sl(3) weight modules and higher-rank logarithmic CFT

David Ridout

University of Melbourne

January 31, 2018 Joint work with Kazuya Kawasetsu and Simon Wood

Weight modules

Higher-rank logCFTs 0000 Conclusions 00

1. Motivation

CFT: rational vs logarithmic Fractional-level WZW models

2. Weight modules

Dense g-modules Coherent families

3. Higher-rank logCFTs

Classifying relaxed highest-weight $\hat{\mathfrak{g}}$ -modules

4. Conclusions

Weight modules

Higher-rank logCFTs 0000 Conclusions 00

Motivation

Rational CFT has been quite a success story for mathematical physics (and pure maths).

2D CFT describes the quantum state space ("Hilbert space") of certain massless theories as a representation of two vertex operator algebras.

Rationality means this representation is a finite direct sum of irreducibles:

$$\mathsf{H} = \bigoplus_{i=1}^n \mathsf{L}_i \otimes \mathsf{L}_i.$$

But what if the theory requires reducible but indecomposable representations, *eg.* polymers, percolation? We need logarithmic CFT.

Such CFTs generally have, unlike rational CFTs, logarithmic singularities in some correlators [Rozansky-Saleur '92, Gurarie '93].

Weight module

Higher-rank logCFTs 0000 Conclusions 00

But, tractable examples of logarithmic CFTs are hard to find.

Rational CFTs	Logarithmic CFTs
Compactified free bosons	Symplectic fermions
Free fermions	Bosonic ghosts
Minimal models	Triplet models?
Wess-Zumino-Witten models	Fractional-level WZW models?

WZW models form a very rich supply of well-understood rational CFTs.

Perhaps their fractional-level analogues will play a similar role for logarithmic CFTs...

They also have independent physical interest! Protected sectors of certain 4D N = 2 super-CFTs $\stackrel{\text{belief}}{\sim}$ fractional-level VOAs [Beem *et al.*'15].

Schur indices \sim VOA characters, Higgs branches \sim associated varieties.

Weight modules 00000 Higher-rank logCFTs 0000 Conclusions 00

Fractional-level WZW models

We know the VOA: irreducible level-k vacuum module over $\hat{\mathfrak{g}}$, where

$$k + \mathsf{h}^{\vee} = \frac{u}{v}, \quad u \in \mathbb{Z}_{\geqslant 2}, \ v \in \mathbb{Z}_{\geqslant 1}, \ \gcd\{u, v\} = 1$$

and $k \notin \mathbb{Z}_{\geq 0}$ [Gorelik-Kac '06]. The representations are the problem.

For $\mathfrak{g} = \mathfrak{sl}_2$, highest-weight modules do not suffice [Koh-Sorba '88]. We need relaxed highest-weight modules (+ spectral flow + extensions) to have modular invariance [Creutzig-DR '13] and (conjecturally) closure under fusion.

Relaxed highest-weight modules are representations generated by a state that only needs to be annihilated by \mathfrak{g} -modes with strictly positive indices.

So they can (and often do) have infinitely many ground states.

• • •	1	1	1	1	1	1	1	1	1	1	1	1	1	• • •
	3	3	3	3	3	3	3	3	3	3	3	3	3	
•••	9	9	9	9	9	9	9	9	9	9	9	9	9	
$\mathcal{A}^{(1)}$	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	$\gamma_{i,i}$

Higher-rank logCFTs 0000 Conclusions 00

How do we construct irreducible relaxed highest-weight modules?

As quotients of relaxed Verma modules (of course).

Recall that Verma modules are induced from irreducible representations of the Cartan subalgebra. To get a relaxed Verma module, we induce from a weight representation of the zero-mode subalgebra (\cong to g).

Cartan subalgebra irreps are easy: they're all 1-dimensional.

What about weight reps of g? That's not so easy...

We know the finite-dimensional ones and some infinite-dimensional ones, eg. Verma modules for g. Are there others?

It turns out that there are lots! Even for $\mathfrak{g} = \mathfrak{sl}_2$, we have the principal and complementary series from $SL_2(\mathbb{R})$ representation theory and more.

