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Rationality
Conformal field theory (CFT) is quantum field theory with invariance
under conformal (angle-preserving) transformations.

In two dimensions, local conformal transformations are (anti)analytic.
They give rise to two commuting copies of the Virasoro algebra.

The space of states H of the CFT is thus a Vir @ Vir-module.
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Rationality
Conformal field theory (CFT) is quantum field theory with invariance
under conformal (angle-preserving) transformations.

In two dimensions, local conformal transformations are (anti)analytic.
They give rise to two commuting copies of the Virasoro algebra.

The space of states H of the CFT is thus a Vir & Vir-module.

More generally, H is a module of two commuting copies of the symmetry
algebra of the CFT, a vertex operator algebra (VOA) V.

Definition
A CFT is rational if H is

® semisimple as a V' ® V-module; and
® decomposes into a finite number of simple V' ® V-modules.
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Examples and non-examples

1. The Ising model is rational with V' being the simple Virasoro VOA of
central charge % and

H= (Lo ®Lo) @ (L1/16 ® L1/16) © (L1/2 ® L1/2),

where L, is the simple highest-weight Virasoro module of conformal
weight h.
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Examples and non-examples

1. The Ising model is rational with V' being the simple Virasoro VOA of
central charge % and

H= (Lo®Lo) ® (L1/16 ® L1/16) ® (L1j2 ® L1/2),

where L, is the simple highest-weight Virasoro module of conformal
weight h.

2. The free boson is not rational with V' being the Heisenberg VOA of
central charge 1 and

D
H= / (Fp, ® Fp,) dp,
JR

where F,, is the Fock space of charge p. Whilst H is semisimple, it is
composed of an uncountably infinite number of simples.
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3. The triplet model is not rational. It has four simple V-modules —
Wo, Wi, W_; /g and W3,5 — and the state space decomposes as

an indecomposable

with 8 composition

factors built from
Wy and W,

H=(W_1s®@W_1/5) ® (W3/80W3/3) @

It is finite, but not semisimple [Gaberdiel-Kausch'96].
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3. The triplet model is not rational. It has four simple V-modules —
Wo, Wi, W_; /g and W3,5 — and the state space decomposes as

an indecomposable

with 8 composition

factors built from
Wy and W,

H=(W_1s®@W_1/5) ® (W3/80W3/3) @

It is finite, but not semisimple [Gaberdiel-Kausch'96].

4. The singlet model is not rational either. It has an uncountable
infinity of simple V-modules Ey, A € C\ Z, and M,., r € Z, with

an indecomposable with
® o
o a countable infinity of
H= /C\Z(E/\ 2B dAS composition factors built

from the M,

It is neither finite nor semisimple [Wang'97].
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Highly opinionated message #705.

From the modular perspective, the difficulty of these four cases is
1. <2. <4 <3.

ie., the hardest case is the finite4+ non-semisimple one.
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It is also a case with very few examples.

We should thus work on case 2. (also few examples) and 4. (many
examples).
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Message of the day

Highly opinionated message #705.

From the modular perspective, the difficulty of these four cases is
1. <2. <4 <3.

ie., the hardest case is the finite4+ non-semisimple one.

It is also a case with very few examples.

We should thus work on case 2. (also few examples) and 4. (many
examples).

Starting with 3. is silly...



Rationality and beyond! Modularity Examples Why should we care?
0000 000 000000 00000

Modularity

Recall that the (unqualified) modular group is
a b
SLy(Z) = {(c d) ca,be,d€Z, ad—be= 1}
=(S8,T : 5* = (ST)*> =577).

It is common to identify S and T" with the matrices

0 -1 1 1
S_(l 0) and T_(O 1).

Conclusions
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Modularity

Recall that the (unqualified) modular group is
a b
SLy(Z) = {(c d) ca,be,d€Z, ad—be= 1}
=(S8,T : 5* = (ST)*> =577).

It is common to identify S and T" with the matrices
0 -1 1 1
S_(l 0) and T_(O 1).

A consistency condition of CFT is that the partition function (character
of H) is invariant under the natural action of the modular group.

