
I. Background II. Superconformal algebras III. Minimal models IV. A new hope V. Outlook

Two-dimensional superconformal algebras
(still crazy after all these years)

David Ridout

Department of Theoretical Physics & Mathematical Sciences Institute,
Australian National University

April 17, 2015



I. Background II. Superconformal algebras III. Minimal models IV. A new hope V. Outlook

I. Background

Conformal field theories

Vertex operator algebras

Examples

II. Superconformal algebras

III. Minimal models

Sectors

Examples

IV. A new hope

V. Outlook



I. Background II. Superconformal algebras III. Minimal models IV. A new hope V. Outlook

2D Conformal Field Theory

A conformal field theory (CFT) is a quantum field theory whose
symmetries not only include the (infinitesimal) length-preserving
transformations, the Lorentz algebra, but also the (infinitesimal)
angle-preserving transformations, the conformal algebra.

In two dimensions, the conformal algebra is infinite-dimensional.

Physical applications include string theory and critical points of
statistical mechanics models.

Mathematical applications include monstrous moonshine,
infinite-dimensional Lie algebras, Schramm-Loewner evolution,
modular forms, knot theory, subfactors, combinatorics, enumerative
geometry, quantum groups, algebraic geometry, etc...
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Superconformal field theory

Physics utilises both bosonic and fermionic fields:

A(z)B(w) = (−1)ĀB̄B(w)A(z), Ā =

{
0 if A is bosonic,

1 if A is fermionic.

Superconformal field theories (SCFT) are CFTs in which there are
non-trivial fermionic symmetries.

Examples include the CFTs underlying superstring theories as well
as certain statistical models (tricritical Ising, Ashkin-Teller, etc...).

Most of the standard CFTs are built from infinite-dimensional Lie
algebras. SCFTs then correspond to infinite-dimensional Lie
superalgebras (which are less well understood!).
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Vertex operator (super)algebras

(Chiral) CFTs and SCFTs admit axiomatisations called vertex
operator algebras (VOAs) and vertex operator superalgebras.
There are four ingredients:

1. The state space V = V 0 ⊕ V 1, a complex vector superspace of
countable dimension.

2. A vacuum state
∣∣0〉 ∈ V 0.

3. A conformal state
∣∣T〉 ∈ V 0.

4. A parity-preserving state-field correspondence from the states
of V to the fields in End(V )[[z, z−1]]:∣∣A〉 7−→ A(z), A(z)

∣∣0〉∣∣
z=0

=
∣∣A〉.
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The axioms are

Vacuum:
∣∣0〉 7→ 1 =

∑
n∈Z δn,01z

−n, the identity field.

Virasoro:
∣∣T〉 7→ T (z) =

∑
n∈Z Lnz

−n−2, the energy-momentum
tensor. The Ln ∈ End(V ) make V into a Virasoro module:[
Lm, Ln

]
= (m− n)Lm+n + 1

12(m3 −m)δm+n=0c 1, c ∈ C.

Grading: L0 acts semisimply on V = ⊕hVh: L0|Vh
= h 1.

Moreover,
∣∣0〉 ∈ V0 and

∣∣T〉 ∈ V2.

Translation: For all fields A(z),
[
L−1, A(z)

]
= ∂A(z).

Locality: There is a supercommutative and associative (radially
ordered) product of fields:

A(z)B(w) = (−1)ĀB̄B(w)A(z).

The L0-eigenvalue h of a state is called its conformal weight.
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The L0-eigenvalue h of a state is called its conformal weight.



I. Background II. Superconformal algebras III. Minimal models IV. A new hope V. Outlook

The axioms are

Vacuum:
∣∣0〉 7→ 1 =

∑
n∈Z δn,01z

−n, the identity field.

Virasoro:
∣∣T〉 7→ T (z) =

∑
n∈Z Lnz

−n−2, the energy-momentum
tensor. The Ln ∈ End(V ) make V into a Virasoro module:[
Lm, Ln

]
= (m− n)Lm+n + 1

12(m3 −m)δm+n=0c 1, c ∈ C.

Grading: L0 acts semisimply on V = ⊕hVh: L0|Vh
= h 1.

Moreover,
∣∣0〉 ∈ V0 and

∣∣T〉 ∈ V2.

Translation: For all fields A(z),
[
L−1, A(z)

]
= ∂A(z).

