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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

A number theory question...

Question: Is 133 588 the sum of 4 squares?

Better Question: Is m the sum of 4 squares?
Even Better Question: Is m the sum of n squares?

Good Question: How many ways can we write m the sum of n squares?
[For our purposes, examples such as 32 + 02 and 02 + 32 should be counted separately.]

m 0 1 2 3 4 5 6 7 8 9 · · ·
n = 0 1 0 0 0 0 0 0 0 0 0 · · ·
n = 1 1 2 0 0 2 0 0 0 0 2 · · ·
n = 2 1 4 4 0 4 8 0 0 4 4 · · ·
n = 3 1 6 12 8 6 24 24 0 12 30 · · ·
n = 4 1 8 24 32 24 48 96 64 24 104 · · ·
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

When counting things, it is wise to consider generating functions:

n = 0 1 + 0q + 0q2 + 0q3 + 0q4 + 0q5 + 0q6 + 0q7 + 0q8 + 0q9 + · · ·
n = 1 1 + 2q + 0q2 + 0q3 + 2q4 + 0q5 + 0q6 + 0q7 + 0q8 + 2q9 + · · ·

:= ϑ̃3(q)

n = 2 1 + 4q + 4q2 + 0q3 + 4q4 + 8q5 + 0q6 + 0q7 + 4q8 + 4q9 + · · ·
n = 3 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + 24q6 + 0q7 + 12q8 + 30q9 + · · ·
n = 4 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + 96q6 + 64q7 + 24q8 + 104q9 + · · ·

The n = 1 generating function is called a theta function.
It converges when |q| < 1.

This theta function is a helpful gadget because

ϑ̃3(q)
2 = (1 + 2q + 2q4 + 2q9 + · · · )(1 + 2q + 2q4 + 2q9 + · · · )

= 1 +

4q + 4q2 + 0q3 + 4q4 + 8q5 + 0q6 + 0q7 + 4q8 + 4q9 + · · · ,

which is the n = 2 generating function.

In general, the number of ways to write m as a sum of n squares is the
coefficient of qm in ϑ̃3(q)

n.
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Fun with infinite products

When you’re handed a polynomial, why not try factorising?
When you’re handed a generating function... we can but try...

ϑ̃3(q) = 1 + 2q + 2q4 + 2q9 + · · ·

= (1 + q)2(1− q2 + 2q3 − q4 + q6 − 2q7 + 3q8 − 2q9 + · · · )
= (1 + q)2(1− q2)(1 + 2q3 − q4 + 2q5 + 3q8 − 2q9 + · · · )
= (1 + q)2(1− q2)(1 + q3)2(1− q4 + 2q5 − q6 + 2q7 − q8 + · · · )
= (1 + q)2(1− q2)(1 + q3)2(1− q4)(1 + 2q5 − q6 + 2q7 − q8 + · · · )

??
=

∞∏
n=1

(1 + q2n−1)2(1− q2n).

This theta function factorises as an infinite product! It also converges
when |q| < 1. [How can you tell if an infinite product converges?]
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

A slight recalibration

For what follows, we’ll need to redefine this otherwise extremely beautiful
theta function.

We set

ϑ3(q) := ϑ̃3(q
1/2) =

∑
n∈Z

qn
2/2 =

∞∏
n=1

(1 + qn−1/2)2(1− qn).

This has the small disadvantage of no longer being single-valued:

ϑ3(e
2πiq) =

∑
n∈Z

(−1)nqn
2/2 =

∞∏
n=1

(1− qn−1/2)2(1− qn) := ϑ4(q).

But, instead we get a new theta function!

A small variation of this theme even gives us a third theta function:

ϑ2(q) :=
∑
n∈Z

q(n+1/2)2/2 = 2q1/8
∞∏

n=1

(1 + qn)2(1− qn).

[Why don’t we also consider ϑ1(q) =
∑

n∈Z(−1)nq(n+1/2)2/2?]
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Fun with Fourier

Let f : R → C be a really nice1 function. Its Fourier transform is

f̂(p) =

∫ ∞

−∞
f(x) e−2πipx dx.

Set F (x) =
∑

n∈Z f(x+ n) so that F is 1-periodic. Its Fourier series is

F (x) =
∑
m∈Z

cme2πimx, for some cm ∈ C.

We compute these constants:

cm =

∫ 1

0

F (x) e−2πimx dx =
∑
n∈Z

∫ 1

0

f(x+ n) e−2πimx dx

=
∑
n∈Z

∫ n+1

n

f(y) e−2πimy dy =

∫ ∞

−∞
f(y) e−2πimy dy.

