Background

Examples 0000 Interlude

Virasoro Reps

Discussion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Indecomposable Representations in Physics

David Ridout

Department of Theoretical Physics Australian National University

September 29, 2010

Introduction

• Symmetry is rather important in physics!

Background

 Weyl and Wigner introduced group theory and representation theory into quantum physics. According to wikipedia:

"...the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group."

- *ie.* quantum particle ^{model} := irreducible representation for some symmetry group or algebra.
- In this way, the fundamental indivisibility of a particle is reflected in the mathematics.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Background 0 Examples

Interlude 000 Virasoro Reps

Discussion o

Introduction (cont.)

- An irreducible representation is one whose only invariant subspaces are the zero vector and the whole thing.
- Completely reducible representations decompose as a direct sum of irreducibles: V = ⊕_i V_i.
- Mathematicians have long recognised that this is unusual — one may instead have indecomposable representations.
- These can have non-trivial invariant subspaces,
 0 ⊂ W ⊂ V, but V ≠ W ⊕ W' for any W'!
- Physically, this suggests an indivisible particle (represented by *V*) which nevertheless has internal structure (represented by *W*).
- Alternatively, such reps could model unstable particles.

Examples •000 Interlude

Virasoro Reps

Discussion o

Ex. 1: Lie Superalgebras

- Generalisations of simple Lie algebras.
- eg. $\mathfrak{gl}(1|1)$ generated by E, N, ψ^+, ψ^- subject to

 $\left[\textit{N}, \psi^{\pm}
ight] = \pm \psi^{\pm}, \hspace{1em} \left\{ \psi^{+}, \psi^{-}
ight\} = \textit{E} \hspace{1em} (\mbox{other brackets zero}).$

• The adjoint representation is indecomposable:

- Indecomposability common to most superalgebras.
- Superalgebra symmetries are used in AdS/CFT, eg.

$$\mathsf{AdS}_5 \times \mathsf{S}^5 \sim \frac{\mathsf{PSU}(2,2|4)}{\mathsf{SO}(1,4) \times \mathsf{SO}(5)}$$

Examples

0000

Ex. 2: Quantum Groups

- g-deformations of Lie (super)algebras with tensor product.
- eg. $\mathscr{U}_q(\mathfrak{sl}(2))$ generated by E, K, F subject to

$$KEK^{-1} = q^2E, \quad KFK^{-1} = q^{-2}F, \quad [E,F] = \frac{K-K^{-1}}{q-q^{-1}}.$$

• $q^N \neq 1$: Completely reducible. $q^N = 1$: Indecomposables arise, eq. for q = i,

Quantum groups govern quantum integrable systems. TT, TQ and QQ relations reflect indecomposable structure. ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Interlude

Virasoro Reps

Ex. 3: Temperley-Lieb Algebras

- Workhorse of statistical model physics.
- $TL_n(q)$ generated by **1**, $u_1, \ldots u_{n-1}$ subject to

$$u_i^2 = (q + q^{-1})u_i,$$
 for all i ,
 $u_i u_{i\pm 1} u_i = u_i,$ for all i ,
 $u_i u_j = u_j u_i,$ when $|i - j| \ge 2$.

• $q^N = 1$: Indecomposables arise, eg. for q = i and n = 6,

$$\mathsf{TL}_{6}(\mathfrak{i}) = 5 \begin{pmatrix} 5 \\ 5 \end{pmatrix} \oplus 4 \begin{pmatrix} 5 \\ 4 \end{pmatrix} \oplus 4 \begin{pmatrix} 4 \\ 5 \end{pmatrix} \oplus \begin{pmatrix} 4 \\ 4 \end{pmatrix} \oplus \begin{pmatrix} 4 \\ 1 \end{pmatrix} \end{pmatrix}.$$

Underlies many lattice models (Q-state Potts, RSOS).
 eg. q = e^{iπ/3} (percolation), q = e^{iπ/4} (Ising model).

Examples

Interlude

Virasoro Reps

Discussion O

Ex. 4: Virasoro Algebra

- Underlies 2D conformal field theories.
- \mathfrak{Vir} generated by L_n , $n \in \mathbb{Z}$, subject to

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{m(m^2-1)}{12}\delta_{m+n,0}c.$$

 $c \in \mathbb{R}$ is the central charge.

