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Abstract

Gradient descent noise reduction is a technique that attempts to recover the true
signal, or trajectory, from noisy observations of a non-linear dynamical system for
which the dynamics are known. This paper provides the first rigorous proof that the
algorithm will recover the original trajectory for a broad class of dynamical sys-
tems under certain conditions. The proof is obtained using ideas from linearisation
theory. Since the first introduction of the algorithm it has been recognised that the
algorithm can fail to recover the true trajectory, and it hasbeen suggested that this
is a practical or numerical limitation that is a consequenceof near tangencies be-
tween stable and unstable manifolds. This paper demonstrates through numerical
experiments and details of the proof that the situation is worse than expected in that
near tangencies impose essential limitations on noise reduction, not just practical
or numerical limitations. That is, gradient descent noise reduction will sometimes
fail to recover the true trajectory, even with unlimited, perfect computation. On
the other hand, the numerical experiments suggest that the gradient descent noise
reduction algorithm will always recover a trajectory that is entirely consistent with
the evidence provided by the observations, that is, it attains the best that can be
achieved given the observations. It is argued that near tangencies will therefore
impose the same limitations on any noise reduction algorithm.

1 Introduction

Non-linear noise reduction refers to a collection of techniques for recovering a signal
from a time series of measurements of a non-linear dynamicalsystem where the mea-
surements are corrupted by noise. Noise reduction is an important technique, not only
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for what it does, but also because it is closely related to theimportant concept of shad-
owing trajectories ([7, 5, 25]) and techniques of state estimation ([1, 2, 12]).

There have been proposed a number of noise reduction algorithms ([15, 8, 4, 5, 6, 23,
18]), but although these algorithms have been around for quite some time now, there are
few rigorous results about their properties. Most of what isknown about the algorithms
is either the result of numerical experiments or loosely justified. Of particular interest
are the conditions that guarantee convergence of an algorithm to the true trajectory. In
exploring noise reduction it is useful to make a division into three situations — where
one has a perfect model of the system (the system being observed has known dynamics),
where one has only an imperfect model, and where there is no model of the dynamics.
Surprisingly, it is only the third case where any previous rigorous convergence results
have been obtained ([17]). Here we provide rigorous resultsfor the first case. For
the second case, which is arguably the usual case and therefore the most important,
nothing is known, but it is hoped that the results presented here for perfect models can
be extended to imperfect models in the future.

This paper is concerned with the situation where one has a perfect model of the sys-
tem. We study the properties of a particular algorithm that applies in this situation called
thegradient descentalgorithm ([4]). The major part of the paper will outline in some
detail a proof that the gradient descent algorithm converges to the true trajectory under
specified conditions. The initial part of the paper describes some numerical experiments
that motivate the main restrictions.

The initial numerical experiments are of interest in their own right because they
clarify an important phenomenon that we believe has not beenfully understood before.
From the first introduction of the gradient descent algorithm it has been observed that
there are times when the algorithm fails to converge to the true trajectory. This failure
has been attributed tonear tangenciesbetween stable and unstable manifolds, that is,
points where the stable and unstable manifold are almost tangent. The supposed role of
near tangencies is that they result in a nearly singular derivative in the neighbourhood of
these points, which consequently results in slow convergence of the algorithm in these
neighbourhoods. The failure of the gradient descent algorithm has therefore been seen
as a practical or numerical limitation. Our numerical experiments demonstrate that the
situation is worse than supposed and that the mechanism of failure is different from
what has been suggested. Our interpretation of the algorithm’s failure focuses on the
observation that the transverse intersection between stable and unstable manifolds at
a near tangency implies the existence of a nearby trajectorythat is homoclinic to the
true trajectory. We will show that observational noise can make it impossible to distin-
guish between the true trajectory and its homoclinic cousin, and that the observational
noise might be such that the weight of evidence is for the homoclinic cousin being
the maximum likelihood trajectory. Consequently, the gradient descent algorithm will
sometimes convergence to the incorrect trajectory. This phenomenon was previously
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illustrated in earlier work of Judd and Smith ([12]) on indistinguishable states. It is also
almost certain that this kind of failure is not a unique feature of gradient descent noise
reduction, and should be expected of all noise reduction methods.

The rest of the paper is organised as follows. In section 2, weintroduce the gradient
descent algorithm and indicate why it should be able to reduce noise. This is followed by
the results of some numerical experimentation in section 3 which further investigate the
properties of the gradient descent algorithm. By analysingthese results and particularly,
the reasons why noise reduction sometimes fails, we arrive at the precise mathematical
notion of what we mean when we say that the noise reduction hassucceeded, and also,
which classes of systems can be expected to allow noise reduction to succeed. With
these ideas, we can then turn to the theoretical properties of gradient descent in section 4,
where noise reduction is rigorously proven to occur for the appropriate class of systems,
subject to an additional condition. This is followed by further discussion in section 5.

2 Gradient Descent

In this paper, we will always assume that the dynamics of the system under investiga-
tion is known. The system will be assumed to bediscretetime: yi+1 = f (yi) , i ∈Z, and
the dynamical map,f , will be assumed to be a diffeomorphism from (a subset of)R

d

into itself1. Let {xi}n
i=1, xi ∈ R

d, be the set of experimental measurements of the corre-
sponding states{yi}n

i=1. It is convenient to regard this set of observations as a vector in
R

nd: x = (x1,x2, . . . ,xn). The result of a noise reduction algorithm is therefore another
vector inR

nd which will be denoted by ˆx, which is an estimate of the true trajectory of
statesy = (y1,y2, . . . ,yn). Because the dynamical map is assumed to be known, there is
no loss of generality in assuming that the noise on the measurements is additive, and so

xi = yi +δi

where theδi are a realisation of some noise distribution (assumed independently and
identically distributed).

We will consider the following form of the gradient descent algorithm for noise
reduction. Define thedeterminism function L: R

nd → R by

L(x) =
1
2

n−1

∑
i=1

‖xi+1− f (xi)‖2 . (1)

The norm used in this definition is completely arbitrary — thestandard Euclidean norm
is convenient (it has nice analytic properties) and will be used in what follows. Note

1In section 4,f will be restricted to act on a compact manifoldM for technical reasons. However,
noise reduction algorithms are more conveniently discussed in Euclidean space, and it is clear that their
action can always be transferred back onto the manifold using the appropriate charts.
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that L(x) = 0 precisely when the pointsxi ∈ R
d form a deterministic trajectory off .

Generally, the noisy measurements do not form a deterministic trajectory. The idea
behind gradient descent noise reduction is that a trajectory close to the observations can
be obtained by minimisingL through gradient descent, using the observationsx as the
starting point. An explicit implementation of this idea, which we will refer to as the
gradient descent algorithm, is achieved by solving the set of differential equations

ẋ(t) = −∇L(x(t)) , x(0) = x. (2)

The noise reduced trajectory, ˆx, is then given by ˆx = limt→∞ x(t). The “time” variablet
used in the gradient descent will be referred to as thedescent timeto distinguish it from
the discrete “time” implicit in the iterationyi 7→ yi+1 = f (yi).

3 Numerical Experiments

In this section, some numerical results of the gradient descent algorithm are presented
and discussed. The basic features of the difference betweennoise reduced trajectories
and the true trajectory is described and the important role of near tangencies is revealed.

The last section indicated that the gradient descent algorithm could be implemented
by solving the set of differential equations 2. Our experiments employ the 1-5 stiff
integration functionode15s of MATLAB. The noise reduced trajectories were obtained
by letting the descent-time variable increase until convergence appeared to have been
established. The Ikeda map ([10]) is used as an example system. When the Ikeda map
is expressed as a real function fromR2 into itself, we select the parameters so that

I (x,y) =

(

1+
9
10

(xcosθ −ysinθ) ,
9
10

(xsinθ +ycosθ)

)

, (3)

whereθ = 2/5−6
(

1+x2 +y2
)−1

.
To display the properties of the gradient descent algorithmwe consider a typical

example trajectory that has twenty points with initial point (0.9255,−1.0126) and final
point (1.1243,−2.1607) (approximately). Gaussian noise with mean zero and standard
deviation 1/10 was added to this trajectory (giving a noisy trajectory) before the gradient
descent algorithm was applied (to get a noise-reduced trajectory). Ten different noise
realisations were used, giving ten different noisy trajectories and hence ten different
noise-reduced trajectories. The magnitudes of the differences between the points of the
clean and the ten noise-reduced trajectories are plotted inFigure 1.

