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Abstract

We develop a model for geometric phase in a finite dimensional quantum sys-
tem, using the adiabatic theorem, and the language of vector bundles. We show
how this model can be constructed using only local Hamiltonians, and establish
how to use the energy eigenstates as local coordinates on our fibre. The base
manifold, or parameter space, is taken to be the set of all parameters such that
the local Hamiltonians are non-degenerate. This gives a direct correspondence
between an experimental setup and our theory. In our model, geometric phase is
calculated by parallel transporting a quantum state around a path in its param-
eter space. This means that its holonomy describes the system’s Berry phase.
We apply the model to a spin-1/2 system and the much richer nitrogen vacancy
(NV) center. We find that the spin-1/2 system has a U(1) holonomy group and
can effectively be described by a S2 vector bundle. The NV center exhibits a far
more interesting and complicated topological structure, with holonomy group
U(1)⊗U(1), observable discontinuities in the Berry phase, and a non-vanishing
Chern class.
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Chapter 1

Introduction

Geometry plays a fundamental role in the field of mathematical physics. It is used to model
classical mechanics on manifolds [26] and lays the groundwork for the two current pillars in
theoretical physics: general relativity and quantum field theory.

A particularly interesting phenomenon in quantum mechanics is the appearance of ge-
ometric phase. When a quantum system evolves in time it will naturally accumulate a
“dynamic” phase characterised by the time evolution operator, But it may also accumulate
a phase due to the geometry describing the system. This was first observed in 1956 by
Pancharatnam [39]. In 1959 Aharonov and Bohm published their famous paper [2] demon-
strating how an electrically charged particle can be altered without any forces acting on it.
They found that if a beam of electrons is split into two and made to interfere by passing
around a solenoid, then the interference pattern can be altered by introducing a non-zero
magnetic field inside the solenoid that vanishes outside and thus does not apply a force on
the beams.

In 1984, Berry studied geometric phases for quantum systems under adiabatic changes
in their Hamiltonian [4]. Berry found that an energy eigenstate of an adiabatically evolving
system will smoothly change to remain as an eigenstate of the Hamiltonian, if there is a
gap between its eigenvalue and the rest of the Hamiltonian’s spectrum. Consequently, after
slowly evolving a quantum system about a closed path in its Hamiltonian’s parameters, states
can return with a discrepancy in their phase known as Berry phase. In 1987 Aharonov and
Anandan furthered the study of geometric phase for general cyclic processes [1]. In which,
they made clear the distinction between “dynamic” and “geometric” phase in quantum
systems.

Since then many examples of geometric phases in quantum systems have been exper-
imentally demonstrated. In 2003 Jiangfeng made an observation of geometric phases for
mixed states [15]. Later in 2019, Karnieli reported the first experimental verification of adi-
abatic geometric phase in nonlinear frequency conversion [23]. Quantum geometric phases
have also been demonstrated in the adiabatic dynamics of chemical reactions [49,54].

Geometric phases are of great importance to an experimenter because it can lead to
different observations. Failing to account for it can mean that results wont match prediction.
As progress is made in the fields of quantum computation and communication, where precise
and accurate measurements of states are needed, it is critical to understand a system’s
geometric phases [41,42].

It is apparent that a model for geometric phase is required to completely understand
the dynamics of quantum systems. Many methods for calculating geometric phase do exist
such as deriving the Bures metric (also known as the quantum geometric tensor) from
infinitesimal perturbations to the fidelity of pure states [12,27]. Another method is to relate
the Berry curvature to the quantum metric tensor [8, 38]. This method uses the coordinate
independence of the system’s curvature 2-form to make this relation. However, this seems
to only be useful for systems of constant Euler curvature such as the spin-1/2 system and
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the nitrogen vacancy center under particular conditions.
A much more diverse way of modelling adiabatic geometric phase is to describe it as

holonomy. The reason for this is that adiabatic processes can be described by smooth paths
on a manifold. In 1992 Anandan used the classical method of parallel transport to calculate
the Berry phase of the spin-1/2 system [3]. The use of parallel transport to describe Berry
phases has appeared in many different forms, from Anandan’s simple heuristic model to
principal bundles with the base manifold taken as a projective Hilbert space, and fibre given
by the set of normalised states [20]. The model that most resembles ours is the frame bundle
developed by Tanaka and Cheon in 2009 [48]. There they extend the use of parallel transport
to describe the accumulation of geometric phases for non-adiabatic processes. This suggests
that our model could also be used for non-adiabatic general geometric phase.

Chapter 2 of this thesis will introduce the important concepts in differential geometry
that will be required to fully understand how our model works. We start by defining coordi-
nate manifolds and fibre bundles as well as explaining how to construct a fibre bundle, which
is essential in establishing our model from a given Hamiltonian. We will then study examples
of fibre bundles, including vector bundles, dual bundles and tensor product bundles. From
there we will develop the notion of connections on manifolds with particular care taken to
explain Ehresmann connections and horizontal lifts. These will provide us with ordinary
differential equations that describe our system’s holonomy. Chapter 2 will conclude with a
discussion on what parallel transport is as well as a definition for holonomy, and finally a
method for recovering a connection given information on how geometric objects change as
they are parallel transported.

Chapter 3 is a set of instructions on how to build our geometric model for any given finite
dimensional Hamiltonian. It starts off by establishing what geometric and Berry phases are
as well as introducing the adiabatic theorem [5]. We will also walk through an example of
calculating the Berry phase, by solving the Schrödinger equation. We then show how one
can extract all information needed to construct a vector bundle from a family of locally
defined n-dimensional Hamiltonians. We define the base manifold (or parameter space) as
all points in which our local Hamiltonians are non-degenerate, our fibre is defined as the
n-dimensional Hilbert space that our Hamiltonians act on, the structure group is U(n), and
the transition maps are taken to be outer products of energy eigenstates.

We then discuss our chosen local fibre coodinates which we have taken to be the energy
eigenstates. This means that our local coordinates will vary from point to point over our
base manifold. Using this variable coordinate system we show that horizontal lifts behave
in the exact same way they do for fixed a coordinate system. Then using the results from
the Berry phase example, we will derive the Berry connection using the connection recovery
method discussed at the end of Chapter 2. Finally, we determine the global curvature 2-
form from the local Berry connection. We then use the curvature to define the characteristic
Chern class of our vector bundle. We are interested in the Chern class because it can be
used to distinguish our bundle, but also it can be used to determine the Chern number.
The curvature and Chern number are important quantities in physics, because they are
observable [12,27,38]. We find that a quantum system will have a zero Chern number if its
base manifold has dimension less than 4.

Chapter 4 is the first example of our model in use. We build the Berry bundle for a
spin-1/2 system which we find has a parameter space given by R3\{0}. However, the spin-
1/2 holonomy is completely described by paths on S2. Experimentally, this predicts that
the magnitude of the magnetic field across the spin-1/2 particle, will have no influence on
the accumulation of Berry phase. We also found that our model’s holonomy agrees with
experimentation [16,22,45], and that the Chern classes and Chern number vanish.

The aim of this thesis is to build a model for Berry phase in finite dimensional quantum
systems. In particular we want to study the holonomy of the nitrogen vacancy (NV) center
which is a spin 1-system with many attractive features that make it ideal for experimentation
in nuclear magnetic resonance [7, 10], and a candidate for a qubit in quantum computation
[47,50]. Because of the many uses of the NV center it is important to have a solid theoretical
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framework to describe its behaviour. Not only could our model be used to understand the
NV center’s Berry phase, but the methods discussed in Chapter 3 can be applied to any finite
dimensional quantum system. This model was specifically designed such that smooth paths
in the parameter space would physically correspond to an experimenter tuning parameters
of the Hamiltonian, making it easier to translate between theory and practice. Furthermore,
the model is adaptable if one was interested in studying non-adiabatic processes. As in [48],
one could replace the Berry connection with a connection that mixes eigenstates and thus
breaks the adiabatic theorem.

In Chapter 5 we study the nitrogen vacancy center. First, we establish the Hamiltonian
for a spin-1 system in a magnetic field and with two incident microwaves. Then, by applying
the rotating wave approximation, we simplify our system and derive our local Hamiltonian.
We will use the characteristic polynomial of this Hamiltonian to determine that the param-
eter space of the NV center is R5 excluding two 2-dimensional cones (5.13). From there
we determine the general energy eigenvalues, eigenstates and the local Berry connections.
With just the parameter space and Berry connection, one can calculate the Berry phase
for any piecewise smooth path in the parameter space. After establishing the NV center’s
Berry bundle we study some of its observable features: Because the Berry connection is a
function of ratios in the field strengths, our parameter space can effectively be described
by a real 4-dimensional manifold. Experimentally, this means that large magnetic fields are
not needed to explore the NV center’s Berry phase. The cones (5.13) produce observable,
path dependent, discontinuities in the Berry phase. We also show that the holonomy of the
NV center is U(1) ⊗ U(1), by giving a method for inducing any Berry phase. Finally, we
determine the Chern class and show that it does not vanish.

Note that the material in Chapter 2 is presented in a way approachable for a Master’s
level student, who has some experience with geometry. Further information about the topics
covered in Chapter 2 can be found in the following textbooks [17,21,35]. It is recommended
that those unfamiliar with the subjects covered in this thesis, work through these texts
alongside Chapter 2. In section 2.5 we will introduce the notion of local horizontal lifts for
vector bundles. Because the derivation of a local horizontal lift cannot be found in the cited
textbooks, we will provide a full derivation using only projection and linearity arguments.
This is a fundamental piece of our model.

In Chapter 3 we will extend upon the topics in Chapter 2 beyond what is covered in the
textbooks [17, 21, 35]. In particular, we will show how to extract the necessary information
from a practical setup, to build a vector bundle. We will also take local energy eigenstates
as our basis on our fibre. This means that we will be using local coordinates that smoothly
vary from point to point in the manifold. This smooth variation in our local coordinates
will need to be properly accounted for when considering the tangent vectors of our bundle.

In the conclusion we will summarise the topics and ideas covered throughout this thesis
as well as reiterating the important aspects of our model. We will also review our results
from the spin-1/2 system and the NV center.
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Chapter 2

Background

This chapter will cover the necessary background in differential geometry to understand the
later chapters. We will study fibre bundles and how to construct them. Then move on to
connections, in particular the Ehresmann connection, and local horizontal lifts. This will
lead into a short digression on Lie algebras, as well as a discussion on parallel transport.
Finally, we will define holonomy, and introduce a method for recovering a connection from
information on how objects are parallel transported. For further information on the topics
covered in this chapter, see the following textbooks [35, Chapters 5, 7, 9 and 10], [17,
Chapters 16, 17 and 18] and [21, Chapters 5 and 6].

2.1 Coordinate fibre bundles

Complicated structures often appear in geometry and physics. A common method for tack-
ling problems on these structures is to break them apart into simpler spaces. This is the
idea of a manifold : An m−dimensional manifold, M , is defined as a topological space with
an open cover {Uα}α and homeomorphisms φα : Uα → Rm. We call the tuple (Uα, φα) a
chart of M with domain Uα, and we call the collection of charts {(Uα, φα)}α an atlas of M .

We are interested in smooth manifolds which have the added condition that on overlaps
Uα ∩ Uβ 6= ∅ the maps

φβ ◦ φ−1
α

∣∣
φα(Uα∩Uβ)

: φα(Uα ∩ Uβ)→ Rm,

φα ◦ φ−1
β

∣∣∣
φβ(Uα∩Uβ)

: φβ(Uα ∩ Uβ)→ Rm,
(2.1)

are smooth. In this work we will consider all manifolds to be smooth unless stated otherwise.
If we have a function f : M → Rk for some k ∈ Z>0, then we say f is smooth if

f |Uα ◦ φ
−1
α

∣∣
φα

(
Uα

) : φα
(
Uα
)
→ Rk, (2.2)

is smooth for all Uα in our cover of M . Furthermore, if a function f on M is a homeomor-
phism and both f and f−1 are smooth, then we call f a diffeomorphism.

In some case, we have two spaces that we want to stitch together. For example the
surface of the Earth and space of all wind velocities. To attach complicated structures like
these together we require a definition of coordinate fibre bundles. A coordinate fibre bundle
(E,π,M ,F ,G) consists of the following components and properties:

� Differentiable manifolds E, M and F called the total space, base space and fibre,
respectively.

� A surjective map π : E →M called the projection. We call the preimage π−1(p) = Fp
the fibre at p.
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� The maps ωα,p : F → Fp : f 7→ ωα(p, f) are diffeomorphisms.

� A Lie group G which has a left action on F . We call G the structure group.

� An open covering {Uα}α∈I of M with diffeomorphisms ωα : Uα × F → π−1(Uα) such
that π(ωα(p, f)) = p. We call ωα a local trivialisation, and together with the open
cover of M and the fibre F , they will form an atlas {Uα × F, ωα}α∈I for E.

� Furthermore, on nonempty overlaps, Uα∩Uβ , we require tαβ(p) = ω−1
α,p ◦ωβ,p : F → F

be an element of G, and ωβ(p, f) = ωα(p, tαβ(p)f) for all f ∈ F . Note that it is clear
by the definition, that tαβ is a smooth map. We call these the transition maps.

In our example above, the surface of the Earth is our base manifold and the space of
wind velocities is our fibre. We will only be interested in coordinate fibre bundles, so we
will refer to these as just fibre bundles.

Convention. We will use Greek letters (µ, ν, κ, η) to be the indices of our base space M
and Latin letters (i, j, k, `) to be the indices of our fibre F .

By definition, the transition functions satisfy the following consistency conditions,

tαα(p) = identity map (p ∈ Uα),

tαβ(p) = t−1
βα(p) (p ∈ Uα ∩ Uβ),

tαβ(p)tβκ(p) = tακ(p) (p ∈ Uα ∩ Uβ ∩ Uκ).

(2.3)

The second condition ensures the local pieces of a fibre bundle, π−1(Uα), are glued together in
a way such that our trivialisations agree on overlaps. The third condition is an associativity
condition; it tells us that for triple overlaps Uα∩Uβ ∩Uκ 6= ∅ the ordering of gluing Uα×F ,
Uβ × F and Uκ × F does not matter. If all transition functions can be taken as identity
maps, then the fibre bundle is called a trivial bundle and is diffeomorphic to M ×F . As we
will soon see in section 2.2 the transition functions encode all the information on how our
fibre twists and changes from chart to chart.

It is important to note that the set of transition functions on a fibre bundle is not
necessarily unique. Let {Uα} be an open covering of M and {ωα}, {ω̂α} be two sets of local
trivialisations. Define the map for each p ∈M

gα(p) = ω−1
α,p ◦ ω̂α,p : F → F (2.4)

These gα(p) maps take values in the structure group G, and since ωα,p and ω̂α,p are diffeo-
morphisms, then so is gα(p).

The gα(p)’s provide a way to change our coordinates from one trivialisation into another,

gα(p)−1 ◦ tαβ(p) ◦ gβ(p) = ω̂−1
α,p ◦ ωα,p ◦ ω−1

α,p ◦ ωβ,p ◦ ω−1
β,p ◦ ω̂β,p = ω̂−1

α,p ◦ ω̂β,p,

=⇒ gα(p)−1 ◦ tαβ(p) ◦ gβ(p) = t̂αβ(p). (2.5)

Physically, the transition maps tαβ are the gauge transformations of our system, while gα
corresponds to gauge degrees of freedom in the chart Uα [35, Section 9.2].

For a fibre bundle (E, π,M,F,G) we may want to use our base manifold as the domain of
a function, whose codomain is the fibre. Consider again, our fibre bundle example with base
manifold given by the surface of the Earth and fibre given by the space of wind velocities.
We may wish to know how windy it is in a particular town, the function that takes the
town’s coordinates and returns the wind velocity at those coordinates describes what we
call a section.

We define a section as follows: Given a fibre bundle (E, π,M,F,G), a section s : M → E
is a smooth map such that π ◦ s = idM . We denote by Γ(M,F ) the set of sections on M .
We may also be interested in local sections; if U ⊆M then a section local to U is one that
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is defined only on U or restricted to U . For some domain π−1(Uα) ⊂ E with trivialisation
ωα, a local section σ|Uα takes the form

σ|Uα(p) = ωα(p;σ1(p), . . . , σn(p)), (2.6)

where each σi : M → F is a smooth map. It is also important to note that in order for a
section to be consistent over multiple domains in the open cover of M , we require for all
p ∈ Uα ∩ Uβ

σ|Uα(p) = tαβ(p)σ|Uβ (p). (2.7)

Notice in (2.6) that we locally pair our input value p with smooth maps σi on our fibre.
This is based on how we visualise functions as graphs. For example a parabola has the graph
{(x, x2) : x ∈ R}.

2.2 Constructing fibre bundles

When constructing a fibre bundle, the least amount of information we need is a base space
M (which comes with an atlas and thus an open cover {Uα}), a fibre F , a structure group
G, and finally transition functions tαβ(p) : F → F obeying the consistency conditions (2.3).
Once we have these pieces we attach a fibre to each open set in our cover of M

X =
∐
α

(Uα × F ). (2.8)

We then identify all the points we want to glue together by introducing the equivalence
class on X: (p, f) ∼ (q, h) if and only if p = q and there exists a transition function tαβ such
that h = tαβ(p)f .

It is a good exercise in using the consistency equations (2.3) to show that ∼ is an
equivalence relation.

(p, f) ∼ (p, f) because tαα = id.

(p, f) ∼ (q, h) =⇒ p = q and h = tαβ(p)f, thus we have,

f = t−1
αβ(p)h = tβα(p)h =⇒ (q, h) ∼ (p, f).

(p, f) ∼ (q, h) and (q, h) ∼ (r, k) =⇒ p = q = r,

h = tαβ(p)f and k = tκα(p)h. Thus k = tκα(p)tαβ(p)f = tκβ(p)f =⇒ (p, f) ∼ (r, k).

We then glue all equivalent points together by taking the quotient

E = X/ ∼ . (2.9)

Finally, we define a projection and local trivialisations

π : E →M, [(p, f)] 7→ p,

ωα : Uα × F → π−1(Uα) = (Uα × F )/ ∼, (p, f) 7→ [(p, f)].
(2.10)

Thus, we have the fibre bundle (E, π,M,F,G).
Let us now show that π and our trivialisations satisfy the conditions in our definition

of a fibre bundle given in section 2.1. That is to say, we need to show the following three
conditions hold:

� For all p ∈M and for all α, ωα,p : F → Fp is a diffeomorphism,

� π is a surjection with π(ωα(p, f)) = p,

� E is a smooth manifold,
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First note that if f, h ∈ F such that there exists transition map tαβ with f = tαβ(p)h
then ωα(p, f) = [(p, f)] implies that ωβ(p, h) = [(p, h)] = [(p, f)]. However, this does not
imply that ωα(p, h) = [(p, f)] unless tαβ(p) = id. We will use this fact to show that ωα is
bijective: Take p ∈ Uα and f ∈ F . Then,

ω−1
α

([
(p, f)

])
=
{

(p, h) ∈M × F : ∃ tαβ(p) such that f = tαβ(p)h

and ωα(p, h) = [(p, h)]
}
,

= {(p, f) ∈ E}.

Furthermore, for all (p, f) ∈ Uα ∩ Uβ 6= ∅

ω−1
β ◦ ωα(p, f) = (p, tαβ(p)f).

This is a smooth map because the identity and transition maps are smooth. Thus, for all
p ∈ Uα the localisation ωα,p is a diffeomorphisms as per the first bullet.

The second bullet is true by definition of π, and π
(
ωα(p, f)

)
= π

(
[(p, f)]

)
= p. The last

bullet point is covered by Steenrod in the text book, The topology of fibre bundles [43], for
the case of continuous transition maps. This proof can be extended to smooth manifolds
by enforcing that the {tαβ} are smooth. Hence, (E, π,M,F,G) with trivialisations {ωα}α
forms a fibre bundle.

2.3 Examples of fibre bundles

Recall our example of a fibre bundle with the surface of the Earth for a base manifold and
fibre given by the space of all wind velocities. This fibre is a vector space, so we call this type
of fibre bundle a vector bundle. Let us make a proper definition: A vector bundle is a fibre
bundle whose fibre is a vector space V with transition functions in GL(V ). For example
V = Rk has transition functions in GL(k,R). When the fibre of our vector bundle E, is
1−dimensional, then we call E a line bundle.

Note: Consider a vector bundle E, with base space M and fibre V of dimension k.
If p ∈ M , then π−1(p) is the k−dimensional vector space, {p}× V . However, we do not
identify π−1(p) with the standard Rk until the domain of M containing p, is specified. When
a domain Uα that contains p is specified we can then use that domain’s corresponding local
trivialisation to identify a basis of V , which gives us a particular isomorphism π−1(p) ' Rk.

Example 2.3.1. A vector bundle with m−dimensional base manifold M , embedded
in Rn, and with fibre above any point p ∈M described by

π−1(p) = {v ∈ Rn : v is tangential to M at p}, (2.11)

is called a tangent bundle and is denoted by TM .
The sections of TM are tangential vector fields on M . Take a vector field X : M →
TM , and domain Uα with local coordinates {xµ}. We can expand X|Uα into its basis
components,

X|Uα(x1, . . . , xm) = Xµ(x1, . . . , xm)
∂

∂xµ

∣∣∣∣
(x1,...,xm)

. (2.12)

Now say that we have an overlapping domain Uβ with local coordinates {yµ}. This
means that X|Uα and X|Uβ describe the same local vector field on Uα ∩Uβ 6= ∅ and
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therefore they must agree for all p ∈ Uα ∩ Uβ . That is to say

(X|Uα(p))µ
∂

∂xµ

∣∣∣∣
p

= (X|Uβ (p))ν
∂

∂yν

∣∣∣∣
p

,

=⇒ (X|Uβ (p))ν = (X|Uα(p))µ
∂yν

∂xµ

∣∣∣∣
p

.

(2.13)

This implies that our transition functions are Jacobians tαβ(p) = ∂y
∂x

∣∣∣
p
.

We can also consider the cotangent bundle T ∗M , whose local sections are expanded
as 1−forms σ|Uα = σµ|Uαdxµ. Thus, on Uα ∩ Uβ

(σ|Uα)µdx
µ = (σ|Uβ )νdy

ν ,

=⇒ (σ|Uα)ν = (σ|Uβ )µ
∂xν

∂yµ
= (σ|Uβ )µ

((
∂x

∂y

)T)µ
ν

.
(2.14)

So we find that tαβ(p) = (∂x∂y )T
∣∣∣
p

= ([ ∂y∂x ]−1)T
∣∣∣
p
.

Because we are interested in describing our model with a vector bundle, we will want
to make use of the duals to our vectors. This means we will need dual bundles in our
model, so it is good idea to make a proper definition. Let (E, π,M,F,G) be a vector bundle
with vector space fibre V , base manifold M with open cover {Uα}, and transition maps
{tαβ : V → V }α,β . We define E’s dual bundle (E∗, π∗,M, V ∗, G) with

� fibre given by the dual of V ; V ∗,

� base manifold M with open cover {Uα},

� transition maps {t∗αβ = tTβα : V ∗ → V ∗}α,β .

Here the construction method in section 2.2 is used to build the dual bundle from this in-
formation.

Another set we are interested in when dealing with a vector space V , is the set of
endomorphisms End(V ). To understand where the endomorphisms in our model live, we will
need to define tensor product bundles. Let (E, π,M, V,GL(G)) and (E′, π′,M, V ′, GL(G′))
be vector bundles. Choose the same open cover {Uα}α of the base manifold M for both
bundles. Then let {tαβ : V → V }α,β and {t′αβ : V ′ → V ′}α,β be the set of transition maps
for E and E′ respectively.

We define the tensor product bundle π̂ : E ⊗ E′ →M as a fibre bundle with

� fibre V ⊗ V ′,

� base manifold M with open cover {Uα},

� structure group GL(G)⊗GL(G′),

� transition maps {tαβ ⊗ t′βα : V ⊗ V ′ → V ⊗ V ′}α,β .

Again, the construction method of section 2.2 is used to build the tensor product bundle
from this information. By taking V ′ = V ∗, this will form a bundle whose fibre elements are
endomorphisms on V .

Tensor product bundles can also be used to define an inner product on a vector bundle:
Given a vector bundle (E, π,M, V,G) with an n−dimensional fibre V , we construct the
tensor product bundle (E ⊗ E, π̂,M, V ⊗ V,G). Let ω̂α : Uα × V ⊗ V → π̂−1(Uα) be a
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trivialisation on our tensor product bundle. Take a basis {e1, . . . , en} of V and define the
linear map Ψ : V → V ∗ by

Ψ(ei)(ej) = δij , (2.15)

for all i, j ∈ {1, . . . , n}. Finally, we introduce our inner product on E by

〈·, ·〉 : E ⊗ E →M × C, ω̂(p, v ⊗ w) 7→ (p,Ψ(v)(w)), (2.16)

for all p ∈M .
A common method for modelling Berry phase is through the use of principal bundles [35,

Section 10.6] [13, 20]. We will not use this method in our model, but an introduction on
principal bundles will be provided in appendix A to help the reader translate between the
methods in the cited texts and those in this thesis.

2.4 Connections, connections, and connections

A connection on a fibre bundle is a way of “connecting” fibres locally and thus allows us
to transport objects like tangent vectors and tensors along a smooth curve in a consistent
manner. This is a little bit mysterious now but we will make this clear in this section.

Why do we need a connection? Let us attempt to take the derivative of a vector field
V(x) = V µ(x)eµ in Rm with respect to the νth coordinate, xν :

lim
∆x→0

V µ(x1, . . . , xν + ∆x, . . . , xm)− V µ(x)

∆x
eµ. (2.17)

The first term in the numerator is a vector defined at the point (x1, . . . , xν + ∆x, . . . , xm),
while second is a vector defined at (x1, . . . , xν , . . . , xm). In Euclidean space it is okay to just
take the difference of these vector components because the tangent spaces are canonically
identified. Over a manifold this is not always true. To subtract two vectors in different
tangent spaces we need to transport one to the other. So in the above case we need to
transport the second vector to (x1, . . . , xν +∆x, . . . , xm) before we can take their difference.
We call this transport of our vector, parallel transport.

On a manifold there is no natural way to transport tangent vectors from point to point,
so we need to come up with rules based on what we are trying to transport. Take M to be an
m−dimensional manifold and let V be a vector field on M . Let V̂(x1, . . . , xν + ∆x, . . . , xm)
denote our vector V(x) parallel transported from x = (x1, . . . , xm) to (x1, . . . , xν+∆x, . . . , xm).
We should aim to have our parallel transport preserve vector structure. To do this we enforce
that our parallel transport is linear with respect to its displacement and that it preserves
vector addition;

V̂ ν(x1, . . . , xν + δx, . . . , xm)− V ν(x1, . . . , xν + δx, . . . , xm) = δx,

̂(V + W)(x1, . . . , xν + ∆x, . . . , xm) = V̂(x1, . . . , xν + ∆x, . . . , xm) + Ŵ(x1, . . . , xν + ∆x, . . . , xm).

As we show in section 2.5, these conditions are met if

V̂ µ(x1, . . . , xν + ∆x, . . . , xm) = V µ(x)− V λ(x)A µ
λ ν(x)∆xν , (2.18)

where ∆x = (0, . . . ,∆x, . . . , 0) in this example, and A µ
λ ν(x) are known as connection

coefficients.
Thus a derivative of the vector field V in the ∂

∂xν direction, better known as a covariant

derivative of V with respect to ∂
∂xν , is defined by

lim
∆x→0

V µ(x1, . . . , xν + ∆x, . . . , xm)− V̂ µ(x1, . . . , xν + ∆x, . . . , xm)

∆x

∂

∂xµ

=

(
∂V µ

∂xν

∣∣∣∣
x

+ V λ(x)A µ
λ ν(x)

)
∂

∂xµ

∣∣∣∣
x

.

(2.19)
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We need a connection because there is no way to naturally move geometric objects from
fibre to fibre on a bundle. If we define two different sets of trivialisations for our bundle
and then use them to naively take derivatives of a vector field as we would in Euclidean
space, then in general we will find contradictory results. This has physical ramifications, for
example on a tangent bundle this would mean that two inertial observers would measure
different velocities even when taking relativity into account.

The best we can do is specify rules we want satisfied when moving these objects around
our manifold, and create a connection A to enforce them. Two examples of rules we could
have our connection enforce are preservation of norms, and preservation of angles.

