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Raison d’être

Conformal field theory (CFT) arose in the early 80s at the confluence of

• Statistical Mechanics: Phase transitions in statistical lattice models
may be modelled by conformally invariant quantum field theories.

• String Theory: At the level of the worldsheet, string dynamics defines
two-dimensional conformally invariant quantum field theories.

• Pure Mathematics: The “monstrous moonshine” conjectures led to
the notion of a vertex algebra which axiomatises (chiral) CFT.

By CFT, we mean a relativistic quantum field theory whose infinitesimal
symmetries generate an algebra that contains the conformal algebra.

We will only consider two-dimensional euclidean CFTs. The conformal
algebra is then (two commuting copies of) the Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n + 1
12 (m3 −m)δm+n=0c1, m, n ∈ Z.

c ∈ C is the central charge of the CFT.
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Examples

• The free boson CFT describes a (massless spinless) string propagating
in a one-dimensional space(time). Its infinitesimal symmetries
generate the Heisenberg algebra:

[am, an] = mδm+n=01, m, n ∈ Z.

This algebra has a Virasoro subalgebra of central charge c = 1.

• The Ising model CFT describes the critical point of a two-dimensional
spin lattice in the limit of zero magnetic field. The algebra is Virasoro
with c = 1

2 . This CFT is almost identical to the free fermion CFT that
describes a (massless spin- 1

2 ) string. The (super)algebra is

{ψm, ψn} = δm+n=01, m, n ∈ Z or Z + 1
2 .

• The moonshine CFT describes an orbifold of an exotic
compactification of 24 free bosons (so c = 24). Its algebra is very
complicated: the automorphisms form the monster simple group.
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The quantum state spaces of these examples are all completely reducible.

• The Ising model state space decomposes into irreducible
highest-weight modules:

H = (L0 ⊗ L0)⊕ (L1/16 ⊗ L1/16)⊕ (L1/2 ⊗ L1/2).

Here, the highest-weight state of Lh has L0-eigenvalue h.

• The moonshine state space is the tensor product of the irreducible
vacuum module with itself:

H = L0 ⊗ L0.

• The free boson state space decomposes into a direct integral of
irreducible Fock spaces:

H = 	
∫
λ

(Fλ ⊗ Fλ) dλ.

Here, λ is the a0-eigenvalue of the highest-weight state of Fλ.
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Rational vs logarithmic CFT

A rational CFT is one for which:

• The quantum state space is completely reducible.

• The decomposition of the quantum state space involves finitely many
irreducible representations of the infinitesimal symmetry algebra.

Along with the free boson, rational CFTs are the ones that are typically
encountered in textbooks.

Complete reducibility means that the representation theory is under
control and finiteness means that questions of analysis rarely arise.

By contrast, a CFT is said to be logarithmic if

• The quantum state space is not completely reducible.

If the quantum state space is nevertheless constructed from finitely many
irreducibles, then the CFT is log-rational.
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Data for rational CFTs

The business of theoretical physics is to calculate or predict the value of
measurable quantities. In field theory, these values are generally held to
be obtained from correlation functions.

In applications of rational CFT, such values are typically reduced to

• Eigenvalues of observable operators on highest-weight states.

• Three point constants.

These appear in the primary 2- and 3-point correlation functions:

〈A(z1)B(z2)〉 =
δA∗=B

zhA+hB
12

, zij = zi − zj ,

〈A(z1)B(z2)C(z3)〉 =
ΓABC

zhA+hB−hC
12 zhA−hB+hC

13 z−hA+hB+hC
23

.

The eigenvalues constitute the representation-theoretic data, the 3-point
constants constitute the algebraic data (operator product expansion).
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Complete reducibility

The definition of a logarithmic CFT involves a failure of complete
reducibility. What does this mean?

A representation is reducible if it has a non-zero proper subrepresentation.
A representation is decomposable if it is the direct sum of two non-zero
proper subrepresentations.
A representation is completely reducible if it may be written as a direct
sum (or integral) of irreducible subrepresentations.