There are two features of the distribution of errors revealed in Figure 1 that should be
observed. First, there are the obvious “spikes” in the errors around points 3, 8, and 16,
which all the noise-reduced trajectories display to varying degrees. Second, the errors
are large at the initial and final points of the trajectory butquite small in between, and

4



2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

point

er
ro

r

Figure 1: Errors after noise reduction by gradient descent (with ten different noise real-
isations) for each point of a twenty point trajectory of the Ikeda system, contaminated
by Gaussian noise of standard deviation 0.1. This gives a signal to noise ratio of about
25dB.
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the errors at the ends are of an order of magnitude comparableto the noise added to the
system. These features of the errors are typical of noise reduction algorithms. The large
errors at the initial and final points of the trajectory are generally ascribed to the fact
that at end points, the algorithm only has forwardsor backwards iterations (rather than
both) to help it locate where the true trajectory should be.

It is well known that the large errors near the initial point decay exponentially, at a
rate given by the largest non-positive Lyapunov exponent (largest as in closest to zero),
and that the growth of errors near the final point is also exponential with the rate given
by the smallest non-negative Lyapunov exponent. It is obvious then that to achieve any
sort of noise reduction, we must considerhyperbolicsystems (these have no vanishing
Lyapunov exponent). An example of a non-hyperbolic system is that given byf = id ,
the identity mapping. It is clear that no noise reduction will occur for this system.

The spiking phenomenon observed in Figure 1 around various points of the trajec-
tory is generally attributed to the presence oftangencies, where a tangency is a point
whose (generalised) stable and unstable manifolds are tangent at that point. That is,
at a tangency point, the generalised stable and unstable eigenspaces donot span the
entire tangent space. The argument usually given to explainthe observed spiking phe-
nomenon runs something like the following. Noise reductionexploits the fact that a
hyperbolic point has a stable and unstable direction. The stable direction implies a
convergence of nearby trajectories moving forward in time,and the unstable direction
implies a convergence of nearby trajectories moving backward in time. It is the conver-
gence of nearby trajectories that can be exploited to removethe noise. At a tangency of
a two-dimensional system, these directions lose their sharp distinction, and as a conse-
quence, the convergence forward and backward in time is (at least partially) lost, and so
some of the noise cannot be removed. (The argument is usuallya little more general than
this, submitting that near tangencies are enough to cause slow numerical convergence
by a similar mechanism as explained below.)

Let us now examine the stable and unstable manifolds in the neighbourhoods of the
points that display the error spikes seen in Figure 1, which correspond to the points 3,
8, and 16 of our sample trajectory. These manifolds are shownin Figure 2. Notice
that for points 8 and 16, the stable and unstable manifolds appear to be almost tangent
to one another at the clean trajectory point, and for point 3,although the manifolds
are not tangent there, the angle2 between them is relatively small. The angles can be
numerically approximated easily ([22]) and are (about) 8.2◦ for point 3, 2.8◦ for point
8, and 1.2◦ for point 16. These are not tangency points as the angle is non-zero, so we
will refer to them asnear-tangency points. It should perhaps be mentioned here that the
Ikeda map does contain genuine tangency points, but these are expected to be extremely
rare by the Multiplicative Ergodic Theorem ([19]). These tangency and near-tangency

2This is defined to be the angle between the one-dimensional stable and unstable eigenspaces at the
point — see also section 4.
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features would be seen in any dynamical system like the Ikedamap where action of the
map is to stretch and fold the state space.

Now reconsider the argument given above to explain the spikes in the error distri-
butions. We feel that this argument is unsatisfactory for the following reason. It does
not explain how near tangencies can affect the noise reduction procedure, even though
trajectories with near tangencies should be expected to be infinitely more common than
trajectories with exact tangencies. With noise reduction algorithms that rely on solving
algebraic equations (manifold decomposition for instance) rather than differential equa-
tions, it can be argued (and usually is) that near tangenciescausepracticaldifficulties, in
that the matrix which needs inverting becomes badly conditioned. However, these dif-
ficulties do not arise with gradient descent. Instead, it hasbeen noted that the gradient
descent algorithm “grinds to a halt” around tangencies, meaning that the convergence
of the algorithm is very slow, presumably because the cost function (the determinism
function L) is locally rather flat. The suggestion here seems to be that the failure of
gradient descent noise reduction around tangencies is due to a lack of convergence, an-
other practical difficulty. While these difficulties do occur, and are important, we now
argue that there is in fact a theoretical impediment to noisereduction, more fundamen-
tally important than the aforementioned practical problems. It is this, and not a lack of
convergence, that causes the spikes in the error distributions seen in Figure 1.

To examine more closely the problem of near tangencies and how they prevent noise
reduction, we consider another sample trajectory of the Ikeda map that has only one near
tangency with very small angle. The sample trajectory has fifty points, a near tangency
of about 3◦ at point 39 (spatially situated at approximate coordinates(1.167,0.485)),
and lesser near tangencies of between 10◦ and 20◦ at points 2, 10, and 25. Applying
Gaussian noise of standard deviation 1/10 and then noise-reducingthirty different noise
realisations, we find error distributions as shown in Figure3. Notice that the errors are
shown on a logarithmic scale so that the distribution shape can be easily examined even
when the errors are negligible, although with the logarithmic scale some of the error
curves are almost identical over some time periods.

We note the spike at point 39 as well as smaller spikes at otherpoints of the trajec-
tory. It is also apparent that the logarithmic error distribution is roughly piecewise-linear
with two different slopes (a negative and a positive one). These slopes represent the (lo-
cal) Lyapunov exponentsof the system - this is clear for the pieces of the distribution
connecting to the initial and final points of the trajectory,and it will become clear why
this is also the case for the points around the near-tangencypoint shortly. What is of
greater interest is that the error distributions around thetangency at point 39 form two
quite distinct groups. The jump in the errors around point 39is sometimes small and
sometimes much larger3.

3The errors corresponding to the larger jump are notresolvedinto separate curves in this figure due to
the logarithmic scale. In fact, approximately half the distributions show this larger jump.
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Figure 2: Stable (dotted) and unstable (solid) manifold forpoints 3, 8 and 16 from the
clean Ikeda trajectory considered (see text).
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Figure 3: Error distributions after noise reduction by gradient descent (with thirty dif-
ferent noise realisations) for each point of a fifty point trajectory of the Ikeda map,
contaminated with Gaussian noise of standard deviation 0.1. Note the logarithmic scale.
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Figure 4: Spatial plot of the 39th points of the noise reduced trajectories of Figure 3
(+) and the 39th point of the correct trajectory (�) with its stable (dotted) and unstable
(solid) manifolds.

These two groups are shown spatially (around the tangency point 39) in Figure 4.
The large square marks point 39, the “+” signs mark the thirtynoise reduced approxima-
tions of point 39, and the dotted and solid lines show the stable and unstable manifolds
through point 39 (respectively). Note that the groups cluster about the points where
the stable and unstable manifolds intersect. These intersection points are calledhomo-
clinic intersection pointsbecause the trajectories of the intersection points converge in
forwardandbackward time.

