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Rationality

Conformal field theory (CFT) is quantum field theory with invariance
under conformal (angle-preserving) transformations.

In two dimensions, local conformal transformations are (anti)analytic.
They give rise to two commuting copies of the Virasoro algebra.

The space of states H of the CFT is thus a V ir ⊕ V ir-module.

More generally, H is a module of two commuting copies of the symmetry
algebra of the CFT, a vertex operator algebra (VOA) V .

Definition
A CFT is rational if H is

• semisimple as a V ⊗ V -module; and

• decomposes into a finite number of simple V ⊗ V -modules.
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Examples and non-examples

1. The Ising model is rational with V being the simple Virasoro VOA of
central charge 1

2 and

H = (L0 ⊗ L0)⊕ (L1/16 ⊗ L1/16)⊕ (L1/2 ⊗ L1/2),

where Lh is the simple highest-weight Virasoro module of conformal
weight h.

2. The free boson is not rational with V being the Heisenberg VOA of
central charge 1 and

H =

∫ ⊕

R
(Fp ⊗ Fp) dp,

where Fp is the Fock space of charge p. Whilst H is semisimple, it is
composed of an uncountably infinite number of simples.
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3. The triplet model is not rational. It has four simple V -modules —
W0, W1, W−1/8 and W3/8 — and the state space decomposes as

H = (W−1/8 ⊗W−1/8)⊕ (W3/8 ⊗W3/8)⊕


an indecomposable
with 8 composition
factors built from

W0 and W1

.
It is finite, but not semisimple [Gaberdiel–Kausch’96].

4. The singlet model is not rational either. It has an uncountable
infinity of simple V -modules Eλ, λ ∈ C \ Z, and Mr, r ∈ Z, with

H =

∫ ⊕

C\Z
(Eλ ⊗ Eλ) dλ⊕


an indecomposable with
a countable infinity of

composition factors built
from the Mr

.
It is neither finite nor semisimple [Wang’97].
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Message of the day

Highly opinionated message #705.

From the modular perspective, the difficulty of these four cases is

1. < 2. < 4. < 3.

ie., the hardest case is the finite+ non-semisimple one.

It is also a case with very few examples.

We should thus work on case 2. (also few examples) and 4. (many
examples).

Starting with 3. is silly...
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Modularity

Recall that the (unqualified) modular group is

SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
=

〈
S, T : S2 = (ST )3 = S−2

〉
.

It is common to identify S and T with the matrices

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

A consistency condition of CFT is that the partition function (character
of H) is invariant under the natural action of the modular group.
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Verlinde noticed/conjectured that the fusion coefficients N k
ij , given by

Mi ×Mj ≃
⊕
k

N k
ij Mk,

are determined by the modular S-transforms of the characters,

ch
[
Mi

] S−−→
∑
j

Sij ch
[
Mj

]
,

via the celebrated (and highly non-trivial) Verlinde formula:

N k
ij =

∑
ℓ

SiℓSjℓS
∗
kℓ

S1ℓ
(M1 is the VOA).

[Moore–Seiberg’89] explained that this (essentially) follows from other
consistency conditions of CFTs.
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This led [Turaev’94] to define the notion of a modular fusion category
(MFC), which means (among other things) that:

• the module category is finite + semisimple (+ . . . );

• the module category admits a tensor product (fusion);

• there is a “nice” action of the modular group SL2(Z); and
• the fusion product and the modular action are related by Verlinde.

Theorem [Huang’04]

The modules of a rational CFT form an MFC.

We therefore make the following (still vague) “definition”:

Definition [a little vague]

A CFT is modular if its characters span a (nice) representation of SL2(Z)
and S reproduces the fusion coefficients via a “Verlinde-like formula”.

Huang proved that rational CFTs are modular. But, which generalisation
of an MFC captures the modularity of non-rational CFTs?
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Again with the examples...

1. The Ising model’s three simples have characters given by

ch
[
L0
]
= 1

2

(√
ϑ3(0,τ)
η(τ) +

√
ϑ4(0,τ)
η(τ)

)
,

ch
[
L1/2

]
= 1

2

(√
ϑ3(0,τ)
η(τ) −

√
ϑ4(0,τ)
η(τ)

)
,

ch
[
L1/16

]
=

√
ϑ2(0,τ)
2η(τ) .

This CFT is modular with S- and T-matrices given by

S =
1

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , T = e−iπ/24

1 0 0
0 eiπ/8 0
0 0 −1

 .

They generate a representation of PSL2(Z): S2 = (ST )3 = id.

The Verlinde formula gives non-negative integers that agree with the
fusion coefficients, as required.
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2. The free boson’s simple characters are

ch
[
Fp

]
=

e2πipζeπip
2τ

η(τ)
, p ∈ R.

This CFT is also modular with S and T being represented by integral
operators with kernels

S(p, p′) = e−2πipp′
, T (p, p′) = e−πi/12eπip

2

δ(p− p′).

