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Logarithmic conformal field theory

Conformal field theory describes the continuum scaling limit of many
critical statistical lattice models.

CFTs are divided into several broad representation-theoretic classes:

• If the space of states is built from a finite number of irreducible
representations, then the CFT is rational.

• If the space of states involves an infinite number of irreducible
representations, then the CFT is irrational.

• If the space of states involves reducible but indecomposable
representations, then the CFT is logarithmic.

Typically, one identifies the scaling limit of a critical statistical model as a
rational CFT, eg. Ising model −→ Virasoro minimal model M

(
3, 4
)
.

However, there is evidence that scaling limits are typically logarithmic.
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Reducible but indecomposable

A representation is reducible if it has a non-zero proper subrepresentation.

A representation is decomposable if it is the direct sum of two non-zero
proper subrepresentations.

For many types of algebra representations, reducible ⇐⇒ decomposable:

• Finite-dim. C-reps of finite group algebras, eg. CSn;
• Finite-dim. C-reps of semisimple Lie algebras, eg. sl

(
2
)
;

• Finite-dim. C-reps of compact semisimple Lie groups, eg. SU
(
2
)
.

However, a representation may be reducible but indecomposable.

Example: Any matrix A defines a rep of C[x] by x 7→ A.

• If A is diagonalisable, then the rep is a direct sum of irreducibles.

• If A is not diagonalisable, then there are reducible but indecomposable
subreps corresponding to the non-trivial Jordan blocks of A.
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Reducible but indecomposable representations are common, eg.:

• k-reps of finite group algebras kG when char k | cardG;
• C-reps of diagram algebras at roots of unity, eg. Temperley-Lieb;

• C-reps of quantum groups at roots of unity, eg. Uqsl
(
2
)
;

• C-reps of simple Lie superalgebras, eg. gl
(
1
∣
∣1
)
;

• Infinite-dim. C-reps of semisimple Lie algebras and groups;

• C-reps of affine / Virasoro / W- algebras and superalgebras.

Often, one constructs irreducible representations as quotients of
indecomposable ones, cf. null vectors in CFT.

In integrable lattice models, the indecomposability of quantum group
reps is relevant for functional relations and T-systems.

In CFT, the indecomposability of Virasoro representations has measurable
consequences for correlation functions.
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Temperley-Lieb indecomposables

The Temperley-Lieb algebra TLn(β), β = q + q−1, has reducible but
indecomposable representations when q is a root of unity.1

Recall that TLn(β) is spanned by planar diagrams and generated by

I = ...

1 2 3 n

, ej = ... ...

1 j n

and multiplication is stacking diagrams and replacing each closed loop by
a factor of β:

= β2 .

1This is true unless q = ±1 or n is odd and q = ±i.
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TLn(β) has a family of standard representations Sdn spanned by link
states (half-diagrams) and parametrised by the number of defects d.

For n = 5 and d = 1, Sdn is spanned by the following link states:

, , , , .

The action is again by stacking and replacing each closed loop by β, but
cupped defects are assigned a factor of 0:

= β , = 0.

When q is not a root of unity, every standard representation is irreducible
and every irreducible representation is standard.
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When q is a root of unity, most standard representations are reducible
but indecomposable. eg., S13 with β = 1 (q = eiπ/3):

S13 = C
{

,

}

,

e1 7−→
(
1 1
0 0

)

, e2 7−→
(
0 0
1 1

)

.

L = C
{

−
}
is the only non-zero proper subrepresentation.

The quotient N = S13/L is also irreducible.

S13 is thus reducible but indecomposable, when β = 1, with structure

N

L

S13:

.

This structure (two irreducibles glued into an indecomposable) is typical
for standard TLn(β)-representations at roots of unity.
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Gram determinants

A standard representation is reducible iff its Gram determinant detdn
vanishes. (It is always indecomposable.)

This is the determinant of the bilinear form defined on link states by
reflecting one horizontally, stacking, and then assigning factors of β to
closed loops, 0 to capped or cupped defects, and 1 to everything else:

〈 ∣
∣
∣

〉

= = β2,

〈 ∣
∣
∣

〉

= = 0.