Locality: There is a supercommutative and associative (radially
ordered) product of fields:

A(z)B(w) = (−1)ĀB̄B(w)A(z).
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Example: the free boson

We start with the Heisenberg algebra ĝl (1):[
am, an

]
= mδm+n=0 1 (m,n ∈ Z).

The Verma module V of highest weight 0 admits the structure of a
vertex operator algebra with central charge c = 1:

• The vacuum
∣∣0〉 is the highest weight vector.

• The conformal structure is defined by T (z) = 1
2 : a(z)a(z) : ,

where a(z) =
∑

n∈Z anz
−n−1.

• The state-field correspondence is given by (ji ∈ Z>0)

a−j1−1 · · · a−jr−1

∣∣0〉 7→ 1

j1! · · · jr!
: ∂j1a(z) · · · ∂jra(z) : .

• The field product (operator product expansion or OPE) is

a(z)a(w) =
1

(z − w)2
+ : a(z)a(w) : .
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Example: the free fermion

This time, we start with an infinite-dimensional Lie superalgebra:{
ψm, ψn

}
= δm+n=0 1 (m,n ∈ Z− 1

2).

The Verma module V of highest weight 0 admits the structure of a
vertex operator superalgebra with central charge c = 1

2 :

• The vacuum
∣∣0〉 is the highest weight vector.

• The conformal structure is defined by T (z) = 1
2 : ∂ψ(z)ψ(z) : ,

where ψ(z) =
∑

n∈Z−1/2 ψnz
−n−1/2.

• The state-field correspondence is given by (ji ∈ Z>0)

ψ−j1−1/2 · · ·ψ−jr−1/2

∣∣0〉 7→ 1

j1! · · · jr!
: ∂j1ψ(z) · · · ∂jrψ(z) : .

• The OPE is

ψ(z)ψ(w) =
1

z − w
+ : ψ(z)ψ(w) : .
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Example: a Virasoro VOA

The Virasoro Verma module of highest weight 0 does not admit
the structure of a vertex operator algebra. Instead, we must
quotient by the Verma submodule of highest weight 1.

• The vacuum
∣∣0〉 is the highest weight vector of the quotient.

• The state-field correspondence is given by (ji ∈ Z>0)

L−j1−2 · · ·L−jr−2

∣∣0〉 7→ 1

j1! · · · jr!
: ∂j1T (z) · · · ∂jrT (z) : .

• The OPE is

T (z)T (w) ∼ c/2

(z − w)4
+

2 T (w)

(z − w)2
+
∂T (w)

z − w
,

where “∼” means we drop : T (z)T (w) : .

The central charge c is free.
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• The vacuum
∣∣0〉 is the highest weight vector of the quotient.

• The state-field correspondence is given by (ji ∈ Z>0)

L−j1−2 · · ·L−jr−2

∣∣0〉 7→ 1

j1! · · · jr!
: ∂j1T (z) · · · ∂jrT (z) : .

• The OPE is

T (z)T (w) ∼ c/2

(z − w)4
+

2 T (w)

(z − w)2
+
∂T (w)

z − w
,

where “∼” means we drop : T (z)T (w) : .

The central charge c is free.
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Example: an affine VOA

The affine Kac-Moody algebra ŝl (2) is a central extension of the
loop algebra of sl

(
2
)

(k ∈ C is the level):

ŝl (2) = sl
(
2
)
⊗ C[t, t−1]⊕ Ck 1.

Let J ⊗ tn ≡ Jn, for J ∈ sl
(
2
)
. Then, the Lie bracket of ŝl (2) is[

Ja
m, J

b
n

]
= fabcJ

c
m+n +mκabδm+n=0k 1,

where fabc and κab denote the structure constants and Killing
form of sl

(
2
)
, respectively.

The ŝl (2) Verma module of highest weight 0 does not admit the
structure of a vertex operator algebra. Instead, we must quotient
by the Verma submodule of highest weight −2.
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• The vacuum
∣∣0〉 is the highest weight vector of the quotient.

• The state-field correspondence is given by (ji ∈ Z>0)

Ja1
−j1−1 · · · J

ar
−jr−1

∣∣0〉 7→ 1

j1! · · · jr!
: ∂j1Ja1(z) · · · ∂jrJar(z) : .

• The OPE is

Ja(z)Jb(w) ∼ κab k

(z − w)2
+
fabcJ

c(w)

z − w
.

• The Sugawara construction gives

T (z) =
1

2(k + 2)
κab : Ja(z)Jb(z) : , c =

3k

k + 2
.

