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Abstract

Gradient descent noise reduction is a technique that atssimpecover the true
signal, or trajectory, from noisy observations of a noredindynamical system for
which the dynamics are known. This paper provides the fgystaus proof that the
algorithm will recover the original trajectory for a broathgs of dynamical sys-
tems under certain conditions. The proof is obtained uslegs from linearisation
theory. Since the first introduction of the algorithm it haeb recognised that the
algorithm can fail to recover the true trajectory, and it haen suggested that this
is a practical or numerical limitation that is a consequeniceear tangencies be-
tween stable and unstable manifolds. This paper demoestiiatough numerical
experiments and details of the proof that the situation isse/than expected in that
near tangencies impose essential limitations on noisectiedt not just practical
or numerical limitations. That is, gradient descent noeguction will sometimes
fail to recover the true trajectory, even with unlimitedsfeet computation. On
the other hand, the numerical experiments suggest thatréiugegt descent noise
reduction algorithm will always recover a trajectory treentirely consistent with
the evidence provided by the observations, that is, itregtéhe best that can be
achieved given the observations. It is argued that neartangs will therefore
impose the same limitations on any noise reduction alguorith

1 Introduction

Non-linear noise reduction refers to a collection of teglueis for recovering a signal
from a time series of measurements of a non-linear dynamysiem where the mea-
surements are corrupted by noise. Noise reduction is anrianidechnique, not only
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for what it does, but also because it is closely related torttportant concept of shad-
owing trajectories ([7, 5, 25]) and techniques of statenstion ([1, 2, 12]).

There have been proposed a number of noise reduction dgw {15, 8, 4, 5, 6, 23,
18]), but although these algorithms have been around fée goime time now, there are
few rigorous results about their properties. Most of wh&niswn about the algorithms
is either the result of numerical experiments or looselyifiesl. Of particular interest
are the conditions that guarantee convergence of an digotd the true trajectory. In
exploring noise reduction it is useful to make a divisioroitttiree situations — where
one has a perfect model of the system (the system being @useas known dynamics),
where one has only an imperfect model, and where there is mlhod the dynamics.
Surprisingly, it is only the third case where any previogorous convergence results
have been obtained ([17]). Here we provide rigorous redaltshe first case. For
the second case, which is arguably the usual case and treetef® most important,
nothing is known, but it is hoped that the results presengzd for perfect models can
be extended to imperfect models in the future.

This paper is concerned with the situation where one hasfaghenodel of the sys-
tem. We study the properties of a particular algorithm tipalias in this situation called
the gradient descendlgorithm ([4]). The major part of the paper will outline inrae
detail a proof that the gradient descent algorithm conetgé¢he true trajectory under
specified conditions. The initial part of the paper des&#mme numerical experiments
that motivate the main restrictions.

The initial numerical experiments are of interest in theamoright because they
clarify an important phenomenon that we believe has not bhdbnunderstood before.
From the first introduction of the gradient descent algamniihhas been observed that
there are times when the algorithm fails to converge to the trajectory. This failure
has been attributed toear tangenciebetween stable and unstable manifolds, that is,
points where the stable and unstable manifold are almogetanThe supposed role of
near tangencies is that they result in a nearly singulavalgre in the neighbourhood of
these points, which consequently results in slow conveagen the algorithm in these
neighbourhoods. The failure of the gradient descent dlgorhas therefore been seen
as a practical or numerical limitation. Our numerical expents demonstrate that the
situation is worse than supposed and that the mechanismlwfefas different from
what has been suggested. Our interpretation of the algostfailure focuses on the
observation that the transverse intersection betweerestatnl unstable manifolds at
a near tangency implies the existence of a nearby trajethatyis homoclinic to the
true trajectory. We will show that observational noise caakenit impossible to distin-
guish between the true trajectory and its homoclinic cquesal that the observational
noise might be such that the weight of evidence is for the hatimo cousin being
the maximum likelihood trajectory. Consequently, the gratidescent algorithm will
sometimes convergence to the incorrect trajectory. Thepmenon was previously



illustrated in earlier work of Judd and Smith ([12]) on inthguishable states. It is also
almost certain that this kind of failure is not a unique feataf gradient descent noise
reduction, and should be expected of all noise reductiomoukst

The rest of the paper is organised as follows. In section dnweduce the gradient
descent algorithm and indicate why it should be able to redwdse. This is followed by
the results of some numerical experimentation in sectiohi@wfurther investigate the
properties of the gradient descent algorithm. By analytege results and particularly,
the reasons why noise reduction sometimes fails, we artitheegprecise mathematical
notion of what we mean when we say that the noise reductiostinaseeded, and also,
which classes of systems can be expected to allow noisetreduo succeed. With
these ideas, we can then turn to the theoretical propeftggadient descent in section 4,
where noise reduction is rigorously proven to occur for ghygrapriate class of systems,
subject to an additional condition. This is followed by fiet discussion in section 5.

2 Gradient Descent

In this paper, we will always assume that the dynamics of yls¢esn under investiga-
tion is known. The system will be assumed todigcretetime: y; .1 = f (yj), i € Z, and

the dynamical mapf, will be assumed to be a diffeomorphism from (a subsefR¥f)

into itself. Let {xi}i”:l, x € RY, be the set of experimental measurements of the corre-
sponding state$y; }._;. It is convenient to regard this set of observations as aovétt

RNd: x — (X1,X2,...,X%n). The result of a noise reduction algorithm is therefore et
vector inR" which will be denoted by, which is an estimate of the true trajectory of
statesy = (y1,Y2,...,Yn). Because the dynamical map is assumed to be known, there is
no loss of generality in assuming that the noise on the measnts is additive, and so

Xi=Vi+&

where thed are a realisation of some noise distribution (assumed enlggntly and
identically distributed).

We will consider the following form of the gradient descefgaaithm for noise
reduction. Define thdeterminism function LR — R by

1 n—1 )
L) =5 > [Xea—F ) 1)
22,
The norm used in this definition is completely arbitrary — st@ndard Euclidean norm
is convenient (it has nice analytic properties) and will Isediin what follows. Note

LIn section 4,f will be restricted to act on a compact manifdWifor technical reasons. However,
noise reduction algorithms are more conveniently disaigs&uclidean space, and it is clear that their
action can always be transferred back onto the manifoldyusie appropriate charts.
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thatL (x) = O precisely when the pointg RY form a deterministic trajectory of.
Generally, the noisy measurements do not form a deterndirtisfectory. The idea
behind gradient descent noise reduction is that a trajgctose to the observations can
be obtained by minimising through gradient descent, using the observatioas the
starting point. An explicit implementation of this idea, it we will refer to as the
gradient descent algorithm, is achieved by solving the kéiffierential equations

%(t) = —0OL(x(t)),  x(0)=x @)

The noise reduced trajectomy,i$ then given by = lim_.., X(t). The “time” variablet
used in the gradient descent will be referred to agitseent timéo distinguish it from
the discrete “time” implicit in the iteratiog — Vi 1 = f (V;).