For many types of algebra representations, being reducible is equivalent
to being decomposable:

• Finite-dim. C-reps of finite group algebras, eg. CSn;

• Finite-dim. C-reps of semisimple Lie algebras, eg. sl2;

• Finite-dim. C-reps of compact semisimple Lie groups, eg. SU
(
2
)
.

Thus, for these cases, we have complete reducibility.
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Reducible but indecomposable

Alas, reducible but indecomposable representations are common, eg.:

• k-reps of finite group algebras kG when char k | card G;

• C-reps of diagram algebras at roots of unity, eg. Temperley-Lieb;

• C-reps of quantum groups at roots of unity, eg. Uq(sl2);

• Finite-dim. C-reps of Lie superalgebras, eg. gl
(
1
∣∣1) (not osp

(
1
∣∣2));

• Infinite-dim. C-reps of semisimple Lie (super)algebras and groups;

• C-reps of affine / Virasoro / W- algebras and superalgebras.

Often, one constructs irreducible representations as quotients of
indecomposable ones, cf. null vectors in Verma modules.

invariant subspace non-invariant complement
algebra
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Jordan blocks

Sometimes, reducible but indecomposable representations correspond to
non-diagonalisable actions of certain algebra elements.

Example: Any n× n matrix A defines an n-dimensional representation
of C[x] (or Z or gl1 or . . . ) by x 7→ A.

• If A is diagonalisable, then this is a direct sum of n irreducibles.

• Otherwise, this is a direct sum of j < n indecomposables, one for
each Jordan block in the Jordan canonical form of A.

• Any such indecomposable is irreducible if and only if the rank of the
corresponding Jordan block is 1.

A ∼


3 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ←→ L3 ⊕
L1

L1

⊕ L1

In logarithmic CFT, Jordan blocks in the action of L0 are typical.
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Logarithmic CFT

Recall: logarithmic means the failure of complete reducibility which
means that the representation theory becomes much more difficult.

But: logarithmic CFTs are non-unitary so maybe they’re non-physical.

So why bother?

• Continuum scaling limits of statistical lattice models are frequently
logarithmic, eg percolation and polymers. Even the Ising model
exhibits logarithmic behaviour if you ask the right questions.

• String theories on non-compact or supersymmetric space(times) are
generally logarithmic, as are many of the ghost theories introduced to
break the gauge symmetries of the string action.

• We don’t want to artificially restrict ourselves to the “easy” cases.
The applications of logarithmic CFT alone make it too important to
leave to mere mathematicians.
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Logarithmic examples

• The symplectic fermions CFT describes two spin-1 fermions:

{J±m, J±n } = 0, {J+
m, J

−
n } = mδm+n=01,

It’s log-rational of central charge c = −2.
• The bosonic ghosts CFT commutation rules are

[βm, βn] = [γm, γn] = 0, [γm, βn] = δm+n=01.

It’s logarithmic but not log-rational. The central charge depends on
the conformal weights hβ and hγ of the ghost fields.

(hβ , hγ) ( 1
2 ,

1
2 ) (1, 0) ( 3

2 ,−
1
2 ) (2,−1)

c −1 2 11 26

• CFTs based on affine Kac-Moody algebras are logarithmic, but not
log-rational, at all levels except the non-negative integers.
eg., the fractional level ŝl2 models with levels k satisfying

k + 2 =
u

v
, u, v ∈ Z>2, gcd{u, v} = 1.
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• CFTs based on affine superalgebras, except ôsp
(
1
∣∣2n), are

logarithmic, but not log-rational, at all levels.

• The non-unitary N = 2 minimal models and non-unitary parafermion
models are all logarithmic, but not log-rational.

• For all central charges, the Virasoro and N = 1 superconformal
algebras also admit logarithmic, but not log-rational, CFTs called the
logarithmic minimal models. These are related to continuum scaling
limits of various integrable lattice models.

Curiously:

• All known log-rational CFTs have orbifolds that are not log-rational.

• The non-log-rational CFTs listed above all have extensions that are
log-rational.

• All known logarithmic CFTs have either a finite number or an
uncountably infinite number of irreducible representations.
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Example: Percolation

The percolation model is a lattice of bonds (or sites) that are open with
probability p and closed otherwise.