This clustering about homoclinic intersection points occurs because the points are
then forced to be close to the stableandunstable manifolds of the true point. Iterating
forward then means that the error must shrink (because the point is near the stable man-
ifold). The error along the unstable manifold must likewisegrow, and to accommodate
this shrinking along the stable manifold and growth along the unstable manifold, the
unstable manifold “bulges” outwards (and the angle betweenthe stable and unstable
manifolds increases). Similarly, upon iterating backwards, the error along the unstable
manifold decreases and the error along the stable manifold grows, leading to a bulging
of the stable manifold (and a corresponding increase in the angle between the mani-
folds). This is pictured in Figure 5. Thus the magnitude of the errorsdecreasesas we
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Figure 5: As in Figure 4 but for the 37th point (left) and the 41st point (right). At left,
the stable manifold (dotted) “bulges” outward relative to the unstable manifold (solid),
whereas at right, the opposite is true.

iterate forwards and backwards (as it must decrease for forward iterations since we are
close to the stable manifold, and must likewise decrease forbackwards iterations since
we are close to the unstable manifold). In fact, this argument also explains why the
errors grow and decayexponentiallyaround a tangency point at a rate corresponding
to the Lyapunov exponents of the system. If the noise reducedpoints were not near a
homoclinic intersection point, then by iterating forwardsor backwards, the errors would
have to eventually grow. Summarising, it can be said that thetrajectories through the
two homoclinic intersection points of Figure 4 (one of whichis the true point) remain
close together and so the noise reduction algorithm choosesone or the other depending
on the particular noise realisation.

Another way of saying this is that the trajectories through the homoclinic inter-
section points are difficult to distinguish on the basis of the given noise realisations.
This difficulty can be quantified using theindistinguishability theoryof Judd and Smith
([12]). The noise distribution used here was Gaussian with standard deviation 1/10, so
the probability that two trajectoriesy andy′ will be indistinguishable given a random
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noise realisation is given by (see [12] or [21]):

P
(

y∼ y′
)

= exp

{

−25∑
i

∥

∥yi −y′i
∥

∥

2

}

.

A plot of (an excellent approximation of) the indistinguishability of the correct trajec-
tory and the nearby trajectories is given in Figure 6 (left).The plot measures the prob-
ability of indistinguishability versus the point corresponding to point 39 of the correct
trajectory. The two peaks correspond to the homoclinic intersection points (the peak
with value 1 is obviously the correct point). The second peakhas probability approx-
imately 0.9. Therefore it is very likely that a given noise realisationwill be unable to
distinguish between the true trajectory and the trajectorythrough the other homoclinic
intersection point. This explains why, in our example, the numbers of noise reduced
points clustered around each homoclinic intersection point are approximately equal —
the two trajectories are usually indistinguishable so the noise reduction algorithm gives
each with approximately equal probabilities.

The large peak around tangencies in the error distribution is therefore due to the
algorithm choosing the wrong homoclinic intersection point. This is usually only ob-
served when the angle between the stable and unstable manifold is quite small however.
For small angles, the distance between the homoclinic intersection points is expected to
be smallcompared to the noise level(and this forces the distances between the forward
and backward iterates of the homoclinic intersection points to decay exponentially).
Therefore the algorithm is just as likely to converge onto the wrong homoclinic inter-
section point as the right one. In terms of indistinguishability, this is nicely pictured in
Figure 6 (right) where the standard deviation of the noise has been dropped from 1/10
to 1/50. The probability that the trajectories through each of the homoclinic intersec-
tion points cannot be distinguished drops from 0.9 to about 0.06. At this noise level, the
algorithm will only rarely choose the wrong homoclinic intersection point.

In summary then, it seems that noise reduction by gradient descent (and indeed, by
any other type of algorithm) is limited by the presence of near-tangency points to noise
levels which are smaller than the minimum distance between the points of the clean tra-
jectory and their corresponding homoclinic intersection points (if they exist). In order to
prove a result stating that noise reduction is guaranteed toconverge onto the clean trajec-
tory (except around the end points of course) as the number ofdata points is increased to
infinity then, it is necessary to restrict our attention to systems without genuine tangency
points (that is, the angles between the stable and unstable manifolds must be bounded
below) and to sufficiently small noise levels. This is the subject of the rest of this work.
Note first however that the requirement that the noise level be small compared to the
distances over which the stable and unstable manifolds can intersect (non-trivially) is
equivalent to the requirement that we restrict our attention to areas around each point of
the trajectory where the non-linear dynamics is qualitatively equivalent to its linearisa-
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Figure 6: Probability that the fifty point trajectory of the Ikeda map whose 39th

point is (x,y) will be indistinguishable from the clean trajectory (whose39th point
is (1.167,0.485)). Here (x,y) varies over a section of the unstable manifold of
(1.167,0.485). At left, the probability is computed assuming Gaussian noise with stan-
dard deviation 1/10. At right, the standard deviation is 1/50.
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tion. That is, it is the essential non-linearity of the system (in the form of the curvature
of its invariant manifold families) that stops noise reduction from working. Note also
that it follows for unboundednoise distributions that we can never guarantee that the
noise reduction will work, even for arbitrarily small noiselevels, as there will always
be a positive probability that the gradient descent will finda homoclinic intersection
point. That is, for unbounded noise distributions, the homoclinic intersection points are
never completely distinguishable from the true points (this is the geometric reason for
Theorem 3 of [17]).

4 Analytic Results

We consider now the gradient descent algorithm from a theoretical point of view. The
aim is to show that for systems where the angle between the stable and unstable mani-
folds is bounded below (uniformly hyperbolic systems), we can guarantee that for suf-
ficiently small noise levels, the noise-reduced trajectories are excellent approximations
of the original clean trajectory, and that as the length of the trajectories tends to infin-
ity, the noise-reduced trajectories converge onto the clean trajectory everywhere except
near the end points. As mentioned above, this result cannot be generalised to arbitrary
noise levels, and the amount of noise that can be accommodated corresponds to the
neighbourhoods of each point in which the dynamics and theirlinearisation are in qual-
itative agreement. Hence we shall begin by studying linear(ised) dynamical systems.
First however, some general properties of gradient descentneed to be addressed. In
particular, we need to show that the gradient descent algorithm outlined above actually
converges (Proposition 2 below). While this seems to be taken as obvious in the litera-
ture, the arguments usually given there are not complete, asthey ignore the fact that the
fixed points of the gradient descent are not isolated.

An outline of the proof that gradient descent does indeed give a satisfactory ap-
proximation of the true trajectory is as follows. We study the properties of the gradient
descent algorithm for a linear dynamical system, for the reason mentioned above. The
linearity of the system translates into a linear gradient descent algorithm, and this fact
allows us to derive analytic bounds for the errors between the noise-reduced trajectory
and (any suitable) candidate for the true trajectory (see Proposition 4). The proof of
these bounds generalises immediately to a suitable linearisation of a general (uniformly
hyperbolic) dynamical system, and this linearisation corresponds to the linearisation of
the general gradient descent algorithm, about some fixed point (which we may take to
be the true trajectory).

Noting that this gradient descent algorithm is in fact topologically conjugate to its
linearisation, we construct a commutative diagram relating the gradient descent flow
with its linearisation. The idea now is to use this commutative diagram to translate
the analytic bounds we have derived for the linearised case,to the full non-linear case,
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thus proving that the gradient descent algorithm achieves noise reduction. To do this,
we need some quantitative information about the topological conjugacy between the
gradient descent flow and its linearisation. This seems to bequite difficult. Instead,
we introduce a semi-conjugacy whose properties are more amenable to analysis. A
generalisation of the Hartman-Grobman Theorem ([20, 16, 21]) and Condition 7 below,
then provide this information.

This proof is fairly long, so a few details have been omitted.These omissions are
explicitly noted in what follows however. In particular, wehave omitted a result con-
cerning the existence and Hölder continuity of some conjugacies needed in section 4.3.
The existence follows from the extension of the Hartman-Grobman Theorem mentioned
above ([16]), and it should be plausible at least that the conjugacies implied by this the-
orem are Hölder continuous (this is certainly true for the standard Hartman-Grobman
Theorem). All the relevant details can be found in [21].

