Classifying representations for conformal field theory

David Ridout

Department of Theoretical Physics & Mathematical Sciences Institute, Australian National University

August 6, 2015
Conformal field theory
Vertex operator algebras

A brief detour
Symmetric polynomials

History lesson
Zhu’s algebra

Classifying VOA modules
Singular vectors
The classification

Where am I going?
Short-term goals
Grander plans
Conformal field theory

A CFT is a QFT with conformal invariance:

Poincaré symmetry \leftrightarrow Conformal symmetry
Conformal field theory

A CFT is a QFT with conformal invariance:

Poincaré symmetry \leftrightarrow Conformal symmetry

In 2D, the conformal symmetry gives (two commuting copies of) the Virasoro algebra \mathfrak{vir}_c:

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n=0}.$$

Here, $c \in \mathbb{R}$ is the central charge of the CFT.
Conformal field theory

A CFT is a QFT with conformal invariance:

Poincaré symmetry \leftrightarrow Conformal symmetry

In 2D, the conformal symmetry gives (two commuting copies of) the Virasoro algebra \mathfrak{vir}_c:

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n=0}.$$

Here, $c \in \mathbb{R}$ is the central charge of the CFT.

CFTs are fundamental to statistical mechanics and string theory and (increasingly) to pure mathematics.
Vertex operator algebras

The mathematical structure underlying a conformal field theory is called a vertex operator algebra (VOA) [Borcherds, Lepowsky et al.].
Vertex operator algebras

The mathematical structure underlying a conformal field theory is called a **vertex operator algebra (VOA)** [Borcherds, Lepowsky et al.].
Vertex operator algebras

The mathematical structure underlying a conformal field theory is called a \textit{vertex operator algebra (VOA)} \cite{Borcherds:1986,Borcherds:1987}.

Fields may be differentiated and admit a normally ordered product:

\[
: \phi(w) \psi(w) : = \oint_w \frac{\phi(z) \psi(w)}{z - w} \frac{dz}{2\pi i}.
\]
Examples

- The Heisenberg algebra \widehat{h}:

$$[a_m, a_n] = m\delta_{m+n=0}1.$$

Its weight 0 Verma module is a VOA with OPE

$$a(z)a(w) \sim \frac{1}{(z-w)^2}.$$
Examples

- The Heisenberg algebra \(\hat{h} \):

\[
[a_m, a_n] = m \delta_{m+n=0} 1.
\]

Its weight 0 Verma module is a VOA with OPE

\[
a(z)a(w) \sim \frac{1}{(z - w)^2}.
\]

- The weight 0 Verma module of the Virasoro algebra \(\text{vir}_c \) has a weight 1 Verma submodule. The quotient is a VOA with OPE

\[
L(z)L(w) \sim \frac{c}{2} \frac{1}{(z - w)^4} + \frac{2L(w)}{(z - w)^2} + \frac{\partial L(w)}{z - w}.
\]
The affine Kac-Moody algebra $\hat{\mathfrak{sl}}(2)_k$:

$$[J^a_m, J^b_n] = [J^a, J^b]_{m+n} + m\kappa(J^a, J^b)\delta_{m+n=0} k \mathbf{1}. $$

Its weight 0 Verma module has a weight -2 Verma submodule. For $k \neq -2$, the quotient is a VOA with OPE:

$$J^a(z) J^b(w) \sim \frac{\kappa(J^a, J^b) k \mathbf{1}}{(z-w)^2} + \frac{[J^a, J^b](w)}{z-w}. $$
• The affine Kac-Moody algebra $\hat{\mathfrak{sl}}(2)_k$:

$$[J^a_m, J^b_n] = [J^a, J^b]_{m+n} + m\kappa(J^a, J^b)\delta_{m+n=0}k\mathbf{1}.$$

Its weight 0 Verma module has a weight -2 Verma submodule. For $k \neq -2$, the quotient is a VOA with OPE

$$J^a(z)J^b(w) \sim \frac{\kappa(J^a, J^b)k\mathbf{1}}{(z-w)^2} + \frac{[J^a, J^b](w)}{z-w}.$$

• The \mathfrak{vir}_c and $\hat{\mathfrak{sl}}(2)_k$ VOAs are not simple iff

$$c = c(p, p') = 1 - \frac{6(p' - p)^2}{pp'}, \quad p, p' \in \mathbb{Z}_{\geq 2}, \gcd\{p, p'\} = 1,$$

$$k = k(u, v) = -2 + \frac{u}{v}, \quad u \in \mathbb{Z}_{\geq 2}, v \in \mathbb{Z}_{\geq 1}, \gcd\{u, v\} = 1,$$

respectively. The simple quotients are the minimal models.
VOA modules

Importantly, VOAs have representation theories.
VOA modules

Importantly, VOAs have representation theories.

- Every Verma \hat{h}-module is a module for the Heisenberg VOA.
Importantly, VOAs have representation theories.

- Every Verma $\hat{\mathfrak{h}}$-module is a module for the Heisenberg VOA.
- This is not true for Virasoro minimal models, e.g. Virasoro!

\[
c = c(2, 5) = -\frac{22}{5} \quad \Rightarrow \quad |\chi\rangle := (L_{-2}^2 - \frac{3}{5} L_{-4}) |0\rangle = 0
\]
VOA modules

Importantly, VOAs have representation theories.

- Every Verma \hat{h}-module is a module for the Heisenberg VOA.
- This is not true for Virasoro minimal models, eg. Virasoro!

\[c = c(2, 5) = -\frac{22}{5} \Rightarrow |\chi\rangle := (L^2_{-2} - \frac{3}{5} L_{-4}) |0\rangle = 0 \]

\[\Rightarrow \chi(z) = :T(z)T(z): - \frac{3}{10} \partial^2 T(z) = 0 \]
VOA modules

Importantly, VOAs have representation theories.

