Modern History (post-2000) 000000 Breaking News (post-2010) 0000 To the future... 0

The Wess-Zumino-Witten Model on SL $(2; \mathbb{R})$

David Ridout

Department of Theoretical Physics & Mathematical Sciences Institute, Australian National University

June 25, 2013

Modern History (post-2000) 000000 Breaking News (post-2010) 0000 To the future... O

Ancient History (pre-2000) The WZW Model on SU(2)

Modern History (post-2000)

Strings on AdS_3

Breaking News (post-2010)

Fractional Level WZW Models

To the future...

Modern History (post-2000) 000000 Breaking News (post-2010) 0000 To the future... O

The WZW Model on SU(2)

Witten noted that adding a Wess-Zumino term to a non-linear sigma model restores conformal invariance.

The Wess-Zumino-Witten action is

$$S[g] = rac{k}{8\pi} \int_{\Sigma} \kappa ig(g^* artheta, \star g^* artheta ig) + 2\pi \mathfrak{i} \int_{\Gamma} \widetilde{g}^* H,$$

where:

- g maps a Riemann surface Σ into SU(2).
- \tilde{g} extends g to Γ with $\partial \Gamma = \Sigma$ (note H₂(SU(2); \mathbb{R}) = 0).
- ϑ is the canonical 1-form and κ the Killing form of SU(2).
- \star is the Hodge star on Σ ,and $k \in \mathbb{R}$ is the level.

•
$$H = \frac{k}{24\pi^2} \kappa(\vartheta, \mathrm{d}\vartheta)$$
 represents k in $\mathrm{H}^3(\mathrm{SU}(2); \mathbb{R}) = \mathbb{R}$.

To the future... O

Quantisation

The Feynman amplitudes $e^{-S[g]}$ do not depend on the choice of Γ and \tilde{g} if $k \in \mathbb{Z}$ (so $[H] \in H^3(SU(2); \mathbb{Z}) = \mathbb{Z}$).

Changing the sign of k reverses the orientation, so take $k \in \mathbb{N}$.

Standard quantisation gives the symmetry algebra $\mathcal{U}_k \otimes \mathcal{U}_k$, where:

- $\widehat{\mathfrak{sl}}(2) = \mathfrak{sl}(2; \mathbb{C}) \otimes \mathbb{C}[t; t^{-1}] \oplus \mathbb{C}K.$
- $[J \otimes t^m, J' \otimes t^n] = [J, J'] \otimes t^{m+n} + m\kappa(J, J')\delta_{m+n=0}K.$
- \mathcal{U} is the universal enveloping algebra of $\widehat{\mathfrak{sl}}(2)$.
- $\mathcal{U}_k = \frac{\mathcal{U}}{\langle K k\mathbf{1} \rangle}.$

The quantum state space is therefore built from level k modules of the affine Kac-Moody algebra $\widehat{\mathfrak{sl}}(2)$.

To the future... O

Spectrum

The vacuum module (highest weight 0) carries the structure of a vertex algebra.

Assuming irreducibility, the relation $(k \in \mathbb{N})$

 $E_{-1}^{k+1}\big|0\big>=0$

restricts the vertex algebra modules to the irreducible, integrable $\widehat{\mathfrak{sl}}(2)_k$ -modules:

 $\mathcal{L}_0, \mathcal{L}_1, \mathcal{L}_2, \ldots, \mathcal{L}_k.$

We obtain a rational CFT with quantum state space

$$\mathcal{H} = igoplus_{\lambda=0}^k (\mathcal{L}_\lambda \otimes \mathcal{L}_\lambda).$$

Modern History (post-2000) • 00000 Breaking News (post-2010) 0000 To the future... O

The WZW Model on SL $(2; \mathbb{R})$

The action is again

$$S[g] = \frac{k}{8\pi} \int_{\Sigma} \kappa (g^* \vartheta, \star g^* \vartheta) + 2\pi \mathfrak{i} \int_{\Gamma} \tilde{g}^* H$$

with $H_2(SL(2; \mathbb{R}); \mathbb{R}) = 0$, but $H^3(SL(2; \mathbb{R}); \mathbb{R}) = 0$.

The level k is therefore not quantised.