There are a lot of different types of connections. Affine connections, or covariant deriva-
tives, hold great importance in general relativity and are often the first type of connection
that one will encounter. Let M be a manifold and take f ∈ C∞(M) and X,Y ∈ Γ(M,TM).
An affine connection ∇ is a map ∇ : Γ(M,TM) × Γ(M,TM) → Γ(M,TM) : (X,Y ) 7→
∇X(Y ) satisfying

∇X(Y +W ) = ∇X(Y ) +∇X(W ), (2.20)

∇X+Y (W ) = ∇X(W ) +∇Y (W ), (2.21)

∇fX(Y ) = f∇X(Y ), (2.22)

∇X(fY ) = (X(f))Y + f∇X(Y ). (2.23)

We can also study an affine connection locally by defining affine connection coefficients.
For any chart (U, ω) of an m−dimensional manifold M , with local coordinates {xµ}, we
define the m3 connection coefficients A λ

µ ν by

∇ ∂
∂xν

(
∂

∂xµ

∣∣∣∣
p

)
= ∇ν

(
∂

∂xµ

∣∣∣∣
p

)
= A λ

ν µ(p)
∂

∂xλ

∣∣∣∣
p

, (2.24)

for all p ∈ U .
These connection coefficients are examples of what we were talking about earlier in (2.19).

They describe how our basis vectors in each TpM rotate and change as they are transported
an infinitesimal distance. By defining how we want our basis vectors in TpM to change as
they move from p to q ∈M , we define the action of our affine connection on general vector
fields X,Y ∈ Γ(M,TM). Restricting to a domain U and using (2.20)-(2.23) we get

∇X(Y )(p) = Xν

(
∂Y λ

∂xν

∣∣∣∣
p

+A λ
ν µ(p)Y µ

)
∂

∂xλ

∣∣∣∣
p

, (2.25)

for all p ∈ U .
Affine connections are used to locally connect tangent spaces. This allows us to generalise

directional derivatives to covariant derivatives which act on tangent vectors. It is precisely
this that allows us to parallel transport a tangent vector around our manifold. We will
explore this further in section 2.8, but first we require a more general notion of a connection
if we are to prescribe one to a general fibre bundle.

2.5 Ehresmann connection and the horizontal lift

Affine connections are useful, but we need something a bit more general that will work for
more than just the tangent bundle. We need a notion of connections and parallel transport
that works for a general fibre bundles, in particular, vector bundles.

First we define vertical and horizontal subspaces of the tangent spaces belonging to a
fibre bundle. Let (E, π,M,F,G) be a fibre bundle and let b ∈ E. The vertical subspace
at b, VbE ⊂ TbE, is set of vectors tangent to the fibre Fπ(b). A horizontal subspace at b,
HbE ⊂ TbE, is defined as a complement of VbE and therefore the vertical and horizontal
subspaces of TbE satisfy the property VbE

⊕
HbE ' TbE.
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Furthermore, we define the equivalence relation on
∐
b∈E{b}× TbE given by

(b,X) ∼ (b′, Y ),

if and only if b = b′ and there exists a transition function tij(b) : TbE → TbE such that

X = tij(b)Y.

Note that the transition functions on TE are different to those on E and are usually rep-
resented by Jacobians. Using the construction method in section 2.2 we define the vertical
bundle:

V E =
∐
b∈E

{b}× VbE/ ∼ . (2.26)

Because V E inherits its fibre, structure group, transition maps, and trivialisations from TE,
then V E is a sub-bundle of TE.

We now define an Ehresmann connection on a fibre bundle (E, π,M,F,G) as a smooth
projection ξ : TE → V E, to the vertical bundle. This means that an Ehresmann connection
satisfies

ξ ◦ ξ = ξ, =⇒ ξ|V E = idV E . (2.27)

With a prescribed Ehresmann connection we have a unique horizontal bundle,

HE := ker(ξ). (2.28)

By this definition, HbE depends smoothly on b ∈ E and thus forms a sub-bundle of TE.
Furthermore, because the fibres VbE and HbE are smooth in b, then for all vector fields
X ∈ TE there exists XH ∈ HE and XV ∈ V E with X = XV +XH .

An Ehresmann connection ξ provides us a way to parallel transport vectors in E about
smooth paths γ : [0, 1]→M . We do this by finding a new curve, γ# in our bundle E, that
projects to γ and whose tangent vector field X#(t), is horizontal for all t ∈ [0, 1]. That is to
say ξ

(
X#(t)

)
= 0 for all t ∈ [0, 1]. Imposing these conditions will provide us with a system

linear ODEs for the components of γ#. If we also impose an initial condition, γ#(0) = b,
we can make use of the Picard–Lindelöf theorem [9, Sections 1.1 and 1.2] to guarantee the
existence and uniqueness of γ#. We call this the horizontal lift of γ to E starting at b.

The Picard–Lindelöf theorem provides us with a set of conditions that an initial value
problem must satisfy in order to have a unique solution: Let D ⊆ R × Rn be a closed
rectangle with (t0, y0) in the interior of D. Consider an initial value problem

dy

dt
= f(t, y), y(t0) = y0, (2.29)

with
f : D → Rn. (2.30)

If f is continuous in t and Lipschitz continuous in y, then there exists some ε > 0 such that
the initial value problem (2.29) has a unique solution

y(t) for all t ∈ [t0 − ε, t0 + ε]. (2.31)

Note that Lipschitz continuous is implied by smoothness. This means that the Pi-
card–Lindelöf theorem will always hold for what we are interested in.

As before with an affine connection, a horizontal sub-bundle is not unique, so we define
an Ehresmann connection, ξ, by forming a set of rules we wish parallel transport to obey.
The condition ξ

(
X#(t)

)
= 0 enforces these rules onto γ#. Another useful property of an

affine connection was the ability to localise it by obtaining the local connection coefficients.
This also translates to an Ehresmann connection. For a fibre bundle (E, π,M,G, F ) with

atlas
{(
Uα × F, ωα

)}
, and Ehresmann connection ξ, we define a local connection 1-form as

Aα = dω−1
α ◦ ω∗α

(
ξ
)

: T (Uα × F )→ T (Uα × F ) (2.32)
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The exact reasons why an Ehresmann connection defines local connection 1-forms will be
explained at the end of the section.

In physics, we often prefer a local picture of differential geometry where local connection
1−forms are better known as gauge fields. For this reason we will now establish a set of local
coordinates for a vector bundle. In the definition of a vector bundle E, we choose an atlas
{Vα × F, ωα} for E, where {Vα} provides an open covering of our base space M . Because
M is a manifold, a very natural choice for this covering is the domains in the atlas we chose
for M , {(Uα, φα)}. We can use the trivialisations

ωα : Uα × F → π−1(Uα),

to provide local coordinates on our fibre: Define local basis sections on E at p ∈ Uα as,

ια,i(p) = ω−1
α,p(ei) = ω−1

α (p, ei), (2.33)

where ωα,p = ωα|π−1(p) and ei is a basis on F . This means that for all p ∈ Uα, any vector
v ∈ Ep can be expanded as

v = viια,i(p). (2.34)

If we choose our covering of E to be {Uα × F, ωα} then we may also use the trivialisations
of Uα,

φ̂α : Rm × F → Uα × F, (x, v) 7→ (φα(x), v),

ωα ◦ φ̂α : Rm × F → π−1(Uα).
(2.35)

Then for all p ∈ Uα, this gives us a set local coordinates (xµ; vi) for Ep, and local coordinates
( ∂
∂xµ

∣∣
p

; ∂
∂vi

∣∣
p
) for TpE.

Using our chosen local coordinates, we will develop a local horizontal lift for vector
bundles. Our goal is to take some smooth path γ : [0, 1] → M with γ(0) = p, and lift it to
a smooth curve γ# : [0, 1]→ E. We also impose that the curve γ#, must satisfy γ#(0) = b,
and has tangent field X#(t) ∈ HE for all t ∈ [0, 1]. This can be done uniquely with the use
of the Picard–Lindelöf theorem [9, Sections 1.1 and 1.2] and by imposing a first order linear
ODE with an initial condition

γ̇#(t) = G
(
γ#(t), γ̇(t)

)
, γ#(0) = b. (2.36)

What we will find at the end of this derivation, is that G provides the local IVPs (2.66).
Notice that the map G takes elements of Fp × TpM to TbE. Hence, we define the

horizontal lift of the vector X ∈ TpM tangent to γ#(t) at t = 0 by

G
(
γ#(0), X

)
= G(b,X) = X#

b . (2.37)

The horizontal lift of vectors tangent to our base manifold, gives us another way of defining
horizontal subspaces:

HbE =
{
X#
b : X ∈ Tπ(b)M

}
. (2.38)

This means that we can separate a tangent vector Y ∈ TbE into the horizontal lift X#
b ,

of a tangent vector of our base manifold M , and a vertical vector, Y − X#
b . By the end

of this section, we will show that the definition (2.38), is consistent with the kernel of an
Ehresmann connection

Using our local coordinates we can expand any tangent vector of π−1(Uα) ⊂ E in terms of
our local basis vectors

{
∂
∂xµ ; ∂

∂vi

}
. Therefore for any p ∈ Uα the horizontal lift of X ∈ TpM

at b ∈ π−1(p) takes the local form

dω−1
α ◦ G

(
b,X

)
= Y µ(b,X)

∂

∂xµ

∣∣∣∣
b

+ Zi(b,X)
∂

∂vi

∣∣∣∣
b

, (2.39)

15



where Y µ(b,X) and Zi(b,X) are scalar functions π−1(q)× TqM → C for all q ∈ Uα. Thus,
for γ#(t) = ωα

(
γ(t);λi(t)ei

)
, the IVP (2.36) can be expressed locally as

dγµ

dt

∂

∂xµ

∣∣∣∣
γ#(t)

+
dλi

dt

∂

∂vi

∣∣∣∣
γ#(t)

= dω−1
α G

(
γ#(t), γ̇(t)

)
,

=⇒ dγµ

dt
= Y µ(γ#(t), γ̇(t)),

dλi

dt
= Zi(γ#(t), γ̇(t)), γµ(0) = pµ, λi(0) = bi.

(2.40)

Where µ = 0, . . . ,m and i = 1, . . . , n.
To simplify the local IVPs (2.40) we will enforce four conditions onto G. First we impose

that γ# projects to γ, that is
π ◦ γ# = γ. (2.41)

Then, for all f ∈ C∞(M), (2.41) implies

d

dt
f
(
π ◦ γ#(t)

)∣∣∣
0

=
d

dt
f
(
γ(t)

)∣∣
0
,

=⇒ X#(f ◦ π) = X(f),

which gives our first condition on a horizontal lift

dπ
(
G(b,X)

)
= X. (2.42)

Notice that for all p ∈ M and b ∈ π−1(p), the initial value problem (2.36) provides a
map between vector spaces

Gb : TpM → HbE, Gb(V ) = G(b, V ). (2.43)

We will enforce that this map is linear. This gives our second condition,

X#
b = Gb(X) depends linearly on X. (2.44)

Immediately, conditions (2.44) and (2.42) tell us that if b ∈ Fp and X ∈ TpM satisfy

Gb(X) = X#
b = 0, then X = dπ

(
X#
b

)
= 0. Furthermore, if TpM and HbE are both finite

dimensional vector spaces, then Gb is an isomorphism.
Now, for a given X ∈ TpM , G(−, X) describes a map between two vector spaces. For

this reason we enforce that G(b,X) is also linear in b. That is to say, we want the horizontal
lift of a vector to be compatible with,

� Scalar multiplication: For c ∈ C and b ∈ π−1(p) ⊂ π−1(Uα), let

mc(b) := cbiια,i(p).

So for all c ∈ C, b ∈ Fp, p ∈M and X ∈ TpM , we impose

G
(
mc(b), X

)
= dmc

(
G(b,X)

)
. (2.45)

� Vector addition: For σ ∈ Γ(M,E) and b ∈ π−1(p) ⊂ π−1(Uα), let

Sσ(v) := (bi + σi(p))ια,i(p).

So for all σ ∈ Γ(M,E), b ∈ Fp ⊂ π−1(Uα) and X ∈ TpM , we impose

G
(
Sσ(v), X

)
− dSσ

(
G(b,X)

)
= G

(
σ(p), X

)
− dσ

(
X
)
. (2.46)
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The equations (2.45) and (2.46) require some care to produce. For this reason we have
provided full derivations in examples 2.5.1 and 2.5.2 respectively.

Consider the vector addition compatibility condition (2.46). Recall that dσ : TM → TE
takes a vector that is tangential to some curve γ at p on our base space, and maps it to
a vector of TE, tangential to the curve σ ◦ γ at σ(p). Thus in general, dσ(X) will have a
vertical and horizontal component to it. Since σ is a section, then dπ ◦ dσ(X) = X. That

is, the horizontal component of dσ(X) is exactly X#
σ(p). We will discuss how this leads to a

covariant derivative on TE in section 2.8.

The conditions (2.45) and (2.46) are not very apparent, so let us spend some time on
deriving them, before we proceed with constructing a horizontal lift on a vector bundle.

Example 2.5.1. Compatibility with scalar multiplication:
Take a smooth path γ : [0, 1] → M with some starting point γ(0) = p. We want to
find a curve γ# : [0, 1]→ E, with γ#(0) = b that projects to γ.
To do this uniquely, we develop a horizontal lift of a vector field, in order to define
a linear IVP for γ#

γ̇#(t) = X#
v = G(v,X), γ#(0) = b, (2.47)

where v = γ#(t) and X = γ̇(t). We will assume that our path γ(t) lies entirely
within a domain Uα ⊂M , and thus we have local coordinates (xµ; vi).
We want to show that compatibility with scalar multiplication, gives us the equation
(2.45). In this equation we have two horizontal vectors, so let us start by carefully
defining the paths they are tangent to

X#
v =

d

dt
(γ#(t)),

X#
mc(v) =

d

dt
(γ#

1 (t)),

which are described locally by

γ#(t) = ωα(γ(t); ui(t)ei),

γ#
1 (t) = ωα(γ(t); ui1(t)ei).

Furthermore, each path satisfies the following properties

γ#(0) = b,

γ#
1 (0) = mc(b),

π ◦ γ# = π ◦ γ#
1 = γ.

Now take f ∈ C∞(M × F ). Then for all t ∈ [0, 1]

mc(γ
#(t)) = ωα

(
γ(t); cui(t)ei

)
,

d

dt
f

(
ω−1
α ◦mc

(
γ#(t)

))∣∣∣∣
t=0

=
d

dt
f
(
γ(t); cui(t)ei

))
|t=0,

dmc

(
X#
v

)
· f =

dγµ

dt

∣∣∣∣
0

∂f

∂xµ

∣∣∣∣
mc(b)

+
d

dt

(
cui(t)

)∣∣
0

∂f

∂vi

∣∣∣∣
mc(b)

.

Let us take a closer look at the second term on the right hand side. Notice that

cui(0) = cbi = ui1(0),
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for all i ∈ {1, . . . , n}.
Recall that the coefficients of the fibre component of a horizontal lift, are determined
via a linear ODE, G. Further, ui(t) and ui1(t) are solutions to our particular linear
ODE but with different initial conditions. This implies that cui(t) is also a solution,
and by the Picard Lindelöf theorem [9, Sections 1.1 and 1.2]

cui(t) = ui1(t).

Thus, locally we have

dmc

(
X#
b

)
· f =

dγµ

dt

∣∣∣∣
0

∂f

∂xµ

∣∣∣∣
mc(b)

+
d

dt

(
ui1(t)

)∣∣
0

∂f

∂vi

∣∣∣∣
mc(b)

,

and since f was taken to be general we have the equality in horizontal vectors

dmc

(
X#
b

)
= X#

mc(b)
.

Finally, this implies

G
(
mc(v), X

)
= dmc

(
G(v,X)

)
. (2.48)

Now based on the same set up we will use the same method to derive the vector addition
condition (2.46).

Example 2.5.2. We want to show that compatibility with vector addition, gives us
the equation (2.46). In this equation we have three horizontal vectors, so let us start
by carefully defining the paths they are tangent to

X#
b =

d

dt

(
γ#(t)

)
,

X#
Sσ(b) =

d

dt

(
γ#

1 (t)
)
,

X#
σ(p) =

d

dt

(
γ#

2 (t)
)
,

which are described locally by

γ#(t) = ωα(γ(t); ui(t)ei),

γ#
1 (t) = ωα(γ(t); ui1(t)ei),

γ#
2 (t) = ωα(γ(t); ui2(t)ei).

Furthermore, each path satisfies the following properties

γ#(0) = b,

γ#
1 (0) = Sσ(b),

γ#
2 (0) = σ(p),

π ◦ γ# = π ◦ γ#
1 = π ◦ γ#

2 = γ.
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Now take f ∈ C∞(M × F ). Then for all t ∈ [0, 1]

Sσ(γ#(t)) = ωα

(
γ(t);

[
ui(t) + σi

(
γ(t)

)]
ei

)
,

d

dt
f

(
ω−1
α ◦ Sσ

(
γ#(t)

))∣∣∣∣
t=0

=
d

dt
f
(
γ(t);

[
ui(t) + σi

(
γ(t)

)]
ei

)
|t=0,

dω−1
α ◦ dSσ

(
X#
v

)
(f) =

dγµ

dt

∣∣∣∣
0

∂f

∂xµ

∣∣∣∣
Sσ(b)

+
d

dt

(
ui(t) + σi

(
γ(t)

))∣∣∣
0

∂f

∂vi

∣∣∣∣
Sσ(b)

,

= Xµ ∂f

∂xµ

∣∣∣∣
Sσ(b)

+
d

dt

(
ui(t) + ui2(t)− ui2(t) + σi

(
γ(t)

))∣∣∣
0

∂f

∂vi

∣∣∣∣
Sσ(b)

,

= Xµ ∂f

∂xµ

∣∣∣∣
Sσ(b)

+
d

dt

(
ui(t) + ui2(t)

)∣∣
0

∂f

∂vi

∣∣∣∣
Sσ(b)

− d

dt

(
ui2(t)− σi

(
γ(t)

))∣∣∣
0

∂f

∂vi

∣∣∣∣
Sσ(b)

.

Let us take a closer look at the second term on the right hand side. Notice that

ui(0) + ui2(0) = bi + σi(p) = ui1(0).

for all i ∈ {1, . . . , n}. Recall that the coefficients of the fibre component of a hori-
zontal lift, are determined via a linear ODE, G. Further, ui(t), ui2(t) and ui1(t) are
all solutions to our particular linear ODE but with different initial conditions. This
implies that ui(t) + ui2(t) is also a solution with the same initial condition as u1(t).
Hence, by the Picard Lindelöf theorem [9, Sections 1.1 and 1.2]

ui(t) + ui2(t) = ui1(t).

Thus we have

dω−1
α ◦ dSσ

(
X#
v

)
(f) = Xµ ∂f

∂xµ

∣∣∣∣
Sσ(b)

+
dui1
dt

∣∣∣∣
0

∂f

∂vi

∣∣∣∣
Sσ(b)

− d

dt

(
ui2(t)− σi

(
γ(t)

))∣∣∣
0

∂f

∂vi

∣∣∣∣
Sσ(b)

,

= dω−1
α ◦X

#
Sσ(b)(f)− d

dt

(
ui2(t)− σi

(
γ(t)

))∣∣∣
0

∂f

∂vi

∣∣∣∣
Sσ(b)

.

Now we need to use the fact that Tσ(p)E and TSσ(b)E are isomorphic vector spaces
with isomorphism % : Tσ(p)E → TSσ(b)E defined by

%

(
∂

∂xµ

∣∣∣∣
σ(p)

)
=

∂

∂xµ

∣∣∣∣
Sσ(b)

, %

(
∂

∂vi

∣∣∣∣
σ(p)

)
=

∂

∂vi

∣∣∣∣
Sσ(b)

. (2.49)

This gives us the following relation:

dω−1
α ◦ dSσ(X#

v ) = dω−1
α ◦X

#
Sσ(b) − %

(
d

dt
(ui2(t)− σi(γ(t)))

∣∣
0

∂

∂vi

∣∣∣∣
σ(p)

)
,

= dω−1
α ◦X

#
Sσ(b) − %

(
Xµ ∂

∂xµ

∣∣∣∣
σ(p)

+
dui2
dt

∣∣∣∣
0

∂

∂vi

∣∣∣∣
σ(p)

−Xµ ∂

∂xµ

∣∣∣∣
σ(p)

− d

dt
σi(γ(t))

∣∣
0

∂

∂vi

∣∣∣∣
σ(p)

)
,

= dω−1
α ◦X

#
Sσ(b) − %

(
dω−1

α ◦X
#
σ(p) − dω

−1
α ◦ dσ(X)

)
.
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Finally we arrive at

X#
Sσ(b) − dSσ

(
X#
b

)
= %
(
X#
σ(p) − dσ (X)

)
, (2.50)

which can be expressed in terms of G

G
(
Sσ(v), X

)
− dSσ

(
G(v,X)

)
= %
(
G
(
σ(p), X

)
− dσ

(
X
))
. (2.51)

For the sake of simplifying this expression, we will drop % and use context clues to
determine when it is present.

To be able to apply the conditions (2.42), (2.44), (2.45) and (2.46) we require to know
curves that generate the tangent basis vectors. Consider the following curves restricted to
Uα that vary in only one local coordinate,

γµ : (−ε, ε)→ Uα × F, γµ(t) =
((
pν + δνµt

)
ν
; biei

)
, (2.52)

with µ ∈ {1, 2, . . . ,m} and

hi : (−ε, ε)→ Uα × F, hi(t) =
(
p;
[
bj + δjit

]
ej
)
, (2.53)

with i ∈ {1, 2, . . . , n} and ε > 0. The path γµ varies only in the local coordinate xµ on M ,
and similarly hi only varies in the local ei direction on F .

Now take f ∈ C∞(M×F ) and compute the directional derivatives of f along each family
of paths

d

dt
f
(
γµ(t)

)∣∣
t=0

= δνµ
∂f

∂xν

∣∣∣∣
b

=
∂f

∂xµ

∣∣∣∣
b

,

d

dt
f
(
hi(t)

)∣∣
t=0

= δji
∂f

∂vj

∣∣∣∣
b

=
∂f

∂vi

∣∣∣∣
b

.

Thus, we see that the tangents of the family of smooth paths {γµ, hi} form our local tangent
vector basis.

We may now finally begin enforcing the conditions (2.42), (2.44), (2.45) and (2.46) onto
our local anstaz for a horizontal lift (2.39). The projection condition (2.42) tells us that for
f ∈ C∞(M)

dπ
(
G(b,X)

)
(f) =

d

dt

(
f
(
γ(t)

))∣∣∣
t=0

= Xµ ∂f

∂xµ

∣∣∣∣
p

.

Now let us apply dπ to our local ansatz for X# (2.39):

dπ
(
G(b,X)

)
(f) = dπ ◦ dωα

(
Y µ(b,X)

∂

∂xµ

∣∣∣∣
b

+ Zi(b,X)
∂

∂vi

∣∣∣∣
b

)
(f),

= Y µ(b,X)dπ

(
∂

∂xµ

∣∣∣∣
b

)
(f) + Zi(b,X)dπ

(
∂

∂vi

∣∣∣∣
b

)
(f),

= Y µ(b,X)
d

dt

(
f
(
π ◦ γµ(t)

))∣∣∣
t=0

+ Zi(b,X)
d

dt

(
f
(
π ◦ hi(t)

))∣∣∣
t=0

,

= Y µ
∂f

∂xµ

∣∣∣∣
b

+ Zi(b,X, Y )
d

dt

(
f(p)

)∣∣∣
t=0

= Y µ
∂f

∂xµ

∣∣∣∣
b

.

Thus condition (2.42) imposes

Y µ(b,X) = Xµ, for all b ∈ Ep (2.54)
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Applying the condition that G(b,X) is linear in X (2.44), gives us the relation

Zi(b,X) = XµZ i
µ (b), (2.55)

for scalar functions Z i
µ : π−1(Uα)→ C.

The next condition we impose is scalar multiplication compatibility (2.45). We will now
apply dmc to our local ansatz of G(b,X). Take f ∈ C∞(M × F ) and consider the following

dω−1
α ◦ dmc

(
G(b,X)

)
(f) = dω−1

α ◦ dmc ◦ dωα
(
Xµ ∂

∂xµ

∣∣∣∣
b

+XµZ i
µ (b)

∂

∂vi

∣∣∣∣
b

)
(f),

= Xµ d

dt
f
(
mc ◦ γµ(t)

)∣∣∣
0

+XµZ i
µ (b)f

(
mc ◦ hi(t)

)∣∣∣
0
,

= Xµ d

dt
f
((
pν + δνµt

)
ν
; cbjej

)∣∣∣
0

+XµZ i
µ (b)

d

dt
f
(
p;
[
cbj + cδjit

]
ej

)∣∣∣
0
,

=⇒ dω−1
α ◦ dmc (G(b,X)) (f) = Xµ ∂f

∂xµ

∣∣∣∣
mc(b)

+ cXµZ i
µ (b)

∂f

∂vi

∣∣∣∣
mc(b)

. (2.56)

Substituting (2.56) into (2.45) and expanding the left hand side in terms of our local basis
vectors gives

Xµ ∂f

∂xµ

∣∣∣∣
mc(b)

+XµZ i
µ

(
mc(b)

) ∂f
∂vi

∣∣∣∣
mc(b)

= Xµ ∂f

∂xµ

∣∣∣∣
mc(b)

+ cXµZ i
µ (b)

∂f

∂vi

∣∣∣∣
mc(b)

,

which implies a condition on Z:

Z i
µ

(
mc(b)

)
= Z i

µ

(
pν ; cbj

)
= cZ i

µ

(
pν ; bj

)
= cZ i

µ (b). (2.57)

The final condition to enforce is vector addition compatibility (2.46). Let σ ∈ Γ(M,E)
and employ the same strategy we used on the scalar multiplication compatibility condition.
First we will focus on the right hand side of (2.46). By equations (2.54) and (2.55) we know
that G(σ(p), X) takes the local form

dω−1
α ◦ G(σ(p), X) = Xµ ∂

∂xµ

∣∣∣∣
σ(p)

+XµZ i
µ

(
σ(p)

) ∂

∂vi

∣∣∣∣
σ(p)

. (2.58)

To find the local form of dσ(X), we will apply an arbitrary function f ∈ C∞(M × F ) to it(
dω−1

α ◦ dσ(X)
)

(f) = Xµ d

dt
f
(
ω−1
α ◦ σ

((
pν + δνµt

)
ν

))∣∣∣
t=0

,

= Xµδνµ
∂f

∂xν

∣∣∣∣
σ(p)

+Xµδνµ
∂σi

∂xν

∣∣∣∣
p

∂f

∂vi

∣∣∣∣
σ(p)

,

which implies the local form of dσ(X)

dω−1
α ◦ dσ(X) = Xµ ∂

∂xµ

∣∣∣∣
σ(p)

+Xµ ∂σi

∂xµ

∣∣∣∣
p

∂

∂vi

∣∣∣∣
σ(p)

. (2.59)

By equations (2.58) and (2.59), the right hand side of equation (2.46) takes the local form

dω−1
α ◦ G(σ(p), X)− dω−1

α ◦ dσ(X) = Xµ

(
Z i
µ

(
σ(p)

)
− ∂σi

∂xµ

∣∣∣∣
p

)
∂

∂vi

∣∣∣∣
σ(p)

. (2.60)

Now that we have the local vectors describing the right hand side of (2.46), we can tackle
the left hand side. Again, by equations (2.54) and (2.55) we know that G(Sσ(b), X) takes
the local form

dω−1
α ◦ G(Sσ(b), X) = Xµ ∂

∂xµ

∣∣∣∣
Sσ(b)

+XµZ i
µ

(
Sσ(b)

) ∂

∂vi

∣∣∣∣
Sσ(b)

. (2.61)
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To find the local form of dSσ
(
G(b,X)

)
we will apply f ∈ C∞(M × F ) to it

dω−1
α ◦ dSσ

(
G(b,X)

)
(f) = dω−1

α ◦ dSσ ◦ dωα
(
Xµ ∂

∂xµ

∣∣∣∣
b

+XµZ i
µ

(
b
) ∂

∂vi

∣∣∣∣
b

)
(f),

= Xµ d

dt
f
(
Sσ ◦ γµ(t)

)∣∣∣
0

+XµZ i
µ

(
b
) d
dt
f
(
Sσ ◦ hi(t)

)∣∣∣
0
,

= Xµ d

dt
f
((
pν + δµνt

)
ν
;
[
bj + σj(pν + δµνt)

]
ej

)∣∣∣
0

+XµZ i
µ (b)

d

dt
f
(
p;
[
bj + δjit+ σj(p)

]
ej

)∣∣∣
0
,

= Xµ

(
∂f

∂xµ

∣∣∣∣
Sσ(b)

+
∂σj

∂xµ

∣∣∣∣
p

∂f

∂vj

∣∣∣∣
Sσ(b)

)
+XµZ i

µ (b)
∂f

∂vi

∣∣∣∣
Sσ(b)

.