4.1 General Properties of Gradient Descent

We now suppose thatf : M → M is aC2-diffeomorphism defining a discrete dynamical
system on ad-dimensional manifoldM which will be assumed smooth andcompact.
However, as we are only concerned with small noise levels, wecan (and will) always
locally identifyM with R

d. As in section 2, trajectories of lengthn are given by vectors
in R

nd: x = (x1, . . . ,xn), xi ∈ R
d and the gradient descent algorithm consists of solving

equation 2:
ẋ(t) = −∇L(x(t)) , x(0) = x,

and letting the descent-timet tend to infinity. Here,x represents the noisy trajectory,
andL is the determinism function defined by equation 1. Now,L(x) = 0 if and only if
thexi form a deterministic trajectory forf , and clearly the deterministic trajectories are
critical points ofL. Conversely, by differentiatingL:

∂L
∂xi

=







−d f (x1)
∗ (x2− f (x1)) if i = 1

(xi − f (xi−1))−d f (xi)
∗ (xi+1− f (xi)) if i = 2, . . . ,n−1

(xn− f (xn−1)) if i = n
,

(4)

it is easily checked that these are the only critical points (here∗ denotes matrix trans-
position). If these critical points wereisolated, then the gradient descent would have to
converge to one of them, regardless of the initial point ([9]). However, the deterministic
trajectories are not isolated — they form a smooth manifold parameterised continuously
by the first coordinate (for instance). Therefore, more consideration is required before
convergence to a deterministic trajectory can be claimed.

Choose a deterministic trajectoryy. This is a fixed point of the gradient descent flow.
With q = (q1, . . . ,qn) ≡ ∇L : R

nd → R
nd defined by equation 4, thelinearisationof the
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gradient descent flow about the fixed pointy is given by

ẇ(t) = −dq(y)w(t) , w(0) = x−y. (5)

Note that we need to assume thatf is C2 so thatdq(y) exists. A quick computation
shows thatdq(y) has the block-tridiagonal structure:

dq(y) =



















A∗
1A1 −A∗

1
−A1 I +A∗

2A2 −A∗
2

−A2 I +A∗
3A3 −A∗

3
. . . . . . . . .

−An−2 I +A∗
n−1An−1 −A∗

n−1
−An−1 I



















,

(6)

whereAi = d f (yi). The deterministic trajectories for the linearised gradient descent are
defined to be those satisfying

wi+1 = Aiwi = d f (yi)wi ⇒ wi+1 = d f i (y1)w1

for all i = 1, . . . ,n− 1. The effect of the linearised gradient descent is now easy to
determine.

Proposition 1 The linearised gradient descent algorithm given by solvingequation 5
and letting t→ ∞, is equivalent to projecting orthogonally onto the subspace of deter-
ministic trajectories.

Proof: Clearly the set of deterministic trajectories form a linearsubspace. Nowdq(y)
is symmetric (by inspection, but also because it is aHessianmatrix for L), and a quick
computation shows that it is in fact positive semi-definite:

〈w,dq(y)w〉 =
n−1

∑
i=1

‖Aiwi −wi+1‖2
> 0. (7)

The solution of the linearised gradient descent equations is of course

w(t) = e−dq(y)tw(0) ,

and sincedq(y) is positive semi-definite, it follows that

e−dq(y)t −→ P

ast → ∞, whereP is the orthogonal projection onto kerdq(y). That is,w(t) → ŵ =
Pw(0). It remains to show then, that kerdq(y) is the deterministic subspace. But,
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〈w,dq(y)w〉= 0 ⇐⇒ dq(y)w= 0 (becausedq(y) possesses a symmetric square root).
Hence this is an easy consequence of equation 7.

We are now in a position to reconsider the convergence of the gradient descent al-
gorithm. Essentially, the fact that the fixed points are not isolated is compensated for
by the fact that the gradient descent algorithm approaches the fixed point setorthogo-
nally. This does not seem to be, however, a direct consequence of the fact that gradient
descent algorithms always pass through surfaces of constant “height” (for us, constant
L) orthogonally - a little sketching will imply that generally this orthogonality need not
be continued to the fixed point set.

Proposition 2 The gradient descent algorithm is guaranteed to converge onto a deter-
ministic trajectory.

Proof: It follows from Proposition 1 that for each fixed point, the linearised dynamics
has a centre eigenspace (kerdq(y)) and a stable eigenspace which is the orthogonal
complement of the centre eigenspace. By the Centre ManifoldTheorem ([24]), the non-
linear gradient descent flow then possesses centre and stable manifolds, tangent to these
respective eigenspaces. The stable manifold is clearly theset of all initial conditions
which givey after gradient descent. Now, the set of deterministic trajectories of the non-
linear system may be represented as the graph of a smooth function

(

f , f 2, . . . , f n−1
)

:
M → Mn−1, and so forms a smooth submanifold ofMn (the n-fold Cartesian product
of M). As q is constant (zero) on this submanifold, its tangent space aty is contained
in kerdq(y), the centre eigenspace. But, both these linear spaces have dimensiond, so
they are equal. Hence the submanifold of deterministic trajectories is tangent aty to the
centre eigenspace, and as this submanifold is clearly invariant underq, the deterministic
trajectories form a centre manifold for the non-linear gradient descent. Buty was an
arbitrary deterministic trajectory, so it follows that thesubmanifold of deterministic
trajectories is a centre manifold foreveryfixed point of the non-linear gradient descent.
We denote this submanifold byWc.

Note thatWc is closed (sinceL is continuous) hence compact. It is also smooth,
so it follows that the centre eigenspace at each point ofWc varies continuously with the
point. Each stable eigenspace is the orthogonal complementof the corresponding centre
eigenspace so these also vary continuously with the point. Therefore, there is a contin-
uous splitting along the compact invariant setWc into stable and centre eigenspaces. By
the Generalised Centre Manifold Theorem ([24]), the (local) generalised stable mani-
folds corresponding to each point inWc vary continuously. These are of course just the
stable manifolds for each fixed point. It follows now that there is an open neighbourhood
of Wc which islaminatedby stable manifolds, meaning that the (disjoint) union of these
stable manifolds contains the entire neighbourhood. Any point in this neighbourhood
will therefore end up onWc after the gradient descent algorithm has been completed.
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By extending this to global manifolds and making use of the compactness ofM once
more, it can be concluded that the global stable manifolds laminate all ofMn. Hence
every point ofMn (corresponding to every noisy trajectory) belongs to a (unique) stable
manifold, so the gradient descent algorithm must always converge to a point on the cen-
tre manifold. But, we have already proved that the centre manifold consists of points
fixed under the non-linear gradient descent. These points correspond to deterministic
trajectories, completing the proof.

4.2 Linear Dynamical Systems

We start by investigating the case where the dynamical mapf is linear (and acts on
R

d). For clarity, this linear map will be denoted byA (indicating that we think of it as
a matrix) rather thanf . As hyperbolicity is necessary for noise reduction, we assume
that A is a hyperbolic matrix with stable and unstable eigenspacesdenoted byEs and
Eu respectively. The corresponding eigenprojections are denoted byPs andPu. These
are complementary but not generally orthogonal. The following simple result is needed
(the proof is very easy and may be found in [21]).

Lemma 3 Suppose that a1, . . . ,an is a set of non-negative numbers satisfying aj 6

Cκ j−iai for all j > i where a1 > 0, and0 6 κ < 1 and C> 0 are constants. Then,

(

∑n
j=1a j

)2

∑n
j=1a2

j

6
1+(2C−1)κ

1−κ .

The gradient descent algorithm for a linear dynamical system is equivalent to pro-
jecting orthogonally onto the subspace of deterministic trajectories (Proposition 1). We
shall investigate the theoretical properties of the gradient descent algorithm by deriving
quantitative information about this orthogonal projection,P. The quantitative informa-
tion that we have however, is in the form of the following well-known inequalities:

‖Anvs‖ 6 Csµn‖vs‖ and ‖Anvu‖ > Cuνn‖vu‖ , (8)

which hold for alln > 0, vs ∈ Es, vu ∈ Eu, andµ < 1 < ν such thatµ (ν) is larger
(smaller) than any of the moduli of the eigenvalues ofA inside (outside) the unit circle,
and for some constantsCs > 1 and 0< Cu 6 1 depending only onµ andν respectively
([21]). (We will refer to suchµ andν ashyperbolicity bounds.) The analysis of this
information and how it pertains to the projectionP is complicated by the fact that the
stable and unstable eigenspaces ofA need not be orthogonal. It will be convenient to
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consider the minimal angle between these subspaces. For twosubspacesE andE′ of a
Euclidean space, the minimal angleθ is defined to be the acute angle satisfying

cosθ = sup

{ 〈x,x′〉
‖x‖‖x′‖ : x∈ E \{0} andx′ ∈ E′ \{0}

}

.