Note that S is just a Fourier transform!

This time, we have a representation of SL2(Z): S2 = (ST )3 = S−2.

Even though the free boson is not rational, the Verlinde-like formula
(with

∑
−→

∫
) still gives the fusion coefficients.
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3. The triplet model has four simples whose characters are

ch
[
W0

]
= 1

2

(
ϑ2(0,τ)
2η(τ) + η(τ)2

)
, ch

[
W−1/8

]
= ϑ3(0,τ)+ϑ4(0,τ)

2η(τ) ,

ch
[
W1

]
= 1

2

(
ϑ2(0,τ)
2η(τ) − η(τ)2

)
, ch

[
W3/8

]
= ϑ3(0,τ)−ϑ4(0,τ)

2η(τ) .

This CFT is not modular because of the S-transform of η(τ)2:

η(τ)2
S−−→ −iτ η(τ)2.

W0 and W1 harbour the non-semisimplicity of the CFT. In particular,
their projective covers are reducible but indecomposable.

W0

W1 W1

W0

P0

W1

W0 W0

W1

P1
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We do have an action of SL2(Z) on the projective characters, but they
are not linearly independent: ch

[
P0

]
= ch

[
P1

]
.

This gives a modular-invariant partition function:

1
2

∣∣∣ch[P]∣∣∣2 + ∣∣∣ch[W−1/8

]∣∣∣2 + ∣∣∣ch[W3/8

]∣∣∣2.

However, the S-matrix is no good for Verlinde interpretations:

S =

 0 1 −1
1
2

1
2

1
2

− 1
2

1
2

1
2

 .

On the other hand, the projectives carry a non-semisimple action of L0,
so one can introduce a pseudotrace to see the non-trivial Jordan blocks.

Here, this augments the characters by the pseudocharacter −iτ η(τ)2.
Together, they span a 5-dimensional SL2(Z)-module (but it is still no
good for Verlinde games).
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4. It seems that non-semisimplicity is bad for modularity. We therefore
expect the singlet algebra to also behave badly.

But, the characters of the standard modules are modular (with S and
T represented by integral operators):

ch
[
Eλ

]
=

e2πi(λ−
1
2 )ζeπi(λ−

1
2 )

2τ

η(τ)

⇒ S(λ, λ′) = e−2πi(λ−1/2)(λ′−1/2), (λ, λ′ ∈ R).

Moreover, the characters of the atypical modules are modular
“almost everywhere” if we allow certain infinite-linear combinations:

ch
[
Mr

]
=

∑
j⩾0

(−1)jch
[
Er+j+1

]
⇒ S(r, λ′) =

e−2πir(λ′− 1
2 )

2 cos
[
π(λ′ − 1

2 )
] , (r ∈ Z, λ′ ∈ R).

Most importantly (and surprisingly), the Verlinde formula works!
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But the category of singlet modules exhibits more structure.

The standard modules occupy a central place in the representation theory.

Mr−1

Mr

Er

Mr

Mr−1 Mr+1

Mr

Qr

· · · Mr−2 Mr−1 Mr Mr+1 Mr+2 · · ·

· · · Er−1 Er Er+1 Er+2 · · ·

· · · Qr−1Qr−1 Qr Qr+1 · · ·

Qr is the projective cover of Mr — it is a tilting module.

Moreover, these modules exhibit BGG duality:

[Qr : Es] = [Es : Mr].

In fancy terms, the singlet category is a highest-weight category.
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Why should we care?

These examples make manifest the claim that finite + non-semisimple is
harder than non-finite + non-semisimple. We thus expect good
modularity when the CFT is “semisimple almost everywhere”.

Opinion #93: imposing finiteness on modularity amounts to studying
theta functions without Poisson resummation and Fourier analysis.

This observation is the basis for the standard module formalism of
[Creutzig–DR’13, DR–Wood’14].

• The trivial case is the semisimple one (1. & 2.) — simple = standard
= projective.

• In the non-finite + non-semisimple case (4.), all examples studied
show a BGG/highest-weight structure like the singlet.

• It does not apply (directly) to the finite + non-semisimple case (3.),
because the non-semisimplicity occupies a set of positive measure.

Unfortunately, we’re rubbish at constructing examples of type 3.
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A better quest is thus to try to categorically characterise the standard
modularity of non-finite + non-semisimple examples (cf. MFCs).

These are modular tensor BGG categories (or perhaps modular tensor
highest-weight categories).1

Part of this requires developing tools to compute correlation functions for
these examples (and so extract categorical data).

One can then use this to inform the modular behaviour of finite +
non-semisimple examples like the triplet.

We also need to construct more examples of this type, so as to determine
which properties are natural/general.

1[Please come up with a good name (and tell me)...]



17/21

Rationality and beyond! Modularity Examples Why should we care? Conclusions

A better quest is thus to try to categorically characterise the standard
modularity of non-finite + non-semisimple examples (cf. MFCs).

