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Motivation

I want to understand conformal field theory...

rational non-rational

log-rational generic

factorisable

discrete continuous

logarithmic

[lattice bosons]

[free fermions]

[bc-ghosts]

[minimal models]

[compact WZW models]

[a few W-algebras]

[free bosons]

[Liouville]

[non-compact WZW?]

[symplectic fermions]

[triplet models]

[polymers, percolation?]

[log minimal models?]

[SLE?]

[βγ-ghosts]

[supergroup WZW]

[Nappi–Witten]

[fractional-level WZW]

[most W-algebras]

[spin chains?]
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Quantum hamiltonian reduction

There are many ways to construct new chiral algebras from old ones:

• Tensoring, eg. two free fermions = one compactified boson.

• Simple current extensions, eg. Ising → free fermion.

• Group orbifolds, eg. free fermion → Ising.

• Cosets (commutants), eg. Zk-parafermions =
ŝl(2)k

ĥ
.

• Quantum hamiltonian reduction, eg. ŝl(2)k 7→ Virk.

In conformal field theory, it’s important to also be able to construct
representations of the new chiral algebra from those of the old!

Sometimes this is easy, sometimes it is hard...
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How to do it

Quantum hamiltonian reduction converts an affine chiral algebra ĝk into
a W-algebra Wk(g) by gauging the action of the positive root fields.

• First, tensor (the vacuum module of) ĝk with pairs of bc-ghosts, one
for each positive root of g.

• Construct a fermionic field with conformal dimension 1 and ghost
number 1:

d(z) =
∑
α

[eα(z)− δα,simple]c
α(z) + [cubic term in bα, cα].

• Its zero mode d0 is a differential and the subspaces C(n) of ĝk ⊗ (bc)#

with constant ghost number n define a differential complex:

· · · d0−→ C(−2) d0−→ C(−1) d0−→ C(0) d0−→ C(1) d0−→ C(2) d0−→ · · ·

• The cohomology H
(n)
k of this complex is 0 for all n 6= 0.

• The regular/principal W-algebra Wk(g) is H
(0)
k .
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Generalisations

This generalises: given any nilpotent f ∈ g, there is a quantum
hamiltonian reduction taking ĝk to a W-algebra Wf

k(g).

• Complete f to an sl(2)-triple {f, h, e}.
• Tensor ĝk with pairs of bc-ghosts, as before, but now also tensor with
βγ-ghosts, one for each root with α(h) = 1.

• Construct a fermionic field with conformal dimension 1 and
(fermionic) ghost number 1:

d(z) =
∑
α

[
eα(z)− 〈f |eα〉

]
cα(z) + [terms in bα, cα, βα, γα].

• Its zero mode d0 is a differential, the ghost-number subspaces of
ĝk ⊗ (bc)#1 ⊗ (βγ)#2 define a differential complex, and the non-zero
cohomology vanishes (at least conjecturally).

• The W-algebra Wf
k(g) associated to f is again H

(0)
k .

This also works for modules: replace ĝk by a ĝk-module in the above and

the cohomology H
(0)
k is a Wf

k(g)-module!
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Examples

• Taking f = 0 results in Wf
k(g) = ĝk, ie. reduction does nothing.

• Taking f =
∑

α simple

fα gives the regular W-algebra: Wreg.
k (g) = Wk(g).

• Taking f = fθ gives the minimal W-algebra Wmin.
k (g).

• Wreg.
k (sl(2)) = Wmin.

k (sl(2)) is the Virasoro algebra Virk.

• Wreg.
k (sl(3)) is the Zamolodchikov algebra W3,k.

• Wmin.
k (sl(3)) is the Bershadsky–Polyakov algebra W

(2)
3,k.

• Wreg.
k (sl(n)) is a Casimir algebra of type (2, 3, 4, . . . , n).

• Wmin.
k (sl(n)) is a W-algebra of type (1(n−2)

2

, ( 3
2 )2(n−2), 2).

• Wmin.
k (osp

(
1
∣∣2)) is the N = 1 superconformal algebra N = 1k.

• Wmin.
k (sl

(
2
∣∣1)) is the N = 2 superconformal algebra N = 2k.