The norm‖·‖ denotes the Euclidean norm (onR
d or R

nd). We also define the norm
‖·‖∞ on R

nd by ‖x‖∞ = maxi ‖xi‖, and a norm‖·‖∗ on the linear maps fromRnd to R
d

by ‖T‖∗ = sup‖x‖∞=1‖Tx‖.

Proposition 4 Suppose that A is a hyperbolic linear operator fromR
d into itself, with

stable and unstable eigenprojections Ps and Pu respectively, andP is the orthogonal
projection inR

nd onto Ec, the subspace of deterministic trajectories for A. Then, if
µ < 1 < ν are hyperbolicity bounds for A, and Cs and Cu are the associated constants,
then the following bounds hold:

‖PsπiP‖∗ 6 dimEs
Csµ i−1

sinφ





√

1+(2Cs−1)µ
sinφ

√
1−µ

+

√

1+
(

2C−1
u −1

)

ν−1

tanφ
√

1−ν−1





‖PuπiP‖∗ 6 dimEu
C−1

u ν−(n−i)

sinφ





√

1+
(

2C−1
u −1

)

ν−1

sinφ
√

1−ν−1
+

√

1+(2Cs−1)µ
tanφ

√
1−µ





whereπi projects out the ith point of a trajectory (πix = xi), andφ is the minimal angle
between Es and Eu.

Proof: Let Es andEu be the deterministic trajectories whose points are inEs andEu

respectively. That is, let

Es =



































v
Av
A2v
· · ·

An−1v













: v∈ Es























and Eu =



































v
Av
A2v
· · ·

An−1v













: v∈ Eu























.

SinceA is hyperbolic,Rd = Es⊕Eu, and this induces the decompositionEc = Es⊕Eu,
sinceEc is the subspace of deterministic trajectories ofA in R

nd. If π (E,E′) denotes the
projection onto the subspaceE parallel to the subspaceE′4, thenP may be decomposed
as

P = π
(

Es,E
⊥
s

)

+π
(

E
⊥
s ,Es

)

(9)

4That is,π (E,E′) is the unique projection with imageE and kernelE′.
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s .

where⊥ denotes orthogonal complementation. This obviously corresponds to a de-
composition ofEc into Es⊕E⊥

s , so the idea is to rewriteπ
(

E⊥
s ,Es

)

so that it involves
Eu. The constructions which achieve this are indicated schematically in Figure 7 for
convenience.

We take an orthogonal basis,{Wk} for E
⊥
s . EachWk may be uniquely decomposed

asUk +Vk whereUk ∈ Eu andVk ∈ Es, and if θk is the acute angle betweenUk andVk

(or π/2 if Vk = 0), then we have‖Wk‖ = ‖Uk‖sinθk = ‖Vk‖ tanθk. The reason why we
chose theWk to be an orthogonal basis ofE⊥

s is that the (orthogonal) projection onto
this subspace may be expanded as:

π
(

E
⊥
s ,Es

)

=
du

∑
k=1

WkW∗
k

‖Wk‖2 =
du

∑
k=1

‖Wk‖−2(UkU
∗
k −UkV

∗
k −VkU

∗
k +VkV

∗
k ) ,

wheredu = dimE
⊥
s = dimEu = dimEu (recall also that∗ denotes transposition). But,

Puπi (Es) = {0}, so the first term in the decomposition ofP (equation 9) is annihilated
by Puπi, as are two of the terms in the above expansion. A quick calculation gives

PuπiPx =
du

∑
k=1

‖Wk‖−2Ai−1uk

n

∑
j=1

(〈

A j−1uk,x j
〉

−
〈

A j−1vk,x j
〉)

,

whereuk = π1Uk ∈ Eu andvk = π1Vk ∈ Es. This expressesP in terms of vectors from
the stable and unstable eigenspaces ofA. The Cauchy-Schwarz inequality now gives us
the bounds:

‖PuπiPx‖∗ 6

du

∑
k=1

∥

∥Ai−1uk
∥

∥

‖Uk‖sinθk

n

∑
j=1

(
∥

∥A j−1uk
∥

∥

‖Uk‖sinθk
+

∥

∥A j−1vk
∥

∥

‖Vk‖ tanθk

)

‖x‖∞ . (10)
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(If any of theVk are zero, the correspondingvk are zero, and so the second term in the
parentheses above is zero.)

Consider now the term∑n
j=1

∥

∥A j−1vk
∥

∥/‖Vk‖=
(

∑n
j=1

∥

∥A j−1vk
∥

∥

)

/
[

∑n
j=1

∥

∥A j−1vk
∥

∥

2
]1/2

.

If a j =
∥

∥A j−1vk
∥

∥, then we havea j =
∥

∥A j−1vk
∥

∥ 6 Csµ j−i
∥

∥Ai−1vk
∥

∥ = Csµ j−iai where
µ < 1 is a (stable) hyperbolicity bound forA, andCs > 1 is the associated constant. By
Lemma 3 then,

n

∑
j=1

∥

∥A j−1vk
∥

∥

‖Vk‖
6

[

1+(2Cs−1)µ
1−µ

]1/2

.

(11)

Similarly, if a j =
∥

∥An− juk
∥

∥, thena j 6 C−1
u ν−( j−i)ai whereν > 1 is an (unstable) hy-

perbolicity bound forA andCu 6 1 is the associated constant. Therefore,

n

∑
j=1

∥

∥A j−1uk
∥

∥

‖Uk‖
6

[

1+
(

2C−1
u −1

)

ν−1

1−ν−1

]1/2

.

(12)

Noting that we also have
∥

∥Ai−1uk
∥

∥/‖Uk‖ 6
∥

∥Ai−1uk
∥

∥/
∥

∥An−1uk
∥

∥ 6 C−1
u ν−(n−i), we

derive from equations 10, 11, and 12, the estimate

‖PuπiP‖∗ 6

du

∑
k=1

C−1
u ν−(n−i)

sinθk





√

1+
(

2C−1
u −1

)

ν−1

sinθk

√
1−ν−1

+

√

1+(2Cs−1)µ
tanθk

√
1−µ





.

This bound expresses the norm ofPuπiP in terms of the constantsµ, ν, Cs, Cu and
du — which depend on the hyperbolic linear operatorA and not on the length of the
trajectoryn — and the anglesθk. As theθk are angles between thetrajectories Uk and
Vk, they will generally vary withn. It remains then to show that they are bounded away
from zero, so that sinθk and tanθk do not vanish asn tends to infinity. Ifφ is the mini-
mal angle between the eigenspacesEs andEu (which only depends onA), then a simple
computation using the Cauchy-Schwarz inequality for sums shows that|cosθk|6 cosφ .
Therefore, sinθk > sinφ and tanθk > tanφ , so substitution gives the required unstable
bound. The stable bound (forPsπiP) is derived using the same technique, withs andu
interchanged.

The relevance of this result is seen by noting that ifx denotes the noisy trajectory, ˆx
the noise-reduced trajectory, andy the clean trajectory, then the error in comparing the
noise-reduced and clean trajectories at theith point is

‖πi (x̂−y)‖ = ‖πiP (x−y)‖ 6 ‖PsπiP (x−y)‖+‖PuπiP (x−y)‖ .

If the noise distribution is bounded (byε say), then Proposition 4 states that the error in
comparing the noise-reduced and clean trajectories at theith point satisfies

‖πi (x̂−y)‖ 6

(

Ksµ i−1 +Kuν−(n−i)
)

ε (13)
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whereKs andKu are constants independent ofi or n, the length of the trajectory. It
follows now that these errors can be made small everywhere (except near the end points)
by taking the trajectory length sufficiently long. So we haveproved the following result.