3 Numerical Experiments

In this section, some numerical results of the gradientelgsalgorithm are presented
and discussed. The basic features of the difference beta@ea reduced trajectories
and the true trajectory is described and the important fahear tangencies is revealed.
The last section indicated that the gradient descent défgorcould be implemented
by solving the set of differential equations 2. Our expenitseemploy the 1-5 stiff
integration functiorode15s of MATLAB. The noise reduced trajectories were obtained
by letting the descent-time variable increase until coggece appeared to have been
established. The lkeda map ([10]) is used as an examplensy$téen the Ikeda map
is expressed as a real function fr@® into itself, we select the parameters so that

I (X,y) = <1+ %(xcos@ —ysing) ,%(xsin@ +ycos€)) , (3)

where@ = 2/5—6(1+x*+y?) -

To display the properties of the gradient descent algoritvenconsider a typical
example trajectory that has twenty points with initial gqi®9255 —1.0126) and final
point(1.1243 —2.1607) (approximately). Gaussian noise with mean zero and stendar
deviation /10 was added to this trajectory (giving a noisy trajectosfpbe the gradient
descent algorithm was applied (to get a noise-reducecctaayg. Ten different noise
realisations were used, giving ten different noisy trajges and hence ten different
noise-reduced trajectories. The magnitudes of the diifare between the points of the
clean and the ten noise-reduced trajectories are plottegure 1.

There are two features of the distribution of errors reveald-igure 1 that should be
observed. First, there are the obvious “spikes” in the sramound points 3, 8, and 16,
which all the noise-reduced trajectories display to vayydegrees. Second, the errors
are large at the initial and final points of the trajectory guite small in between, and
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Figure 1: Errors after noise reduction by gradient desaceith ten different noise real-
isations) for each point of a twenty point trajectory of theda system, contaminated
by Gaussian noise of standard deviatioh. OThis gives a signal to noise ratio of about
25dB.
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the errors at the ends are of an order of magnitude comparatiie noise added to the
system. These features of the errors are typical of noisectieah algorithms. The large

errors at the initial and final points of the trajectory aregally ascribed to the fact

that at end points, the algorithm only has forwaod$ackwards iterations (rather than
both) to help it locate where the true trajectory should be.

It is well known that the large errors near the initial poietcdy exponentially, at a
rate given by the largest non-positive Lyapunov exponemgést as in closest to zero),
and that the growth of errors near the final point is also egptal with the rate given
by the smallest non-negative Lyapunov exponent. It is alviben that to achieve any
sort of noise reduction, we must considgmperbolicsystems (these have no vanishing
Lyapunov exponent). An example of a non-hyperbolic systethat given byf =id,
the identity mapping. It is clear that no noise reductior walcur for this system.

The spiking phenomenon observed in Figure 1 around variouggof the trajec-
tory is generally attributed to the presencetarigencieswhere a tangency is a point
whose (generalised) stable and unstable manifolds arenarg that point. That is,
at a tangency point, the generalised stable and unstal@esggces doot span the
entire tangent space. The argument usually given to exfiailmbserved spiking phe-
nomenon runs something like the following. Noise reduceaploits the fact that a
hyperbolic point has a stable and unstable direction. Tabletdirection implies a
convergence of nearby trajectories moving forward in tiarej the unstable direction
implies a convergence of nearby trajectories moving baowatime. It is the conver-
gence of nearby trajectories that can be exploited to rertievaoise. At a tangency of
a two-dimensional system, these directions lose theimpstiigtinction, and as a conse-
guence, the convergence forward and backward in time isdat partially) lost, and so
some of the noise cannot be removed. (The argument is usuéthg more general than
this, submitting that near tangencies are enough to caosenslmerical convergence
by a similar mechanism as explained below.)

Let us now examine the stable and unstable manifolds in tighbeurhoods of the
points that display the error spikes seen in Figure 1, wharhespond to the points 3,
8, and 16 of our sample trajectory. These manifolds are shovigure 2. Notice
that for points 8 and 16, the stable and unstable manifolgeapto be almost tangent
to one another at the clean trajectory point, and for poiral8ough the manifolds
are not tangent there, the angleetween them is relatively small. The angles can be
numerically approximated easily ([22]) and are (abou®f 8or point 3, 28° for point
8, and 12° for point 16. These are not tangency points as the angle iszamn so we
will refer to them asear-tangency pointdt should perhaps be mentioned here that the
Ikeda map does contain genuine tangency points, but thesxpected to be extremely
rare by the Multiplicative Ergodic Theorem ([19]). Thesadancy and near-tangency

2This is defined to be the angle between the one-dimensiaatalesand unstable eigenspaces at the
point — see also section 4.



features would be seen in any dynamical system like the lkemjawhere action of the
map is to stretch and fold the state space.

Now reconsider the argument given above to explain the spikéhe error distri-
butions. We feel that this argument is unsatisfactory ferfthilowing reason. It does
not explain how near tangencies can affect the noise reduptiocedure, even though
trajectories with near tangencies should be expected tofimteély more common than
trajectories with exact tangencies. With noise reductigorithms that rely on solving
algebraic equations (manifold decomposition for instanather than differential equa-
tions, it can be argued (and usually is) that near tangenaigsgpracticaldifficulties, in
that the matrix which needs inverting becomes badly cooiitil. However, these dif-
ficulties do not arise with gradient descent. Instead, itlie®n noted that the gradient
descent algorithm “grinds to a halt” around tangencies,mmggpthat the convergence
of the algorithm is very slow, presumably because the cogttion (the determinism
functionL) is locally rather flat. The suggestion here seems to be beafdilure of
gradient descent noise reduction around tangencies isodukatk of convergence, an-
other practical difficulty. While these difficulties do oeccand are important, we now
argue that there is in fact a theoretical impediment to n@dection, more fundamen-
tally important than the aforementioned practical protdeinis this, and not a lack of
convergence, that causes the spikes in the error distrifmiieen in Figure 1.

To examine more closely the problem of near tangencies andh®y prevent noise
reduction, we consider another sample trajectory of thedkeap that has only one near
tangency with very small angle. The sample trajectory haspibints, a near tangency
of about 3 at point 39 (spatially situated at approximate coordin&les67,0.485)),
and lesser near tangencies of betweendd 20 at points 2, 10, and 25. Applying
Gaussian noise of standard deviatigii@ and then noise-reducitigirty different noise
realisations, we find error distributions as shown in Figdiré&lotice that the errors are
shown on a logarithmic scale so that the distribution shapebe easily examined even
when the errors are negligible, although with the logarithetale some of the error
curves are almost identical over some time periods.