A famous question asks for the probability that there is a path through
open bonds (sites) connecting one boundary of the lattice to another.

There is a critical value of p for which the answer is interesting.
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Using (boundary) CFT, Cardy answered this question for critical p as a
four-point correlator

〈φ1,2(z1)φ1,2(z2)φ1,2(z3)φ1,2(z4)〉,

where φ1,2 is primary.

The zi correspond to the four corners of the lattice, so his result is a
function of the aspect ratio. Cardy’s answer,

P (z) =
3Γ( 2

3 )

Γ( 1
3 )2

z1/3
2F1( 1

3 ,
2
3 ,

4
3 ; z), z =

z12z34

z13z24
,

is clearly non-constant.

We claim that percolation is described by a logarithmic (boundary) CFT.
This follows from P being non-constant and the assertion that c = 0.
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Why is it so?

At c = 0, there are two choices for the Virasoro vacuum representation. If
the representation is irreducible, then we have the singular vector relation

|T 〉 = L−2|0〉 = 0 ⇒ T (z) = 0 ⇒ Ln = 0.

But, this implies that the only state is |0〉: the theory is trivial and all
correlators are constants.

To have a non-trivial correlator, the
Virasoro vacuum representation must
be reducible but indecomposable so
that |T 〉 6= 0.

Percolation must thus be described by
a logarithmic (boundary) CFT.

|0〉

|T 〉 L−1|0〉

...
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Similarly, there are two possibilities for the Virasoro representation
generated by Cardy’s primary field because of the vanishing of the grade
2 singular vector |χ〉.

If the representation is irreducible, then

|ω〉 = L−1|φ1,2〉 = 0 ⇒ ∂φ1,2(z) = 0

and the correlator 〈φ1,2(z1)φ1,2(z2)φ1,2(z3)φ1,2(z4)〉 is constant.

To get a non-constant correlator, the
Virasoro representation generated by
φ1,2 must be reducible but
indecomposable so that |ω〉 6= 0.

Once again, we conclude that
percolation must be a logarithmic
(boundary) CFT.

|φ1,2〉

|χ〉 |ω〉

...
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But singular vectors decouple?!

In rational CFT, we are taught that all null vectors must be set to zero
because they are orthogonal to every state. Any correlation function
involving a null field is then zero.

In percolation, the singular vectors |T 〉 = L−2|0〉 and |ω〉 = L−1|φ1,2〉 are
null. But, we cannot set them equal to 0 without trivialising the CFT.

The resolution is that each representation is just part of a larger
indecomposable representation in which the singular vectors are not null.

|0〉

|T 〉 |t〉

〈T |t〉 6= 0

|φ1,2〉

|ω〉 |ξ〉

〈ω|ξ〉 6= 0
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These larger representations may be constructed by fusion. This takes us
out of the (c = 0 minimal model) Kac table and into the (c = 0
logarithmic minimal model) extended Kac table.

0 0 1
3 1 2 10

3 · · ·
5
8

1
8 − 1

24
1
8

5
8

35
24 · · ·

2 1 1
3 0 0 1

3 · · ·
...

...
...

...
...

...
. . .

If we let K1,1 and K1,2 denote the reducible but indecomposable
representations generated by |0〉 and |φ1,2〉, respectively, then

K1,2 × K1,2 = K1,1 ⊕ K1,3,

where K1,3 is irreducible of conformal weight 1
3 .
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It would be reasonable to expect that K1,2 × K1,3
?
= K1,2 ⊕ K1,4, where

K1,4 is some highest-weight representation of conformal weight 1.

Similarly, we might expect that K1,3 × K1,3
?
= K1,1 ⊕ K1,3 ⊕ K1,5, where

K1,5 is some highest-weight representation of conformal weight 2.