Thus, locally we have

dω−1
α ◦ dSσ (G(b,X)) = Xµ ∂

∂xµ

∣∣∣∣
Sσ(b)

+Xµ

(
∂σi

∂xµ

∣∣∣∣
p

+ Z i
µ (b)

)
∂

∂vi

∣∣∣∣
Sσ(b)

. (2.62)

By equations (2.61) and (2.62), the left hand side of equation (2.46) takes the local form

dω−1
α ◦ G

(
Sσ(b), X

)
− dω−1

α ◦ dSσ (G(b,X))

= Xµ

(
Z i
µ

(
Sσ(b)

)
− ∂σi

∂xµ

∣∣∣∣
p

− Z i
µ (b)

)
∂

∂vi

∣∣∣∣
Sσ(b)

.
(2.63)

Recall the isomorphism % : Tσ(b)E → TSσ(b)E defined in equation (2.49). We will now
apply % to equation (2.60) and compare to (2.63). Without explicitly writing dω−1

α , we have

G
(
Sσ(b), X

)
− dSσ (G(b,X)) = %

(
G
(
σ(p), X

)
− dσ(X)

)
,

Xµ

(
Z i
µ

(
Sσ(b)

)
− ∂σi

∂xµ

∣∣∣∣
p

− Z i
µ (b)

)
∂

∂vi

∣∣∣∣
Sσ(b)

= Xµ

(
Z i
µ

(
σ(p)

)
− ∂σi

∂xµ

∣∣∣∣
p

)
∂

∂vi

∣∣∣∣
Sσ(b)

,

which simplifies to the final condition on Z(b)

Z i
µ

(
Sσ(b)

)
= Z i

µ

((
bj + σj(p)

)
ιj(p)

)
= Z i

µ

(
bjιj(p)

)
+ Z i

µ

(
σj(p)ιj(p)

)
,

= Z i
µ

(
σ(p)

)
+ Z i

µ (b).
(2.64)

That is to say Z i
µ is a linear operator on our vector space fibre F .

Imposing our compatibility conditions (2.54), (2.55), (2.57) and (2.64) we find that the
horizontal lift of X ∈ TpM to b ∈ Ep must take the local form

X#
b = G

(
b,X

)
= Xµ

(
∂

∂xµ

∣∣∣∣
b

+A i
µ j(p)b

j ∂

∂vi

∣∣∣∣
b

)
, (2.65)

where
(
Aij
)

=
(
A i
µ j

)
dxµ is a local matrix valued connection 1−form. We will show that

this local connection 1-from corresponds to that defined in (2.32). Hence the local IVPs
(2.40), that uniquely define the horizontal lift of a smooth path γ : [0, 1]→M , are given by

dγµ

dt
= Xµ(t),

dλi

dt
= Xµ(t)A i

µ j

(
γ(t)

)
λj(t), γµ(0) = pµ, λi(0) = bi. (2.66)

Let us now use our horizontal lift to define an Ehresmann connection and vice versa. An
Ehresmann connection is a global map that projects a vector tangent to E, to its vertical
component. So for a given horizontal lift, we have a linear map ξ′ : TE → V E defined by

ξ′(Y ) = Y − dπ(Y )#
b , (2.67)
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for all b ∈ E, Y ∈ TbE. This then implies that

ξ′|V E = idV E , (2.68)

ker(ξ) =
{
X#
b ∈ TbE : b ∈ Ep and X ∈ TpM

}
. (2.69)

Thus ξ′ is by definition, an Ehresmann connection.
We will now explain why an Ehresmann connection ξ defines local connection 1-forms

and thus induces a horizontal lift. Take cj = ωα
(
p; δijια,i(p)

)
∈ Ep where p is in a domain

Uα ⊂ M . Any tangent vector in HcjE can be expressed locally using the basis
{

∂
∂xµ ; ∂

∂vi

}
where { ∂

∂vi } is the basis for the vertical vectors. With this in mind consider Yµ ∈ HcjE

with dπ(Yµ) = ∂
∂xµ

∣∣
cj

. Then locally we will have

Yµ = dωα

(
∂

∂xµ

∣∣∣∣
cj

+ Y i
µ j(p)

∂

∂vi

∣∣∣∣
cj

)
. (2.70)

The reason why Y i
µ j is dependent on µ and j is because by fixing HbE and enforcing that

it must smoothly vary in b, we require the vertical component of Yµ to smoothly depend on
both dπ(Yµ) and where the vector is tangent, cj .

Now let us apply ξ to Yµ

ξ(Yµ) = ξ ◦ dωα

(
∂

∂xµ

∣∣∣∣
cj

+ Y i
µ j(p)

∂

∂vi

∣∣∣∣
cj

)
,

0 = ξ ◦ dωα

(
∂

∂xµ

∣∣∣∣
cj

)
+ Y i

µ j(p)dωα

(
∂

∂vi

∣∣∣∣
cj

)
,

which implies the local equation

dω−1
α ◦ ξ ◦ dωα

(
∂

∂xµ

∣∣∣∣
cj

)
= −Y i

µ j(p)
∂

∂vi

∣∣∣∣
cj

. (2.71)

That is to say, we determine how an Ehresmann connection acts on the basis vectors
{ ∂
∂xµ

∣∣
cj
}, and then use linearity in the fibre and tangent spaces to extend cj to any

b ∈ π−1(p), and Yµ to any tangent vector. What we find is that conjugating ξ with the
tangent map dωα defines a local matrix valued 1−form

dω−1
α ◦

(
ωα
)∗

(ξ) = −Y i
µ j(p)b

jdxµ
∂

∂vi

∣∣∣∣
b

. (2.72)

Hence, an Ehresmann connection defines a horizontal lift and a horizontal lift defines an
Ehresmann connection. We are only interested in the local description of fibre bundles and
so we will make use of the horizontal lift for all of our practical calculations.

2.6 Lie algebras and left invariant vector fields

Now that we know what connection 1−forms are used for, we need to figure out what values
they can take. It is important to note that a local connection 1−form or gauge potential is
not unique, but under specific conditions some gauge potentials become more useful than
others, and this is exactly the case here.

We know that A is a matrix valued 1−form on M that acts on the left of our fibre F .
So one might think that A takes values in our structure group G, but recall that we defined
a horizontal lift of path γ at b, as a unique path γ# in E that projects to γ and starts

23



at b. The way we guaranteed the uniqueness of γ# was to create an initial value problem
(IVP) in the form of a horizontal vector, of which γ# was the solution to. This means that
A describes an infinitesimal action of our structure group on our fibre. Hence, A is a Lie
algebra valued 1−form on M .

When setting up our vector bundle, we ask how we want vectors in our fibre to transform.
For a classical system we may only want our vectors to rotate in which case we use the struc-
ture group SO(n). For a quantum system we restrict ourselves to unitary transformations,
U(n), in order to preserve hermiticity in operators and norms of states.

By definition, the Lie algebra of our structure group G is the first order approximation
of G at the identity, TeG. However, there is a set of vector fields on G, isomorphic to
TeG known as the left-invariant vector fields. Let G be a Lie group and take h ∈ G. Left
multiplication Lh : G→ G, maps g ∈ G to hg. We say that X ∈ Γ(G,TG) is a left-invariant
vector field of Lie group G if for all g, h ∈ G

Lh∗
(
X
)
(g) = X(g). (2.73)

To show TeG is isomorphic to a set of left-invariant vector fields on G. Consider the
following: Let V ∈ TeG and define vector field X ∈ Γ(G,TG) by

X(g) = Lg∗
(
V
)

= dLg
(
V
)
.

This vector field is left invariant

Lh∗(X)(g) = dLh(X(h−1g)) = dLh(dLh−1g(V )) = (LhLh−1g)∗(V ),

= Lg∗(V ) = X(g).

So vectors in TeG define unique left-invariant vector fields. Conversely, for left-invariant
vector fields X, we have the vector X(e) ∈ TeG and by definition

X(g) = dLg

(
X(e)

)
.

Thus we have shown that there exists a bijection between the set of left-invariant vector
fields on G, χ(G), and TeG:

Φ : χ(G)→ TeG, Φ(X) = X(e). (2.74)

Because this map is linear, then χ(G) ' TeG.
The reason the left invariant vector fields are so important to fibre bundles is because

they generate a smooth Lie group action on our fibre. To see why, we need to look at the
integral curves of these vector fields. An integral curve γ : I → G of a vector field X ∈ χ(G),
is a solution to

dγ

dt
= X(γ(t)), for all t ∈ I, (2.75)

where I is an open connected subset of R containing 0.
Let γp : I → G be the integral curve of X ∈ χ(G) through the point p ∈ U ⊂ G, and

let U have local coordinates {gk}. Now take a smooth map φ : G→ G and note that φ ◦ γp
is the integral curve to φ∗(X) ∈ χ(G) through the point φ(p). To show this we consider

f ∈ C∞(G) and apply the vector φ∗(X)
(
φ
(
γp(t)

))
to it: Locally we have

φ∗(X)
(
φ
(
γp(t)

))
(f) = dφ

(
X
(
γp(t)

))
(f) =

d

dt
f
(
φ
(
γp(t)

))∣∣∣
t=0

=
d

dt

(
φ
(
γp(t)

))k ∂f
∂gk

.

Since this is true for all f ∈ C∞(M) we arrive at

φ∗(X)
(
φ
(
γp(t)

))
=

d

dt

(
φ ◦ γp

)
. (2.76)
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With this in mind consider a left-invariant vector field X on G. We aim to find its
integral curve γg : I → G through the identity e ∈ G

X
(
γg(t)

)
=
dγg
dt

, γg(0) = e. (2.77)

By equation (2.76), applying the push forward Lγg(s)∗ to X for some fixed s ∈ I, has the
solution

γ′g(t, s) = Lγg(s)

(
γg(t)

)
= γg(s)γg(t)

with initial value

γ′g(0, s) = γg(s).

Now we will use the fact that X is left-invariant to find another solution to our IVP. It
is clear that γ(t+ s) satisfies our IVP and thus by the Picard–Lindelöf theorem [9, Sections
1.1 and 1.2]

γg(s)γg(t) = γg(s+ t) (2.78)

for all s, t, s+ t ∈ I.
We have just shown that the integral curves through the identity of our left-invariant

vector fields are something known as the one-parameter subgroup of G.{
ψt : t ∈ I and for all g ∈ G, ψt(g) = γg(t)} (2.79)

We can think about the one-parameter subgroup generated by a left-invariant vector field X
as the general solution to

X(γ(t)) =
dγ

dt
.

Let V ∈ TeG and ΦV be the one-parameter subgroup of G generated by the left-invariant
field X(g) = Lg∗(V ). We want to show exp(tV ) = ΦV (t). To do this we will take s ∈ R\{0},
and differentiating ΦV (st),

d

dt

(
ΦV (st))

∣∣
t=0

= s
d

dτ

(
ΦV (τ)

)
|τ=0 = sV,

where the last step is by the definition of an integral curve (2.75). Thus, ΦV (st) is the one
parameter subgroup of the vector field X ′(g) = Lg∗(sV ). But we also have X ′ generating
ΦsV (t), so by the Picard–Lindelöf theorem [9, Sections 1.1 and 1.2] we have ΦsV (t) = ΦV (st).
Hence,

exp(sV ) = ΦsV (1) = ΦV (s). (2.80)

This proves that exp(tV ) = ΦV (t).
In summary, the left invariant vector fields generate smooth Lie group actions. This

is because their integral curves (the finite transformations TeG exponentiates to) are the
one-parameter subgroups of the structure group G. Thus, knowing the left-invariant vector
fields, gives us all the information we need about the possible smooth infinitesimal group
actions.

The Lie algebra and left invariant vector fields on G are precisely what we need to
understand the local connection 1−form A. For a vector bundle (E, π,M,F,G) with local
connection 1−forms {Aα}, then for all p ∈ Uα

Aαµ(p) ∈ TeG. (2.81)

The left invariant vector fields on G tell us that Aαµ(p) is smooth in p, and acts smoothly
on the fibre.
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2.7 How a connection transforms

Given a fibre bundle (E, π,M,F,G) and atlas {(Uα × F, ωα)}, we have local connection
1−forms Aα ∈ TeG× Ω1(Uα) on each domain Uα. On overlaps of domains Uα ∩ Uβ 6= ∅ we
will have two local connection 1−forms, Aα and Aβ . To have a consistent theory we will
require compatibility conditions between Aα(p) and Aβ(p) for all p ∈ Uα ∩ Uβ .

On a fibre bundle, we know that for overlapping domains Uα and Uβ that ωβ(p, f) =
ωα(p, tαβ(p)f) = tαβ(p)ωα(p, f) for all p ∈ Uα∩Uβ . Thus we know that sections σ ∈ Γ(M,E)
transform from domain to domain as

σα(p) = tαβ(p)σβ(p) (2.82)

where σβ = σ|Uβ and p ∈ Uα ∩ Uβ .
To understand how local connection 1−forms transform on vector bundles, we need to

consider how the conditions (2.42), (2.44), (2.45) and (2.46) transform from domain to
domain. The only one of these conditions that transforms non-trivially, is the condition
of vector addition compatibility (2.46). This is because for p ∈ Uα ∩ Uβ , X ∈ TpM and
σ ∈ Γ(M,E) we require

X#
σα(p) − dσα(X) = X#

σβ(p) − dσβ(X). (2.83)

Let Uα × F have local basis sections {ιk,α} and Uβ × F have local basis sections {ιk,β}.
These provide respective local coordinates on the fibre, {vk} and {v′k}. Then, by (2.60),
equation (2.83) has the local form

X ·
(
dσα(p)`−Aα(p)`kσα(p)k

) ∂

∂v`

∣∣∣∣
σ(p)

= X ·
(
dσβ(p)`−Aβ(p)`kσβ(p)k

) ∂

∂v′`

∣∣∣∣
σ(p)

, (2.84)

where p ∈ Uα ∩ Uβ . Note that this holds for all X ∈ TpM , so we will drop the X. It is
important to keep in mind that α and β are fixed. There will appear instances of a raised
and lowered β index, these do not denote a sum. The placement of the β index on the
connection 1-forms, signifying that it is localised to Uβ , was taken to be raised because of
its existing lowered 1-form index.

The transition map tαβ(p) acts on the local basis sections {ιk,α(p), ιk,β(p)}, so we need
to relate (2.84) back to these local basis sections. Luckily for us, we are interested in
vector bundles, where π−1(p) and VbE are n-dimensional vector spaces for all p ∈ M and
b ∈ π−1(p). Hence, we have an isomorphism

$b : VbE → π−1(p), $b

(
∂

∂vk

∣∣∣∣
b

)
= ιk,α

(
π(b)

)
, for all b ∈ π−1(Uα). (2.85)

Applying $σ(p) to (2.84) leads to(
dσα(p)` −Aα(p)`kσα(p)k

)
ι`,α(p)

=
(
dσβ(p)` −Aβ(p)`kσβ(p)k

) ∂vj

∂v′`

∣∣∣∣
p

ιj,α(p).
(2.86)

Note that the local coordinates satisfy vj = tαβ(p)j`v
′`. The right hand side of equation

(2.86) then becomes

RHS =
(
dσβ(p)` −Aβ(p)`kσβ(p)k

)
tαβ(p)j`ιj,α(p),

=
(
d
(
tαβ(p)j`σβ(p)`

)
− d
(
tαβ(p)j`

)
σβ(p)` − tαβ(p)j`A

β(p)`kσβ(p)k
)
ιj,α(p),

=
(
d
(
σα(p)j

)
− d
(
t−1
βα(p)j`

)
σβ(p)` − tαβ(p)j`A

β(p)`ktβα(p)kiσα(p)i
)
ιj,α(p),

=
(
d
(
σα(p)j

)
+ t−1

βα(p)
(
dtβα(p)j`

)
tαβσβ(p)` + tαβ(p)j`A

β(p)`ktβα(p)kiσα(p)i
)
ιj,α(p).
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Thus, equation (2.86) reads(
d−Aα(p)

)
σα(p) =

(
d+ t−1

βα(p)dtβα(p)− t−1
βα(p)Aβ(p)tβα(p)

)
σα(p), (2.87)

Which implies

Aα(p) = t−1
βα(p)Aβ(p)tβα(p)− t−1

βα(p)dtβα(p). (2.88)

To understand how Aα transforms in general, we must also take base manifold coordinate
changes into account, seeing as Ai is a 1−form on M . That is to say, if Uα, Uβ are domains
of our base manifold M with respective coordinates {xµ}mµ=1 and {yµ}mµ=1 and p ∈ Uα ∩Uβ ,
then

(Aα(p)) k
ν ` =

(
dx

dy

)µ
ν

((
t−1
βα(p)dtβα(p)

) k

µ `
+
(
t−1
βα(p)

)k
a

(
Aβ(p)

) a

µ b

(
tβα(p)

)b
`

)
. (2.89)

2.8 What is so parallel about parallel transport?

Because a connection is necessary to perform parallel transport, there are many different
notions of what parallel transport is. However, they all have one thing in common and that
is that, geometric objects undergoing parallel transport must be kept “parallel” with respect
to the connection.

To gain a better understanding of what “parallel” means, we should look at an example.
The usual example of parallel transport is that of a tangent vector on S2. As we know from
above, we cannot perform parallel transport immediately, we first need to set up rules we
want it to obey and then form a connection to enforce those rules.

In the spirit of the word “parallel” let us make it so that our vector remains parallel
with itself under an infinitesimal step. That is for two points infinitesimally close, we find
the geodesic (in this case a great circle) passing through the points and we enforce that the
angle between the vector and the tangent of the geodesic remains unchanged at the end of
the step.

We could think about this example physically in the following way: Say we want to walk
about some path on Earth with roughly the same latitude. We could do this by holding a
compass in one hand and constantly checking that North is always pointing left or right. In
the other hand we carry our trusty spear which we hold tangent to Earth’s surface at all
times. After walking forward in a straight line for some distance we notice that North has
moved x degrees from our left. So we stop and align ourselves again by turning x degrees
and to keep our spear parallel with itself one step ago we rotate the spear −x degrees.

By doing this we parallel transport our spear along our path. When we return to our
initial position, we will be standing in the same orientation in which we started, but our
spear could be pointing in a completely different direction.

In this analogy the compass is our local connection, it tells us when we need to turn
and by how much. The spear is of course the tangent vector of S2 that we are parallel
transporting.

The above explains the basic notion of what parallel transport it, but it can be gener-
alised. Let us keep the theme of tangent vectors but upgrade our connection from a simple
compass, to an affine connection. We want to parallel transport a tangent vector v ∈ TpM
across some smooth path γ : [0, 1] → M with γ(0) = p. To do this we find the vector field
X(t) tangent to γ(t) and take the covariant derivative of a general vector field Y (t) defined
on γ(t), along X(t), for all t

∇X(Y ) = Xν

(
∂Y λ

∂xν
+A λ

ν µY
µ

)
∂

∂xλ
.

We want to use this differential equation and the initial condition Y (0) = v, to find the
parallel transport of v.
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Recall, when parallel transporting our spear across a single step, our connection (the
compass) told us how much we needed to rotate. This meant that our vector changed along
our path by an amount described by the connection alone.

With this in mind we can see that in order to parallel transport v, we need to set the
covariant derivative of Y in the direction X to zero

Xν(t)
∂Y λ

∂xν
+Xν(t)A λ

ν µ(γ(t))Y µ(t) = 0,

=⇒ dY λ

dt
+Xν(t)A λ

ν µ

(
γ(t)

)
Y µ(t) = 0 Y µ(0) = vµ, (2.90)

which tells us that the only change allowed for our vector field Y across γ is that governed
by our connection coefficients A λ

ν µ(γ(t)).
Solving this differential equation gives the parallel transport of v along γ as Y (1). One

can also think about the covariant derivative of Y with respect to X as the directional
derivative of Y along the tangent of γ. Thus if ∇X(Y ) = 0 then to first order Y (0) does not
change as it is moved along γ.

Now it’s important to keep in mind that this parallel transport is not the same as our
spear example where we kept our spear parallel relative to what our compass said. We now
have a general affine connection, so when parallel transporting a tangent vector, we keep
that vector parallel relative to our connection.

Ultimately, we want to parallel transport quantum states represented as vectors in a
Hilbert space H, across paths in an m−dimensional smooth manifold. So affine connections
and arguments about spears will not cut it anymore. We upgrade our connection to an
Ehresmann connection on a vector bundle E.

Under this prescription, we take some smooth path γ : [0, 1] → M starting at p, and a
vector b ∈ π−1(p) that we want to parallel transport. We then want to find the unique path
in our bundle E that obeys the rules of our connection A, projects to γ, and starts at b. By
design, this is the horizontal lift γ#. We use the horizontal lift of the tangent vector field
X(s) of γ(s) as given by (2.65), to define an initial value problem with solution γ#(s).

Assume γ(s) is contained within a domain of our base manifold and let γ#(s) take the
local form

γ#(s) = (γ(s);λi(s)ei). (2.91)

Equation (2.66) gives us
γ̇µ(t) = Xµ(t), γµ(0) = pµ, (2.92)

dλi

dt
= Xµ(t)A i

µ j

(
γ(t)

)
λj(t), ui(0) = bi. (2.93)

with µ ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n}.
Equation (2.92) returns the definition of γ’s tangent vector field. Equation (2.93) de-

scribes how the fibre component of γ# varies. Note how similar it looks to (2.90). Solving
(2.93) describes how the vector biιi(p) is parallel transported along γ.

What this means is that an object in our fibre is parallel transported along a smooth
path γ : [0, 1]→M , if the tangent vector field of γ# : [0, 1]→ E is a horizontal vector for all
s ∈ [0, 1]. That is to say, objects in our fibre are kept parallel with respect to the horizontal
subspace of tangent vectors.

Now recall the vector compatibility condition (2.46). We claimed that this can be used
to define a covariant derivative on a section. This is possible when our fibre is a vector
space because we have the isomorphism $b : VbE → Ep with p ∈ Uα and b ∈ Ep, from
equation 2.85. Applying $σ(p) ◦dωα to the right hand side of (2.46) gives the following local
expression

Xµ ∂σi

∂xµ

∣∣∣∣
p

ια,i(p)−XµA i
µ jσ

j(p)ιi,α(p) = X · (d−A)σ(p). (2.94)
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This equation describes a generalised covariant derivative of section σ along the direction
X. Now consider a smooth path γ : [0, 1] → Uα, with tangent vector field X(t). Let
σ
(
γ(t)

)
= λi(t)ια,i

(
γ(t)

)
for unknown scalar functions λi(t). Taking the generalised covari-

ant derivative of σ along X(t) locally gives

X(t) · (d−A)σ
(
γ(t)

)
=
dλi

dt
ια,i
(
γ(t)

)
−Xµ(t)A i

µ j

(
γ(t)

)
λj(t)ια,i

(
γ(t)

)
. (2.95)

Thus if we set X(t) · (d−A)σ
(
γ(t)

)
= ωα(p, 0, · · · , 0) then we get the system of ODEs

dλi

dt
−Xµ(t)A i

µ j

(
γ(t)

)
λj(t) = 0, (2.96)

which are identical to (2.93). This means that we could also use this generalised covariant
derivative to produce the IVPs that describes parallel transport.

2.9 Holonomy and recovering a connection from paral-
lel transport.

Consider a vector bundle (E, π,M,F,G) where M has an open cover C = {Uα}. Say this
vector bundle has local connection 1−forms Aα, defined on Uα for each Uα in C. Let,
γ : [0, 1]→M be a smooth closed path with γ(0) = p, and b ∈ π−1(p). Our local horizontal
lift provides linear IVPs whose unique solution, γ#(t), describes the parallel transport of
γ#(0) = b to γ#(1) = b′ ∈ π−1(p) along γ. That is to say, this ODE solution describes an
endomorphism of vector spaces

Γ(γ) : π−1(p)→ π−1(p), (2.97)

that takes b ∈ π−1(p) as the initial condition to our parallel transport IVP (2.66), and returns
the unique vector that b is parallel transported to. By the Picard–Lindelöf theorem [9,
Sections 1.1 and 1.2], the map Γ(γ) is invertible: For any smooth path γ : [0, 1]→M define
γ′ : [0, 1]→M such that γ′(t) = γ(1− t) which implies that Γ

(
γ′
)

= Γ(γ)−1.
This means that for any point p ∈M , the set

holp =
{

Γ(γ) : γ is a smooth closed path [0, 1]→M and γ(0) = p
}

(2.98)

forms a group which we define as the holonomy group of the local connection 1−forms {Aα},
at p.

These linear maps Γ(γ) can be generalised to smooth open paths; Consider the smooth
path γ : [0, 1]→M then we define the linear invertible map

Γ(γ)τt : π−1
(
γ(t)

)
→ π−1

(
γ(τ)

)
(2.99)

that parallel transports b ∈ π−1
(
γ(t)

)
to b′ ∈ π−1

(
γ(τ)

)
along γ, for any t, τ ∈ [0, 1]. By

the Picard–Lindelöf theorem [9, Sections 1.1 and 1.2] we have the following conditions that
Γ(γ)τt satisfies

Γ(γ)tt = id : Eγ(t) → Eγ(t), Γ(γ)τs ◦ Γ(γ)st = Γ(γ)τt , Γ(γ)τt =
(

Γ(γ)tτ

)−1

(2.100)

Now consider a smooth path γ : [0, 1] → M with γ(0) = p ∈ Uα and its horizontal lift
γ# : [0, 1]→ E through the vector b. Let X ∈ TpM be the tangent vector of γ at the point
p. Then by the definition of Γ(γ)t0 and the local horizontal lift (2.65), we locally have for all
f ∈ C∞(E)
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dω−1
α

(
X#
b

)
(f) =

d

dt
f
(

Γ(γ)t0γ
#(0)

)∣∣∣
t=0

,

Xµ ∂f

∂xµ

∣∣∣∣
b

+ biX ·Aji(p)
∂f

∂vi

∣∣∣∣
b

=
d

dt

(
Γ(γ)t0b

)µ∣∣∣
t=0

∂f

∂xµ

∣∣∣∣
b

+
d

dt

(
Γ(γ)t0b

)i∣∣∣∣
t=0

∂f

∂vi

∣∣∣∣
b

,

Xµ ∂f

∂xµ

∣∣∣∣
b

+ biX ·Aji(p)
∂f

∂vi

∣∣∣∣
b

=
dγµ

dt

∣∣∣∣
t=0

∂f

∂xµ

∣∣∣∣
b

+
d

dt

(
Γ(γ)t0b

)i∣∣∣∣
t=0

∂f

∂vi

∣∣∣∣
b

,

=⇒ biX ·Aji(p) =
d

dt

(
Γ(γ)t0b

)j∣∣∣∣
t=0

. (2.101)

Where we have used the short hand Aji(p) = A j
µ i(p)dx

µ.
Equation (2.101) provides us a way of recovering the local connection 1-form from in-

formation on how objects in our fibre parallel transport. We will use this in chapter 3 to
extract the Berry connection from the Schrödinger equation.
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Chapter 3

Building the Berry bundle

In this chapter we introduce the notion of geometric phase in quantum systems and dis-
tinguish the special case of the Berry phase [4]. The model we introduce in this chapter is
designed for the calculation of Berry phase, although it can be adapted for more general
geometric phase [48]. The reason we focus on Berry phase is because it greatly simplifies
our model, due to the adiabatic theorem [5]. We will show that for a given family of local
Hamiltonians, that act on a finite dimensional Hilbert space, we can construct a fibre bundle.
We will then equip this bundle with a particular set of local connection 1-forms known as
local Berry connections. Under the influence of a Berry connection, quantum states being
parallel transported around closed smooth paths in our base manifold, will accumulate a
Berry phase. This reduces the problem of understanding a quantum system’s Berry phase
to understanding the holonomy of an associated fibre bundle. There exists several geometric
models for Berry phase [8,12,20,24,27,38] but few making use of vector bundles. Our model
most closely resembles the model introduced by Tanaka and Cheon in [48]. However, we use
the local energy eigenstates as local basis sections for our model. This takes full advantage
of the adiabatic theorem and shifts complexities from coefficients to derivatives.