Conclusions
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Verlinde noticed/conjectured that the fusion coefficients N k. given by
M; x M; ~ EH N, * My,
k
are determined by the modular S-transforms of the characters,
Ch[ML] i> Z Sij Ch[MJ] y
J

via the celebrated (and highly non-trivial) Verlinde formula:

. SieSjeS :
Nij k— Z 75;71[ ke (M7 is the VOA).
7 ,
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Verlinde noticed/conjectured that the fusion coefficients N ’, given by
M; x M; ~ EH N, * My,
k
are determined by the modular S-transforms of the characters,
(’h[ML] i> Z Sij (’h[MJ] y
J

via the celebrated (and highly non-trivial) Verlinde formula:

. SiS;0S; :
NF=>" # (M, is the VOA).
; :

[Moore-Seiberg'89] explained that this (essentially) follows from other
consistency conditions of CFTs.
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This led [Turaev'94] to define the notion of a modular fusion category
(MFC), which means (among other things) that:

® the module category is finite + semisimple (+ ...);

® the module category admits a tensor product (fusion);

® there is a "nice” action of the modular group SLy(Z); and

® the fusion product and the modular action are related by Verlinde.



Modularity
ooe

This led [Turaev'94] to define the notion of a modular fusion category
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® there is a "nice” action of the modular group SLy(Z); and

® the fusion product and the modular action are related by Verlinde.

Theorem
The modules of a rational CFT form an MFC.
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This led [Turaev'94] to define the notion of a modular fusion category
(MFC), which means (among other things) that:

® the module category is finite + semisimple (+ ...);

® the module category admits a tensor product (fusion);

® there is a "nice” action of the modular group SLy(Z); and

® the fusion product and the modular action are related by Verlinde.

Theorem
The modules of a rational CFT form an MFC.

We therefore make the following (still vague) “definition”:

Definition

A CFT is modular if its characters span a (nice) representation of SL(Z)
and S reproduces the fusion coefficients via a “Verlinde-like formula”.

Huang proved that rational CFTs are modular. But, which generalisation
of an MFC captures the modularity of non-rational CFTs?
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Again with the examples...

1. The Ising model’s three simples have characters given by
1 93(0,7) 94(0,7

chlLo] = 3 (\/ 3;,(r) + \/ 3}(7) )’
. 193(0,7’) _ 194(0,7’)

ch[lyp] = (\/ 07— /5 )

Ch[L1/16] = 92(0.7)

N[

2n(r) -

Conclusions
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Again with the examples...

1. The Ising model’s three simples have characters given by
. 193 0 ’T ’194(() T
chLo] = 2<\/ n() +\/ () ) PRCRS
e ch[Li/i6] =/ Zyey
— 1 3(0,7) 40,7
chlLy /2] = (\/ o) |2l )

This CFT is modular with S- and T-matrices given by

L[] V2 1 _ 1 0 0
S=5|vz 0 V2|, T=e{0 &8 0
1 —V2 1 0o 0 -1

They generate a representation of PSLy(Z): S? = (ST)? = id.
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Again with the examples...

1. The Ising model’s three simples have characters given by
o l 19'3 0, ’T 194(() T
ch[Lo] = 2<\/ n() +\/ 0() ) PRCRS
. 92(0) 92 (0) Ch[Ll/16] = 27](7") :
_ 1 3(0,7) 40,7
ch[lijo] = 3 (\/ o V5 )

This CFT is modular with S- and T-matrices given by

L[] V2 1 _ 1 0 0
S=5|vz 0 V2|, T=e{0 &8 0
1 —V2 1 0o 0 -1

They generate a representation of PSLy(Z): S? = (ST)? = id.

The Verlinde formula gives non-negative integers that agree with the
fusion coefficients, as required.
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2. The free boson's simple characters are
e27rip(e7rip27'

dB ==

, peR.
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2. The free boson's simple characters are
e27ripce7rip27'

alf) =5

peR.

Conclusions

This CFT is also modular with S and T being represented by integral

operators with kernels
S(p,p/) _ e727ripp'7 T(p,p/) _ efﬂ'i/12e7rip25(p - p/).

Note that S is just a Fourier transform!

This time, we have a representation of SLy(Z): §? = (ST)? =8

—2
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2. The free boson's simple characters are
e27ripce7rip27'

alf) =5

peR.

This CFT is also modular with S and T being represented by integral
operators with kernels

S(p,p/) _ e727ripp'7 T(p,p/) _ efﬂ'i/12e7rip25(p - p/).
Note that S is just a Fourier transform!
This time, we have a representation of SLy(Z): 8% = (ST)? =S~ 2.