The symmetry algebra is again $U_k \otimes U_k$ and the vacuum module again carries the structure of a vertex algebra.

But, imposing irreducibility of the vacuum module gives no vertex-algebraic constraints on the spectrum (for generic k).

How then should we proceed?

Modern History (post-2000) 00000 Breaking News (post-2010) 0000 To the future... O

Strings on AdS₃

In hep-th/0001053, Maldacena and Ooguri proposed a spectrum for the WZW model on AdS_3 , the universal cover of SL (2; \mathbb{R}).

More precisely, they proposed a spectrum for k < -2, motivated by generalising a no-ghost theorem of Hwang (and others).

Recall that the unitary representations of AdS₃ include the:

- Highest weight discrete series $\overline{\mathcal{D}}_{\lambda}^+$ with $\lambda < 0$.
- Lowest weight discrete series $\overline{\mathcal{D}}_{\lambda}^{-}$ with $\lambda > 0$.
- Principal continuous series $\overline{\mathcal{E}}_{\lambda;\Delta}$ with $\lambda \in \mathbb{R}/2\mathbb{Z}$ and $\Delta \leqslant -\frac{1}{2}$.

Here, λ parametrises the weight (mod 2) and Δ is the eigenvalue of the quadratic Casimir.

Modern History (post-2000)

Breaking News (post-2010) 0000 To the future... O

These also define unitary representations of $\mathfrak{sl}(2;\mathbb{C})$ which we induce to get \mathcal{U}_k -modules $\mathcal{D}^{\pm}_{\lambda}$ and $\mathcal{E}_{\lambda;\Delta}$ (which are not unitary).

The \mathcal{U}_k -modules may then be twisted by spectral flow automorphisms σ^{ℓ} with $\ell \in \mathbb{Z}$:

 $\sigma^{\ell}(E_n) = E_{n-\ell}, \qquad \sigma^{\ell}(H_n) = H_n - \delta_{n=0}\ell K,$ $\sigma^{\ell}(F_n) = F_{n+\ell}, \qquad \sigma^{\ell}(K) = K.$

Modern History (post-2000)

Breaking News (post-2010) 0000 To the future... O

The proposal of Maldacena and Ooguri is that the spectrum is:

•
$$\sigma^{\ell}(\mathcal{D}^+_{\lambda})$$
, with $k+1 < \lambda < -1$ and $\ell \in \mathbb{Z}$.

• $\sigma^{\ell}(\mathcal{E}_{\lambda;\Delta})$ with $\lambda \in \mathbb{R}/2\mathbb{Z}$, $\Delta \leqslant -\frac{1}{2}$ and $\ell \in \mathbb{Z}$.

The quantum state space is then

$$\begin{aligned} \mathcal{H} &= \bigoplus_{\ell \in \mathbb{Z}} \left[\int_{k+1}^{-1} \sigma^{\ell}(\mathcal{D}_{\lambda}^{+}) \otimes \sigma^{\ell}(\mathcal{D}_{\lambda}^{+}) \, \mathrm{d}\lambda \right. \\ &\oplus \int_{-\infty}^{-1/2} \int_{\mathbb{R}/2\mathbb{Z}} \sigma^{\ell}(\mathcal{E}_{\lambda;\Delta}) \otimes \sigma^{\ell}(\mathcal{E}_{\lambda;\Delta}) \, \mathrm{d}\lambda \mathrm{d}\Delta \right]. \end{aligned}$$

They performed many string-theoretic checks of this proposal and it is generally accepted as a good one (for k < -2).

Modern History (post-2000)

Breaking News (post-2010) 0000 To the future... O

Questions one should ask

• Where is the vacuum (where is the vertex algebra)?

String theorists conjecture that as $k \to -\infty$, the spectrum goes into that of the laplacian on L^2 (AdS₃). The vacuum does not appear because the identity function is not normalisable.

But, the identity is not normalisable in $L^2(\mathbb{R}^n)$, yet the vacuum appears in the corresponding WZW model.

• Are the induced \mathcal{U}_k -modules irreducible?

The $\sigma^{\ell}(\mathcal{D}_{\lambda}^{+})$ are, but this is not clear for the $\sigma^{\ell}(\mathcal{E}_{\lambda;\Delta})$.

• Why start with unitary $\mathfrak{sl}(2; \mathbb{R})$ -modules?