3.1 Introduction to geometric phase

We are interested in geometric phases, in particular the Berry phase. A geometric phase
is a phase difference that occurs when the parameters of a physical system are transported
around a smooth closed path. It arises due to the geometrical properties of the parameter
space on which our system’s Hamiltonian is defined.

Geometric phases appear in both classical and quantum mechanics. A common method
used to quantify geometric phase in classical mechanics is parallel transport, for example
the Foucault pendulum [26] and the problem of polarized light in optical fibres [28].

Consider a smooth m−dimensional manifold M ⊆ Rm, and a smooth Hamiltonian that
takes a point in M to a self-adjoint operator on a Hilbert space H

H : p→ H(p). (3.1)

Let H(p) have eigenvectors
{
|ui(p)〉

}n
i=1

for all p ∈M . These eigenvectors can be defined to
smoothly vary over M . First, we prepare two identical states at p ∈M , |ψ1(p)〉 = |ψ2(p)〉 =∑n
j=1 c

j |uj(p)〉. We then transport |ψ2(p)〉 along some smooth closed path γ : [0, 1] → M
while keeping |ψ1(p)〉 fixed at p.

The evolution of |ψ1(p)〉 is completely described by the time evolution operator

|ψ1(t, p)〉 = U(t)|ψ1(p)〉 = e−iH(p)t
n∑
j=1

cj |uj(p)〉 =

n∑
j=1

e−iEj(p)tcj |uj(p)〉, (3.2)
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accumulating what we call a dynamic phase. We define dynamic phases as phases a quantum
state will gain from the time evolution operator.

Naively applying the time evolution operator to |ψ2(p)〉 leads to the result

|ψ2(t, p)〉 !
= e−i

� t
0
H(γ(τ))dτ |ψ2(p)〉. (3.3)

However, this fails to agree with experimentation in general, with the usual example be-
ing the Aharonov–Bohm effect [2]. We call the phase accumulated by |ψ2(p)〉 that is not
explained by the time evolution operator a geometric phase: In terms of our example, let
|ψ2(1, p)〉 describe the second state after being transported along γ. Then

exp(iφgeo) = 〈ψ2(p)|ei
� 1
0
H(γ(τ))dτ |ψ2(1, p)〉. (3.4)

For a given quantum system with Hamiltonian H, our goal is to use parallel transport
to extract only the information about the geometric phase from the standard time depen-
dent Schrödinger equation (TDSE). We will do this using a fibre bundle equipped with an
Ehresmann connection.

To understand how our local connection 1-forms should behave, we will enforce that our
quantum states obey the TDSE for all time. Thus, we can study an example of geometric
phase using the TDSE. However, the notion of geometric phase is very general so we will
restrict ourselves to the geometric phase accumulated along adiabatic paths.

An adiabatic path is a smooth path in our base manifold γ : [0, 1] → M , that evolves
slowly enough that all energy eigenstates {|ui〉}ni=1 remain as eigenstates over the course of
the entire path:

H(γ(t)) |ui(γ(t))〉 = Ei(γ(t)) |ui(γ(t))〉 , (3.5)

for all i ∈ 1, . . . , n and t ∈ [0, 1].
We justify this by using the adiabatic theorem which states [5]: A physical system remains

in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if
there is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum. The
gap in the eigenspectrum is necessary as it ensures the smoothness of the Hamiltonian’s
eigenvalue and eigenvector [25, Theorem 1.8].

Under an adiabatic path, an eigenstate will naturally accumulate a dynamic phase due
to the time evolution operator, but may also accumulate a geometric phase.

Example 3.1.1. Consider a smooth m−dimensional manifold M ⊆ Rm. Each
dimension corresponds to a parameter that an experimentalist can in principle vary.
For example the strength and direction of a magnetic field.
At any point p ∈M we attach an n−dimensional Hilbert space on which our smooth
Hamiltonian H(p) is defined. We will enforce that for every p ∈M our Hamiltonian,
H(p), is non-degenerate.
Let γ : [0, 1]→ M be a smooth adiabatic path with γ(0) = p. Furthermore, assume
that along our entire path we can use the local coordinates {qi}mi=1. We want to find
the solution to the time dependent Schrödinger equation

i
d

dτ
|ψ
(
γ(τ)

)
〉 = H

(
γ(τ)

)
|ψ
(
γ(τ)

)
〉, (3.6)

with initial condition
∣∣ψ(γ(0)

)〉
=
∣∣uk(p)

〉
. Because |ψ〉 starts as the kth energy

eigenstate, then by the adiabatic theorem (3.5) it will remain as the kth energy
eigenstate, up to some phase, for the entirety of the adiabatic process. This is
because the energy eigenvalues never cross. That is to say for all τ ∈ [0, 1] we have

H
(
γ(τ)

) ∣∣ψ(γ(τ)
)〉

= Ek(γ(τ))
∣∣ψ(γ(τ)

)〉
. (3.7)
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Let us attempt to solve the TDSE (3.6) using an integrating factor.

0 = i
d

dτ

∣∣ψ(γ(τ)
)〉
−H

(
γ(τ)

) ∣∣ψ(γ(τ)
)〉
,

=
d

dτ
|ψ
(
γ(τ)

)
〉+ iEk

(
γ(τ)

) ∣∣ψ(γ(τ)
)〉
,

!
=

d

dτ

[
exp

(
i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
) ∣∣ψ(γ(τ)

)〉]
,

=⇒
∣∣ψ(γ(τ)

)〉
= exp

(
−i
� τ

0

Ek(γ(τ ′))dτ ′
)∣∣uk(p)

〉
.

But this fails to be an eigenstate for our Hamiltonian at every point along γ: In
general

H(γ(τ))
∣∣ψ(γ(τ)

)〉
= exp

(
−i
� τ

0

Ek(γ(τ ′))dτ ′
)
H
(
γ(τ)

)
|uk(p)〉

will not be equivalent to

Ek
(
γ(τ)

) ∣∣ψ(γ(τ)
)〉

Instead, take an Ansatz that accounts for the accumulation of a geometric phase

∣∣ψ(γ(τ)
)〉

= exp

(
iφ(τ)− i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
) ∣∣uk(γ(τ)

)〉
. (3.8)

This state remains as an eigenstate of our Hamiltonian along the entirety of γ, sat-
isfying condition (3.7). If we also let φ(0) = 0, then our Ansatz will also satisfies our
initial condition. Substituting our Ansatz into the TDSE equation (3.6) gives

Ek
(
γ(τ)

) ∣∣ψ(γ(τ)
)〉

= i
d

dτ
exp

(
iφ(τ)− i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
) ∣∣uk(γ(τ)

)〉
+ exp

(
iφ(τ)− i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
)
d

dτ

∣∣uk(γ(τ)
)〉
,

= −
(
dφ

dτ
− Ek

(
γ(τ)

))
exp

(
iφ(τ)− i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
) ∣∣uk(γ(τ)

)〉
+ exp

(
iφ(τ)− i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
) ∣∣∣∣ ddτ uk(γ(τ)

)〉
,

=⇒ 0 = −dφ
dτ

exp

(
iφ(τ)− i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
) ∣∣uk(γ(τ)

)〉
+ exp

(
iφ(τ)− i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
) ∣∣∣∣ ddτ uk(γ(τ)

)〉
,

= exp

(
iφ(τ)− i

� τ

0

Ek
(
γ(τ ′)

)
dτ ′
)(∣∣∣∣ ddτ uk(γ(τ)

)〉
− dφ

dτ

∣∣uk(γ(τ)
)〉)

,

=⇒ dφ

dτ
=

〈
uk
(
γ(τ)

)∣∣∣∣ ddτ uk(γ(τ)
)〉

. (3.9)

Integrating both sides of (3.9) leads to

φ(τ) =

� τ

0

〈
uk(γ(τ))

∣∣∣∣ ddτ uk(γ(τ))

〉
dτ =

�
γ

〈
uk(s)

∣∣∣∣ ∂∂qiuk(s)

〉
dqi, (3.10)
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where the qi are the local coordinates we assumed we could take along the entire
path γ. We have shown that the phase φ(τ) is completely dependent on the adiabatic
path γ : [0, 1]→M , and thus this phase is due to the geometry of the manifold M .

If γ is a closed adiabatic path, then we call the differences in geometric phase

θjk =

�
γ

(〈
uj(s)

∣∣∣∣ ∂∂qiuj(s)
〉
−
〈
uk(s)

∣∣∣∣ ∂∂qiuk(s)

〉)
dqi, (3.11)

a Berry phase.

Based on the above example 3.1.1, we aim to build a more intuitive and general geo-
metric model, that makes use of vector bundles in order to calculate the accumulation of
Berry phases for general pure states, and not just energy eigenstates. We will start by es-
tablishing our base manifold, the parameter space, corresponding to a given family of local
Hamiltonians {Hα}. We will then define our fibre above p ∈ M to be the n−dimensional
Hilbert space, that our Hamiltonians act on. In the spirit of quantum mechanics we will take
energy eigenstates of our Hamiltonians to be the local basis sections of each fibre, giving the
local view of our model a familiar and useful form. In doing this we introduce a variable
coordinate system that moves complexities from coefficients, into derivatives. We will then
test this model on the well studied spin− 1

2 system in chapter 4, and finally use it to explore
the holonomy of NV center in chapter 5.

3.2 Constructing a vector bundle from a family of local
Hamiltonians

Recall that in section 2.2 we stated that the minimal amount of information needed to
construct a fibre bundle is a base manifold M with open cover {Uα}, a fibre F , a structure
group G and transition functions {tαβ}. We will now build each of these from a family of
local Hamiltonians.

Firstly, we define a family of local n-dimensional Hamiltonians as a set of smooth n-
dimensional Hamiltonians, {Hα}α, that are related by unitary transformations: For Hamil-
tonians H and H ′, in a family of local n-dimensional Hamiltonians, we have

H ′ = UHU†, for some U ∈ U(n). (3.12)

The term “local” should be understood in the same way that a gauge field is local. That is
to say that these Hamiltonians will only be defined on the domains of our base manifold’s
charts.

Given a local Hamiltonian Hα(p) that is dependent on m parameters p ∈ Rm, we are
interested in how pure states accumulate Berry phase. In order to study this we need to avoid
points in Rm where Hα is degenerate. We define the parameter space of the Hamiltonian
Hα to be

M = {p ∈ Rm : Hα(p) is non-degenerate}. (3.13)

Because the transformations in equation (3.12) leave eigenvalues unchanged, then every
member of our family of local Hamiltonians will be non-degenerate on M . We will take the
parameter space of a local Hamiltonian Hα, as the base manifold of our vector bundle, and
we will refer to this manifold as the parameter space.

We claim that the parameter space (3.13) is a smooth manifold. Let us verify this:
First we state that we are only interested in smooth manifolds with metrizable topologies.
Consider the smooth manifold Rm with atlas {(Uα, φα)}. Say we have a smoothly varying
local Hamiltonian on Rm that acts on some n−dimensional Hilbert space H. Let

{Ei : Rm → R}ni=1
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be the set of energy eigenvalues of our Hamiltonian. We have degeneracy in H(p) whenever
Ei(p) = Ej(p) for distinct i, j ∈ {1, . . . , n}. Consider the functions

Φij : Rm → R, Φij(p) = Ei(p)− Ej(p). (3.14)

Since the energy eigenvalues are roots of the characteristic polynomial, then Φij is continuous
for all i, j ∈ {1, . . . , n} [36].

The zero locus of Φij gives us all the points in Rm in which Ei(p) = Ej(p). Under a
metrizable topology the set {0} is closed, and therefore by the continuity of Φij , the set
Φ−1
ij (0) is closed for all i, j ∈ {1, . . . , n}. This implies that M = Rm\

⋃n
i6=j=1 Φ−1

ij (0) ⊆ Rm
is an open set. Finally, M inherits the subspace topology and a smooth structure by fixing
the atlas {(M ∩ Uα, ωα)}. This proves that the parameter space is a smooth manifold.

When choosing the atlas for our parameter space M we often want to use coordinate
systems that take advantage of the symmetries in a local Hamiltonian and its energy eigen-
values.

Example 3.2.1. Here is an example of a 2-dimensional Hamiltonian

Hz(x, y, z) = xσx + yσy + zσz+ =

(
z x− iy

x+ iy −z

)
, (3.15)

where σµ are the Pauli spin matrices. Hz has the energy eigenvalues

E±(x, y, z) = ±
√
x2 + y2 + z2. (3.16)

There is only one point of energy degeneracy at x = y = z = 0 and therefore our
parameter space is given by

R3\{0}. (3.17)

Seeing as the energy eigenvalues are symmetric under SO(3), a useful set of coordi-
nates are spherical coordinates. Hence, we establish the domains

Uz,1 = R3\{(x, 0, z) : x, z ∈ R and x ≥ 0}, Uz,2 = R3\{(x, 0, z) : x, z ∈ R and x ≤ 0}.

with trivialisations

Φz,1 : Uz,1 → R3, (x, y, z) 7→ (r, θ, φ1), (3.18)

Φz,2 : Uz,2 → R3, (x, y, z) 7→ (r, θ, φ2), (3.19)

where (r, θ, φ1,2) are the standard spherical coordinates with r > 0, θ ∈ (0, π),
φ1 ∈ (0, 2π) and φ2 ∈ (−π, π).
From here we define Hz ◦Φz,j as the Hamiltonian local to the domain Uz,j . That is
for (q1, q2, q3) ∈ Uz,j

Hz ◦ Φz,j(q1, q2, q3) = r

(
cos(θ) sin(θ)e−iφj

sin(θ)eiφj − cos(θ)

)
(3.20)

Note that the domains (3.18) and (3.19) do not provide an open cover for (3.17). To
fix this we introduce another set of domains

Ux,1 = R3\{(x, y, 0) : x, y ∈ R and y ≥ 0},
Ux,2 = R3\{(x, y, 0) : x, y ∈ R and y ≤ 0}.

(3.21)

with trivialisations

Φx,1 : Ux,1 → R3, (x, y, z) 7→ (r, ϑ, ϕ1),

Φx,2 : Ux,2 → R3, (x, y, z) 7→ (r, ϑ, ϕ2).
(3.22)

However, under these local coordinates, Hz becomes difficult to use. Example 3.23
tackles this problem in further detail, but first we need to establish our transition
maps.
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To the parameter space M with open cover {Uα}, we prescribe the fibre given by the
n−dimensional Hilbert space H that our local Hamiltonians act on. For each p ∈ Uα,
the local Hamiltonian Hα ◦ Φα(p) (with α fixed) has n non-degenerate energy eigenvectors
{|ui(p)〉}ni=1. These eigenvectors form an orthonormal basis for our Hilbert space for all
p ∈ Uα and thus they will be used as our local basis vectors in each fibre Hp. Furthermore,
because the Hamiltonian is non-degenerate on M , the eigenvectors may be chosen to vary
smoothly over the parameter space [25, Theorem 1.8].

Now that we have established our base manifold and fibre we need to consider the
transition maps. Let {(Uα,Φα)}α∈I be an atlas for M and take p ∈ Uα ∩ Uβ 6= ∅. Let
|ui(p)〉α denote our ith energy eigenstate of the local Hamiltonian Hα ◦Φα, and let 〈ui(p)|α

be its dual. We then define our transition maps as

tβ,α(p) = |ui(p)〉β 〈ui(p)|α . (3.23)

Thus, our transition maps describe a change of basis vectors.
These transition maps satisfy the consistency condition (2.3) because the non-degenerate

eigenvectors of H form a complete set. Take p ∈ Uα

tα,α(p) = |ui(p)〉α 〈ui(p)|α = idH, (3.24)

where the last equality holds because the eigenstate basis is non-degenerate over all Uα.
Now for the gluing condition, take p ∈ Uα ∩ Uβ 6= ∅

tα,β(p)tβ,α(p) = |ui(p)〉α
〈
ui(p)

∣∣uj(p)〉β β
〈uj(p)|α = |ui(p)〉αδij 〈uj(p)|α = idH,

tβ,α(p)tα,β(p) = |ui(p)〉β
〈
ui(p)

∣∣uj(p)〉α α
〈uj(p)|β = |ui(p)〉β 〈ui(p)|β = idH,

=⇒ tα,β(p) = t−1
β,α(p).

(3.25)

Finally, we have the associativity condition. Take p ∈ Uα ∩ Uβ ∩ Uκ 6= ∅

tα,β(p)tβ,κ(p) = |ui(p)〉α
〈
ui(p)

∣∣uj(p)〉β β
|uj(p)〉κ = |ui(p)〉αδij 〈uj(p)|κ ,

= |ui(p)〉α 〈ui(p)|κ = tα,κ(p).
(3.26)

Example 3.2.2. Consider the local Hamiltonian (3.15) again, with the atlas given in
example 3.2.1. The Hamiltonian, Hz under the trivialisation Φx,1 defined in (3.22),
takes the form

Hz(ωx,1(q1, q2, q3)) = r

(
sin(ϑ) sin(ϕ1) cos(ϑ)− i sin(ϑ) cos(ϕ1)

cos(ϑ)− i sin(ϑ) cos(ϕ1) − sin(ϑ) sin(ϕ1)

)
.

(3.27)
Note that the local Hamiltonian (3.15) was defined on the basis of σz eigenstates.
We could simplify (3.27) by changing its basis into σx eigenstates. We will call this
local Hamiltonian, Hx.
Diagonalising σx gives us the relation for all p ∈ Ux ∩ Uz

|u1(p)〉x =
1√
2

(|u1(p)〉z + |u2(p)〉z) ,

|u2(p)〉x =
1√
2

(|u1(p)〉z − |u2(p)〉z) ,

and thus our transition map (3.23) is given by the unitary matrix

tx,z(p) =
1√
2

(
1 1
1 −1

)
.
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This means that for all p ∈ Ux ∩ Uz we have

Hx(p) = tx,z(p)H
z(p)t−1

x,z(p),

and our local Hamiltonian on Ux,j is given by

Hx
(
Φx,j(q1, q2, q3)

)
= r

(
cos(ϑ) sin(ϑ)e−iϕ

sin(ϑ)eiϕ − cos(ϑ)

)
.

Lastly, our structure group is the largest Lie group that preserves the self adjoint con-
dition of the Hamiltonian, and leaves observables invariant for every p ∈M . Our structure
group is U(n).

We can now use the construction method outlined in section 2.2. We define

X =
∐
α

(Uα ×H)

and the equivalence relation on X: (p, ψ1(p)) ∼ (q, ψ2(q)) if and only if p = q and there
exists a transition function tαβ(p) such that ψ2(q) = tαβ(p)ψ1(p). Thus our vector bundle
is

E = X/ ∼, (3.28)

and our trivialisations are defined as

ωα : Uα ×H → π−1(Uα), ωα

(
p,
〈
ui(p)

∣∣ψ(p)
〉∣∣ui(p)〉α α

)
=
[(
p, ψ(p)

)]
. (3.29)

We can prescribe further structure by defining a dual bundle and a bundle of endomor-
phisms. We build our dual bundle E∗ by using the method discussed in section 2.3. The bun-
dle of endomorphisms is defined as the tensor product bundle E⊗E∗. Thus, by our fibre bun-
dle construction method in section 2.2 we construct a vector bundle (E, π,M,H , U(n)), its
dual (E∗, π∗,M,H ∗, U(n)) and its bundle of endomorphisms (E⊗E∗, π̂,M,H ∗⊗H , U(n)).
The action of U ∈ U(n) on the dual bundle is described by

U ·
[(
p, 〈ψ(p)|

)]
=
[(
p, 〈ψ(p)|U†

)]
, (3.30)

and the action of U ∈ U(n) on the bundle of endomorphisms is described by

U ·
[(
p, |φ(p)〉〈ψ(p)|

)]
=
[(
p, U |φ(p)〉〈ψ(p)|U†

)]
. (3.31)

In our model, the vector bundle E consists of all the physically relevant kets, while the
dual bundle consists of all bras. The bundle of endomorphisms consists of all the linear
operators that act on E. The self-adjoint ones are observables O:

〈ψ(p)|
(
O|φ(p)〉

)
=
(
〈ψ(p)|O†

)
|φ(p)〉, (3.32)

for all |φ(p)〉 , |ψ(p)〉 ∈ H.
It is also worth noting how elements in the dual and endomorphism bundles transform

locally. For
[(
p, 〈ψ(p)|

)]
∈ E∗p with p ∈ Uα ∩ Uβ 6= ∅ we have(

p, 〈ψ(p)|α

)
=
(
p, 〈ψ(p)|β tβ,α(p)

)
. (3.33)

For
[(
p, |φ(p)〉〈ψ(p)|

)]
∈ E ⊗ E∗ with p ∈ Uα ∩ Uβ 6= ∅ we have(

p,
∣∣φ(p)

〉
α

〈
ψ(p)

∣∣
α

)
=
(
p, tα,β(p)

∣∣φ(p)
〉
β

〈
ψ(p)

∣∣
β

tβ,α(p)
)
. (3.34)

The vector bundle we have defined in this section is not yet a Berry bundle. We first
need to prescribe variable basis sections and then local Berry connections.
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3.3 Local coordinates and variable basis sections

Now that we have our vector bundle we want to establish local coordinates on our fibre, H.
So far we have hinted that we will take energy eigenstates of our local Hamiltonians to be
the local coordinates of Hp for all p ∈M . That is to say, for parameter space M with open
cover {Uα} and p ∈ Uα the local Hamiltonian Hα(p) has n non-degenerate eigenstates that

form an orthonormal basis on Hp. Thus for
[(
p, |ψ〉

)]
∈ π−1(p)

ω−1
α

([(
p, |ψ〉

)])
=
(
p, vi|ui(p)〉α

)
(3.35)

where vi =
〈
ui(p)α

∣∣ψ 〉. This gives us a way to define local basis sections on our vector
bundle

ια,i(p) = ωα
(
p, |ui(p)〉α

)
=
[(
p,
∣∣ui(p)〉α)], (3.36)

and thus for any state |ψ〉 ∈ Ep we have[(
p, |ψ〉

)]
=

[(
p, vi

∣∣ui(p)〉α)] = vi
[(
p,
∣∣ui(p)〉α)] = viια,i(p). (3.37)

Taking the local coordinates on Uα to be {xµ}, gives us the local coordinates in π−1(Uα) of
the form (

xµ; vi
)
. (3.38)

However, this is no ordinary coordinate system. The local basis sections are described by
energy eigenstates of our local Hamiltonians, and thus can be chosen to vary smoothly on
the fibre. This variation in the coordinate system must be carefully considered as it has
implications on how tangent vectors behave.

Example 3.3.1. Consider the problem of how tangent vectors behave locally if
variations on the base manifold coordinates cause variations in the fibre coordinates:
We want to define the vector tangent to the smooth path λ : [0, 1] → π−1(Uα) with
π ◦ λ = γ, at the point λ(0) = b ∈ π−1(p). Locally, λ takes the form

ω−1
α

(
λ(t)

)
=

(
γ(t);λi(t)

∣∣∣ui(γ(t)
)〉

α

)
. (3.39)

Let Y be the vector that is tangent to λ(t) at t = 0 and let dπ(Y ) = X ∈ TpM .
Then for all f ∈ C∞(M ×H) we have

dω−1
α

(
Y
)
(f) =

d

dt
f

(
γ(t);λi(t)

∣∣∣ui(γ(t)
)〉

α

)∣∣∣∣
t=0

.

Now we see the impact of taking variable basis vectors on our Hilbert space H. If
our local basis vectors in our fibre are changing with the parameter t, then we will
need to take their change into account. To continue from this point we will need to
fix our local basis vectors. We can do this by expanding our energy eigenstates along
our path in terms of energy eigenstates at some fixed point in M . While any point
in M will work, the point γ(0) = p is the natural choice because we want to find the
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tangent vector at b ∈ π−1(p). Thus, we have

dω−1
α

(
Y
)
(f) =

d

dt
f

(
γ(t);λi(t)

〈
uj
(
p
)∣∣∣ui(γ(t)

)〉
α α

∣∣∣uj(p)〉
α

)∣∣∣∣
t=0

,

=
dγµ

dt

∣∣∣∣
0

∂f

∂xµ

∣∣∣∣
b

+
d

dt

(
λi(t)

〈
uj(p)

∣∣∣ui(γ(t)
)〉

α α

)∣∣∣∣
t=0

∂f

∂vj

∣∣∣∣
b

,

= Xµ ∂f

∂xµ

∣∣∣∣
b

+
dλi

dt

∣∣∣∣
0

〈
uj(p)

∣∣∣ui(γ(0)
)〉

α α

∂f

∂vj

∣∣∣∣
b

+ λi(0)

〈
uj(p)

∣∣∣∣ ddt ui(γ(t)
)∣∣

0

〉
α α

∂f

∂vj

∣∣∣∣
b

,

= Xµ ∂f

∂xµ

∣∣∣∣
b

+

(
dλi

dt

∣∣∣∣
0

δji + bi
dγµ

dt

∣∣∣∣
0

〈
uj(p)

∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
α α

)
∂f

∂vj

∣∣∣∣
b

.

We find the vector tangent to λ at t = 0 takes the local form

dω−1
α

(
Y
)

= Xµ ∂

∂xµ

∣∣∣∣
b

+

(
dλj

dt

∣∣∣∣
0

+ biX ·
〈
uj(p)

∣∣dui(p)〉α α

)
∂

∂vj

∣∣∣∣
b

,

= Xµ ∂

∂xµ

∣∣∣∣
b

+
(
Y j + biX ·

〈
uj(p)

∣∣dui(p)〉α α

) ∂

∂vj

∣∣∣∣
b

,

(3.40)

where d is the exterior derivative Ω0(M)→ Ω1(M).
Equation (3.40) describes a local tangent vector of E. What we have found is some-
thing that looks very much like a local horizontal lift (2.65) of a vector X ∈ TpM .
In fact, the only difference is the additional vertical vector

Y i
∂

∂vi
|b.

The example 3.3.1 demonstrates that when we prescribe our local variable basis sections
to our vector bundle we can take(

∂

∂xµ

∣∣∣∣
b

+ bi
〈
uj(p)

∣∣dui(p)〉α α

∂

∂vj

∣∣∣∣
b

;
∂

∂vi

∣∣∣∣
b

)
, (3.41)

as our basis for local tangent vectors of TbM with π(b) = p. These basis vectors are tangent
to paths that only vary along a single local coordinate in E. However, for TbE we will stick
with the local basis (

∂

∂xµ

∣∣∣∣
b

;
∂

∂vi

∣∣∣∣
b

)
. (3.42)

This will allow us to translate a lot of our work from the earlier derivation of the hori-
zontal lift in section 2.5. But, in order to use these basis vectors, we will need to understand
what curves they are tangent to. In example 3.3.1 we found that a tangent vector to the
local curve (3.39) takes the local form of (3.40). With this in mind consider the path
ηµ : [0, 1] → π−1(Uα) along the xµ direction. Let π

(
ηµ(t)

)
= γµ(t) for all t ∈ [0, 1] and

ηµ(0) = b ∈ π−1(p). Locally, ηµ takes the form

ω−1
α

(
ηµ(t)

)
=

(
γµ(t),

(
2bj − bi

〈
uj(p)

∣∣∣ui(γ(t)
)〉

α α

) ∣∣∣uj(γ(t)
)〉

α

)
, (3.43)

with γνµ defined in (2.52).
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By example 3.3.1 the local tangent vector to ηµ at t = 0 is

dω−1
α

(
Y
)

=
dγνµ
dt

∂

∂xν

∣∣∣∣
b

+

(
−bi

〈
uj(p)

∣∣∣∣ ddt ui(γ(t)
)∣∣

0

〉
α α

+ biX ·
〈
uj(p)

∣∣dui(p)〉α α

)
∂

∂vj

∣∣∣∣
b

,

= δνµ
∂

∂xν

∣∣∣∣
b

+
(
−biX ·

〈
uj(p)

∣∣dui(p)〉α α
+ biX ·

〈
uj(p)

∣∣dui(p)〉α α

) ∂

∂vj

∣∣∣∣
b

,

=
∂

∂xµ

∣∣∣∣
b

.

Similarly, by example 3.3.1 the path hi : [0, 1] → E described in equation (2.53) has local
tangent vector at t = 0

(
ω−1
α

)
∗

(
Y
)

=
dhi
dt

∣∣∣∣
0

∂

∂vj

∣∣∣∣
b

= δji
∂

∂vj

∣∣∣∣
b

=
∂

∂vi

∣∣∣∣
b

.