Theorem 5 Let A be a hyperbolic linear operator defining a discrete dynamical system
onR

d, x∈ R
nd be a noisy trajectory, and̂x be the noise reduced trajectory given by the

gradient descent algorithm. If the noise distribution isbounded, then the points ofany
deterministic trajectory that could be the true trajectory, differ from the points of̂x by an
amount which tends to zero as n, the length of the trajectories, tends to infinity, except
for points near the initial and final points. The errors at these points remainbounded
as n→ ∞.

We have already remarked that a corresponding result for unbounded noise distri-
butions is untenable — the errors cannot be absolutely bounded. However, the proof
of Proposition 4 can be trivially adapted to show that for these distributions, theroot-
mean-squareerrors at each point of the trajectory are bounded by the sameexpressions
as before, but withε denoting the standard deviation of the noise distribution.This
also extends to confidence levels. For unbounded noise distributions, the errors can be
bounded “on average”.

4.3 Non-linear Dynamical Systems

We now turn to the problem of generalising Theorem 5 to non-linear dynamical systems.
Of course, the systems under consideration must be hyperbolic, and the results of section
3 show that we must restrict further to systems where the angle between stable and
unstable manifolds is bounded below. An important class of systems which satisfy
this requirement is the class ofuniformlyhyperbolic dynamical systems ([13]). These
are systems which possess a hyperbolic set (each point of theset has complementary
generalised stable and unstable eigenspaces) which is invariant and compact.

First, we consider the linearisation of such a system. Iff : M → M is uniformly
hyperbolic, andy is a deterministic trajectory forf , then Proposition 1 asserts that the
effect of the linearised gradient descent flow is to project orthogonally onto the subspace

Ec =









































v
d f (y1)v
d f2(y1)v

...
d fn−1(y1)v















: v∈ R
d



























.

We can think of these trajectories as deterministic trajectories for a linear system where
the linear operator changes with each iteration. It is easy now to generalise Proposition
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4 to this case. We still have hyperbolicity boundsµ < 1 < ν (which are independent of
the point of the uniformly hyperbolic set), the minimal angle,φ , between (generalised)
eigenspaces is still non-zero, and the estimates of equation 8 are replaced by

‖d fn(p)xs‖ 6 Csµn‖xs‖ and ‖d fn(p)xu‖ > Cuνn‖xu‖ , (14)

wherep is an arbitrary point of the uniformly hyperbolic set,xs andxu are elements of
the generalised stable and unstable eigenspaces (respectively) at p, andCs andCu are
constants depending only onµ andν respectively ([21]). These estimates are conse-
quences of the Multiplicative Ergodic Theorem ([19]), and the fact that the constantsCs

andCu may be chosen independent of the pointp is due to working over a uniformly
hyperbolic set, which is compact by definition.

Proposition 6 Suppose that f is a C2-diffeomorphism of a smooth compact d-dimensional
manifold M possessing an invariant uniformly hyperbolic set Λ with splitting into sta-
ble and unstable eigenspaces Es(p) and Eu(p), p ∈ Λ, and that y is a deterministic
trajectory of length n for f . IfP is the orthogonal projection (inRnd) onto Ec(y),

the subspace of deterministic trajectories for the system linearised about y, and P(i)s

and P(i)
u are the stable and unstable projections onto Es(yi) and Eu(yi) for i = 1, . . . ,n

(respectively), then the following bounds hold:

∥

∥

∥
P(i)

s πiP

∥

∥

∥

∗
6 ds

Csµ i−1

sinφ





√

1+(2Cs−1)µ
sinφ

√
1−µ

+

√

1+
(

2C−1
u −1

)

ν−1

tanφ
√

1−ν−1





∥

∥

∥
P(i)

u πiP

∥

∥

∥

∗
6 du

C−1
u ν−(n−i)

sinφ





√

1+
(

2C−1
u −1

)

ν−1

sinφ
√

1−ν−1
+

√

1+(2Cs−1)µ
tanφ

√
1−µ





whereµ < 1 < ν are hyperbolicity bounds for f|Λ, Cs and Cu are the associated con-
stants, ds and du are the common dimensions of the Es(p) and Eu(p) (respectively), and
φ is the minimal angle between Es(p) and Eu(p), p∈ Λ.

Proof: This proof is the same as that of Proposition 4 with a few modifications. In
particular,Am is replaced byd fm(y1) throughout. The subspacesEs andEu are then the
trajectories inEc(y) whose first point belongs toEs(y1) andEu(y1) respectively. The
invariance of theEs(p) and theEu(p) given by the Multiplicative Ergodic Theorem and
the fact thaty was chosen to be a deterministic trajectory forf , show thatEs andEu con-
sist of trajectories whose points stay in stable and unstable eigenspaces (respectively).
Hence,Ec (y) = Es⊕Eu. Given an orthogonal basis ofE⊥

s say, the construction of stable
and unstable trajectories can proceed as in the proof of Proposition 4, and these can be
used to derive the analogue of equation 10. Equation 14 and Lemma 3 are then used to
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simplify this expression, noting that becauseΛ is compact, the constantsCs andCu may
be chosen independently of the points of the trajectoryy, and hence independent ofn.
The resulting expression still contains angles between stable and unstable trajectories
— these are dealt with in exactly the same manner as in the proof of Proposition 4,
noting that the angles between theEs(p) and theEu(p) are uniformly bounded away
from zero.

Recall the proof of Proposition 2. There it was shown that fora non-linear system,
the set of deterministic trajectories,Wc, forms a centre manifold foreveryfixed point of
the gradient descent flow, and there is a lamination of stablemanifolds,{Ws(y) : y∈ Wc},
orthogonal to this common centre manifold. The situation isexactly the same in the lin-
earised case — here there is asubspaceof deterministic trajectories which forms a cen-
tre eigenspace, and a lamination of stable eigenspaces given by the family of(n−1)d-
dimensional hyperplanes parallel to kerP = Ec(y). These laminations are indicated in
Figure 8. It would seem plausible then, that the non-linear gradient descent flow and
its linearisation about some fixed point are qualitatively similar, that is, topologically
conjugate, despite the presence of a centre manifold. This is in fact true ([14, 21])5.

We exploit this qualitative equivalence by constructing a commutative diagram re-
lating the non-linear and linearised gradient descent flows. The non-linear gradient de-
scent equations define a flowϕt which converges (given any initial condition) ast → ∞
by Proposition 2. The pointwise limit ofϕt ast → ∞ therefore defines a functionΦ.
ClearlyΦ represents the effect of the non-linear gradient descent algorithm, just as the
orthogonal projectionP represents the effect of the linearised algorithm. We consider

5We will not make direct use of this fact, however, but mentionit as motivation for the construction
that follows. The proof appearing in [14] is quite involved and we were unable to extend it to get any
quantitative information about the conjugacy. It has therefore been omitted.
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functionsH , H, andhi (i = 1, . . . ,n) which make the following diagram commute:

R
nd Φ−−−→ Wc

πi−−−→ R
d

H





y

x




H

x




hi

R
nd P−−−→ Ec(y)

πi−−−→ R
d

(15)

(this involves choosing a deterministic trajectory,y, about which to linearise). Of course,
it is not just enough to know that these functions exist. To generalise Proposition 6 to
non-linear systems, it is necessary to demand that thehi take points near the stable
and unstable eigenspaces of the linearised system to pointsnear the stable and unstable
manifolds of the non-linear system, and that the additionalerrors induced by usingH
and thehi to switch between the non-linear and linearised spaces can be boundedas
the length of the trajectories tend to infinity. In this way, the behaviour of the noise
reduction procedure will be maintained and the required convergence result will follow
easily.

ConsiderH : Ec(y) → Wc. To make the right square of diagram 15 commute, it fol-
lows that the functionH must decompose asH = (h1, . . . ,hn). As H maps deterministic
trajectories for the linearised system onto deterministictrajectories for the non-linear
system, its action is entirely determined by what it does to the first point of the trajec-
tory. That is, eachhi is determined byh1:

hi = f i−1◦h1◦
[

d f i−1(y1)
]−1

= f i−1◦h1◦d f−(i−1) (yi) .

