the irreducible fusion
rules of [17], for (u,v) = (2, 3) (see [21] for some corrections), and [20], for (u,v) = (3, 2), are recorded in the
following conjecture.

1The reason for this is that projectivity is preserved by any functor (here, induction:
x) that is left adjoint to an exact functor (here, restriction:y). This adjointness was proved in [33, Lem. 2.61] and the exactness of the restriction functor is easy to verify.
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Conjecture 1 ([23]). The Grothendieck fusion rules of the irreducible relaxed highest-weight A1(u,v)-modules
satisfy [

σmsl (M)
]
�

[
σnsl (N)

]
= σm+nsl (

[
M

]
�

[
N

]
). (A.1)

The “non-spectrally flowed” rules are as follows:[
Lr,0

]
�

[
Lr ′,0

]
=

∑
r ′′

N(u) r
′′

r,r ′
[
Lr ′′,0

]
, (A.2a)[

Lr,0
]
�

[
D+r ′,s ′

]
=

∑
r ′′

N(u) r
′′

r,r ′
[
D+r ′′,s ′

]
, (A.2b)[

Lr,0
]
�

[
Eλ′;r ′,s ′

]
=

∑
r ′′

N(u) r
′′

r,r ′
[
Eλ′+r−1;r ′′,s ′

]
, (A.2c)

[
D+r,s

]
�

[
D+r ′,s ′

]
=



∑
r ′′,s ′′

N(u,v) (r
′′,s ′′)

(r,s),(r ′,s ′)

[
σsl

(
Eλr ′′,s+s′+1;r ′′,s ′′

)]
+

∑
r ′′

N(u) r
′′

r,r ′
[
D+r ′′,s+s ′

]
, if s + s ′ < v,∑

r ′′,s ′′
N(u,v) (r

′′,s ′′)
(r,s+1),(r ′,s ′+1)

[
σsl

(
Eλr ′′,s+s′+1;r ′′,s ′′

)]
+

∑
r ′′

N(u) r
′′

r,r ′
[
σsl

(
D+u−r ′′,s+s ′−v+1

)]
, if s + s ′ > v,

(A.2d)

[
D+r,s

]
�

[
Eλ′;r ′,s ′

]
=

∑
r ′′,s ′′

N(u,v) (r
′′,s ′′)

(r,s+1),(r ′,s ′)
[
Eλ′+λslr ,s ;r ′′,s ′′

]
+

∑
r ′′,s ′′

N(u,v) (r
′′,s ′′)

(r,s),(r ′,s ′)

[
σsl

(
Eλ′+λslr ,s+1;r ′′,s ′′

) ]
, (A.2e)[

Eλ;r,s
]
�

[
Eλ′;r ′,s ′

]
=

∑
r ′′,s ′′

N(u,v) (r
′′,s ′′)

(r,s),(r ′,s ′)

( [
σsl

(
Eλ+λ′−k ;r ′′,s ′′

) ]
+

[
σ−1
sl

(
Eλ+λ′+k ;r ′′,s ′′

) ] )
+

∑
r ′′,s ′′

(
N(p,v) (r

′′,s ′′)
(r,s),(r ′,s ′−1) + N(p,v) (r

′′,s ′′)
(r,s),(r ′,s ′+1)

) [
Eλ+λ′;r ′′,s ′′

]
. (A.2f)

Here, the sums over r ′′ always run from 1 to u − 1 while the sums over s ′′ always run from 1 to v − 1.

We refer to (2.6) for the definition of the (Virasoro) fusion coefficients that appear.
The known fusion rules for (u,v) = (2, 3) and (3, 2) involve additional reducible, but indecomposable, A1(u,v)-

modules with four composition factors each. They are examples of staggered modules, in the sense of [58, 81],
possessing a non-diagonalisable action of Lsl0 . As such, they are responsible for the logarithmic nature of the
corresponding conformal field theories. We believe that these staggered modules are projective and are therefore the
projective covers of their irreducible heads (in an appropriate category of A1(u,v)-modules). We record this belief
as a formal conjecture below, extending it to all admissible levels.

For convenience, let us agree to the following notation:

D±r,−1 = D∓r,1, D+r,0 ≡ Lr,0 ≡ D−r,0 and D±r,v = σ
±1
sl (D

±
u−r,1). (A.3)

The projective covers of theD±r,s , for s = 0, 1, . . . ,v − 1, shall be denoted by S±r,s . We shall sometimes drop the label
± when s = 0 in accordance with the second identification of (A.3).

The structures of the (conjectured) projective covers will be described in terms of their Loewy diagrams. This is a
picture in which the composition factors of the module are arranged in horizontal layers. The bottom layer contains
the composition factors of the module’s socle. The next layer up contains the composition factors of the socle of the
quotient of the module by its socle. This continues up until we reach the top layer which contains the composition
factors of the module’s head. Two composition factors in adjacent layers may be connected by an arrow if there is
an indecomposable subquotient with only these as its composition factors. In this case, the arrow points from the
quotient to the submodule of the subquotient. Roughly speaking, the arrows indicate the “direction” taken by the
action of the algebra. We refer to [58, App. A.4] for an elementary introduction to Loewy diagrams that describes
the idea in more detail.
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With this background in place, we can now state our conjecture for the projective covers of the irreducible
A1(u,v)-modules.