The paths ηµ for µ ∈ {1, . . . ,m} and hi for i ∈ {1, . . . , n} will be very useful in the derivation
of the horizontal lift under our new local variable basis sections.

3.4 Horizontal lift

Now that we have well defined local basis sections described by the energy eigenstates of
our local Hamiltonians, we can study parallel transport. In section 2.8 we discussed that
the notion of parallel transporting a vector v ∈ E over a smooth path γ : [0, 1] → M , is
understood as finding the unique path in E that starts at v, projects to γ and whose tangent
vector field is horizontal for all t ∈ [0, 1]. That is to say the vector v is kept parallel with
respect to an Ehresmann connection as it is transported. To find this unique path we built a
local horizontal lift in section 2.5. However, that construction assumed the basis sections of
E were constant on the fibre. We need to re-derive the horizontal lift with our local variable
basis sections to see how it will change.

Let (E, π,M,H, U(n)) be our vector bundle with local Hamiltonians {Hα}, and let
Uα ⊂M be a domain with local coordinates {xµ}. To π−1(Uα) prescribe our local variable
basis section {ια,i}. This gives π−1(Uα) the set of local coordinates {(xµ; vi)}. Now take
p ∈ Uα, X ∈ TpM tangent to some smooth path γ : [0, 1]→M at γ(0) = p, and take some
b ∈ Ep. We want to know what a local horizontal lift of X at b will look like.

Recall that a vector bundle’s horizontal lift G obeys conditions (2.42), (2.44), (2.45) and
(2.46).

Under our chosen local basis for TbE (3.42) we have

dω−1
α ◦ G(b,X) = Y µ(b,X)

∂

∂xµ

∣∣∣∣
b

+ Zi(b,X, Y )
∂

∂vi

∣∣∣∣
b

, (3.44)

for all X ∈ TpM and b ∈ Ep. Note that in example 3.3.1 we saw that tangent vectors with
components in the { ∂

∂xµ

∣∣
b
} directions, will have the coefficients of those components mix

with the coefficients of vertical vectors. To account for this we need to include the vector Y
in the argument of Z.

By the projection condition (2.42) we have

dπ
(
G(b,X)

)
(f) = Xµ ∂f

∂xµ

∣∣∣∣
p

.
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Applying dπ to our ansatz (3.44) and using the paths (3.43), (2.53) , we find

dπ
(
G(b,X)

)
(f) = dπ ◦ dωα

(
Y µ

∂

∂xµ

∣∣∣∣
b

+ Zi(b,X, Y )
∂

∂vi

∣∣∣∣
b

)
(f),

= Y µ
d

dt

(
f
(
π ◦ ηµ(t)

))∣∣∣
t=0

+ Zi(b,X, Y )
d

dt

(
f
(
π ◦ hi(t)

))∣∣∣
t=0

,

= Y µ
d

dt

(
f
(
γµ(t)

))∣∣∣
t=0

+ Zi(b,X, Y )
d

dt

(
f(p)

))∣∣∣
t=0

= Y µ
dγνµ
dt

∣∣∣∣
0

∂f

∂xν

∣∣∣∣
b

,

= Y µδνµ
∂f

∂xν

∣∣∣∣
b

= Y µ
∂f

∂xµ

∣∣∣∣
b

.

Thus the projection condition (2.42) imposes

Y µ = Xµ, (3.45)

and therefore
Z(b,X, Y ) = Z(b,X). (3.46)

Similarly, because G is linear in X (2.44), we have

Zi(b,X) = Z i
µ (b)Xµ (3.47)

The last two conditions require a local form of γ# : [0, 1] → E. We will take this local
form as

ω−1
α

(
γ#(t)

)
= ω−1

α

(
λi(t)ια,i

(
γ(t)

))
=
(
γ(t);λi(t)

∣∣ui(γ(t)
)〉
α

)
. (3.48)

The third condition on G is compatibility with scalar multiplication (2.45). Applying f ∈
C∞(M ×H) to the right hand side of equation (2.45) gives

dω−1
α ◦ dmc

((
G(b,X)

))
(f) = dω−1

α ◦ dmc ◦ dωα
(
Xµ ∂

∂xµ

∣∣∣∣
b

+ Zi(b,X)
∂

∂vi

∣∣∣∣
b

)
(f),

= Xµ d

dt
f
(
mc ◦ ηµ(t)

)∣∣∣
0

+ Zi(b,X)f
(
mc ◦ hi(t)

)∣∣∣
0
,

= Xµ d

dt
f
(
γµ(t), c

(
2bj − bi

〈
uj(p)

∣∣∣ui(γ(t)
)〉

α α

) ∣∣∣uj(γ(t)
)〉

α

)∣∣∣
0

+XµZ i
µ (b)

d

dt
f
(
c(bj + δjit)ια,j

(
p
))∣∣∣

0
.

Recall from example 3.3.1 that our local fibre coordinates vary along γ#. Thus, we choose
to expand our energy eigenvectors |ui

(
γ(t)

)
〉 in terms of |ui(p)〉. That is

dω−1
α ◦ dmc

(
(G(b,X))

)
(f) = Zi(b,X)

d

dt
f
(
c(bj + δjit)ια,j

(
p
))∣∣∣

0

+Xµ d

dt
f
(
γµ(t), c

(
2bj − bi

〈
uj(p)

∣∣∣ui(γ(t)
)〉

α α

) 〈
uk(p)

∣∣∣uj(γµ(t)
)〉

α α

∣∣∣uk(p)〉
α

)∣∣∣
0
,

= cZi(b,X)
∂f

∂vi

∣∣∣∣
Mc(b)

+Xµ

(
d

dt

(
c
(

2bj − bi
〈
uj(p)

∣∣∣ui(γ(t)
)〉

α α

) 〈
uk(p)

∣∣∣uj(γµ(t)
)〉

α α

)∣∣∣∣
0

∂f

∂vk

∣∣∣∣
Mc(b)

+
dγνµ(t)

dt

∣∣∣∣
0

∂f

∂xν

∣∣∣∣
Mc(b)

)
,

= Xµδνµ
∂f

∂xν

∣∣∣∣
Mc(b)

+ cZi(b,X)
∂f

∂vi

∣∣∣∣
Mc(b)

+Xµ
dγνµ(t)

dt

∣∣∣∣
0

(
c
(

2bj − biδji
) 〈

uk(p)

∣∣∣∣∣ ∂uj∂xν

∣∣∣∣
p

〉
α α

− cbi
〈
uj(p)

∣∣∣∣∣ ∂ui∂xν

∣∣∣∣
p

〉
α α

δkj

)
∂f

∂vk

∣∣∣∣
Mc(b)
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= Xµ

(
− cbi

〈
uk(p)

∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
α α

+ cbj

〈
uk(p)

∣∣∣∣∣ ∂uj∂xµ

∣∣∣∣
p

〉
α α

)
∂f

∂vk

∣∣∣∣
mc(b)

+Xµ ∂f

∂xµ

∣∣∣∣
mc(b)

+ cZi(b,X)
∂f

∂vi

∣∣∣∣
mc(b)

.

(3.49)

This implies the right hand side of equation (2.45) takes the local form

dω−1
α ◦ dmc

(
G(b,X)

)
= Xµ ∂

∂xµ

∣∣∣∣
mc(b)

+ cXµZ i
µ (b)

∂

∂vi

∣∣∣∣
mc(b)

. (3.50)

The left hand side of equation (2.45) is locally given by

dω−1
α ◦ G(mc(b), X) = Xµ ∂

∂xµ

∣∣∣∣
mc(b)

+XµZ i
µ

(
cbiιi(p)

) ∂

∂vi

∣∣∣∣
mc(b)

. (3.51)

Equating the left (3.51) and right (3.50) hand sides of (2.45) gives us the following relation

XµZ i
µ

(
cbjιj(p)

)
= cXµZ i

µ (b). (3.52)

The fourth and last horizontal lift condition is vector addition compatibility (2.46). Let
us employ the same strategy we used on the scalar multiplication compatibility condition.
First we will focus on the right hand side of (2.46): By our ansatz (3.44) we know that
G
(
σ(p), X

)
takes the local form

dω−1
α ◦ G

(
σ(p), X

)
= Xµ ∂

∂xµ

∣∣∣∣
σ(p)

+XµZ i
µ

(
σ(p)

) ∂

∂vi

∣∣∣∣
σ(p)

. (3.53)

To find the local form of dσ(X), we will apply an arbitrary function f ∈ C∞(E) to it:(
dω−1

α ◦ dσ(X)
)

(f) = Xµ d

dt
f
(
σ ◦ γµ(t)

)∣∣
t=0

= Xµ d

dt
f

(
γµ(t), σi

(
γµ(t)

)∣∣∣ui(γµ(t)
)〉

α

)∣∣∣∣
t=0

,

= Xµ d

dt
f

(
γµ(t), σi

(
γµ(t)

) 〈
uj(p)

∣∣∣ui(γµ(t)
)〉

α α

∣∣∣ui(p)〉)α

)∣∣∣∣
t=0

,

= Xµ
dγνµ
dt

∣∣∣∣
0

∂f

∂xν

∣∣∣∣
σ(p)

+Xµ d

dt

(
σi
(
γ(t)

) 〈
uj(p)

∣∣∣ui(γµ(t)
)〉

α α

)∣∣∣
0

∂f

∂vi

∣∣∣∣
σ(p)

,

which implies the local form of dσ(X)

dσ(X) = Xµ ∂

∂xµ

∣∣∣∣
σ(p)

+

(
Xµ ∂σi

∂xµ

∣∣∣∣
p

+ σi(p)X ·
〈
uj(p)

∣∣dui(p)〉α α

)
∂

∂vj

∣∣∣∣
σ(p)

. (3.54)

By equations (3.53) and (3.54), the vertical vector on the right hand side of equation (2.46)
takes the local form

dω−1
α

(
G
(
σ(p), X

)
−dσ(X)

)
= Xµ

(
Z i
µ

(
σ(p)

)
− ∂σi

∂xµ

∣∣∣∣
p

− σi(p)

〈
uj(p)

∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
α α

)
∂

∂vj

∣∣∣∣
σ(p)

.

(3.55)
Now that we have the local vectors describing the right hand side of (2.46) we can tackle

the left hand side of (2.46): By our anzats 3.44 we have

dω−1
α ◦ G(Sσ(b), X) = Xµ ∂

∂xµ

∣∣∣∣
Sσ(b)

+XµZ i
µ

(
Sσ(b)

) ∂

∂vi

∣∣∣∣
Sσ(b)

. (3.56)
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To find the local form of dSσ
(
G(b,X)

)
we will again make use of equation (3.44) and apply

f ∈ C∞(E) to it(
dω−1

α ◦ dSσ
(
G(b,X)

))
(f) = dω−1

α ◦ dSσ ◦ dωα
(
Xµ ∂

∂xµ

∣∣∣∣
b

+XµZ i
µ

(
b
) ∂

∂vi

∣∣∣∣
b

)
(f),

= Xµ d

dt
f
(
Sσ ◦ ηµ(t)

)∣∣∣
0

+XµZ i
µ

(
b
) d
dt
f
(
Sσ ◦ hi(t)

)∣∣∣
0
,

= Xµ d

dt
f

(
γµ(t),

(
2bj + σ

(
γµ(t)

)
− bi

〈
uj(p)

∣∣∣ui(γ(t)
)〉

α α

) ∣∣∣uj(γ(t)
)〉

α

)∣∣∣∣
0

+XµZ i
µ (b)

d

dt
f
(

(bj + σ
(
p
)

+ δjit)ια,j
(
p
))∣∣∣

0
,

= Xµδνµ
∂f

∂xν

∣∣∣∣
Sσ(b)

+Xµ
dγνµ
dt

∣∣∣∣
0

(
∂σj

∂xν

∣∣∣∣
p

− bi
〈
uj(p)

∣∣∣∣∣ ∂ui∂xν

∣∣∣∣
p

〉
α α

)
δkj

∂f

∂vk

∣∣∣∣
Sσ(b)

+Xµ
dγνµ
dt

∣∣∣∣
0

(
2bj + σj

(
p
)
− biδji

) 〈
uk(p)

∣∣∣∣∣ ∂uj∂xν

∣∣∣∣
p

〉
α α

∂f

∂vk

∣∣∣∣
Sσ(b)

+XµZ i
µ (b)δji

∂f

∂vj

∣∣∣∣
Sσ(b)

.

Simplifying this, we find that locally we have

dω−1 ◦ dSσ
(
G(b,X)

)
=Xµ ∂

∂xµ

∣∣∣∣
Sσ(b)

+XµZ i
µ (b)

∂

∂vi

∣∣∣∣
Sσ(b)

+

(
X(σj) + σi

(
p
)
X ·

〈
uj(p)

∣∣dui(p)〉α α

)
∂

∂vj

∣∣∣∣
Sσ(b)

.

(3.57)

By equations (3.56) and (3.57), the vertical vector on the left hand side of equation (2.46)
takes the local form

dω−1
α

(
G
(
Sσ(b), X

)
− dSσ

(
G
(
b,X

)))
= Xµ

(
Z i
µ

(
Sσ(b)

)
− Z i

µ (b)− ∂σj

∂xµ

∣∣∣∣
p

− σi
(
p
) 〈

uj(p)

∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
α α

)
∂

∂vj

∣∣∣∣
Sσ(b)

.

(3.58)

Now recall the vector space isomorphism % : Vσ(p)E → VSσ(b) defined in equation (2.49).
Applying % to equation (3.55) and comparing to (3.58) gives us the relation

Z i
µ

(
Sσ(b)

)
= Z i

µ

(
σ(p)

)
+ Z i

µ (b). (3.59)

In summary, for our vector bundle (E, π,M,H, U(n)) with family of local Hamiltonians
{Hα}, and domains Uα ⊂ M , we prescribed our local variable basis section {ια,i}ni=1 to
π−1(Uα). This gives π−1(Uα) the set of local coordinates {(xµ; vi)}. The relations (3.45),
(3.47), (3.52) and (3.59) imply that for p ∈ Uα and X ∈ TpM the horizontal lift of X at
b ∈ Ep takes the following local form

X#
b = Xµ ∂

∂xµ

∣∣∣∣
b

+X ·
(
Aα(p)

)i
j
bj

∂

∂vi

∣∣∣∣
b

. (3.60)

The horizontal lift remains unchanged for variable basis sections and as before we will omit
the local label α from local connections in future calculations unless it is necessary.

Even though the horizontal lift for local connection 1−forms {Aα} does not change with
variable basis sections, we must still be careful to consider how their variation can influence
derivatives and the connection.
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Figure 3.1: Diagram depicting a horizontal lift of the path γ (in black) to γ# (in blue).
The fibre is given by the grey line above the point p. Parallel transporting the vector |ψ(p)〉
along γ returns the vector |ψ′(p)〉

3.5 The Berry connection and parallel transporting states

Now that we have a horizontal lift together with our vector bundle (E, π,M,U(n),H) we
can form the initial value problem that is responsible for parallel transporting vectors in E.
Let M have a open cover {Uα} and let π−1(Uα) have the local coordinates (xµ; vi). Take a
smooth path γ : [0, 1] → Uα starting at γ(0) = p, with tangent vector field X(t) ∈ Tγ(t)M .

Lift γ to γ# : [0, 1] → π−1(Uα) such that γ#(0) = b. Equation (3.60) tells us that the
horizontal lift of X(t) is locally given by

X#
γ#(t)

= Xµ(t)
∂

∂xµ

∣∣∣∣
γ#(t)

+X
(
t
)
·Aij

(
γ(t)

)(
γ#(t)

)j ∂

∂vi

∣∣∣∣
γ#(t)

. (3.61)

Let γ#(t) take the form

γ#(t) = λi(t)ια,i(t) =

[(
γ(t), λi(t)

∣∣∣ui(γ(t)
)〉)]

, (3.62)

then applying f ∈ C∞(E) to the left hand side of equation (3.61) gives us

X#
γ#(t)

(f) =
d

dτ
f
(
γ#(τ)

)∣∣∣
τ=t

=
d

dt
f
(
γ(τ), λi(τ)

∣∣∣ui(γ(τ)
)〉)∣∣∣

τ=r
,

=
d

dτ
f

(
γ(τ), λi(τ)

〈
uj
(
γ(t)

)∣∣∣ui(γ(τ)
)〉∣∣∣uj(γ(t)

)〉)∣∣∣∣
τ=t

,

=
dγµ

dτ

∣∣∣∣
τ=t

∂f

∂xµ

∣∣∣∣
γ#(t)

+

(
dλi

dτ

∣∣∣∣
τ=t

δji + λi(τ)
dγµ

dτ

∣∣∣∣
τ=t

〈
uj
(
γ(t)

)∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
γ(t)

〉)
∂f

∂vj

∣∣∣∣
γ#(t)

,

=
dγµ

dτ

∣∣∣∣
τ=t

∂f

∂xµ

∣∣∣∣
γ#(t)

+

(
dλj

dτ

∣∣∣∣
τ=t

+ λi(τ)X ·
〈
uj
(
γ(t)

)∣∣dui(γ(t)
)〉) ∂f

∂vj

∣∣∣∣
γ#(t)

,
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which implies that

X#
γ#(t)

=
dγµ

dτ

∣∣∣∣
τ=t

∂

∂xµ

∣∣∣∣
γ#(t)

+

(
dλj

dτ

∣∣∣∣
τ=t

+ λi(τ)
dγµ

dτ

∣∣∣∣
τ=t

〈
uj
(
γ(t)

)∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
γ(t)

〉)
∂

∂vj

∣∣∣∣
γ#(t)

.

(3.63)

Substituting equation (3.63) into (3.61) and equating local vector coefficients gives us
the IVPs

dγµ

dt
= Xµ(t), γµ(0) = pµ, (3.64)

dλj

dt
= X(t) ·

((
Aα
(
γ(t)

))j
i
−
〈
uj
(
γ(t)

)∣∣dui(γ(t)
)〉)

λi(t), λi(0) = bi. (3.65)

These IVPs are our system’s parallel transport equations under local connections {Aα}.
We are interested in adiabatic paths, so to capture this with parallel transport we want

our connection to enforce that all smooth paths are adiabatic. This means that based on
example 3.1.1, specifically equation (3.10) a quantum state

|ψ(p)〉 =

n∑
j=1

cj |uj(p)〉,

at p ∈ M , will change in the following way when it is parallel transported along a smooth
path γ : [0, 1]→M with γ(0) = p

Γ(γ)t0 :
[(
p, |ψ(p)〉

)]
7→

γ(t),

n∑
j=1

exp(φj(γ; t))cj
∣∣∣uj(γ(t)

)〉 ,
where

φi(γ; t) =

� t

0

dγµ

dt

〈
ui
(
γ(t)

)∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
γ(t)

〉
dt.

This implies that our system’s holonomy (2.98) at any point p is comprised of the diagonal
matrices

holp =
{

diag
(
φ1(γ; 1), φ2(γ; 1), . . . , φn(γ; 1)

)
: γ is a smooth path [0, 1]→M

}
. (3.66)

We will now use the connection recovery method from equation (2.101). We find that
transporting a state vector b ∈ π−1(p) over a smooth path γ : [0, 1] → M , with tangent
vector X at γ(0) = p, gives

biX ·Aji(p) =
d

dt

(
Γ(γ)t0b

)i∣∣∣∣
t=0

,

=
d

dt

((
γ(t); exp(φi(γ; t))bi

∣∣∣ui(γ(t)
)〉)i)∣∣∣∣

t=0

,

=
d

dt

(
exp(φi(γ; t))bi

〈
uj(p)

∣∣∣ui(γ(t)
)〉)∣∣∣

t=0
,

= bi
d

dt

(� t

0

dγµ

dt

〈
ui
(
γ(t)

)∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
γ(t)

〉
dt

)∣∣∣∣∣
t=0

exp(φi(γ; 0))δji

+ bi
d

dt

(〈
uj(p)

∣∣∣ui(γ(t)
)〉)∣∣∣

t=0
exp(φi(γ; 0)),

= biXµ

〈
ui
(
p
)∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
δji + biXµ

〈
uj
(
p
)∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
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Thus we find that for a chart (Uα, φα) and p ∈ Uα(
Aα(p)

)j
i

= 〈ui(p)|dui(p)〉α α δ
j
i +

〈
uj(p)

∣∣dui(p)〉α α
. (3.67)

We call equation (3.67) a local Berry connection (or Berry connection for short). This
connection enforces that all smooth paths be taken as adiabatic paths and thus satisfy the
adiabatic theorem (3.5). Note, in the term 〈ui(p)|dui(p)〉, i is fixed and thus both indices
are lowered.

An interesting and useful property of the Berry connection is that it is antihermitian by
the following condition

0 =
∂

∂xµ

( 〈
ui(p)

∣∣uj(p)〉 ) =

〈
∂ui

∂xµ

∣∣∣∣uj(p)〉+

〈
ui(p)

∣∣∣∣ ∂uj∂xµ

〉
,

=⇒
〈
∂ui

∂xµ

∣∣∣∣uj(p)〉 = −
〈
ui(p)

∣∣∣∣ ∂uj∂xµ

〉
. (3.68)

Furthermore, the condition (3.68) implies that〈
∂uj

∂xµ

∣∣∣∣uj(p)〉 ∈ iR for all p ∈M and j ∈ {1, . . . , n}. (3.69)

Substituting the Berry connection into our parallel transport equation (3.65) we find
that it simplifies into n decoupled linear IVPs

dλj

dt
= X

(
t
)
· 〈uj(p)|duj(p)〉λj(t), λj(0) = bj , (3.70)

with j ∈ {1, 2, . . . , n}. The solution to these equations give rise to the Berry phases between
eigenstates, whenever the state b is transported around a smooth closed path.

Recall from the discussion on connections in section 2.4. Connections correspond to
gauge fields in physics. For this reason we note that it is not always possible to patch local
connection 1-forms together in a consistent and smooth manner, over an entire manifold. A
canonical example are the gauge fields belonging to a Dirac monopole. What this means is
that we cannot guarantee that there exists a global connection in our model.

Finally, let M be a smooth base manifold with an open cover {Uα} and {tα,β} a set
transition maps. Let {Hα} be a given family of local Hamiltonians that take values from
{Uα}, operate on an n−dimensional Hilbert space H, and agree on overlaps; for p ∈ Uα∩Uβ

Hα(p) = tα,β(p)Hβ(p)tβ,α(p). (3.71)

We define the Berry bundle for our family of local Hamiltonians as the vector bundle from
section 3.2, together with the variable basis sections (3.37), and the local Berry connection
1−forms (3.67).

3.6 Curvature and Chern classes

Before we start this section it should be pointed out that the local Berry connection 1-forms
(3.67), have a term of three lowered fixed indices

〈ui(p)|dui(p)〉 δji. (3.72)

For this reason, we will include explicit sums where necessary. Otherwise, repeated lowered
indices are fixed.
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For a vector bundle (E, π,M,F,G) with local connection 1−forms {Aα}, the local cur-
vature is given by Fα = dAα +Aα ∧Aα. However, with our variable basis sections we need
to be wary of derivatives, as shown in example 3.3.1:

dA(p) =
∂Aν
∂xµ

∣∣∣∣
q=p

dxµ ∧ dxν ,

=
∂

∂xµ

(
A i
ν j(q)|ui(q)〉〈uj(q)|

)∣∣∣
q=p

dxµ ∧ dxν ,

=
∂

∂xµ

(
A i
ν j(q)

〈
u`(p)

∣∣ui(q)〉 〈uj(q)∣∣uk(p)
〉 )∣∣∣

q=p
|u`(p)〉〈uk(p)|dxµ ∧ dxν ,

=

(
∂A i

ν j

∂xµ

∣∣∣∣∣
p

δ`iδ
j
k +A i

ν j(p)

〈
u`(p)

∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
δjk

+A i
ν j(p)δ

`
i

〈
∂uj

∂xµ

∣∣∣∣
p

∣∣∣∣∣uk(p)

〉)
|u`(p)〉〈uk(p)|dxµ ∧ dxν ,

=⇒ dA(p) =

(
∂A `

ν k

∂xµ

∣∣∣∣
p

+A i
ν k(p)

〈
u`(p)

∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉

+A `
ν j(p)

〈
∂uj

∂xµ

∣∣∣∣
p

∣∣∣∣∣uk(p)

〉)
|u`(p)〉〈uk(p)|dxµ ∧ dxν .

(3.73)

Thus, for the Berry bundle associated to a family of local Hamiltonians {Hα}, the first term
in (3.73) takes the form

∂A `
ν k

∂xµ

∣∣∣∣
p

dxµ ∧ dxν =
∂

∂xµ

(〈
u`(q)

∣∣∣∣ ∂u`∂xν

〉
δ`k +

〈
u`(q)

∣∣∣∣∂uk∂xν

〉 )∣∣∣∣∣
q=p

dxµ ∧ dxν ,

=

(〈
∂u`
∂xµ

∣∣∣∣
p

∣∣∣∣∣ ∂u`∂xν

∣∣∣∣
p

〉
δ`k +

〈
∂u`

∂xµ

∣∣∣∣
p

∣∣∣∣∣ ∂uk∂xν

∣∣∣∣
p

〉)
dxµ ∧ dxν ,

(3.74)

where terms of the form

〈
u`(q)

∣∣∣∣ ∂2uk
∂xµ∂xν

∣∣∣
p

〉
dxµ ∧ dxν = 0 because |uk(q)〉 is smooth for all

k ∈ {1, . . . , n}. Let us move onto the second term in (3.73)

A i
ν k(p)

〈
u`(p)

∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
dxµ ∧ dxν =

(〈
ui(p)

∣∣∣∣∣ ∂ui∂xν

∣∣∣∣
p

〉
δik

+

〈
ui(p)

∣∣∣∣∣ ∂uk∂xν

∣∣∣∣
p

〉)〈
u`(p)

∣∣∣∣∣ ∂ui∂xµ

∣∣∣∣
p

〉
dxµ ∧ dxν .

This expression can be simplified using the relation (3.68) to(〈
uk(p)

∣∣∣∣∣ ∂uk∂xν

∣∣∣∣
p

〉〈
u`(p)

∣∣∣∣∣ ∂uk∂xµ

∣∣∣∣
p

〉
−

〈
∂u`

∂xµ

∣∣∣∣
p

∣∣∣∣∣ ∂uk∂xν

∣∣∣∣
p

〉)
dxµ ∧ dxν . (3.75)

Similarly, the third term in (3.73) becomes

−

(〈
u`(p)

∣∣∣∣∣ ∂u`∂xν

∣∣∣∣
p

〉〈
u`(p)

∣∣∣∣∣ ∂uk∂xµ

∣∣∣∣
p

〉
+

〈
∂u`

∂xµ

∣∣∣∣
p

∣∣∣∣∣ ∂uk∂xν

∣∣∣∣
p

〉)
dxµ ∧ dxν . (3.76)

The last part of the curvature is A ∧A which takes the form

A ∧A = AµAνdx
µ ∧ dxν =

1

2
AµAνdx

µ ∧ dxν − 1

2
AµAνdx

ν ∧ dxµ,

=
1

2
AµAνdx

µ ∧ dxν − 1

2
AνAµdx

µ ∧ dxν =
1

2
[Aµ, Aν ]dxµ ∧ dxν .

(3.77)
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This can be simplified further by making use of the fact that our local energy eigenstates
form a complete set. Thus,

A i
µ kA

k
ν j =

〈
ui
∣∣∣∣∂uk∂xµ

〉〈
uk
∣∣∣∣∂uj∂xν

〉
= −

〈
∂ui

∂xµ

∣∣∣∣uk〉〈uk∣∣∣∣∂uj∂xν

〉
= −

〈
∂ui

∂xµ

∣∣∣∣∂uj∂xν

〉
.

This means that

1

2

[
Aσ(p), Aη(p)

]
dxσ ∧ dxη =

〈
∂ui

∂xσ

∣∣∣∣∂uj∂xη

〉
|ui(p)〉〈uj(p)|dxσ ∧ dxη. (3.78)

Both (3.77) and (3.78) are useful expressions. It is not apparent in (3.78) that A ∧ A is
traceless, but it is clear in (3.77). Furthermore, these equations give us the relation〈

∂ui

∂xσ

∣∣∣∣ ∂ui∂xη

〉
= 0, (3.79)

for all σ and η.
combining together equations (3.74), (3.75), (3.76) and (3.78) we find that the local

Berry curvature is

F(p) =

{
n∑
`=1

〈
∂u`
∂xµ

∣∣∣∣
p

∣∣∣∣∣ ∂u`∂xν

∣∣∣∣
p

〉
|u`(p)〉〈u`(p)|

+

n∑
`,k=1

(〈
uk(p)

∣∣∣∣∣ ∂uk∂xν

∣∣∣∣
p

〉〈
u`(p)

∣∣∣∣∣ ∂uk∂xµ

∣∣∣∣
p

〉

−

〈
u`(p)

∣∣∣∣∣ ∂u`∂xν

∣∣∣∣
p

〉〈
u`(p)

∣∣∣∣∣ ∂uk∂xµ

∣∣∣∣
p

〉)
|u`(p)〉〈uk(p)|

}
dxµ ∧ dxν .