- Every Verma \hat{h}-module is a module for the Heisenberg VOA.
- This is not true for Virasoro minimal models, eg. Virasoro!

$$c = c(2,5) = -\frac{22}{5} \quad \Rightarrow \quad |\chi\rangle := (L_{-2} - \frac{3}{5}L_{-4})|0\rangle = 0$$

$$\Rightarrow \quad \chi(z) = :T(z)T(z): - \frac{3}{10}\partial^2T(z) = 0$$

$$\Rightarrow \quad \chi_0 = L_0^2 + 2L_0 + \sum_{r=1}^{\infty} L_{-r}L_r - \frac{9}{5}L_0 = 0$$
VOA modules

Importantly, VOAs have representation theories.

- Every Verma \hat{h}-module is a module for the Heisenberg VOA.
- This is not true for Virasoro minimal models, *eg*. Virasoro!

\[
c = c(2, 5) = -\frac{22}{5} \quad \Rightarrow \quad |\chi\rangle := (L_{-2} - \frac{3}{5} L_{-4}) |0\rangle = 0
\]

\[
\Rightarrow \quad \chi(z) = : T(z)T(z) : - \frac{3}{10} \partial^2 T(z) = 0
\]

\[
\Rightarrow \quad \chi_0 = L_0^2 + 2L_0 + \sum_{r=1}^{\infty} L_{-r}L_r - \frac{9}{5} L_0 = 0
\]

\[
\Rightarrow \quad \chi_0 |h\rangle = h \left(h + \frac{1}{5} \right) |h\rangle = 0.
\]

⇒ the only highest-weight modules of the $(2, 5)$ minimal model VOA are the irreducibles of weights 0 and $-\frac{1}{5}$.
VOA modules

Importantly, VOAs have representation theories.

- Every Verma \hat{h}-module is a module for the Heisenberg VOA.
- This is not true for Virasoro minimal models, eg. Virasoro!

$$c = c(2, 5) = -\frac{22}{5} \quad \Rightarrow \quad |\chi\rangle := (L_{-2}^2 - \frac{3}{5}L_{-4}) |0\rangle = 0$$

$$\Rightarrow \quad \chi(z) = :T(z)T(z): - \frac{3}{10} \partial^2 T(z) = 0$$

$$\Rightarrow \quad \chi_0 = L_0^2 + 2L_0 + \sum_{r=1}^{\infty} L_{-r}L_r - \frac{9}{5}L_0 = 0$$

$$\Rightarrow \quad \chi_0 |h\rangle = h \left(h + \frac{1}{5} \right) |h\rangle = 0.$$

⇒ the only highest-weight modules of the $(2, 5)$ minimal model VOA are the irreducibles of weights 0 and $-\frac{1}{5}$.

How to do this calculation for general minimal models?
Conformal field theory

Vertex operator algebras

A brief detour

Symmetric polynomials

History lesson

Zhu’s algebra

Classifying VOA modules

Singular vectors

The classification

Where am I going?

Short-term goals

Grander plans
Symmetric polynomials

There are many families of n-variable symmetric polynomials.
Symmetric polynomials

There are many families of n-variable symmetric polynomials.

Power sums: $p_k(z) = \sum_{i=1}^{n} z_i^k$, for $k \geq 1$.
Symmetric polynomials

There are many families of n-variable symmetric polynomials.

Power sums: $p_k(z) = \sum_{i=1}^{n} z_i^k$, for $k \geq 1$.

Elementary: $e_k(z) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} z_{i_1} \cdots z_{i_k}$, for $0 \leq k \leq n$.
Symmetric polynomials

There are many families of n-variable symmetric polynomials.

Power sums: $p_k(z) = \sum_{i=1}^{n} z_i^k$, for $k \geq 1$.

Elementary: $e_k(z) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} z_{i_1} \cdots z_{i_k}$, for $0 \leq k \leq n$.

Complete: $h_k(z) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} z_{i_1} \cdots z_{i_k}$, for $k \geq 0$.
Symmetric polynomials

There are many families of n-variable symmetric polynomials.

Power sums: $p_k(z) = \sum_{i=1}^{n} z_i^k$, for $k \geq 1$.

Elementary: $e_k(z) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} z_{i_1} \cdots z_{i_k}$, for $0 \leq k \leq n$.

Complete: $h_k(z) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} z_{i_1} \cdots z_{i_k}$, for $k \geq 0$.

Partitions $\lambda = [\lambda_1, \ldots, \lambda_m]$ give more:

$$p_\lambda = p_{\lambda_1} \cdots p_{\lambda_m}, \quad e_\lambda = e_{\lambda_1} \cdots e_{\lambda_m}, \quad h_\lambda = h_{\lambda_1} \cdots h_{\lambda_m}.$$
Symmetric polynomials

There are many families of n-variable symmetric polynomials.

Power sums: $p_k(z) = \sum_{i=1}^{n} z_i^k$, for $k \geq 1$.

Elementary: $e_k(z) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} z_{i_1} \cdots z_{i_k}$, for $0 \leq k \leq n$.

Complete: $h_k(z) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} z_{i_1} \cdots z_{i_k}$, for $k \geq 0$.

