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Modularity and rational CFT

One of the most intriguing properties of a conformal field theory (CFT)1

is that its bulk partition function

Z(τ, . . . ) = tr
(
qL0−c/24qL0−c/24 · · ·

)
, q = e2πiτ ,

must be invariant under the action of the modular group SL2(Z):

Z

(
aτ + b

cτ + d

)
= Z(τ) for all

(
a b
c d

)
∈ SL2(Z).

If the CFT is rational, then the space spanned by the irreducible
characters of the chiral algebra (vertex operator algebra) is a
finite-dimensional representation of SL2(Z). In this basis:

• T : τ 7→ τ + 1 is diagonal and unitary.

• S : τ 7→ −1/τ is symmetric and unitary.

• C = S2 = (ST )3 is a permutation of order at most 2.

1[Here, we assume that the chiral algebra is bosonic and Z-graded.]
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Example: The Ising model CFT has 3 irreducible highest-weight
representations whose characters are

ch0 =
1

2

(√
ϑ3(0, τ)

η(τ)
+

√
ϑ4(0, τ)

η(τ)

)
,

ch1/2 =
1

2

(√
ϑ3(0, τ)

η(τ)
−

√
ϑ4(0, τ)

η(τ)

)
,

ch1/16 =

√
ϑ2(0, τ)

2η(τ)
,

The subscripts give the conformal weights of the highest-weight states.
With respect to the ordered basis [ch0, ch1/16, ch1/2], we have

T =

e−iπ/24 0 0
0 eiπ/12 0
0 0 −e−iπ/24

 ,

S =
1

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , C =

1 0 0
0 1 0
0 0 1

 .
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Modularity is useful

Given a rational CFT, assume that we know the action of S and T on its
irreducible characters. Then, we can:

• Strongly constrain the structure of the bulk state space. If its
character, the partition function, has the form

Z(τ) =
∑
i,j

Mijchi(q)chj(q), Mij ∈ Z>0,

then it will be SL2(Z)-invariant if and only if S†MS = T †MT =M .

• Compute the fusion rules. If we write these rules in the form

chi × chj =
∑
k

N k
ij chk, N k

ij ∈ Z>0,

then the Verlinde formula gives

N k
ij =

∑
`

Si`Sj`Sk`
S0`

,

where ch0 denotes the vacuum character.
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Modularity and logarithmic CFT

This all works beautifully for rational theories, so we expect it to work in
some fashion more generally.

However, life isn’t meant to be easy.

We saw previously that the log-rational symplectic fermions CFT has
vacuum supercharacter whose S-transform has a τ -dependent coefficient:

sch
[
L0

]
= η(τ)2, ⇒ sch

[
L0

]
(−1/τ) = −iτsch

[
L0

]
(τ).

The space spanned by the characters and supercharacters does not give a
representation of SL2(Z), so we cannot even try to constrain the bulk
state space or compute the fusion rules.

This doesn’t bode well.
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The triplet model

Modularity is easier to study for bosonic Z-graded chiral algebras, so we
pass from symplectic fermions to its bosonic orbifold: the triplet model.

It is generated by three dimension 3 Virasoro primaries W± and W 0.
The OPEs are messy but preserve the superscript grading (T is grade 0).

Each symplectic fermion irreducible splits into two triplet irreducibles,
giving four in total:

Neveu-Schwarz Ramond
singlet W0 W−1/8

doublet W1 W3/8

The symplectic fermions
staggered module likewise
splits into two triplet
staggered modules P0 and P1.

W0

W1 W1

W0

P0

W1

W0 W0

W1

P1
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The irreducible triplet characters do not span an SL2(Z)-representation:

ch
[
W0

]
=

1

2

(
ϑ2(0, τ)

2η(τ)
+ η(τ)2

)
, ch

[
W−1/8

]
=
ϑ3(0, τ) + ϑ4(0, τ)

2η(τ)
,

ch
[
W1

]
=

1

2

(
ϑ2(0, τ)

2η(τ)
− η(τ)2

)
, ch

[
W3/8

]
=
ϑ3(0, τ)− ϑ4(0, τ)

2η(τ)
.

The staggered triplet characters do not have an η2,

ch
[
P0

]
= ch

[
P1

]
= 2
(
ch
[
W0

]
+ ch

[
W1

])
=
ϑ2(0, τ)

η(τ)
,

and ch
[
P0

]
, ch
[
W−1/8

]
and ch

[
W3/8

]
span an SL2(Z)-representation.

