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Abstract

Invariances of conformal field theories (CFTs) would seem to suggest that correla-
tion functions behave as power laws. However, logarithms also exhibit conformal
invariance. When logarithms are permitted in two-dimensional CFTs, the cor-
responding state spaces characteristically involve reducible but indecomposable
Virasoro modules with non-diagonalisable algebra action. Notably, such state
spaces no longer naturally admit a grading into energy eigenspaces. Despite
this non-diagonalisable energy operator, one finds significant physical motivation
for the study of such representations, with many interesting statistical mechani-
cal models exhibiting this behaviour: percolation, dilute polymers, self-avoiding
walks, and more. A vast amount of effort has been made in the study of these
two-dimensional logarithmic CFTs, both their internal structure and their fusion
rules. However, it would be fair to say that logarithmic CFTs are still less well un-
derstood than their non-logarithmic counterparts. In recent years, the relevance
of free-field oscillator algebras to the study of such representations has become
more and more apparent. Many of the module structures in question might more
appropriately be considered as Fock-type spaces.

In this thesis we develop free field realisations of logarithmic CFTs. We anal-
yse some general features, examining staggered modules of the Virasoro algebra
in particular, before providing a construction for staggered modules consisting of
Fock spaces considered as Virasoro modules. We derive an explicit formula for a
module invariant of staggered Fock modules, verifying that the given construction
agrees with those seen to date in the literature. We then turn to more conjectural
areas, examining how the non-diagonalisaiblity of the Virasoro representation can
be reproduced by the inclusion of additional modes into the underlying oscillator
algebras, and how the states created by these modes correspond to the vacuum
evaluations of logarithmic fields. We take these as our motivating examples for
a subsequent working definition of logarithmic vertex operator algebras, in the
hope that not only do their state spaces correspond to the staggered structures
developed to this point, but that they provide an additional avenue of approach
in the construction and study of logarithmic conformal field theories.
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Chapter 0

Introduction

He had seen everything, had experienced all emotions,
from exaltation to despair, had been granted a vision
into the great mystery, the secret places,
the primeval days before the Flood. He had journeyed
to the edge of the world and made his way back, exhausted,
but whole. He had carved his trials on stone tablets.

Gilgamesh, c.2000BC

Conformal field theory (CFT) is an important area within quantum field the-
ory, and the machinery of conformal symmetry is a powerful analytical tool, so
much so that conformal field theories find important and widespread applications
across many areas of theoretical physics, from string theory to statistical mechan-
ics. Correlation functions of quantum fields which are conformally invariant are
more heavily constrained than those which are not, making exact analytic solu-
tions possible. This is what makes CFTs so amenable to study and calculation.

However, theoretical physics is not the only arena where CFT enjoys enor-
mously active research applications. The constraints of conformal symmetry mo-
tivate rigorous formulations of the algebraic structure of quantum fields. Vertex
algebras, the resulting objects, are of import in many areas outside of physics,
for instance in the study of modular forms and in monstrous moonshine (e.g.
[16]). From two-dimensional CFT we also have the Virasoro algebra, an infinite-
dimensional Lie algebra and the generators of conformal symmetry. The repre-
sentation theory of the Virasoro algebra is a deep and complex topic, these spaces
being the state spaces of the corresponding field theories.

The scale invariance of conformal field theories seems to suggest that cor-
relation functions must behave as power laws. However, logarithms can also
obey conformal invariance [22]. When logarithmic behaviour is permitted in
two-dimensional conformal field theory, one finds that the corresponding state
spaces characteristically involve reducible but indecomposable Virasoro mod-
ules with non-diagonalisable action of the algebra’s generators [41]. Notably,
this means that the state spaces are no longer naturally graded into eigenspaces

1



2 CHAPTER 0. INTRODUCTION

of the Virasoro zero mode (such a grading is typically related to the action of
the Hamiltonian). Despite the suggestion of a non-diagonalisable energy oper-
ator, one finds significant physical motivation for the study of such representa-
tions. It transpires that many interesting statistical mechanical models exhibit
this behaviour, including percolation, dilute polymers, self-avoiding walks, and
more [7, 10, 34,40,45,46,46].

A vast amount of effort has been made in the study of these two-dimensional
logarithmic CFTs, both their internal structure and their fusion rules [8, 13, 14,
18,19,23,24,31]. However, it would be fair to say that logarithmic CFTs are still
less well understood than their non-logarithmic counterparts. In recent years,
the relevance of free-field oscillator algebras to the state spaces of logarithmic
theories has become more and more apparent [37, 39]. It appears that many of
the module structures which are ‘glued’ together to produce the representations
in question might more appropriately be considered as Fock-type spaces.

In this thesis we develop free field realisations of logarithmic CFTs. The first
chapter is an overview of the Lie representation theory used throughout the rest
of the work. It discusses in detail the structure of the Virasoro algebra Vir and
touches on its super-versions sNVir (N = 1 and N = 2) as well the representation
theory of all three algebras, particularly Verma modules. We also discuss the
infinite-dimensional bosonic and fermionic oscillator algebras a and b and their
Fock spaces; their infinite-dimensional Z-graded highest weight representations.
We make realisations of the Virasoro algebra as operators on these spaces and
discuss the construction of Vir-intertwiners between them.

In the second chapter we briefly discuss the field-theoretic underpinnings of
logarithmic conformal field theories, but quickly change focus to the representa-
tion theory, giving a definition for a staggered module, a type of indecomposable
modules seen in logarithmic conformal field theory. These staggered modules
involve a weakening of the requirement that L0, the Virasoro zero mode, act
diagonalisably. Instead of grading these modules into L0 eigenspaces, we must
relax this into a grading by generalised L0 eigenvalues. We analyse some general
features of such modules, turning to staggered modules of the Virasoro algebra
in particular, before providing a construction for staggered modules consisting
of Fock spaces considered as Virasoro modules. We compute module invariants
for such staggered Fock modules, showing that the specified construction indeed
agrees with module invariants calculated in the literature and therefore that it
provides a means of realising logarithmic theories in terms of free fields.

The third chapter is an algebraic exploration of some features of staggered
modules as developed in chapter two. We examine how the non-diagonalisability
of the Virasoro representation can be reproduced by the inclusion of additional
modes into the underlying oscillator algebras, and how the states created by
these modes correspond to the vacuum evaluations of logarithmic fields. We
take these as our motivating examples for a subsequent working definition of
logarithmic vertex operator algebras, in the hope that not only do their state
spaces correspond to the staggered structures developed to this point, but that
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they provide an additional avenue of approach in the construction and study of
logarithmic conformal field theories.
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Chapter 1

The Virasoro Algebra

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don’t much care where-” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll (C.L. Dodgson), Alice’s Adventures in Wonderland

The Virasoro Algebra is an infinite-dimensional Lie algebra with a wide range
of applications in theoretical and mathematical physics, where it appears chiefly
as the symmetry algebra of 2-dimensional conformal field theories. While typi-
cally the conformal group is SO(d+ 1, 1), with a single spatial dimension there is
a degeneracy in one of the usually-relevant constraints, and the algebra becomes
infinite-dimensional [42]. The Virasoro algebra is nothing more than the central
extension of the Witt algebra, which is the algebra of differential operators on the
circle generated by objects of the form zn∂z for n ∈ Z. This central extension is
simply the addition of a new generator C which is central; i.e. it commutes with
the entire algebra. The commutation relations are also modified to include the
new element C. This can be thought of as a kind of “quantum deformation” of
the Witt algebra. In the case of the Virasoro algebra, this extension is universal
(in the categorical sense) [25].

In what follows, we introduce the algebra itself and some of its important
representation theory, which is vital for the main result of this work. For our
immediate purposes, we only need to understand the algebra “as-is” in an abstract
sense, so will spend little time discussing the underlying field theory, which will
be relegated to notes interspersed through the text. This field content comes
into play more heavily in later chapters, so is developed more fully as needed.
However, we do assume a working knowledge of vertex (operator) algebras, the
field structures used in conformal field theories. Introductory details for the
reader unfamiliar with the subject can be found in Appendix A.

5



6 CHAPTER 1. THE VIRASORO ALGEBRA

1.1 The Virasoro Algebra

In this section we define the Virasoro algebra itself, discuss some of its impor-
tant representation theory, and introduce some fermionic extensions to Virasoro
superalgebras.

1.1.1 Virasoro Basics

1.1.1 Definition. The Virasoro Algebra, denoted by Vir, is the infinite-dimensional
algebra with generators

{Ln, C | n ∈ Z} (1.1)

and defining relations

[Lm, Ln] = (m− n)Lm+n +
1

12
(m3 −m)Cδm,−n (1.2)

and

[Lm, C] = 0 ∀m ∈ Z. (1.3)

The Virasoro algebra forms what is called a graded algebra. In particular, it
is Z-graded, meaning that it has the following decomposition:

Vir =
⊕
n∈Z

Virn (1.4)

where

Virn = CLn, n 6= 0, Vir0 = CL0 ⊕ CC, (1.5)

satisfying

[Virm,Virn] ⊆ Virm+n. (1.6)

This property is important when we begin discussing the representation theory
of the Virasoro algebra, where we focus on graded representations: vector spaces
which are themselves graded, and whose gradings are compatible with that of the
Virasoro algebra. We will make this statement more precise in what follows.

��
Remark:

The Virasoro generators Lm can be found within the field content of a (1+1)D
conformal field theory as the modes in the Laurent expansion of the energy-
momentum tensor T :

T (z) =
∑
m∈Z

Lmz
−m−2. (1.7)

All algebraic relations between modes have a corresponding presentation in
the form of an operator product expansion (see Appendix A for details on this
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and other field theory concepts). For instance, the commutation relations of the
algebra may equivalently be written as

T (z)T (w) ∼
1
2
C

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
. (1.8)

We will typically work at the level of individual modes and algebraic relations
through our analysis of representations of these algebras, though will frequently
pause to touch on corresponding statements in the field theory. ��

It will be convenient for what follows to split Vir into subalgebras by index.
We write

Vir± =
⊕
n>0

CL±n

Vir0 = CL0 ⊕ CC
(1.9)

and call Vir+ the subalgebra of positive (resp. Vir− the negative) modes.
In addition to the Virasoro algebra itself, we heavily employ its universal

enveloping algebra. Roughly speaking, this is the linear span of all formal mono-
mials of algebra elements, under the quotient by the ideal generated by the Lie
relations — i.e., all those of the kind (ab− ba)− [a, b].

1.1.2 Definition. . The universal enveloping algebra U (g) of a Lie algebra g is
defined by

U (g) =
∞⊕
n=0

g⊗n/I (1.10)

where I is the ideal

I = 〈a⊗ b− b⊗ a− [a, b] | a, b ∈ g〉 , (1.11)

and the multiplication on U (g) is the obvious one. The bracket of Vir may be
easily extended to all of U (Vir) by repeated application of the identifications in
I. We will typically suppress the tensor product notation when writing elements
of U (Vir).