1[eg., infinitely differentiable and rapidly decaying at ±∞.]
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

The cm are thus equal to f̂(m)!

Substituting back into F (x) now gives∑
n∈Z

f(x+ n) =
∑
m∈Z

f̂(m) e2πimx.

The x = 0 version is very cool:∑
n∈Z

f(n) =
∑
m∈Z

f̂(m).

It’s called Poisson resummation.

[You might like to experiment with this to see what it has to do with Dirac delta functions/combs.]
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Back to theta functions

One really nice function is f(x) = e−ax2

, Re a > 0.

We have

f̂(p) =

√
π

a
e−π2p2/a,

so that Poisson resummation becomes∑
n∈Z

e−an2 PS
=

√
π

a

∑
m∈Z

e−π2m2/a, Re a > 0.

If we now set q = e2πiτ in our favourite theta function, we get

ϑ3(τ) := ϑ3(e
2πiτ ) =

∑
n∈Z

eπiτn
2 PS
=

1√
−iτ

∑
m∈Z

e−πim2/τ =
1√
−iτ

ϑ3(
−1
τ ).

Note that |q| < 1 ⇐⇒ Im τ > 0 ⇐⇒ Re a = Re(−πiτ) > 0.
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9/26

A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Back to theta functions

One really nice function is f(x) = e−ax2

, Re a > 0. We have

f̂(p) =

√
π

a
e−π2p2/a,

so that Poisson resummation becomes∑
n∈Z

e−an2 PS
=

√
π

a

∑
m∈Z

e−π2m2/a, Re a > 0.

If we now set q = e2πiτ in our favourite theta function, we get

ϑ3(τ) := ϑ3(e
2πiτ ) =

∑
n∈Z

eπiτn
2 PS
=

1√
−iτ

∑
m∈Z

e−πim2/τ =
1√
−iτ

ϑ3(
−1
τ ).

Note that |q| < 1 ⇐⇒ Im τ > 0 ⇐⇒ Re a = Re(−πiτ) > 0.



9/26

A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Back to theta functions

One really nice function is f(x) = e−ax2

, Re a > 0. We have

f̂(p) =

√
π

a
e−π2p2/a,

so that Poisson resummation becomes∑
n∈Z

e−an2 PS
=

√
π

a

∑
m∈Z

e−π2m2/a, Re a > 0.

If we now set q = e2πiτ in our favourite theta function, we get

ϑ3(τ) := ϑ3(e
2πiτ ) =

∑
n∈Z

eπiτn
2 PS
=

1√
−iτ

∑
m∈Z

e−πim2/τ =
1√
−iτ

ϑ3(
−1
τ ).

Note that |q| < 1 ⇐⇒ Im τ > 0 ⇐⇒ Re a = Re(−πiτ) > 0.



10/26

A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Multiplying q by e2πi is the same as adding 1 to τ .

We therefore have
two transformation formulae:

ϑ3(
−1
τ ) =

√
−iτ ϑ3(τ), ϑ3(τ + 1) = ϑ4(τ).

Similar shenanigans give transformations for our other theta functions:

ϑ2(
−1
τ ) =

√
−iτ ϑ4(τ), ϑ2(τ + 1) = eπi/4 ϑ2(τ),

ϑ4(
−1
τ ) =

√
−iτ ϑ2(τ), ϑ4(τ + 1) = ϑ3(τ).

These formulae can be summarised by declaring that[
ϑ2(τ), ϑ3(τ), ϑ4(τ)

]
is a vector-valued modular form of weight 1

2 .

[This is the start of a beautiful story into which we sadly have not the time to delve...]

Exercise: Show that η(q) = q1/24
∏∞

n=1(1− qn) satisfies

2η(q)3 = ϑ2(q)ϑ3(q)ϑ4(q), η(−1
τ ) =

√
−iτ η(τ), η(τ+1) = eπi/12 η(τ).
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

At last some physics!

Recall that workhorse of undergraduate physics, the harmonic oscillator:

ẍ(t) + ω2x(t) = 0.

After quantising, the hamiltonian operator takes the form

H =
p2

2m
+

1

2
mω2x2, [x, p] = iℏ.

The energies may be extracted using ladder operators (aka. Lie algebra
representation theory) or Hermite functions. Either way, the answer is

En = ℏω(n+ 1
2 ), n ∈ N.

Even better, the spectrum is nondegenerate, meaning that each energy
eigenvalue has a one-dimensional eigenspace.
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

n = 0
a† a

n = 1
a† a

n = 2
a† a

n = 3
a† a

n = 4
a† a

n = 5
a† a

n = 6
a† a

n = 7
a† a

n = 8
a† a

n = 9
a† a

n = 10
a† a

...