We note the spike at point 39 as well as smaller spikes at ptbiats of the trajec-
tory. Itis also apparent that the logarithmic error disitibn is roughly piecewise-linear
with two different slopes (a negative and a positive oneesHEslopes represent the (lo-
cal) Lyapunov exponentsf the system - this is clear for the pieces of the distributio
connecting to the initial and final points of the trajectagg it will become clear why
this is also the case for the points around the near-tangewicy shortly. What is of
greater interest is that the error distributions arounddhngency at point 39 form two
quite distinct groups. The jump in the errors around points38ometimes small and
sometimes much largér

3The errors corresponding to the larger jump areresplvednto separate curves in this figure due to
the logarithmic scale. In fact, approximately half the idlisttions show this larger jump.
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Figure 2: Stable (dotted) and unstable (solid) manifolddints 3, 8 and 16 from the
clean Ikeda trajectory considered (see text).
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Figure 3: Error distributions after noise reduction by gead descent (with thirty dif-
ferent noise realisations) for each point of a fifty poinjacaory of the lkeda map,
contaminated with Gaussian noise of standard deviatiarNbie the logarithmic scale.
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Figure 4: Spatial plot of the 49 points of the noise reduced trajectories of Figure 3
(+) and the 34 point of the correct trajectory () with its stable (dotted) and unstable
(solid) manifolds.

These two groups are shown spatially (around the tangenay §®) in Figure 4.
The large square marks point 39, the “+” signs mark the tmioige reduced approxima-
tions of point 39, and the dotted and solid lines show thelstahd unstable manifolds
through point 39 (respectively). Note that the groups eluabout the points where
the stable and unstable manifolds intersect. These imtgraepoints are calleiomo-
clinic intersection pointdecause the trajectories of the intersection points cgevier
forwardand backward time.

This clustering about homoclinic intersection points agedoecause the points are
then forced to be close to the stalaled unstable manifolds of the true point. Iterating
forward then means that the error must shrink (because iheipmear the stable man-
ifold). The error along the unstable manifold must likewggsew, and to accommodate
this shrinking along the stable manifold and growth along tinstable manifold, the
unstable manifold “bulges” outwards (and the angle betwenstable and unstable
manifolds increases). Similarly, upon iterating backvgattie error along the unstable
manifold decreases and the error along the stable manifolalsy leading to a bulging
of the stable manifold (and a corresponding increase in tiggeadbetween the mani-
folds). This is pictured in Figure 5. Thus the magnitude @& érorsdecreasess we

10



-1.163

0.3755

0.375 B -1.154

0.3745 -

-1.155

0.374 -

0.3735 - -1.156 [

0.373
-1.157

0.3725

0.372F -1.168 -

0.3715-
-1.159 -

0.371

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.786 0.788 0.79 0.792 0.794 0.796 0.798 0.8 0.203 0.204 0.205 0.206 0.207 0.208
X X

Figure 5: As in Figure 4 but for the §7point (left) and the 45t point (right). At left,
the stable manifold (dotted) “bulges” outward relativelie tinstable manifold (solid),
whereas at right, the opposite is true.

iterate forwards and backwards (as it must decrease foforerations since we are
close to the stable manifold, and must likewise decreasb&dockwards iterations since
we are close to the unstable manifold). In fact, this argunaéso explains why the
errors grow and decagxponentiallyaround a tangency point at a rate corresponding
to the Lyapunov exponents of the system. If the noise redpoats were not near a
homoclinic intersection point, then by iterating forwaoitackwards, the errors would
have to eventually grow. Summarising, it can be said thatrédjectories through the
two homoclinic intersection points of Figure 4 (one of whistthe true point) remain
close together and so the noise reduction algorithm chawsesr the other depending
on the particular noise realisation.

Another way of saying this is that the trajectories throulgh homoclinic inter-
section points are difficult to distinguish on the basis @& fiven noise realisations.
This difficulty can be quantified using tledistinguishability theoryf Judd and Smith
([12]). The noise distribution used here was Gaussian wéhdard deviation A10, so
the probability that two trajectoriggandy’ will be indistinguishable given a random
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noise realisation is given by (see [12] or [21]):

e(y-~y) ~esn| 255 I .

A plot of (an excellent approximation of) the indistinguadtility of the correct trajec-
tory and the nearby trajectories is given in Figure 6 (Iefhe plot measures the prob-
ability of indistinguishability versus the point correspbng to point 39 of the correct
trajectory. The two peaks correspond to the homoclinicrggtetion points (the peak
with value 1 is obviously the correct point). The second pleak probability approx-
imately Q9. Therefore it is very likely that a given noise realisatieitl be unable to
distinguish between the true trajectory and the trajectioryugh the other homoclinic
intersection point. This explains why, in our example, tlhwenbers of noise reduced
points clustered around each homoclinic intersectiontpi@ approximately equal —
the two trajectories are usually indistinguishable so thisereduction algorithm gives
each with approximately equal probabilities.

The large peak around tangencies in the error distribusaherefore due to the
algorithm choosing the wrong homoclinic intersection poinhis is usually only ob-
served when the angle between the stable and unstable mhdasifuite small however.
For small angles, the distance between the homoclinicsat#ion points is expected to
be smallcompared to the noise levind this forces the distances between the forward
and backward iterates of the homoclinic intersection gototdecay exponentially).
Therefore the algorithm is just as likely to converge ont® wrong homoclinic inter-
section point as the right one. In terms of indistinguishigbthis is nicely pictured in
Figure 6 (right) where the standard deviation of the noiselie®en dropped from/10
to 1/50. The probability that the trajectories through each efiomoclinic intersec-
tion points cannot be distinguished drops fror@  about 006. At this noise level, the
algorithm will only rarely choose the wrong homoclinic irgection point.

In summary then, it seems that noise reduction by gradiestetd (and indeed, by
any other type of algorithm) is limited by the presence ofrsiaagency points to noise
levels which are smaller than the minimum distance betweepoints of the clean tra-
jectory and their corresponding homoclinic intersectiomgs (if they exist). In order to
prove aresult stating that noise reduction is guaranteeaiteerge onto the clean trajec-
tory (except around the end points of course) as the numlgitafpoints is increased to
infinity then, it is necessary to restrict our attention tetsyns without genuine tangency
points (that is, the angles between the stable and unstaédotds must be bounded
below) and to sufficiently small noise levels. This is thejeabof the rest of this work.
Note first however that the requirement that the noise legedrball compared to the
distances over which the stable and unstable manifoldsrtarsect (non-trivially) is
equivalent to the requirement that we restrict our attentiicareas around each point of
the trajectory where the non-linear dynamics is qualigyiequivalent to its linearisa-
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Figure 6: Probability that the fifty point trajectory of th&eda map whose 3
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(1.167,0.485). At left, the probability is computed assuming Gaussias@aeiith stan-
dard deviation 110. At right, the standard deviation ig30.
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tion. That is, it is the essential non-linearity of the syst@n the form of the curvature

of its invariant manifold families) that stops noise redoetfrom working. Note also
that it follows for unboundecdoise distributions that we can never guarantee that the
noise reduction will work, even for arbitrarily small noikeels, as there will always

be a positive probability that the gradient descent will fantilomoclinic intersection
point. That is, for unbounded noise distributions, the holin@ intersection points are
never completely distinguishable from the true pointss(tkithe geometric reason for
Theorem 3 of [17]).

