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History / Motivation

This is a talk about CFTs and VOAs...

but like most quantum physics, it
is secretly about representation theory.

Once upon a time, I decided to solve the problem [Koh–Sorba’88] of why the
Verlinde formula failed for fractional-level sl2 WZW models, ie.

k = −2 +
u

v
, u, v ⩾ 2, (u, v) = 1.

The cause was simply sloppiness with convergence regions [DR’08].

But how can we fix the Verlinde formula? Relaxed hw modules!

Classified in [Adamović–Milas’95, DR–Wood’15], they arise naturally in
Kazama–Suzuki correspondences [Feigin–Semikhatov–Tipunin’97], AdS3 studies
[Maldacena–Ooguri’00], fusion [Gaberdiel’01] and cosets [DR’10].

Relaxed modules indeed fix the Verlinde formula [Creutzig–DR’12,’13].
But to verify this, we needed to compute their characters.
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A relaxed hw module is just like a hw module, except that the space of
ground states need not have a state of maximal charge/spin.

hw

highest-weight

rhw

relaxed

spin

energy

The sl2 WZW model of level k = −2 + u
v has a finite number of hw

modules, but a finite number of 1-parameter families of relaxed modules:

• hw: Hr,s, r = 1, . . . , u− 1, s = 0, . . . , v − 1.

• relaxed: R[j];r,s, [j] ∈ R/Z, r = 1, . . . , u− 1, s = 1, . . . , v − 1.

The relaxed modules have a Kac-table symmetry: R[j];r,s = R[j];u−r,v−s.
The hw modules do not.
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Curiously, the characters of the R[j];r,s are [Creutzig–DR’13, Kawasetsu–DR’18]

ch
[
R[j];r,s

]
(z; q) = tr(zspinqenergy) =

χVir.
r,s (q)

η(q)2

∑
n∈Z

zj+n,

where for r = 1, . . . , u− 1 and s = 1, . . . , v − 1, χVir.
r,s (q) is the character

of the hw irrep Lr,s of the Virasoro minimal model M(u, v).

Now, M(u, v) is the quantum hamiltonian reduction of the sl2 WZW
model and Lr,s is the “−” reduction of Hr,s!

This beautiful observation deserves a beautiful explanation...

... but first a word from our sponsor: quantum hamiltonian reduction.
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Quantum hamiltonian reduction

There are many ways of constructing new CFTs from old ones. One
method is called quantum hamiltonian reduction.

This is an abstract gauging of a CFT with affine symmetry. For the sl2
WZW models, the (chiral) gauge condition is setting e(z) to be constant.

This is implemented by constructing a BRST operator and computing its
cohomology. The result is the Virasoro algebra.

More precisely, let Vk(sl2) (Lk(sl2)) be the universal (irreducible) sl2
VOA of level k = −2 + u

v and let Vir(u, v) (M(u, v)) be the universal
(irreducible) Virasoro VOA of central charge 13− 6( uv +

v
u ). Then:

QHR
(
Vk(sl2)

)
= Vir(u, v), but

QHR
(
Lk(sl2)

)
=

{
0 if v = 1,

M(u, v) otherwise.
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QHR defines a map from Vk(sl2)-modules to Vir(u, v)-modules and, if
v ̸= 1, Lk(sl2)-modules to M(u, v)-modules.

These maps are not invertible, but they are surjective and they take
irreducibles to irreducibles (or to 0).

They are even surjective if we restrict to hw Vk(sl2)- or Lk(sl2)-modules.
(The action on relaxed modules is poorly understood, [cf. Fursman’s talk]).

Things get more interesting for higher-rank WZW models and
W-algebras because then there are multiple different QHRs labelled by
nilpotent orbits [Kac–Roan–Wakimoto’03, cf. Fasquel’s talk].

But, preservation of irreducibility is only known for the minimal and
regular nilpotents. And for these, surjectivity is only known in the
universal setting [Arakawa’04,’12].

These seem to be very hard theoretical questions, but necessary for
exploring CFTs with W-algebra symmetries.
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Inverse quantum hamiltonian reduction

The idea behind inverse QHR goes back to [Semikhatov’94].

The screening operators of the [Wakimoto’86] and [Feigin–Fuchs’82] free field
realisations

Vk(sl2)
Wak.
↪−→ βγ ⊗ V(gl1) and Vir(u, v)

FF
↪−→ V(gl1)

are compatible, once the ghosts have been bosonised à la
[Friedan–Martinec–Shenker’86]:

βγ
FMS
↪−→ Π.

