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Motivation

I want to understand conformal field theory (CFT)...

rational non-rational

log-rational generic

factorisable

discrete continuous

logarithmic

[compactified bosons]

[free fermions]

[bc-ghosts]

[minimal models]

[compact WZW models]

[a few W-algebras]

[non-compact bosons]

[Liouville/Toda]

[non-compact WZW?]

[symplectic fermions]

[triplet models]

[polymers, percolation?]

[log minimal models?]

[SLE/CLE?]

[βγ-ghosts]

[supergroup WZW]

[Nappi–Witten]

[fractional-level WZW]

[most W-algebras]

[spin chains?]
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CFTs are built from reps of its chiral algebra, aka. vertex operator
algebra (VOA).

A rational CFT has a VOA module category that is

• semisimple: modules are completely reducible,

• finite: there are finitely many irreducibles (up to ∼=),

• q-finite: modules have q-characters (tr qL0−c/24).

Log-rational means non-semisimple but finite and q-finite.
[But few accessible examples.]

Non-rational means semisimple but not finite (but can be q-finite).
[Usually notoriously difficult.]

Generically, we lose all three conditions. But here we have surprisingly
many accessible (and important!) examples... this is log CFT.
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Today: rep theory of fractional-level affine VOAs and W-algebras. These
are typically logarithmic with continuous spectrum (generic type).

The rational ones (WZW models) are widely regarded as fundamental
(and beautiful) building blocks on which much of our understanding rests.

The logarithmic ones have proven crucial in our (presently limited)
understanding of general logarithmic CFTs. And they are beautiful.1

But good news! There’s still an awful lot we don’t yet understand...

“... it is a highly nontrivial problem to construct essentially any
example of a vertex operator algebra.”

“A significant feature of the theory is that the construction of
modules for a vertex operator algebra is more subtle than the
construction of the algebra itself.”

— [Lepowsky–Li’04]

1Beauty is, after all, in the eye of the beholder (me).
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We’ll restrict to levels with “null vector decoupling” so the spectrum is
strongly constrained, ie. fewer vertex operator algebra modules.

If the constraints are sufficiently strong, aim to understand the rep theory
and build consistent CFTs (without additional physical input).

This goal is still a bit lofty at present! But models with this property may
be easier to analyse while exhibiting new features.

These fractional-level models are expected to act as stepping stones to a
deeper understanding of physically interesting theories...
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Affine VOAs and W-algebras

Input: simple Lie algebra g, complex number k ̸= −h∨.

Construction: induce the trivial g-module to a level-k ĝ-module.

Result: the universal affine VOA Vk(g).

Theorem [Gorelik–Kac’06]: Vk(g) is not simple iff

k+ h∨ =
u

v
, u ∈ Z⩾2, v ∈ Z⩾1, gcd{u, v} = 1.

The simple quotient VOA is denoted by Lk(g).

Rep theory of Vk(g) is essentially unconstrained:

Vk(g)-module ≡ “smooth” level-k ĝ-module.

That of Lk(g) is much more interesting.
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Weight modules

A weight module for ĝ is a weight module for g on which L0 acts with
finite-rank Jordan blocks.

Every irreducible weight Vk(g)-module is the “spectral flow” of a
lower-bounded one. [Futorny–Tsylke’01, Adamović–Kawasetsu–DR’23]

SF
· · ·

∆

SF SF SF
· · ·

A lower-bounded irreducible is a relaxed highest-weight module
[Feigin–Semikhatov–Tipunin’97, DR–Wood’15].
Relaxed means generated by a single weight vector of minimal ∆.