This gives an SL2(Z)-invariant (candidate) partition function

1

2

∣∣ch[P0

]∣∣2 + ∣∣ch[W−1/8]∣∣2 + ∣∣ch[W3/8

]∣∣2,
but doesn’t help with fusion and the Verlinde formula.
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Torus Amplitudes

Characters are examples of torus amplitudes. In general, one only expects
an action of SL2(Z) on the space of all torus amplitudes.

For rational CFTs, this space coincides with the span of the characters.
For logarithmic CFTs, it doesn’t!

For the triplet model, with four irreducible characters, the space of torus
amplitudes has dimension 5. We may choose the missing generator to be

−iτ
(
ch
[
W0

]
− ch

[
W1

])
.

With characters being formal power series in q = e2πiτ , the prefactor
τ ∼ log q above arises from solving an ODE whose indicial equation has
repeated roots, cf. logarithms in sphere amplitudes (correlators).
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This is bad, very bad...

Generalising from characters to torus amplitudes seems natural and
necessary for log-rational CFTs, there are still reasons to be dissatisfied:

• Partition functions are characters, so finding modular invariants means
forcing the coefficients of non-character torus amplitudes to vanish.

• The SL2(Z)-representation is not unitary, so it isn’t easy to find
canonical modular invariants, eg. diagonal, charge conjugation.

• Must the tensor product of the torus amplitude representation of
SL2(Z) and its conjugate even contain a trivial subrepresentation (a
modular invariant)?

• There is no canonical basis of general torus amplitudes, which is bad
news for a Verlinde formula.

For the triplet, the torus amplitude representation has two independent
modular invariants. One involves the “non-character”.

Moreover, this representation has S00 = 0, so we cannot divide by the
vacuum S-matrix elements in the Verlinde formula.
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The singlet model

The triplet model is the bosonic orbifold of symplectic fermions,

J+(z)J−(w) ∼ 1

(z − w)2
,

but it is also the orbifold with respect to the automorphism that negates
the symplectic fermion fields: J±(z) 7→ −J±(z).

This automorphism generalises to J±(z) 7→ ω±1J±(z), where ω 6= 0.

If ω is a root of unity, then the resulting orbifold is log-rational.
Otherwise, the orbifold is not log-rational: it is called the singlet model.

The singlet model is generated by a single dimension 3 Virasoro primary
W 0. (Symplectic fermions becomes the doublet model in this language.)
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The four triplet irreducibles break up into a countably infinite number of
singlet irreducibles:

W0 =
⊕
λ∈2Z

Aλ, W−1/8 =
⊕

λ∈2Z+1/2

Tλ,

W1 =
⊕

λ∈2Z+1

Aλ, W3/8 =
⊕

λ∈2Z−1/2

Tλ.

However, the number of singlet irreducibles is actually uncountably
infinite. Aside from the Aλ, for which λ ∈ Z, they are denoted by Tλ,
where λ ∈ R \ Z. (Note: conformal dimensions are quadratic in λ.)

The reason for the notational distinction is that
there is a version of the Tλ with λ ∈ Z.

These are reducible but indecomposable.

Aλ

Aλ−1

Tλ
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We construct these indecomposables by
decomposing the triplet staggered modules
into singlet staggered modules:

P0 =
⊕
λ∈2Z

Qλ, P1 =
⊕

λ∈2Z+1

Qλ.

Aλ

Aλ+1 Aλ−1

Aλ

Qλ

The Tλ with λ ∈ Z are then submodules and quotients:

Tλ+1 ⊂ Qλ,
Qλ

Tλ+1
= Tλ.

The characters explain why the notation for these subquotients is natural:

ch
[
Tλ
]
=
q(λ−1/2)

2/2

η(q)
, λ ∈ R.

The characters for the Aλ are more complicated and will not be needed.
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Modularity

Surprisingly, the Tλ-characters carry an SL2(Z)-action:

ch
[
Tλ
]
(A · τ) =

∫
R
Aλµch

[
Tµ
]
(τ) dµ, A ∈ SL2(Z).

Moreover,

• Tλµ = eiπ(λ(λ−1)+1/6)δ(λ− µ) is diagonal and unitary,

• Sλµ = e−2πi(λ−1/2)(µ−1/2) is symmetric and unitary,

• Cλµ = δ(λ+ µ− 1) is a permutation of order 2.

This extends to the Aλ-characters by noting that

ch
[
Aλ
]
= ch

[
Tλ
]
− ch

[
Aλ−1

]
= ch

[
Tλ
]
− ch

[
Tλ−1

]
+ ch

[
Aλ−2

]
=

∞∑
n=0

(−1)nch
[
Tλ−n

]
⇒ Sλµ =

e−2πiλ(µ−1/2)

2 cos[π(µ− 1/2)]
.