Partitions $\lambda = [\lambda_1, \ldots, \lambda_m]$ give more:

$$p_{\lambda} = p_{\lambda_1} \cdots p_{\lambda_m}, \quad e_{\lambda} = e_{\lambda_1} \cdots e_{\lambda_m}, \quad h_{\lambda} = h_{\lambda_1} \cdots h_{\lambda_m}.$$

And monomial, Schur, Jack, ... also indexed by partitions.
Schur polynomials

The n-variable Schur polynomials are defined by

$$s_\lambda(z) = \frac{\det (z_i^{\lambda_j+n-j})}{\det (z_i^{n-j})}.$$

They arise in representation theory (S_n, $GL(n)$, $U(n)$, ...).
Schur polynomials

The n-variable Schur polynomials are defined by

$$s_{\lambda}(z) = \frac{\det(z_{i}^{\lambda_{j}+n-j})}{\det(z_{i}^{n-j})}.$$

They arise in representation theory (S_n, $GL(n)$, $U(n)$, ...).

Schur polynomials have a remarkable \textbf{orthonormality} property:

$$\langle f, g \rangle_{n} = \int_{[\Delta_{n}]} \prod_{1 \leq i \neq j \leq n} \left(1 - \frac{z_{i}}{z_{j}}\right)f(z_{1}^{-1}, \ldots, z_{n}^{-1})g(z_{1}, \ldots, z_{n}) \frac{dz_{1} \cdots dz_{n}}{z_{1} \cdots z_{n}}$$

$$\Rightarrow \quad \langle s_{\lambda}, s_{\mu} \rangle_{n} = \delta_{\lambda=\mu}.$$
Schur polynomials

The n-variable Schur polynomials are defined by

$$s_{\lambda}(z) = \frac{\det(z_i^{\lambda_j+n-j})}{\det(z_i^{n-j})}.$$

They arise in representation theory (S_n, $GL(n)$, $U(n)$, ...).

Schur polynomials have a remarkable orthonormality property:

$$\langle f, g \rangle_n = \int_{[\Delta_n]} \prod_{1 \leq i \neq j \leq n} \left(1 - \frac{z_i}{z_j}\right) f(z_1^{-1}, \ldots, z_n^{-1})g(z_1, \ldots, z_n) \frac{dz_1 \cdots dz_n}{z_1 \cdots z_n}$$

$$\Rightarrow \quad \langle s_{\lambda}, s_{\mu} \rangle_n = \delta_{\lambda=\mu}.$$

$$\int_{[\Delta_n]}$$

is normalised so that $\langle s_0, s_0 \rangle_n = \langle 1, 1 \rangle_n = 1.$
Jack polynomials

Jack polynomials are deformations of Schur polynomials:

\[
J_{\lambda}^\kappa (z) \xrightarrow{\kappa=1} s_{\lambda} (z).
\]
Jack polynomials

Jack polynomials are deformations of Schur polynomials:

\[J_\lambda^\kappa (z) \overset{\kappa=1}{\rightarrow} s_\lambda (z). \]

They enjoy a similar orthogonality property:

\[\langle f, g \rangle_\kappa = \int_{[\Delta_n]} \prod_{1 \leq i \neq j \leq n} \left(1 - \frac{z_i}{z_j} \right)^{1/\kappa} f(z_1^{-1}, \ldots, z_n^{-1})g(z_1, \ldots, z_n) \frac{dz_1 \cdots dz_n}{z_1 \cdots z_n} \]

\[\Rightarrow \quad \langle J_\lambda^\kappa, J_\mu^\kappa \rangle_\kappa = \left\{ \begin{array}{ll} \text{explicit combinatorial factor} & \delta_\lambda=\mu. \end{array} \right\} \]

Special case (but crucial later):

\[J_\kappa^\kappa (z_1, \ldots, z_n) = n \prod_{i=1}^{\kappa} z_i^{m_i} \quad \text{for all } \kappa. \]
Jack polynomials

Jack polynomials are deformations of Schur polynomials:

$$J_{\lambda}^\kappa (z) \xrightarrow{\kappa=1} s_{\lambda} (z).$$

They enjoy a similar orthogonality property:

$$\langle f, g \rangle_\kappa^n = \int_{[\Delta_n]} \prod_{1 \leq i \neq j \leq n} \left(1 - \frac{z_i}{z_j} \right)^{1/\kappa} f(z_1^{-1}, \ldots, z_n^{-1}) g(z_1, \ldots, z_n) \frac{dz_1 \cdots dz_n}{z_1 \cdots z_n}$$

$$\Rightarrow \langle J_{\lambda}^\kappa, J_{\mu}^\kappa \rangle_n^\kappa = \Big\{ \text{explicit combinatorial factor} \Big\} \delta_{\lambda=\mu}.$$

Special case (but crucial later):

$$J_{[m^n]}^\kappa (z_1, \ldots, z_n) = \prod_{i=1}^n z_i^m \quad (\text{for all } \kappa).$$
Conformal field theory

Vertex operator algebras

A brief detour

Symmetric polynomials

History lesson

Zhu’s algebra

Classifying VOA modules

Singular vectors

The classification

Where am I going?

Short-term goals

Grander plans
Zhu’s algebra

How can one classify VOA modules?
Zhu’s algebra

How can one classify VOA modules?

The zero modes ϕ_0 of the fields $\phi(z)$ of a VOA act on the space of ground states of a module. This action defines Zhu’s algebra.
Zhu’s algebra

How can one classify VOA modules?

The zero modes ϕ_0 of the fields $\phi(z)$ of a VOA act on the space of ground states of a module. This action defines Zhu’s algebra.

There is a bijection [Zhu '90, '96] between irreducible modules over Zhu’s algebra and irreducible \mathbb{N}-graded VOA-modules.
Zhu’s algebra

How can one classify VOA modules?

The zero modes ϕ_0 of the fields $\phi(z)$ of a VOA act on the space of ground states of a module. This action defines Zhu’s algebra.