However, this is wrong and we actually have

|φ1,2〉

|ω〉 |ξ1,4〉

P1,4

K1,2 × K1,3 = P1,4,

|φ1,1〉 = |0〉

|T 〉 |ξ1,5〉 = |t〉

P1,5

K1,3 × K1,3 = K1,3 ⊕ P1,5.
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The structure of these larger reducible but indecomposable
representations is fixed by a single numerical parameter:

|φ1,2〉

|ω〉 |ξ1,4〉

P1,4: • |ω〉 = L−1|φ1,2〉.
• (L0 − 1)|ξ1,4〉 = |ω〉.
• L1|ξ1,4〉 = − 1

2 |φ1,2〉.
• 〈ω|ξ1,4〉 = − 1

2 .

|0〉

|T 〉 |t〉

P1,5: • |T 〉 = L−2|0〉.
• (L0 − 2)|t〉 = |T 〉.
• L2|t〉 = − 5

8 |0〉.
• 〈T |t〉 = − 5

8 .

In logarithmic CFT, L0 acts non-diagonalisably, singular vectors need not
be null and generating fields need not be primary!
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Staggered modules

The P-type reducible but indecomposable representations encountered in
percolation are examples of staggered modules.

P: |φ+〉

|χ〉

|ξ〉

|φ−〉 or |φ−〉

|φ+〉 = |χ〉

|ξ〉

These seem to be ubiquitous whenever physics demands reducible but
indecomposable representations.

The red vertical arrow represents the non-diagonalisable action of some
(almost) central element: L0 in logarithmic CFT, the quadratic Casimir
for Lie superalgebras and quantum groups, the braid transfer matrix for
Temperley-Lieb, . . .
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Formally, a staggered module P is an extension of a standard module S1

by another standard module S2 (whatever “standard” means):

S2 ⊂ P,
P

S2

∼= S1.

For Virasoro logarithmic minimal models, there is a classification of
staggered modules if we take “standard” to mean highest-weight with at
most one (non-trivial) singular vector.

The classification requires S1, S2 and the logarithmic coupling β ∈ C.

• Choose a highest-weight state |φ+〉.
• Choose a singular vector |χ〉 = U |φ+〉.
• Pick any |ξ〉 satisfying (L0 − hχ)|ξ〉 = |χ〉.
• Compute β = 〈χ|ξ〉 as U†|ξ〉 = β|φ+〉.

|φ+〉

|χ〉 |ξ〉
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Logarithmic couplings and correlators

Since β = 〈χ|ξ〉, it is natural that it also appears in correlation functions.

eg., the c = 0 P1,5-fields T (z) and t(z) satisfy

〈T (z)T (w)〉 =
〈T |T 〉

(z − w)4
= 0,

〈T (z)t(w)〉 =
〈T |t〉

(z − w)4
=

β

(z − w)4
,

〈t(z)t(w)〉 =
α− 2β log(z − w)

(z − w)4
,

where α is another (undetermined) constant. The logarithmic singularity
in such correlators is the reason for the name “logarithmic” CFT.

While β is an invariant of the representation P1,5, α is not: it may be
tuned to any desired value by replacing |t〉 with |t〉+ γ|T 〉.
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Care is needed when discussing logarithmic couplings and correlators.

eg., the c = 0 P1,4-singular field χ(z) and its Jordan partner ξ1,4(z) give

〈χ(z)χ(w)〉 = 0,

but

〈χ(z)ξ1,4(w)〉 =
−β

(z − w)2
,

〈ξ1,4(z)ξ1,4(w)〉 =
α+ 2β log(z − w)

(z − w)2
.

The unexpected sign here results from χ(z) being a descendant field:

χ(z) = (L−1φ1,2)(z) = ∂φ1,2(z).

Unfortunately, this sign is frequently ignored in the literature.
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Data for logarithmic CFTs

The data of logarithmic CFTs then includes the logarithmic couplings β
of any staggered modules.

This is in addition to the conformal weights (and other eigenvalues) of
the highest-weight states and the 3-point constants.

One may wish to extend the 3-point constants to cover those involving
the Jordan partners ξ(z) of the singular fields χ(z), but it isn’t necessary.

No further invariant couplings generalising β appear in the 3-point
functions involving Jordan partner fields.