The weight category is modular, wrt. generalised characters, and closed
under fusion. It’s a good candidate for building consistent CFTs.
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Affine VOA weight category

Given k + h∨ = u
v :

u

v

p
2

p
h∨

−1

−2

rational

logarithmic

fin. # of hw mods

fin. # of relaxed families

with fin. multiplicities

some with ∞ multiplicities?

probably logarithmic

use sing. vects.

logarithmic

but tools lacking

admissible

[I’ll assume throughout that g is simply laced for simplicity.]
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Principal W-algebra weight category

u

v

p
2

p
h∨

−1

−h∨

rational

probably logarithmic

but tools lacking

admissible

n
o
n
-d
eg

en
er
a
te
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Other W-algebra weight category

u

v

p
2

p
h∨

−1

−h∨

logarithmic

fin. # of hw mods

fin. # of relaxed families

with fin. multiplicities

some with ∞ multiplicities?

possibly

rational

logarithmic

but tools lacking

probably logarithmic

use sing. vects.

admissible

n
o
n
-d
eg

en
er
a
te

[This picture is mostly plausible speculation so don’t hold me to it...]
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Affine weight module categories

Step 1 in analysing a module category is identifying the simple objects.

For Lk(g) with k admissible (u ⩾ h∨), the irreducible highest-weight
modules were classified in [Arakawa’12].

Using coherent families [Mathieu’00], this was lifted to an algorithmic
classification of irreducible relaxed highest-weight Lk(g)-modules with
finite multiplicities in [Kawasetsu–DR’19].

Twisting with spectral flow then gives all irreducible weight modules with
finite multiplicities.

In general, there also exist irreducible weight modules with infinite
multiplicities, eg. when g = sln, n > 1, and v > 2, some of which admit
generalised characters.

The theory of these modules is currently poorly developed...
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From now on, we will ignore the infinite-multiplicity modules. Then,
almost all irreducible weight modules belong to coherent families.

It follows that there also reducible but indecomposable relaxed
highest-weight Lk(g)-modules (with finite multiplicities) [Kawasetsu–DR’19].

These reducibles are the building blocks of the projectives and injectives.

But, reducibility occurs at finitely many parameter values in each family.
The (finite-multiplicity) weight category is almost semisimple: its blocks
are parametrised by a measure space, almost all of which are semisimple.

cf. log-rational VOAs like the triplet algebra, where there are finitely
many blocks, more than one of which is non-semisimple [Gaberdiel–Kausch’96].

We call the semisimple (non-semisimple) blocks typical (atypical).
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Example: Lk(sl2), u, v ⩾ 2

Let Ku,v = {1, . . . , u− 1} × {1, . . . , v − 1} and let Z2 be generated by
(r, s) → (u− r, v − s). Up to spectral flow, there are:
[Adamović–Milas’95, DR–Wood’15, Kawasetsu–DR’19, Adamović–Kawasetsu–DR’23]

• Irreducible highest-weight modules Hr,s, for (r, s) ∈ Ku,v;

• Irreducible relaxed highest-weight modules R[λ];r,s, for
(r, s) ∈ Ku,v/Z2 and [λ] ∈ (C/2Z)− {[λr,s], [λu−r,v−s]};

• Reducible relaxed highest-weight modules R[λr,s];r,s and
R[λu−r,v−s];r,s, for (r, s) ∈ Ku,v/Z2.

Moreover: [Creutzig–DR’13, Creutzig–Kanade–Liu–DR’18, Arakawa–Creutzig–Kawasetsu’23]

• The irreducible R[λ];r,s are projective and injective (typical);

• The projective covers/injective hulls of the Hr,s are glueings of
spectral flows of 2 reducible R[λ];r,s (atypical).

The measure space is (roughly speaking) a countably infinite product of
copies of C/2Z with the product Haar measure.
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Example: L−3/2(sl3)

Up to spectral flow, there are: [Arakawa–Futorny–Ramirez’16, Kawasetsu–DR’19]

• Irreducible highest-weight modules H0 and H−ρ/2;

• Irreducible “semirelaxed” highest-weight modules S[µ], for

[µ] ∈ (− 3
2Λ1 + Cα1)/Zα1 − {[− 3

2Λ1], [− 1
2ρ]};

• Reducible semirelaxed highest-weight modules S[−3Λ1/2] and S[−ρ/2];

• Irreducible relaxed highest-weight modules R[µ], for

[µ] ∈ (h∗/Q)− {[− 3
2Λ1 + Cα1], [− 1

2ρ+ Cα2], [− 3
2Λ2 + Cα3]};

• Reducible relaxed highest-weight modules R[µ], for

[µ] ∈ {[− 3
2Λ1 + Cα1], [− 1

2ρ+ Cα2], [− 3
2Λ2 + Cα3]}.