Note that the action ofhi on a neighbourhood ofyi will be to map the unstable eigenspace
for yi back onto the unstable eigenspace fory1, distort it somewhat (the action ofh1),
and then map them forward to a neighbourhood ofyi again. Fori large enough then (and
provided thath1 is chosen to be continuous and close to the identity say), theresulting
set should be an excellent approximation (at least locally)of the generalised unstable
manifold of yi . In fact, there is a choice forh1 which makes eachhi map each un-
stable eigenspace locally onto the corresponding local generalised unstable eigenspace
exactly. This is a direct consequence of a generalisation of the Hartman-Grobman The-
orem due to Kurata ([16]), which essentially states that around each point of a uniformly
hyperbolic set, there are open neighbourhoods in which the dynamics is topologically
conjugate to the linearised dynamics. Because the points need not be fixed (or periodic)
as in the standard Hartman-Grobman Theorem, the conjugacies do not map each neigh-
bourhood into itself, but rather into the neighbourhood corresponding to the next iterate.
A detailed proof of Kurata’s theorem may be found in [21]. With this choice,h1 and
hence eachhi is a local homeomorphism, and hence so isH. Furthermore, the domain
of H can be naturally extended to the product of the domains of thehi , soH maps a
neighbourhood ofy homeomorphically onto another neighbourhood ofy.
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Consider now the left square of diagram 15. AsΦ is the identity onWc andP is
the identity onEc(y), it follows thatH andH−1 must coincide onWc. It would be very
convenient if definingH to beH−1 (defined on a neighbourhood ofy) made diagram
15 commute, at least aroundy. However, this does not seem to be the case. Instead,
note that

P ◦H = H−1◦Φ ⇒ H = (I −P)◦H +H−1◦Φ,

and that(I −P) ◦H takes values inEs(y) whereasH−1 ◦Φ takes values inEc(y).
In fact, it is clear that the commutativity requirement willstill be fulfilled if the H

appearing on theright of this last equality is replaced by any function mappingWc

ontoEc(y). A convenient choice is the homeomorphismH−1, as it is the only function
satisfying this requirement whose properties we know. Thatis, we define

H = (I −P)◦H−1+H−1◦Φ. (16)

H therefore maps a neighbourhood ofy into another neighbourhood ofy, and satisfies
P ◦H = H ◦Φ = H−1◦Φ (whenever this makes sense). Geometrically,H takes the
centre manifoldWc onto the centre eigenspaceEc (y), and maps each stable manifold
of the non-linear lamination onto some stable eigenspace ofthe linearised lamination
(see Figure 8). The termH−1 ◦Φ specifieswhich stable eigenspace corresponds to a
particular stable manifold, and the term(I −P) ◦H−1 specifieswhereon the stable
eigenspace each point of the stable manifold is mapped.

It remains to consider the distortions induced byH and thehi . That is, any stretch-
ing or contracting of distances caused by switching betweenthe non-linear and lin-
earised gradient descents. These will introduce extra factors and/or terms into our esti-
mates for the errors we accrue when we noise-reduce (and so weneed to control them).
All these functions arecontinuous(Φ is continuous because the stable manifolds in
the lamination vary continuously) on their respective domains, so this distortion can be
made arbitrarilysmallby restricting their domains to be sufficiently small (this in turn
corresponds to restricting the noise level to be sufficiently small). However, the gener-
alisation of Theorem 5 to non-linear systems must address the behaviour as the length
of the relevant trajectories,n, tend to infinity. Therefore it is necessary to know how the
distortion varies withn.

Quantitative information for the varioushi comes in the form of their Hölder conti-
nuity. In [21], it is shown that there existα,β > 0 such that

∥

∥hi (u)−hi
(

u′
)∥

∥6 β
∥

∥u−u′
∥

∥

α

for eachi, everyu,u′ belonging to the domain ofhi. Furthermore,α andβ may be
chosen independently ofi (and thusn). That is, the distortion induced by using thehi

does not depend on the length of trajectory used. We omit the proof of these statements
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because they follow from (a modification of) the proof of the Generalised Hartman-
Grobman Theorem, which is too long to include here. Given these facts however, it
easily follows thatH is Hölder continuous with respect to the norm‖·‖∞ and with the
same constantsα andβ , and so isH−1 (because the inverses of thehi are also Hölder
continuous). What we would like to do now, is show thatH is also Hölder continuous
(with respect to‖·‖∞) with constants independent ofn. But this seems to be quite
difficult, largely because we have no concrete quantitativeinformation about the non-
linear gradient descent flowΦ. Instead, we introduce a condition onΦ which suffices
for our needs.

Condition 7 Let y1 ∈ R
d define deterministic trajectories y(n) ∈ Wc ⊂ R

nd (for each n)

by y(n)
i+1 = f

(

y(n)
i

)

, i = 1, . . . ,n−1, and let

Bε

(

y(n)
)

=
{

x∈ R
nd :
∥

∥

∥
x−y(n)

∥

∥

∥

∞
6 ε
}

.

Then, forε > 0 (denoting the noise level) sufficiently small but fixed, the function

Ωε (n) = sup
x∈Bε(y(n))

∥

∥

∥
Φ(x)−y(n)

∥

∥

∥

∞

is bounded above.

This condition does not guarantee thatH is Hölder continuous. For that we would
need to specify howΩε (n) varies withε. But it does put a bound on the size of the terms
thatH introduces into our estimates for the errors after noise reduction. Assuming the
gradient descent satisfies Condition 7 then, we have for a clean trajectoryy ∈ Wc, a
noisy trajectoryx, the noise-reduced trajectory ˆx, and noise-boundε, that (using the
commutative diagram 15, the Hölder continuity of thehi , and Proposition 6):

‖x̂i −yi‖ = ‖πiΦ(x)−πiΦ(y)‖
= ‖hi (πiPH (x))−hi (πiPH (y))‖
6 β ‖πiP (H (x)−H (y))‖α

6 β
(

Ksµ i−1 +Kuν−(n−i)
)α

‖H (x)−H (y)‖α
∞ ,

whereKs andKu are constants bounded above inn, and (using the Hölder continuity of
H−1 and Condition 7):

‖H (x)−H (y)‖∞ 6
∥

∥(I −P)
(

H−1(x)−H−1(y)
)∥

∥

∞ +
∥

∥H−1◦Φ(x)−H−1◦Φ(y)
∥

∥

∞
6 ‖I −P‖∞ β ‖x−y‖α

∞ +β ‖Φ(x)−y‖α
∞

6 ‖I −P‖∞ βεα +βΩε (n)α ,
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where‖I −P‖∞ 6 1+supi ‖πiP‖∗ 6 1+supi (‖PsπiP‖∗ +‖PuπiP‖∗) which is bounded
above inn, and so finally,

‖x̂i −yi‖ 6 β
(

Ksµ i−1 +Kuν−(n−i)
)α

‖H (x)−H (y)‖α
∞

6 β 1+α
[(

Ksµ i−1 +Kuν−(n−i)
)

(

‖I −P‖∞ εα +Ωε (n)α)
]α

,

which is bounded above inn. Thus, asn increases, the exponential decay of the terms
µ i−1 andν−(n−i) for i ∼ n/2, mean that the errors converge to zero away from the end
points. That is, we have proved the following theorem:

Theorem 8 Let f be a C2-diffeomorphism of a smooth compact d-dimensional mani-
fold M possessing an invariant uniformly hyperbolic setΛ and satisfying Condition 7,
x ∈ R

nd be a noisy trajectory of the (non-linear) system, andx̂ be the noise reduced
trajectory given by the gradient descent algorithm. If the noise distribution isbounded
by ε > 0 sufficiently small, then the points ofanydeterministic trajectory that could be
the true trajectory, differ from the points ofx̂ by an amount which tends to zero as n,
the length of the trajectories, tends to infinity, except forpoints near the initial and final
points. The errors at these points are bounded.