U (Vir) inherits the grading of Vir, in addition to the standard grading by ten-
sor degree. This is done by defining the grade of a monomial element Ln1 · · ·Lnk
to be the sum of the grades of its composite modes; n1 + · · · + nk. Then we
have the following decomposition of the enveloping algebra into graded subspaces
U (Vir)n:

U (Vir)n =
⊕

∑
ni=n,m∈N

CCmLn1 · · ·Lnk . (1.12)

Note the presence of arbitrary powers of the central element C, a grade 0 object
which therefore contributes nothing to the grade of a monomial (along with L0).
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Later, when we identify C and L0 with their vacuum eigenvalues c and h, these
arbitrary powers of degree 0 elements will drop away to be absorbed into the factor
of C. Thanks to the ability to reorder products by applying the bracket relations,
we may define a standard ordering which describes a basis for U (Vir). That such
a choice is well-defined follows from the famous Poincaré-Birchoff-Witt theorem,
and the resultant basis is colloquially known as a PBW basis. All such orderings
are essentially equivalent, but our particular choice of ordering will make clear
some important features of the enveloping algebra and will make future work in
this regard much easier. We choose a basis of monomials of the form

Ln1 · · ·Lnk (1.13)

with weakly increasing index n1 ≤ · · · ≤ nk. This shows that we have yet another
decomposition

U (Vir) ∼= U (Vir−)⊗ U (Vir0)⊗ U (Vir+) (1.14)

– note here that Vir is first split into its positive, negative and zero mode sub-
algebras before taking the product of their three (different) universal enveloping
algebras. Strictly speaking, without further quotients, there is no notion of multi-
plication between elements of this product, so the equivalence above should either
be considered strictly one of vector spaces, or as one of an abuse of notation.

We will also take the opportunity to define here the anti-linear anti-involution
† on Vir, whereby

L†n = L−n, C† = C. (1.15)

This operation extends naturally to all of U (Vir).

1.1.2 Virasoro Modules

1.1.3 Definition. A Z-graded vector space is a vector space V for which there
exists a decomposition of V into a direct sum of disjoint subspaces Vi:

V = ⊕i∈ZVn, (1.16)

and Vi ∩ Vj = ∅ whenever i 6= j. If there is an inner product 〈·, ·〉 on V , we also
require 〈Vi, Vj〉 = 0 for distinct graded subspaces.

If such a vector space carries a representation of the Virasoro algebra, we
say that the two gradings are compatible if the Virasoro generators are graded
operators, that is if

Virm ◦ Vn ⊆ Vm+n. (1.17)

In particular, we restrict our study to those graded representations which are
also highest (lowest, depending on convention) weight spaces. One of the most
important feature of such spaces is that the positive modes of Vir (i.e. those
Ln with n > 0) are locally nilpotent, and for every v ∈ V there is an upper
bound on those n for which Lnv 6= 0. This provides the proper framework under
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which to describe physical systems, wherein states are typically excited from a
minimum-energy “vacuum” state by the action of the algebra.

We also require that such a representation carry a Z-grading compatible with
the action of the algebra (as one might also reasonably expect in a description of
physical systems; indeed, L0 forms in part1 the energy operator for the system).
These features alone heavily constrain the viable structures, but perhaps the most
important requirement yet is that there exist a lower bound to the set of indices
of non-empty graded subspaces Vn; that is:

min{n ∈ Z|Vn 6= ∅} = n0 ∈ Z. (1.18)

and further that the subspace Vn0 corresponding to this lower bound is a (com-
plex) line (dim (Vn0) = 1). This corresponds to the physical notion of the single
vacuum state of minimal energy.

In all, there are many ways in which highest weight spaces of the Virasoro
algebra can be realised mathematically (in the sense of providing an explicit
construction), each with more or less rigour and relevance depending upon the
context in which they are employed. The definition used here is not the most
sophisticated, but it has the benefit of being direct, and of being sufficient for our
purposes.

1.1.4 Definition. A highest weight space V (of the Virasoro algebra) is a vector
space representation generated from a highest weight vector v0 ∈ V satisfying

Lnv0 = 0 ∀n > 0 (1.19)

and

L0v0 = hv0 Cv0 = cv0 (1.20)

for some constants h, c ∈ C. The pair (h, c) is called the highest weight.

To say that V is generated from v0 is to say that V ∼= U (Vir) v0
∼= U (Vir−) v0,

or that every v ∈ V can be written as a linear combination of elements of the
form

L−n1 · · ·L−nkv0 (1.21)

for some weakly decreasing positive integers n1 ≥ n2 ≥ · · · ≥ nk > 0. This
property ensures that V is a Z-graded Vir module and that each graded subspace
Vi is finite-dimensional. Indeed, since the Ln are graded operators, the dimension

1It would form the energy operator itself but for the issue of chirality, a concept not treated
here and not particularly relevant for what follows. In short, the underling space C \ {0},
on which Vir acts as infinitesimal generators of conformal transformations, admits solutions
in both the complex variable z and its conjugate z – giving two independent copies of the
algebra, corresponding physically to states of left- and right-handed chirality. The “true”
energy operator is L0 +L0, the sum of zero modes of both chiralities. Since these two algebras
are commuting, it is relatively “safe” to conceptualise the energy operator as L0 alone.
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of Vi is bounded above by the partition number of i — the number of ways to
create linearly independent monomial objects of the type in (1.21) at grade i.2

An important example of a highest weight space is the formal one in which all
monomially-generated objects of this type are linearly independent by construc-
tion, and the dimension of each graded subspace attains its upper bound. Such
a module is known as a Verma module.

1.1.5 Definition. The Virasoro Verma module Vh,c of highest weight (h, c) is
induced from the trivial one-dimensional representation Cvh,c of Vir+ ⊕ Vir0,
where

Lnvh,c = 0 ∀n > 0 (1.22)

and

L0vh,c = hvh,c Cvh,c = cvh,c. (1.23)

Then Vh,c is defined by

Vh,c := U (Vir)⊗U(Vir0⊕Vir+) Cvh,c (1.24)

The vanishing of the highest weight vector under the action of positive modes
allows us to also write

Vh,c ∼= U (Vir− ⊕Vir0) / 〈(L0 − h), (C − c), Ln (n > 0)〉 (1.25)

as U (Vir)-module. From this we see the reason behind choosing the PBW basis
ordering of weakly increasing index.

A Verma module is clearly uniquely determined by its highest weight. Fur-
thermore, any other highest weight module of the same weight is necessarily iso-
morphic to a quotient of this corresponding Verma module [28], simply because a
Verma module has the “maximum possible” dimension for each graded subspace.
Any study of the highest weight modules of the Virasoro algebra is therefore a
study of its Verma modules. In particular, we are interested in conditions on
reducibility and/or decomposability. Fortunately, the particular construction of
Vh,c places us in a good position for determining its substructure. For instance, all
Verma modules are indecomposable, for if we had Vh,c = X ⊕Y then either X or
Y would contain vh,c and would therefore coincide with Vh,c itself by construction.
At least for Verma modules of the Virasoro algebra, proper submodules of Vh,c
are necessarily (direct sums of) highest weight modules, and the direct sum Jh,c
of all proper submodules is also a graded submodule (and a proper submodule
at that; it does not contain vh,c, for instance) which is maximal with respect to
inclusions. The quotient

Mh,c = Vh,c/Jh,c (1.26)

2Repeated application of the commutator shows that re-orderings of these monomials agree
up to a linear combination of shorter ones at the same grade, so by induction don’t contribute
any further linearly independent basis elements.
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is therefore both non-trivial and irreducible; what is more, by virtue of the above
discussion on the “universality” of Vh,c, is the unique non-trivial irreducible high-
est weight module of weight (h, c).

Further structural analysis of Verma modules of the Virasoro algebra typically
proceeds via the use of bilinear forms, as proper highest weight vectors (those
not equal to the generating vector vh,c but which generate proper highest weight
submodules) introduce degeneracies in the determinants of these forms. It can be
shown [28] that there is a unique contravariant Hermitian form 〈·, ·〉Vh,c on each
Vh,c, commonly known as the Shapovalov form, such that

〈vh,c, vh,c〉Vh,c = 1 (1.27)

defined by

〈U1vh,c, U2vh,c〉Vh,c := v†h,c

(
U †1U2vh,c

)
∀U1, U2 ∈ U (Vir) . (1.28)

where v†h,c : Vh,c → C is the linear functional satisfying

v†h,c(v) =

 1 v = vh,c

0 v 6= vh,c
(1.29)

This evaluation effectively takes only the piece of the product U †1U2 at grade 0,
and even then picks up only the constant terms involving h or c. This amounts to
taking only those grade-0 terms which do not annihilate the highest weight vector
— because of our ordering convention for basis monomials, in order to realise
U †1U2vh,c as an element of Vh,c, we must commute generators through each other
until they have weakly increasing indexes. The contravariance and Hermiticity
of this form are manifest.

1.1.6 Proposition. Graded subspaces (Vh,c)m and (Vh,c)n are orthogonal if m 6=
n.

Proof. Immediate, since for any vm = Umvh,c ∈ (Vh,c)m and vn = Unvh,c ∈ (Vh,c)n
for some Um ∈ U (Vir)m and Un ∈ U (Vir)n, we have U †mUn ∈ U (Vir)n−m.
If m 6= n then clearly U †mUnvh,c has no component at the 0th grade, and so
〈vm, vn〉Vh,c = 0.

1.1.7 Proposition. We have

Ker 〈·, ·〉Vh,c
∼= Jh,c. (1.30)

Proof. Firstly by contravariance the kernel is linear and closed under the U (Vir)
action, and vh,c /∈ Ker 〈·, ·〉Vh,c , so forms a proper submodule and is therefore
contained in the maximal such. For the other direction, suppose there existed
some v ∈ Jh,c with 〈v, w〉Vh,c 6= 0 for at least one w ∈ Vh,c. But then since w

can be written as w = Uvh,c for some U ∈ U (Vir), by contravariance of the
Shapovalov form this implies that U †v is nonzero and proportional to vh,c, and
hence vh,c ∈ Jh,c, a contradiction.
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1.1.7.1 Corollary. 〈·, ·〉Vh,c, when restricted to the irreducible quotient Mh,c, is
non-degenerate.

The Shapovalov form allows us to determine the reducibility of a Verma mod-
ule. Its determinant deth,c(n) at each graded subspace (Vh,c)n will vanish when-
ever there exists a vector in Jh,c at that grade. There is a famous result which
gives a formula for this determinant.

r\s 1 2 3 4 5 6 · · ·

1 0 0 1
3

1 2 10
3
· · ·

2 5
8

1
8

−1
24

1
8

5
8

35
24

3 2 1 1
3

0 0 1
3

4 33
8

21
8

35
24

5
8

1
8

−1
24

· · ·
...

...
...

Figure 1.1: The first few entries of the extended (2, 3) Kac table. The so-called
“minimal models” of the non-extended table occupy the top-left corner. In this
particular example there are two such entries, and both have h = 0. Differ-
ent shadings correspond to different submodule structures of the corresponding
Verma modules: unshaded to indicate a braid-type structure; light shading to
indicate a chain-type; and darker shading to indicate point-type (c.f. Figure 1.2
for a depiction of these structures).

1.1.8 Theorem (Kac determinant formula, [27], [11]). We have

det
h,c

(n) ∝
∏

0≤r,s≤n

(h− hr,s)π(n−rs) (1.31)

where π(k) denotes the partition number of k, and hr,s is a quantity which also
depends on c:

hr,s(c) =
1

48

(
(13− c)(r2 + s2) +

√
(1− c)(25− c)(r2 − s2)− 24rs− 2(1− c)

)
.