Weight modules

Higher-rank logCFTs 0000 Conclusions 00

Weight modules for \mathfrak{sl}_2

A weight module is one on which the Cartan subalgebra ${\mathfrak h}$ acts diagonalisably. We assume that the eigenspaces are finite-dimensional.

For \mathfrak{sl}_2 , irreducible weight modules are easy to classify:

- Highest- and lowest-weight modules with highest weight $\mu \in \mathsf{P}_{\geqslant}$.
- Highest-weight Verma modules with highest weight $\mu \notin \mathsf{P}_{\geq}$.
- Lowest-weight Verma modules with lowest weight $\mu \notin -\mathsf{P}_{\geq}$.
- Dense modules with weight support $\lambda + Q$ and Casimir eigenvalue q, where $q \neq (\mu, \mu + 2\rho)$ for any $\mu \in \lambda + Q$.

(P $_{\geq}$ = dominant integral weights, Q = root lattice, ρ = Weyl vector.)

Dense modules are constructed by inducing from the centraliser of \mathfrak{h} in $\mathscr{U}(\mathfrak{g})$ to $\mathscr{U}(g)$. This centraliser is just polynomials in \mathfrak{h} and the Casimir.

The weight spaces (= \mathfrak{h} -eigenvectors) are thus one-dimensional.

Weight modules

Higher-rank logCFTs 0000 Conclusions 00

Weight modules

Higher-rank logCFTs 0000 Conclusions 00

Weight modules for simple \mathfrak{g}

For higher-rank \mathfrak{g} , the classification is not easy.

Even for \mathfrak{sl}_3 , the centraliser of \mathfrak{h} in $\mathscr{U}(\mathfrak{g})$ is non-abelian. Generators are known, but no set of relations is known to be complete [Futorny '86, '89]. Weight spaces are rarely one-dimensional.

Theorem [Fernando '90]

An irreducible weight module for \mathfrak{g} is either

- Dense (= torsion-free = cuspidal), *ie.* the weight support is a single coset in h*/Q, or
- a quotient of the parabolic induction of a dense p-module, where $p \subset g$ is a parabolic subalgebra (= contains a Borel subalgebra).

Moreover, dense modules only exist for \mathfrak{sl}_n and \mathfrak{sp}_{2n} .

We can therefore classify irreducible weight modules inductively, if we can classify the irreducible dense \mathfrak{sl}_{n} - and \mathfrak{sp}_{2n} -modules.

Weight modules

Higher-rank logCFTs 0000 Conclusions 00

The classification of irreducible weight g-modules was completed in [Mathieu '00] using coherent families.

The key observation is that the dense modules $D_{\lambda;\chi}$ are all "the same", *ie.* they fit together into families parametrised by the central character χ :

$$\mathsf{C}_{\chi} = \bigoplus_{\lambda \in \mathfrak{h}^*/\mathsf{Q}} \mathsf{D}_{\lambda;\chi}.$$

Facts:

- 1. The dimension of a weight space of C_{χ} is independent of the weight.
- 2. The action of \mathfrak{g} on C_{χ} is polynomial.
- 3. Every coherent family has at least one reducible summand whose composition factors include an irreducible highest-weight g-module.

Because, we understand the relevant irreducible highest-weight modules, we understand coherent families and thus dense modules [Mathieu], hence we understand irreducible weight modules [Fernando].

Weight modules

Higher-rank logCFTs •000 Conclusions 00

Higher-rank logCFTs

Recall, we want to study fractional-level WZW models for higher-rank \mathfrak{g} , eg. $\mathfrak{g} = \mathfrak{sl}_3$, as archetypal examples of logarithmic CFTs.

For this, we need the irreducible relaxed highest-weight $\widehat{\mathfrak{g}}\text{-modules}$ which define modules over the fractional-level VOA.

[Frenkel-Zhu '92, Zhu '96] let us classify these in terms of the irreducible weight \mathfrak{g} -modules which are annihilated by a certain ideal $I_{u,v}$ of $\mathscr{U}(\mathfrak{g})$.

