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Motivating example: the Ising model

The Ising model describes a simple magnet. The 2D model under-
goes a continuous phase transition at a critical temperature.

σi = +1 (↑, black); σi = −1 (↓, white);

〈σ〉 ∼ (Tc − T )1/8 (T < Tc)〈
σiσj

〉
∼ |i − j |−1/4 (T = Tc)

At the critical point, there are clusters of all shapes and sizes!

Fractal structure ⇒ scale invariance ⇒ conformal invariance.
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Conformal field theory

Model the continuum scaling limit by a conformal field theory!
CFTs are also essential in analysing string theories.

A CFT is a QFT with conformal invariance:

Poincaré symmetry ↪→ Conformal symmetry

In 2D, the conformal symmetry gives (two commuting copies of)
the Virasoro algebra vir:[

Lm, Ln
]

= (m − n)Lm+n + c
12 (m3 −m)δm+n=01.

Here, c ∈ R is the central charge of the CFT.
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Poincaré symmetry ↪→ Conformal symmetry

In 2D, the conformal symmetry gives (two commuting copies of)
the Virasoro algebra vir:[

Lm, Ln
]

= (m − n)Lm+n + c
12 (m3 −m)δm+n=01.

Here, c ∈ R is the central charge of the CFT.



Rational conformal field theory Non-rational conformal field theory Where have I been? Where am I going?

The quantum state space

The quantum state space H carries a representation of vir⊕vir, ie.
H is a vir⊕ vir-module. (Larger symmetry algebras are possible!)

For rational CFTs, H may be decomposed using a finite number
of irreducible modules. These are typically highest-weight.

eg. the continuum scaling limit of the Ising model is the minimal
model CFT M

(
3, 4
)

(c = 1
2 ):

H = (L0 ⊗ L0)⊕ (L1/16 ⊗ L1/16)⊕ (L1/2 ⊗ L1/2).

The highest weight 1
16 dictates 〈σ〉 ∼ (Tc − T )1/8 (partially) and〈

σiσj
〉
∼ |i − j |−1/4 (totally).
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Vertex operator algebras

The mathematical structure underlying a conformal field theory is
called a vertex operator algebra (VOA) [Borcherds, Lepowsky et al.].

states∣∣φ〉 ∈ V fields
φ(z)

modes
φn ∈ End(V)

mode action
φn
∣∣ψ〉

(eg. vir-module)

operator product
φ(z)ψ(w)
expansion

commutator[
φm, ψn

]
(eg. vir)

state-field

correspondence φ(z)=
∑

n φnz
−n−h
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Rational conformal field theory

Being algebras, VOAs have representation theories.

Definition: A VOA (CFT) is rational if it has finitely many irre-
ducible modules and every VOA-module is semisimple.

Examples of rational VOAs:

• Free fermionic strings.

• Free bosonic strings on a torus Rd/L.

• Virasoro minimal model VOAs M
(
p, p′

)
.

• The Wess-Zumino-Witten models ĝk , eg. ŝl (2)k .

• W-algebras (cosets, orbifolds, quantum hamiltonian reductions).

Classification very difficult (impossible?).
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Rational CFTs have beautiful mathematical structures:

• The characters chM = trM qL0−c/24 span an SL
(
2;Z

)
-module

[Zhu]. The partition function chH is modular invariant.

• Morphisms between VOAs lead to non-trivial combinatorial
character identities (eg. Rogers-Ramanujan-Gordon).

• The VOA-module category is equipped with the fusion product
×; it thereby becomes a braided tensor category [Huang-Lepowsky].

• The S-transform τ 7→ − 1
τ is represented by a matrix S whose

entries recover the fusion product via the Verlinde formula:

A× B =
⊕
C

[
C
A B

]
C,

[
C
A B

]
=
∑
D

SADSBDS∗CD
SVD

.

(The VOA-modules form a modular tensor category [Huang].)
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Non-rational conformal field theory

Rational CFTs seem to describe:

• Local observables in statistical mechanics.

• String theories on compact spacetimes.

What about non-compact spacetimes and non-local observables?

eg. in the Ising model:

• What is the (expected) Hausdorff di-
mension of a spin cluster boundary?

• What is the probability that a spin
cluster connects the left and right
boundaries?

Such questions seem to need non-rational CFT.
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Logarithmic conformal field theory

If a VOA has non-semisimple VOA-modules, it is logarithmic.

Etymology:

• In all known examples, a non-semisimple VOA-module category
contains modules on which L0 acts non-diagonalisably.

• This leads directly to correlation functions with logarithmic
branch points (not just root-type branching and poles).

Theorem [Dong-Li-Mason]: All non-rational VOAs are logarithmic.

Loophole: The physically relevant category of VOA-modules might
be smaller than that of the theorem, cf. the free boson.

Physicists tend to assume semisimplicity in non-rational CFT. This
is unlikely to be a good assumption.
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Archetypal examples of logCFTs

The list of well-understood logCFTs is short. It includes:

• GL (1|1) WZW model [Rozansky-Saleur, Saleur-Schomerus, Creutzig-DR].

• Ghosts (bc and βγ) [Gurarie, Saleur et al., DR, DR-Wood].