(3.80)

Note that we have explicitly used only lowered indices for the energy eigenstates. This was
done to avoid confusion in the summing over repeated indices as there are several places in
which we have three or four repeated indices.

If a connection is a gauge field in physics, then the curvature must be the field strength
tensor. What this means is that the Berry curvature is observable and therefore coordinate
independent. Hence, the Berry curvature is a global u(n) valued 2−form. Furthermore,
because the curvature takes values in the Lie algebra u(n), it is antihermitian.

A useful piece of information we can extract from the local Berry curvature is its asso-
ciated Chern class. Chern classes are topological invariants associated with smooth vector
bundles. That is to say that two vector bundles with different Chern classes are non diffeo-
morphic bundles. However, the converse is not true. We define the total Chern class of a
local curvature as

c(F) = det

(
I + i

F
2π

)
=

n∏
k=1

(1 +
i

2π
λk). (3.81)

It should be noted that we are using the same convention as that in [35, 11.2.1 Definitions].
Expanding the product in (3.81) gives us

c(F) = 1 +
i

2π

n∑
k=1

λk −
1

4π2

n∑
j,k=1

j 6=k

λjλk + . . . ,

= 1 +
i

2π

n∑
k=1

λk −
1

8π2

n∑
j,k=1

2λjλk(1− δj,k) + . . . ,

= 1 +
i

2π
tr
(
F(p)

)
+

1

8π2

(
tr
(
F(p)

)
∧ tr

(
F(p)

)
− tr

(
F(p) ∧ F(p)

))
+ . . .
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From this we define the first Chern class

c1(F) =
i

2π
tr
(
F(p)

)
,

which consists of global 2−forms, and the second Chern class

c2(F) =
1

8π2

(
tr
(
F(p)

)
∧ tr

(
F(p)

)
− tr

(
F(p) ∧ F(p)

))
,

which consists of local 4−forms.
A useful property of the Berry curvature is that it is traceless. Thus, the first Chern

class for any Berry bundle will always vanish everywhere and the second simplifies to

c2(F) = − 1

8π2
tr
(
F(p) ∧ F(p)

)
, (3.82)

This means that in order for a Berry bundle to have a non-trivial Chern class, it will need
to have a base manifold of at least 4 real dimensions.
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Chapter 4

Spin-1/2 system

Now that we have a way of constructing a Berry bundle for a given family of local Hamil-
tonians, it is time we apply it to a well studied system to see if it agrees with observations.
The quantum system we will study is a single spin-1/2 fermion in a magnetic field. We
will start by introducing local Hamiltonians, and use these to build the parameter space,
transition maps, and energy eigenbasis for our fibre. Then, using an open cover for the pa-
rameter space, we will establish local Berry connection 1-forms, and use them to study the
system’s holonomy (all possible Berry phases). What we find is that all useful information in
our parameter space can be extracted from S2, effectively reducing complexity in adiabatic
paths to their projection onto the sphere: We find that the Berry phase accumulated by a
quantum state transported along a path in our parameter space is equal to the area enclosed
by the path when projected onto S2, which agrees with experimentation [16,22,45].

4.1 The spin-1/2 bundle

From now on we will refer to a system of the single spin-1/2 fermion in a magnetic field as
the spin-1/2 system. This system is described by a 3−dimensional real parameter space M ,
and a 2-dimensional complex Hilbert space fibre H. It has a local Hamiltonian of the form

H(q1, q2, q3) = q1σ
x + q2σ

y + q3σ
z, (4.1)

where q1, q2, q3 ∈ R and σi are the 2 × 2 Pauli spin matrices. Physically, the parameters
represent the magnetic field of the spin−1/2 system.

To understand this Hamiltonian better we will work in the basis of σz eigenstates{
|u1〉z, |u2〉z

}
so that

Hz(q1, q2, q3) =

(
q3 q1 − iq2

q1 + iq2 −q3

)
. (4.2)

Hz has energy eigenvalues

E±(q1, q2, q3) = ±
√
q2
1 + q2

2 + q2
3 . (4.3)

The only point of degeneracy is at the origin. This means that our parameter space is

M = R3\{0}. (4.4)

As in example 3.2.1 we note that the energy eigenvalues of Hz(q1, q2, q3) are symmetric
under the SO(3) action, q1

q2

q3

 7→ O

q1

q2

q3

 , O ∈ SO(3).
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To take advantage of the system’s spherical symmetry we prescribe the following domains
and diffeomorphisms of M :

Uz,1 = R3\{(x, 0, z) : x, z ∈ R and x ≥ 0},
Uz,2 = R3\{(x, 0, z) : x, z ∈ R and x ≤ 0},

(4.5)

φz,1 : Uz,1 → R3, (x, y, z) 7→
(
r, θ, φ1

)
,

φz,2 : Uz,2 → R3, (x, y, z) 7→
(
r, θ, φ2

)
.

(4.6)

We define φ1 ∈ (0, 2π) and φ2 ∈ (−π, π) as angles measured anticlockwise from positive
x-axis in the xy-plane. The angle θ ∈ (0, π) is measured from the positive z-axis, and
r > 0 is the radius parameter. Physically, these parameters correspond to the direction
and magnitude of an incident magnetic field over the spin-1/2 sample. The reason for the
removal of half planes in the definitions of domains (4.5) is to avoid discontinuities in φ1

and φ2.
Note that the domains in equation (4.5) do not cover M . Let us remedy this: First note

that our local Hamiltonian with respect to a basis of σx eigenstates,
{
|u1〉x, |u2〉x

}
, takes

the form

Hx(q1, q2, q3) =

(
q1 q3 − iq2

q3 + iq2 −q1

)
. (4.7)

We will take advantage of the similarity between (4.7) and (4.2) by prescribing the domains
and diffeomorphisms:

Ux,1 = R3\{(x, y, 0) : x, y ∈ R and y ≥ 0},
Ux,2 = R3\{(x, y, 0) : x, y ∈ R and y ≤ 0} → R3.

(4.8)

φx,1 : Ux,1 → R3, (x, y, z) 7→
(
r, ϑ, ϕ1

)
,

φx,2 : Ux,2 → R3, (x, y, z) 7→
(
r, ϑ, ϕ2

)
,

(4.9)

where ϕ1 ∈ (0, 2π) and ϕ2 ∈ (−π, π) are angles measured anticlockwise from positive y-axis
in the yz-plane. The angle ϑ ∈ (0, π) is measured from the positive x-axis, and r > 0 is the
radius parameter.

On our fibre bundle E, we define the trivialisations

ωz,1 : Uz,1 ×H → π−1(Uz,1),

ωz,2 : Uz,2 ×H → π−1(Uz,2),
(4.10)

where the local basis for our fibre is given by
{
|u1〉z, |u2〉z

}
. That is to say for i = 1, 2,

p ∈ Uz,i, and
[(
p, |ψ(p)〉

)]
∈ π−1(p)

ω−1
z,i

([(
p, |ψ(p)〉

)])
=
(
p,
〈
uj(p)

∣∣ψ(p)
〉

z
|uj(p)〉z

)
. (4.11)

Similarly, we define

ωx,1 : Ux,1 ×H → π−1(Ux,1),

ωx,2 : Ux,2 ×H → π−1(Ux,2),
(4.12)

where the local basis for our fibre is given
{
|u1〉x, |u2〉x

}
. That is to say for i = 1, 2, p ∈ Ux,i,

and
[(
p, |ψ(p)〉

)]
∈ π−1(p)

ω−1
x,i

([(
p, |ψ(p)〉

)])
=
(
p,

〈
uj(p)

∣∣ψ(p)
〉

x
|uj(p)〉x

)
. (4.13)
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The trivialisations in equation (4.10), and local coordinates in equation (4.6), give us the
locally defined Hamiltonians

Hz ◦ φz,i(q1, q2, q3) = Hz
i (r, θ, φi) = r

(
cos(θ) e−iφi sin(θ)

eiφi sin(θ) − sin(θ)

)
, (4.14)

for all (q1, q2, q3) ∈ Uz,i. These local Hamiltonians have local normalised energy eigenvectors
given by

|u1(r, θ, φi)〉z = |u−(r, θ, φi)〉z =

(
− sin(θ/2)e−iφi

cos(θ/2)

)
,

|u2(r, θ, φi)〉z = |u+(r, θ, φi)〉z =

(
cos(θ/2)e−iφi

sin(θ/2)

)
,

(4.15)

with energy eigenvalues

Hz
i (r, θ, φi)|u±(r, θ, φi)〉z = ±r|u±(r, θ, φi)〉z. (4.16)

Similarly, the trivialisations in equation (4.12), and local coordinates in equation (4.9),
give us the locally defined Hamiltonians

Hx ◦ φx,i(q1, q2, q3) = Hx
i (r, ϑ, ϕi) = r

(
cos(ϑ) e−iϕi sin(ϑ)

eiϕi sin(ϑ) − sin(ϑ)

)
, (4.17)

for all (q1, q2, q3) ∈ Ux,i. These local Hamiltonians have local normalised energy eigenvectors
given by

|u1(r, ϑ, ϕi)〉x = |u−(r, ϑ, ϕi)〉x =

(
− sin(ϑ/2)e−iϕi

cos(ϑ/2)

)
,

|u2(r, ϑ, ϕi)〉x = |u+(r, ϑ, ϕi)〉x =

(
cos(ϑ/2)e−iϕi

sin(ϑ/2)

)
,

(4.18)

with energy eigenvalues

Hx
i (r, ϑ, ϕi)|u±(r, ϑ, ϕi)〉x = ±r|u±(r, ϑ, ϕi)〉x. (4.19)

The transition maps in our model are given by outer products of eigenstates. In example
3.2.2 we found our only non-trivial transition maps were given by the projections

tx,z(p) = |ui(p)〉x 〈ui(p)|z , and tz,x(p) = |ui(p)〉z 〈ui(p)|x , (4.20)

for all p ∈ Ux,i ∩ Uz,j . Thus we have

tx,z(p) = tz,x(p) =
1√
2

(
1 1
1 −1

)
. (4.21)

Using our open cover {Ux,1, Ux,2, Uz,1, Uz,2} for the parameter space, Hilbert space fi-
bre H, structure group U(2), and transition maps (4.21), we construct a vector bundle
(E, π,M,H, U(2)). This vector bundle has trivialisations given by (4.10) and (4.12).

We can now use the local normalised energy eigenstates, (4.15) and (4.18), to determine
our local Berry connections (3.67). Let us build each component starting with the exterior
derivative of our energy eigenstates: Let us start with Uz,i for i = 1, 2

|du−(r, θ, φi)〉z = −1

2

(
cos(θ/2)e−iφi

sin(θ/2)

)
dθ +

(
i sin(θ/2)e−iφi

0

)
dφi,

|du+(r, θ, φi)〉z =
1

2

(
− sin(θ/2)e−iφi

cos(θ/2)

)
dθ +

(
−i cos(θ/2)e−iφi

0

)
dφi.
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Thus our Berry connection over Uz,i is given by

Az(r, θ, φi) =

(
2 〈u1(r, θ, φi)|du1(r, θ, φi)〉z z 〈u1(r, θ, φi)|du2(r, θ, φi)〉z z

〈u2(r, θ, φi)|du1(r, θ, φi)〉z z 2 〈u2(r, θ, φi)|du2(r, θ, φi)〉z z

)
,

=

(
−2i sin2(θ/2)dφi

1
2dθ + i cos(θ/2) sin(θ/2)dφi

− 1
2dθ + i cos(θ/2) sin(θ/2)dφi −2i cos2(θ/2)dφi

)
.

(4.22)

Similarly, by our choice of local coordinates for Ux,i we have a local Berry connection
over Ux,i defined by

Ax(r, ϑ, ϕi) =

(
−2i sin2(ϑ/2)dϕi

1
2dϑ+ i cos(ϑ/2) sin(ϑ/2)dϕi

− 1
2dϑ+ i cos(ϑ/2) sin(ϑ/2)dϕi −2i cos2(ϑ/2)dϕi

)
. (4.23)

Now that we have our local Berry connections we can parallel transport quantum states
along adiabatic paths in our parameter space M . This will allow us to deduce the holonomy
(all possible Berry phases) of the system, as well as study the Chern class of our spin−1/2
Berry bundle.

4.2 Results

First we should note that the local coordinate r appears nowhere in our Berry connections,
(4.22) and (4.23). This means that we can expect that under parallel transport, any radial
component of an adiabatic path γ : [0, 1] → M , will not contribute to the accumulation of
Berry phase. We can see this by finding the horizontal lift of γ through some initial state
|ψi〉: Let γ : [0, 1]→ Uz,i be a smooth closed path with γ(0) = γ(1) = p and X : [0, 1]→ TM
the tangent vector field to γ with local form

dω−1
z,i

(
X(t)

)
= Xr(t)

∂

∂r

∣∣∣∣
γ(t)

+Xθ(t)
∂

∂θ

∣∣∣∣
γ(t)

+Xφ(t)
∂

∂φ

∣∣∣∣
γ(t)

. (4.24)

Say we want to parallel transport the quantum state

|ψi(p)〉 = b1|u1(p)〉z + b2|u2(p)〉z, (4.25)

along γ. To do this we need to find the horizontal lift γ# : [0, 1]→ E,

γ#(t) = ωz,i

(
γ(t);λj(t)

∣∣∣uj(γ(t)
)〉)

= ωz,i

(
γ(t);

∣∣∣ψ(t)
〉)

. (4.26)

γ# can be found by solving the IVPs provided by the horizontal lift of our vector field
(3.64),(3.65). Our ansatz for γ# (4.26) satisfies (3.64). That is to say, we only need to solve
for the coefficients of our quantum state |ψ(t)〉, which are given by the IVP

dλj

dt
= X(t) ·

((
Aα
(
γ(t)

))j
i
−
〈
uj
(
γ(t)

)∣∣dui(γ(t)
)〉)

λi(t), λj(0) = bj . (4.27)

For the spin-1/2 system, (4.27) immediately provides two decoupled IVPs

dλ1

dt
= −i sin2

(
γθ(t)/2

)
Xφ(t)λ1(t), λ1(0) = b1,

dλ2

dt
= −i cos2

(
γθ(t)/2

)
Xφ(t)λ2(t), λ2(0) = b2.

(4.28)

As we can see, the local coordinate r appears nowhere in our ODEs and thus any radial
component of an adiabatic path can be safely ignored. This can be used to reduce our
parameter space to S2. Physically, this means that an experiment can have the magnetic
field strength fixed, while still having full access to the system’s possible Berry phases.
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The solution to the above IVPs (4.28) is given by

λ1(t) = b1 exp

(
−i
�
γ

sin2
(
θ/2
)
dφ

)
, λ2(t) = b2 exp

(
−i
�
γ

cos2
(
θ/2
)
dφ

)
. (4.29)

This means that after being transported around an adiabatic path γ : [0, 1] → M , our
quantum state is mapped to

|ψ(p)〉 7→ b1 exp

(
−i
�
γ

sin2
(
θ/2
)
dφ

)
|u1(p)〉+ b2 exp

(
−i
�
γ

cos2
(
θ/2
)
dφ

)
|u2(p)〉. (4.30)

Thus, the state has accumulated a Berry phase (3.11) of

Φ2,1 = −
�
γ

(
cos2

(
θ/2
)
− sin2

(
θ/2
))
dφ = −

�
γ

cos
(
θ
)
dφ. (4.31)

From here we can employ the generalised Stokes’ theorem: Let Ω ⊂ Uz,i be a smooth
orientable sub-manifold of the parameter space with boundary given by γ, then

Φ2,1 = −
�

Ω

d
(

cos
(
θ
)
dφ
)

=

�
Ω

sin
(
θ
)
dθdφ. (4.32)

Notice that the integrand of (4.32) is the jacobian for spherical coordinates with radius set
to r = 1. To take advantage of this, we will project our adiabatic paths in M to S2 by
removing the radial component. Hence, the Berry phase accumulated by a quantum state
in the spin−1/2 system as it is transported around an adiabatic process γ : [0, 1] → M , is
completely described by the smaller area enclosed by the path that γ projects onto S2. This
gives a holonomy group at any point p ∈M of the form

holp =

{(
1 0
0 eiΦ

)
: Φ ∈ [0, 2π)

}
' U(1). (4.33)

An important question to ask is why the Berry phase is described by the smaller area
enclosed by the projection of an adiabatic path onto S2 rather than the larger area. If D is
the smaller area then 4π −D is the larger area. So under exponentiation we find that the
smaller area describes the difference between the second eigenstate’s geometric phase and
the first’s, Φ2,1, while the larger area is the reverse, Φ1,2.

The last thing we can study is the Chern class, but as we said in section 3.6, a Berry
bundle with a parameter space of dimension less than 4 will always have a trivial Chern
class and that is exactly what we see in the spin-1/2 system.

Example 4.2.1. To end this chapter we will include an example of a full calculation
of the parallel transport of

|ψ(p)〉 = b1|u1(p)〉+ b2|u2(p)〉, (4.34)

about the smooth path γ : [0, 1]→M , where γ(t) is a line of fixed latitude, of radius
R > 0 starting and finishing at (q1, q2, q3) = (0, R, 0) ∈M .
Firstly we need to split this path into two pieces to express it in the local coordinates
of Uz,1 and Uz,2. Consider the following parametrisation of γ

γ : [0, 1]→M, γ(t) =

{
γ1(t), t ∈ [0, 1/2],

γ2(t), t ∈ (1/2, 1],
(4.35)
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with

γ1 : [0, 1/2]→ Uz,1, ωz,1
(
γ1(t)

)
=

(
R, θ,

π

2
+ 2πt

)
,

γ2 : (1/2, 1]→ Uz,2, ωz,2
(
γ2(t)

)
=

(
R, θ,−π

2
+ 2π

(
t− 1

2

))
.

(4.36)

The local vector fields to these paths are given as

X1(t) = 2π
∂

∂φ

∣∣∣∣
γ1(t)

, X2(t) = 2π
∂

∂φ

∣∣∣∣
γ2(t)

. (4.37)

To parallel transport (4.34) about γ we will solve for the horizontal lift of γ1 through

|ψ(p)〉, and then find the horizontal lift of γ2 through γ#
1 (1/2). Let the horizontal

lifts of γ#
1 and γ#

2 , be given by

γ#
1 (t) = ωz,1

(
γ1(t);λi1(t)

∣∣∣ui(γ(t)
)〉

z

)
, γ#

2 (t) = ωz,2

(
γ2(t);λi2(t)

∣∣∣ui(γ(t)
)〉

z

)
.

Then, by the fibre IVPs in (4.28) we have

dλ1
1

dt
= −2πi sin2

(
θ

2

)
λ1

1(t),
dλ2

1

dt
= −2πi cos2

(
θ

2

)
λ2

1(t), (4.38)

with λi1(0) = bi, and

dλ1
2

dt
= −2πi sin2

(
θ

2

)
λ1

2(t),
dλ2

2

dt
= −2πi cos2

(
θ

2

)
λ2

2(t), (4.39)

with λi2(1/2) = λi1(1/2).
Solving (4.38) gives

λ1
1(t) = b1 exp

(
−2πi sin2

(
θ

2

)
t

)
, λ1

1(1/2) = b1 exp

(
−πi sin2

(
θ

2

))
,

λ2
1(t) = b2 exp

(
−2πi cos2

(
θ

2

)
t

)
, λ2

1(1/2) = b2 exp

(
−πi cos2

(
θ

2

))
.

(4.40)

Solving (4.39) gives

λ1
2(t) = b1 exp

(
−2πi sin2

(
θ

2

)
t

)
, λ2

2(t) = b2 exp

(
−2πi cos2

(
θ

2

)
t

)
. (4.41)

Hence, under the adiabatic path γ, the state (4.34) gains geometric phase

|ψ(p)〉 7→ b1 exp

(
−2πi sin2

(
θ

2

))
|u1(p)〉+ exp

(
−2πi cos2

(
θ

2

))
b2|u2(p)〉, (4.42)

and thus has returns with a Berry phase of

exp

(
−2πi cos2

(
θ

2

)
+ 2πi sin2

(
θ

2

))
= exp(−2πi cos (θ)) = exp

(
2πi
(
1− cos (θ)

))
.

(4.43)

Physically, example 4.2.1 corresponds to an experimenter preparing the state (4.34) and
then slowly sweeping the direction of the magnetic field in the xy-plane a full 2π radians.
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A simple way to achieve this is to have spin-1/2 sample (such as a nitrogen vacancy center)
attached to an electric motor and with a fixed magnetic field applied across the sample.
The paper [52] uses a similar set up for a spin-1 system. The Berry phase can be measured
by observing the interference pattern between the transported state, and the initial state
(4.34).

In Figure 4.2 we demonstrate how a geometric phase accumulates when a quantum state
is parallel transported anticlockwise along one of the four circular adiabatic paths on S2

shown in Figure 4.1. Each path as equal radius, and the value β represents the angle
between the center of the circular paths and the positive Bz axis. While each path gives us

a distinct phase difference plot, they all finish at the same end point,
(

1, 2π
(
1 − cos(θ)

))
where cos(θ) = 1/

√
1 + r2.

It is important to note that one cannot expect to be able to reproduce the plots Figure 4.2
in an experiment. These plots depict the phase difference between the first and second
eigenstates as they are parallel transported about γ. This means that for all t ∈ (0, 1), our
eigenstates are away from their starting parameters, γ(0). Thus, a meaningful comparison
between the initial state and the state transported to γ(t) cannot be made unless t = 0 or
1.

Figure 4.1: Plot of four circular paths of equal radius, each with center at β = 0, π/3, π/2
and β = 2π/3 radians from the positive z−axis in the yz-plane measured clockwise.
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Figure 4.2: Plots of geometric phase difference as a quantum state is parallel transported
about each of the respective circular paths in Figure 4.1. Notice that each path ends at the
same point.
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Chapter 5

The Nitrogen vacancy center

The next model we are interested in is the nitrogen vacancy center (NV center). We will
start by introducing what the NV center is, why we are interested in it, and how to derive
the local Hamiltonian we will be using to describe it. From there we will develop the
NV center’s Berry bundle which consists of a 5−dimensional real parameter space, and a
3−dimensional complex Hilbert space fibre. Once our local Berry connection 1-forms are
known, we will move on to studying various observable features of the NV center. This will
include a reduction in the dimension of its parameter space, general behaviour as well as
special cases for the Berry phases, a procedure to induce any Berry phase, and finally the
Chern class. As we will see in section 5.4, the Berry connection is a function of the ratios in
the field strengths, effectively reducing its number of variables from five to two. This allows
us to get a general idea for how Berry phase behaves in this system. We also find that
Berry connection is discontinuous over the cones of degeneracy (5.13), leading to observable
discontinuities in the Berry phase. Then we show that the holonomy for the NV system is
U(1) ⊗ U(1), by providing a procedure to induce any Berry phase. Finally, we study the
Chern class and show that it does not vanish, meaning that one could possibly calculate a
Chern number in an experiment [30,32,56].

5.1 The NV center system

The NV center is a point defect in a diamond lattice consisting of an embedded nitrogen site
with one of its nearest neighbours being a vacancy (a missing site in the lattice). Figure 5.1
depicts an NV center. It has applications in quantum computation [47, 50], NMR [7, 10],
and quantum communications [19, 51]. Therefore, a theory of the NV center’s Berry phase
is essential in the development of these projects.

The NV center has two stable charge states, a neutral state NV0 and a negatively charged
state NV−. We are only interested in the latter because it describes a spin-1 system, for
this reason we will refer to it as the NV system. The NV system has two electrons located
in the vacancy with quantum states expressed by the sum of their spins,

|0〉, |1〉, |−1〉. (5.1)

The spin states |1〉 and |−1〉 are energy degenerate, but this is not a significant problem
because we can induce a Zeeman splitting by applying a magnetic field along the defect axis
of the NV center. To manipulate the quantum states we fire two independent microwaves
at the NV, as discussed in [52].
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Figure 5.1: Diagram of an NV center made in Mathematica. The grey atoms represent
carbon, the blue represents Nitrogen, and the white represents the vacancy. As we can see
the nitrogen and the vacancy have two “covalent” bonds (in orange) meaning that they
share two electrons.

The Hamiltonian for the NV center can be constructed from the 3× 3 spin-1 matrices

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

 0 i 0
−i 0 −i
0 i 0

 , Sz =

1 0 0
0 0 0
0 0 −1

 .

(5.2)

In particular we have a magnetic field B along the defect axis (z−axis), and two microwaves

with magnetic field components ~b1 cos(ω1t+ φ1), ~b2 cos(ω2t+ φ2) applied across the NV

center. For ease of calculation we will assume that ~b1 and ~b2 have no z component. Then
our Hamiltonian is given by

H(t) = ~DS2
z + γnvBSz + γnv~b1 · ~S cos(ω1t+ φ1) + γnv~b2 · ~S cos(ω2t+ φ2),

= ~DS2
z + γnvBSz + γnv

b1,x cos(ω1t+ φ1) + γnvb2,x cos(ω2t+ φ2)√
2

Sx

+ γnv
b1,y cos(ω1t+ φ1) + γnvb2,y cos(ω2t+ φ2)√

2
Sy,

where ~DS2
z is a zero field term that comes from the intrinsic properties of the lattice, and
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the terms γnv and D are real scalars.
Now we will change into a rotating frame by applying the transformation

H ′(t) = U(t) ·H(t) · U†(t) + iU†(t)
d

dt
(U(t)) , (5.3)

where U(t) is given by

U(t) =

exp(iω1t) 0 0
0 1 0
0 0 exp(iω2t)

 . (5.4)

Let us calculate each component of H ′(t). First the diagonal terms

~DUS2
zU
† + γnvBUSzU

† + iU†
d

dt

(
U(t)

)
,

=

~D + γnvB − ω1 0 0
0 0 0
0 0 ~D − γnvB − ω2

 .

For the off diagonal terms we have

USxU
† =

 0 eiω1t 0
e−iω1t 0 e−iω2t

0 eiω2t 0

 ,

USyU
† =

 0 ieiω1t 0
−ie−iω1t 0 −ie−iω2t

0 ieiω2t 0

 .

If we then define Eij to be the matrix with components(
Eij

)k
`

= δkiδ
j
`, (5.5)

then we can express the Hamiltonian in the rotating frame as

H ′(t) = (~D + γnvB − ω1)E11 + (~D − γnvB − ω2)E33

+
γnv√

2

(
b1,x cos(ω1t+ φ1) + b2,x cos(ω2t+ φ2)

)(
eiω1tE12 + e−iω1tE21

)
+
γnv√

2

(
b1,x cos(ω1t+ φ1) + b2,x cos(ω2t+ φ2)

)(
eiω2tE32 + e−iω2tE23

)
+
γnv√

2

(
b1,y cos(ω1t+ φ1) + b2,y cos(ω2t+ φ2)

)(
ieiω1tE12 − ie−iω1tE21

)
+
γnv√

2

(
b1,y cos(ω1t+ φ1) + b2,y cos(ω2t+ φ2)

)(
ieiω2tE32 − ie−iω2tE23

)
.

These expressions are rather complicated, so to simplify them we will apply the ro-
tating wave approximation (RWA). The rotating wave approximation is used in magnetic
resonance to neglect terms in a Hamiltonian that oscillate rapidly relative to other terms.
This approximation is valid when the applied electromagnetic radiation has a low enough
intensity and when its frequency is near resonance with an atomic transition [53]. The idea
is that rapidly oscillating terms will average out over time. An experimenter would take
measurements over many identically run experiments, and average over the results in order
to minimise random error. Because fast rotating terms have a period much smaller then the
period of time it takes make a measurement, then averaging over a sufficiently large enough
sample of experiments will cause any contribution these fast terms make, negligible. Under
the RWA, not only will our local Hamiltonian be simplified, but it is still expected to match
experimental results.
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Figure 5.2: Diagram of the spin states of the NV-center in a magnetic field. The difference
in the energy between the ms = 1 and ms = −1 states is proportional to the magnetic field
across the defect axis.