However, a logarithmic CFT might have reducible but indecomposable
representations that are more complicated than staggered modules. One
might then need to include further invariants.
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Logarithms in percolation?

Recall that Cardy’s 4-point function was hypergeometric,

〈φ1,2(∞)φ1,2(1)φ1,2(z)φ1,2(0)〉 =
3Γ( 2

3 )

Γ( 1
3 )2

z1/3
2F1( 1

3 ,
2
3 ,

4
3 ; z),

with no logarithmic singularities (since 4
3 ,

4
3 −

2
3 −

1
3 ,

2
3 −

1
3 /∈ Z).

Why not? Because fusion only generates one logarithmic partner field
and two are needed to generate logarithmic singularities:

(φ1,2 × φ1,2)× (φ1,2 × φ1,2) ∼ φ1,3 × φ1,3 ∼ ξ1,5 = t,

(φ1,2 × φ1,2 × φ1,2)× φ1,2 ∼ (φ1,2 × φ1,3)× φ1,2 ∼ ξ1,4 × φ1,2.

It is now easy to see that the 6-point function of φ1,2 will be the first to
have logarithmic singularities at c = 0.

Flores, Kleban and Simmons have confirmed that crossing probabilities
for percolation on a hexagon exhibit logarithmic singularities.



28/35

Rational CFT Reducibility and indecomposability Logarithmic CFT Percolation Staggered modules Symplectic fermions Conclusions

Example: Symplectic fermions

We now to turn to a log-rational CFT that is much better understood
than the c = 0 Virasoro logarithmic minimal model (percolation).

The symplectic fermions CFT is even described by an action:

S =
1

4π

∫ (
∂θ+∂̄θ− − ∂θ−∂̄θ+

)
dzdz̄.

The equations of motion give fermionic chiral fields J± = ∂θ± and
J̄± = ∂̄θ±. The (holomorphic) operator product expansions are

J±(z)J±(w) ∼ 0, J+(z)J−(w) ∼ 1

(z − w)2
.

The energy-momentum tensor is of Sugawara type:

T (z) = :J−(z)J+(z):.

Finally, the central charge is c = −2.
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Representations

Being fermionic, representations can be Neveu-Schwarz (the J±n have
n ∈ Z) or Ramond (the J±n have n ∈ Z + 1

2 ). Up to parity, there is:

• A unique Neveu-Schwarz highest-weight representation L0, the
vacuum module.

• A unique Ramond highest-weight representation L−1/8.

The subscript indicates the conformal weight of the highest-weight state.

Fusing Ramond modules results in a
Neveu-Schwarz staggered module:

L−1/8 × L−1/8 = P0.

There are no logarithmic couplings.

There are no staggered modules in
the Ramond sector.

|φ+〉

|0〉

|ξ〉

|φ−〉

−J−0

L0

J+
0 J−0

J+
0
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The states |ξ〉, |φ±〉 and |0〉 all have
conformal weight 0.

P0 is formed by glueing two copies
of L0 and two copies of its parity
reversal into an indecomposable.

|φ+〉

|0〉

|ξ〉

|φ−〉

−J−0

L0

J+
0 J−0

J+
0

The scalar products (2-point functions) of the P0-states are as follows:

• 〈0|0〉 = 〈0|L0|ξ〉 = 0 (L0 is still self-adjoint).

• We may choose 〈0|ξ〉 = 1. Thus, 〈1〉 = 0 and 〈ξ(z)〉 = 1.

• 〈ξ|ξ〉 is not defined, but 〈ξ(z)ξ(w)〉 = α− 2 log(z − w).

• 〈φ±|φ±〉 = 〈φ±|J±0 |ξ〉 = ∓〈0|ξ〉 = ∓1 and 〈φ±(z)φ±(w)〉 = ∓1
(since (J±0 )† = J∓0 ).

The Gram matrix of 2-point functions is thus non-degenerate! But, this
is at the chiral level. . .
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Bulk symplectic fermions

In the Ramond sector (no staggered modules), the bulk structure is as
expected:

HR = (L−1/8 ⊗ L−1/8)⊕ (parity-reversed versions).