These are modular tensor BGG categories (or perhaps modular tensor
highest-weight categories).1

Part of this requires developing tools to compute correlation functions for
these examples (and so extract categorical data).

One can then use this to inform the modular behaviour of finite +
non-semisimple examples like the triplet.

We also need to construct more examples of this type, so as to determine
which properties are natural/general.

1[Please come up with a good name (and tell me)...]



17/21

Rationality and beyond! Modularity Examples Why should we care? Conclusions

A better quest is thus to try to categorically characterise the standard
modularity of non-finite + non-semisimple examples (cf. MFCs).

These are modular tensor BGG categories (or perhaps modular tensor
highest-weight categories).1

Part of this requires developing tools to compute correlation functions for
these examples (and so extract categorical data).

One can then use this to inform the modular behaviour of finite +
non-semisimple examples like the triplet.

We also need to construct more examples of this type, so as to determine
which properties are natural/general.

1[Please come up with a good name (and tell me)...]



18/21

Rationality and beyond! Modularity Examples Why should we care? Conclusions

Even if one is only concerned with MFCs, there are still good reasons to
try expanding one’s horizons.

Physicists have many constructions of rational CFTs, some of which are
categorical and some of which start from non-rational models.

In particular, infinite simple-current extensions often do this.

Example:

c = 1

c = 1
2

free boson fermionic ghosts

free fermionIsing model

infinite simple
current extension

infinite orbifold

square
root

tensor
square

Z2 orbifold

Z2 simple
current extension

Many rational CFTs (eg. some W-algebras) are only known because they
have been constructed from non-rational CFTs.
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Fixing the triplet

There have been several articles proposing Verlinde-like formulae for the
triplet model, eg. [Fuchs-Hwang-Semikhatov-Tipunin, Gaberdiel-Runkel,

Gainutdinov-Runkel, Creutzig-Gannon].

However, the triplet is related to the singlet by an infinite-order
simple-current extension [Creutzig–DR’13]. The easiest approach to analysing
triplet modularity exploits this fact [Melville–DR’15].

singlet model triplet model

triplet fusionsinglet fusion

infinite simple
current extension

infinite orbifold

standard
Verlinde
formula

induction functor

triplet
Verlinde
formula??
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A Verlinde formula for the triplet

As above, compute the singlet fusion rules using the standard Verlinde
formula for the singlet, use induction to recover triplet fusion coefficients
and then try to rewrite everything in terms of triplet modular data.

This is delicate (but possible).

The result is a modified Verlinde formula
that takes into account the partition of simples into:

atypical: {W0,W1} typical:
{
W−1/8,W3/8

}
.

The triplet Verlinde formula is:

N k
ij =

∑
ℓ∈typ.

SiℓSjℓS
−1
ℓk

S1ℓ
+ δijk

∑
ℓ∈atyp.

SiℓSjℓS
−1
ℓk

S1ℓ
,

where δijk = 1 if only i ∈ atyp., only j ∈ atyp. or i, j, k ∈ atyp., and
δijk = 0 otherwise.

Note that the S-matrix is that of the triplet with the factors of τ !



20/21

Rationality and beyond! Modularity Examples Why should we care? Conclusions

A Verlinde formula for the triplet

As above, compute the singlet fusion rules using the standard Verlinde
formula for the singlet, use induction to recover triplet fusion coefficients
and then try to rewrite everything in terms of triplet modular data.

This is delicate (but possible). The result is a modified Verlinde formula
that takes into account the partition of simples into:

atypical: {W0,W1} typical:
{
W−1/8,W3/8

}
.

The triplet Verlinde formula is:

N k
ij =

∑
ℓ∈typ.

SiℓSjℓS
−1
ℓk

S1ℓ
+ δijk

∑
ℓ∈atyp.

SiℓSjℓS
−1
ℓk

S1ℓ
,

where δijk = 1 if only i ∈ atyp., only j ∈ atyp. or i, j, k ∈ atyp., and
δijk = 0 otherwise.

Note that the S-matrix is that of the triplet with the factors of τ !



21/21

Rationality and beyond! Modularity Examples Why should we care? Conclusions

Conclusions

• Modularity is subtle for non-semisimple CFTs, eg. the triplet. We do
not have an SL2(Z)-action on the characters in general and so the
Verlinde formula does not seem to make sense.

• But, the standard module formalism provides a good organising
principle for “semisimple almost everywhere” CFTs.

• In these cases, the modularity is carried by a proper subset of the
indecomposables: the “standard modules”. This leads to a
BGG/highest-weight structure that appears to be essential...

• Then, we have an SL2(Z)-action on the standard characters and the
standard Verlinde formula just works.

• All known log-rational examples have an infinite order orbifold that is
“semisimple almost everywhere”, so we can compute (Grothendieck)
fusion rules of log-rational theories using induction/restriction or a
modified Verlinde formula.

Opinion #2376: we should stop proposing finite generalisations of modular
fusion categories and instead study modular tensor BGG categories.
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