In terms of the NV center’s Hamiltonian, we will find fast rotating terms of the form

exp(2iω1t), exp(2iω2t), exp
(
i(ω1 + ω2)t

)
, (5.6)

all of which can be neglected under the RWA.
For example under the rotating wave approximation we get

1√
2

(
b1,x cos(ω1t+ φ1) + b2,x cos(ω2t+ φ2)

)(
eiω1tE12 + e−iω1tE21

)
≈ 1

2
√

2

(
b1,xe

−iφ1E12 + b2,xe
i(ω1−ω2)t−iφ1E12

+ b1,xe
iφ1E12 + b2,xe

i(ω2−ω1)t+iφ2E12

)
.

Notice that we cannot ensure that RWA will hold for terms of the form exp(i(ω2 − ω1)t).
However, these terms can be neglected, but only if the Zeeman splitting is large enough to
prevent states from hoping between ms = 1 and ms = −1. In relation to Figure 5.2, we
require ∆ to be of the order of MHz. This will provide a sufficient energy gap between the
spin 1 and −1 states, while keeping the spin 0 state isolated. With this in mind, set the
frequencies of the incident microwaves such that

ω1 = ~D + γnvB − q5,

ω2 = ~D − γnvB + q5,

=⇒ ω1 − ω2 = 2(γnvB − q5),

(5.7)

where |q5| < γnvB. Then, as long as the magnetic field B along the defect axis is large
enough we can use the RWA to neglect terms of the form, ei(ω1−ω2)t [8]. This simplifies our
Hamiltonian even further to

H ′(t) ≈ (~D + γnvB − ω1)E11 + (~D − γnvB − ω2)E33

+
γnv√

2

((
b1,x + ib1,y

)
e−iφ1E12 +

(
b1,x − ib1,y

)
eiφ1E21,

+
(
b2,x − ib2,y

)
e−iφ2E23 +

(
b2,x + ib2,y

)
eiφ2E32

)
.
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Using the real parameters

q5 = ~D + γnvB − ω1 = −~D + γnvB + ω2,

q1 = Re
(

(b1,x + ib1,y)e−iφ1

)
q2 = Im

(
(b1,x + ib1,y)e−iφ1

)
,

q3 = Re
(

(b2,x + ib2,y)e−iφ2

)
q4 = Im

(
(b2,x + ib2,y)e−iφ2

)
,

(5.8)

simplifies our local Hamiltonian to

H(q1, q2, q3, q4, q5) =

 q5 q1 + iq2 0
q1 − iq2 0 q3 − iq4

0 q3 + iq4 −q5

 . (5.9)

Each of these parameters does have an upper limit in its magnitude, in order for the rotating
wave approximation to work. As long as the ratio of the system’s Rabi oscillation period to
Larmor precession period is less than ≈ 10, then the RWA should still be valid [18,29,31,55].

The Hamiltonian in equation (5.9) will serve as the local Hamiltonian for our Berry
bundle. We will use the characteristic polynomial of (5.9) to determine the parameter
space of the NV center and derive the energy eigenvalues and their respective eigenstates as
functions of q1, q2, q3, q4 and q5. From there we will choose an open cover for our parameter
space, establish transition maps and finally calculate our local Berry connection 1-forms.

5.2 The NV parameter space

The characteristic polynomial, χ
[
H(q)

]
of our Hamiltonian’s matrix representation, is a

very useful tool in building the Berry bundle. Aside from using it to calculate the energy
eigenvalues, it can be used to completely determine the parameter space, the eigenvectors,
and to simplify many complicated expressions as we will see throughout this section.

Let q = (q1, q2, q3, q4, q5), then we have

χ[H(q)](λ) = λ3 − (q2
1 + q2

2 + q2
3 + q2

4 + q2
5)λ− (q2

1 + q2
2 − q2

3 − q2
4)q5. (5.10)

Our characteristic polynomial is a special kind of cubic known as a depressed cubic with
coefficients r2 = (q2

1 + q2
2 + q2

3 + q2
4 + q2

5) and c = (q2
1 + q2

2 − q2
3 − q2

4)q5. Luckily, the
roots of a depressed cubic are very easy to calculate via the Cardano’s formula. But before
we find the energy eigenvalues, we can study the charateristic polynomial to determine for
which parameters our local Hamiltonian is degenerate. The energy eigenvalues must be real
and non-degenerate, meaning that we need the polynomial in equation (5.10) to have three
distinct real roots. To determine when this is true we will simply find the critical points of
χ[H(q)](λ), and find bounds for c such that one critical point is positive and the other is
negative. Thus χ[H(q)](λ) has three distinct real roots when

27(q2
1 + q2

2 − q2
3 − q2

4)2q2
5 < 4(q2

1 + q2
2 + q2

3 + q2
4 + q2

5)3. (5.11)

We want to show that the inequality (5.11) holds for almost all q1, q2, q3, q4, q5 ∈ R except
on a set of cones (5.13) through the origin where the inequality becomes an equality. Set
q2
1 + q2

2 = x, q2
3 + q2

4 = y, and q2
5 = z. Now consider the polynomial in z

f : [0,∞)→ R, f(z) = 4(x+ y + z)3 − 27(x− y)2z,

with x, y ≥ 0. If the minimum of f is greater than or equal to zero then f(z) ≥ 0 for all
x, y, z ≥ 0. We find that

min
z∈[0,∞)

(
f(z)

)
=

{
54y (x− y)

2
, y < x

54x (x− y)
2
, x ≤ y

(5.12)
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Thus, f(z) ≥ 0 for all x, y, z ≥ 0 with equality only for{
(2z, 0, z) ∈ R3 : z ≥ 0

}
, and

{
(0, 2z, z) ∈ R3 : z ≥ 0

}
This proves that the inequality (5.11) holds for almost all (q1, q2, q3, q4, q5) ∈ R5 and that
our local Hamiltonian is energy degenerate only on the surfaces

C12 =
{

(q1, q2, q3, q4, q5) ∈ R5 : q3 = q4 = 0 and 2q2
5 = q2

1 + q2
2

}
,

C13 =
{

(q1, q2, q3, q4, q5) ∈ R5 : q1 = q2 = 0 and 2q2
5 = q2

3 + q2
4

}
.

(5.13)

Thus, the parameter space for the NV center is

M = R5\
(
C12 ∪ C13

)
, (5.14)

and we call C12 and C34 the cones of degeneracy.
Now we will go ahead and solve the Hamiltonian’s charateristic polynomial to find the

energy eigenvalues. Because χ[H(q)](λ) is a depressed cubic we can use Cardano’s formula
to solve for its roots: Cardano’s formula states that if

x3 + px+ q = 0 (5.15)

is a cubic equation such that p, q ∈ R then it has the following solutions

x1 = e
−2πi

3 u
1/3
1 + e

2πi
3 u

1/3
2 , u1 = −q

2
+

√
q2

4
+
p3

27
,

x2 = u
1/3
1 + u

1/3
2 , u2 = −q

2
−
√
q2

4
+
p3

27
,

x3 = e
2πi
3 u

1/3
1 + e

−2πi
3 u

1/3
2 .

(5.16)

Thus the energy eigenvalues are

E1(q) = e
−2πi

3

(
c

2
+ i

√
r6

27
− c2

4

)1/3

+ e
2πi
3

(
c

2
− i
√
r6

27
− c2

4

)1/3

,

E2(q) =

(
c

2
+ i

√
r6

27
− c2

4

)1/3

+

(
c

2
− i
√
r6

27
− c2

4

)1/3

,

E3(q) = e
2πi
3

(
c

2
+ i

√
r6

27
− c2

4

)1/3

+ ie
−2πi

3

(
c

2
− i
√
r6

27
− c2

4

)1/3

.

(5.17)

Recall c = (q2
1 + q2

2 − q2
3 − q2

4)q5 and r2 = q2
1 + q2

2 + q2
3 + q2

4 + q2
5 . The reason for ordering the

energy eigenvalues is because E1 belongs to the spin 0 state state while E2 and E3 belong
to the spin 1 and −1 states respectively.

In relation to the cones of degeneracy (5.13) we find that for (q1, . . . , q5) ∈ C12 we have

E1(q1, . . . , q5) = E2(q1, . . . , q5) if q5 ≥ 0,

E1(q1, . . . , q5) = E3(q1, . . . , q5) if q5 ≤ 0.
(5.18)

For (q1, . . . , q5) ∈ C13 we have

E1(q1, . . . , q5) = E3(q1, . . . , q5) if q5 ≥ 0,

E1(q1, . . . , q5) = E2(q1, . . . , q5) if q5 ≤ 0,
(5.19)

with triple degeneracy only occurring at the origin, as seen in Figure 5.3. Other than the
point of triple degeneracy, the energy eigenvalues E2(q) and E3(q) never coincide. Physically,
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this is due to the Zeeman splitting that we built in to the local Hamiltonian when deriving
(5.9).

Note that because 4r6 ≥ 27c2, then the energy eigenvalues (5.17) are sums of conjugate
pairs and thus E1(q), E2(q), E3(q) ∈ R for all q ∈ M . We also make the observation that
the local Hamiltonian (5.9) is traceless and thus the roots add to zero

E1(q) + E2(q) + E3(q) = 0. (5.20)

Now that we know the energy eigenvalues of our local Hamiltonian, we can choose an open
cover and local coordinates that take advantage of their symmetry. The energy eigenvalues
are completely governed by the parameters c and r2. These parameters are cylindrically
symmetric about the q5 axis. To make use of this we prescribe the open cover for M :

Let ε > 0 and define

U1 = M\
(
{(q1, q2, 0, 0, q5) ∈ R5} ∪ {(0, 0, q3, q4, q5) ∈ R5}

)
, (5.21a)

U2 =

{
(q1, q2, q3, q4, q5) ∈ R5 : 0 <

√
2|q5| <

√
q2
1 + q2

2 and q2
3 + q2

4 < ε

}
, (5.21b)

U3 =

{
(q1, q2, q3, q4, q5) ∈ R5 : 0 <

√
2|q5| <

√
q2
3 + q2

4 and q2
1 + q2

2 < ε

}
, (5.21c)

U4 =

{
(q1, q2, q3, q4, q5) ∈ R5 :

√
2|q5| >

√
q2
1 + q2

2 and q2
3 + q2

4 < ε

}
, (5.21d)

U5 =

{
(q1, q2, q3, q4, q5) ∈ R5 :

√
2|q5| >

√
q2
3 + q2

4 and q2
1 + q2

2 < ε

}
. (5.21e)

Now define the trivialisations

Φ1 : U1 → R5, (q1, q2, q3, q4, q5) 7→ (ρ1, φ1, ρ2, φ2, z), (5.22a)

Φ2 : U2 → R5, (q1, q2, q3, q4, q5) 7→ (ρ1, φ1, q3, q4, z), (5.22b)

Φ3 : U3 → R5, (q1, q2, q3, q4, q5) 7→ (q1, q2, ρ2, φ2, z), (5.22c)

Φ4 : U4 → R5, (q1, q2, q3, q4, q5) 7→ (q1, q2, q3, q4, q5), (5.22d)

Φ5 : U5 → R5, (q1, q2, q3, q4, q5) 7→ (q1, q2, q3, q4, q5). (5.22e)

We define the local coordinates ρ1, ρ2, and z as follows

ρ1 = q2
1 + q2

2 , ρ2 = q2
3 + q2

4 z = q5. (5.23)

The angle φ1 ∈ [0, 2π) is azimuthal in the q1q2-plane measured anticlockwise from the
positive q1 axis. Similarly, φ2 ∈ [0, 2π) is the azimuthal angle in the q3q4-plane measured
anticlockwise from the positive q3 axis.

Figure 5.4 depicts the part of U2 and U4 with q3 = q4 = 0. The red cone surfaces,
z = ±ρ1/

√
2, are two of the four regions where the local Hamiltonian is degenerate. For

q3 = q4 = 0, U4 describes the volume inside the cones while U2 describes the volume outside
the cones. As we will see in the section 5.4, these cones of degeneracy cause discontinuities
in the Berry connection. Hence, a quantum state will accumulate Berry phase differently
depending on whether it is parallel transported inside a cone (U4) or outside a cone (U2).
The next step to take is to establish the NV vector bundle and derive the Berry connection
from the local energy eigenvectors.
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Figure 5.3: Top: Cross section of energy eigenvalues with q1, q2 ∈ R, 2z2 = q2
1 + q2

2 and
q3 = q4 = 0. Notice that E1 = E3 in this scenario.
Middle: Cross section of energy eigenvalues with q3, q4 ∈ R, 2z2 = q2

3 + q2
4 and q1 = q2 = 0.

Notice that E1 = E2 in this scenario.
Bottom: Cross section of energy eigenvalues with q3, q4 ∈ R, 2z2 = q2

3 + q2
4 + 20 and

q1 = q2 = 0. Notice that the only point of degeneracy is at the origin.
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Figure 5.4: Diagram depicting the parts of U4 and U2 for q3 = q4 = 0. The red cone surfaces
are regions where the local Hamiltonian is degenerate. Note that these cones extend infinitely
and have been cut in this picture for the convenience of the reader.
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5.3 The NV bundle

We will now use our system’s energy eigenvalues to compute our local energy eigenvectors.
Let v ∈ C3 be an eigenvector of the matrix representation of our local Hamiltonian

H(q1, q2, q3, q4, q5)v = λv, q5v1 + (q1 + iq2)v2

(q1 − iq2)v1 + (q3 − iq4)v3

(q3 + iq4)v2 − q5v3

 =

λv1

λv2

λv3

 .
(5.24)

We find that our local eigenvectors of H(q) take the form

|ui(q)〉 =
1

Ri(q)

 (q1 + iq2)(q3 − iq4)(
Ei(q)− q5

)
(q3 − iq4)

Ei(q)
(
Ei(q)− q5

)
−
(
q2
1 + q2

2

)
 , (5.25)

where 1/Ri(q) is a normalisation factor. Let us now determine Ri(q)

1 = 〈ui(q)|ui(q)〉 =
1

|Ri(q)|2
(

(q2
1 + q2

2)(q2
3 + q2

4) +
(
Ei(q)− q5

)2
(q2

3 + q2
4)

+
(
Ei(q)

(
Ei(q)− q5

)
−
(
q2
1 + q2

2

))2
)
,

=⇒ |Ri(q)|2 =
(

(q2
1 + q2

2)(q2
3 + q2

4) +
(
Ei(q)− q5

)2
(q2

3 + q2
4)

+
(
Ei(q)

(
Ei(q)− q5

)
−
(
q2
1 + q2

2

))2
)
.

We will use the charateristic polynomial (5.10) to remove E3
i term. Doing this will lead to

|Ri(q)|2 = (q2
1 + q2

2)
(
q2
1 + q2

2 + q2
3 + q2

4 −
(
Ei(q)(Ei(q)− q5) + 2q2

5

))
+
(
Ei(q)− q5

)(
2Ei(q)− 3q5

)(
q2
3 + q2

4

)
+ 2Ei(q)(Ei(q)− q5)q2

5 .
(5.26)

This may still seem like a complicated expression, but under our local coordinates for U1

this simplifies further

R2
i ◦ φ−1

1 (x) = ρ2
1

(
ρ2

1 + ρ2
2 −

(
Ei(x)

(
Ei(x)− z

)
+ 2z2

))
+
(
Ei(x)− z

)(
2Ei(x)− 3z

)
ρ2

2 + 2Ei(x)
(
Ei(x)− z

)
z2,

(5.27)

where x = (ρ1, φ1, ρ2, φ2, z).
As discussed in section 3.2, the transition maps are given by projections (3.23). That is,

for all p ∈ Uα ∩ Uβ , we have transition maps

tαβ(p) = |ui(p)〉α 〈ui(p)|β . (5.28)

Using the construction method discussed in section 2.2, we form our NV Berry bundle(
E,M, π,H, U(3)

)
, (5.29)

with local basis sections

ια i(p) =

[(
p,
∣∣ui(p)〉α)], (5.30)

for all p ∈ Uα.
Now, all that is left to calculate is the Berry connection. The local coordinates of U1

provide a simple way of computing the diagonal components of our connection. First, we
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note that the Berry connection is antihermitian. Thus, the diagonal elements are purely
imaginary.

Let us take a look at our eigenvectors in the local coordinates of U1:

|ui(p)〉 =
1

R(p)

 ρ1ρ2 exp
(
i(φ1 − φ2)

)
ρ2

(
Ei(p)− z

)
exp

(
− iφ2

)
Ei(p)

(
Ei(p)− z

)
− ρ2

1

 . (5.31)

Since Ei(p) and R(p) are real, while A i
µ i(p) is imaginary for all p ∈ U1, then

A i
µ i(p)dx

µ =

〈
ui(p)

∣∣∣∣∣ ∂ui∂φ1

∣∣∣∣
p

〉
dφ1 +

〈
ui(p)

∣∣∣∣∣ ∂ui∂φ2

∣∣∣∣
p

〉
dφ2,

because the φ derivatives are the only terms that will produce a factor i. Thus we have,

A j
µ j(p)dx

µ = i
ρ2

1ρ
2
2

Rj(p)2
dφ1 − iρ2

2

ρ2
1 +

(
Ej(p)− z

)2
Rj(p)2

dφ2, (5.32)

for j = 1, 2, 3. These three connection 1-forms provide the entire effective Berry connection:
the terms needed to perform parallel transport.

The other six off diagonal terms of A are necessary for studying the Chern classes and
curvature. We will now compute these terms. Note that orthogonality of

{
|ui(p)〉

}
for all

p ∈M gives us the following relation for i 6= j〈
ui(p)

∣∣∣∣ ∂uj∂xµ

〉
= 〈ui(p)|

[
− 1

Rj(p)

dRj
dxµ
|uj(p)〉+

1

Rj(p)

d

dxµ

(
Rj(p)|uj(p)〉

)]
,

=
1

Rj(p)
〈ui(p)| d

dxµ

(
Rj(p) |uj(p)〉

)
.

Thus, for (x1, . . . , x5) = (ρ1, φ1, ρ2, φ2, z) and i 6= j we have

A i
1 j(p)dx

1 =
1

Ri(p)Rj(p)

(
ρ1ρ

2
2 + ρ2

2

∂Ej(p)

∂ρ1

(
Ei(p)− z

)
+
(
Ei(p)

(
Ei(p)− z

)
− ρ2

1

)(∂Ej
∂ρ1

(
2Ej(p)− z

)
− 2ρ1

))
dρ1.

(5.33)

A i
2 j(p)dx

2 = i
ρ2

1ρ
2
2

Ri(p)Rj(p)
dφ1. (5.34)

A i
3 j(p)dx

3 =
1

Ri(p)Rj(p)

(
ρ2

1ρ2 + ρ2

(
Ei(p)− z

)(
Ej(p) + ρ2

∂Ej
∂ρ2
− z
)

+
∂Ej(p)

∂ρ2

(
2Ej(p)− z

)(
Ei(p)

(
Ei(p)− z

)
− ρ2

1

))
dρ2.

(5.35)

A i
4 j(p)dx

4 = −i ρ2
2

Ri(p)Rj(p)

(
ρ2

1 +
(
Ei(p)− z

)(
Ej(p)− z

))
dφ2. (5.36)

A i
5 j(p)dx

5 =
1

Ri(p)Rj(p)

(
ρ2

(
Ei(p)− z

)(∂Ej
∂z
− 1

)

+
(
Ei(p)

(
Ei(p)− z

)
− ρ2

1

)(
2Ej(p)

∂Ej
∂z
− Ej(p)− z

∂Ej
∂z

))
dz.

(5.37)
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Rather than recalculating the Berry connection for each set of local coordinates, we can use
(2.89) and the following relevant equalities for all points in U1 ∩ Uj

dρ1 =
q1dq1 + q2dq2√

q2
1 + q2

2

, dρ2 =
q3dq3 + q4dq4√

q2
3 + q2

4

, dz = dq5,

dφ1 =
q1dq2 − q2dq1

q2
1 + q2

2

, dφ2 =
q3dq4 − q4dq3

q2
3 + q2

4

.

(5.38)

We now have all the information we need to begin studying the NV center’s holonomy.
We will first discuss how the diagonal terms of the local Berry connections can be simplified
to functions of two variables. Then use this to study the general behaviour of Berry phase,
for three simple adiabatic paths (5.42). We will then study the special case, q5 = 0, before
providing a method to induce any Berry phase. Lastly, we will have a short discussion on
the non-vanishing Chern class.

5.4 Results

In this section we define the values θ21 and θ31 as the phase differences between the second
and first eigenstates, and the third and first eigenstates respectively. That is to say, in Hp’s
projective space we have

a1e
iφ1 |u1(p)〉+ a2e

iφ2 |u2(p)〉+ a3e
iφ3 |u1(p)〉 = a1|u1(p)〉+ a2e

iθ21 |u2(p)〉+ a3e
iθ31 |u1(p)〉,

(5.39)
for all p ∈M and a1, a2, a3 ≥ 0.

The first result we will discuss is that the effective NV Berry connection (Aii for fixed
i = 1, 2, 3) is dependent only on the ratios r1 = ρ1/z and r2 = ρ2/z, assuming z 6= 0. To see
this we note that under the local coordinates of U1 (5.22a)

Ei ◦ φ−1
1 (x) = εz

ρ2
1 − ρ2

2

2z2
+ i

√√√√((ρ2
1 + ρ2

2

3z2
+

1

3

)3

− ρ2
1 − ρ2

2

2z2

)2


1/3

+ ε−1z

ρ2
1 − ρ2

2

2z2
− i

√(
ρ2

1 + ρ2
2

3z2
+

1

3

)3

−
(
ρ2

1 − ρ2
2

2z2

)2
1/3

,

= zÊi(r1, r2).

Ri ◦ φ−1
1 (x) = z2

[
ρ2

1

z2

(
ρ2

1

z2
+
ρ2

2

z2
−
(
Êi(x)

(
Êi(x)− 1

)
+ 2
))

+
(
Êi(x)− 1

)(
2Êi(x)− 3

)ρ2
2

z2
+ 2Êi(x)

(
Êi(x)− 1

)] 1
2

,

= z2R̂i(r1, r2).

We therefore have

A i
µ i(p)dx

µ = i
r2
1r

2
2

R̂i(r1, r2)2
dφ1 − ir2

2

(
r2
1

R̂i(r1, r2)2
+

(
Êi(r1, r2)− 1

)2
R̂i(r1, r2)2

)
dφ2. (5.40)

What this means is that the accumulation of Berry phase in the NV system, is only
dependent on the square of the relative field strengths of the magnetic field along the defect
axis, and the incident microwaves. Mathematically, this means that when modelling Berry
phase for q5 6= 0, the NV parameter space is effectively described by

Meffective = {(r1, φ1, r2, φ2) ∈ R4 : r1, r2 > 0, and r1, r2 6=
√

2, and φ1, φ2 ∈ [0, 2π)}.
(5.41)
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This is similar to what we saw in the spin-1/2 case. Experimentally, this means that large
field strengths are not necessary to explore the NV center’s Berry phase.

Since the Berry connection is only dependent on the ratios r1 and r2, we can use contour
plots to show general behaviour of the Berry phases θ21 and θ31 for the adiabatic paths

γ1(s) = Φ−1
1 (r1, 2πs, r2, 0, 1), γ2(s) = Φ−1

1 (r1, 0, r2, 2πs, 1),

γ3(s) = Φ−1
1 (r1, 2πs, r2, 2πs, 1).

(5.42)

Physically, these paths correspond to the experimenter fixing the strength of the magnetic
field B, the amplitudes and frequencies of incident microwaves, and then rotating the phases
of the microwaves a full 2π.

Figure 5.5 depicts contour plots of the Berry phases θ21 and θ31 associated to adiabatic
paths γ1, γ2 and γ3. In these plots we have the ratios r1 and r2 vary from 0 to 100 to see
the rough limiting behaviour. Notice that the θ21 and θ31 plots for γ1 and γ2 appear almost
identical. For these plots the brightest yellow represent a phase of π while the darkest blue
corresponds to −2π, and the red lines are the zero contours. This gives us three interesting
remarks to make for the Berry phases associated to γ1:

� In the limit r1, r2 →∞, the values of θ21 and θ31 will coincide.

� For r2 � 10r1, the Berry phases negligibly contribute to the system’s dynamics.

� For r1 � 10r2, we will have θ21 ≈ θ31 ≈ π.

� The zero contour is asymptotically equivalent to r1 =
√

2r2.

The same is true for the path γ2 but the ratios are swapped, r1 ↔ r2.
The last row of plots in Figure 5.5 corresponds to the Berry phases associated to the

adiabatic process γ3. Note that the white regions in these plots were excluded so that the
larger ratio behaviour could have greater detail. Unlike the phases belonging to γ1 and γ2,
the range of the Berry phases associated to γ3 for large ratios is very small and centred on
−π. Investigating this further, we found that in the limit r1, r2 →∞, we have θ21, θ31 → −π.

One last thing to note about the plots in Figure 5.5 is that the diagrams, θ21 for γ1,
and θ31 for γ2 are tranposes of one another. Similarly, θ31 for γ1 and θ21 for γ2 are also
transposes of each other. By the linearity of our horizontal lift, we also have that the plots
of γ3 are given by the sums of the γ1 and γ2 plots. This means that the γ3 plots are also
transposes of one another. Furthermore, we see this pattern continue in Figure 5.6 which
depict the Berry phases associated to γ1, γ2 and γ3 for ratios 0 ≤ r1, r2 ≤ 2.

The most striking feature of the plots in Figure 5.6 are the points (0,
√

2) and (
√

2, 0)
which correspond to the cones of degeneracy (5.13). We can see that these cones cause
discontinuities in each of the Berry phases belonging to the adiabatic paths γ1, γ2 and γ3.
Furthermore, the range of θ21 and θ31 in each of these plots completely covers U(1). This
means that we can restrict the field strengths in our experiments such that the ratios are
less than or equal to 2 and still have access to the entire holonomy group of the NV center.

Consider the γ1 plots in Figure 5.6. If we take a closer look at the discontinuity in θ21

at (0,
√

2) we notice that it will disappear after exponentiation:

θ21 =

{
2π, r1 = 0 and r2 <

√
2

−2π, r1 = 0 and r2 >
√

2.
(5.43)

Analysing the behaviour of θ21 near the point (
√

2, 0) shows us that this is in fact a discon-
tinuity that does not disappear after exponentiation. The plot in Figure 5.7 confirms the
existence of this observable discontinuity. This figure depicts θ21 as a function of r1 centered
on (
√

2, 0). We find that for phases taken in (−π, π],

θ21 =

{
−2π/3, r2 = 0 and r1 >

√
2

2π/3, r2 = 0 and r1 <
√

2.
(5.44)
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The contour plot for θ31 associated to γ1 in Figure 5.6 shows distinct discontinuities at both
cones (

√
2, 0) and (0,

√
2). However, the discontinuity at (0,

√
2) jumps between 0 and −2π

and thus disappears after exponentiation. The plot in Figure 5.8 depicts θ31 as a function
of r1 centered on (

√
2, 0). We find that for phases taken in (−π, π],

θ31 =

{
2π/3, r2 = 0 and r1 >

√
2

−2π/3, r2 = 0 and r1 <
√

2
(5.45)

Again, all of this holds for the path γ2, except θ21 and θ31 will swap, and r1 will swap with
r2. This means that the discontinuity at (0,

√
2) will not disappear for the Berry phases

associated to γ2. The most important note to make here is that discontinuities in the Berry
phase can made continuous via exponentiation, and whether this happens is entirely path
dependent.