(1.32)

For h to take any one of these values hr,s(c) is a necessary and sufficient
condition for the reducibility of the corresponding Vh,c. There are several alternate
parametrisations of these quantities. One such is when both h and c are cast in
terms of a third parameter t;

c(t) = 13− 6(t+ t−1)

hr,s(t) =
1

4

(
(r2 − 1)t− 2(rs− 1) + (s2 − 1)t−1

)
,

(1.33)
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where for t ∈ R \ {0} we get c ≤ 1 or 25 ≤ c, 1 ≤ c ≤ 25 when t is taken to be on
S1 ⊂ C, and c ∈ C for generic t ∈ C \ {0}. Many instances of physical interest
correspond to t ∈ Q \ {0} and c ≤ 1, so on many occasions we make use of a
different but related parametrisation in terms of coprime positive integers p and
q, where

cp,q := 1− 6
(q − p)2

pq
(1.34)

(without loss of generality we take p ≤ q, by convention), and

hp,qr,s :=
(rq − sp)2 − (q − p)2

4pq
(1.35)

but usually drop the superscript and just write hr,s when context makes the choice
of p, q clear. Given such a choice, it is then convenient to tabulate the values of
hr,s. Note the periodicity of (1.35) — typically, we restrict to 0 < r < p and
0 < s < q. Such an array is known as the p, q Kac table, or the extended p, q Kac
table if all positive r, s are permitted. See Figure 1.1 for an example extended
table.

“Braid type”︷ ︸︸ ︷

... ...

... ...

“Chain type”︷ ︸︸ ︷

...

...

“Link type”︷︸︸︷ “Point type”︷︸︸︷

Figure 1.2: The six different structures seen in Verma modules. Vertices indicate
singular vectors (as well as the vacuum vector at the top of the diagram) and
arrows indicate the action of the Virasoro algebra; a vector at the head of an
arrow lies inside the submodule generated by the one at its tail.

All this is in preparation of discussing the substructure of Verma, other highest
weight, and more generally Z-graded Virasoro modules. For Verma modules, the
submodule structure is commonly depicted in what is known as an embedding
diagram, showing how the generating vector vh,c, sometimes called the vacuum
vector, stands in relation to the singular vectors of that module.
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1.1.9 Definition. A singular vector v ∈ Vh,c is an L0 eigenvector such that

Lnv = 0 ∀n > 0 (1.36)

and with v 6= vh,c. Note we may immediately conclude from this definition that
the Shapovalov vanishes on such vectors; they must belong to the maximal proper
submodule.

In short, a singular vector is a highest weight vector which is also a proper
descendant of the vacuum vector — i.e., it is attained from the vacuum3 by the
action of a nontrivial element of U (Vir). A singular vector itself generates a
highest weight submodule of its parent module. This submodule may contain its
own singular vectors, which will generate further submodules. Every nontrivial
proper submodule must be generated by at least one singular vector in this way.
This is easily seen by noting that, since a proper submodule cannot contain the
vacuum vector, there must be a nonzero lower bound on the grades of vector
appearing in it. A submodule diagram is a convenient way to display this infor-
mation: singular vectors are denoted by vertices, with directed edges between two
vertices signifying that the submodule generated by the singular vector at the tail
contains the one generated by the singular vector at the head. It is a well-known
result that the subspace of singular vectors in a Verma module, intersected with
any one graded subspace, is either ∅ or a line: up to scaling, there is at most one
singular vector at any one grade [2].

Much work in the literature has gone into classifying the various types of
submodule diagram found in the representation theory of the Virasoro algebra,
e.g. [25]. There are six distinct types, all corresponding to various relative values
of the parametrising variables. These are depicted in Figure 1.2.

Of particular interest in what follows will be the non-terminating braid and
chain types. They correspond to rational c ≤ 1. In fact, we will be concerned not
with Verma modules themselves, but instead with what are known as Fock spaces
(see Section 1.2) considered as Virasoro modules. Such spaces do contain highest
weight vectors, but are not strictly speaking highest weight modules, as they are
not entirely generated by their vacuum vectors. Their submodule structure is very
similar — and in fact closely related — to that of Verma modules, but involves
further subcategories of singular vector, allowing for arrows to point either “up”
or “down” in the grading.

1.1.3 Virasoro Superalgebras

One may introduce a number N of fermions into the fields of a conformal theory.
Equivalently, one may extend Vir by an infinite number of fermionic generators

3In the case of Verma modules, at least: in other Virasoro modules, such as Fock spaces (see
Section 1.2 of this chapter), it is not true that all vectors are attainable from the vacuum in this
way. This does not contradict our definition of singular vectors, which only requires them to be
unequal to the vacuum vector, but the reader should be cognisant of the somewhat colloquial
use of the term “singular vector”.
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grouped into N many “families”. We treat the simplest examples here, N = 1
and N = 2.

r\s 1 2 3 4 5 6 7 8 9 10 11 · · ·

1 0 3
80

1
10

7
16

4
5

23
16

21
10

243
80

4 419
80

13
2
· · ·

2 7
16

1
10

3
80

0 19
80

1
2

83
80

8
5

39
16

33
10

71
16
· · ·

3 7
6

169
240

4
15

5
48
− 1

30
5
48

4
15

169
240

7
6

457
240

8
3
· · ·

4 39
16

8
5

83
80

1
2

19
80

0 3
80

1
10

7
16

4
5

23
16
· · ·

...
...

...
...

...
...

...
...

...
...

...
...

. . .

(a) The (p, q) = (3, 5) extended N = 1 Kac table.

r\s 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·

1 0 1
16

1
6

9
16

1 83
48

5
2

57
16

14
3

97
16

15
2

443
48

11 · · ·

2 3
8

1
16

1
24

1
16

3
8

35
48

11
8

33
16

73
24

65
16

43
8

323
48

67
8
· · ·

3 1 9
16

1
6

1
16

0 11
48

1
2

17
16

5
3

41
16

7
2

227
48

6 · · ·

4 17
8

21
16

19
24

5
16

1
8
− 1

48
1
8

5
16

19
24

21
16

17
8

143
48

33
8
· · ·

5 7
2

41
16

5
3

17
16

1
2

11
48

0 1
16

1
6

9
16

1 83
48

5
2
· · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .

(b) The (p, q) = (4, 6) extended N = 1 Kac table.

Figure 1.3: The first few entries in the extended N = 1 Kac tables with (p, q) =
(3, 5) and (4, 6). The entries in each table show hr,s, with shading to show the
structure of the corresponding reducible module. Unshaded entries correspond
to bulk-type modules, light grey to edge-type, grey to corner type, and dark grey
to centre type. These tables show both sectors (R and NS) combined as one;
these disjoint cases fit together in a checkerboard pattern — recall from (1.45)
that r ≡ s mod 2 corresponds to the NS sector, r 6≡ s mod 2 to the R sector.

1.1.10 Definition. The infinite-dimensional Lie superalgebra s1Vir, called the
N = 1 Virasoro superalgebra, is the algebra with basis

{Ln | n ∈ Z} ∪ {C} ∪ {Ga | a ∈ σ + Z} (1.37)

with either σ = 0 (the Ramond sector) or σ = 1
2

(the Neveu-Schwarz sector),
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Bulk type︷ ︸︸ ︷

... ...

Corner/boundary type︷︸︸︷

...

Centre type︷ ︸︸ ︷

...
...
...

Figure 1.4: Submodule diagrams for Verma modules for the N = 1 Virasoro
superalgebra. Each black vertex represents one singular vector of s1Vir in the
Neveau-Schwarz sector, and two singular vectors in the Ramond sector. For
corner type, a white vertex indicates a solitary singular vector, and doubled black
vertices indicate singular vectors of multiplicity four. Like in Figure 1.2, arrows
indicate the action of the Virasoro superalgebra.

subject to the relations

{Ga, Gb} = 2La+b +
1

3

(
a2 − 1

4

)
Cδa,−b

[Lm, Ga] =

(
1

2
m− a

)
Gm+a

[Ga, C] = 0 ∀a, b,m

(1.38)

in addition to those already defined for Vir (the “N = 0 Virasoro superalgebra”).

1.1.11 Definition. The infinite-dimensional Lie superalgebra s2Vir, called the
N = 2 Virasoro superalgebra, is the algebra with basis

{Ln | n ∈ Z} ∪ {C} ∪ {G+
a | a ∈ σ+Z} ∪ {G−b | b ∈ σ+Z} ∪ {Jm |m ∈ Z} (1.39)

with either σ = 0 (the Ramond-Ramond sector) or σ = 1
2

(the Neveu-Schwarz-
Neveu-Schwarz sector)4, subject to the relations

[Lm, G
±
a ] =

(
1
2
m− n

)
G±m+a [Lm, Jn] = −nJm+n

{G+
a , G

−
b } =

(
La+b + 1

2
(a− b)Ja+b + 1

6
(a2 − 1

4
)Cδa,−b

)
{G±a , G±b } = 0

[G±m, Jn] = ∓G±m+n [Jm, Jn] = 1
3
mCδm+n,0

(1.40)
and C remains central, in addition to those relations already defined for Vir.

4We only consider N = 2 with matching fermion type.
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��
Remark:

In terms of field theory, we have in the N = 1 case:

T (z) =
∑
n∈Z

Lnz
−n−2

G(z) =
∑
n∈σ+Z

Gnz
−n− 3

2

(1.41)

with additional relations

T (z)G(w) ∼
3
2
G(w)

(z − w)2
+
∂G(w)

z − w

G(z)G(w) ∼
2
3
C

(z − w)3
+

2T (w)

z − w
,

(1.42)

and in the N = 2 case:

T (z) =
∑
n∈Z

Lnz
−n−2

G±(z) =
∑
n∈σ+Z

G±n z
−n− 3

2

J(z) =
∑
n∈Z

Jnz
−n−1

(1.43)

with additional relations

T (z)G±(w) ∼
3
2
G±(w)

(z − w)2
+
∂G±(w)

z − w

G+(z)G−(w) ∼
1
3
C

(z − w)3
+

J(w)

(z − w)2
+
T (w) + 1

2
∂J(w)

z − w

T (z)J(w) ∼ J(w)

(z − w)2
+
∂J(w)

z − w

G±(z)J(w) ∼ ∓G
±(w)

z − w

J(z)J(w) ∼
1
3
C

(z − w)2

(1.44)

��
One defines Verma-type modules of the Virasoro superalgebras in exactly the

same way as for the N = 0 case. All of the terminology associated with graded
representation spaces, such as the notion of highest weight vectors, transfers
to the more general case entirely analogously. Some results no longer follow,
however. These differences are chiefly seen in the Ramond sector, at least for
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modules of s1Vir: the theory of Verma modules in the Neveu-Schwarz sector
effectively follows through just as those of Vir itself; all non-trivial submodules
being generated by singular vectors, and the singular subspace at any one grade
being at most one-dimensional.

By contrast, the Ramond sector for N = 1 differs on both counts. Nontrivial
submodules which are not highest weight modules may exist, and there can be
up to two linearly independent singular vectors of each parity at any one grade.
This complicates the representation theory of s1Vir somewhat5.