Conjecture: [Creutzig–DR–Rupert’21]

• The irreducible R[µ] are projective and injective (typical);

• The projective covers/injective hulls of the irreducible S[µ], H−ρ/2

and H0 are explicitly known glueings of 2, 3 and 6 reducible R[µ]

(atypical of degrees 1, 2 and 2), respectively.

The measure space is a product of countably many copies of h∗/Q.
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W-algebra weight module categories

A few W-algebras may be constructed from other VOAs, eg. affine ones,
as cosets (commutants) or ...

In general, they are defined using quantum hamiltonian reduction.

This converts an affine VOA Vk(g) into a W-algebra Wk
f (g), f ∈ gnil.:

• Complete f to an sl2-triple {f, h, e}.
• Tensor ĝk with pairs of bc-ghosts, one for each positive root, and pairs

of βγ-ghosts, one for each root with α(h) = 1.

• Construct a fermionic field with conformal weight 1 and (fermionic)
ghost number 1:

d(z) =
∑
α>0

[
eα(z)− ⟨f |eα⟩

]
cα(z) + [terms in b

α, cα, βα, γα].

• d0 is a differential, the fixed-#1 subspaces of Vk(g)⊗ (bc)#1 ⊗ (βγ)#2

define a differential complex, and the non-zero cohomology vanishes?

• The W-algebra Wk
f (g) is H

(0)
k . Its simple quotient is Wf

k (g).
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Examples

• Taking f = 0 results in Wk
f (g) = Vk(g) (reduction does nothing).

• Taking f =
∑

α simple

fα gives the regular W-algebra: Wk
reg.(g).

• Taking f = fθ gives the minimal W-algebra Wk
min.(g).

• There is also the subregular W-algebra Wk
sub.(g) and many others...

Wk
reg.(sl2) = Wk

min.(sl2) Virasoro

Wk
reg.(sl3) Zamolodchikov Wk

3

Wk
reg.(sln) Casimir of type (2, 3, 4, . . . , n)

Wk
min.(sl3) = Wk

sub.(sl3) Bershadsky–Polyakov W
(2),k
3

Wk
reg.(osp1|2) = Wk

min.(osp1|2) N = 1

Wk
reg.(sl2|1) = Wk

min.(sl2|1) N = 2

Wk
min.(osp3|2) = Wk

sub.(osp3|2) small N = 3

Wk
min.(psl2|2) = Wk

sub.(psl2|2) small N = 4

Wk
min.(d2|1;α) big N = 4
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Example: Wmin.
k (sl3) (Bershadsky–Polyakov)

The weight module category (k+ 3 = u
v ) has the following properties.

u

v

p
2

p
3

−1

−2

−3

logarithmic

fin. # of hw mods

fin. # of relaxed families

all with fin. multiplicities

[Fehily–DR’20, Adamović–Kawasetsu–DR’23]

rational [Arakawa’10]
trivial

lo
g
arith

m
ic

∞ # of hw mods, ∞ # of relaxed families

logarithmic [Adamović–Kontrec’19,’20]

∞ # of hw mods, no relaxed

free

boson

admissible

n
o
n
-d
eg

en
er
a
te
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Inversion by example

Take Lk(sl2)
QHR7−→ Wreg.

k (sl2) ≡ Virk at fractional k:

k+ 2 =
u

v
, u, v ∈ Z⩾2, gcd{u, v} = 1.

Then, the affine VOA is logarithmic but Virasoro is rational.

What can we learn about their representations?

Virk

[ordinary]

Lk(sl2)

[ordinary]

[highest-weight]

[conjugate highest-weight]

[relaxed highest-weight]

[projective/injective]

[spectral flows]

[Whittaker]

[others...]
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Free-field realisations suggest a path:

• Feigin–Fuchs say Virk ↪→ H.

• Wakimoto says Vk(sl2) ↪→ H⊗ βγ.

• Bosonise the ghosts: βγ ↪→ Π. [Friedan–Martinec–Shenker’86]

• Trade FF for FMS: Vk(sl2) ↪→ Virk ⊗Π.. [Semikhatov’94]

• Prove that Lk(sl2) ↪→ Virk ⊗Π iff k /∈ N. [Adamović’17]

Thus, every M ∈ Virk-mod and N ∈ Π-mod yield a representation

M ⊗N ∈ Lk(sl2)-mod,

by restriction (for k /∈ N).