Even though the free boson is not rational, the Verlinde-like formula
(with 3> — [) still gives the fusion coefficients.
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3. The triplet model has four simples whose characters are

chWo] = (B0 4(r7),  eh[Wyy] = B0,

2
9 T . )= T
ch[W,] = %( 205) ,,(T)z), ch[Wi 5] = 220000
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3. The triplet model has four simples whose characters are

9 . 9 , 7))+ \T
ch[Wo] = 5 (%95 +n(r)?), ch[W_y5] = 2020,

ch[Wi] = (%05 — n(r)?), o [Wys]

03(0,7)—94(0,7)
2n(7) ’

2n(7)

This CFT is not modular because of the S-transform of 7(7)?:

n(r)* == —irn(r)”.
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3. The triplet model has four simples whose characters are

ch [Wo] =1 (192((”) + 7/(7')2), ch [W_1/s] 7193(0,72)7]?;9)4(0,7)7

2\ 2n(7)
ch[Wi] = (%050 — (7)), ch[Wys] = 0920,

This CFT is not modular because of the S-transform of 7(7)?:

n(r)? = —ir (7).

Wy and Wy harbour the non-semisimplicity of the CFT. In particular,
their projective covers are reducible but indecomposable.

o Lo
NSNS



Rationality and beyond! Modularity Examples Why should we care? Conclusions
0000 000 000e00 00000

We do have an action of SLy(Z) on the projective characters, but they
are not linearly independent: ch[Po] = ch[Pl]
This gives a modular-invariant partition function:
. 2 2 2
Leh[P]|" + b [W_1ys] [ + |en[Wss]|
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We do have an action of SLy(Z) on the projective characters, but they
are not linearly independent: ch[Po] = ch[Pl]

This gives a modular-invariant partition function:

slen P[4 fen W] |+ [eawas]

However, the S-matrix is no good for Verlinde interpretations:

0 1 -1
1 1 1
S=lz2 2 2
111
2 2 2
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We do have an action of SLy(Z) on the projective characters, but they
are not linearly independent: ch[Po] = ch[Pl]

This gives a modular-invariant partition function:

Slen[P| + |en[W_yje] |+ [eh [Waye)

‘ 2

However, the S-matrix is no good for Verlinde interpretations:

0 1 -1

1 1 1
S=lz2 2 2
S1o1

2 2 2

On the other hand, the projectives carry a non-semisimple action of L,

so one can introduce a pseudotrace to see the non-trivial Jordan blocks.

Here, this augments the characters by the pseudocharacter —i7 (7).
Together, they span a 5-dimensional SLy(Z)-module (but it is still no
good for Verlinde games).

Conclusions
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4. It seems that non-semisimplicity is bad for modularity. We therefore
expect the singlet algebra to also behave badly.
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4. It seems that non-semisimplicity is bad for modularity. We therefore
expect the singlet algebra to also behave badly.

But, the characters of the standard modules are modular (with .S and
T represented by integral operators):

e2mi(A—=3)(gmi(A—3)%T

n(7)
N S()\a/\/) _ e—2m(>\—1/2)(x’—1/2)’ (/\7/\/ c R).

Ch[E,\} =



Rationality and beyond! Modularity Examples Why should we care? Conclusions

0000 : 000 000000 00000

4. It seems that non-semisimplicity is bad for modularity. We therefore
expect the singlet algebra to also behave badly.

But, the characters of the standard modules are modular (with .S and
T represented by integral operators):
62771(/\7—)667”()\7—)

n(7)
N S()\a/\/) _ e—2m(>\—1/2)(x’—1/2)’ (/\7/\/ c R).

Ch[E,\} =

Moreover, the characters of the atypical modules are modular
“almost everywhere" if we allow certain infinite-linear combinations:

ch[Mr]*Z ch r+j+1}
j=0
St ) = Z, N €R
= (r, )—ma (rez, N eR).
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4. It seems that non-semisimplicity is bad for modularity. We therefore
expect the singlet algebra to also behave badly.

But, the characters of the standard modules are modular (with .S and
T represented by integral operators):
e2mi(A—=3)(gmi(A—3)%T
n(7)
= S\ N) = e TASL/2AW12) () N e R).

Ch[E,\} =

Moreover, the characters of the atypical modules are modular
“almost everywhere" if we allow certain infinite-linear combinations:

ch[Mr] = Z(fl)jch[Erﬂ-H}
j=0

, 67271"17'()\'7% ,

Sr, )= ——— e Z, X € R).

- (r. %) 2cos[m(N = 3)]|’ (reZ NeR)

Most importantly (and surprisingly), the Verlinde formula works!
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But the category of singlet modules exhibits more structure.
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But the category of singlet modules exhibits more structure.