Singular vectors are defined in just the same way in these spaces as in the
N = 0 case. As for the reducibility of these modules, there is a similar kind of
parametrisation by positive integers and a corresponding organisation into Kac
tables. The N = 1 analogues of the Kac determinant formula (see e.g. [29])
hold that in order for s1Vir Verma modules to be reducible we require positive
integers6 p, q, r, s such that

h = hr,s :=
1

8pq

[
(rq − sp)2 − (q − p)2

]
+

1

16
δσ,0. (1.45)

It is customary to demand p ≡ q mod 2 and gcd{p, 1
2
(q − p)} = 1. One can

check that this implies gcd{p, q} ≤ 2. For the NS sector, we require that r ≡
s mod 2 and for the R sector that r 6≡ s mod 2. For studying the so-called
minimal models, belonging to the Kac table, one demands that 1 ≤ r < p and
1 ≤ s < q and that p, q ≥ 2, but we make no such restriction here as we are
instead interested in the entries of the extended Kac table, where p, q, r, and s
are allowed to be arbitrary positive integers (though still subject to the parity
and coprimality constraints above). This can result in what might typically be
considered “degenerate” cases where the standard Kac table is actually empty,
but here we are interested in a broader context. Examples of extended Kac tables
for the N = 1 case can be found in Figure 1.3.

There are four types of diagram for N = 1 spaces relevant to our purposes,
each corresponding to the location of r, s in the table relative to p and q. We
have:

• p | r and q | s, called corner type;

• p | r or q | s (but not both), called edge type;

• r ≡ 1
2
p mod p and s ≡ 1

2
q mod q, called centre type;

• all others, called bulk type.

5And these features only become more pronounced for N > 1. It would be fair to say that
the representation theory of these higher-N Virasoro superalgebras is only poorly understood

6We implicitly assume that q ≥ p in what follows, but one may easily verify that p↔ q, while
introducing factors of (−1) in some equations, does not change the modules or representation
theory in any way which would affect what follows (i.e., the number of factors is even whenever
it would be relevant).



1.2. FOCK SPACE AS A VIRASORO MODULE 19

Note that, depending on p, q, some types may not appear in a particular extended
table. Embedding diagrams for the N = 1 case, in the manner of Figure 1.2, can
be found in Figure 1.4.

1.2 Fock Space as a Virasoro Module

“Fock Space” as a general term is used for the highest weight spaces generated
by infinite-dimensional bosonic or femionic oscillator algebras (or combinations
thereof). As-is, they have very little interesting structure and are always irre-
ducible as modules of the oscillator algebras themselves. However, we are able to
define a Vir-action on them, and in this sense they can have much more interest-
ing structure.

1.2.1 Fock Space Basics

1.2.1 Definition. The infinite-dimensional bosonic oscillator algebra, a, is the
Lie algebra with basis

{an | n ∈ Z} ∪ {K} (1.46)

and relations
[am, an] = mKδm,−n (1.47)

with K central.

1.2.2 Definition. The infinite-dimensional fermionic oscillator algebra, bσ, is
the Lie algebra with basis

{bn | n ∈ σ + Z} ∪ {κ} (1.48)

and relations
{bm, bn} = κδm,−n (1.49)

with κ central, and where either σ = 0 (the Ramond sector), or σ = 1
2

(the
Neveu-Schwarz sector).

��
Remark:

The modes an, bn are the coefficients in the Laurent expansions of the free
boson and free fermion fields;

a(z) =
∑
n∈Z

anz
−n−1, b(z) =

∑
n∈σ+Z

bnz
−n− 1

2 . (1.50)

We will have occasion to use such objects when we discuss intertwining operators
between Fock spaces. These fields have relations

a(z)a(w) ∼ 1

(z − w)2

b(z)b(w) ∼ 1

(z − w)
.

(1.51)
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Note that the symmetric and antisymmetric dependence on the variables z, w
in each case reflect respectively the bosonic and fermionic natures of the mode
algebras a and bσ. ��

These are Z-graded algebras, just as Vir, and we therefore have corresponding
notions of graded representations, highest weight spaces/vectors, etc. We will also
keep a similar notion of anti-linear anti-involution † for a and bσ, whereby

K† = K, κ† = κ, x†n = x−n, xn ∈ x (1.52)

for x = a or bσ. This of course extends in the obvious way to monomials of
oscillator modes, and by linearity to all elements of U (x).

Just as with Verma modules being the prototypical example of such a repre-
sentation, we have a similar construction for a and bσ, called Fock space. These
corresponding Fock spaces we will denote by Fa

η in the bosonic case and Fb,σ
l in

the fermionic, where these are defined by:

1.2.3 Definition. Fock space, F x, for either x = a or x = bσ, is induced from the
representation V of x0 ⊕ x+ generated from a vector v in the following way:

xnv = 0 xn ∈ x, n > 0 (1.53)

and
a0v = ηv, Kv = v (1.54)

for η ∈ C if x = a, and
κv = v (1.55)

if x = bσ7. If σ = 0, there is no b0 eigenvalue for v — the vectors v and b0v at
grade 0 are linearly independent. Then we have

F x := U (x)⊗U(x0⊕x+) V. (1.56)

The vacuum vector 1 ⊗ v we typically write as |η〉 in the bosonic case, and
either |↑〉σ or |↓〉σ in the fermionic (this arrow notation records the parity of the
vacuum vector, a grading not present in the bosonic case, and one which we shall
soon discuss). In most cases we will also record the choice of vacuum vector
as a subscript, writing Fa

η and/or Fb
l as necessary. The choice of sector for b

might also be unclear from context, and if this is the case, we shall include it
as a second superscript (in the manner Fb,σ

l ) rather than clutter the notation by
attempting to include it as a superscript to b. Sometimes we will wish to make
statements about Fock spaces in general; so as to avoid tedious repetitions across
near-identical cases, we will continue on occasion to use F x, without assuming a
choice of either x = a or bσ, though noting any differences between these cases.

7There is no practical loss of generality in taking the vacuum eigenvalues of K and κ to be
1. If they were any other value (except 0), we could rescale the algebra to bring them back
to unity. We do not consider the case where either is 0; one can easily see that in this case,
the generator modes completely decouple from each other, becoming effectively commutative
algebras. It is not possible to have the kind of representations of Vir that we want on the
resulting space.
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There is no vacuum eigenvalue for |l〉σ, so it does not appear as a subscript
to F as in the bosonic case. The choice of ↑ or ↓ as a label instead represents
the parity of the vacuum vector, a choice nonexistent in the bosonic case. In
addition to the σ + Z-grading induced by that of bσ itself, there is a Z2-grading
of Fb,σ

l which counts the parity of a vector; that is, whether the monomials of
elements from bσ which comprise it are of even or of odd length. If even, the
vector is defined to have the same parity as the vacuum, otherwise it has the
opposite. For the purposes of examining the structure of a single Fb,σ

l , this initial
parity choice is entirely irrelevant, but it does become important when discussing
structures involving more than one fermionic Fock space.

Note that while there are infinitely many choices for η in the bosonic case,
there are only two distinct choices for l, and in fact only three distinct Fb,σ

l up to
isomorphism if one takes into account the choices for σ. The choices ↑ and ↓ give
distinct spaces if σ = 1

2
, but Fb,0

l can be thought of as containing both choices of

vacuum vector simultaneously, since for example b0 |↑〉 has the same parity and
is at the same grade as |↓〉.

As with Vh,c, the dimension of the graded subspace of Fa
η at grade n is equal

to the number of weakly decreasing positive integer partitions of n. For the
fermionic case, this dimension is equal to the number of strongly decreasing non-
negative integer (for σ = 0) or half-integer partitions (for σ = 1

2
) of n. Since all

negatively-indexed modes of a are mutually abelian (and those of b are mutually
anti-abelian), all choices of basis orderings for monomials are equivalent (up to
a possible sign). However, for consistency’s sake, we will take the convention of
increasing index labels;

a−n1a−n2 · · · a−nk |η〉 (1.57)

and/or
bσ−n1bσ−n2 · · · bσ−nk |l〉

σ (1.58)

for positive integers n1 ≥ n2 ≥ · · · ≥ nk.
As representation spaces of their respective oscillator algebras, both bosonic

and fermionic Fock spaces are irreducible. Fock spaces have much more interesting
structure when considered as Vir-modules.

We place a contravariant Hermitian form 〈·, ·〉F on any one F x by defining

〈U1 |·〉 , U2 |·〉〉F = 〈·|
(
U †1U2 |·〉

)
, ∀U1, U2 ∈ U (x) (1.59)

just like the Shapovalov form of a Verma module (c.f. (1.28)), where we have
written |·〉 simply as a placeholder for either |η〉 or |l〉σ, and 〈·| is the C-linear
functional on F x which evaluates to 1 on this vacuum vector and to 0 on every
other element of the space. Colloquially we write this in the bra-ket notation

〈·|U †1U2 |·〉 (1.60)

rather than the more “bilinear form-like” 〈U1 |·〉 , U2 |·〉〉F . Note that this form is
positive-definite, and distinct monomials are orthogonal.
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1.2.2 Bosonic Virasoro Action

We may define a Vir-action on Fa
η in the following way:

Ln :=
1

2

∑
k∈Z

: an−kak : −λ(n+ 1)an (1.61)

where : · : denotes normal ordering ;

: aman : :=

 aman n ≥ m

anam n < m
(1.62)

and λ ∈ C is a constant. For future reference, we also define fermionic normal
ordering:

: bmbn : :=

 bmbn n ≥ m

−bnbm n < m
, (1.63)

which is chiefly the same but takes into account the fact that the generators of b
anti-commute.

Although these are infinite sums of products of elements of a, their evaluation
on Fa

η is well-defined, because for each v ∈ Fa
η , akv = 0 for all sufficiently large

positive k, and the normal ordering of the operators in the sum takes care of the
issue of placing positive-indexed modes to the right of negative ones. When Fa

η is
considered as a Vir module, we record the choice of λ in an additional subscript,
writing Fa

η,λ. One also finds that

[Lm, an] = −nam+n − n(n− 1)λδm,−n. (1.64)

These Lm are a legitimate representation of Vir, but what is more, their
grading respects the natural one defined on the Fock space by the an themselves.
That is, the gradings of Vir, a, and Fa

η are all mutually compatible. This means
that both L0 and C are grade-0 operators, are diagonal, and we can find their
eigenvalue data — the highest weight data, (h, c) — just as for Verma modules.
One finds the following correspondence:

hη,λ =
1

2
η(η − 2λ) cλ = 1− 12λ2. (1.65)

Since these are quadratic in nature, there are generally two solutions for each, so
nominally four modules with data (ηh,c, λc) which have Vir-module data (hη,λ, cλ).
However, one may easily check that interchanging the two possible λ interchanges
the solutions for η, up to a factor of (−1).