The upshot is an embedding

Vk(sl2) ↪−→ Π⊗ Vir(u, v).

If v ̸= 1, we also get the irreducible embedding [Adamović’17]:

Lk(sl2) ↪−→ Π⊗M(u, v).
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Lk(sl2) ↪−→ Π⊗M(u, v).



9/12

Ancient history Quantum hamiltonian reduction Inverse quantum hamiltonian reduction Outlook

The point of these embeddings is that any M(u, v)-module may be
tensored with a Π-module and restricted to get a Lk(sl2)-module, v ̸= 1.

This restricted tensoring is inverse quantum hamiltonian reduction.

As the irreducible Π-modules Π[j], [j] ∈ R/Z, are always relaxed, inverse

QHR naturally constructs relaxed Vk(sl2)-modules!

Better, inverse QHR constructs almost-irreducible relaxed modules,
meaning that almost all are irreducible [Adamović–Kawasetsu–DR’20]:

Π[j] ⊗ Lr,s = R[j];r,s.

This beautifully explains the beautiful character formula for the R[j];r,s.

Even better again, every irreducible relaxed Lk(sl2)-module may be
constructed in this way [Adamović–Kawasetsu–DR’23].
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9/12

Ancient history Quantum hamiltonian reduction Inverse quantum hamiltonian reduction Outlook

The point of these embeddings is that any M(u, v)-module may be
tensored with a Π-module and restricted to get a Lk(sl2)-module, v ̸= 1.

This restricted tensoring is inverse quantum hamiltonian reduction.

As the irreducible Π-modules Π[j], [j] ∈ R/Z, are always relaxed, inverse

QHR naturally constructs relaxed Vk(sl2)-modules!

Better, inverse QHR constructs almost-irreducible relaxed modules,
meaning that almost all are irreducible [Adamović–Kawasetsu–DR’20]:
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The point of these embeddings is that any M(u, v)-module may be
tensored with a Π-module and restricted to get a Lk(sl2)-module, v ̸= 1.

This restricted tensoring is inverse quantum hamiltonian reduction.
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But, inverse QHR is only guaranteed to produce almost-irreducible
relaxed modules. That means some of them are reducible.

This is not a bug, but a feature!

These reducible relaxed Lk(sl2)-modules are indecomposable [cf. logCFT]

with the following short exact sequences [Kawasetsu–DR’18]:

0 → Hr,s → R[j(r,s)];r,s → c(Hu−r,v−s) → 0.

j(r, s)

Hr,s

R[j(r,s)];r,s

c(Hu−r,v−s)

In this way, we also construct all the hw Lk(sl2)-modules!
[Technically, we also need spectral flow here...]
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Outlook

Inverse quantum hamiltonian reduction is a very powerful tool for
analysing the relaxed modules.

For Lk(sl2), v ̸= 1, the known Virasoro minimal model spectrum can be
used to (re)prove the spectrum and compute all characters.

A natural question is whether this generalises to higher ranks.

The first example to consider is sl3 [cf. Fasquel’s talk for the state of the art]:

Lk(sl3)
↓

BPk

↓
W3,k

BPk
v ̸=1,2
↪→ Π⊗W3,k,

Lk(sl3)
v ̸=1
↪→ Π⊗ βγ ⊗ BPk.

tldr: Everything works as expected!

In general, inverse QHR is expected to “invert” the partial QHR of
[Madsen–Ragoucy’95, Morgan’15, Genra–Juillard’22].
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But, classifying irreducibles is just the beginning!

The plan is to lift data (classification, categorical, analytic, etc.) from a
well understood W-algebra to a not-well understood one.

For example, regular W-algebras are rational and C2-cofinite for
nondegenerate levels [Arakawa’10,’12]. Inverse QHR lifts this to understand
subregular W-algebras and beyond, perhaps to the affine VOA.

For degenerate levels, we expect that the role of the principal W-algebra
will instead be played by the exceptional ones [Arakawa–van Ekeren’19].

An open question is to develop tools to analyse these W-algebras for
nonadmissible levels. Sometimes one can use singular vectors
[Adamović–Kontrec’19,’20, Adamović–Peřse–Vukorepa’21, . . . ], but in the most
mysterious cases one cannot. Inverse QHR is nevertheless still available...

“Only one who attempts the absurd is capable of achieving the impossible.”

— Miguel de Unamuno
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