The standard modules occupy a central place in the representation theory.

Qr—1 Q. Qrt1

P RVAVAVAY
AN

Q. is the projective cover of M,. — it is a tilting module.

M,.—o M, M, Mip1 My
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But the category of singlet modules exhibits more structure.

The standard modules occupy a central place in the representation theory.

Qr—1 - Qrt1

/ N /\/\,/\,Q
" \ / ..

Q. is the projective cover of M,. — it is a tilting module.

M,.—o M, M, Mip1 My

Moreover, these modules exhibit BGG duality:

In fancy terms, the singlet category is a highest-weight category.
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Why should we care?

These examples make manifest the claim that finite + non-semisimple is
harder than non-finite + non-semisimple. We thus expect good
modularity when the CFT is “semisimple almost everywhere”.

Opinion #93: imposing finiteness on modularity amounts to studying
theta functions without Poisson resummation and Fourier analysis.
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Why should we care?

These examples make manifest the claim that finite + non-semisimple is
harder than non-finite + non-semisimple. We thus expect good
modularity when the CFT is “semisimple almost everywhere”.

Opinion #93: imposing finiteness on modularity amounts to studying
theta functions without Poisson resummation and Fourier analysis.

This observation is the basis for the standard module formalism of
[Creutzig-DR’'13, DR-Wood'14].

® The trivial case is the semisimple one (1. & 2.) — simple = standard
= projective.

® In the non-finite + non-semisimple case (4.), all examples studied
show a BGG/highest-weight structure like the singlet.

® It does not apply (directly) to the finite + non-semisimple case (3.),
because the non-semisimplicity occupies a set of positive measure.
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Why should we care?

These examples make manifest the claim that finite + non-semisimple is
harder than non-finite + non-semisimple. We thus expect good
modularity when the CFT is “semisimple almost everywhere”.

Opinion #93: imposing finiteness on modularity amounts to studying
theta functions without Poisson resummation and Fourier analysis.

This observation is the basis for the standard module formalism of
[Creutzig-DR’'13, DR-Wood'14].

® The trivial case is the semisimple one (1. & 2.) — simple = standard
= projective.

® In the non-finite + non-semisimple case (4.), all examples studied
show a BGG/highest-weight structure like the singlet.

® It does not apply (directly) to the finite + non-semisimple case (3.),
because the non-semisimplicity occupies a set of positive measure.

Unfortunately, we're rubbish at constructing examples of type 3.
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A better quest is thus to try to categorically characterise the standard
modularity of non-finite + non-semisimple examples (cf. MFCs).

These are modular tensor BGG categories (or perhaps modular tensor
highest-weight categories).!

L[Please come up with a good name (and tell me)..]
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A better quest is thus to try to categorically characterise the standard
modularity of non-finite + non-semisimple examples (cf. MFCs).

These are modular tensor BGG categories (or perhaps modular tensor
highest-weight categories).!

Part of this requires developing tools to compute correlation functions for
these examples (and so extract categorical data).

L[Please come up with a good name (and tell me)..]
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A better quest is thus to try to categorically characterise the standard
modularity of non-finite + non-semisimple examples (cf. MFCs).

These are modular tensor BGG categories (or perhaps modular tensor
highest-weight categories).!

Part of this requires developing tools to compute correlation functions for
these examples (and so extract categorical data).

One can then use this to inform the modular behaviour of finite +
non-semisimple examples like the triplet.

We also need to construct more examples of this type, so as to determine
which properties are natural/general.

L[Please come up with a good name (and tell me)..]
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try expanding one's horizons.

Physicists have many constructions of rational CFTs, some of which are
categorical and some of which start from non-rational models.
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Even if one is only concerned with MFCs, there are still good reasons to
try expanding one's horizons.

Physicists have many constructions of rational CFTs, some of which are
categorical and some of which start from non-rational models.

In particular, infinite simple-current extensions often do this.

Example:

infinite simple

current extension —
c=1 free boson «————— fermionic ghosts

infinite orbifold

tensor square
square root

Zo simple

1 " current extension -
c=3 Ising model free fermion
Zso orbifold
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Even if one is only concerned with MFCs, there are still good reasons to
try expanding one's horizons.

Physicists have many constructions of rational CFTs, some of which are
categorical and some of which start from non-rational models.

In particular, infinite simple-current extensions often do this.