��
Remark:
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This construction corresponds to the following field realisation of T (z) in terms
of a(z):

T (z) :=
1

2
: a(z)a(z) : +λ∂a(z). (1.66)

From the OPE

T (z)a(w) ∼ −2λ

(z − w)3
+

a(z)

(z − w)2
+
∂a(w)

z − w
= ∂w

(
a(w)

z − w

)
− 2λ

(z − w)3
(1.67)

we are also able to calculate the commutation relations [Lm, an]. ��

1.2.3 (Ir)reducibility

Fock spaces are generically irreducible as Vir modules. We can examine the cir-
cumstances under which we find nontrivial embedding structures by starting with
the highest weight submodule generated exclusively from the Fock space vacuum,
U (Vir) · |η〉. Due the universality and uniqueness properties of Verma modules,
the space generated in this way is necessarily a quotient of the corresponding
Vhη,λ,cλ . If the Verma module is irreducible, it coincides with its own irreducible
quotient, in which the dimension of each graded subspace attains its maximum.
This is the same as the number of integer partitions of each grade, and the same
as the dimension of the graded subspaces of Fa

η,λ. Thus U (Vir) · |η〉 fills all of
Fa
η,λ, and Fa

η,λ is irreducible.
However, it is not necessarily the case that all elements of U (Vir) · |η〉 must

always be linearly independent. Note that if we extend † from U (a) to infinite
sums of bosonic oscillator modes, then provided λ is real, then L†n = L−n, and
〈·, ·〉F is contravariant Hermitian with respect to Vir, so by uniqueness coincides
with 〈·, ·〉Vh,c on this submodule. Recall, however, that 〈·, ·〉Vh,c is degenerate when

Vh,c has nontrivial submodule structure, but that 〈·, ·〉F is positive-definite. In
such an instance, then, there must exist elements U ∈ U (Vir) such that

U †U |η〉 = 0 (1.68)

so Fa
η,λ is reducible as a Vir module — either U or one of its factors creates a

singular vector, or there is an “unreachable” subsingular vector; U or one of its
factors evaluates to 0 on the vacuum vector.

1.2.4 Definition. Given a Fock space Fa
η,λ, let Ma

η,λ denote the Vir submodule
generated by all singular vectors, that is:

Ma
η,λ =

⋃
v singular

U (Vir) · v (1.69)

(note that the union is used in favour of the direct sum; this is because un-
der certain circumstances, certain of the U (Vir) · v are not disjoint — refer to
Figure 1.5 for details).
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Then a subsingular vector is defined to be a vector which, while not singular
in Fa

η,λ, becomes singular in the quotient Fa
η,λ/Ma

η,λ.

Some Fock spaces contain what should rightly be called sub-subsingular vec-
tors; those which require two iterations of the above procedure before they become
singular. For our purposes, the distinction will be mostly irrelevant, so we will
typically just refer to all vectors of this type as just “subsingular”.

Distinguished vectors, singular and subsingular, appear in Fa
η,λ at the same

grades as singular vectors in the corresponding Vh,c. The submodule diagrams
therefore appear similar, with the chief difference being that the directions of
some arrows have reversed direction. For λ real (and hence c ≤ 1) the parametri-
sations (1.34) and (1.35) in terms of coprime integers p, q give corresponding
parametrisations for η and λ:

λp,q =
1√
2pq

(q − p)

η±r,s =
1√
2pq

((q − p)± (rq − sp))
(1.70)

where again we have suppressed superscripts on η recording the choice of p, q, as
we typically work with the value of c clear by context. In lieu of this, we opt
to display the choice of solution to the quadratic in (1.65). It is also much more
convenient and legible if we refer to Fa

η±r,s,λp,q
simply as F±r,s.

We also have Kac tables for Fock spaces. The values of hr,s are the same as
for the Kac tables of Verma modules, but now there exist two entries in each cell,
one for each of η±r,s. Interestingly, this choice of ± for the vacuum eigenvalue is
not irrelevant, since it is preserved by the intertwining maps we will construct
below.

The diagram structure of a reducible Fock space as a Virasoro module depends
on its position in its (extended) Kac table. There are three chief regions in each
table, as follows:

• Bulk, where r - p and s - q,

• Edge, where either r | p xor s | q, and

• Corner, where both r | p and s | q.

The particular submodule structures corresponding to each, and their dependence
on the choice of η±r,s, are displayed in Figure 1.5.

1.2.4 Intertwining Maps

We introduce the notion of the vertex, or screening, operator, giving screening
currents which act as maps from one Fock space to another. These maps may even
be intertwiners of the corresponding Vir representations — that is, they commute
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∣∣η+
r,s

〉
(rs)

... ...

∣∣η−r,s〉
(rs)

... ...︸ ︷︷ ︸
Bulk

“Braid type”

∣∣η+
r,s

〉
(rs)

...

∣∣η−r,s〉
(rs)

...︸ ︷︷ ︸
Edge

“Chain type”

∣∣η±r,s〉
(rs)

...︸︷︷︸
Corner

“Point type”

Figure 1.5: The various possible submodule structures of F±r,s. Grading increases
down the page, with arrows indicating nontrivial Vir action. Filled nodes denote
singular vectors, unfilled and partially filled denote sub- and sub-subsingular vec-
tors respectively. Note how the choice of η±r,s changes the submodule structure
— in particular the type of the vector at grade rs, marked on the diagrams. It
should be noted that in the bulk the first proper singular vector of F+

r,s does not
always occur at a higher grade than that of F−r,s; this apparently being the case
is simply due to our choice of diagram.

with the Vir-action — if the vertex operator’s internal parameter meets certain
conditions, based upon the spaces themselves.

Recall that the modes an were the Laurent coefficients of the field

a(z) =
∑
n∈Z

anz
−n−1. (1.71)

We now introduce a new operator, q. This operator extends the algebra a with
the following relations:

[an,q] = δn,0, [q, K] = 0. (1.72)

The reader familiar with Hamiltonian mechanics may recognise this as a scaled
version of the canonical commutation relation between a position operator (q)
and its conjugate momentum (a0).

We treat q as an “integration constant”, writing

∂−1a(z) := q + a0 log (z)−
∑
n6=0

1

n
anz

−n (1.73)

which allows us to define the vertex operator of shift µ.
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1.2.5 Definition. The vertex operator of shift µ, Vµ(z), is defined to be

Vµ(z) := : exp
(
µ∂−1a(z)

)
:

= eµqzµα0 exp

(
µ
∑
n>0

α−n
n
zn

)
exp

(
−µ
∑
n>0

αn
n
z−n

)
.

(1.74)

And when acted upon a Fock space Fa
η,λ such that µη ∈ Z, we may write8

Vµ(z) =
∑
n∈Z

Vnz
−n−hµ (1.75)

where hµ = 1
2
µ(µ− 2λ) is the conformal weight of the vertex operator.

��
Remark:

From this definition we can calculate, for instance,

a(z)Vµ(w) ∼ µVµ(w)

z − w
(1.76)

and hence

T (z)Vµ(w) ∼
1
2
µ (µ− 2λ)Vµ(w)

(z − w)2
+
µa(w)Vµ(w))

z − w

=
hµVµ(w)

(z − w)2
+
∂Vµ(w)

z − w

(1.77)

��
Note that

a0e
µq |η〉 = µeµq |η〉+ eµqa0 |η〉 = (η + µ)eµq |η〉 , (1.78)

so we identify eµq |η〉 with |η + µ〉, and this factor within the vertex operator
achieves the mapping from one Fock space to another. The parameter µ is then
the amount by which the vacuum eigenvalue is shifted. The other exponential
terms in the definition of Vµ(z) have the effect of introducing factors consisting
of combinations of bosonic oscillator modes, which produce a net creation or
annihilation of states which commutes with the shift in vacuum eigenvalue.

In addition to satisfying the monodromy condition (µη ∈ Z), if we also have
hµ = 1, then we find

[Lm, Vn] = −nVm+n ∀m,n ∈ Z. (1.79)

8This is because any non-integral power of z appearing in Vµ(z) comes from the factor of
zµa0 ; provided its evaluation zµη on Fa

η,λ has integral exponent, the series expansion is possible.
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��
Remark:

In field theory parlance, we say that in this case Vµ(z) is a (Viraosro) primary
field of weight one. Since hµ = 1, we can in particular write

T (z)Vµ(w) =
Vµ(w)

(z − w)2
+
∂Vµ(w)

z − w
= ∂w

(
Vµ(w)

z − w

)
, (1.80)

which is what allows us to calculate the commutation relation above. More details
on the field theory of these algebras are to follow in later chapters, but for the
time being our chief interest is with the commutation relations of the expansion
coefficients as operators on Fock space. ��

In particular, note that

[Lm, V0] = 0 ∀m ∈ Z (1.81)

meaning, then, that:

1.2.6 Proposition. If Vµ(z) is a vertex operator, and Fa
η,λ a Fock space such

that

µη ∈ Z (1.82)

and

hµ =
1

2
µ(µ− 2λ) = 1 (1.83)

then the operator V0 : Fa
η,λ → Fa

η+µ,λ defined by

V0 = Res
z=0

Vµ(z) (1.84)

is an intertwiner of Virasoro representations; [Lm, V0] = 0.

The intertwiner V0 is a graded operator of weight 0 in the sense that it pre-
serves the L0 eigenvalue of any vector it acts upon. This is not to say that it
preserves the grade of the element of U (a) which creates it from |η〉. Instead it
is the net creation or annihilation of bosonic modes together with a global shift
in vacuum grading which combine to make V0 a weight-0 operator.

Several vertex operators may be composed together to give more general inter-
twining maps, but the situation becomes significantly more complicated to treat.
For the composition of n many identical vertex operators, we have

Vµ(z1) · · ·Vµ(zn) = enµq
∏
i<j

(zi − zj)µ
2
∏
i

zµα0

i

× exp

(
µ
∑
k>0

α−k
k
pk

)
exp

(
−µ
∑
k>0

αk
−k

p−k

) (1.85)
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where pk = zk1 + · · · + zkn is the kth power sum. When the context is clear, we
abbreviate (1.85) as Vn×µ(z).

The “zero mode” V0 is now harder to extract. In order to proceed, we follow
the theory developed in [44] and outlined in [25] and make the projective change
of variables (z1, . . . zn) 7→ (x, yi, . . . yn)

x = z1, yi =
zi
x
, i = 2, 3, . . . , n (1.86)

��
Remark:

This change of variables is possible because the individual zi are never zero.
They are not merely complex variables; they represent “insertion points” for the
n many distinct fields Vµ(zi) on C×, the punctured complex plane (C\{0}). From
the physics side of the field theory, this space – equivalent to an infinite cylinder
– corresponds to the world-sheet of a string. We also have zi 6= zj whenever i 6= j
– otherwise the fields Vµ(zi) would fail to be distinct. Hence we can conclude that
the new variables yi satisfy yi 6= 0, 1,∞, yj for all i = 1, 2, . . . n and i 6= j.

This rather geometric statement, together with the factors of (zi − zj) in the
expansion of Vn×µ(z) (c.f. (1.85)) which become factors of (1− yi) and (yi − yj),
reminiscent of the integration kernel of the generalised hypergeometric function,
is suggestive of a particular well-known type of contour integral. Indeed, this
approach is what allows us to find a nontrivial “residue” of the multi-variate
Vn×µ(z) and therefore to extract an intertwining operator from this composite of
fields. ��

Under the change of variables, the monodromy condition becomes one only for
the x variable, because when extracting the “zero mode” we are able to split the
integration contour into a loop around x connected to a generalised Pochhammer
contour around the yi [25].

Following this prescription, we obtain the requirements that

λ =
1

2
µ− 1

µ
(1.87)

and

η = λ− 1

2
nµ− 1

µ
m (1.88)

for some integer m. If these conditions are met, then there exists a contour Γ
such that

V0 =

∮
Γ

Vn×µ(z)dz1 · · · dzn (1.89)

is a bona fide non-trivial intertwiner of Virasoro representations V0 : Fη,λ →
Fη+nµ,λ.

The first of the above conditions is the familiar requirement that the ver-
tex operators involved be Virasoro primaries of conformal weight 1; i.e. that
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hµ = 1. The second, the monodromy condition, is perhaps more intuitive when
re-expressed through an equivalent statement involving the vacuum conformal
weights of the domain and image spaces:

∆h = hη+nµ − hη

= n

(
µη +

1

2
(n− 1)µ2 + 1

)
.