En = ℏω(n+ 1
2
)

Annihilation operator: a
Creation operator: a†



13/26

A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Let’s compute the partition function of the quantum harmonic oscillator:

Z(T ) = tr e−H/kT

=

∞∑
n=0

e−En/kT =

∞∑
n=0

e−ℏω(n+1/2)/kT .

Now put q = e−ℏω/kT for clarity, noting that |q| < 1 (in fact 0 < q < 1).
Then,

Z(q) =

∞∑
n=0

qn+1/2 =
q1/2

1− q
,

which is... quite underwhelming.

The problem here is that we’re doing boring ol’ quantum mechanics.
To get the good stuff, we need some quantum field theory!
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

So let’s kick it up a notch!
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

The free bosonic string

We’d like to study the quantum field theory, actually conformal field
theory (CFT) underlying the massless spinless noninteracting bosonic
string (and on a one-dimensional spacetime no less)!

But it’s getting late and we’re all pretty tired on a Friday afternoon, so
let me just say that the string behaves like an infinite set of independent
harmonic oscillators, one for each vibration mode.

[This is because the equation of motion of the string is the wave equation — see MAST90069.]



15/26

A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

The free bosonic string

We’d like to study the quantum field theory, actually conformal field
theory (CFT) underlying the massless spinless noninteracting bosonic
string (and on a one-dimensional spacetime no less)!

But it’s getting late and we’re all pretty tired on a Friday afternoon, so
let me just say that the string behaves like an infinite set of independent
harmonic oscillators, one for each vibration mode.

[This is because the equation of motion of the string is the wave equation — see MAST90069.]



15/26

A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

The free bosonic string

We’d like to study the quantum field theory, actually conformal field
theory (CFT) underlying the massless spinless noninteracting bosonic
string (and on a one-dimensional spacetime no less)!

But it’s getting late and we’re all pretty tired on a Friday afternoon, so
let me just say that the string behaves like an infinite set of independent
harmonic oscillators, one for each vibration mode.

[This is because the equation of motion of the string is the wave equation — see MAST90069.]



16/26

A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Since collections of independent systems are modelled by tensor products,
the spectrum of the bosonic string is as follows [ignoring zero-point energies!]:

0

1

2

3

4

5

6

7

8

9

10

...

⊗

a†1 ↑ ↓ a1

...

⊗

a†2 ↑ ↓ a2

...

⊗

a†3 ↑ ↓ a3

...

⊗

a†4 ↑ ↓ a4

...

⊗ · · ·

a†5 ↑ ↓ a5

The upshot is that the partition function of the bosonic string is the
product of the partition functions of its harmonic oscillator components.
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

So let’s compute the stringy partition function...

We have a harmonic oscillator of frequency nω, for each n ∈ Z>0, so

ZBS(q) = ZHO(q)ZHO(q
2)ZHO(q

3) · · · (since q = e−ℏω/kT )

⇒ ZBS(q) =

∞∏
n=1

ZHO(q
n) =

∞∏
n=1

qn/2

1− qn
=

q
1
2

∑∞
n=1 n∏∞

n=1(1− qn)
.

We seem to have a problem... and the solution is to regularise!

Set ζ(s) =
∑∞

n=1 n
−s. This converges for Re s > 1, eg. ζ(2) = π2

6 , but

ζ(s) = 2sπs−1 sin
πs

2
Γ(1− s)ζ(1− s) ⇒ ζ(−1) = − 1

12
.

The (zeta-function-regularised) stringy partition function is thus

ZBS(q) =
q

1
2 ζ(−1)∏∞

n=1(1− qn)
=

1

q1/24
∏∞

n=1(1− qn)
=

1

η(q)
.
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

The fermionic string

Lest ye think that yon partition function be only coincidentally a modular
form, we can check another example: the fermionic string.

Without getting bogged down in details, the essential differences are:

• The energy spectrum respects the Pauli exclusion principle.

• Being spin- 12 modifies the (relative) excited state energies.

0
1/2

3/2

5/2

7/2

9/2

11/2

...

⊗

a†1/2 ↑ ↓ a1/2

⊗

a†3/2 ↑ ↓ a3/2

⊗

a†5/2 ↑ ↓ a5/2

⊗

a†7/2 ↑ ↓ a7/2

⊗ · · ·

a†9/2 ↑ ↓ a9/2

[Again, we’re ignoring the zero-point energies because that requires more work!]
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

The partition function of the n-th fermionic “harmonic oscillator” is thus
1 + qn−1/2 [neglecting the zero-point energies], so that of the fermionic string is

ZFS(q) = qE0

∞∏
n=1

(1 + qn−1/2) = qE0

√∏∞
n=1(1 + qn−1/2)2(1− qn)∏∞

n=1(1− qn)
.