Example:
infinite simple
current extension —
c=1 _ fermionic ghOStS

infinite orbifold

tensor square
square root

Zo simple

1 " current extension -
c=3 Ising model free fermion
Zso orbifold

Many rational CFTs (eg. some W-algebras) are only known because they
have been constructed from non-rational CFTs.
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Fixing the triplet

There have been several articles proposing Verlinde-like formulae for the
triplet model, eg. [Fuchs-Hwang-Semikhatov-Tipunin, Gaberdiel-Runkel,

Gainutdinov-Runkel, Creutzig-Gannon].
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Fixing the triplet

There have been several articles proposing Verlinde-like formulae for the
triplet model, €g. [Fuchs-Hwang-Semikhatov-Tipunin, Gaberdiel-Runkel,

Gainutdinov-Runkel, Creutzig-Gannon].

However, the triplet is related to the singlet by an infinite-order
simple-current extension [Creutzig-DR'13]. The easiest approach to analysing
triplet modularity exploits this fact [Melville-DR'15].

infinite simple

m current extension ol del
singlet model | | triplet mode
— infinite orbifold :|

standard I triplet
Verlinde ! Verlinde
formula : formula??

N N induction functor N .
singlet fusion triplet fusion
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A Verlinde formula for the triplet

As above, compute the singlet fusion rules using the standard Verlinde
formula for the singlet, use induction to recover triplet fusion coefficients
and then try to rewrite everything in terms of triplet modular data.

This is delicate (but possible).
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A Verlinde formula for the triplet

As above, compute the singlet fusion rules using the standard Verlinde
formula for the singlet, use induction to recover triplet fusion coefficients
and then try to rewrite everything in terms of triplet modular data.

This is delicate (but possible). The result is a modified Verlinde formula
that takes into account the partition of simples into:

atypical: {Wo, W;} typical: {W,l/S,Wg/g}.

The triplet Verlinde formula is:

N Sq/S[S Al S7[S/S .1
k § I~ 0k E I~k

LEtyp. LEatyp.

where 6,5, = 1 if only 7 € atyp., only j € atyp. or 4, j,k € atyp., and
03 = 0 otherwise.

Note that the S-matrix is that of the triplet with the factors of 7!
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Modularity is subtle for non-semisimple CFTs, eg. the triplet. We do
not have an SLy(7Z)-action on the characters in general and so the
Verlinde formula does not seem to make sense.
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® In these cases, the modularity is carried by a proper subset of the

indecomposables: the “standard modules”. This leads to a
BGG/highest-weight structure that appears to be essential...
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Conclusions

Modularity is subtle for non-semisimple CFTs, eg. the triplet. We do
not have an SLy(7Z)-action on the characters in general and so the
Verlinde formula does not seem to make sense.

But, the standard module formalism provides a good organising
principle for “semisimple almost everywhere” CFTs.

In these cases, the modularity is carried by a proper subset of the
indecomposables: the “standard modules”. This leads to a
BGG/highest-weight structure that appears to be essential...

Then, we have an SLy(Z)-action on the standard characters and the
standard Verlinde formula just works.



Conclusions

Conclusions

Modularity is subtle for non-semisimple CFTs, eg. the triplet. We do
not have an SLy(7Z)-action on the characters in general and so the
Verlinde formula does not seem to make sense.

But, the standard module formalism provides a good organising
principle for “semisimple almost everywhere” CFTs.

In these cases, the modularity is carried by a proper subset of the
indecomposables: the “standard modules”. This leads to a
BGG/highest-weight structure that appears to be essential...

Then, we have an SLy(Z)-action on the standard characters and the
standard Verlinde formula just works.

All known log-rational examples have an infinite order orbifold that is
“semisimple almost everywhere”, so we can compute (Grothendieck)
fusion rules of log-rational theories using induction/restriction or a
modified Verlinde formula.
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not have an SLy(7Z)-action on the characters in general and so the
Verlinde formula does not seem to make sense.

® But, the standard module formalism provides a good organising
principle for “semisimple almost everywhere” CFTs.

® In these cases, the modularity is carried by a proper subset of the
indecomposables: the “standard modules”. This leads to a
BGG/highest-weight structure that appears to be essential...

® Then, we have an SLy(Z)-action on the standard characters and the
standard Verlinde formula just works.

® All known log-rational examples have an infinite order orbifold that is
“semisimple almost everywhere”, so we can compute (Grothendieck)
fusion rules of log-rational theories using induction/restriction or a
modified Verlinde formula.

Opinion #2376: we should stop proposing finite generalisations of modular
fusion categories and instead study modular tensor BGG categories.
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