(1.90)

By inserting (1.88) into the above, we find it to be equivalent to the requirement
that ∆h be an integral multiple of n. Using these restrictions, we see there
may only exist at most a single pair of modules related by any one given triple
(n,∆h, µ). Indeed, if V0 : Fη1 → Fη2 , is nontrivial, then

η1 =
1

2
(1− n)µ+

∆h− n
nµ

, η2 =
1

2
(1 + n)µ+

∆h− n
nµ

(1.91)

or, in other words,

hη1 =
1

2

[
1

4
(n2 − 1)µ2 + (1−∆h) +

∆h2 − n2

n2µ2

]
,

hη2 =
1

2

[
1

4
(n2 − 1)µ2 + (1 + ∆h) +

∆h2 − n2

n2µ2

]
.

(1.92)

The central charge is also set by c = 1−12(µ
2
− 1

µ
)2, uniquely determining the two

modules. When the modules involved are reducible, within a fixed (p, q) table,
we find two possible solutions for µ:

µ+ =

√
2q

p
, µ− = −

√
2p

q
. (1.93)

Then
η±r,s + µ+ = η±r±2,s η±r,s + µ− = η±r,s±2, (1.94)

so vertex operators preserve the choice (±) of vacuum η±r,s, with µ+ changing the
r index and µ− changing the s, both in steps of 2 with an appropriate sign. Note
that the central charge c is never changed.

1.2.5 Fock Superspaces

We create Fock space representations of the superspaces s1Vir and s2Vir by
including the modes of b. The number of independent copies of b required is
equal to N , the fermion number of the superalgebra.

The N = 1 Fock Superspace

1.2.7 Definition. The N = 1 Fock superspace of vacuum eigenvalue η, vacuum
parity l, and sector choice σ, denoted S1Fση,l, is defined to be

S1Fση,l = Fa
η ⊗U(b) Fb,σ

l (1.95)



30 CHAPTER 1. THE VIRASORO ALGEBRA

We typically do not notate vectors in this space nor the action of the algebras
U (a), U (bσ) using full tensor product notation, opting for something much more
compact. For instance, we write its vacuum vector as |η, l〉σ instead of |η〉 ⊗ |l〉σ
and just denote the action of such operators as an ⊗ 1U(bσ) and 1U(a) ⊗ bn with
simple juxtaposition, so the typical basis element of S1Fση,l appears as

a−n1 · · · a−nib−m1+σ · · · b−mj |η, l〉
σ , (1.96)

for some n1, . . . , ni ∈ Z and m1, . . . ,mj ∈ σ + Z.
This space is simple as a module of the combined oscillator algebras. It can

however be made to carry an action of s1Vir, the N = 1 Virasoro superalgebra,
with a similar construction to that seen in the N = 0 case. We define

Ln :=
1

2

∑
k∈Z

: akan−k : −(n+ 1)λan −
1

2

∑
k∈σ+Z

(k +
1

2
) : bn−kbk :

Gn :=
∑
k∈Z

akbn−k − 2λ(n+
1

2
)bn

(1.97)

for some constant λ ∈ C, and keep track of this choice with an additional subscript
S1Fη,l,λ. We can then calculate

[Lm, an] = −nam+n − n(n− 1)λδm,−n

[Gm, an] = −nbm+n

[Lm, bn] = −
(

1

2
m+ n

)
bm+n

{Gm, bn} = am+n + 2λ

(
n− 1

2

)
δm,−n

(1.98)

��
Remark:

We have, at the level of fields,

T (z) =
1

2
: a(z)2 : +λ∂a(z)− 1

2
: b(z)∂b(z) : (1.99)

and
G(z) = a(z)b(z) + 2λ∂b(z) (1.100)

giving

T (z)a(w) ∼ ∂w

(
a(w)

z − w

)
− 2λ

(z − w)3

G(z)a(w) ∼ ∂w

(
b(w)

z − w

)
T (z)b(w) ∼

1
2
b(w)

(z − w)2
+
∂b(w)

z − w

G(z)b(w) ∼ −2λ

(z − w)2
+

a(w)

z − w
.

(1.101)
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��
The values of (h, c) for this representation can then be calculated as

h =
1

2
η(η − 2λ) +

1

16
δσ,0, c =

3

2
− 12λ2 (1.102)

We find again that due to the quadratic relationship between h and η, there
are in general two inequivalent reducible Fock modules of the super-Virasoro
algebra at each (r, s), which nevertheless have the same values of h and c. These
solutions correspond to taking

η = η±r,s =
1

2
√
pq

[(q − p)± (rq − sp)] . (1.103)

Note that there is no sector dependence in this equation, holding for either σ = 0
or σ = 1

2
. The two sectors are, however, distinct in that the difference r − s

is odd in the former (σ = 0) case and even in the latter (σ = 1
2
). Generically,

interchanging the solutions η+ ↔ η− has the effect of reversing all the arrows in
the submodule diagram. Again, these diagrams are schematic descriptions of the
modules involved, showing (sub)singular vectors which generate submodules, as
vertices, with arrows between them indicating when one such generating vector
can be obtained nontrivially from another by action of the super-Virasoro algebra.
Singular vectors are annihilated by all positive modes of the algebra, subsingular
are not singular but become so in the quotient by all vectors “downstream” of
themselves, following the arrows in the diagram. In the Ramond sector, the
multiplicity of singular and subsingular vectors is doubled at each level, as any
vector v ∈ S1Fη is (sub)singular if and only if b0v is also (sub)singular. The
parity-reversing mapping afforded by b0 can (nearly always) be achieved at the
level of super-Virasoro generators by G0 – but only for the vacuum vector(s)
|η, l〉0. Indeed, note

G0 |η, l〉0 = (η − λ) b0 |η, l〉0 . (1.104)

Both G0 and b0 are typically locally idempotent on the vacuum, except for when
η = λ, in which case G0 is the zero operator. This occurs exactly when (rq−sp) =
0 and provides the only type of Fock-type module of the N = 1 super-Virasoro
algebra with significant structural differences with those of the N = 0 algebra.

Indeed, corner, edge and bulk-type modules in the N = 1 case have identical
substructure diagrams to their N = 0 namesakes (c.f. Figure 1.5), except that
the multiplicity of singular vectors at each vertex in the Ramond sector is two,
not one. The centre type modules generically appear similar to the bulk, except
for the special case when η = λ and there exists no mapping between the two
vacua |η, ↑〉0 and |η, ↓〉0 within the action of the algebra s1Vir. This particular
case is exhibited in Figure 1.6.

Now, if we wish to construct intertwining maps between the s1Vir represen-
tations on such spaces, we must turn again to the vertex operators seen in 1.2.4.
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∣∣η±r,s, ↑〉0 ∣∣η±r,s, ↓〉0

...
...︸ ︷︷ ︸

η=λ

∣∣η±r,s, ↑〉0
,
∣∣η±r,s, ↓〉0

...
...︸ ︷︷ ︸

η 6=λ

Figure 1.6: The structures of the N = 1 centre-type s1Vir modules in the Ramond
sector. Typically (e.g. for η 6= λ) the same structure as those of the bulk type
module, each vertex represents a set of (sub)singular vectors of multiplicity two,
except for the uppermost pair in the left-hand diagram, which indicate just one
singular vector each. We see how the collision of the parameters η and λ, removing
our ability to interchange between the two vacua of opposite parities using the
action of s1Vir, splits the spaces generated from these vectors into two disjoint
submodules.

To be a legitimate intertwiner, any candidate map φ : S1Fη1,l1 → S1Fη2,l2 must
now commute not only with the Ln, but also with the Gn. We begin with the
field defined in Definition 1.2.5;

Vµ(z) := : exp
(
µ∂−1a(z)

)
:

= eµqzµα0 exp

(
µ
∑
n>0

α−n
n
zn

)
exp

(
−µ
∑
n>0

αn
n
z−n

)
.

(1.105)

Since the “modifications” made to the Lns in moving from the N = 0 to
the N = 1 case is effectively the addition of series terms involving products of
bns, which commute with the bosonic modes used in the construction of Vµ(z),
we may infer as before that having hµ = 1 results in the relation [Lm, Vn] =
−nVm+n remaining unchanged. However, V0 no longer constitutes an intertwiner
of Virasoro (super)algebra representations, as it does not commute with the Gns.
In fact, we can calculate that generally

[Gm, Vn] = µ
∑
k∈Z

Vn+kbm−k. (1.106)

whenever µ is such that a series decomposition of Vµ(z) is possible.
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It is clear that, in order to rectify this issue and produce genuine intertwining
operator for N = 1 representations, it will be necessary to introduce fermionic
components into Vµ(z) that take into account the behaviour of the Gn modes.

While it is possible to proceed in an algebraic manner, it is much more ex-
pedient to attempt this construction at the level of fields, where the existence of
intertwining operators is immediately apparent. It is sufficient to find an opera-
tor whose product expansion with the fields of the theory (in this case, T (z) and
G(z)) is a total derivative; the residue of this field about 0 is then an operator
which commutes with the entire algebra.

Since one already has

T (z)Vµ(z) ∼ hµVµ(w)

(z − w)2
+
∂Vµ(w)

z − w
(1.107)

and

G(z)Vµ(w) ∼ µb(w)Vµ(w)

z − w
, (1.108)

and one can also calculate

T (z) (b(w)Vµ(w)) ∼
(

1
2

+ hµ
)

(b(w)Vµ(w))

(z − w)2
+
∂ (b(w)Vµ(w))

z − w
(1.109)

and

G(z) (b(w)Vµ(w)) ∼ 1

µ

[
2hµVµ(w)

(z − w)2
+
∂Vµ(w)

z − w

]
, (1.110)

we see that there exists an even/odd couplet (V
(0)
µ (z), V

( 1
2

)
µ (z))

V (0)
µ (z) =

1
√
µ
Vµ(z)

V
( 1

2
)

µ (z) =
√
µb(z)Vµ(z)

(1.111)

which is preserved by T (z) and interchanged by G(z). If we tune µ such that
hµ = 1

2
(and happen to have η such that series expansions exists for the fields in

the couplet), then we find that

[Lm, V
( 1

2
)

n ] = −nVm+n = [Gm, V
( 1

2
)

n ] (1.112)

and note in particular that while only one fermion has been used in the con-

struction of V
( 1

2
)

µ (z), the field is overall bosonic (due to it having a net conformal
weight of 1) so that it is appropriate to use the ordinary commutator bracket for

[Gm, V
( 1

2
)

n ] rather than the anticommutator. Since

V
( 1

2
)

µ (z) = eµq

( ∑
m∈σ+Z

bmz
−m− 1

2

)
zµa0

∏
n>0

exp
(µ
n
a−nz

n
)

exp
(
−µ
n
anz

−n
)
,

(1.113)
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we see that a series expansion is possible provided that

µη − 1

2
∈ σ + Z. (1.114)

One can produce more general intertwining maps by taking the composition

of several fields V
1
2
µ (z). In this case, the requirement that hµ = 1

2
remains the

same, but rather than the condition for trivial monodromy being as in (1.114),
we have something more complicated. For the product of n many fields with the

same µ, which we abbreviate as V
( 1

2
)

n×µ(z), we have

V
( 1

2
)

n×µ(z) = V
( 1

2
)

µ (z1) · · ·V ( 1
2

)
µ (zn)

= enµq

( ∑
m1,...mn∈σ+Z

bm1 · · · bmnz
−m1− 1

2
1 · · · z−mn−

1
2

n

)

×
∏
i 6=j

(zi − zj)
1
2
µ2

n∏
i=1

zµa0

i

∏
k>0

exp
(µ
k
a−kpk

)
exp

(
−µ
k
akp−k

)
(1.115)

where again pk(z) is the kth power sum,

pk = zki + · · · zkn. (1.116)

As in the N = 0 case, one proceeds by following the theory outlined in [25],
making the projective change of variables (z1, . . . zn) 7→ (x, yi, . . . yn) and showing
the existence a non-trivial contour as a connected sum of a loop in x and a
generalised Pochhammer contour in the yi. While only the purely bosonic case is
considered in [25], one can check with relative ease that the result is unchanged
by the presence of fermions (or of any particular modes of any particular algebra,
providing they do no more than introduce additional monomial powers of the
variables, and do not change the basic form of the kernel of integration).