• Logarithmic minimal models LM
(
p, p′

)
[Gaberdiel-Kausch, Pearce-

Rasmussen, Read-Saleur, Mathieu-DR, Morin-Duchesne-Rasmussen-DR].

• Triplet models W
(
p, p′

)
[Gaberdiel-Kausch, Feigin et al., Pearce-Rasmussen,

Adamović-Milas, Gaberdiel et al., Tsuchiya-Wood, Saleur et al., DR-Wood].

• Admissible level models ŝl (2)k [Gaberdiel, Saleur et al., Adamović, DR,

Creutzig-DR, DR-Wood].

All are “rank 1” - plenty of room for further investigation!
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Mathematical problems with logCFTs

• The VOA-module characters need not span an SL
(
2;Z

)
-module.

• Fusion is defined on the VOA-module category. It should be
braided tensor, but this is only known for certain C2-cofinite
VOAs, eg. the triplet models [Huang-Lepowsky].

• The fusion matrices are not diagonalisable, hence the Verlinde
formula fails [Flohr]. For the (1, p) triplet models, an ad hoc
Verlinde formula was given in [Fuchs et al.].

• The (abelian) category of VOA-modules need not even be rigid
[Gaberdiel-Runkel-Wood] (nice duals need not exist).

• Projective modules are difficult to identify [Tsuchiya-Nagatomo].
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Standard modules and the Verlinde formula

Can we fix the Verlinde formula in logarithmic CFT?

My approach: the standard module formalism. Works for all archety-
pal logCFTs except the triplet models [Creutzig-DR-Wood].

• Standard characters form a basis of the space of VOA-characters.

• Standard modules are almost always irreducible and projective.

• In the standard basis, the S-matrix is symmetric, unitary, and
squares to an order 2 permutation matrix (conjugation dual).

• A continuous version of the Verlinde formula gives the fusion
coefficients (actually, their Grothendieck counterparts).

Measure theory fails for the triplet models. But, triplet fusion ob-
tained via simple current extensions [DR-Wood].

Triplet Verlinde formula should follow [Melville-DR].
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Admissible level ŝl (2)k

The unitary minimal models M
(
p, p + 1

)
are cosets [Goddard-Kent-

Olive] of the unitary WZW models ŝl (2)k with k ∈ Z≥0.

Kent proposed non-unitary WZW models, for k+2 = u
v , u, v ∈ Z≥2,

gcd {u, v} = 1, to construct non-unitary minimal models.

For these k, Kac-Wakimoto found irreducible highest weight ŝl (2)k -
modules whose characters spanned an SL

(
2;Z

)
-module.

But, Verlinde formula gave negative fusion coefficients! [Koh-Sorba]

Led to lots of work, but no resolution... [Bernard-Felder, Mathieu-Walton,

Awata-Yamada, Ramgoolam, Feigin-Malikov, Andreev, Dong-Li-Mason, Petersen-

Rasmussen-Yu, Furlan-Ganchev-Petkova]

[Di Francesco-Mathieu-Sénéchal, Sec. 18.6] suggest that these non-unitary
ŝl (2)k models might suffer from an intrinsic “sickness”.
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Diagnosis [DR]: chM = trM zH0qL0−c/24 converges for |q| < 1 and

z in an annulus (cf. unitary result: |q| < 1 and z 6= 0).

The S-transform does not preserve these annuli of convergence.

Disjoint annuli ∼ inequivalent non-highest-weight modules.

There is a continuum of parabolic highest-weight ŝl (2)k -modules
whose characters are distributions supported between the annuli.

Cure [Creutzig-DR]: These parabolics define the standard modules.
Other irreducibles obtained by resolving with standards.

Theorem: The standard module Verlinde formula gives non-negative
integer (Grothendieck) fusion coefficients.

Results consistent with the known fusion rules for k = −1
2 , −4

3 .

—– Case closed: patient may be discharged —–
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Future plans

A toolkit for studying logCFTs begins by classifying VOA-modules.

Exploit Zhu’s algebra, but still difficult, even for rational CFTs,
because one needs explicit formulae for singular vectors.

Jack polynomials work for minimal models M
(
p, p′

)
[Mimachi-Yamada].

[DR-Wood] recently gave simplified M
(
p, p′

)
singular vector proof

and elegant new M
(
p, p′

)
-module classification proof. Both results

extended to admissible level ŝl (2)k .

Aim to further extend these results in (at least) three directions:

• Admissible level affine VOAs, eg. ôsp (1|2)k , ŝl (3)k , ŝl (2|1)k .

• Superconformal minimal models with N = 1, 2, ...

• Extend Jack polynomial technology to correlators and fusion.
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Long-term goals

Philosophy: Before one can understand physically relevant mod-
els, one must thoroughly understand the fundamental examples.

I would like to understand:

• logCFTs ∼ Schramm-Loewner evolution.

• Non-rational CFTs, eg. the SL
(
2;R

)
WZW model and Liouville

theory; dualities including those of AdS/CFT type.

• CFTs on Calabi-Yau manifolds and applications to (N = 2)
mirror symmetry and (N = 4) Mathieu moonshine.

• Affine super-VOAs → mock/quantum modular forms.

• Tensor structures on non-rational VOA-module categories.

• VOAs  subfactors?

And, of course, one day I’d like to write a book...
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Thankyou!
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