There is a bijection [Zhu ’90, ’96] between irreducible modules over Zhu’s algebra and irreducible \mathbb{N}-graded VOA-modules.

- For the Heisenberg VOA $\hat{\mathfrak{h}}$, Zhu’s algebra is $\mathbb{C}[a_0]$.
- For the Virasoro VOA \mathfrak{vir}_c, Zhu’s algebra is $\mathbb{C}[L_0]$.
- For the VOA $\hat{\mathfrak{sl}}(2)_k$, Zhu’s algebra is $\mathcal{U}\mathfrak{sl}(2)$.
Zhu’s algebra

How can one classify VOA modules?

The zero modes ϕ_0 of the fields $\phi(z)$ of a VOA act on the space of ground states of a module. This action defines Zhu’s algebra.

There is a bijection [Zhu ’90, ’96] between irreducible modules over Zhu’s algebra and irreducible \mathbb{N}-graded VOA-modules.

- For the Heisenberg VOA $\widehat{\mathfrak{h}}$, Zhu’s algebra is $\mathbb{C}[a_0]$.
- For the Virasoro VOA \mathfrak{vir}_c, Zhu’s algebra is $\mathbb{C}[L_0]$.
- For the VOA $\widehat{\mathfrak{sl}(2)}_k$, Zhu’s algebra is $U\mathfrak{sl}(2)$.

Irreducible modules are under control for these VOAs.

But, what about their minimal models? That’s much harder!
Ancient history

Zhu’s construction preserves structure:

\[\text{Zhu} \left(\frac{V}{I} \right) = \frac{\text{Zhu}(V)}{\text{Zhu}(I)}. \]
Ancient history

Zhu’s construction preserves structure:

\[\text{Zhu}(V/I) = \frac{\text{Zhu}(V)}{\text{Zhu}(I)}. \]

Need the image in \(\text{Zhu}(V) \) of generators of \(I \): singular vectors.
Ancient history

Zhu’s construction preserves structure:

\[\text{Zhu}(V/I) = \frac{\text{Zhu}(V)}{\text{Zhu}(I)}. \]

Need the image in \(\text{Zhu}(V) \) of generators of \(I \): singular vectors.

- Projection of Virasoro singular vector [Feigin-Fuchs ’88]
 \(\Rightarrow \) generator of \(\text{Zhu}(I) \) (\(\text{Zhu}(V) = \mathbb{C}[L_0] \)).
 \(\Rightarrow \) classify simple Virasoro minimal model modules [Wang ’93].
Ancient history

Zhu’s construction preserves structure:

\[\text{Zhu}(V/I) = \frac{\text{Zhu}(V)}{\text{Zhu}(I)}. \]

Need the image in \(\text{Zhu}(V) \) of generators of \(I \): singular vectors.

- Projection of Virasoro singular vector \([\text{Feigin-Fuchs '88}]\)
 \(\Rightarrow \) generator of \(\text{Zhu}(I) \) \((\text{Zhu}(V) = \mathbb{C}[L_0]) \).
 \(\Rightarrow \) classify simple Virasoro minimal model modules \([\text{Wang '93}]\).

- \(\hat{\mathfrak{sl}}(2)_k \) singular vector \([\text{Malikov-Feigin-Fuchs '86}] \) projection \([\text{Fuchs '89}]\)
 \(\Rightarrow \) generator of \(\text{Zhu}(I) \) \((\text{Zhu}(V) = U\hat{\mathfrak{sl}}(2)) \).
 \(\Rightarrow \) classify simple admissible \(\hat{\mathfrak{sl}}(2)_k \) modules \([\text{Adamović-Milas '95}]\).
Ancient history

Zhu’s construction preserves structure:

\[\text{Zhu}(V/I) = \frac{\text{Zhu}(V)}{\text{Zhu}(I)}. \]

Need the image in \(\text{Zhu}(V) \) of generators of \(I \): singular vectors.

- Projection of Virasoro singular vector \([\text{Feigin-Fuchs '88}]\)
 \(\Rightarrow \) generator of \(\text{Zhu}(I) \) (\(\text{Zhu}(V) = \mathbb{C}[L_0] \)).
 \(\Rightarrow \) classify simple Virasoro minimal model modules \([\text{Wang '93}]\).

- \(\hat{\mathfrak{sl}}(2)_k \) singular vector \([\text{Malikov-Feigin-Fuchs '86}]\) projection \([\text{Fuchs '89}]\)
 \(\Rightarrow \) generator of \(\text{Zhu}(I) \) (\(\text{Zhu}(V) = \mathcal{U}\hat{\mathfrak{sl}}(2) \)).
 \(\Rightarrow \) classify simple admissible \(\hat{\mathfrak{sl}}(2)_k \) modules \([\text{Adamović-Milas '95}]\).

- Few other examples! Projection technology doesn’t generalise?
More ancient history

There are other approaches to (Virasoro) singular vectors, eg. symmetric polynomials!
More ancient history

There are other approaches to (Virasoro) singular vectors, eg. symmetric polynomials!

- Coulomb gas free field realisation constructs \mathfrak{vir}_1 singular vectors from Schur polynomials [Wakimoto-Yamada '86] using \hat{h}.
More ancient history

There are other approaches to (Virasoro) singular vectors, e.g. symmetric polynomials!

- Coulomb gas free field realisation constructs vir_1 singular vectors from Schur polynomials [Wakimoto-Yamada '86] using \hat{h}.
- Deformed free field realisation/construction works for vir_c and Jack polynomials [Mimachi-Yamada '95].
More ancient history

There are other approaches to (Virasoro) singular vectors, eg. symmetric polynomials!