4 Analytic Results

We consider now the gradient descent algorithm from a thieaigoint of view. The
aim is to show that for systems where the angle between th&estad unstable mani-
folds is bounded belowufiformly hyperbolic systefiswe can guarantee that for suf-
ficiently small noise levels, the noise-reduced trajeetdre excellent approximations
of the original clean trajectory, and that as the length eftthjectories tends to infin-
ity, the noise-reduced trajectories converge onto thendiegectory everywhere except
near the end points. As mentioned above, this result carengeberalised to arbitrary
noise levels, and the amount of noise that can be accomnibdateesponds to the
neighbourhoods of each point in which the dynamics and timegarisation are in qual-
itative agreement. Hence we shall begin by studying lingeed] dynamical systems.
First however, some general properties of gradient desuegd to be addressed. In
particular, we need to show that the gradient descent #hgormutlined above actually
converges (Proposition 2 below). While this seems to bentalseobvious in the litera-
ture, the arguments usually given there are not completaegsgnore the fact that the
fixed points of the gradient descent are not isolated.

An outline of the proof that gradient descent does indeeé gi\satisfactory ap-
proximation of the true trajectory is as follows. We studg firoperties of the gradient
descent algorithm for a linear dynamical system, for thesaanentioned above. The
linearity of the system translates into a linear gradiersicdat algorithm, and this fact
allows us to derive analytic bounds for the errors betweemthise-reduced trajectory
and (any suitable) candidate for the true trajectory (sepddition 4). The proof of
these bounds generalises immediately to a suitable Isaayn of a general (uniformly
hyperbolic) dynamical system, and this linearisationegponds to the linearisation of
the general gradient descent algorithm, about some fixad pghich we may take to
be the true trajectory).

Noting that this gradient descent algorithm is in fact t@gatally conjugate to its
linearisation, we construct a commutative diagram regptine gradient descent flow
with its linearisation. The idea now is to use this commutatiiagram to translate
the analytic bounds we have derived for the linearised d¢agége full non-linear case,
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thus proving that the gradient descent algorithm achieweserreduction. To do this,
we need some quantitative information about the topoldégioajugacy between the
gradient descent flow and its linearisation. This seems tquae difficult. Instead,

we introduce a semi-conjugacy whose properties are moreabhe to analysis. A
generalisation of the Hartman-Grobman Theorem ([20, 1B,&1d Condition 7 below,

then provide this information.

This proof is fairly long, so a few details have been omitt&étlese omissions are
explicitly noted in what follows however. In particular, ilave omitted a result con-
cerning the existence and Holder continuity of some coenjigs needed in section 4.3.
The existence follows from the extension of the Hartmanb@ran Theorem mentioned
above ([16]), and it should be plausible at least that thgugaties implied by this the-
orem are Holder continuous (this is certainly true for ttendard Hartman-Grobman
Theorem). All the relevant details can be found in [21].

4.1 General Propertiesof Gradient Descent

We now suppose thdt: M — M is aC2-diffeomorphism defining a discrete dynamical
system on al-dimensional manifoldM which will be assumed smooth amdmpact
However, as we are only concerned with small noise levelscare(and will) always
locally identify M with RY. As in section 2, trajectories of lengthare given by vectors
in R"Y: x = (x1,...,X), X € RY and the gradient descent algorithm consists of solving
equation 2:

x(t) = —=0L(x(t)), x(0) = x,

and letting the descent-tintetend to infinity. Here x represents the noisy trajectory,
andL is the determinism function defined by equation 1. Nbyk) = O if and only if
thex; form a deterministic trajectory fof, and clearly the deterministic trajectories are
critical points ofL. Conversely, by differentiating:

s [ 90w e f(x) ifi=1
Vi (x—f(x-1)—df(x) (xiz1—f(x)) ifi=2,...,n-1 4)
5 = (1) ifi=n

it is easily checked that these are the only critical points€* denotes matrix trans-
position). If these critical points weiisolated then the gradient descent would have to
converge to one of them, regardless of the initial point)([Blowever, the deterministic
trajectories are not isolated — they form a smooth manifaldmeterised continuously
by the first coordinate (for instance). Therefore, more wation is required before
convergence to a deterministic trajectory can be claimed.

Choose a deterministic trajectoyyThis is a fixed point of the gradient descent flow.
With g = (qy,...,0n) = OL : R" — R" defined by equation 4, tHmearisationof the
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gradient descent flow about the fixed poms given by

W(t) = —da(y)w(t),  w(0) =x-y. ®)

Note that we need to assume tHais C? so thatdq(y) exists. A quick computation
shows thatlq(y) has the block-tridiagonal structure:

AAL A
AL T +HAA A
Ay I+AAs A

da(y) = (6)

—An-2 |+A;:_1An—1 _A;:_l
—An-1 |

)

whereA; = d f (y;). The deterministic trajectories for the linearised gratidescent are
defined to be those satisfying

Wii=Aw=df(y)w = wii=df (y)w

foralli=1,...,n—1. The effect of the linearised gradient descent is now easy t
determine.

Proposition 1 The linearised gradient descent algorithm given by soh@ggation 5
and letting t— oo, is equivalent to projecting orthogonally onto the subspatdeter-
ministic trajectories.

Proof: Clearly the set of deterministic trajectories form a lineabspace. Nowlq(y)
is symmetric (by inspection, but also because it Bessianmatrix forL), and a quick
computation shows that it is in fact positive semi-definite:

(w,dq(y)w) ZT]ZjHAiWi ~wiig[?>0. (7)
i=
The solution of the linearised gradient descent equat®o§dourse
w(t) = e 99tw(0),
and sincalq(y) is positive semi-definite, it follows that
e davt __, o

ast — o, whereZ” is the orthogonal projection onto kaq(y). Thatis,w(t) — W=
Zw(0). It remains to show then, that lkekq(y) is the deterministic subspace. But,
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(w,dq(y)w) =0 <= dq(y)w =0 (becauseélq(y) possesses a symmetric square root).
Hence this is an easy consequence of equation 7. |

We are now in a position to reconsider the convergence of thdient descent al-
gorithm. Essentially, the fact that the fixed points are sotadted is compensated for
by the fact that the gradient descent algorithm approadieefixed point sebrthogo-
nally. This does not seem to be, however, a direct consequence fa#dhthat gradient
descent algorithms always pass through surfaces of cdriseight” (for us, constant
L) orthogonally - a little sketching will imply that genenalihis orthogonality need not
be continued to the fixed point set.

Proposition 2 The gradient descent algorithm is guaranteed to converge amleter-
ministic trajectory.