However, tensoring the Neveu-Schwarz staggered module P0 with itself is
physically untenable: e2πi(L0−L̄0) does not act as the identity.

ξ ⊗ ξ

φ+ ⊗ ξ ξ ⊗ φ+ ξ ⊗ φ− φ− ⊗ ξ

φ+ ⊗ φ+ φ+ ⊗ φ− ξ ⊗ 1 1⊗ ξ φ− ⊗ φ+ φ− ⊗ φ−

φ+ ⊗ 1 1⊗ φ+ 1⊗ φ− φ− ⊗ 1

1⊗ 1

We must quotient by the image of the nilpotent part of L0 − L̄0.
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In this quotient, define:

• Ξ = [ξ ⊗ ξ].
• Ω = [ξ ⊗ 1] = [1⊗ ξ].
• Φ± = [φ± ⊗ ξ].
• Φ̄± = [ξ ⊗ φ±].

• Φab = [φa ⊗ φb].

Ξ

Φ+ Φ̄+ Φ̄− Φ−

Φ++ Φ+− Ω Φ−+ Φ−−

L0 L̄0

It remains to test the non-degeneracy of the 2-point functions. This
time, the Gram matrix has a non-trivial kernel (hard yakka):

ker〈·|·〉 = span
{
Φab − 〈Ξ|Φab〉Ω, Φ̄a + 〈Ξ|Φ−a〉Φ+ − 〈Ξ|Φ+a〉Φ−

}
.

Quotienting by this kernel gives the Neveu-Schwarz bulk state space

HNS = P0 ⊕ (parity-reversed versions),

where P0 is an indecomposable formed by gluing two copies of L0 ⊗ L0

and two copies of its parity-reversed version together.
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The bulk quantum state space P0 can be conveniently visualised in terms
of either the holomorphic or antiholomorphic action, but not both.

Ξ

Φ+ Φ−

Ω

J+
0 J−0

−J−0 J+
0

L0 L̄0

Ξ

Φ̄+ Φ̄−

Ω

J̄+
0 J̄−0

−J̄−0 J̄+
0

L0 L̄0

For a complete description of this bulk staggered module, we must also
specify each Φ̄± as a linear combination of the Φ± (or vice versa).

This inconvenience is expected
whenever composition factors are
repeated at the same Loewy grade.

Here, Π denotes parity reversal.

L0 ⊗ L0

ΠL0 ⊗ΠL0

⊕
ΠL0 ⊗ΠL0

L0 ⊗ L0
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Conclusions

• CFT models many interesting (and useful) systems in physics and
generates lots of beautiful mathematics. Sometimes this requires
reducible but indecomposable representations, ie. logarithmic CFT.

• The failure of complete reducibility, combined with the
non-degeneracy of 2-point functions, leads to staggered modules on
which L0 acts with rank 2 Jordan blocks.

• These Jordan blocks are directly responsible for the logarithmic
singularities observed in correlation functions.

• Singular vectors remain physical by acquiring a Jordan partner to
which they are not orthogonal.

• Staggered modules arise naturally when fusing irreducible
representations. They are characterised by an invariant called the
logarithmic coupling.

• Logarithmic couplings appear in correlators and must be added to the
list of fundamental numerical data of a CFT.

• Holomorphic factorisation fails for the bulk quantum state space of a
logarithmic CFT. The structure is constrained by the locality and
non-degeneracy of 2- and 3-point functions, but the analysis is tough.
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What’s next?

One thing we have avoided discussing to date is modular invariance.

The invariance of the bulk partition function is a powerful constraint on
the quantum state space for rational CFTs.

In the logarithmic case, modularity is much more subtle and there are
profound difficulties that are still being addressed.

For example, the symplectic fermions vacuum supercharacter is

sch
[
L0

]
= q1/12

∞∏
i=1

(1− qi)2 = η(τ)2, q = e2πiτ .

Its modular S-transform therefore has a τ -dependent coefficient:

sch
[
L0

]
(−1/τ) = η(−1/τ)2 = −iτη(τ)2.

We shall discuss modularity in logarithmic CFT further in my next talk...
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