- Coulomb gas free field realisation constructs \mathfrak{vir}_1 singular vectors from Schur polynomials [Wakimoto-Yamada ’86] using \hat{h}.
- Deformed free field realisation/construction works for \mathfrak{vir}_c and Jack polynomials [Mimachi-Yamada ’95].

Strong links to integrability (Calogero-Moser-Sutherland models), but apparently not exploited much in CFT...
More ancient history

There are other approaches to (Virasoro) singular vectors, eg. symmetric polynomials!

- Coulomb gas free field realisation constructs \mathfrak{vir}_1 singular vectors from Schur polynomials [Wakimoto-Yamada '86] using $\hat{\mathfrak{h}}$.
- Deformed free field realisation/construction works for \mathfrak{vir}_c and Jack polynomials [Mimachi-Yamada '95].

Strong links to integrability (Calogero-Moser-Sutherland models), but apparently not exploited much in CFT...

Recent resurgence of interest due to AGT conjecture [Alday-Gaiotto-Tachikawa '09] and “generalised” Jack polynomials [Morozov-Smirnov '13].
Conformal field theory

Vertex operator algebras

A brief detour

Symmetric polynomials

History lesson

Zhu’s algebra

Classifying VOA modules

Singular vectors

The classification

Where am I going?

Short-term goals

Grander plans
Free field constructions of singular vectors use screening operators.
Why Jack polynomials?

Free field constructions of singular vectors use screening operators.

Screening operators intertwine the action of the Virasoro VOA on the free field modules.
Q is the zero mode of a product of $\hat{\mathfrak{h}}$ vertex operators:

$$V_{\alpha}(z) = e^{\alpha q} z^{\alpha a_0} \prod_{m=1}^{\infty} e^{\alpha a_m z^m / m} e^{-\alpha a_m z^{-m} / m}.$$
Q is the zero mode of a product of $\hat{\mathfrak{h}}$ vertex operators:

$$V_\alpha(z) = e^{\alpha q} z^{\alpha a_0} \prod_{m=1}^{\infty} e^{\alpha a_{-m} z^m / m} e^{-\alpha a_m z^{-m} / m}.$$

To get the vacuum singular vector $|\chi\rangle$ of $\text{vir}_{c(p,p')}$, we take

$$Q = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1}, \quad \alpha = \sqrt{\frac{2p'}{p}},$$

$$|\chi\rangle = Q |-(p - 1)\alpha\rangle.$$
Q is the zero mode of a product of \hat{h} vertex operators:

$$V_\alpha(z) = e^{\alpha q} z^{\alpha a_0} \prod_{m=1}^{\infty} e^{\alpha a_m z^m/m} e^{-\alpha a_m z^{-m}/m}.$$

To get the vacuum singular vector $|\chi\rangle$ of $\text{vir}_{c(p,p')}$, we take

$$Q = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1}, \quad \alpha = \sqrt{\frac{2p'}{p}},$$

$$|\chi\rangle = Q |-(p - 1)\alpha\rangle.$$

Commute the exponentials in the vertex operators:

$$|\chi\rangle = \int_{[\Delta_{p-1}]} \prod_{1 \leq i \neq j \leq p-1} (z_i - z_j)^{\alpha^2/2} \cdot \prod_{i=1}^{p-1} z_i^{-(p-1)\alpha^2}$$

$$\cdot \prod_{m=1}^{\infty} e^{\alpha a_m p_m(z_1,\ldots,z_{p-1})/m} |0\rangle \, dz_1 \cdots dz_{p-1}. $$
Q is the zero mode of a product of \mathfrak{h} vertex operators:

$$V_\alpha(z) = e^{\alpha q} z^{\alpha a_0} \prod_{m=1}^{\infty} \frac{e^{\alpha a_m z^m/m} e^{-\alpha a_m z^{-m}/m}}{z^{-m}/m}.$$

To get the vacuum singular vector $|\chi\rangle$ of $\text{vir}_{c(p,p')}$, we take

$$Q = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1}, \quad \alpha = \sqrt{\frac{2p'}{p}},$$

$$|\chi\rangle = Q|-(p-1)\alpha\rangle.$$

Commute the exponentials in the vertex operators:

$$|\chi\rangle = \int_{[\Delta_{p-1}]} \prod_{1 \leq i \neq j \leq p-1} \left(1 - \frac{z_i}{z_j}\right)^{p'/p} \prod_{i=1}^{p-1} z_i^{-p'} \cdot \prod_{m=1}^{\infty} e^{\alpha a_m p_m(z_1,\ldots,z_{p-1})/m} \, dz_1 \cdots dz_{p-1}.$$
Q is the zero mode of a product of \hat{h} vertex operators:

$$V_\alpha(z) = e^{\alpha q} z^{\alpha a_0} \prod_{m=1}^{\infty} e^{\alpha a_m z^m/m} e^{-\alpha a_m z^{-m}/m}.$$

To get the vacuum singular vector $|\chi\rangle$ of $\text{vir}_{c(p,p')}$, we take

$$Q = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1}, \quad \alpha = \sqrt{\frac{2p'}{p}},$$

$$|\chi\rangle = Q |-(p-1)\alpha\rangle.$$

Commute the exponentials in the vertex operators:

$$|\chi\rangle = \int_{[\Delta_{p-1}]} \prod_{1 \leq i \neq j \leq p-1} \left(1 - \frac{z_i}{z_j}\right)^{p'/p} J_{p/p'}^{p/(p'-1)} \left(z_1^{-1}, \ldots, z_{p-1}^{-1}\right)$$

$$\cdot \prod_{m=1}^{\infty} e^{\alpha a_m p_m (z_1, \ldots, z_{p-1})/m} |0\rangle \frac{dz_1 \cdots dz_{p-1}}{z_1 \cdots z_{p-1}}.$$
If we can write $\prod_{m=1}^{\infty} e^{\alpha a_m p_m(z)/m}$ in terms of $\kappa = \frac{p}{p'}$ Jacks, their orthogonality will translate into a singular vector formula!
If we can write $\prod_{m=1}^{\infty} e^{\alpha a_{-m} p_m(z)/m}$ in terms of $\kappa = \frac{p}{p'}$ Jacks, their orthogonality will translate into a singular vector formula!