Conjecture 2.

• The irreducible σ `
sl(Eλ;r,s ), with ` ∈ �, r = 1, . . . ,u − 1, s = 1, . . . ,v − 1 and λ , λslr,s , λ

sl
u−r,v−s (mod 2), are

projective and are hence their own projective covers.
• The Loewy diagram of the projective cover S±r,s of D±r,s is

D±r,s

σ−1
sl (D

±
r,s−1) σsl(D

±
r,s+1)

D±r,s

S±r,s (s = 0, 1, . . . ,v − 1). (A.4)

The projective cover of σ `
sl(D

±
r,s ) is then σ `

sl(S
±
r,s ) and its Loewy diagram is obtained from that of D±r,s by applying

σ `
sl to each composition factor. (Indeed, that of S+r,v−1 is the image under σsl of that of Sr,0.) We remark that it is

easy to prove that almost all of the σ `
sl(Eλ;r,s ) are projective.

Evidence for the conjectured Loewy diagrams (A.4) comes from trying to lift the Grothendieck fusion rules of
Conjecture 1 to actual fusion rules. We expect that the physically consistent category of A1(u,v)-modules should
be, among other things, rigid and tensor. The associative tensor product is, of course, fusion and rigidity ensures
that fusing with any fixed module defines an exact functor on the category [65, Prop. 4.2.1]. This means that the
Grothendieck group of the category inherits a well-defined product � from the fusion product ×, as in (5.5). Another
consequence of rigidity is that the projectives of the category form a tensor ideal: the fusion product of a projective,
in particular one of the irreducible Eλ;r,s , with any module is again projective [65, Prop. 4.2.12].

As the Lr,0, D±r,s and E±r,s , along with their spectral flows, cannot be projective, there are not many ways to
arrange the composition factors, obtained from Conjecture 1, of a fusion product involving an irreducible Eλ;r,s so
that the result could be projective. Indeed, if we also insist on projectives being self-dual, a desirable property in
view of the non-degeneracy of two-point correlation functions [82], then the arrangement is often essentially unique.
This is reflected in the following conjecture for a particular subset of the A1(u,v) fusion rules.

Conjecture 3. Let λ , λsl1,1, λ
sl
u−1,v−1 (mod 2) and µ , λslr,s , λ

sl
u−r,v−s (mod 2). Then, for all 1 6 r 6 u − 1 and

2 6 s 6 v − 2 (which requires that v > 4), we have the fusion rules

Eλ;1,1 × Eµ ;r,s =



S+r,s−1 ⊕ σ
−1
sl (Eλ+µ+k;r,s ) ⊕ Eλ+µ ;r,s+1, if λ + µ = λslr,s−1,

S+u−r,v−s−1 ⊕ σ
−1
sl (Eλ+µ+k;r,s ) ⊕ Eλ+µ ;r,s−1, if λ + µ = λslu−r,v−s−1,

S−u−r,v−s−1 ⊕ σsl(Eλ+µ−k;r,s ) ⊕ Eλ+µ ;r,s−1, if λ + µ = λslr,s+1,

S−r,s−1 ⊕ σsl(Eλ+µ−k;r,s ) ⊕ Eλ+µ ;r,s+1, if λ + µ = λslu−r,v−s+1,

σsl(Eλ+µ−k;r,s ) ⊕ σ
−1
sl (Eλ+µ+k;r,s ) ⊕ Eλ+µ ;r,s−1 ⊕ Eλ+µ ;r,s+1, otherwise,

(A.5)

where λ + µ is always understood (mod 2).
When s = 1 or s = v − 1, these fusion rules are modified to remove any Eν ;r,s ′ , with s ′ = 0 or v, and remove

any direct summands that do not appear in all expressions corresponding to the same value of λ + µ (mod 2). For
example, the fusion rule for s = 1, v > 3 and λ + µ = λslr,0 (mod 2) becomes

Eλ;1,1 × Eµ ;r,1 = Sr,0 ⊕ Eλ+µ ;r,2, (A.6)
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because λslr,0 = λ
sl
u−r,v and the spectrally flowed summands in the first and fourth cases of (A.5) are different. When

v = 2, we would also have to remove the Eλ+µ ;r,2 from the right-hand side.

In fact, the Loewy diagrams (A.4) were deduced by analysing the possible arrangements for the composition factors
appearing in the Grothendieck counterpart (A.2f) (with r , s = 1). It is, of course, possible to similarly conjecture the
remaining fusion rules involving the irreducible A1(u,v)-modules. These fusion rules will be reported in [83].
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