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Motivation

Rational CFT has been quite a success story for mathematical physics
(and pure maths).

2D CFT describes the quantum state space (“Hilbert space”) of certain
massless theories as a representation of two vertex operator algebras.

Rationality means this representation is a finite direct sum of irreducibles:

H =

n⊕
i=1

Li ⊗ Li.

But what if the theory requires reducible but indecomposable
representations, eg. polymers, percolation? We need logarithmic CFT.

Such CFTs generally have, unlike rational CFTs, logarithmic singularities
in some correlators [Rozansky-Saleur ’92, Gurarie ’93].
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But, tractable examples of logarithmic CFTs are hard to find.

Rational CFTs Logarithmic CFTs

Compactified free bosons Symplectic fermions

Free fermions Bosonic ghosts

Minimal models Triplet models?

Wess-Zumino-Witten models Fractional-level WZW models?

WZW models form a very rich supply of well-understood rational CFTs.

Perhaps their fractional-level analogues will play a similar role for
logarithmic CFTs...

They also have independent physical interest! Protected sectors of

certain 4D N = 2 super-CFTs
belief∼ fractional-level VOAs [Beem et al.’15].

Schur indices ∼ VOA characters, Higgs branches ∼ associated varieties.
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Fractional-level WZW models

We know the VOA: irreducible level-k vacuum module over ĝ, where

k + h∨ =
u

v
, u ∈ Z>2, v ∈ Z>1, gcd{u, v} = 1

and k /∈ Z>0 [Gorelik-Kac ’06]. The representations are the problem.

For g = sl2, highest-weight modules do not suffice [Koh-Sorba ’88]. We need
relaxed highest-weight modules (+ spectral flow + extensions) to have
modular invariance [Creutzig-DR ’13] and (conjecturally) closure under fusion.

Relaxed highest-weight modules are representations generated by a state
that only needs to be annihilated by g-modes with strictly positive indices.

So they can (and often do) have infinitely many ground states.
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How do we construct irreducible relaxed highest-weight modules?

As quotients of relaxed Verma modules (of course).

Recall that Verma modules are induced from irreducible representations
of the Cartan subalgebra. To get a relaxed Verma module, we induce
from a weight representation of the zero-mode subalgebra (∼= to g).

Cartan subalgebra irreps are easy: they’re all 1-dimensional.

What about weight reps of g? That’s not so easy. . .

We know the finite-dimensional ones and some infinite-dimensional ones,
eg. Verma modules for g. Are there others?

It turns out that there are lots! Even for g = sl2, we have the principal
and complementary series from SL2(R) representation theory and more.
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Weight modules for sl2

A weight module is one on which the Cartan subalgebra h acts
diagonalisably. We assume that the eigenspaces are finite-dimensional.

For sl2, irreducible weight modules are easy to classify:

• Highest- and lowest-weight modules with highest weight µ ∈ P>.

• Highest-weight Verma modules with highest weight µ /∈ P>.

• Lowest-weight Verma modules with lowest weight µ /∈ −P>.

• Dense modules with weight support λ+ Q and Casimir eigenvalue q,
where q 6= (µ, µ+ 2ρ) for any µ ∈ λ+ Q.

(P> = dominant integral weights, Q = root lattice, ρ = Weyl vector.)

Dense modules are constructed by inducing from the centraliser of h in
U (g) to U (g). This centraliser is just polynomials in h and the Casimir.

The weight spaces (= h-eigenvectors) are thus one-dimensional.
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Irreducible weight sl2-modules

Highest- and lowest-weight

µ
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µ
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Weight modules for simple g

For higher-rank g, the classification is not easy.

Even for sl3, the centraliser of h in U (g) is non-abelian. Generators are
known, but no set of relations is known to be complete [Futorny ’86, ’89].
Weight spaces are rarely one-dimensional.

Theorem [Fernando ’90]

An irreducible weight module for g is either

• Dense (= torsion-free = cuspidal), ie. the weight support is a single
coset in h∗/Q, or

• a quotient of the parabolic induction of a dense p-module, where
p ⊂ g is a parabolic subalgebra (= contains a Borel subalgebra).

Moreover, dense modules only exist for sln and sp2n.

We can therefore classify irreducible weight modules inductively, if we can
classify the irreducible dense sln- and sp2n-modules.
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Irreducible weight sl3-modules
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The classification of irreducible weight g-modules was completed in
[Mathieu ’00] using coherent families.