Proof: It follows from Proposition 1 that for each fixed point, thedarised dynamics
has a centre eigenspace (#gfy)) and a stable eigenspace which is the orthogonal
complement of the centre eigenspace. By the Centre Manitodebrem ([24]), the non-
linear gradient descent flow then possesses centre and stahifolds, tangent to these
respective eigenspaces. The stable manifold is clearlgehef all initial conditions
which givey after gradient descent. Now, the set of deterministic ¢tajges of the non-
linear system may be represented as the graph of a smooﬁlininuﬁo&, f2,..., f”*l) :

M — M1 and so forms a smooth submanifoldMdf* (the n-fold Cartesian product
of M). As qis constant (zero) on this submanifold, its tangent spagdsatontained

in kerdq(y), the centre eigenspace. But, both these linear spaces imgasiond, so
they are equal. Hence the submanifold of deterministiettaries is tangent gtto the
centre eigenspace, and as this submanifold is clearlyianarnder, the deterministic
trajectories form a centre manifold for the non-linear geatldescent. Buy was an
arbitrary deterministic trajectory, so it follows that tkabmanifold of deterministic
trajectories is a centre manifold feveryfixed point of the non-linear gradient descent.
We denote this submanifold b#c.

Note that’. is closed (sincd. is continuous) hence compact. It is also smooth,
so it follows that the centre eigenspace at each poit#ofaries continuously with the
point. Each stable eigenspace is the orthogonal compleohére corresponding centre
eigenspace so these also vary continuously with the pohgrefore, there is a contin-
uous splitting along the compact invariant ¥&tinto stable and centre eigenspaces. By
the Generalised Centre Manifold Theorem ([24]), the (Ipganeralised stable mani-
folds corresponding to each pointi#t vary continuously. These are of course just the
stable manifolds for each fixed point. It follows now thatrnes an open neighbourhood
of #¢ which islaminatedby stable manifolds, meaning that the (disjoint) union et
stable manifolds contains the entire neighbourhood. Angtgpo this neighbourhood
will therefore end up or#; after the gradient descent algorithm has been completed.
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By extending this to global manifolds and making use of theagactness oM once
more, it can be concluded that the global stable manifolasnate all ofM". Hence
every point ofM" (corresponding to every noisy trajectory) belongs to aque) stable
manifold, so the gradient descent algorithm must always&qge to a point on the cen-
tre manifold. But, we have already proved that the centreifolanconsists of points
fixed under the non-linear gradient descent. These poimtegmmond to deterministic
trajectories, completing the proof. [ ]

4.2 Linear Dynamical Systems

We start by investigating the case where the dynamical maplinear (and acts on
RY). For clarity, this linear map will be denoted By(indicating that we think of it as
a matrix) rather tharf. As hyperbolicity is necessary for noise reduction, we assu
that A is a hyperbolic matrix with stable and unstable eigenspdeested byEs and
E, respectively. The corresponding eigenprojections are@tenbyPs andP,. These
are complementary but not generally orthogonal. The fahgvsimple result is needed
(the proof is very easy and may be found in [21]).

Lemma3 Suppose that@...,a, is a set of non-negative numbers satisfyingsa
Ck)'gj forall j > iwhere a > 0,and0 < k < 1 and C> 0 are constants. Then,

2
(s7aa) _ 1+ (-1
ZTzlaJZ h 1—K

The gradient descent algorithm for a linear dynamical sysgeequivalent to pro-
jecting orthogonally onto the subspace of deterministifetitories (Proposition 1). We
shall investigate the theoretical properties of the gratdiescent algorithm by deriving
guantitative information about this orthogonal projentig?. The quantitative informa-
tion that we have however, is in the form of the following wiellown inequalities:

IAMs[| < Csi[lvsl| - and  [[AMyl] = Cuv® vl (8)

which hold for alln > 0, vs € Eg, v, € Ey, andu < 1 < v such thatu (v) is larger
(smaller) than any of the moduli of the eigenvaluef\afiside (outside) the unit circle,
and for some constan® > 1 and 0< C, < 1 depending only o andv respectively
([21]). (We will refer to suchu andv ashyperbolicity bound3 The analysis of this
information and how it pertains to the projectiof is complicated by the fact that the
stable and unstable eigenspace#f\afeed not be orthogonal. It will be convenient to
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consider the minimal angle between these subspaces. Faulvepacek andE’ of a
Euclidean space, the minimal andglas defined to be the acute angle satisfying

cosf = sup{ X :x€ E\ {0} andX € E’\{O}}

[ 1]

The norm||-|| denotes the Euclidean norm (& or R"Y). We also define the norm
Il.c ONR by [|X]|,, = max ||x||, and a normj|-||, on the linear maps froR"? to R
by [|IT[, = supy 1 [ITX[-

Proposition 4 Suppose that A is a hyperbolic linear operator frif into itself, with
stable and unstable eigenprojectionsdnd R, respectively, and? is the orthogonal
projection inR"™ onto &, the subspace of deterministic trajectories for A. Then, if
U < 1< v are hyperbolicity bounds for A, and;@nd G, are the associated constants,
then the following bounds hold:

Cout* (Vi+(C—Dp Vit @ty
sing sinpy/I— tangpy/1—v—1

P2 || <dimEUCu v \/1+(2C“ v +\/1+(ZCS—1)H
* Sin(p Sin(p\/m tango\/m

|Ps15 2 ||, < dimEs

wherers projects out thell point of a trajectory {tx = x;), and @ is the minimal angle
between Eand E,.

Proof: Let &5 and &, be the deterministic trajectories whose points ar&jrandE,
respectively. That s, let

Vv Vv
Av Av
Es= A%y | :veEs and ¢, = A%y | :veE,
o o

SinceA is hyperbolicRY = Es@ E,, and this induces the decompositién= ¢s& &,
sinces is the subspace of deterministic trajectorieéafl R". If r7(E, E’) denotes the
projection onto the subspaBeparallel to the subspaé?, thenZ? may be decomposed
as

P = n(@s, ng) n n(@é, es) 9)

4That s, (E,E’) is the unique projection with image and kerneE’.
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Figure 7: Construction of “unstable trajectorie§ly}, and “stable trajectories?{V},
from the basi§W} of &Z.

where - denotes orthogonal complementation. This obviously spoads to a de-
composition of&; into &s@ &2, so the idea is to rewritH(QSS%, @s) so that it involves
¢,. The constructions which achieve this are indicated schieatly in Figure 7 for

convenience.

We take an orthogonal basi8)\} for &2. EachW, may be uniquely decomposed
asUy + Vk whereUy € €, andVy € €&, and if 6¢ is the acute angle betweéh andVy
(or /2 if Vi = 0), then we havé\W|| = ||Uk|| sinBx = ||Vk||tanBk. The reason why we
chose the/k to be an orthogonal basis @ is that the (orthogonal) projection onto
this subspace may be expanded as:

(00 = 3 Tk = 3
m( €&, &) = V| (Ui — UiV — ViU + Vi)
2 w2,
whered, = dim Qfé = dim¢&, = dimEy (recall also that denotes transposition). But,
PuTt (&s) = {0}, so the first term in the decomposition &t (equation 9) is annihilated
by P75, as are two of the terms in the above expansion. A quick caticu gives

dy . n . .
RTEPX=Y W[ 2 A u > (At xg) — (A xg))
=] =

whereuy, = mUy € E, andv = TV € Es. This expresses” in terms of vectors from
the stable and unstable eigenspace&.afhe Cauchy-Schwarz inequality now gives us
the bounds:

du All A]l Ajfl
Ryl < ” ”k”z<‘ i Vk”)nxnm. (10)

& [|Ukl[ sin6k |Usiné, " [V tané

20



(If any of theV are zero, the corresponding are zero, and so the second term in the
parentheses above is zero.)