• Wmin.
k (osp

(
3
∣∣2)) is the (small) N = 3 superconformal algebra.

• Wmin.
k (psl

(
2
∣∣2)) is the (small) N = 4 superconformal algebra.

• Wmin.
k (d

(
2
∣∣1;α

)
) is the (big) N = 4 superconformal algebra.
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But wait, there’s more!

In higher ranks, there’s more than just regular and minimal W-algebras.
For g = sl(n), the possibilities are classified by partitions of n.

reg. zero

sl(2)

reg. min. zero

sl(3)

reg. sub. rect. min. zero

sl(4)

Sometimes these W-algebras are rational, but usually they’re logarithmic.
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So many W-algebras...

reg. sub.

rect.

rect.

min. zero

sl(6)
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Inversion by example

For ŝl(2)k 7→ Virk, take k admissible but non-integral:

k + 2 =
u

v
, u, v ∈ Z>2, gcd{u, v} = 1.

Then, ŝl(2)k is logarithmic but Virk is rational.

What can we learn about representations of ŝl(2)k from those of Virk?

Virk-mod

[ordinary]

ŝl(2)k-mod

[ordinary]

[highest-weight]

[conjugate highest-weight]

[relaxed highest-weight]

[staggered]

[spectral flows]

[Whittaker]

[others...]
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Free-field realisations suggest a path:

• Feigin–Fuchs say Virk ↪→ ĥ. [Superscript k means “universal”.]

• And Wakimoto says ŝl(2)k ↪→ ĥ⊗ βγ.

• Now, Friedan–Martinec–Shenker bosonise the ghosts: βγ ↪→ Π.

• But, Semikhatov notices that one can trade FF for FMS:

ŝl(2)k ↪→ Virk ⊗Π.

• Finally, Adamović proves that ŝl(2)k ↪→ Virk ⊗Π iff k /∈ N.

Thus, every M ∈ Virk-mod and N ∈ Π-mod yield a representation

M ⊗N ∈ ŝl(2)k-mod,

by restriction (for k /∈ N).

What sort of representations can we get?
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Life of Π

Take k admissible but non-integral, so Virk only has ordinary

representations L̂λ. Any extraordinary ones must then come from Π.

Π is a partial compactification of 2 free bosons of indefinite signature:

Π =
〈
a(z), b(z), ena(z) : n ∈ Z

〉
,

a(z)a(w) ∼ b(z)b(w) ∼ 0, a(z)b(w) ∼ 1

(z − w)2
.

To make the embedding ŝl(2)k ↪→ Virk ⊗Π conformal, the dimension of
ena(z) must be linear in n:

· · ·
e−2a

· · ·
e−a

ae−a, be−a
1

a, b

...

ea

aea, bea
e2a

· · ·
· · ·

charge

dimension
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Inverse quantum hamiltonian reduction

Π is thus the spectral flow of a relaxed highest-weight module! In fact,
this is true for all the irreducibles Π`(µ) (` ∈ Z, µ ∈ C/Z) of Π.

L̂λ ⊗Π`(µ) is then a relaxed highest-weight ŝl(2)k-module.

• Amazingly, it is generically irreducible. [Adamović]

[Proof: compare character with that computed by Creutzig–DR / Kawasetsu–DR.]

• This explains why relaxed ŝl(2)k characters are ∝ to Virk characters.

• Happily, this also gives all irreducible relaxed modules.
[Proof: compare with classification of Adamović–Milas / DR–Wood.]

The functors
Virk-mod→ ŝl(2)k-mod,

L̂λ 7→ L̂λ ⊗Π`(µ),

are what we call inverse quantum hamiltonian reduction (for sl(2)).
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Relaxed highest-weight modules might sound exotic, but their spectral
flows are the standard modules of ŝl(2)k. [Creutzig–DR, DR–Wood]

History:

[Kac]

Kac modules
typical / atypical

[Lie superalgebras]

[Saleur–Schomerus]

Kac modules
typical / atypical
[supergroup WZW]

[Creutzig–DR]

standard modules
typical / atypical

[log CFTs]

.

Being the standard modules means that:

• They are generically irreducible and projective.