The key observation is that the dense modules Dλ;χ are all “the same”,
ie. they fit together into families parametrised by the central character χ:

Cχ =
⊕

λ∈h∗/Q

Dλ;χ.

Facts:

1. The dimension of a weight space of Cχ is independent of the weight.

2. The action of g on Cχ is polynomial.

3. Every coherent family has at least one reducible summand whose
composition factors include an irreducible highest-weight g-module.

Because, we understand the relevant irreducible highest-weight modules,
we understand coherent families and thus dense modules [Mathieu], hence
we understand irreducible weight modules [Fernando].
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Higher-rank logCFTs

Recall, we want to study fractional-level WZW models for higher-rank g,
eg. g = sl3, as archetypal examples of logarithmic CFTs.

For this, we need the irreducible relaxed highest-weight ĝ-modules which
define modules over the fractional-level VOA.

[Frenkel-Zhu ’92, Zhu ’96] let us classify these in terms of the irreducible weight
g-modules which are annihilated by a certain ideal Iu,v of U (g).

We know the highest-weight modules that Iu,v annihilates [Arakawa ’12].
Polynomial action then tells us which coherent families are annihilated.

This leads to an inductive strategy to classify irreducible relaxed
highest-weight VOA-modules given the highest-weight classification.
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This strategy is currently being fleshed out for fractional level VOAs
corresponding to g = sl3.

Nilpotent orbit hw. sl3-mods sl3-families VOA-mods

zero:
(

0
0
0

)
finite-dim. finite-dim. ordinary hw.

minimal:
(

0 1
0
0

)
bounded coherent relaxed hw.

principal:
(

0 1
0 1
0

)
unbounded parabolic “semi-relaxed” hw.

This not only gives an elegant proof of the relaxed classification for sl3
[Arakawa-Futorny-Ramirez ’16], it also gives information about indecomposable
relaxed VOA-modules.

These indecomposables are essential for the standard module formalism
[Creutzig-DR ’13, DR-Wood ’14] that describes the modular properties of the
corresponding logarithmic CFTs.
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Example: g = sl3, k = −3
2
(u = 3, v = 2).

This example may be brute-force analysed [Peřse ’07, Adamović ’14,

Kawasetsu-DR-Wood ’18] as I3,2 is generated by a degree 2 element in U (sl3).
There is:

• 1 ordinary highest-weight VOA-module (the vacuum module),

• 3 bounded highest-weight VOA-modules (up to twists), giving

• 1 family of parabolically induced VOA-modules (up to twists), with
sl2 ⊂ p ⊂ sl3), and

• 1 coherent family of relaxed highest-weight VOA-modules.

Aside from the vacuum module, these irreducibles are all classified by the
minimal nilpotent orbit as v = 2 [Arakawa ’12]. To see principal irreducibles,
we would need to analyse a fractional level with v > 3.

Brute-forcing any other fractional level is much more challenging.
However, our classification strategy gives the result relatively easily.
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Ground states of the semi-relaxed highest-weight modules.
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Conclusions

• Fractional-level WZW models are promising candidates for sorely
needed tractable examples of higher-rank logarithmic CFTs.

• The task of classifying their highest-weight modules was recently
(mostly) completed by Arakawa.

• We have now shown that Mathieu’s coherent families let us leverage
this result to inductively deduce the classification of irreducible relaxed
highest-weight modules.

• Conjecturally, we then get all irreducible weight modules for the VOA
by applying spectral flow.

• Our procedure reproduces the known results for fractional-level sl2,
osp
(
1
∣∣2) and sl3 models, whilst dramatically simplifying the proofs.

• For sl3, our methods also suggest a powerful and general organising
principle. Extending the results to general g now appears feasible.
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ToDo...

• We need to work out the details of the classification argument for
other g, eg. sp4, g2, . . . .

• It would be physically interesting to extend the results to simple basic
classical Lie superalgebras, eg. sl

(
2
∣∣1), psl(2∣∣2) and d

(
2
∣∣1;α).

• For almost all g, the characters of the irreducible relaxed
highest-weight g-modules remain unknown (but see Kazuya’s talk).

• To get linearly independent characters, necessary for modular
shenanigans, we need to understand characters that account for all
Casimirs, not just the quadratic one (L0).

• Then, there are certain (non-admissible) fractional levels for which
Arakawa’s result on highest-weight modules fails.

• And of course, there are cosets, orbifold and quantum hamiltonian
reductions to explore... sounds like a good grant application!

“Only those who attempt the absurd will achieve the impossible.”

- M C Escher
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