Consider now the terrfif_j ||AI=2vy|| / [[Vi|| = <z?:1 HAj_leH> / [ZLl HN‘lka2

If aj = [|[AI"1v|, then we have; = ||AI~2vi || < Gt ||A- 2wy || = Cspt "y where
U < 1is a (stable) hyperbolicity bound fé;, andCs > 1 is the associated constant. By
Lemma 3 then,

} 1/2

n Aj—lv . 1/2
A _ {1+<2cs 1>u} (1)
j=1 HVKH 1- “
Similarly, if aj = ||A"Jug||, thena; < C;1v~U-Vg wherev > 1 is an (unstable) hy-
perbolicity bound forA andC, < 1 is the associated constant. Therefore,
. 2
o I ERAC o @2
& U 1-v+

Noting that we also havA ~1uy|| / |Uk|| < [|A - ug| / [|A" tu| < Citv=(D, we
derive from equations 10, 11, and 12, the estimate

dy c-1y~(n-1) <\/1+(2Cu11) v-1 \/l-l-(ZCs—l)IJ)

P2, < . +
IRl k; sin6 sinGv/1—v-1 tan6/1—p

This bound expresses the normRyft &2 in terms of the constanys, v, Cs, C, and
du — which depend on the hyperbolic linear operatoand not on the length of the
trajectoryn — and the anglesk. As the 6, are angles between thmjectories U and
Vi, they will generally vary witm. It remains then to show that they are bounded away
from zero, so that sié and tar6 do not vanish as tends to infinity. If@ is the mini-
mal angle between the eigenspaBeandE, (which only depends oA), then a simple
computation using the Cauchy-Schwarz inequality for sumesvs thatcos6y| < cosg.
Therefore, sit > sing and tarf > tang, so substitution gives the required unstable
bound. The stable bound (f&xr5.<?) is derived using the same technique, waidindu
interchanged. [ ]

The relevance of this result is seen by noting thatdenotes the noisy trajectony, ~
the noise-reduced trajectory, apdhe clean trajectory, then the error in comparing the

noise-reduced and clean trajectories atimepoint is

[T (X=Y)[ =7 (x=y)| < [RrZ (x=y)[|+ R Z (x=Y)|.
If the noise distribution is bounded (lzysay), then Proposition 4 states that the error in
comparing the noise-reduced and clean trajectories eimlm@int satisfies

175 (%=Y) | < (Ket' 4 K=" ) g (13)
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whereKs andK, are constants independentiodr n, the length of the trajectory. It
follows now that these errors can be made small everywhece ¢ near the end points)
by taking the trajectory length sufficiently long. So we hpveved the following result.

Theorem 5 Let A be a hyperbolic linear operator defining a discrete dyizal system
onRRY, x € R" be a noisy trajectory, ang be the noise reduced trajectory given by the
gradient descent algorithm. If the noise distributiorbmundedthen the points oany
deterministic trajectory that could be the true trajectatiffer from the points of by an
amount which tends to zero as n, the length of the trajectotends to infinity, except
for points near the initial and final points. The errors at lieepoints remaitbounded
as n— oo,

We have already remarked that a corresponding result foowmdted noise distri-
butions is untenable — the errors cannot be absolutely beintiowever, the proof
of Proposition 4 can be trivially adapted to show that forsthdistributions, theoot-
mean-squarerrors at each point of the trajectory are bounded by the sxpressions
as before, but witke denoting the standard deviation of the noise distributidhis
also extends to confidence levels. For unbounded noisébdittms, the errors can be
bounded “on average”.

4.3 Non-linear Dynamical Systems

We now turn to the problem of generalising Theorem 5 to noadr dynamical systems.
Of course, the systems under consideration must be hyperaond the results of section
3 show that we must restrict further to systems where theeabgtween stable and
unstable manifolds is bounded below. An important classystesns which satisfy
this requirement is the class ohiformly hyperbolic dynamical systems ([13]). These
are systems which possess a hyperbolic set (each point gethegas complementary
generalised stable and unstable eigenspaces) which r&intzand compact.
First, we consider the linearisation of such a systemf 1M — M is uniformly

hyperbolic, andy is a deterministic trajectory fof, then Proposition 1 asserts that the
effect of the linearised gradient descent flow is to projetttagonally onto the subspace

( v )

df(yy)v
& = df2(yp)v | :veRrd

df"(yp)v

J .

We can think of these trajectories as deterministic trajges for a linear system where
the linear operator changes with each iteration. It is easyto generalise Proposition
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4 to this case. We still have hyperbolicity bounds: 1 < v (which are independent of
the point of the uniformly hyperbolic set), the minimal amgp, between (generalised)
eigenspaces is still non-zero, and the estimates of equ@toe replaced by

A" (p)xs| <Cspi™[Ixsll  and  [[d " (p)xu]l = Cuv"[xull, (14)

wherep is an arbitrary point of the uniformly hyperbolic s&t,andx, are elements of
the generalised stable and unstable eigenspaces (reshgctt p, andCs andC, are
constants depending only gnandv respectively ([21]). These estimates are conse-
guences of the Multiplicative Ergodic Theorem ([19]), ahd fact that the constan@s
andC, may be chosen independent of the pgris due to working over a uniformly
hyperbolic set, which is compact by definition.

Proposition 6 Suppose that f is atdiffeomorphism of a smooth compact d-dimensional
manifold M possessing an invariant uniformly hyperbolit Aavith splitting into sta-

ble and unstable eigenspaceg(B) and E,(p), p € A, and that y is a deterministic
trajectory of length n for f. 1f% is the orthogonal projection (ilR"%) onto & (y),

the subspace of deterministic trajectories for the systeealised about vy, andélﬁ

and R are the stable and unstable projections ontd¥) and E,(y;) fori=1,...,n
(respectively), then the following bounds hold:

. -1 _
|| < g Gt (VTG D 1+ (2t -y
s + 0 sing sinpyI—p tangyv/1—v-1
1 (i -1 -1
], <t (AL ey
£ sing sinpy1—v-1 tang,/I— [

wherep < 1 < v are hyperbolicity bounds for |f, Cs and G, are the associated con-
stants, d and d, are the common dimensions of thg B) and E, (p) (respectively), and
@ is the minimal angle between &) and E, (p), p€ A.

