
Outline Background Results Conclusions

Quantum Symmetries and
Lattice Regularisations

David Ridout

June 3, 2009



Outline Background Results Conclusions

Background
What are we studying?
What does this mean?
Advantages

Results
Past Work (Quantum Symmetries and R-Matrices)
Present Work (L-matrices)
Future Work (To be / Should be done)

Conclusions



Outline Background Results Conclusions

What are we studying?



Outline Background Results Conclusions

What are we studying?

• Want to systematically solve quantised integrable sigma
models like those relevant to AdS/CFT.



Outline Background Results Conclusions

What are we studying?

• Want to systematically solve quantised integrable sigma
models like those relevant to AdS/CFT.

• No systematic approach to integrable sigma models!



Outline Background Results Conclusions

What are we studying?

• Want to systematically solve quantised integrable sigma
models like those relevant to AdS/CFT.

• No systematic approach to integrable sigma models!

• Our approach:
Determine quantum symmetry of integrable sigma model,
then construct a lattice regularisation.
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What does this mean?

SIGMA MODEL = FREE MODEL + PERTURBATIONS
√

!! (Easy!)
√

(Hard!)
√

• Integrable ⇒ infinitely many conserved quantities.

• Trivial for free fields, highly non-trivial when perturbed.

• Question: How many conserved quantities survive?

• Still infinitely many if perturbations generate (certain)
quantum symmetry algebras.

• Derive and exploit these symmetries to compute the sigma
model spectrum!
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What does this mean (cont.)?

QUANTUM

SYMMETRIES
−−→ Integrability −−→ SPECTRUM

• Once quantum symmetries are identified, compute:
1. R-matrix (integrability of quantum algebra).
2. L-matrix (integrability of quantum sigma model).
3. T -matrix (generator of conserved quantities).
4. Q-operators (generators of auxiliary conserved quantities).
5. Spectrum (oscillation frequencies of T -matrix).

• Programme called Quantum Inverse Scattering Method.

• But, suffers from usual infinities common to quantum field
theory...
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What does this mean (cont.)?

• Standard remedy is to regularise.

• Best regularisation is lattice discretisation!

−−→

• Controls infinities — know how to deal with them in the
continuum limit.
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Advantages

Advantages of our approach via quantum symmetries and
lattice regularisation:

1. Systematic — no guesswork!

2. Constructive — exposes all aspects of integrability.

3. Under full control — we develop formalism for explicit
computation.

4. General — applies to other integrable sigma models.

5. Mathematically exciting — combines modern algebra with
classical analysis and suggests new directions for
mathematical research.
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Identifying Quantum Symmetries

• Quantum symmetries calculated algorithmically from
sigma model.

• Implemented on computer.

SIGMA

MODEL
−−→ −−→ QUANTUM

SYMMETRIES

• Straight-forward to compute defining equations of quantum
symmetry algebra, the q-Serre relations, up to order 7.

• Reproduces (known) symmetry of sine-Gordon model,

Uq
(
ŝl (2)

)
,

among others.
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New Quantum Symmetries

Main Example 1

• Computed Serre relations
of “sausage model”.

• Identified quantum
symmetry algebra as
Uq

(
p̂sl (2|2)

)
.

Main Example 2

• Computed Serre relations
of “SS model”.

• Quantum symmetry
algebra is of previously
unknown type.

“ ”

• Have determined full (Hopf)
algebraic structure.
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• R-matrix indicates (mathematical) integrability of quantum
symmetry algebra.

• R-matrix calculation also implemented on computer.

QUANTUM

SYMMETRIES
−−→ −−→ R-MATRIX

• Obtained families of R-matrices for symmetry algebras
Uq

(
ŝl (2)

)
(sine-Gordon), Uq

(
ŝl (3)

)
, Uq

(
ŝl (4)

)
, Uq

(
ŝl (2|1)

)

and Uq
(
ŝl (2|2)

)
(sausage).

• Currently working on R-matrices for SS model symmetry
algebra.
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Computing L-matrices

• L-matrix indicates (physical) integrability of quantised
sigma model.

• L-matrix computation is in principle infinite...

QUANTUM

SYMMETRIES
−−→ −−→ !!!

so have to be sneaky!

• Use Yang-Baxter equation, RLL = LLR, plus Ansätze
guided by form of sigma model perturbations.

• Reproduced discretised L-matrices for sine-Gordon, ŝl (3)
Toda theory and a perturbed “cigar” model.

• Currently working on L-matrix for sausage.
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To be done...

1. R-matrix for SS model.

2. L-matrix for sausage and SS models.
3. Attack other sigma models:

• GL (1|1) models.
• “supersphere” models.
• AdS/CFT models.

4. Super-Toda theories (geometric Langlands).

5. Investigate and characterise further examples of quantum
symmetry algebras.
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Conclusions

• Can solve integrable sigma models, eg. the sausage
model, in a systematic and constructive manner.

• Opens the door to systematic solution of other sigma
models, eg. those relevant to AdS/CFT.

• Suggests existence of new classes of quantum symmetry
algebras which require mathematical characterisation and
study, eg. that of the SS-model.

• Approach allows creation and study of many new families
of integrable models and their lattice regularisations.
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