The last row of diagrams in Figure 5.6 are the contour plots for θ21 and θ31 associated to
γ3. These plots have three interesting features; the two discontinuities and the zero contour.
Firstly, because these plots are given by the sum of the plots belonging to γ1 and γ2 we have

θ21 =


−2π/3, r2 = 0 and r1 >

√
2

2π/3, r2 = 0 and r1 <
√

2

2π/3, r1 = 0 and r2 >
√

2

−2π/3, r1 = 0 and r2 <
√

2

,

θ31 =


−2π/3, r1 = 0 and r2 >

√
2

2π/3, r1 = 0 and r2 <
√

2

2π/3, r2 = 0 and r1 >
√

2

−2π/3, r2 = 0 and r1 <
√

2

(5.46)

where we have taken our phases to be in (−π, π].
The zero contour for the γ3 Berry phase plots in Figure 5.6, have been highlighted in

red for the ease of the reader. They are both given as the first quadrant of a circle of radius√
2 centred on (0, 0). This means that whenever we have

r2
1 + r2

2 = 2, (5.47)

the path γ3 will produce no Berry phase.
Let us now use our original effective Berry connection (5.32) to explore the special case

q5 = 0. Mathematically, this is equivalent to the limit z → 0+ and therefore r1, r2 → ∞.
This means we should expect our observations from Figure 5.5 to agree with any results
we find under this regime. Physically, q5 = 0 corresponds to setting the frequencies of the
incident microwaves to ω1 = ~D+ γnvB and ω2 = ~D− γnvB. When this is true our energy
eigenvalues simplify to

E1(q1, . . . , q4, 0) = 0, E2(q1, . . . , q4, 0) =
√
q2
1 + q2

2 + q2
3 + q2

4 ,

E3(q1, . . . , q4, 0) = −
√
q2
1 + q2

2 + q2
3 + q2

4 .
(5.48)

Thus the effective local connection 1-form in U1 is

A 1
µ 1(p)dxµ = i

ρ2
2

ρ2
1 + ρ2

2

dφ1 − i
ρ2

2

ρ2
1 + ρ2

2

dφ2,

A 2
µ 2(p)dxµ = A 3

µ 3(p)dxµ = i
ρ2

1

2
(
ρ2

1 + ρ2
2

)dφ1 − i
2ρ2

1 + ρ2
2

2
(
ρ2

1 + ρ2
2

)dφ2.
(5.49)
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Figure 5.5: Contour plots for Berry phases θ21 and θ31 belonging to the paths γ1, γ2 and
γ3 defined in equation (5.42). In these plots we vary r1 and r2 from 0 to 100 to study the
behaviour of Berry phase for large field strength ratios.
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Figure 5.6: Contour plots for Berry phases θ21 and θ31 belonging to the paths γ1, γ2 and
γ3 defined in equation (5.42). In these plots we vary r1 and r2 from 0 to 2 to study the
behaviour of Berry phase near the cones of degeneracy (5.13), at (r1, r2) = (

√
2, 0), (0,

√
2).
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Figure 5.7: Cross section of the Berry phase θ21 centred on r1 =
√

2 with r2 = 10−10.
There is a clear discontinuity at the point (r1, r2) = (

√
2, 0) that does not disappear under

exponentiation. Furthermore, under exponentiation, this discontinuity goes from 2π/3 to
−2π/3. Note that making r2 = 0 causes numeric problems as well as problems with the
local coordinate system.

Figure 5.8: Cross section of the Berry phase θ31 centred on r1 =
√

2 with r2 = 10−10. There
is a clear discontinuity at the point (r1, r2) = (

√
2, 0) from −2π/3 to 2π/3.
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This means that for z = 0, the Berry phase accumulated by the spin down state and the
spin up state when transported along an adiabatic path γ, will be equivalent to

θ31 = θ21 = −i
�
γ

(
A 2
µ 2(p)−A 1

µ 1(p)
)
dxµ,

=
1

2

�
γ

(
ρ2

1 − 2ρ2
2

ρ2
1 + ρ2

2

dφ1 −
2ρ2

1 − ρ2
2

ρ2
1 + ρ2

2

dφ2

)
.

(5.50)

In relation to the adiabatic paths (5.42) we find the associated Berry phases

γ1 : θ21 = θ31 = π
ρ2

1 − 2ρ2
2

ρ2
1 + ρ2

2

,

γ2 : θ21 = θ31 = π
ρ2

2 − 2ρ2
1

ρ2
1 + ρ2

2

,

γ3 : θ21 = θ31 = −π.

(5.51)

These results agree with our observations from Figure 5.5:

� The Berry phases associated to each path are equal.

� The Berry phases associated to γ2 can be found by transforming those belonging to
γ1 under ρ1 ↔ ρ2.

� For γ1 with ρ2 � 10ρ1, θ21 = θ31 ≈ −2π.

� For γ1 with ρ1 � 10ρ2, θ21 = θ31 ≈ π.

� For γ1, we have vanishing Berry phase whenever ρ1 =
√

2ρ2.

� For γ3, the Berry phases are always −π.

We will now use the original Berry connection (5.32) to study the Berry phase disconti-
nuity that occurs due to the cone C13. In general for a closed adiabatic path γ : [0, 1]→ U1

θ21 =

�
γ

ρ2
1ρ

2
2

(
R1(p)2 −R2(p)2

)
R1(p)2R2(p)2

dφ1

−
�
γ

ρ2
2

(
ρ2

1

(
R1(p)2 −R2(p)2

)
R1(p)2R2(p)2

+

(
E2(p)− z

)2
R1(p)2 −

(
E1(p)− z

)2
R2(p)2

R1(p)2R2(p)2

)
dφ2,

θ31 =

�
γ

ρ2
1ρ

2
2

(
R1(p)2 −R3(p)2

)
R1(p)2R3(p)2

dφ1

−
�
γ

ρ2
2

(
ρ2

1

(
R1(p)2 −R3(p)2

)
R1(p)2R3(p)2

+

(
E3(p)− z

)2
R1(p)2 −

(
E1(p)− z

)2
R3(p)2

R1(p)2R3(p)2

)
dφ2.

(5.52)

The cone C13 borders U3 and U5, so we can use (5.38) to transform (5.52) into the local
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coordinates of U5:

θ21 =

�
γ

(
q2
3 + q2

4

)(
R1(p)2 −R2(p)2

)
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)
,
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(5.53)

Consider the adiabatic path in U5

γr,ε(s) = Φ5

(
0, 0, r cos(2πs), r sin(2πs), r/

√
2 + ε

)
, (5.54)

with r, ε > 0. This path will induce the Berry phases

θ21,ε = −2πr2
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with z(ε) = r/
√

2 + ε. Because Ri and Ei are only dependent on q2
1 + q2

2 , q2
3 + q2

4 and q5,
they will remain constant along the entire path. Thus we get
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(5.55)

Now consider the adiabatic path in U3

γ′r,ε(s) = Φ3(0, 0, r, 2πs, r/
√

2− ε), (5.56)

with and 0 < ε < r/
√

2. The Berry phases produced by γ′ are
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(5.57)

with z′(ε) = r/
√

2− ε.
We are interested in the limit of the phases (5.55) and (5.57) as ε→ 0+. The left column

of Figure 5.9 depicts the Berry phases θ21 and θ31 associated with the paths γ√2/2,ε (in

blue) and γ′√
2/2,ε

(in orange) as functions of ε. These plots characterise a discontinuity in
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the NV center’s holonomy. Let Γ(γ) denote the linear map (2.97), associated with parallel
transporting quantum states about the path γr,ε. What we find is

lim
ε→0+

Γ(γr,ε) =

1 0 0
0 exp

(
−i 2π

3

)
0

0 0 exp
(
i 2π

3

)
 ,

lim
ε→0+

Γ(γ′r,ε) =

1 0 0
0 exp

(
i 2π

3

)
0

0 0 exp
(
−i 2π

3

)
 .

(5.58)

In the right column of Figure 5.9 we have plots of the Berry phase θ21 and θ31 associated
to the path γ√2/2,ε and z has been allowed to vary from −0.8 to 0.8. The discontinuities in

the plots occur precisely when γr,ε intersects the cones at 2z2 = r2.
Now note that the energy eigenvalues are fixed on γr,ε for any value of r and ε. This

means that we can plot how the energy changes as γr,ε is moved past the cones of degeneracy.
This is depicted in Figure 5.10 for r =

√
2/2. As we can see, the energy becomes degenerate

when γr,ε touches one of the cones at z = ±0.5.
With an equivalent experimental setup to that given in section 5.1, one could attempt

the following experiment: Assign the first microwave an amplitude significantly larger than
the other (b1 � b2), then set the frequency ω1 and magnetic field along the defect axis
such that ~D + γnvB − ω1 <

√
2|b1|. Set up the quantum state one wishes to study, rotate

the phase of both microwaves a full 2π, and record any Berry phase. Increment the first
microwave’s frequency down such that ~D + γnvB − ω1 <

√
2|b1|. Again, set up the same

quantum state, rotate the phase of both microwaves a full 2π, and record any Berry phase.
Continue this process, with ~D+γnvB−ω1 approaching

√
2|b1| from below. Now repeat the

experiment starting with ~D + γnvB − ω1 >
√

2|b1| and increase ω1 in increments so that
~D + γnvB − ω1 approaches

√
2|b1| from above. One should expect to find a discontinuity

in the Berry phase at ~D + γnvB − ω1 =
√

2|b1| of around 2π/3.
It should be noted that to measure a Berry phase we measure the populations of the

eigenstates |u1〉, |u2〉 and |u3〉 over an ensemble of nitrogen vacancy centers. In our exper-
imental set up we can measure these populations by firing a green laser at our samples.
This causes each spin state to decay into the zero spin state via a different processes. Each
process emits a particular wavelength of light which can be used to measure populations.
This method is also used to initialise any state. A green laser is fired at the sample, forcing
it into the spin 0 state, and then the microwaves are used to manipulate the system into
any state needed [52].

The next result we will discuss is the holonomy group of the NV center. Consider γ1

from (5.42). A contour plot of the integrand of θ21 is depicted in Figure 5.11. The red
curve represents the zero contour for the integrand of θ21, while the blue curve is the zero
contour for the integrand of θ31. Note that these curves never intersect. Now notice that the
effective Berry connection (5.32) lacks a dρ1, dρ2 and a dz term. This means that no Berry
phase will accumulate for any adiabatic path that only varies in ρ1, ρ2 and z. Furthermore,
when z = 0 we have Berry phases of the form (5.50). We found that when ρ1 =

√
2ρ2, the

dφ1 coefficient vanishes. This means that that path

γ(s) = Φ1(
√

2ρ2, αs, ρ2, 0), α ∈ [0, 2π] and ρ2 ∈ R>0 (5.59)

will make no contribution to the Berry phases θ21 and θ31.
Now consider the adiabatic path. Choose any p ∈ M and smoothly vary ρ1, ρ2 and z

until we have reached a point on the zero contour for the integrand of θ31. Then rotate φ1

as many times as one needs to reach the desired value of θ21. If φ1 is not the value it started
as, then smoothly vary ρ1 to

√
2ρ2, and z to 0. Rotate φ1 back to its initial value, and finish

by smoothly varying ρ1, ρ2 and z back to the starting point, p.
This adiabatic path can be used to make θ21 any value, while also keeping θ31 fixed. One

could also have transported to the zero contour for the integrand of θ21 instead. This would
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Figure 5.9: Left column: Plots of Berry phases θ21 and θ31 from (5.55) (in blue) and θ′21

and θ′31 from (5.57) (in orange) as functions of ε, with r =
√

2/2.
Right column: Plots of Berry phases θ21 and θ31 from (5.55) with r =

√
2/2 as a function

of z. Notice that the discontinuities occur at z = ±0.5, which corresponds to γ intersecting
one of the two cones.
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Figure 5.10: Plots of energy eigenvalues as functions of z, for every point on γ with r =√
2/2. Note that the energy degeneracy only occurs for z = ±0.5, which corresponds to γ

intersecting one of the two cones.

then allow us to tune θ31 to any value while keeping θ21 fixed. Thus, a combination of the
two paths can be used to completely cover U(1)⊗ U(1) for any starting point p ∈M . This
shows us that the holonomy group for the NV-center is

U(1)⊗ U(1). (5.60)

Physically, if our experiment starts with a non-degenerate Hamiltonian H(p), then for
any quantum state |ψ(p)〉 = ci |ui(p)〉, we can find a sequence of changes in our experimental
parameters that will induce any phase difference in |ψ(p)〉 we want. Furthermore, this
sequence can be done one parameter at a time, for example we could first vary the magnetic
field strength along the defect axis, then vary one of the microwave frequencies, and after
that change the amplitude of the other. As long as each variation is smooth and slow enough
to be adiabatic, then our theory will apply. However, we must also account for dynamic
phase. This could be added directly into the model via the connection recovery method in
section 2.9, or after the Berry phase calculation is made.

In terms of dealing with dynamic phase in an experiment, we can transport a quantum
state about some path adiabatically, measure the overall phase difference, then repeat the
experiment but transport the state faster about the path. Plotting the phase data against
the time it took to make the measurement, we will find a positive linear plot (as long as each
path was adiabatic). This is because dynamic phase is proportional to time. Furthermore,
because the path was unchanged in each experiment, the y-axis intercept of this plot is our
Berry phase.

The last result we will discuss is the Chern class of the NV center. Seeing as there are 5
variables in our parameter space, we may have a non-trivial second Chern class. Recall that
because the curvature 2-form associated to the Berry connection is always traceless, then
the second Chern class has the simplified form (3.82)

c2(F) =
−1

8π2
tr(F ∧ F). (5.61)
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Figure 5.11: Contour plot of the integrand of θ21 for a general smooth path. The red curve
is the zero contour, while the blue curve is the zero contour for the integrand of θ31. Note
that the red and blue curve never intersect
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In local coordinates we have
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This may seem daunting, but in the trace the last four terms cancel. We can show this by
relabelling the ν index with the η index in the first and last two terms. This causes an odd
permutation of (µνση) and thus reordering the differentials back into order will leave an
overall negative sign. The reason why the ν and η indices are exchanged is because these are
the only places that each term differs from the rest. We will show how the last two cancel
because it is not as obvious as the first two: In the trace, the last term consists of sum over
j and k of the functions〈
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This implies that the last two terms cancel in the trace.
Thus the second Chern class of the NV center takes the local form
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(5.62)

The Chern class does not vanish everywhere as illustrated by the contour plot in Figure 5.12.
This plot depicts the coefficient of the dρ1 ∧ dφ1 ∧ dρ2 ∧ dφ2 term for z = 1, as functions of
ρ1 and ρ2. Notice the singularities at (ρ1, ρ2) = (0,

√
2), (
√

2, 0). In the Berry phase plots
Figure 5.6, these points were finite discontinuities. However, the Chern class is divergent at
these points. The reason for this is because the curvature is dependent on the entire Berry
connection and not just the diagonal terms, like the Berry phase is. It is precisely the off
diagonal terms where we encounter derivatives in the energy eigenvalues (5.33).
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Figure 5.12: Contour plot the Chern class coefficient
(
c2
(
F
))

1 2 3 4
. This contour plot shows

that the Chern class for the NV center is non-vanishing. Again the white regions have been
excluded due to the steepness. Note that the points (ρ1, ρ2) = (0,

√
2), (
√

2, 0), are now
poles.
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Chapter 6

Conclusion

We began in Chapter 2 by discussing some of the underlying concepts in differential geometry
in relation to fibre bundles. Importantly, this included a method to construct fibre bundles
and an introduction to Ehresmann connections. This connection provided a way to parallel
transport geometric objects about a vector bundle, by imposing a system of linear first order
ODEs. In order to ensure the existence and uniqueness of parallel transport, we ivoked the
Picard–Lindelöf theorem [9, Sections 1.1 and 1.2]. Localising this led to our first result:
a development of local horizontal lift for vector bundles. This provided local IVPs whose
solutions describe parallnel transport. We ended this chapter by developing a method to
recover a connection from information on how geometric objects parallel transport.

In Chapter 3 we developed our geometric model for Berry phases. This started with
a discussion on geometric phase as well as the adiabatic theorem, and provided an exam-
ple of geometric phase by solving the Schrödinger equation. From there we showed how
to construct a complex n-dimensional vector bundle from a family of n-dimensional local
Hamiltonians {Hα}. We defined the base manifold, or parameter space, M , to be largest
subset of Rm, such that Hα is non-degenerate for all p ∈M . The fibre was taken to be the
Hilbert space that our Hamiltonians acted on. The structure group was the set of n × n
unitary matrices and the transition maps were taken to be the projections

tα,β(p) =
∣∣ui(p)〉

α
〈ui(p)|β (6.1)

where
∣∣ui(p)〉

α
is the ith eigenstate of Hα(p).

Next, we introduced the idea of variable basis sections by using local energy eigenstates
as the local basis vectors in our fibre. This reduced complexity in coefficients and made the
use of the adiabatic theorem natural. But, it required an extension in the derivation of local
horizontal lifts in Chapter 2. We found that a horizontal lift remains unchanged when using
variable local fibre coordinates. However, the IVPs provided by a horizontal lift do include
a new term. From there we used the connection reconstruction method from Section 2.9
to determine the local Berry connections based on our findings in the geometric phase (see
example 3.6). We ended Chapter 3 by discussing the globally defined Berry curvature and
the Chern class of a Berry bundle. Because the Berry curvature is traceless, we showed that
a parameter space must have at least four real dimensions in order to have a non-vanishing
Chern class. Experimentally, this means that in order to observe a non-zero Chern number,
one must be able to vary at least four independent experimental variables.

Chapter 4 was an example on how to use the model we built in Chapter 3. We studied
a spin-1/2 system, whose Berry bundle consisted of a real 3-dimensional base manifold and
a complex 2-dimensional fibre. Physically, the system was described by a spin-1/2 particle
in a uniform magnetic field (Bx, By, Bz). We found that its parameter space was R3\{0},
meaning that the only point of degeneracy corresponded to turning the magnetic field off.
We also discovered that because the Berry connection was independent of the field strength,
we could effectively describe the system’s holonomy by only considering paths on S2. Fur-
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thermore, our model agreed with experimentation in that the Berry phase accumulated by
transporting states about closed adiabatic paths is equal to the area it encloses [16, 22, 45].
This meant that the holonomy group of a spin-1/2 system was shown to be U(1).

In Chapter 5 we studied a spin-1 nitrogen vacancy (NV) center. The reason we wanted to
study the NV center is because it has a wide set of applications from quantum computation
[47, 50], to communication [19, 51]. We started with an experimental set-up [52], and used
it to determine the local Hamiltonian describing our system. We then transformed into a
rotating frame and used the rotating wave approximation to simplify the local Hamiltonian.
From this simplified Hamiltonian we constructed an NV Berry bundle, which has a real
5-dimensional parameter space and a complex 3-dimensional fibre. The parameter space
was given by R5\(C12 ∪ C13) where C12 and C13 are 2-dimensional cones.

We found that the coefficients of the Berry connections were functions of the ratios in
the magnetic field strengths. This allowed us to effectively reduce our parameter space to a
4-dimensional manifold. Physically, this means that in an experiment, a wide range of field
strengths are not required.

The cones of degeneracy were found to cause observable discontinuities in the Berry
phases. Furthermore, these discontinuities are path dependent. In the special case when
the diagonal terms of our local Hamiltonian are set to zero, the Berry phases between our
second and first eigenstates (θ21), and our third and first eigenstates (θ31), coincided. This
was used to develop a method for constructing an adiabatic closed path to induce any value
of θ21 and θ31. Thus, the holonomy group of the NV center is U(1)⊗ U(1). We concluded
this chapter by determining the second Chern class of our NV Berry bundle, and showed it
does not vanish everywhere in the parameter space. This means that the NV system could
have a non-zero Chern number.

This thesis has shown that, to an experimenter it is important to understand the geom-
etry and topology of a system’s parameter space. This is especially true for experiments in
the fields of quantum computation and communication, where it is critical to make precise
and accurate measurements [41, 42]. Berry phase can change an observation, but as seen
in section 5.4, it is also possible to control. An experimenter may be interested in using
this model to search for topologically protected paths, in order to minimise the variation
of Berry phase in their experiment. It can also be used to find paths that are affected or
unaffected by discontinuities in the Berry connection.

Future work:
For further study into the NV Berry bundle we suggest explicitly calculating its Chern

number using (5.62). Chern numbers are of great interest because they are observable
[30,32,56]. To do this one must assign an orientation to the parameter space and study its
fundamental homology cycles. Then, assign a pairing of Chern classes and the cycles, or
in other words, integrate the Chern classes over the cycles. This is a complicated task, so
we recommend that the topology of the NV center’s parameter space is studied in greater
detail. Keep in mind that the Berry connection can be used to reduce the parameter space
to an effective base manifold (S2 in the case of the spin-1/2 bundle), possibly simplifying
the system.

In Chapters 4 and 5 we found that we could cancel a non-zero field strength, which
corresponded to a radial coordinate in the spin-1/2 parameter space (4.22), and the q5 axis
in the NV parameter space (5.40). This begs the question of whether this is a standard
property of Berry connections (3.67). One could study this for a general Berry connection.
We suspect that this is a property of the normalisation of energy eigenstates. Furthermore,
when the Berry connection does simplify in this way, what are the properties of the effective
parameter spaces?

Our model for Berry phase was designed so that it could be adapted to non-adiabatic
paths. This can be done by using a different connection that couples the IVPs describing
parallel transport. It would be interesting to study a quantum system using a non-adiabatic
connection. One could even incorporate time into the model such that for slowly evolving
paths, the connection behaves like the Berry connection (3.67), but for quickly evolving
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paths, non-adiabatic features become more prevalent. In order to remain physically relevant,
a non-adiabatic connection should be recovered from experimental results or the Schrödinger
equation [6, 33,46], using the method described in Section 2.9.

The paper [8] studies the NV Hamiltonian (5.9) for the special case q5 = 0. One could
try to reproduce the results from [8] by extending our model from a vector bundle to a
bundle gerbe [34]. This will upgrade the Berry connection from a 1-form to a 2-form and
the Chern class will be generalised to the Dixmier-Douady class [14]. Furthermore, making
use of a bundle gerbe will allow for study of higher Berry phases [37].

Our model for Berry phases is only relevant for finite dimensional Hilbert spaces. One
could attempt to extend this model by allowing for infinite dimensional fibres. This could
open the model to much more complicated systems such as L2 spaces. There does seem to
be some interest in this topic [11,40,44], but not so much in recent times.
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Appendix A

Principal and associated bundles

Note that the material covered in this appendix will not be used in this thesis. These
definitions and examples are provided to bridge the gap between our model and similar
Berry phase models that make use of principal bundles [35, Section 10.6] and [20,24].

A principal bundle is defined as a fibre bundle whose fibre, F , is the same as its structure
group, G. We usually denote a principal bundle by P (M,G) or say “a G bundle over M”.
A very useful property of principal bundles is that we can define both a left and right action
of G on the fibre: Let ωα : Uα ×G→ π−1(Uα) be a local trivialisation. The right action of
a ∈ G on b = ωα(p, g) ∈ π−1(Uα) is given by Ra(b) = ba = ωα(p, ga), for a ∈ G.

Right multiplication is independent of the local trivialisation because the right and left
actions commute. For all p ∈ Ui ∩ Uj , b ∈ π−1(p) and a ∈ G, if

b = ωβ(p, gβ) = ωα(p, tαβgβ),

then
ba = φβ(p, gβa) = φα(p, (tαβgβ)a) = φα(p, tαβ(gβa)). (A.1)

Furthermore, because the right action is given by group multiplication, it is both transitive
and free: for any b1, b2 ∈ π−1(p) there exists a ∈ G such that b1 = Ra(b2) and if Ra(b1) = b1
then a = idG.

The transitive and free nature of the right action comes with the very useful consequence
that if π(b) = p then we can construct the entire fibre above p by the right action: Gp =
{Ra(b) : a ∈ G}. This gives us a very easy and straight forward way to define trivialisations.
So easy in fact, that mathematicians named the method canonical trivialisation. The idea
of canonical trivialisation is to take a useful local section σα : Uα → P for each open set in
our chosen cover {Uα} of M , and then for every p ∈ Uα fix σα(p) so that it is locally centred
on the identity in G. By useful local section we mean a section that we wish to study, like
a wave function |ψ〉 in a Berry phase model.

The proper definition of canonical trivialisation states that for a given local section σα(p)
over Uα, a local trivialisation is given by

ωα : Uα × F → π−1(Uα) : (p, gb) 7→ b = σα(p)g. (A.2)

Hence, for our chosen local section σα, we have for all p ∈M

σα(p) = ωα(p, id).

For canonical trivialisations σα : Uα → π−1(Uα) and σβ : Uβ → π−1(Uβ) with p ∈
Uα ∩ Uβ our trivialisations transform in the following way: for all g ∈ G

σα(p)g = ωα(p, g) = ωβ(p, tβα(p)g) = ωβ(p, e)tβα(p)g = σβ(p)tβα(p)g. (A.3)

Note that this is different to how a section transforms from domain to domain (2.7).
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Example A.0.1. Local tangent vectors of principal bundles.

Consider a principal bundle (P, π,M,G) with family of local sections {σα : Uα → P}
where Uα ⊆ M are the domains of our base manifold. We will use these sections to
form our canonical trivialisations

φα : Uα ×G→ π−1(Uα) : (p, g) = σα(p)g. (A.4)

Consider some smooth path γ̂ : [0, 1] → P with π ◦ γ̂ = γ, and assume that γ̂(0) ∈
π−1(Uα). To find the vector tangent to γ̂(t) at t = 0 we will take the derivative of
f ◦ φα ◦ γ̂(t) at t = 0 for some f ∈ C∞(Uα × G). Because π−1(Uα) is open and
γ̂(0) ∈ π−1(Uα) then there exists an open neighbourhood γ̂(0) ∈ V ⊂ π−1(Uα) and
0 < ε ≤ 1 such that γ̂(t) ∈ V ⊂ π−1(Uα) for all t ∈ [0, ε). Thus we have

γ̂(t) = σα
(
γ(t)

)
g(t) (A.5)

for all t ∈ [0, ε) and some g : [0, ε)→ G. This means that

f ◦ φα ◦ γ̂(t) = f

(
φα

(
σα
(
γ(t)

)
g(t)

))
= f

(
γ(t), g(t)

)
, (A.6)

for for all t ∈ [0, ε). Hence,

d

dt

(
f ◦ φα ◦ γ̂(t)

)∣∣∣
t=0

=
dγµ

dt

∣∣∣∣
t=0

∂f

∂xµ

∣∣∣∣
γ̂(0)

+
dg

dt

∣∣∣∣
t=0

∂f

∂g

∣∣∣∣
γ̂(0)

. (A.7)

Equation (A.0.1) shows us that even though principal bundles have a very different
trivialisation method, via canonical trivialisation, tangent vectors behave the same
way as they do for vector bundles. The local tangent vector, X, to the path γ̂(t) at
t = 0 is given by

X =
dγµ

dt

∣∣∣∣
t=0

∂

∂xµ

∣∣∣∣
γ̂(0)

+
dg

dt

∣∣∣∣
t=0

∂

∂g

∣∣∣∣
γ̂(0)

. (A.8)

If we have a principal bundle but we would rather work with a different type of fibre
bundle, we can use an associated bundle.

Given a principal bundle P (M,G) we may construct an associated fibre bundle. Let G
act on some manifold F on the left, ρ : G × F → F , and define an action of G on P × F
such that (u, f) 7→ (ug, ρ

(
g−1

)
f). Then we define our associated bundle as

E = (P × F )/G (A.9)

in which (u, f) ∼ (ug, ρ
(
g−1

)
f). Locally, P×F is diffeomorphic to M×G×F thus (P×F )/G

is locally diffeomorphic to M × F which is exactly what we want in a fibre bundle.
We define the projection πE : E →M in the following way

πE

([
(u, f)

])
= π(u) (A.10)

where π : P →M is the projection on P . The projection πE is well defined because

πE

([
(ug, ρ

(
g−1

)
f)
])

= π(ug) = π(u) = πE

([
(u, f)

])
,

for all g ∈ G. Lastly, we need to define the transition maps. If tαβ is a transition map on P
then ρ ◦ tαβ defines a transition map on E.

Associated bundles are particularly useful for forming vector bundles from a principal
bundle and vice versa as example A.0.2 demonstrates.
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Example A.0.2. Let F be a k−dimensional vector space and ρ a k−dimensional
representation of G. The associated vector bundle P ×ρ V is thus defined by
identifying the points (u, v) ∼ (ug, ρ(g)−1v).
For example, for P (M,GL(k,R)) the associated fibre bundle is a vector bundle over
M with fibre Rk. Let us explore the fibre bundle structure of the associated bundle
E = P ×ρ V .
The projection: πE(u, v) = π(u) and since (u, v) ∼ (ug, ρ(g)−1v) then we have
π(ug) = πE(ug, ρ(g)−1v) = πE(u, v) = π(u).
Local trivialisations: ωα : Uα × V → π−1

E (Uα).
Transition functions: ρ(tαβ) : V → V where tαβ ∈ G.

Conversely a vector bundle, (E, π,M, V,G), induces a principal bundle
P (E) = P (M,G), where we use the same transition functions.

Example A.0.2 can be adapted to our geometric model introduced in chapter 3 to convert
it to a principal bundle in order to match it to similar models like that in [20].
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