(The underline λ indicates an A-type label.)
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The vacuum is A0 and its S-matrix entries,

S0µ =
1

2 cos[π(µ− 1/2)]
,

diverge for µ ∈ Z. However, this is a set of (Lebesgue) measure zero.

Let’s try the Verlinde formula:

N ν
λµ =

∫
R

SλρSµρSνρ
S0ρ

dρ = δ(ν = λ+ µ) + δ(ν = λ+ µ− 1).

It gives non-negative (Grothendieck) fusion coefficients:

ch
[
Tλ
]
× ch

[
Tµ
]
=

∫
R
N ν
λµ ch

[
Tν
]
dν = ch

[
Tλ+µ

]
+ ch

[
Tλ+µ−1

]
.

Similarly, we get

ch
[
Aλ
]
× ch

[
Tµ
]
= ch

[
Tλ+µ

]
, ch

[
Aλ
]
× ch

[
Aµ
]
= ch

[
Aλ+µ

]
.
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This is good, very good!!!

• The Tλ, with λ ∈ R, provide a canonical basis of characters for which
T , S and C have the expected properties.

• The SL2(Z)-representation is unitary, so the diagonal partition
function is modular invariant. There is no need to look for additional
torus amplitudes.

• The Verlinde formula gives sensible results and with a little work, one
can deduce the fusion rules:

Aλ × Aµ = Aλ+µ (λ, µ ∈ Z),

Aλ × Tµ = Tλ+µ (λ ∈ Z, µ /∈ Z),

Tλ × Tµ =

{
Tλ+µ ⊕ Tλ+µ−1 if λ+ µ /∈ Z,

Qλ+µ−1 if λ+ µ ∈ Z
(λ, µ /∈ Z),

Aλ × Qµ = Qλ+µ (λ, µ ∈ Z),

Tλ × Qµ = Tλ+µ+1 ⊕ 2Tλ+µ ⊕ Tλ+µ−1 (λ /∈ Z, µ ∈ Z),

Qλ × Qµ = Qλ+µ+1 ⊕ 2Qλ+µ ⊕ Qλ+µ−1 (λ ∈ Z, µ ∈ Z).
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Bulk state space

Finally, we can consider the bulk quantum state space. The diagonal
partition function is just

Z =

∫
R

∣∣ch[Tλ]∣∣2 dλ,
so it is natural to propose that the bulk state space has the form

H = HZ ⊕	
∫
R\Z

(Tλ ⊗ Tλ) dλ,

where HZ is the part in which reducible but indecomposable
representations appear.

The obvious guess

HZ =
⊕
λ∈Z

(Tλ ⊗ Tλ)

is wrong (the 2-point functions are degenerate).

|φλ〉 ⊗ |φλ〉

|χλ〉 ⊗ |φλ〉 |φλ〉 ⊗ |χλ〉

|χλ〉 ⊗ |χλ〉
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The problem is that the singular vectors of the Tλ, with λ ∈ Z, don’t
have partners to render them non-null.

We fix this by using the staggered modules Qλ instead, noting that

ch
[⊕
λ∈Z

(Tλ ⊗ Tλ)
]
= ch

[⊕
λ∈Z

(Qλ ⊗ Aλ)
]
= ch

[⊕
λ∈Z

(Aλ ⊗ Qλ)
]
.

The result is manifestly local with non-degenerate 2-point functions:

Aλ ⊗ Aλ

Aλ+1 ⊗ Aλ Aλ−1 ⊗ Aλ

Aλ ⊗ Aλ

Aλ−1 ⊗ Aλ−1

Aλ ⊗ Aλ−1 Aλ−2 ⊗ Aλ−1

Aλ−1 ⊗ Aλ−1

Aλ+1 ⊗ Aλ+1

Aλ+2 ⊗ Aλ+1 Aλ ⊗ Aλ+1

Aλ+1 ⊗ Aλ+1

HZ

· · ·

· · ·

· · ·

· · ·

· · · · · ·
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The standard module formalism

To recap for the singlet model, we have identified a collection of
(indecomposable) standard modules Tλ, where λ ∈ R.

These are partitioned into irreducibles with λ /∈ Z (the typical modules)
and indecomposables with λ ∈ Z (the atypical standard modules).

Representations with λ ∈ Z like Aλ and Qλ are also called atypical.

This is one instance of the standard module formalism:

• The standard characters form a basis for the space of all characters
and carry a representation of SL2(Z).