The string theory should be unitary, but the CFT is not.

Do the fusion rules close on the proposed spectrum?
Not known, though a proposal was made by Baron and Núñez.

To the future... O

Things to tantalise the brain...

Maldacena and Ooguri have proposed a spectrum whose stringy reduction has passed many consistency checks, *eg.* unitarity. Checking the proposal for the CFT is more delicate.

In 1102.4196 [hep-th], Fjelstad addresses this:

- The two- and three-point functions computed by Maldacena and Ooguri are consistent with the existence of conjugate fields.
- The tensor product rules of unitary sl(2; C)-modules appear to depend upon the choice of topology.
- If one allows "non-normalisable states", then tensor products of unitary modules need not be completely reducible, suggesting that the same is true for fusion.

ie. the AdS_3 WZW model may be a logarithmic CFT.

Modern History (post-2000) 000000 Breaking News (post-2010) •000 To the future... O

Fractional Level WZW Models

In 1986, Kent suggested that nice CFTs generalising the SU (2) WZW model should exist for fractional levels $k = -2 + \frac{u}{v}$, where $u, v \in \mathbb{Z}_{\geq 2}$ and gcd $\{u, v\} = 1$.

In 1988, Kac and Wakimoto announced that these were precisely the levels where there were a finite set of modules whose characters carried a representation of SL (2; \mathbb{Z}).

At the same time, Verlinde published his famous formula giving fusion coefficients in terms of the modular S-transformation. Koh and Sorba immediately applied it to the modules of Kac and Wakimoto with peculiar results.

These results have only been fully explained recently (Creutzig and DR 1306.4388 [hep-th]).

These fractional level models have similar algebraic properties to the AdS₃ WZW model, though k < -2 is no longer satisfied.

However, the spectrum is constrained (which makes them easier to study). It includes spectral flows of discrete and continuous series modules, but there are more (\mathcal{L}_{λ}) including the vacuum module.

To the future... O

Fractional level models may tell us what to expect from the SL (2; \mathbb{R}) and AdS₃ CFTs! For example...

There is an infinite series of orbifold modular invariants suggesting the covering

$$\operatorname{AdS}_3 \longrightarrow \cdots \longrightarrow \operatorname{SL}(2; \mathbb{R}) \longrightarrow \operatorname{PSL}(2; \mathbb{R}).$$

The diagonal modular invariant takes the form

$$Z = \sum_{\ell \in \mathbb{Z}} \sum_{\Delta} \int_{\mathbb{R}/2\mathbb{Z}} \left| \operatorname{ch} \left[\sigma^{\ell}(\mathcal{E}_{\lambda;\Delta}) \right] \right|^2 \, \mathrm{d}\lambda,$$

where the sum over Δ is constrained to a finite set.

Modular invariance depends upon whether characters are treated as meromorphic functions (wrong) or distributions (right).

The quantum state space has a much more intricate structure. In particular, it does not factorise into left- and right-movers.

Modern History (post-2000)

Breaking News (post-2010)

To the future... O

For each Δ , there are two choices of λ for which the $\sigma^{\ell}(\mathcal{E}_{\lambda;\Delta})$ are indecomposable sums of the $\sigma^{\ell'}(\mathcal{D}^{\pm}_{\lambda})$ and/or $\sigma^{\ell''}(\mathcal{L}_{\lambda})$.

These combine to form non-chiral indecomposable modules that are built from infinitely many irreducibles. The vacuum module $\mathcal{L}_0 \otimes \mathcal{L}_0$ is absorbed into one of these conglomerations:

The theory is logarithmic, meaning that the Virasoro zero-modes L_0 and \overline{L}_0 act non-semisimply.

To the future...

Future Directions

Maldacena and Ooguri conclude hep-th/0111180 with

The SL $(2; \mathbb{R})$ WZW model has an interesting algebraic structure which should be explored further.

They are right!

- We need to honestly compute the fusion rules to see if the proposed spectrum is indeed closed.
- We expect that it is not and that fusion will generate reducible yet indecomposable chiral modules.
- We can be guided by our fractional level results to propose a consistent CFT spectrum.
- Presumably, this spectrum will lead to the same stringy reduction... or maybe there are new sectors???