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What is a critical lattice phenomenon?

By lattice, we mean a regular grid of some fixed shape and size, eg.
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What is a critical lattice phenomenon?

To have a phenomenon, we first need to impose some set of rules
on the chosen lattice (specifying our model). eg.

Consider each edge of the lattice in turn, removing it if a
generated random number in [0, 1] exceeds p, for some
given p.
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What is a critical lattice phenomenon?

A phenomenon would then be something that can be observed
about a given random configuration from our lattice model. eg.

Does the configuration still contain a path from the west
wall to the east wall?

In this case, yes!
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What is a critical lattice phenomenon?

An obvious question one can ask about our chosen lattice
phenomenon is:

What is the probability π that a randomly generated
lattice configuration will contain a path from the west to
the east wall?

This is a very very hard question to answer, unless the number of
configurations is very very small or very very big!

In the first case, one simulates the model on a computer. In the
second case, one approximates the lattice by a continuum.

In the first case, one needs to know some programming. In the
second case, one needs to know some mathematics.
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What is a critical lattice phenomenon?
In the continuum limit, where the size of the lattice spacing goes
to zero, but the grid shape is left invariant, one can prove (this is
basically a whole book by Kesten) that

π =

{
0 if p < pc,

1 if p > pc,

where pc is the critical probability.

Langlands, Pouliot and
Saint-Aubin, Bull. Am.
Math. 30 (1994), 1–61.
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What is a critical lattice phenomenon?

This justifies the term critical in “critical lattice phenomenon” —
questions tend to be more interesting (and accessible) in the
continuum limit when the model parameters are tuned just right.

eg. the critical question for our example is:

What is π when p = pc in the continuum limit?

A mathematician would instead ask:

Does π (pc) even exist in the continuum limit?

Kesten can only tell us that if this limit does exist, then it is not 0
and not 1. Cardy answered the critical question in 1991.
Mathematicians had to wait until Lawler-Schramm-Werner and
Smirnov both published rigorous proofs of Cardy’s result in 2001.
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Why do we care?
Theoretical physicists love to play with toy models.

• They’re easier to study than the real world.

• They often contain enough “truth” to guide real-world studies.

The lattice models we have discussed are toy models which exhibit
phase transitions in the continuum limit.

Specifically, they model continuous (or second-order) phase
transitions (no latent heat):

First-Order Second-Order
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Why do we care?

Toy lattice models allow us to compute critical exponents. These
quantities are largely independent of the microscopic model
structure (ie. the lattice), depending rather on the dimension and
the range of the interactions.

eg. We saw before that the probability π undergoes a “phase

transition” at p = pc. It seems that
dπ

dp
diverges at p = pc as the

lattice spacing ∆ goes to zero. In fact,

dπ

dp
∼ ∆−µ, µ =

3

4
.

µ is a critical exponent!
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Why do we care?

More generally, models typically assign data σi to the lattice
components and the correlations of this data typically decay
exponentially with the distance:

〈σiσj〉 − 〈σi〉 〈σj〉 ∼ e−|i−j|/ξ.

This defines the correlation length ξ.

As a model parameter p approaches its critical value pc, the
correlation length diverges as

ξ ∼ 1

|p− pc|ν
.

Moreover, when p = pc, correlators decay algebraically:

〈σiσj〉 ∼
1

|i− j|η .

Both ν and η are examples of critical exponents.
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Why do we care?

So, we may predict these exponents in real world (continuous)
phase transitions by replacing the system with a toy model whose
interaction ranges are similar.

This observation is referred to as universality, and is generally
explained as a consequence of Wilson’s renormalisation group.

“The theory of continuous phase transitions provides a
bridge between probabilistic mechanics and continuous
field theory, using the renormalisation group to filter out
relevant operators and interactions.”

Itzykson and Drouffe, Statistical Field Theory I, 1989.

Let’s turn to the continuous field theory approach to critical
exponents.
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The Renormalisation Group

The interpretation of the correlation length ξ is that it gives a
distance scale above which one does not expect fluctuations in the
correlation between model quantities.

Renormalisation may be thought of as replacing the model by one
in which the quantities have been smoothed over a length scale
less than ξ. Macroscopic properties should be unaffected.
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The Renormalisation Group

When ξ diverges (at the critical point), we expect fluctuations at
all length scales, hence a fractal structure:

The continuum limit should then be described by a scale-invariant
(in addition to Poincaré-invariant) theory.
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Conformal Field Theory (CFT)

Scale-invariant theories are almost always conformally invariant.
This means that they respect symmetries that preserve angles.