We find the monodromy condition

n

(
1

2
(n− 1)µ2 + µη − 1

2

)
∈ nσ + Z (1.117)

(and note that setting n = 1 recovers the monodromy condition for a single field).
We can consider this, as for (1.88), in the equivalent form of a condition on the
quantity

∆h = hηL − hηR
= hηR+nµ − hηR

= n

(
1

2
nµ2 + µη − µλ

)
= n

(
1

2
(n− 1)µ2 + µη +

1

2

)
,

(1.118)
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where the last equality follows because hµ = 1
2
µ(µ−2λ) = 1

2
, obtaining ∆h−n ∈

nσ + Z, or just ∆h ∈ nσ + Z. This means we are also able to constrain

ηR =
1

2
(1− n)µ+

2∆h− n
2nµ

, ηL =
1

2
(1 + n)µ+

2∆h− n
2nµ

(1.119)

and therefore

hR =
1

2

[
1

4
(n2 − 1)µ2 +

(
1

2
−∆h

)
+

4(∆h)2 − n2

4n2µ2

]
hL =

1

2

[
1

4
(n2 − 1)µ2 +

(
1

2
+ ∆h

)
+

4(∆h)2 − n2

4n2µ2

]
,

(1.120)

and we see that in order to determine S1FηL and S1FηR up to isomorphism, it is
sufficient to specify (µ,∆h, n).

Of particular interest is when the two spaces involved are reducible, belonging
to an extended Kac table. The chosen conformal weight, withh hµ = 1

2
, reveals

that in the (p, q) extended table there are two solutions for µ:

µ+ = 2

√
q

p
, µ− = −2

√
p

q
(1.121)

This means
η±r,s + nµ+ = η±r±4n,s, η±r,s + nµ− = η±r,s±4n (1.122)

so that intertwiners map in steps of 4 around the extended Kac table, and hence
preserve the sector (R or NS) as well as the choice of ± for η±. It is interesting to
note here the relative parity of the vacuum vectors of the domain and image mod-

ules under the mapping. Overall, the zero mode of the field V
1
2
n×µ(z) is bosonic,

being a graded operator of grading 0 ∈ Z. However, simple mode counting of the
expansion in (1.115) shows that the parity of fermionic creation operators in the
zero mode is the same as that of n. Thus, if n is odd, then the intertwiner also
changes the fermionic parity of any vector it acts upon, even though it must be
an even operator. The only way to resolve this apparent contradiction is if the
vacuum vectors of the two modules are of opposite parities — parity is, in some
sense, a “local” property, defined only with respect to the relevant vacuum vector.
Vacuum parity, usually a mostly irrelevant choice of convention, now becomes an
important aspect when attempting to find Fock modules of the N = 1 Virasoro
superalgebra which are related by intertwining maps.

The N = 2 Fock Superspace

The extra complications arising from the addition of a single copy of b in the
N = 1 case are only exacerbated further when a second copy is introduced. In the
N = 2 case, we make yet another highest weight construction, this time with four
oscillator algebras (two copies of a and two of b) from a vacuum |η1, η2, l1, l2〉σ.
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1.2.8 Definition. The N = 2 Fock superspace of vacuum eigenvalues η1 and η2,
vacuum parities l1 and l2, and sector σ, denoted S2Fση1,η2,l1,l2 , is defined to be

S2Fση1,η2,l1,l2 = Fa
η1
⊗Fa

η2
⊗Fb

l1,σ ⊗F
b
l2,σ (1.123)

This space, like its lower-N cousins, is simple as a module of its combined
oscillator algebras, and many of the same structural statements apply. However,
when considered as a module of the N = 2 Virasoro superalgebra, the situation
becomes extremely complicated. Very little is known about the Fock superspace
representation theory of s2Vir.

One begins the construction of the Virasoro superalgebra generators in a sim-
ilar way as before. Since all oscillator algebras are mutually commuting, the Ln
modes (for instance) are simply the sum of two disjoint copies of what is seen in
the N = 1 case;

Ln :=
2∑
i=1

[
1

2

∑
k∈Z

: a
(i)
k a

(i)
n−k : −(n+ 1)λia

(i)
n −

∑
k∈σ+Z

(k +
1

2
n) : b

(i)
k b

(i)
n−k :

]
(1.124)

where i labels the copies of the oscillator algebras, and λi are complex numbers.
One can derive, for instance, the central charge as

c = 3− 12(λ2
1 + λ2

2). (1.125)

This realisation utilises mutually commuting (real) bosonic (a1(z), a2(z)) and
fermionic (b1(z), b2(z)) fields, but it can be convenient to make a change of “basis”
to one complex field of each type:

a(z) :=
1√
2

(a1(z) + ia2(z)) , ā(z) :=
1√
2

(a1(z)− ia2(z))

b(z) :=
1√
2

(b1(z) + ib2(z)) , b̄(z) :=
1√
2

(b1(z)− ib2(z))
(1.126)

satisfying

a(z)a(w) ∼ ā(z)ā(w) ∼ b(z)b(w) ∼ b̄(z)b̄(w) ∼ 0

a(z)ā(w) ∼ ā(z)a(w) ∼ 1

(z − w)2

b(z)b̄(w) ∼ b̄(z)b(w) ∼ 1

z − w
.

(1.127)

Together with the definition

λ :=
1√
2

(λ1 + iλ2) , λ̄ :=
1√
2

(λ1 − iλ2) , (1.128)
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we then have

T (z) = : a(z)ā(z) : +
1

2

(
λ̄∂a(z) + λ∂ā(z)

)
− 1

2
: b(z)∂b̄(z) + b̄(z)∂b(z) :

G(z) = G+(z) = ā(z)b(z) + λ̄∂b(z)

Ḡ(z) = G−(z) = a(z)b̄(z) + λ∂b̄(z)

J(z) = : b(z)b̄(z) : −
(
λ̄a(z)− λā(z)

)
.

(1.129)

The reason for this choice of basis is to simplify some of the derivations at the
field level — again, it is simpler to construct candidate intertwining maps using
the properties of the operator product expansion.

In this basis, one makes choices of shifts µ1, µ2 to the vacuum eigenvalues
η1, η2, defining

µ :=
1√
2

(µ1 + iµ2) , µ̄ :=
1√
2

(µ1 − iµ2) , (1.130)

and beginning with the familiar vertex operator (now in two bosonic fields)

Vµ(z) := : exp
(
µ̄∂−1a(z) + µ∂−1ā(z)

)
: , (1.131)

we see, for instance,

T (z)Vµ(w) ∼ (hµ1 + hµ2)Vµ(w)

(z − w)2
+
∂Vµ(w)

z − w

G(z)Vµ(w) ∼ µ̄b(w)Vµ(w)

z − w

Ḡ(z)Vµ(w) ∼ µb̄(w)Vµ(w)

z − w

J(z)Vµ(w) ∼
−2
(
µλ̄− µ̄λ

)
Vµ(z)

z − w
,

(1.132)

which suggests by analogy with the N = 1 case a quadruplet of fields(
V (0)
µ (z), V

( 1
2

)
µ (z), V̄

( 1
2

)
µ (z), V (1)

µ (z)
)

(1.133)

related by constant scalings to the four fields

V (0)
µ (z) ∝ Vµ(z)

V
( 1

2
)

µ (z) ∝ b(z)Vµ(z)

V̄
( 1

2
)

µ (z) ∝ b̄(z)Vµ(z)

V (1)
µ (z) ∝ :

(
βb(z)b̄(z) + ᾱa(z) + αā(z)

)
Vµ(z) :

(1.134)
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for some constants β, α, ᾱ. Indeed, one finds relations like

T (z)V (1)
µ (w) ∼ ∂

(
V

(1)
µ (w)

z − w

)

+ k1

[
(hµ1 + hµ2)

(z − w)2
+

(
ᾱ(µ− 2λ) + α(µ̄− 2λ̄)

)
Vµ(z)

(z − w)3

]

G(z)V (1)
µ (w) ∼ ᾱ

k1

k 1
2

∂

(
V

( 1
2

)
µ (w)

z − w

)

− k1

[
(β + ᾱµ− αµ̄) : ābVµ : (w)

z − w
+

(µ̄− 2λ̄)b(w)Vµ(w)

(z − w)2

]
Ḡ(z)V (1)

µ (w) ∼ α
k1

k̄ 1
2

∂

(
V̄

( 1
2

)
µ (w)

z − w

)

+ k1

[
(β + ᾱµ− αµ̄) : ab̄Vµ : (w)

z − w
+

(µ− 2λ)b(w)Vµ(w)

(z − w)2

]
J(z)V (1)

µ (w) ∼ 0− 2k1

[
(λ̄µ− λµ̄)V

(1)
µ (w)

z − w
+

(−1
2
β + λ̄α− λᾱ)Vµ(z)

(z − w)2

]
(1.135)

where k1, k 1
2
, k̄ 1

2
are the constants of proportionality relating the fields in (1.134).

This gives us a system of equations which constrains the candidate source of the
intertwining operator; the field V

(1)
µ (z). This system, removing redundancies, is:

µ− 2λ = 0

β + ᾱµ− αµ̄ = 0.
(1.136)

The first of these two equations simply ensures that the field Vµ(z) is a weight-
0 Virasoro primary, since then hµ = 1

2
µ(µ − 2λ) = 0. Compare this to the

N = 0 requirement that this field be primary of weight 1, and the N = 1
requirement that it be primary of weight 1

2
. This is in line with the general

procedure of producing intertwining operators by creating primary fields of total
weight 1 through products of free fields present in the theory. In each case,
as N increased, we found that progressively higher-order combinations of such
fields were necessary, because we required additional degrees of freedom to fix the
operator product expansions with the superpartner fields to T (z).

The meaning of the second equation is less immediately obvious; it appears
to contain at least one completely unconstrained degree of freedom, perhaps due
to our ability to independently vary η1 and η2 through µ1 and µ2. We have
suggestively named α, ᾱ to imply the solution (β, α, ᾱ) = (0, µ, µ̄), but in the
absence of other constraints, this system is actually under-determined (α and ᾱ,
unlike pairs µ and µ̄ or λ and λ̄, need not be genuine complex conjugates). If
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β = 0 is in fact the case, however, then note by the placement of α, ᾱ in the
definition of V

(1)
µ (z) that

V (1)
µ (z) ∝ ∂

(
V (0)
µ (z)

)
. (1.137)

As a total derivative, V
(1)
µ (z) has no residue, and therefore the intertwiner it

provides is in fact the zero operator. Therefore the existence of nontrivial inter-
twiners obtained from V

(1)
µ (z) is contingent on taking β 6= 0. In this case, it is

not clear if there is any natural choice for α and ᾱ.