This determinant has a closed form expression:

detdn =

(n−d)/2
∏

j=1

(

[d+ 1 + j]q
[j]q

)dim Sd+2j
n

.
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Virasoro indecomposables

The Virasoro representations one needs for the minimal models are
irreducible and highest-weight.

But, the Virasoro algebra has lots of reducible but indecomposable
representations, eg. the Verma module V0 with h = c = 0:

L0

L1 L2

L5 L7

L12 L15

.

.

.
.
.
.

V0:

Here, Lh is the irreducible c = 0 highest-weight Virasoro-module of
conformal dimension h.
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A Virasoro Verma module is reducible iff its Kac determinant det
(g)
h,c

vanishes at some conformal grade g. (It is always indecomposable.)

This is the determinant of the Shapovalov form defined by

〈vh|vh〉 = 1 and 〈Lnv|w〉 = 〈v|L−nw〉.

eg., 〈L−2vh|L−2vh〉 = 〈vh|L2L−2vh〉 = 〈vh|[L2, L−2]vh〉
= 〈vh|(4L0 +

1
2C)vh〉 = 4h+ c

2 .

The Kac determinant also has a closed form expression:

detgh,c =
∏

r,s≥1
rs≤g

(
h− hr,s(t)

)p(g−rs)
,

c = 13− 6
(
t+ t−1

)
, hr,s(t) =

r2 − 1

4
t− rs− 1

2
+

s2 − 1

4
t−1.
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Feigin-Fuchs modules

The Coulomb gas approach to Virasoro minimal models produces
Feigin-Fuchs modules Fr,s instead of Verma modules.

These have the same characters as Verma modules, but different
indecomposable structures in general.

Fr,s:

...
...

...

...
...

h = hr,s

The structure of Fr,s, for given r, s ∈ Z+, is that for which the node of
conformal dimension hr,s + rs has all arrows pointing outwards.
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Logarithmic minimal models

Many statistical lattice models, eg. Ising, 3-state Potts, have scaling
limits described by the (rational) Virasoro minimal model CFTs, ie. only
irreducible representations appear.

Some, eg. polymers, percolation, are better described by logarithmic
versions of these CFTs, ie. indecomposables appear.

These logarithmic minimal models have conjectural lattice realisations
[PRZ ’06] that are Yang-Baxter integrable, so we can try to study them on
the lattice and in the continuum.

The diagram algebra relevant to these realisations appears to be
Temperley-Lieb, but is actually a quotient Bn,k(β) of the one-boundary
Temperley-Lieb algebra [Morin-Duchesne-Rasmussen-DR].

Does the indecomposable structure of Bn,k(β)-representations predict the
indecomposable structure of the appropriate Virasoro representations?
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The lattice realisation involves the Temperley-Lieb algebra and its
Wenzl-Jones projectors, indicated diagrammatically by k .

These are elements of TLk that project onto the trivial irreducible
representation, so annihilate links:

k = k = 0.

Examples:

• 1 = I;

• 2 = I − 1

β
e1;

• 3 = I − β

β2 − 1
(e1 + e2) +

1

β2 − 1
(e1e2 + e2e1).

These expressions are singular when q is a root of unity (eg.,
β = 0, ±1, ±

√
2, . . .).
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The transfer tangle

The integrable structure of the lattice realisations is captured by the
double row transfer tangle

D
(k)(u, ξ) ∝

. . .

. . .

. . .

. . .

u

u

u

u

u

u

︸ ︷︷ ︸
n

k

k

ξk

ξk

. . .

. . .

ξ2

ξ2

ξ1

ξ1

,

u =
sin(λ− u)

sinλ
+

sinu

sinλ
,

ξj = u+ ξ + jλ, β = 2 cosλ.

This is a very complicated linear combination of Temperley-Lieb
diagrams. The important feature for us is the boundary seam of width k
on the right, flanked by the Wenzl-Jones projectors.
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The hamiltonian H(k) is obtained by expanding D
(k)(u, ξ) in u:

D
(k)(u, ξ) = I(k) +

2u

sinλ

(

(β−1 − n cosλ)I(k) −H(k)
)

+O(u2),

I(k) =

1 2

...

n n+1

...