This result essentially states that the gradient descent algorithm is a good noise re-
duction algorithm for non-linear dynamical systems with aninvariant uniformly hyper-
bolic set (that is, one without genuine tangencies), provided the noise level is sufficiently
small. We do, however, rely on Condition 7 being satisfied. When does this condition
hold? Perhaps a better question to ask would be: How could this condition possibly fail
to hold? For a consequence of failure would be that the errorsat the initial and final
points could grow without bound as the length of the trajectory increases. This is cer-
tainly at odds with the numerical experiments of section 3, although these experiments
are of course, not even remotely exhaustive. However, we know from Bowen’s Shad-
owing Theorem ([3]), that for sufficiently small noise, there is auniquedeterministic
trajectory that could produce any given noisy trajectoryof infinite length. One would
hope that a respectable noise reduction algorithm would converge (pointwise, not uni-
formly) onto this unique trajectory as the length of trajectory tends to infinity. It seems
reasonable therefore toconjecturethat for any uniformly hyperbolic dynamical system,
Condition 7 is satisfied. Of course, the compactness of our manifold M means thatM
has a finite diameter, so we can always claim that the conjecture holds in this limited
sense. However, this is clearly not as satisfactory as we would like.

We would also like to mention that these results also clarifythe role of the noise
level in noise reduction processes. Theorem 5 essentially states that gradient descent
noise reduction will work asymptotically for any hyperbolic linear dynamical system,
regardless of the noise level. Clearly one should not expect the same result to be true
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for non-linear systems — it would, for instance, be rather amazing if we could recover a
signal (asymptotically) when the noise level far exceeds the size of the attractor that the
signal comes from. What Theorem 8 states (and the results of section 3 demonstrate) is
that recovery may be achieved if the noise level is smaller than the size of the neighbour-
hoods in which the non-linear dynamics is qualitatively equivalent to its linearisation.
That is, the noise level must be smaller than the smallest distance between a trajectory
point and its closest homoclinic intersection point.

5 Discussion and Conclusions

This paper has demonstrated two important results: one by numerical means and another
by analytical means.

The first result, shown using numerical experiments, is thatthe failure of the gradi-
ent descent algorithm is a little worse than supposed in earlier studies, in that the failure
is a theoretical consequence of the combination of near tangencies and sufficiently large
noise levels, and does not require the presence of an exact tangency anywhere in the
system. Instead, it is the presence of a nearby homoclinic intersection point which can
cause the failure. As indistinguishability theory states that the two trajectories passing
through the actual point and its nearby homoclinic intersection point are both consistent
with the noisy data (for sufficiently large noise), this implies that nearby homoclinic
intersection points (that is, near tangencies) will have a similar effect on any other con-
ceivable noise reduction algorithm. Therefore, the presence of near tangencies is a
fundamental theoretical limitation which can cause any noise reduction algorithm to
fail.

The second result is the proof of the convergence of the gradient descent algorithm
under specified conditions. The proof relies on two facts. First, that a (semi-)conjugacy
(H ) can be constructed between the gradient descent flow of a uniformly hyperbolic
system and its linearisation about some fixed point, and second, that analytic bounds
for the errors between the noise-reduced and true trajectories can be derived for the
linearised gradient descent flow. This confirms (among otherthings), a loosely justified
expectation of state estimation theory that appears in Juddand Smith ([12], Dictum 1).

These results are significant not only for what they say aboutnoise reduction by
gradient descent, but what they also imply about shadowing trajectories and state esti-
mation. Recently Judd ([11]) has shown using numerical experiments that the gradient
descent algorithm (extended to the imperfect model case) issuperior to the Extended
Kalman Filter for estimating the state of nonlinear systems. Furthermore, finding shad-
owing trajectories has recently been recognised as an important technique for assessing
the quality of imperfect models. Admittedly, the results presented here only deal with
the perfect model scenario, but it is hoped that, and seems likely that, these results will
generalise to parametrised models, and to imperfect modelsto some extent.
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DR was supported by an University Postgraduate Award and a Jean Rogerson Scholar-
ship.

References

[1] B D O Anderson and J B Moore.Linear Optimal Control. Prentice-Hall, New
Jersey, 1971.

[2] B D O Anderson and J B Moore.Optimal Filtering. Prentice-Hall, New Jersey,
1979.

[3] R Bowen. On Axiom A Diffeomorphisms, volume 35 ofRegional Conference Se-
ries in Mathematics. American Mathematical Society, Providence, 1978.

[4] M Davies. Noise Reduction Schemes for Chaotic Time Series.Physica D, 79:174–
192, 1994.

[5] J D Farmer and J J Sidorowich. Optimal Shadowing and NoiseReduction.Physica
D, 47(3):373–392, 1991.

[6] P Grassberger, R Hegger, H Kantz, C Schaffrath, and T Schreiber. On Noise
Reduction Methods for Chaotic Data.CHAOS, 3(2):127–141, 1993.

[7] C Grebogi, S Hammel, J A Yorke, and T Sauer. Shadowing of Physical Trajectories
in Chaotic Dynamics: Containment and Refinement.Physical Review Letters,
65:1527–1530, 1990.

[8] S M Hammel. A Noise Reduction Method for Chaotic Systems.Physics Letters
A, 148(8,9):421–428, September 1990.

[9] M W Hirsch and S Smale.Differential Equations, Dynamical Systems and Linear
Algebra, volume 60 ofPure and Applied Mathematics. Academic Press, New
York, 1974.

[10] K Ikeda. Multiple-valued Stationary State and its Instability of the Transmitted
Light by a Ring Cavity System.Optics Communications, 30(2):257–261, August
1979.

[11] K Judd. Nonlinear State Estimation, Indistinguishable States and the Extended
Kalman Filter. Submitted, 2001.

30



[12] K Judd and L Smith. Indistinguishable States I: PerfectModel Scenario.Physica
D: Nonlinear Phenomena, 151(2-4):125–141, May 2001.

[13] A Katok and B Hasselblatt.Introduction to the Modern Theory of Dynamical
Systems, volume 54 ofEncyclopaedia of Mathematics and its Applications. Cam-
bridge University Press, Cambridge, 1998.

[14] U Kirchgraber and K J Palmer.Geometry in the Neighbourhood of Invariant Mani-
folds of Maps and Flows and Linearisation, volume 233 ofPitman Research Notes
in Mathematics. Longman Scientific and Technical, Essex, 1990.

[15] E J Kostelich and J A Yorke. Noise Reduction in DynamicalSystems.Physical
Review A, 38(3):1649–1652, August 1988.

[16] M Kurata. Hartman’s Theorem for Hyperbolic Sets.Nagoya Mathematical Jour-
nal, 67:41–52, 1977.

[17] S P Lalley. Beneath the Noise, Chaos.Annals of Statistics, 27(2):461–479, 1999.

[18] S P Lalley. Removing the Noise from Chaos plus Noise. In AI Mees, editor,Non-
linear Dynamics and Statistics: Proceedings of an Isaac Newton Institute Work-
shop. Birkhauser, Boston, 2000.

[19] V I Oseledec. A Multiplicative Ergodic Theorem. Lyapunov Characteristic Num-
bers for Dynamical Systems.Transactions of the Moscow Mathematical Society,
19:197–221, 1968.

[20] C C Pugh. On a Theorem of P Hartman.American Journal of Mathematics,
91:363–367, 1969.

[21] D Ridout. Convergence Properties of Noise Reduction byGradient Descent. Mas-
ter’s thesis, The University of Western Australia, 2001. Available from
www.cado.uwa.edu.au/Reports.php3.

[22] D Ruelle. Ergodic Theory of Differentiable Dynamical Systems. Publications
Mathematiques. Institut des Hautes Etudes scientifiques, 50:27–58, 1979.

[23] T Schreiber. An Extremely Simple Nonlinear Noise Reduction Method.Physical
Review E, 47(4):2401–2404, 1993.

[24] M Shub. Global Stability of Dynamical Systems. Springer-Verlag, New York,
1987.

[25] L A Smith. Accountability in Ensemble Prediction. InPredictability, volume 1
of ECMWF Workshop Proceedings, pages 351–368, Shinfield Park, Reading, UK,
1996. ECMWF.

31