Virk only has ordinary modules and weight Π-modules are spectral
flow-relaxed, so we get spectral flows of relaxed Lk(sl2)-modules!
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The Adamović functors

Virk-mod → Lk(sl2)-mod,

H 7→
(
H ⊗Πℓ

λ

)
↓,

are the heart of inverse quantum hamiltonian reduction (for sl2).

Theorem [Adamović–Kawasetsu–DR’20]:

• The image of an Adamović functor is a non-semisimple category.

• If H is irreducible, then its image under an Adamović functor is
almost irreducible. [cf., de Sole–Kac’05]

Theorem [Adamović–Kawasetsu–DR’23]:

• Every irreducible relaxed Lk(sl2)-module is the image of an irreducible
Virk-module under an Adamović functor.

• Every irreducible weight Lk(sl2)-module is a quotient of one in the
image of an Adamović functor.
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Virk-mod → Lk(sl2)-mod,

H 7→
(
H ⊗Πℓ

λ

)
↓,

are the heart of inverse quantum hamiltonian reduction (for sl2).
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Beyond sl2

Adamović functors for other simple affine W-(super)algebras are known:

• (N = 1)k → Lk(osp1|2) for k admissible but non-integral.
[Adamović’17, Kawasetsu–DR’18, Creutzig–Kanade–Liu–DR’19]

•
(N = 2)k

Lk(sl2)
Lk(sl2|1) for k+ 1 = u

v admissible with


v ̸= 1

u ̸= 1
.

[Creutzig–Fasquel–Genra–DR’24]

• Wreg.
k (sl3) → Wmin.

k (sl3) iff k + 3 = u
v with v ⩾ 3.

[Adamović–Kawasetsu–DR’20]

• Wmin.
k (sl3) → Lk(sl3) iff k+3 = u

v with v ⩾ 2. [Adamović–Creutzig–Genra’21]

• Wreg.
k (sp4) → Wsub.

k (sp4) iff k + 3 = u
v with v ⩾ 3. [Fasquel–Fehily–DR’24]

• Wreg.
k (sln) → Wsub.

k (sln) iff k + n = u
v with v ⩾ n. [Fehily’21]

There are also many universal examples being worked out, eg.
[Fehily’23, Fasquel–Nakatsuka’23, Creutzig–Fasquel–Linshaw–Nakatsuka’24, Fasquel–Fehily–Nakatsuka’24, ...].

There is clearly a lot still to do...
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Conclusions

It seems that the right way to analyse W-algebra CFTs is:

• Start with the regular W-algebra at an admissible but non-degenerate
level. These are rational with known representation theories!

• Use inverse reduction to construct the relaxed modules of the
subregular W-algebra. Get the other irreducibles as quotients.

• Repeat, working your way up the lattice of nilpotents until the
representation theory of the desired W-algebra is known!

If the level is admissible but degenerate, don’t despair: start instead with
a rational exceptional W-algebra. [Arakawa–van Ekeren’19, McRae’21]

• When v = 1, Lk(g) is exceptional.

• For g = sl3, u ⩾ 3 and v = 2, Bershadsky–Polyakov is exceptional.

• For g = sln, u ⩾ n and v = n− 1, the subregular is exceptional.

[This needs generalising to the super case...]
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Outlook

• Inverse quantum hamiltonian reduction lets us analyse logarithmic
CFTs with W-algebra symmetries.

• It allows us to classify irreducible weight modules, compute modular
transformations and (Grothendieck) fusion rules.

• These ideas are also relevant to the construction of projective and
injective modules, needed for the CFT state space, (genuine) fusion
rules, correlation functions and other categorical data.

• It is said that WZW models are the building blocks of rational CFT.
If the same is true for admissible-level WZW models and log CFT,
then we can expect these methods to generalise widely!

• Either way, the future of these CFTs is looking good...

“Only those who attempt the absurd will achieve the impossible.”

— Miguel de Unamuno
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