Introduction CFT SLE Comparisons Conclusions

Conformal Field Theory (CFT)

In dimensions d > 2, the (infinitesimal) angle-preserving
symmetries (of eg. Euclidean space) constitute the Lie algebra
so (d+ 1, 1).

When d = 2, the conformal algebra is the infinite-dimensional
Virasoro algebra, and this gives us a massive amount of control
over the continuum theory.

In either case, the representation theory of the conformal algebra
fixes the form of certain correlation functions:

〈σiσj〉 ∼ 〈0|σ (zi)σ (zj)|0〉 =
1

|zi − zj |4h
.

The conformal dimension h is the continuum analogue of a critical
exponent, and has a representation-theoretic meaning!
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Conformal Field Theory (CFT)

In d = 2, Belavin, Polyakov and Zamolodchikov showed that there
is a set of conformal dimensions h for which the CFT is exactly
solvable. These are arranged into the Kac table.

Because one can identify which CFT should describe the
continuum limit of a given lattice model, this predicts the critical
exponents of many lattice models:

eg. the Ising model assigns a spin σi ∈ {+,−} to each lattice site i
and an interaction energy εi ∼ σiσi+1. Onsager’s exact solution
gives

〈σiσj〉 ∼
1

|i− j|1/4
and 〈εiεj〉 ∼

1

|i− j|2

at the critical interaction strength.

This agrees with the CFT whose Kac table contains the conformal
dimensions 1

16 and 1
2 .
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Logarithmic Conformal Field Theory

While all this is regarded as a triumph of modern physics, life isn’t
all tea and biscuits!

It is easy to describe observable quantities in lattice models whose
“critical exponents” are not in the appropriate Kac table.

eg. for a random spin configuration of the Ising model, we can ask:

What is the probability that there is a
path of positive spins which crosses
from west to east?

What is the expected fractal dimension
of a cluster of positive spins?
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The numerically measured “exponents” require h = 1
6 and 5

3 .
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Logarithmic Conformal Field Theory

These conformal dimensions don’t appear in the Kac table, but
they do appear on the boundary of the Kac table:
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When we consider non-local observables, the CFT of Belavin,
Polyakov and Zamolodchikov is replaced by a logarithmic CFT.

This is a technical generalisation of standard CFT in which some
fields have correlators with logarithmic singularities. Logarithmic
CFTs are relevant to string theory, the AdS/CFT correspondence
and black hole holography.
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Enter the Mathematicians

So, modern physics is in good shape. But, the mathematical
community wasn’t particularly happy.

• What are these renormalised fields that are supposed to
describe the lattice model observables in the continuum limit?

• What does it mean to say that the “theory” is conformally
invariant?

• Why should quantum field theory be necessary to answer
fundamental probabilistic questions about these lattice
models?

While mathematicians are frequently impressed with the answers
that physicists obtain, they are generally stubborn when it comes
to method. Thus, it is no surprise that they continued to look for
rigorous probabilistic justifications of the answers obtained through
CFT. And in many cases, they found them!
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Schramm-Loewner Evolution
The mathematical theory that aims to provide a rigorous basis for
CFT “predictions” was originally called stochastic Loewner
evolution (SLE). The “S” is now taken to refer to Schramm.

It is not a theory of discrete lattice models, but rather a theory of
random curves in the half-plane.Random geometry of critical phenomena and LCFT

Geometric questions have lead to logarithmic CFT
- polymers, percolation ([Saleur ’87], [Cardy ’99], . . . )
- non-diagonalizable transfer matrices ([Saleur], [Saint-Aubin & Pearce &

Rasmussen ’09], . . . )
Schramm-Loewner evolutions (SLE)

- random conformally invariant fractal curves ([Schramm ’00])
- some rigorous results about scaling limits of interfaces in
critical models of statistical mechanics

- breakthrough: Fields medals Werner (2006), Smirnov (2010)

Kalle Kytölä SLEs and logarithmic CFTs

The idea is that such curves should model, eg. cluster boundaries
of Ising spins, in the continuum limit.
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Schramm-Loewner Evolution
This is referred to as an “evolution” because the random curve is
generated as a solution of a stochastic differential equation:

d

dt
gt (z) =

2

gt (z)−√κBt
.

Here, Bt is Brownian motion and κ > 0 parametrises the model
that the SLE curve describes. Brownian motion is the unique
probability law which is preserved by conformal transformations.