...
n+k

k ,

H(k) = −I(k)
n−1∑

j=1

ej +
sinλ sin(kλ)

sin ξ sin(ξ + (k + 1)λ)
I(k)enI

(k).

This hamiltonian, suitably shifted and rescaled, is expected to become
the CFT hamiltonian L0 − c

24 in the scaling limit.

We also expect that there exist other linear combinations of
Temperley-Lieb diagrams that become the other Ln in the scaling limit
[cf. Koo-Saleur].
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The boundary seam algebra

The transfer tangle and hamiltonian are constructed as elements of
TLn+k(β), but this is not the correct algebra for analysing logarithmic
minimal models.

To account for the WJ-projectors, define the boundary seam algebra
Bn,k(β) as the subalgebra of TLn+k(β) with unit I(k) and generators

E
(k)
j =

1

...

j j+1

...

n n+1

...

...
n+k

k (j = 1, . . . , n− 1),

E(k)
n = [k]q

1 2

...

n n+1

...

...

...

...

k

k

n+k

.

Both D(k)(u, ξ) and H(k) belong to Bn,k(β).
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The E
(k)
j satisfy the defining relations of the one-boundary

Temperley-Lieb algebra TL(1)n (β, [k]q, [k + 1]q).

However, Bn,k(β) ∼= TL(1)n (β, [k]q, [k + 1]q) iff n ≤ k.

For n > k, Bn,k(β) is always a proper quotient and there is always just
one additional independent relation, eg.

• Bn,0(β) = TLn(β), as E
(0)
n = 0 by definition.;

• Bn,1(β) = TLn+1(β), as 1 = I, so E
(1)
n E

(1)
n−1E

(1)
n = E

(1)
n ;

• Bn,2(β) $ TLn+2(β) — the extra relation is

([2]qE
(2)
n−2 − E(2)

n E
(2)
n−1E

(2)
n−2 − I(2))([2]qE

(2)
n − E(2)

n E
(2)
n−1E

(2)
n ) = 0.

Since n → ∞ in the scaling limit, we need the case n > k.
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Standard Bn,k(β)-representations

Since Bn,k(β) ⊆ TLn+k(β), the boundary seam algebra acts on link
states.

The link states with d defects and no links between the k rightmost
nodes span the standard Bn,k(β)-representation Sdn,k, eg.

S04,2 = C
{

, ,

}

.

We get a natural bilinear form on Sdn,k by inserting I(k) into the bilinear
form for standard TLn+k(β)-representations.

Its Gram determinant detdn,k again controls the reducibility of the

standard representations Sdn,k:

detdn,k =

⌊k/2⌋
∏

i=1

(
[i]q

[k − i+ 1]q

)dim Sd
n,k−2i

·
1
2 (n+k−d)
∏

j=1

(
[d+ j + 1]q

[j]q

)dim Sd+2j
n,k

.
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Virasoro Kac representations

We expect that a standard Bn,k(β)-representation is replaced by a
Virasoro representation in the scaling limit n → ∞.

Our main result precisely identifies this Virasoro representation.

Conjecture

The scaling limit of the standard Bn,k(β)-representation Sdn,k is the

subrepresentation Kr,s of the Feigin-Fuchs module Fr,s generated by the

subsingular vectors whose grades are strictly less than rs. Here,

r =

⌈
k + 1

π
cos−1 −β

2

⌉

, s = d+ 1,

provided that ξ is positive and sufficiently small.

The Kr,s are called Kac representations.
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Kac representation structures
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Character results

We can numerically diagonalise the action of the hamiltonian, for various
ξ, on the standard Sn,k(β)-representations [cf. Pearce-Rasmussen].

Ordering the (real) eigenvalues, we rigidly shift and rescale them so that
the first two are 0 and 1 (or 0 and 2).

This is interpreted as approximating q−(hr,s−c/24) times a Virasoro
character. The hr,s − c/24 factor is studied in [Pearce-Tartaglia-Couvreur].