- Irreps L_h are infinite-dimensional, labelled by minimal conformal dimension (eigenvalue of L₀) h.
- Fusion of irreps can lead to indecomposables, eg.

$$\mathscr{L}_{1/3} \times \mathscr{L}_{1/3} = \mathscr{L}_{1/3} + \begin{pmatrix} \mathscr{L}_2 \\ \mathscr{L}_0 \\ \mathscr{L}_2 \end{pmatrix}$$
 (c = 0).

This indecomposable arises in critical percolation.

Interlude •00 Virasoro Reps

Discussion O

The Action of the Centre

- Diamond-shaped indecomposables crop up a lot!
- In each case, there is an element C which is

self-adjoint, central and non-diagonalisable.

These reps have no central character!

- For $\mathfrak{gl}(1|1)$, $C = \frac{1}{2}NE + \psi^{-}\psi^{+}$ is the Casimir. For $\mathscr{U}_{q}(\mathfrak{sl}(2))$, $C = EF + \frac{Kq^{-1} + K^{-1}q}{(q-q^{-1})^{2}}$ is also the Casimir. For $\mathsf{TL}_{n}(q)$, C is the "braid transfer matrix". For \mathfrak{Vir} , C is $\sin(2\pi L_{0})$ (or $\cos(2\pi L_{0})$).
- In each case, C has Jordan cells of rank 2.

Staggered Representations

 These algebras have a standard class of reps: Cell or link reps for TL_n(q), highest weight reps for the others.

Definition

A staggered rep \mathscr{S} is an indecomposable rep for which we have a short exact sequence

$$0 \longrightarrow \mathscr{H}^{L} \stackrel{\iota}{\longrightarrow} \mathscr{S} \stackrel{\pi}{\longrightarrow} \mathscr{H}^{R} \longrightarrow 0,$$

in which it is understood that:

- \mathcal{H}^L and \mathcal{H}^R are standard reps,
- ι and π are homomorphisms, and
- the centre does not act diagonalisably on \mathscr{S} , possessing instead Jordan cells of rank at most 2.

Logarithmic Conformal Field Theory

- "Staggered" reps (for Dir) were so named by Rohsiepe (Gestufte Moduln) in studying logarithmic CFT (LCFT).
- When the Virasoro reps are staggered, there are correlation functions with logarithmic singularities.
- There are many theories described by LCFTs, eg.
 - Dense Polymers (c = -2)
 - Abelian Sandpiles (c = -2)
 - Percolation (c = 0)
 - Ising Model $(c = \frac{1}{2})$
 - Symplectic Fermions (c = -2)
 - GL(1|1) WZW Model (c = 0)
 - $\beta \gamma$ Ghosts (c = -1)
- Some of these theories are also described by SLE (Schramm-Loewner Evolution)!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Highest Weight Virasoro Representations

- Highest weight reps are those generated by an eigenstate of L₀ which is annihilated by the L_n with n > 0.
- Universal highest weight reps (Verma reps) \(\mathcal{V}_h\) are characterised by their minimal conformal dimension h. Every irrep \(\mathcal{L}_h\) is the unique irreducible quotient of \(\mathcal{V}_h\).
- Submodule structure of \mathscr{V}_h can be complicated:

Staggered Virasoro Representations

- Staggered $\iff L_0$ has rank 2 Jordan cells.
- Highest weight reps are never staggered. The latter are obtained by gluing highest weight reps together, *eg*.

Questions:

- 1. Do such staggered reps exist?
- 2. If so, how many (isomorphism classes of) such staggered reps are there?

Back	gro	unc	ł
00			

examples 0000 Interlud

Virasoro Reps

Discussion o

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Simple Observations

Proposition

Let \mathscr{S} be staggered and h^R be the minimal conformal dim of \mathscr{H}^R . Then, \mathscr{H}^L has a singular vector of conformal dim h^R .

ind	Examples	Interlude	Virasoro Reps	Disc
	0000	000	00000	0

Simple Observations

Proposition

Let \mathscr{S} be staggered and h^R be the minimal conformal dim of \mathscr{H}^R . Then, \mathscr{H}^L has a singular vector of conformal dim h^R .