The (regularised) zero-point energy turns out to be E0 = − 1
48 , hence

ZFS(q) =

√∏∞
n=1(1 + qn−1/2)2(1− qn)

q1/24
∏∞

n=1(1− qn)
=

√
ϑ3(q)

η(q)
,

which is indeed another modular form (as advertised)! Even better:

• Inserting a “fermion number” operator (−1)F into ZFS(q) results
instead in

√
ϑ4(q)/η(q) [the superpartition function].

• Exchanging antiperiodic boundary conditions [the Neveu–Schwarz sector] for
periodic ones [the Ramond sector] results instead in

√
ϑ2(q)/η(q).
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Why is it so?

mathematical!
∨
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

The modular machine

We’ve seen that stringy quantum field theories, actually CFTs (conformal
field theories), have modular forms for partition functions.

Is this appearance of number theory in basic physics mere coincidence or
is there something deeper going on?

As always, this ain’t no coincidence. It holds true for all CFTs (and is
even a theorem for the so-called “strongly rational” ones).

The explanation is a marvellous confluence of conformal physics and the
mathematics of complex curves, aka. Riemann surfaces.

We won’t be able to do justice to this here, but the missing details are
(hopefully) covered in MAST90056 and MAST90069.
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

Our story starts with the following observations:

• A string is a circle, so it sweeps out a cylinder as it evolves in time.

• The equations defining the “conformal” nature of the theory reduce to
the Cauchy–Riemann equations, so we need to equip the cylinder with
a complex structure (essentially, a consistent choice of i).

• Luckily, there is only one way to do this.
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

However, partition functions make this game much more complicated:

• A trace is a sum over a basis of (normalised) eigenvectors {vn}:

Z(q) = tr qH =
∑
n

⟨vn | qH | vn⟩ =
∑
n

⟨vn | e−iHt/ℏ | vn⟩.

• It therefore sums the evolution from one basis state to itself.

• The cylinder is therefore effectively replaced by a torus!

• However, a torus has uncountably many different complex structures,
depending on how we glue it together.

• These are classified by τ ∈ C, Im τ > 0, modulo τ 7→ −1
τ , τ 7→ τ + 1.
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

So the partition function of a CFT depends on the choice of τ because q
does (hence t or T does), hence on the torus.

Being conformal means only the complex structure of the torus matters.

The partition function must thus be invariant under the modular
transformations

τ 7→ −1

τ
and τ 7→ τ + 1,

because these precisely preserve the complex structure of the torus.

These transformations generate the modular group

PSL(2;Z) ≃
{
τ 7→ aτ + b

cτ + d
: a, b, c, d ∈ Z and ad− bc = 1

}
.

Summary: CFT partition functions are modular forms.
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

What’s next?

• First, I should admit to some flagrant lying...

• None of the so-called partition functions that we’ve discussed have
actually been modular invariants.

• For the bosonic string, I ignored two key points:

1. Strings not only vibrate, they also move (they have momentum).
2. Their conformal nature implies a factorisation into independent

holomorphic and antiholomorphic sectors.

• For the fermionic string, there is no momentum (!) but I did neglect
the antiholomorphic contributions. However, the antiperiodic
boundary conditions mean the complex torus should be replaced by an
appropriate “double cover” (which changes the modular group).

• But in both cases, we can fix it and show that the partition function is
indeed modular invariant (for an appropriate definition of modular).
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A number theory question And now for some Fourier analysis At last some physics! Why is it so? Where can we go from here?

• The modular machine that turns CFTs into modular forms has been
good news for number theorists.

• This has not only revitalised interest in (vector-valued) modular forms,
it also led directly to the concept of a modular tensor category.

• So CFT has therefore also been good news for category theorists.

• The recent push to understand more exotic examples CFTs has also
revolutionised the study of exotic variants of modular forms, eg.

◦ Ramanujan’s mock modular forms.
◦ Partial and false theta functions.
◦ Appell-Lerch sums.

• These examples seem to arise quite naturally in the simplest known
examples of the so-called logarithmic CFTs.

• There is currently a focus on understanding these “log-modular”
forms and the corresponding log-modular tensor categories... but
that’s a topic for a completely different talk!

“Only one who attempts the absurd is capable of achieving the impossible.”

— Miguel de Unamuno
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