• Every irreducible weight module can be obtained as a quotient.
⇒ Irreducible weight modules can be resolved by standards.

• Their characters carry a representation of SL(2;Z).
⇒ The Verlinde formula gives (Grothendieck) fusion coefficients.

Because inverse reduction constructs the standard modules, every
irreducible highest-weight module is accessible via quotients/resolutions.
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Beyond sl(2)

Other examples have been / are being worked out:

• The inverse reduction embedding for osp
(
1
∣∣2) takes the form [Adamović]

ôsp
(
1
∣∣2)

k
↪→ (N = 1)k ⊗ F⊗Π1/2,

assuming that k is admissible but non-integral:

k +
3

2
=

u

2v
, u, v ∈ Z>2,

u− v
2
∈ Z, gcd{u− v

2
, v} = 1.

The inverse reduction functors amount to tensoring an ordinary

N = 1k-module with either NS ⊗Π
1/2
` (µ) or R⊗Π

1/2
` (µ).

The results reproduce the standard modules of [Creutzig–Kanade–Liu–DR]

and perfectly explain why N = 1K (super)characters appear in the
relaxed ôsp

(
1
∣∣2)

k
characters [Kawasetsu–DR].
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• sl(3) is the first case with different regular and minimal W-algebras.
Which is relevant to inverse reduction?

The relaxed ŝl(3)k characters turn out to be proportional to the
minimal (Bershadsky–Polyakov) characters. [Kawasetsu]

Inverse reduction should take Wmin.
k (sl(3))-mod to ŝl(3)k-mod.

But, Bershadsky–Polyakov has relaxed modules. [Fehily–Kawasetsu–DR] Are
their characters proportional to regular (Zamolodchikov W 3

k ) ones?

Yes! An inverse reduction embedding exists, [Adamović–Kawasetsu–DR]

Wmin.
k (sl(3)) ↪→Wreg.

k (sl(3))⊗Π,

iff k is admissible but non-degenerate:

k + 3 =
u

v
, u, v > 3, gcd{u, v} = 1.

The inverse reduction functors are again tensoring with Π`(µ).
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• This generalises: there is an inverse reduction embedding, [Fehily]

Wsub.
k (sl(n)) ↪→Wreg.

k (sl(n))⊗Π,

iff k is admissible but non-degenerate:

k + n =
u

v
, u, v > n, gcd{u, v} = 1.

The inverse reduction functors are still just tensoring with Π`(µ).

• The story is similar for the regular and subregular W-algebras of sp(4).

• Work is progressing on connecting Wmin.
k (sl(3)) and ŝl(3)k.

There is clearly a lot still to do...
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The big picture

It seems that the right way to analyse W-algebra CFTs is:

• Start with the regular W-algebra at an admissible but non-degenerate
level. These are rational with known representation theories!

• Use inverse reduction to construct the standard modules of the
subregular W-algebra. Get the other irreducibles as quotients.

• Repeat, working your way up the lattice of nilpotents until the
representation theory of the desired W-algebra is known!

If the level is admissible but degenerate, don’t despair: start instead with
a rational exceptional W-algebra. [Arakawa–van Ekeren]

• For k + h∨ =
u

v
, the degenerate denominator v = 1 means that the

exceptional W-algebra is ĝk (which is rational).

• For g = sl(3), u > 3 and v = 2 is degenerate-admissible and the
exceptional is Bershadsky–Polyakov (which is rational).

• For g = sl(n), u > n and v = n− 1, the subregular is rational.
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Outlook

• Inverse quantum hamiltonian reduction is a very promising means to
analyse logarithmic CFTs with W-algebra symmetry.

• It allows us to classify standard modules, hence irreducible weight
modules, compute modular transformations and (Gr) fusion rules.

• There is also potential to explicitly construct projective covers.

• We may also be able to determine the fusion rules themselves.

• It is said that WZW models are the building blocks of rational CFT.
If the same is true for admissible-level WZW models and log CFT,
then we can expect these methods to generalise widely!

• Either way, the future of these CFTs is looking good...

“Only those who attempt the absurd will achieve the impossible.”

— M C Escher
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