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Motivation

Lots of QFTs are believed to be quantum-integrable. If so, one
gains some control over non-perturbative phenomena, eg. dualities.

Usually very hard to establish quantum-integrability. Often,
regularisation is required. Then, want an integrable regularisation.

Better (?), we want a regularisation for which:

1. The local degrees of freedom may be related with the
continuum fields.

2. The quantum groups underlying the integrability of the
continuum and regularised theories coincide.

The latter point also facilitates the eventual solution of the theory
(eg. in deriving TQ-relations, etc... ).
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A Proposal

We propose a framework for studying the integrability of a certain
class of non-linear sigma models and constructing integrable lattice
discretisations for them. This involves:

1. Identifying the relevant quantum group using the chiral
quantisation of the interaction terms.

2. Constructing R- and L-matrices from the quantum group for
the continuum and lattice theories (quantum inverse
scattering).

The models we consider involve bosons (compact, non-compact)
and fermions. The interaction terms are restricted to being
exponential. eg. affine Toda theories.
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Quantum Affine Superalgebras

Integrability usually arises from the action of a quasitriangular
Hopf (super)algebra, eg. a quantum affine superalgebra Uq

(
ĝ
)
.

These have a universal R-matrix R+ in (a completion of) the
tensor square of the superalgebra which is (formally) invertible and
satisfies the abstract Yang-Baxter equation.

They also possess a second universal R-matrix R− = σ (R+)
−1

,
where σ (x ⊗ y) = (−1)x̄ ȳ y ⊗ x . This too satisfies the abstract
Yang-Baxter equation.

For simple Lie algebras, Uq

(
ĝ
)
may be presented in the

Chevalley-Serre manner. In particular, the quantum Serre relations
are uniformly expressible in terms of the Cartan matrix. For
superalgebras, the quantum Serre relations are considerably more
involved [Yamane, Zhang].
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Identifying the Quantum Group

It is well known that in CFT, the quantum group structure may be
revealed by constructing a free field realisation and computing the
algebra generated by the screening charges.

We propose that this generalises to our models: The screening
charges are derived from the vertex operators representing the
exponential interaction terms.

The screening charge algebra is deduced from the braiding of the
vertex operators as in [BLZ3, App. A]. The relations of this algebra
are interpreted as Serre relations for a quantum affine superalgebra.

Unlike in CFT, the symmetry may only be extended to a Borel
subalgebra B+ of the quantum affine superalgebra. Note that
superalgebras may have inequivalent Borel subalgebras.
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Example: Sinh-Gordon

The sinh-Gordon model has classical action

S =

∫ [
1

4π
∂µφ∂

µφ+ ν+e
+2bφ + ν−e

−2bφ

]
d2z ,

so the interaction terms give the chiral vertex operators

V+
0 = : e+2bφ+ : and V+

1 = : e−2bφ+ : .

Defining screening charges by Q+
i =

∮
V+
i (z) dz , we find that

(Q+
i )

3
Q+

j
−[3]q(Q

+
i )

2
Q+

j
Q+

i
+[3]qQ

+
i
Q+

j (Q
+
i )

2
−Q+

j (Q
+
i )

3
=0,

where q = e−iπb2 . This is the quantum Serre relation of Uq

(
ŝl (2)

)
.

ie. the quantum symmetry algebra underlying the integrability of
sinh-Gordon is the Borel subalgebra of Uq

(
ŝl (2)

)
.
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Example: N = 2 Super Sine-Gordon

The N = 2 super sine-Gordon model has action

S ′=
∫

[
1
4π

(∂µφ1∂
µφ1+∂µφ2∂

µφ2)+
1
2π

(

ψ̄+∂−ψ++ψ̄−∂+ψ−

)

−bν+e+bφ1(ψ̄+ψ̄−e+ibφ2+ψ+ψ−e−ibφ2)−bν−e−bφ1(ψ+ψ−e+ibφ2+ψ̄+ψ̄−e−ibφ2)

+4πν2
−
e+2bφ1−8πν−ν+ cos(2bφ2)+4πν2+e

−2bφ1

]
d2z.