- Define an isomorphism of free commutative algebras by

$$\rho(p_m(y)) = \frac{2}{\alpha} a_{-m} \quad (m \in \mathbb{Z}_{\geq 1}).$$
If we can write $\prod_{m=1}^{\infty} e^{\alpha a_m p_m(z)/m}$ in terms of $\kappa = \frac{p}{p'}$ Jacks, their orthogonality will translate into a singular vector formula!

- Define an isomorphism of free commutative algebras by

 $$\rho(p_m(y)) = \frac{2}{\alpha} a_{-m} \quad (m \in \mathbb{Z}_{\geq 1}).$$

- Use [DR-Wood] the orthonormality formula

 $$\prod_{m=1}^{\infty} \exp\left(\frac{1}{\kappa} \frac{p_m(y) p_m(z)}{m}\right) = \sum_{\lambda} \left\{ \begin{array}{l}
\text{explicit combinatorial factor} \\
\end{array} \right\} J_{\lambda}^\kappa(y) J_{\lambda}^\kappa(z).$$
If we can write \(\prod_{m=1}^{\infty} e^{a_{-m} \rho_m(z)/m} \) in terms of \(\kappa = \frac{p}{p'} \) Jacks, their orthogonality will translate into a singular vector formula!

- Define an isomorphism of free commutative algebras by

\[
\rho(p_m(y)) = \frac{2}{\alpha} a_{-m} \quad (m \in \mathbb{Z}_{\geq 1}).
\]

- Use [DR-Wood] the orthonormality formula

\[
\prod_{m=1}^{\infty} \exp \left(\frac{1}{\kappa} \frac{p_m(y) p_m(z)}{m} \right) = \sum_{\lambda} \left\{ \text{explicit combinatorial factor} \right\} J_{\lambda}^{\kappa}(y) J_{\lambda}^{\kappa}(z).
\]

The vacuum singular vector is thus

\[
|\chi\rangle = \rho \left(J_{[(p'-1)p-1]}^{p'/p}(y) \right) |0\rangle.
\]
If we can write $\prod_{m=1}^{\infty} e^{\alpha a_m p_m(z)/m}$ in terms of $\kappa = \frac{p}{p'}$ Jacks, their orthogonality will translate into a singular vector formula!

- Define an isomorphism of free commutative algebras by

$$\rho(p_m(y)) = \frac{2}{\alpha} a_m (m \in \mathbb{Z}_{\geq 1}).$$

- Use [DR-Wood] the orthonormality formula

$$\prod_{m=1}^{\infty} \exp \left(\frac{1}{\kappa} \frac{p_m(y) p_m(z)}{m} \right) = \sum_{\lambda} \left\{ \text{explicit combinatorial factor} \right\} J_{\kappa}^{\lambda}(y) J_{\kappa}^{\lambda}(z).$$

The vacuum singular vector is thus

$$|\chi\rangle = \rho \left(J_{[(p'-1)p-1]}^{p'/p} (y) \right) |0\rangle.$$

Other singular vectors obtained similarly!
Classifying VOA modules

Idea: Given $|\chi\rangle$, solve $\langle \mu | \chi(w) | \mu \rangle = 0$ for highest weights μ.
Classifying VOA modules

Idea: Given $|\chi\rangle$, solve $\langle \mu | \chi(w) | \mu \rangle = 0$ for highest weights μ.

$$|\chi\rangle = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1} |-(p-1)\alpha\rangle$$
Classifying VOA modules

Idea: Given $|\chi\rangle$, solve $\langle \mu | \chi(w) | \mu \rangle = 0$ for highest weights μ.

$$|\chi\rangle = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1} |-(p-1)\alpha\rangle$$

$$\Rightarrow \quad \chi(w) = \int_{[\Delta_{p-1}]} V_\alpha(z_1 + w) \cdots V_\alpha(z_{p-1} + w) V_{-(p-1)\alpha}(w) \, dz_1 \cdots dz_{p-1}$$
Classifying VOA modules

Idea: Given $|\chi\rangle$, solve $\langle \mu | \chi(w) | \mu \rangle = 0$ for highest weights μ.

$$|\chi\rangle = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1} |-(p-1)\alpha\rangle$$

$$\Rightarrow \chi(w) = \int_{[\Delta_{p-1}]} V_\alpha(z_1 + w) \cdots V_\alpha(z_{p-1} + w) V_{-(p-1)\alpha}(w) \, dz_1 \cdots dz_{p-1}$$

$$\Rightarrow \langle \mu | \chi(w) | \mu \rangle = \langle J_{[(p')_{p-1}]}^p(z), \prod_{i=1}^{p-1} \left(1 + \frac{z_i}{w}\right)^{\alpha \mu}_{p/p'} \rangle_{p-1}.$$
Classifying VOA modules

Idea: Given $|\chi\rangle$, solve $\langle \mu | \chi(w) | \mu \rangle = 0$ for highest weights μ.

$$
|\chi\rangle = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1} |-(p-1)\alpha\rangle
$$

$\Rightarrow \chi(w) = \int_{[\Delta_{p-1}]} V_\alpha(z_1 + w) \cdots V_\alpha(z_{p-1} + w) V_{-(p-1)\alpha}(w) \, dz_1 \cdots dz_{p-1}$