There is no conformal structure if k = −2.
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Superconformal algebras

A superconformal algebra is not just the conformal algebra
(Virasoro) extended by fermions.

One takes N Grassmann variables θi and works with superfields in

End(V )[[z, z−1]]⊗
∧

(θ1, . . . , θN ).

There is then an energy-momentum superfield T(z; θ1, . . . , θN )
whose OPE with itself indicates superconformal invariance.

To study the representation theory, it is convenient to expand in
the θi and work directly with their component fields:

T(z; θ1, . . . , θN ) = θ1 · · · θN T (z) +
N∑
i=1

θ1 · · · θ̂i · · · θN Gi(z) + · · · .
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The N = 1 superconformal algebra

N = 0 is just Virasoro. For N = 1, we have

T(z; θ) = θT (z) +
1

2
G(z).

T (z) is bosonic, of conformal weight 2, whereas G(z) is fermionic,
of conformal weight 3

2 . Each θi has effective weight −1
2 .

The component OPEs are

T (z)T (w) ∼ c/2

(z − w)4
+

2 T (w)

(z − w)2
+
∂T (w)

z − w
,

T (z)G(w) ∼
3
2G(w)

(z − w)2
+
∂G(w)

z − w
,

G(z)G(w) ∼ 2c/3

(z − w)3
+

2 T (w)

z − w
.

G(z) is a Virasoro primary.
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The N = 2 superconformal algebra

With two Grassmann variables, we have

T(z; θ+, θ−) = θ+θ−

B, wt 2︷︸︸︷
T (z) +

1

2
θ+

F, wt 3
2︷ ︸︸ ︷

G−(z) +
1

2
θ−

F, wt 3
2︷ ︸︸ ︷

G+(z) +
1

2

B, wt 1︷ ︸︸ ︷
H(z) .

The component OPEs are

T (z)T (w) ∼ c/2

(z − w)4
+

2 T (w)

(z − w)2
+
∂T (w)

z − w
,

T (z)G±(w) ∼
3
2G
±(w)

(z − w)2
+
∂G±(w)

z − w
, T (z)H(w) ∼ H(w)

(z − w)2
+
∂H(w)

z − w
,

H(z)G±(w) ∼ ±G
±(w)

z − w
, H(z)H(w) ∼ c/3

(z − w)2
, G±(z)G±(w) ∼ 0,

G+(z)G−(w) ∼ 2c/3

(z − w)3
+

2H(w)

(z − w)2
+

2 T (w) + ∂H(w)

z − w
.

H(z) is a free boson; the G±(z) are Virasoro/free boson primaries.
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The N = 3 superconformal algebra(s)

With three Grassmann variables, the field content is

B, wt 2︷︸︸︷
T (z) ,

F, wt 3
2︷ ︸︸ ︷

Ga(z),

B, wt 1︷ ︸︸ ︷
Ja(z),

F, wt 1
2︷︸︸︷

ψ(z) (a ∈ {+, 0,−}).

The Ja(z) give an ŝl (2) subalgebra and the Ga(z) define an
adjoint representation of sl

(
2
)
.

ψ(z) is a free fermion...

but it decouples! The N = 3 VOA is the
tensor product of the free fermion VOA and a reduced VOA:

T (z)T (w) ∼ c/2

(z − w)4
+

2 T (w)

(z − w)2
+
∂T (w)

z − w
(c = 1

2(3k − 1)),

T (z)Gb(w) ∼
3
2 G

b(w)

(z − w)2
+
∂Gb(w)

z − w
, Ja(z)Gb(w) ∼ fabcG

c(w)

z − w
,

T (z)Jb(w) ∼ Jb(w)

(z − w)2
+
∂Jb(w)

z − w
, Ja(z)Jb(w) ∼ κab k

(z − w)2
+
fabcJ

c(w)

z − w
,

Ga(z)Gb(w) ∼ 2 κab(k − 1)

(z − w)3
+

2(k − 1) fabcJ
c(w)/k

(z − w)2
+

4 κabT (w) + fabc∂J
c(w)− 2 : Ja(w)Jb(w) : /k

z − w
.
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The N = 4 superconformal algebra(s)...

are altogether too ugly to write down!

One has T , four Ga, six J i, four ψa and S. The J i generate a
copy of ŝo (4) = ŝl (2)⊕ ŝl (2). The Ga then decompose into two
sl
(
2
)

doublets, as do the ψa. S has conformal weight 0.