Treating the terms on the second line as interactions and those on
the third line as counterterms generated by renormalisation as
b → 0, we obtain four chiral vertex operators:

V+
0 = ψ̄+ : e−b(φ+1 −iφ+2 ) : , V+

1 = ψ+ : e+b(φ+1 +iφ+2 ) : ,

V+
2 = ψ̄+ : e+b(φ+1 −iφ+2 ) : , V+

3 = ψ+ : e−b(φ+1 +iφ+2 ) : .
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The screening charges Q+
i =

∮
V+
i (z) dz satisfy

(Q+
i )

2
=0, Q+

i
Q+

i+2+Q+
i+2Q

+
i
=0,

Q+
i−1Q

+
i
Q+

i+1Q
+
i
−Q+

i+1Q
+
i
Q+

i−1Q
+
i
+[2]qQ

+
i
Q+

i−1Q
+
i+1Q

+
i

−Q+
i
Q+

i+1Q
+
i
Q+

i−1+Q+
i
Q+

i−1Q
+
i
Q+

i+1=0,

where q = e−iπb2 and i is taken mod 4. These are (some of) the
quantum Serre relations of Uq

(
ŝl (2|2)

)
(there are others with

degrees in 4Z+ + 2) with the Dynkin diagram

.

ie. the quantum symmetry algebra underlying the integrability of
N = 2 super sine-Gordon is a Borel subalgebra of Uq

(
ŝl (2|2)

)
.
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Classical Considerations
Classically, one has a zero-curvature condition

[
∂+ − U+ (λ) , ∂− − U− (λ)

]
,

giving rise to a monodromy matrix M (λ) as a path-ordered
integral around the cylinder. Choosing

C
−

i−1

C
+
i

C
−

i

C
+
i+1

for the integration contour gives

M (λ) = L−N (λ) L+N (λ) · · · L−1 (λ) L+1 (λ),

L±i (λ) = P exp

∫

C
±

i

U± (λ) dx±.
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Quantisation

If one can fix a gauge so that the U± (λ) contain only the
exponential interaction terms, we may quantise by replacing these
terms by their normally-ordered equivalents.

Alternatively, quantum inverse scattering lets us construct the Lax
matrices directly from the universal R-matrices:

L±i (λ) =
(
π±q ⊗ πλa

) (
R±

)
.

Here, πλa is a finite-dimensional evaluation representation of the
quantum affine superalgebra and the π±q are certain
infinite-dimensional representations of the Borel subalgebras.

The R-matrix itself is given (up to normalisation) by

R (λ, µ) =
(
πλa ⊗ πµa

) (
R±

)
.
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Example: Sinh-Gordon

If we choose the Uq

(
ŝl (2)

)
-representation

πλa (e0)=
(

0 0
λ−1 0

)
, πλa (f0)=

(
0 λ
0 0

)
, πλa (h0)=

(
−1 0
0 1

)
,

πλa (e1)=
(
0 λ−1

0 0

)
, πλa (f1)=

(
0 0
λ 0

)
, πλa (h1)=

(
1 0
0 −1

)

and the B±-representations

π±q (h0) = ±2ip/b, π±q (h1) = ∓2ip/b

with either (τq =
(
q − q−1

)−1
)

π+
q (e0)=τqQ

+
0 , π+

q (e1)=τqQ
+
1 , or π−

q (f0)=τqQ
−

0 , π−
q (f1)=τqQ

−

1 ,

Q±

0 = ±

∮
: e+2bφ±(z) : dz , Q±

1 = ±

∮
: e−2bφ±(z) : dz ,

then...
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... we reproduce the monodromy matrix of BLZ,

L+ (λ+)=

(
e−πbp 0
0 e+πbp

)(
1 λ+Q

+
0

λ+Q
+
1 1

)
,

L− (λ−)=

(
1 λ−1

− Q−

1

λ−1
− Q−

0 1

)(
e−πbp 0
0 e+πbp

)
,

though in a different “gauge”.