$\Rightarrow \langle \mu | \chi(w) | \mu \rangle = \langle J_{[(p'-1)p-1]}^p \prod_{i=1}^{p-1} \left(1 + \frac{z_i}{w} \right)^{\alpha\mu} \rangle_{p/p'}^{p/p'}.$

The product may be decomposed into Jacks using specialisation:

$$
\prod_{i=1}^{p-1} \left(1 + \frac{z_i}{w} \right)^{\alpha\mu} = \sum_{\lambda} \{ \text{explicit combinatorial factor} \} J_{\lambda}^{p/p'} (z_1/w, \ldots, z_{p-1}/w).
$$
Classifying VOA modules

Idea: Given $|\chi\rangle$, solve $\langle \mu | \chi(w) | \mu \rangle = 0$ for highest weights μ.

$$|\chi\rangle = \int_{[\Delta_{p-1}]} V_\alpha(z_1) \cdots V_\alpha(z_{p-1}) \, dz_1 \cdots dz_{p-1} |-(p-1)\alpha\rangle$$

$$\Rightarrow \chi(w) = \int_{[\Delta_{p-1}]} V_\alpha(z_1 + w) \cdots V_\alpha(z_{p-1} + w) V_{-(p-1)\alpha}(w) \, dz_1 \cdots dz_{p-1}$$

$$\Rightarrow \langle \mu | \chi(w) | \mu \rangle = \langle J_{[(p'-1)p-1]}^p(p') \bigg(z \bigg), \prod_{i=1}^{p-1} \left(1 + \frac{z_i}{w} \right)^{\alpha\mu} \rangle_{p/p'}^{p/p'}.$$

The product may be decomposed into Jacks using specialisation:

$$\prod_{i=1}^{p-1} \left(1 + \frac{z_i}{w} \right)^{\alpha\mu} = \sum_\lambda \left\{ \text{explicit combinatorial factor} \right\} J_\lambda^{p/p'} (z_1/w, \ldots, z_{p-1}/w).$$

Homogeneity and orthogonality finish the job!
Theorem [Wang, DR-Wood]: The Virasoro minimal model VOA with $c = c(p, p')$ is *rational* and the irreducibles are precisely those of highest weight

$$h_{r,s} = \frac{(p'r - ps)^2 - (p' - p)^2}{4pp'}, \quad 1 \leq r \leq p - 1, \ 1 \leq s \leq p' - 1.$$
Theorem [Wang, DR-Wood]: The Virasoro minimal model VOA with $c = c(p, p')$ is rational and the irreducibles are precisely those of highest weight

$$h_{r,s} = \frac{(p'r - ps)^2 - (p' - p)^2}{4pp'}, \quad 1 \leq r \leq p - 1, \quad 1 \leq s \leq p' - 1.$$

We have generalised this methodology to $\hat{\mathfrak{sl}}(2)_k$ minimal models (Coulomb gas \rightarrow Wakimoto, ie. dress with $\beta\gamma$ ghosts).
Theorem [Wang, DR-Wood]: The Virasoro minimal model VOA with $c = c(p, p')$ is rational and the irreducibles are precisely those of highest weight

$$h_{r,s} = \frac{(p'r - ps)^2 - (p' - p)^2}{4pp'}, \quad 1 \leq r \leq p - 1, \ 1 \leq s \leq p' - 1.$$

We have generalised this methodology to $\hat{sl}(2)_k$ minimal models (Coulomb gas \rightarrow Wakimoto, ie. dress with $\beta\gamma$ ghosts).

- Proved new singular vector formulae for parabolic highest-weight modules.
Theorem [Wang, DR-Wood]: The Virasoro minimal model VOA with $c = c(p, p')$ is rational and the irreducibles are precisely those of highest weight

$$h_{r,s} = \frac{(p'r - ps)^2 - (p' - p)^2}{4pp'}, \quad 1 \leq r \leq p - 1, \ 1 \leq s \leq p' - 1.$$

We have generalised this methodology to $\widehat{\mathfrak{sl}}(2)_k$ minimal models (Coulomb gas \rightarrow Wakimoto, ie. dress with $\beta\gamma$ ghosts).

- Proved **new** singular vector formulae for **parabolic** highest-weight modules.
Theorem [Wang, DR-Wood]: The Virasoro minimal model VOA with $c = c(p, p')$ is rational and the irreducibles are precisely those of highest weight

$$h_{r,s} = \frac{(p'r - ps)^2 - (p' - p)^2}{4pp'}, \quad 1 \leq r \leq p - 1, \ 1 \leq s \leq p' - 1.$$

We have generalised this methodology to $\hat{sl}(2)_k$ minimal models (Coulomb gas \rightarrow Wakimoto, ie. dress with $\beta\gamma$ ghosts).

- Proved new singular vector formulae for parabolic highest-weight modules.
- Exhibited reducible, but indecomposable, modules for the $\hat{sl}(2)_k$ minimal models. (ie. VOA is logarithmic.)
Conformal field theory

Vertex operator algebras

A brief detour

Symmetric polynomials

History lesson

Zhu’s algebra

Classifying VOA modules

Singular vectors

The classification

Where am I going?