The ψa and S may be consistently decoupled; this also removes
three of the J i, leaving one copy of ŝl (2).

Sometimes these fields are not decoupled and then one adds an
extra field of conformal weight 1.

There also seems to be at least one other N = 4 superalgebra
intermediate between these possibilities...
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Twisted sectors

Fermions admit periodic and antiperiodic boundary conditions:

Gi(z) =
∑

n∈Z+1/2G
i
nz
−n−3/2 (Neveu-Schwarz),

Gi(z) =
∑

n∈ZG
i
nz
−n−3/2 (Ramond).

For N = 1, these are the only sectors.

For N = 2, there are four sectors: NS-NS, NS-R, R-NS and R-R.
But, NS-R and R-NS lead to antiperiodic H(z) and T (z).

For N = 3, there are eight sectors, but again only NS-NS-NS and
R-R-R are consistent with Ja(z) and T (z) being periodic.

One can also consider sectors that mix the fermions. eg., one can
have N = 2 sectors in which H(z) is antiperiodic, but T (z) is
periodic. Physicality not clear — required for consistency?
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For N = 2, there are four sectors: NS-NS, NS-R, R-NS and R-R.
But, NS-R and R-NS lead to antiperiodic H(z) and T (z).

For N = 3, there are eight sectors, but again only NS-NS-NS and
R-R-R are consistent with Ja(z) and T (z) being periodic.

One can also consider sectors that mix the fermions. eg., one can
have N = 2 sectors in which H(z) is antiperiodic, but T (z) is
periodic. Physicality not clear — required for consistency?
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Minimal models

The best known SCFTs built from the superconformal VOAs are
the minimal models. But what is a minimal model?

A VOA is said to be universal if the OPEs of its generating fields
yield a complete set of algebraic relations.

A universal VOA need not be simple; it may contain non-trivial
proper ideals. A minimal model is a SCFT built from the simple
quotient of a non-simple universal VOA.

Because the VOA of a minimal model has more relations than the
OPEs of its generating fields, its representation theory is more
constrained than that of the corresponding universal VOA.

The free boson and free fermion VOAs are simple and universal;
the corresponding (S)CFTs are thus not minimal models.
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Virasoro minimal models

The universal Virasoro VOA is simple unless the central charge is

c = 1− 6(p′ − p)2

pp′
, p, p′ ∈ Z>2, gcd

{
p, p′

}
= 1.

Almost every Virasoro module defines a module of the universal
Virasoro VOA.

The only Virasoro modules that are modules of the minimal model
VOA are the simple highest weight modules of highest weight

hr,s =
(p′r − ps)2 − (p′ − p)2

4pp′
,

r = 1, 2, . . . , p− 1,

s = 1, 2, . . . , p′ − 1

and direct sums thereof.

Because the representation theory is semisimple and there are a
finite number of simple modules, the Virasoro minimal models are
rational CFTs. When |p− p′| = 1, these CFTs are also unitary.
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ŝl (2) minimal models

The universal ŝl (2) VOA is defined for all levels k 6= −2.

It is simple unless

k = −2 +
u

v
, u ∈ Z>2, v ∈ Z>1, gcd {u, v} = 1.

When v = 1, the minimal model VOA underlies a unitary rational
CFT: the level k Wess-Zumino-Witten model on SU

(
2
)
.

When v > 1, the minimal model VOA is non-unitary and
non-rational: there are finitely many simple highest weight
modules, but an uncountable infinity of simple parabolic highest
weight modules.

Moreover, the representation theory is then non-semisimple: the
minimal model VOA underlies a logarithmic CFT.
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N = 1 minimal models

The universal N = 1 VOA is simple unless the central charge is

c =
3

2
− 3(p′ − p)2

pp′
, p, p′ ∈ Z>2,

p = p′ mod 2,

gcd
{
p, 1

2(p′ − p)
}

= 1.

The minimal model VOA is rational and the simple modules are
highest weight with

hr,s =
(p′r − ps)2 − (p′ − p)2

8pp′
+

1

16
δr 6=s mod 2,

r = 1, 2, . . . , p− 1,

s = 1, 2, . . . , p′ − 1.

Modules with r = s mod 2 (r 6= s mod 2) are NS (R).

The minimal model is unitary when |p− p′| = 2.

The proof is somewhat indirect, utilising the minimal models of
ŝl (2) and a coset construction.
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N = 2 minimal models

We do not seem to know when the universal N = 2 VOA is simple!