We know the highest-weight modules that $I_{u,v}$ annihilates [Arakawa '12]. Polynomial action then tells us which coherent families are annihilated.

This leads to an inductive strategy to classify irreducible relaxed highest-weight VOA-modules given the highest-weight classification.

Weight module

Higher-rank logCFTs 0000 Conclusions 00

This strategy is currently being fleshed out for fractional level VOAs corresponding to $\mathfrak{g} = \mathfrak{sl}_3$.

Nilpotent orbit	hw. <mark>\$l</mark> 3-mods	\mathfrak{sl}_3 -families	VOA-mods
zero: $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	finite-dim.	finite-dim.	ordinary hw.
minimal: $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$	bounded	coherent	relaxed hw.
principal: $\begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 \end{pmatrix}$	unbounded	parabolic	"semi-relaxed" hw.

This not only gives an elegant proof of the relaxed classification for \mathfrak{sl}_3 [Arakawa-Futorny-Ramirez '16], it also gives information about indecomposable relaxed VOA-modules.

These indecomposables are essential for the standard module formalism [Creutzig-DR '13, DR-Wood '14] that describes the modular properties of the corresponding logarithmic CFTs.

Weight modules

Higher-rank logCFTs

Conclusions 00

Example: $\mathfrak{g} = \mathfrak{sl}_3$, $k = -\frac{3}{2}$ (u = 3, v = 2).

This example may be brute-force analysed [Perše '07, Adamović '14, Kawasetsu-DR-Wood '18] as $I_{3,2}$ is generated by a degree 2 element in $\mathscr{U}(\mathfrak{sl}_3)$. There is:

- 1 ordinary highest-weight VOA-module (the vacuum module),
- 3 bounded highest-weight VOA-modules (up to twists), giving
- 1 family of parabolically induced VOA-modules (up to twists), with $\mathfrak{sl}_2\subset\mathfrak{p}\subset\mathfrak{sl}_3),$ and
- 1 coherent family of relaxed highest-weight VOA-modules.

Aside from the vacuum module, these irreducibles are all classified by the minimal nilpotent orbit as v = 2 [Arakawa '12]. To see principal irreducibles, we would need to analyse a fractional level with $v \ge 3$.

Brute-forcing any other fractional level is much more challenging. However, our classification strategy gives the result relatively easily.

Ground states of the relaxed highest-weight modules.

Weight modules

Higher-rank logCFTs

Conclusions

- Fractional-level WZW models are promising candidates for sorely needed tractable examples of higher-rank logarithmic CFTs.
- The task of classifying their highest-weight modules was recently (mostly) completed by Arakawa.
- We have now shown that Mathieu's coherent families let us leverage this result to inductively deduce the classification of irreducible relaxed highest-weight modules.
- Conjecturally, we then get all irreducible weight modules for the VOA by applying spectral flow.
- Our procedure reproduces the known results for fractional-level \mathfrak{sl}_2 , $\mathfrak{osp}(1|2)$ and \mathfrak{sl}_3 models, whilst dramatically simplifying the proofs.
- For *sl*₃, our methods also suggest a powerful and general organising principle. Extending the results to general g now appears feasible.

Weight modules

Higher-rank logCFTs 0000 Conclusions

- We need to work out the details of the classification argument for other g, eg. sp₄, g₂,
- It would be physically interesting to extend the results to simple basic classical Lie superalgebras, eg. $\mathfrak{sl}(2|1)$, $\mathfrak{psl}(2|2)$ and $\mathfrak{d}(2|1;\alpha)$.
- For almost all g, the characters of the irreducible relaxed highest-weight g-modules remain unknown (but see Kazuya's talk).
- To get linearly independent characters, necessary for modular shenanigans, we need to understand characters that account for all Casimirs, not just the quadratic one (L_0) .
- Then, there are certain (non-admissible) fractional levels for which Arakawa's result on highest-weight modules fails.
- And of course, there are cosets, orbifold and quantum hamiltonian reductions to explore... sounds like a good grant application!

"Only those who attempt the absurd will achieve the impossible."