Proof: This proof is the same as that of Proposition 4 with a few maalifons. In
particular A" is replaced byl f™(y1) throughout. The subspacésand¢, are then the
trajectories iné; (y) whose first point belongs tBs(y1) andE, (y1) respectively. The
invariance of théss (p) and thek, (p) given by the Multiplicative Ergodic Theorem and
the fact thay was chosen to be a deterministic trajectoryffpshow thas and¢,, con-
sist of trajectories whose points stay in stable and unstaiglenspaces (respectively).
Hence&; (y) = €@ &,. Given an orthogonal basis @t say, the construction of stable
and unstable trajectories can proceed as in the proof ofoBitign 4, and these can be
used to derive the analogue of equation 10. Equation 14 amuirlze3 are then used to
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Linearised (abouwy) Non-Linear

Figure 8: Stable manifold and eigenspace laminations jedrary spacé&k"

simplify this expression, noting that becauses compact, the constarts andC, may
be chosen independently of the points of the trajecyoignd hence independent iof
The resulting expression still contains angles betwednles&and unstable trajectories
— these are dealt with in exactly the same manner as in thef pfderoposition 4,
noting that the angles between thg(p) and theE, (p) are uniformly bounded away
from zero. ]

Recall the proof of Proposition 2. There it was shown thatfolon-linear system,
the set of deterministic trajectorieg;, forms a centre manifold faveryfixed point of
the gradient descent flow, and there is a lamination of stablafolds{ #5(y) : y € #¢},
orthogonal to this common centre manifold. The situaticexizctly the same in the lin-
earised case — here there isubspacef deterministic trajectories which forms a cen-
tre eigenspace, and a lamination of stable eigenspaces lgjvthe family of(n— 1) d-
dimensional hyperplanes parallel to kér= &; (y). These laminations are indicated in
Figure 8. It would seem plausible then, that the non-lineadignt descent flow and
its linearisation about some fixed point are qualitativefgikr, that is, topologically
conjugate, despite the presence of a centre manifold. lmsfact true ([14, 21.

We exploit this qualitative equivalence by constructingbanmutative diagram re-
lating the non-linear and linearised gradient descent flavir® non-linear gradient de-
scent equations define a flapy which converges (given any initial condition) as» o
by Proposition 2. The pointwise limit ap' ast — o therefore defines a functioh.
Clearly ® represents the effect of the non-linear gradient descgotitim, just as the
orthogonal projectior’”Z represents the effect of the linearised algorithm. We a@rsi

SWe will not make direct use of this fact, however, but meniiceis motivation for the construction
that follows. The proof appearing in [14] is quite involvendawe were unable to extend it to get any
guantitative information about the conjugacy. It has tfaebeen omitted.
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functionss#, H, andh; (i = 1,...,n) which make the following diagram commute:

yfl TH Thi (15)

RY 2, g (y) — R

(this involves choosing a deterministic trajectoryabout which to linearise). Of course,
it is not just enough to know that these functions exist. Toggalise Proposition 6 to
non-linear systems, it is necessary to demand thahthake points near the stable
and unstable eigenspaces of the linearised system to paiatshe stable and unstable
manifolds of the non-linear system, and that the additienadrs induced by using?
and theh; to switch between the non-linear and linearised spaces edoindedas
the length of the trajectories tend to infinity. In this walye tbehaviour of the noise
reduction procedure will be maintained and the requiredeaence result will follow
easily.

ConsideH : &z (y) — #¢. To make the right square of diagram 15 commute, it fol-
lows that the functiotd must decompose &= (hy,...,hy). AsH maps deterministic
trajectories for the linearised system onto deterministfectories for the non-linear
system, its action is entirely determined by what it doeofirst point of the trajec-
tory. That is, eaclm; is determined by;:

h = flohyo [dfiL(yy)] ' = flohodf (- (y).

Note that the action df; on a neighbourhood of will be to map the unstable eigenspace
for y; back onto the unstable eigenspaceygrdistort it somewhat (the action o),
and then map them forward to a neighbourhoog efain. Foi large enough then (and
provided that; is chosen to be continuous and close to the identity sayyethdting
set should be an excellent approximation (at least locallyhe generalised unstable
manifold ofy;. In fact, there is a choice fdn; which makes each; map each un-
stable eigenspace locally onto the corresponding locargdised unstable eigenspace
exactly This is a direct consequence of a generalisation of thenkéartGrobman The-
orem due to Kurata ([16]), which essentially states thatiadaeach point of a uniformly
hyperbolic set, there are open neighbourhoods in which yhamics is topologically
conjugate to the linearised dynamics. Because the poiets met be fixed (or periodic)
as in the standard Hartman-Grobman Theorem, the conjugdciaot map each neigh-
bourhood into itself, but rather into the neighbourhoodesponding to the next iterate.
A detailed proof of Kurata’s theorem may be found in [21]. Mhis choiceh; and
hence each is a local homeomorphism, and hence sblisFurthermore, the domain
of H can be naturally extended to the product of the domains ohitheoH maps a
neighbourhood of homeomorphically onto another neighbourhoog.of
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Consider now the left square of diagram 15. @gs the identity on#; and . is
the identity ons; (y), it follows that.7# andH ~! must coincide or#. It would be very
convenient if defining/# to beH ! (defined on a neighbourhood wf made diagram
15 commute, at least arouryd However, this does not seem to be the case. Instead,
note that

Po# =H1od =  A=(1-P)o#+H 100,

and that(l — ) o /# takes values imss(y) whereasH 1 o @ takes values ins; (y).
In fact, it is clear that the commutativity requirement vgtill be fulfilled if the 7
appearing on theight of this last equality is replaced by any function mappi#g
onto & (y). A convenient choice is the homeomorphikin?, as it is the only function
satisfying this requirement whose properties we know. ate define

H=(1-P)oH 1+H 1o, (16)

2 therefore maps a neighbourhoodyafto another neighbourhood gf and satisfies
P o =7 o®=H"1od (whenever this makes sense). Geometricatytakes the
centre manifold#; onto the centre eigenspaég(y), and maps each stable manifold
of the non-linear lamination onto some stable eigenspadheofinearised lamination
(see Figure 8). The tertd —1 o ® specifieswhich stable eigenspace corresponds to a
particular stable manifold, and the terfih— &) o H~! specifieswhereon the stable
eigenspace each point of the stable manifold is mapped.

It remains to consider the distortions induced 4y and theh;. That is, any stretch-
ing or contracting of distances caused by switching betwbennon-linear and lin-
earised gradient descents. These will introduce extrafaend/or terms into our esti-
mates for the errors we accrue when we noise-reduce (and seaaeto control them).
All these functions areontinuous(® is continuous because the stable manifolds in
the lamination vary continuously) on their respective dmsaso this distortion can be
made arbitrarilysmall by restricting their domains to be sufficiently small (thasturn
corresponds to restricting the noise level to be sufficjesithall). However, the gener-
alisation of Theorem 5 to non-linear systems must addresbehaviour as the length
of the relevant trajectories, tend to infinity. Therefore it is necessary to know how the
distortion varies witm.