We do know that if

c = 3− 6v

u
, u ∈ Z>2, v ∈ Z>1, gcd {u, v} = 1,

then the universal VOA is not simple because of a relation with the
universal ŝl (2) VOA.

For v = 1, the minimal model VOA is unitary and rational. The
proof, again, follows indirectly from ŝl (2).

For v > 1, the minimal model VOA is not rational. One might
expect it to be logarithmic (but nobody knows).

Why is N = 2 so much harder? Because basic questions about its
representations have still not been completely settled.
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universal ŝl (2) VOA.

For v = 1, the minimal model VOA is unitary and rational. The
proof, again, follows indirectly from ŝl (2).
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N > 2 minimal models

There seem to exist unitary N = 4 minimal models, but there are
no known (non-trivial) rational examples.

Otherwise, we know very little about the N = 3 and N = 4
minimal models, largely because the representation theories of the
superconformal algebras are very poorly understood.

Obstacles for N > 1 include:

• submodules of Verma modules that are generated by
subsingular vectors,

• submodules of Verma modules not being Verma,

• multiplicities of (sub)singular vectors being higher than 1.

N = 1 Verma modules also exhibit these features, but only in the
Ramond sector and only in the Verma module of conformal highest
weight h = c/24 (and its submodules) — toy model?
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Quantum hamiltonian reduction

We’ve seen that the N 6 2 superconformal VOAs are related to
ŝl (2). However, the ŝl (2) minimal models were, until recently,
infamous for confusing both physicists and mathematicians.

A more general relationship is provided by quantum hamiltonian
reduction, a construction that applies to affine VOAs:

Affine VOA ŝl (2) ôsp (1|2) ŝl (2|1) ôsp (3|2) p̂sl (2|2)

Reduction V ir N = 1 N = 2 N = 3 N = 4

While the representation theories still present obstacles, affine
symmetry is expected to be easier to analyse.
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Our strategy is as follows:

1. Classify affine VOA modules using free field constructions and
symmetric polynomial theory.

2. Determine modular group action on characters and apply
Verlinde formula to obtain Grothendieck fusion rules.

3. Classify/check modular invariant partition functions.

4. Combine with free field methods to compute correlation
functions and fusion rules. Check crossing symmetry.

5. Obtain superconformal results using reduction.

Programme testing nearly complete for ŝl (2) and V ir. We are
currently extending to ôsp (1|2) and N = 1.



I. Background II. Superconformal algebras III. Minimal models IV. A new hope V. Outlook

Our strategy is as follows:

1. Classify affine VOA modules using free field constructions and
symmetric polynomial theory.

2. Determine modular group action on characters and apply
Verlinde formula to obtain Grothendieck fusion rules.

3. Classify/check modular invariant partition functions.

4. Combine with free field methods to compute correlation
functions and fusion rules. Check crossing symmetry.

5. Obtain superconformal results using reduction.

Programme testing nearly complete for ŝl (2) and V ir. We are
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Outlook

It’s early days yet, but the results to date are very encouraging.

Affine minimal models are of interest in their own right: WZW
models are regarded as building blocks for rational CFT, so we
propose that the other minimal models may play a similar role for
non-rational (logarithmic) CFT.

Work is underway to analyse ŝl (3) and then ŝl (n).

Truism: Affine symmetry ⇒ beautiful results.

ŝl (2) ⊂ (N > 2) indicates that old N > 2 results are incomplete.

Complete results will be relevant to mock/quantum modular
forms, mirror symmetry, CFT dualities and generalised moonshine.
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ŝl (2) ⊂ (N > 2) indicates that old N > 2 results are incomplete.

Complete results will be relevant to mock/quantum modular
forms, mirror symmetry, CFT dualities and generalised moonshine.



I. Background II. Superconformal algebras III. Minimal models IV. A new hope V. Outlook

Outlook

It’s early days yet, but the results to date are very encouraging.

Affine minimal models are of interest in their own right: WZW
models are regarded as building blocks for rational CFT, so we
propose that the other minimal models may play a similar role for
non-rational (logarithmic) CFT.

Work is underway to analyse ŝl (3) and then ŝl (n).
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And while I’m here...

There will be an MSI special year workshop:

The Mathematics of CFT
Australian National University, July 13–17, 2015.

Speakers include: Gaberdiel, Gannon, Mason,
Pearce, Runkel, Saleur, Semikhatov!
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