• The (standard) Verlinde formula returns non-negative integer
(Grothendieck) fusion coefficients.

• The logarithmic behaviour (reducibility but indecomposability) is
confined to the atypical sector. The typical sector behaves like
rational CFTs and the free boson.



20/25

The modular group The triplet model The singlet model Standard modules The triplet model (redux) Conclusions

The key feature of the standard module formalism is that the atypical
sector constitutes a measure zero subset of the parameter space.

When integrating over the standard modules / characters, as in the
Verlinde formula, the logarithmic difficulties are thus irrelevant.

Rational CFTs and the free boson may be regarded as instances of the
standard module formalism in which there are no atypical representations.

Among logarithmic CFTs, the standard module formalism holds for

• Singlet models (parametrised by p, p′ ∈ Z>0).

• Logarithmic minimal models (Virasoro and N = 1).

• Fractional level WZW models (eg., ŝl2).

• Super-WZW models (eg., ĝl
(
1
∣∣1)).

• Bosonic ghosts.
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The triplet model again

The standard module formalism does not apply to the triplet models.

Of the irreducibles, W0 and W1 should be regarded as atypical while
W−1/8 and W3/8 should be regarded as typical.

The atypical standards have the form
W0

W1

and
W1

W0

.

The parameter space is discrete and the atypicals have non-zero measure.

The same is true for the other log-rational orbifolds of symplectic
fermions: there are finitely many standard modules and a non-zero
number of them are reducible but indecomposable.

In fact, all the logarithmic CFTs that are known to admit the standard
module formalism have log-rational infinite order simple current
extensions that do not.



22/25

The modular group The triplet model The singlet model Standard modules The triplet model (redux) Conclusions

Log-rationality and modularity

We can exploit this relationship between the “good” logarithmic CFTs
and their “evil” log-rational cousins to compute fusion in the latter.

singlet

triplet

simple

current

extension

orbifold

a× b c

A× B C

restriction induction

standard

Verlinde

log-rational

Verlinde

In fact, the standard Verlinde formula can be lifted to a log-rational
Verlinde formula that computes (Grothendieck) fusion coefficients.

The input is the log-rational S-matrix of the characters (not the torus
amplitudes), τ -dependent coefficients included.
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Log-rationality and modularity

We can exploit this relationship between the “good” logarithmic CFTs
and their “evil” log-rational cousins to compute fusion in the latter.

singlet

triplet

simple

current

extension

orbifold

a× b c

A× B C

restriction induction

standard

Verlinde

log-rational

Verlinde

In fact, the standard Verlinde formula can be lifted to a log-rational
Verlinde formula that computes (Grothendieck) fusion coefficients.

The input is the log-rational S-matrix of the characters (not the torus
amplitudes), τ -dependent coefficients included.



23/25

The modular group The triplet model The singlet model Standard modules The triplet model (redux) Conclusions

Bulk state space

Finally, one can lift the local, non-degenerate proposal for the bulk state
space of the singlet model to a similar proposal for the triplet:

H = HZ ⊕W−1/8 ⊗W−1/8 ⊕W3/8 ⊗W3/8.

W0 ⊗W0

W1 ⊗W0 W1 ⊗W0

W0 ⊗W0

W1 ⊗W1

W0 ⊗W1 W0 ⊗W1

W1 ⊗W1

HZ

It is likewise local and non-degenerate.
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Conclusions

• Modularity is subtle for log-rational CFTs, eg. the triplet.

• We do not have an SL2(Z)-action on the characters and the Verlinde
formula does not work.

• However, it appears that standard modules provide a good organising
principle in non-log-rational examples, eg. the singlet.

• We have an SL2(Z)-action on the standard characters and the
(standard) Verlinde formula works.

• In all known examples, log-rational and non-log-rational CFTs are
related by infinite order orbifolds and simple current extensions.

• We can exploit this to compute (Grothendieck) fusion rules of
log-rational theories using induction and restriction.

• We can also deduce log-rational versions of the standard Verlinde
formula that apply directly to CFTs like the triplet model.

• We expect that these versions will lead to a better understanding of
modularity in general.
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ToDo...

• Develop a rigorous mathematical setting for the standard module
formalism.

• Understand how invariant measures naturally arise on the space that
parametrises the standard characters.

• Figure out what modularity (and projectivity and rigidity and . . . )
means for general logarithmic CFTs.

• Find log-rational CFTs with no infinite order automorphisms or
explain why such models do not exist.

• Construct moar examples, moar!!!

“Only those who attempt the absurd will achieve the impossible.”

- M C Escher
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