This diagonalisation was performed for system sizes n+ k = 19 or 20.

The results are consistent with the characters of the Kac representations
from our conjecture, but they are not as convincing as one might like.

We also studied cases where ξ was not “sufficiently small”, but the
pattern to the results is not as easy to discern.
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(p, p′) = (3, 5) n = 14 : 1 + q2 + q2.92 + q3.74 + q3.88 + q4.42 + q4.68 + q4.93 + q5.24 + q5.35 + · · ·
k = 0 n = 16 : 1 + q2 + q2.94 + q3.80 + q3.90 + q4.54 + q4.75 + q5.15 + q5.49 + q5.60 + · · ·
d = 0 n = 18 : 1 + q2 + q2.95 + q3.84 + q3.92 + q4.63 + q4.80 + q5.32 + q5.59 + q5.72 + · · ·
ξ n/a n = 20 : 1 + q2 + q2.96 + q3.87 + q3.94 + q4.70 + q4.84 + q5.44 + q5.66 + q5.77 + · · ·

(r, s) = (1, 1) n → ∞ : 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + · · ·

(p, p′) = (3, 4) n = 11 : 1 + q + q1.68 + q1.88 + q2.44 + q2.63 + q2.80 + q3.08 + q3.21 + q3.27 + · · ·
k = 1 n = 13 : 1 + q + q1.71 + q1.90 + q2.51 + q2.70 + q2.83 + q3.21 + q3.35 + q3.37 + · · ·
d = 2 n = 15 : 1 + q + q1.74 + q1.92 + q2.56 + q2.75 + q2.85 + q3.30 + q3.42 + q3.49 + · · ·
ξ = π

4 n = 17 : 1 + q + q1.76 + q1.93 + q2.60 + q2.79 + q2.87 + q3.37 + q3.47 + q3.57 + · · ·
(r, s) → (2, 3) n → ∞ : 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + · · ·

(p, p′) = (4, 5) n = 12 : 1 + q + q1.90 + q2.01 + q2.65 + q2.90 + q3.22 + q3.57 + q3.64 + q3.86 + · · ·
k = 2 n = 14 : 1 + q + q1.92 + q2.01 + q2.73 + q2.92 + q3.40 + q3.72 + q3.89 + q3.90 + · · ·
d = 0 n = 16 : 1 + q + q1.94 + q2.00 + q2.79 + q2.93 + q3.53 + q3.77 + q3.91 + q4.12 + · · ·
ξ = π

5 n = 18 : 1 + q + q1.95 + q2.00 + q2.83 + q2.94 + q3.62 + q3.81 + q3.92 + q4.29 + · · ·
(r, s) → (3, 1) n → ∞ : 1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + · · ·
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Module structure results

Knowing the character of a representation is not usually sufficient to
determine its indecomposable structure.

eg., a sum ch
[
L
]
+ ch

[
L′
]
of two irreducible characters corresponds to

three inequivalent module structures:

L

L′

L

L′

L

L′
⊕

.

We cannot distinguish these structures using the hamiltonian H(k) (or
transfer tangle), but we can if we include information about the bilinear
form on the standard Bn,k(β)-representations S

d
n,k.

The kernel of this bilinear form is a subrepresentation of Sdn,k, so we can

check whether each eigenvector of H(k) belongs to this kernel.
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Example: We consider the standard Bn,0(1)-representations S
2
n,0, ie.

k = 0, d = 2 and β = 1, recalling that Bn,0(1) = TLn(1). Now,

det2n =

1
2n−1
∏

j=1

(
[j + 3]q
[j]q

)dim S2(j+1)
n

=

1
2n−1
∏

j=1

(−1)
dim S2(j+1)

n 6= 0,

since q = e±iπ/3. Thus, S2n,0 = S2n is irreducible for all n ∈ 2Z+.

The character analysis suggests that the scaling limit is an irreducible
c = 0 Virasoro module of conformal dimension h1,3 = 1

3 .

This is consistent with our conjecture that the scaling limit is the Kac
module Kr,s with r = ⌈ 0+1

π cos−1(− 1
2 )⌉ = 1 and s = 2 + 1 = 3.