Short-term goals

Grander plans
(Some) short-term goals

A toolkit for studying CFTs begins by classifying VOA-modules.
(Some) short-term goals

A toolkit for studying CFTs begins by classifying VOA-modules.

\[
\text{vir} \xleftarrow{\text{QDS}} \hat{\mathfrak{sl}}(2)
\]
A toolkit for studying CFTs begins by classifying VOA-modules.

\[
\text{vir} \xrightarrow{\text{QDS}} \hat{\mathfrak{sl}}(2)
\]

\[
W_3 \xrightarrow{\text{QDS}} \hat{\mathfrak{sl}}(3)
\]
(Some) short-term goals

A toolkit for studying CFTs begins by classifying VOA-modules.

\[
\text{vir} \xleftarrow{\text{QDS}} \widehat{\mathfrak{sl}}(2)
\]

\[
W_3 \xleftarrow{\text{QDS}} \widehat{\mathfrak{sl}}(3)
\]

\[
\vdots
\]

\[
W_n \xleftarrow{\text{QDS}} \widehat{\mathfrak{sl}}(n)
\]
(Some) short-term goals

A toolkit for studying CFTs begins by classifying VOA-modules.

\[
\text{vir} \xleftarrow{QDS} \widehat{\mathfrak{sl}}(2)
\]

\[
N = 1 \xleftarrow{QDS} \widehat{\mathfrak{osp}}(1|2) \quad \quad W_3 \xleftarrow{QDS} \widehat{\mathfrak{sl}}(3)
\]

\[
\vdots
\]

\[
W_n \xleftarrow{QDS} \widehat{\mathfrak{sl}}(n)
\]
(Some) short-term goals

A toolkit for studying CFTs begins by classifying VOA-modules.

\[
\text{vir} \xleftarrow{\text{QDS}} \hat{\mathfrak{sl}}(2)
\]

\[
N = 1 \xleftarrow{\text{QDS}} \hat{\mathfrak{osp}}(1|2)
\]

\[
N = 2 \xleftarrow{\text{QDS}} \hat{\mathfrak{sl}}(2|1)
\]

\[
N = 4 \xleftarrow{\text{QDS}} \hat{\mathfrak{psl}}(2|2)
\]

\[
W_3 \xleftarrow{\text{QDS}} \hat{\mathfrak{sl}}(3)
\]

\[
W_n \xleftarrow{\text{QDS}} \hat{\mathfrak{sl}}(n)
\]

The challenge is to understand parabolics. Superconformal challenge is "generalised" Jacks.
(Some) short-term goals

A toolkit for studying CFTs begins by classifying VOA-modules.

\[\text{vir} \xleftarrow{\text{QDS}} \hat{sl}(2) \]

\[N = 1 \xleftarrow{\text{QDS}} \hat{osp}(1|2) \quad W_3 \xleftarrow{\text{QDS}} \hat{sl}(3) \]

\[N = 2 \xleftarrow{\text{QDS}} \hat{sl}(2|1) \quad : \]

\[N = 4 \xleftarrow{\text{QDS}} \hat{psl}(2|2) \quad W_n \xleftarrow{\text{QDS}} \hat{sl}(n) \]

\[\hat{sl}(n) \] challenge is to understand parabolics.
(Some) short-term goals

A toolkit for studying CFTs begins by classifying VOA-modules.

\[
\text{vir} \xleftarrow{QDS} \widehat{\mathfrak{sl}} (2)
\]

\[
N = 1 \xleftarrow{QDS} \widehat{\mathfrak{osp}} (1|2)
\]

\[
N = 2 \xleftarrow{QDS} \widehat{\mathfrak{sl}} (2|1)
\]

\[
N = 4 \xleftarrow{QDS} \widehat{\mathfrak{psl}} (2|2)
\]

\[
W_3 \xleftarrow{QDS} \widehat{\mathfrak{sl}} (3)
\]

\[
W_n \xleftarrow{QDS} \widehat{\mathfrak{sl}} (n)
\]

\[\widehat{\mathfrak{sl}} (n)\] challenge is to understand parabolics.

Superconformal challenge is “generalised” Jacks.
A grander scheme

Inject results into the (log)CFT toolkit [Creutzig-DR-Wood, v1.1e]:

• Classify \(N\)-graded VOA-modules.
• Construct parabolics and irreducibles through resolutions.
• Modularity and Verlinde via standard modules [Creutzig-DR].
• Construct projectives and decompose fusion products.
• Classify staggered modules, cf. [Kytölä-DR].
• Extend symmetric polynomial game to correlators.
• Profit!
A grander scheme

Inject results into the (log)CFT toolkit [Creutzig-DR-Wood, v1.1ε]:

- *Classify* \mathbb{N}-graded VOA-modules.
- Construct parabolics and irreducibles through resolutions.
- Modularity and Verlinde via standard modules [Creutzig-DR].
- Construct projectives and decompose fusion products.
- Classify staggered modules, *cf.* [Kytölä-DR].
- Extend symmetric polynomial game to correlators.
A grander scheme

Inject results into the (log)CFT toolkit [Creutzig-DR-Wood, v1.1ε]:

- **Classify** \mathbb{N}-graded VOA-modules.
- Construct parabolics and irreducibles through resolutions.
- Modularity and Verlinde via standard modules [Creutzig-DR].
- Construct projectives and decompose fusion products.
- Classify staggered modules, *cf.* [Kytölä-DR].
- Extend symmetric polynomial game to correlators.
- ???
- Profit!
A grander scheme

Inject results into the (log)CFT toolkit [Creutzig-DR-Wood, v1.1ε]:

- Classify \mathbb{N}-graded VOA-modules.
- Construct parabolics and irreducibles through resolutions.
- Modularity and Verlinde via standard modules [Creutzig-DR].
- Construct projectives and decompose fusion products.
- Classify staggered modules, cf. [Kytölä-DR].
- Extend symmetric polynomial game to correlators.
- ???
- Profit!

The idea is to exploit rigorous free field methods as “brute force” calculations become infeasible at higher rank.
Thank you!