Quantitative information for the various comes in the form of their Holder conti-
nuity. In [21], it is shown that there exist, 3 > 0 such that

Ihi () =y () || < B flu—v]®

for eachi, everyu,U belonging to the domain dfi. Furthermorea and8 may be
chosen independently ofland thusn). That is, the distortion induced by using the
does not depend on the length of trajectory used. We omitriaf pf these statements
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because they follow from (a modification of) the proof of then@ralised Hartman-
Grobman Theorem, which is too long to include here. Giveséhacts however, it
easily follows thatH is Holder continuous with respect to the nojj|,, and with the
same constants and 3, and so iH ™! (because the inverses of theare also Holder
continuous). What we would like to do now, is show tt#ét is also Holder continuous
(with respect to||-||,) with constants independent af But this seems to be quite
difficult, largely because we have no concrete quantitatif@mation about the non-
linear gradient descent flow. Instead, we introduce a condition @hwhich suffices
for our needs.

Condition 7 Let y, € RY define deterministic trajectorie$y € #¢ c R" (for each n)
byﬂ)lz f (yi(n)>, i=1...,n—1, and let

Be (y(”)> = {xe R Hx—y(”)

gs}.

[ee]

Then, fore > 0 (denoting the noise level) sufficiently small but fixed, timefion

Qe(n) = sup |®()—y"
xeBe (y)

00

is bounded above.

This condition does not guarantee th#t is Holder continuous. For that we would
need to specify ho, (n) varies withe. But it does put a bound on the size of the terms
that.7Z introduces into our estimates for the errors after noisaaedn. Assuming the
gradient descent satisfies Condition 7 then, we have forand&jectoryy € 7¢, a
noisy trajectoryx, the noise-reduced trajectory &nd noise-bound, that (using the
commutative diagram 15, the Holder continuity of theand Proposition 6):

1% =yill = [P X)) —mP(y)||

Ihi (72 (X)) —hi (827 (y))]|
< BlImP (A (x) = 7 (y))|*

<

B (Kot Ko=) L2 () — o () 1%,

whereKs andKy are constants bounded abovenjrand (using the Holder continuity of
H~1 and Condition 7):

172 ()= Wl < [[0=2) (HHH=HW) [, +[[H o @ (x) —H @),
< =20l BlIx=Yla+Blle () - Yz
< = 2010 Be + BQ: ()
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where||l — 2|, <1+4+sup||52|, < 1+sup (|52, + ||Purs ||, ) which is bounded
above inn, and so finally,

] A\ a
1% -yl < B(Ksu"1+Kuv‘(”")> 17 () = (Yl

< B[ (Kt L Ky D) ([ - 28 40 (m))]”

which is bounded above in. Thus, as increases, the exponential decay of the terms
p'=tandv—(" fori ~ n/2, mean that the errors converge to zero away from the end
points. That is, we have proved the following theorem:

Theorem 8 Let f be a G-diffeomorphism of a smooth compact d-dimensional mani-
fold M possessing an invariant uniformly hyperbolic Aeand satisfying Condition 7,

x € R" be a noisy trajectory of the (non-linear) system, anbe the noise reduced
trajectory given by the gradient descent algorithm. If tleése distribution isoounded
by € > 0 sufficiently small, then the points ahydeterministic trajectory that could be
the true trajectory, differ from the points &by an amount which tends to zero as n,
the length of the trajectories, tends to infinity, exceptgoints near the initial and final
points. The errors at these points are bounded.

This result essentially states that the gradient descgotitiim is a good noise re-
duction algorithm for non-linear dynamical systems witharariant uniformly hyper-
bolic set (that is, one without genuine tangencies), preditie noise level is sufficiently
small. We do, however, rely on Condition 7 being satisfied.ewHoes this condition
hold? Perhaps a better question to ask would be: How cowudatmdition possibly fail
to hold? For a consequence of failure would be that the eabtke initial and final
points could grow without bound as the length of the trajgciocreases. This is cer-
tainly at odds with the numerical experiments of sectionltBoaigh these experiments
are of course, not even remotely exhaustive. However, wevknam Bowen’s Shad-
owing Theorem ([3]), that for sufficiently small noise, thas auniquedeterministic
trajectory that could produce any given noisy trajectofynfinite length One would
hope that a respectable noise reduction algorithm woulserge (pointwise, not uni-
formly) onto this unique trajectory as the length of tragegttends to infinity. It seems
reasonable therefore tmnjecturethat for any uniformly hyperbolic dynamical system,
Condition 7 is satisfied. Of course, the compactness of ouifoid M means thai
has a finite diameter, so we can always claim that the congttolds in this limited
sense. However, this is clearly not as satisfactory as wedniixe.

We would also like to mention that these results also clahfy role of the noise
level in noise reduction processes. Theorem 5 essentiallgssthat gradient descent
noise reduction will work asymptotically for any hyperlwlinear dynamical system,
regardless of the noise leveClearly one should not expect the same result to be true
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for non-linear systems — it would, for instance, be ratheaaimg if we could recover a
signal (asymptotically) when the noise level far exceedssthe of the attractor that the
signal comes from. What Theorem 8 states (and the resulectiba 3 demonstrate) is
that recovery may be achieved if the noise level is smalken the size of the neighbour-
hoods in which the non-linear dynamics is qualitatively iggient to its linearisation.
That is, the noise level must be smaller than the smalletdris between a trajectory
point and its closest homoclinic intersection point.

5 Discussion and Conclusions

This paper has demonstrated two important results: onemgrical means and another
by analytical means.

The first result, shown using numerical experiments, istthafailure of the gradi-
ent descent algorithm is a little worse than supposed iteeatludies, in that the failure
is a theoretical consequence of the combination of neaetangs and sufficiently large
noise levels, and does not require the presence of an exarteay anywhere in the
system. Instead, it is the presence of a nearby homoclitecsection point which can
cause the failure. As indistinguishability theory statest the two trajectories passing
through the actual point and its nearby homoclinic inteieagoint are both consistent
with the noisy data (for sufficiently large noise), this ingsl that nearby homoclinic
intersection points (that is, near tangencies) will haveralar effect on any other con-
ceivable noise reduction algorithm. Therefore, the presesf near tangencies is a
fundamental theoretical limitation which can cause anys@aeduction algorithm to
fail.

The second result is the proof of the convergence of the gmadiescent algorithm
under specified conditions. The proof relies on two factsstFihat a (semi-)conjugacy
(2¢) can be constructed between the gradient descent flow offaromy hyperbolic
system and its linearisation about some fixed point, andrggdbat analytic bounds
for the errors between the noise-reduced and true trajestoan be derived for the
linearised gradient descent flow. This confirms (among dthiegs), a loosely justified
expectation of state estimation theory that appears in dnddmith ([12], Dictum 1).

These results are significant not only for what they say aboige reduction by
gradient descent, but what they also imply about shadowajgdtories and state esti-
mation. Recently Judd ([11]) has shown using numerical expnts that the gradient
descent algorithm (extended to the imperfect model cass)psrior to the Extended
Kalman Filter for estimating the state of nonlinear systemsthermore, finding shad-
owing trajectories has recently been recognised as an tangdechnique for assessing
the quality of imperfect models. Admittedly, the resultegented here only deal with
the perfect model scenario, but it is hoped that, and sedwly that, these results will
generalise to parametrised models, and to imperfect méalslmme extent.
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