This is, of course, formal and when b ∈ R, there are ultraviolet
divergence issues. For b = iβ, β ∈ R (sine-Gordon), these may be
controllable.

The representation-theoretic approach is not needed in this case,
but it generalises readily. More importantly, regularisation will be
needed for sinh-Gordon and our approach can be readily adapted
to the lattice.
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Example: N = 2 Super Sine-Gordon

For Uq

(
ŝl (2|2)

)
, let πλa be the “defining” evaluation representation

and π+q be again given by the screening charges, supplemented by

π+
q (H0)=+i(p+1 −ip+2 )/b, π+

q (H1)=−i(p+1 +ip+2 )/b,

π+
q (H2)=−i(p+1 −ip+2 )/b, π+

q (H3)=+i(p+1 +ip+2 )/b.

The resulting monodromy matrix is

L+ (λ+) = q−ρ
+Z/2eπb(p

+H+p̄+H̄)/2 P exp

(
λ+

∮
U+ (z) dz

)
,

where ρ+ is the fermion number operator, H = πλa (h2 − h0),
H̄ = πλa (h1 − h3), Z = πλa (h2 + h0), p

+ = p+1 + ip+2 and

U+ =

3∑

i=0

V+
i π

1
a (fi ).

L− (λ−) may be computed similarly.
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Sinh-Gordon on the Lattice

There is a well-known lattice discretisation of the sinh-Gordon
model. In this picture, the chiral limits (KdV) of the monodromy
matrix take the form

L+n (µ+) =

(
un µ+vn

µ+v
−1
n u−1

n

)
, L−n (µ−) =

(
un µ−1

− v−1
n

µ−1
− vn u−1

n

)
,

where the un and vn are operators chosen to satisfy

umvn = q−δmnvnum, q = e−iπb2 .

In our picture, such operators are easily constructed by
“discretising” the position q and momentum p of the fields:

um = e2πbpm , vn = e−bqn .
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To generalise beyond sinh-Gordon, we interpret this
representation-theoretically. This involves “discretising” π±q , eg.

π+q,n (k0)= u+2
n , π+q,n (e0)= τqu

+1
n v−1

n ,

π+q,n (k1)= u−2
n , π+q,n (e1)= τqu

−1
n v+1

n .

It is easy to now check that

L+n (µ+) =
(
π+q,n ⊗ πµ+a

) (
R+

)
.

Similarly, one can obtain L−n (µ−) from R−.

The construction guarantees that the lattice monodromy matrix

M (λ) = L−N (λ−) L
+
N (λ+) · · · L

−

1 (λ−) L
+
1 (λ+)

satisfies a Yang-Baxter equation of the form RLL = LLR .



Motivation Quantum Affine Superalgebras Quantum Integrability Lattice Discretisations Conclusions/Outlook

N = 2 Super Sine-Gordon on the Lattice

Repeating the above procedure for super sine-Gordon is now
straight-forward, if rather intricate. We construct π±q,n by
discretising the momenta p±n of the continuum Cartan generators
and replacing the screening operators of the nilpotent generators
by the corresponding position operators q±n .

The latter generally need modification in order to satisfy the
quantum Serre relations. In this case, we multiply by q−ρ

±
n /2.

It remains then to compute the L-matrices. This uses the
intertwining axiom of the universal R-matrix to derive recursion
relations that efficiently compute L±n (µ±) order-by-order. The
finite-dimensionality of π

µ±
a leads to a periodicity in the recursion

which makes the computation terminate in finite time.
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Conclusions and Outlook

We have specified an approach to deducing the integrable
structure for a class of non-linear sigma models. Quantum
integrability may then be proven à la [FF].

We have shown how to construct integrable lattice versions of
these theories, thereby regularising ultraviolet divergences.

This has been tested on four distinct models with agreement
between the classical, quantum-continuum and quantum-lattice
structures. One may now try to solve these models.

What other models can we analyse this way?

Our methods work for integrable perturbations of free field
theories. Can one characterise the sigma models which have dual
descriptions of this type?
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