It is likewise consistent with the expectation that the irreducible
Bn,0(1)-representations will become an irreducible Virasoro
representation in the scaling limit.
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Example: We consider the standard Bn,1(
√
2)-representations S1n,1, ie.

k = 1, d = 1 and β =
√
2, recalling that Bn,1(

√
2) = TLn+1(

√
2).

This time, det1n+1 = 0 for n = 4, 6, 8, . . ., so S1n,1 = S1n+1 is reducible.

The character analysis suggests a sum of two irreducible characters of
conformal dimensions 1

16 and 33
16 . The indecomposable structure is

therefore ambiguous.

The ground state is not in the kernel of the bilinear form on S1n,1;
eigenstates in this kernel appear from grade 2.

This selects the following indecomposable structure, consistent with the
Kac module K2,2 given by our conjecture:

L1/16

L33/16
.
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Observations:

• The structure of the standard Bn,k(β)-representation need not match
that of the Virasoro representation: the (rescaled) eigenvalues of
certain eigenstates may diverge in the scaling limit.

• For k ≥ 2, we do not know the complete indecomposable structure of
the standard Bn,k(β)-representations. Nevertheless, the Gram
determinant analysis can still be applied to get partial information.

• The standard Bn,k(β)-representations need not be indecomposable,
correlating with decomposable Kac representations for k ≥ 2.

• The Gram determinant of a standard Bn,k(β)-representation may
vanish identically or it may diverge. In both cases, it may be
renormalised and the analysis is then performed as before.

• We have analysed all cases with k ≤ 3, d ≤ 4 and q an m-th root of
unity, m = 2, 3, 4, 5, and the Gram determinant analysis is always
consistent with our conjecture for the scaling limit.
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Continuum results

One can also generalise the lattice setup to admit boundary seams on
both sides of the double row transfer tangle [Pearce-Rasmussen].

This corresponds to fusing the single boundary cases, leading to a
definition of lattice fusion [Gainutdinov-Vasseur] that is expected to give CFT
fusion in the scaling limit.

If this is so, then the lattice setup implies that the Kac representations
should have the following fusion rules:

Kr,1 × K1,s = Kr,s.

We have verified this continuum prediction in many cases using the
Nahm-Gaberdiel-Kausch fusion algorithm for Virasoro representations.

This allowed us to explore the consistency of our conjecture in cases
where the indecomposable structure was far more complicated than those
accessible with a lattice treatment.
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Summary

We have resolved two outstanding issues concerning the logarithmic
minimal models, namely the identification of the underlying
representations in the lattice realisation and in the continuum.

The lattice identification required introducing an algebraic framework in
terms of a new (?) diagram algebra Bn,k(β) and its standard
representations.

The known analysis of the eigenvalues of the lattice hamiltonian was
reformulated and then extended in this framework to study the
indecomposable structure through Gram determinant methods.

Our results indicate that one can indeed study indecomposable structures
in the scaling limit by restricting to indecomposable structures on the
lattice, though much care is needed.

We have also confirmed the consistency of our results directly in the
continuum by performing highly non-trivial fusion calculations.
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Outlook

All of the approaches we have taken have potential to be strengthened:

• For characters, the transfer tangles considered are known to satisfy
functional relations [Morin-Duchesne], though these have only been solved
(and eigenvalues extracted) when β = 0 [Pearce-Rasmussen-Ruelle].

• We have only used rather coarse information about the standard
representations of the boundary seam algebras Bn,k(β) with k ≥ 2. A
thorough study of their indecomposable structures [cf. Martin-Woodcock]

would facilitate the identification of scaling limits.

• Lattice fusion suggests that one should study certain quotients of the
two-boundary Temperley-Lieb algebras. However, this may also be
encoded in terms of a quotient of the one-boundary Temperley-Lieb
algebra.

• The fact that Kac representations are so closely related to
Feigin-Fuchs modules suggests that the fusion rules of the logarithmic
minimal models may be accessible using Coulomb gas methods.

Also: What happens when ξ isn’t “sufficiently small”? What about other
conformal boundary conditions? What about other loop models?
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