However, gt is not the coordinate of the curve at time t — it is the
conformal transformation that maps to half-plane minus the piece
of the curve from time 0 to time t back to the half-plane!
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Schramm-Loewner Evolution

These random curves may be shown to be “typical” continuum
behaviour for certain critical lattice models:

SLEκ Lattice Model

κ = 2 loop-erased random walk
κ = 3 Ising spin cluster boundary
κ = 4 Gaussian free field level lines
κ = 16

3 Ising FK cluster boundary
κ = 6 Percolation cluster boundary
κ = 8 Uniform spanning tree

This only details what mathematicians can prove. They also
suspect that the self-avoiding walk is SLE8/3 and have conjectures
for general Q-state Potts and O (N) models.



Introduction CFT SLE Comparisons Conclusions

Schramm-Loewner Evolution

The properties of these random curves can be studied
probabilistically. The following are almost surely true:

• When 0 6 κ 6 4, the curve does not intersect itself.

• When 4 < κ < 8, the curve does intersect itself, but without
crossing.

• When κ > 8, the curve fills space!

Some properties of chordal SLEκ

Phases: [Rohde & Schramm]

0 ≤ κ ≤ 4: The curve γ is simple (no self intersections)

4 < κ < 8: The curve γ is self-touching (but not self crossing)

κ ≥ 8: The curve γ is space filling (Peano curve)
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γ[0, t]

H HH

γ[0, t]

Kt

0 ≤ κ ≤ 4 4 < κ < 8 8 ≤ κ

Fractal dimensions? [Rohde & Schramm, Beffara, . . . ]

dim(γ[0,∞]) = 1 + κ/8 for 0 ≤ κ ≤ 8

dim(∂Kt) = 1 + 2/κ for κ ≥ 4

Kalle Kytölä SLEs and logarithmic CFTs

Beffara has shown that the Hausdorff dimension of the SLEκ
random curve is almost surely 1 + κ

8 . For the Ising FK cluster
boundaries (κ = 16/3), this gives 5

3 as mentioned earlier.
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SLE vs CFT

So, SLE is allowing mathematicians to recover many of the
“predictions” that physicists have made using CFT.

Can CFT answer questions that SLE cannot? Almost certainly!

But, there are many variants of SLE to explore:

SLEκ (ρ): Brownian motion with a drift term.

Multiple SLE’s

CLE: Conformal Loop Ensembles.

Can SLE (and variants) answer questions that (logarithmic) CFT
cannot? We don’t know!

Could it be that there is some sort of partial equivalence
between logarithmic CFT and SLE and its variants?
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SLE vs CFT

One of the first SLE calculations
(Schramm) involves the probability
P (z) that a random SLE curve starting
at 0 passes to the left of a given point z.

A mathematician would say that P (z) satisfies a second-order
differential equation because this probability defines a martingale.

A physicist would say that P (z) satisfies a second-order
differential equation because it is given by a correlation function
involving a field with a null-vector at grade 2.

Both obtain (with t = 4/κ):

P (z) =
1

2
− iΓ (t)√

π Γ
(
t− 1

2

) z + z̄

z − z̄ 2F1

(
1

2
, t,

3

2
;

(
z + z̄

z − z̄

)2
)
.

When κ = 4, this becomes P (z) = 1
2πi log z

z̄ .
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SLE vs CFT

Based on examples such as that just given, Bernard and Bauer
have developed a theory connecting the probabilistic martingales of
SLE with the conformal algebra representations of CFT.

Recently, Kytölä has refined their theory to demonstrate that the
CFT representations that correspond to SLE (with a drift term) are
those of logarithmic CFT.

There have also been tentative suggestions for special cases of an
SLE/(log)CFT correspondence (Rasmussen; Moghimi-Araghi,
Rajabpour and Rouhani; Mathieu and Ridout; Saint-Aubin, Pearce
and Rasmussen).

The big problem is that the methods used by each camp are
completely foreign to the other: CFT uses field theory and algebra,
SLE uses probability theory and analysis.
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Conclusions and Outlook

• We’ve recalled the physical approach to understanding critical
lattice phenomena through renormalisation and conformal
field theory.

• We’ve noted that the consideration of non-local observables
requires one to consider logarithmic CFTs.

• We’ve discussed the mathematical approach to understanding
critical lattice phenomena through the statistical properties of
random fractals and Schramm-Loewner evolution.

• We’ve also compared the two approaches, leading to a brief
discussion of a possible SLE/(log)CFT correspondence.

• Building such a correspondence is an exciting task for the
future, and one that promises to teach us more about our
respective specialities.

• One can also ask what survives if one drops the criticality
requirement (assuming eg. integrability).
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THANKYOU!!

... and don’t forget:

The 2nd Asia-Pacific Summer School

in Mathematical Physics:

CFT, AdS/CFT and Integrability

The Australian National University

12–16 December 2011

See http://cmtp.anu.edu.au/ss2011/ for details!
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