Proposition

If h^L is the minimal conformal dim of \mathscr{H}^L , then staggered reps can only exist when $h^R - h^L \in \mathbb{N}$. Moreover, if $h^R > h^L$, then

$$h^{L} = \frac{r^{2} - 1}{4}t - \frac{rs - 1}{2} + \frac{s^{2} - 1}{4}t^{-1},$$

(日) (日) (日) (日) (日) (日) (日)

where $c = 13 - 6(t + t^{-1})$, for some $r, s \in \mathbb{Z}_+$.

ind	Examples	Interlude	Virasoro Reps
	0000	000	00000

Simple Observations

Proposition

Let \mathscr{S} be staggered and h^R be the minimal conformal dim of \mathscr{H}^R . Then, \mathscr{H}^L has a singular vector of conformal dim h^R .

Proposition

If h^L is the minimal conformal dim of \mathscr{H}^L , then staggered reps can only exist when $h^R - h^L \in \mathbb{N}$. Moreover, if $h^R > h^L$, then

$$h^{L} = \frac{r^{2} - 1}{4}t - \frac{rs - 1}{2} + \frac{s^{2} - 1}{4}t^{-1},$$

where $c = 13 - 6(t + t^{-1})$, for some $r, s \in \mathbb{Z}_+$.

Proposition

If \mathscr{S} is staggered and \mathscr{H}^{L} has a singular vector of dim h, then \mathscr{H}^{R} also has a singular vector of dim h.

(日) (日) (日) (日) (日) (日) (日)

ackground	Examples	Interlude	Virasoro Reps	Discussion
0	0000	000	00000	0

Not-so-Obvious Results

Proposition

If \mathscr{S} is staggered, then one may construct another staggered rep $\check{\mathscr{S}}$ which differs only in that \mathscr{H}^R is replaced by $\check{\mathscr{H}}^R = \mathscr{V}_{h^R}$. Moreover, \mathscr{S} may be identified with a quotient of $\check{\mathscr{S}}$.

(日) (日) (日) (日) (日) (日) (日)

kground	Examples	Interlude	Virasoro Reps	Discussion
	0000	000	00000	0

Not-so-Obvious Results

Proposition

If \mathscr{S} is staggered, then one may construct another staggered rep $\check{\mathscr{S}}$ which differs only in that \mathscr{H}^R is replaced by $\check{\mathscr{H}}^R = \mathscr{V}_{h^R}$. Moreover, \mathscr{S} may be identified with a quotient of $\check{\mathscr{S}}$.

Theorem

If \mathscr{H}^L and $\mathscr{H}^R = \mathscr{V}_{h^R}$ pass the previous tests, then the space \mathbb{S} of isomorphism classes of staggered reps is a (non-empty) vector space of dimension 0, 1 or 2. If ω denotes the singular vector of \mathscr{H}^L of conformal dim h^R , then dim \mathbb{S} is as follows:

kground	Examples	Interlude	Virasoro Reps	Discussion
	0000	000	00000	0

Not-so-Obvious Results (cont.)

Theorem

In general, when \mathscr{H}^{L} and \mathscr{H}^{R} pass the previous tests, then the space \mathbb{S} of isomorphism classes of staggered reps is either empty or it is an affine space of dimension 0, 1 or 2.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

1	Examples	Interlude	Virasoro Reps
	0000	000	00000

Not-so-Obvious Results (cont.)

Theorem

In general, when \mathscr{H}^{L} and \mathscr{H}^{R} pass the previous tests, then the space \mathbb{S} of isomorphism classes of staggered reps is either empty or it is an affine space of dimension 0, 1 or 2.

Theorem

The space S is parametrised by the logarithmic coupling / beta-invariant (DR & Mathieu) and its generalisations (DR & Kytölä). Identification of a staggered rep thereby reduces to the identification of \mathcal{H}^{L} and \mathcal{H}^{R} and the computation of at most two numbers.

[All this and more may be found in arXiv:0905.0108 [math-ph].]

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

ixamples Interlude V

Virasoro Reps

Discussion

Discussion and Outlook

- Indecomposable representations are notorious difficult to classify (tame vs. wild). Classifying physically relevant indecomposables might be easier?
- Staggered reps seem to form a tractable class, relevant to CFT, statistical physics, string theory, SLE, black hole holography (?), ...
- May clarify Temperley-Lieb/Virasoro correspondence.
- \mathfrak{Vir} admits physically relevant indecomposables (?) in which L_0 has Jordan cells of rank 3. Comparable theory is completely unexplored.
- Staggered affine (super)algebra reps have not been classified, but are relevant to fractional level WZW models, supergroup string theories, strings on non-compact target spaces and AdS/CFT.