1.3 Summary

We have examined the representation theory of the Virasoro algebra and its
N = 1 and N = 2 superalgebra variants. While beginning with Verma modules,
we have in fact focused our attention on another type of Z-graded module for
these algebras: various types of Fock space.

Fock spaces, induced Verma-style via the action of bosonic and fermionic oscil-
lator algebras from a vacuum vector, nevertheless carry Virasoro representations
wherein the Virasoro generators are realised as infinite quadratic sums of oscilla-
tor generators. We have seen that the structures of these Fock spaces is typically
related, but not identical, to those of the Virasoro Verma modules of the same
parameters.

The presence of the oscillator algebras affords us the opportunity of algebraic
manipulations outside the action of the Virasoro elements themselves, and thus
the ability to produce intertwining maps between Fock spaces using vertex oper-
ators – the normally ordered exponentials of oscillator modes (together with the
important generator of vacuum momentum shifts, q) and their field products of
varying degree.

We have directed our attention at these intertwining maps, because their
existence provides the basis of the work to follow, which focuses on the con-
struction of indecomposable Virasoro modules where the zero mode L0 acts non-
diagonalisably.
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Chapter 2

Logarithmic Conformal Field
Theory

“I don’t know anyone that really likes algebra, and if you do, you need to look
in the mirror and check yourself.”

“Pitbull” (Armando Christian Perez), singer/songwriter

We now turn to the main topic of this work; logarithmic conformal field
theory (LCFT, or logCFT). This is a kind of extension of standard conformal field
theory in which the fields are permitted to have logarithmic-type singularities. In
particular, we are interested in the new types of Virasoro representations which
arise out of making this extension.

These modules have been called “staggered” in the literature [41] for at least
two decades now, reflecting the fact that the Virasoro algebra action on these
spaces is indecomposable and its zero mode, L0, is non-diagonalisable. On the
field theory side of things, this corresponds to the existence of multiplets of fields
whose expansions with T (z) have a particular “upper-diagonal” form.

2.1 Basics of logCFTs and Staggered Modules

When one studies two-dimensional conformal field theories one often works at
the level of fields and their operator product expansion relations in some vertex
operator algebra. These relations are heavily constrained by conformal symmetry.
For instance, for a primary field φ of conformal weight h, the four-point correlator
is determined up to a function of the cross-ratio x of the field variables:

〈φ(z1)φ(z2)φ(z3)φ(z4)〉 ∼ 1

(z1 − z3)2h

1

(z2 − z4)2h
F (x),

x =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

(2.1)

41
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When φ belongs to a Kac table, a differential equation may be found for F .
Generically, these can be directly solved. However, for certain values of the
“internal parameters” such as the central charge c and the conformal weight
h, this differential equation becomes (in a sense) degenerate: simply assuming
polynomial behaviour of F near its poles fails to give all solutions. The full set
of solutions for F are only found once one introduces logarithmic behaviour —
hence the name logarithmic conformal field theory [22,23]. Perhaps surprisingly,
doing so does not affect conformal invariance.

In these instances, the primary fields φ appear in multiplets together with a
number of non-primary logarithmic partner fields whose operator product expan-
sions contain these logarithmic terms. The length of this multiplet is called the
rank of the logarithmic theory. For instance, in a rank-2 theory with multiplet
(φ,Φ), we have

〈Φ(z)Φ(w)〉 ∼ A− 2B log(z − w)

(z − w)2h

〈Φ(z)φ(w)〉 ∼ B

(z − w)2h

〈φ(z)φ(w)〉 ∼ 0

(2.2)

for some constants A,B [22]. The vanishing of 〈φφ〉 may be surprising, but is
forced by consistency with conformal symmetry. It may be utilised (provided
B 6= 0, an uncommon but not impossible scenario) to make a field redefinition
Φ 7→ Φ′ = Φ+kφ in order to tune A to any desired value. It is not possible to alter
B at all in this way, and it is in fact an invariant of the multiplet, variously called
anomaly number, logarithmic coupling, or indecomposability parameters by other
authors. It can be thought of as measuring how “badly” the theory in question
is non-semisimple, in the sense that the stress-energy field T of the theory has
non-diagonalisable upper triangular action on the multiplet (through the OPE).
It should be noted that such couplings have not been studied in great depth for
logarithmic CFTs with ranks greater than 2.

In non-logarithmic CFTs, typical objects of interest are representations of the
Virasoro algebra which can be graded into finite-dimensional L0 eigenspaces with
eigenvalues bounded below. Verma modules and Fock spaces fall under this clas-
sification. In logarithmic theories we seek to weaken this requirement to modules
M which can be graded into finite-dimensional generalised L0 eigenspaces. We
will use the term staggered for such modules.

2.1.1 Definition. For the purposes of this text, a staggered module of the Vira-
soro algebra is a Virasoro module M which admits a decomposition

M =
∞⊕
n=0

Mn (2.3)

such that eachMn is a finite-dimensional vector subspace, and L0−hn is nilpotent
on Mn for some generalised eigenvalue hn.
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The maximum rank of generalised eigenvector1 appearing in such anM is said
to be the rank of the module as a whole. This notion of rank matches with that
of the field theory: with a rank-r multiplet of fields (Φ0 = φ,Φ1,Φ2, . . . ,Φr−1)
one finds that

(L0 − h1) |Φk〉 ∝ |Φk−1〉 (2.4)

where |Φi〉 is the state corresponding to Φi(z), and |Φ−1〉 , |Φ−2〉 , etc. are defined
to be the zero vector, so that a rank-r multiplet of fields corresponds to a rank-r
generalised eigenspace and vice versa. The Virasoro module freely generated from
this multiplet of states then produces a rank-r module.

A staggered module automatically enjoys compatibility with the Virasoro al-
gebra generators as graded operators. One can easily check that

(L0 − hv1)nv = 0 =⇒ (L0 − (hv −m)1)nLmv = 0 (2.5)

so that Lm sends the generalised eigenspace of weight h into that of weight h−m.
Note that this implies all Lm must also be (weakly) upper triangular, in the
sense that they cannot increase the rank of a vector. The set of rank-1 vectors
within a staggered module therefore constitutes a proper rank-1 (i.e., without
staggered structure) Virasoro submodule. Taking the quotient by this submodule
leaves us with another staggered module with rank reduced by one. Iterating this
process eventually leaves us with a final rank-1 quotient module. We can therefore
characterise staggered modules by a decomposition into a chain of proper rank-1
subquotients, the length of the chain being equal to the rank of the staggered
module. If each successive submodule admits an integer grading, for instance if
they are all highest weight modules, then their respective gradings can differ from
each other by only integers. Otherwise, (L0 − h) would always evaluate to zero
at some rank, which would as a result break the decomposition into a direct sum
of lower rank staggered modules.

2.1.2 Proposition. The choice of rank-1 submodule is always well-defined and
unique. Furthermore, due to the upper-diagonal action of the algebra, both the
projection map onto the quotient space and the inclusion map of submodule into
the containing staggered module are Virasoro homomorphisms.

In light of this decomposition, we see that rank-2 staggered modules M in
particular enjoy a presentation as the middle object in a non-split short exact
sequence of non-staggered modules:

0 −→ VL
ι−→M π−→ VR −→ 0 (2.6)

where the maps ι, π are Vir homomorphisms and the spaces VL, VR are graded
Virasoro modules of rank 1 (non-staggered). These are called the left and right

1The rank of a generalised eigenvector v with eigenvalue h of some operator M is the least
positive integer n such that

(M − h)
n
v = 0
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spaces respectively, andM∼=Vec VL⊕VR (as vector spaces only). In the literature,
the left and right spaces of a rank-2 staggered module are typically taken to be
highest weight spaces, providing the historical definition of staggered module,
though as noted we do not make that restriction here.

��
Remark:

The definition of a staggered module as stated does not ensure that each
generalised eigenspace is “structurally compatible” with every other or that each
rank-1 submodule in the decomposition as a chain of subquotients is of the same
type. We therefore introduce a further convention of nomenclature which fixes
somewhat the object of study. If “x” is a property of modules (e.g. Z-graded,
Fock, Verma, etc), then we will say that a staggered module is a staggered “x”
module to mean that each rank-1 submodule in the described decomposition has
property “x”. Staggered Fock modules are the most important objects of study
in the results to follow. ��

One interesting question now is how the structure of a module with a given
property x manifests in a staggered x-module. For instance, one can ask whether
the singular vectors of a reducible Fock module are still meaningful structural
classification tools when one considers that Fock space in the context of the de-
composition series of a staggered Fock module, and indeed more generally what
determines the reducibility of such a module, how many distinct staggered struc-
tures can be constructed from any given decomposition series (or when such a
construction is possible at all), and how to distinguish between inequivalent stag-
gered structures.

This last point is an important consideration if we hope to assess candidate
staggered modules as concrete constructions of the state spaces of known logarith-
mic theories. Luckily, in the case of rank 2 staggered modules, some considerable
effort has been put into exactly this. We find that with some minimal struc-
tural assumptions, we can find an important internal parameter which remains
invariant under module isomorphisms. To be precise, suppose that VL and VR
from (2.6) are N-graded non-staggered Virasoro modules with one-dimensional
highest weight subspaces, each spanned by highest weight vectors vL and vR with
weights hL and hR respectively (this is not the same as VL and VR being high-
est weight spaces themselves, as they need not be generated by these highest
weight vectors). Let xL = ι(vL) and choose a representative xR ∈ π−1(vR). Since
LnxR ∈ π−1(LnvR) = π−1({0}) for n > 0, one can show that

w = (L0 − hR)xR ∈ ι(VL) (2.7)

is a Virasoro singular vector. Since the left and right spaces have integer gradings,
∆h = hL − hR ∈ Z. If w is non-zero, then we can conclude in addition that
∆h ≤ 0. Depending on the particular choices of VL and VR, we might also have
w = UxL for some Virasoro creation operator U ∈ U (Vir). This appears to be the



2.1. BASICS OF LOGCFTS AND STAGGERED MODULES 45

case for all staggered modules seen “in the wild” (e.g. through the computation
of fusion products of highest weight modules). If this is indeed the case, and VL
is equipped with an adjoint-equivariant bilinear or sesquilinear form — such as
the Shapovalov form — then we may compute the quantity

β :=
〈
xL, U

†xR
〉
ι(VL)

, (2.8)

possible since xL, U
†xR ∈ ι(VL), which, as a Vir-submodule of M with ι a ho-

momorphism, may directly inherit the bilinear form of VL. The adjoint † is the
standard one, sending Ln to L−n and C to C, but the form can only be consis-
tently applied on the restriction to ι(VL).

One may easily check that the quantity β defined in (2.8) does not depend on
the choice of representative xR ∈ π−1(vR), only on the fixed normalisation of the
vectors xL, xR (or equivalently of U∆h and xR, or any other pair of data in the
inner product). This quantity is called the beta invariant of the staggered module,
and has been of quite some importance in studying 2D logarithmic conformal
field theories to date, as in addition to identifying the staggered module up to
isomorphism, it (being related to the constant B from the discussion of the field
theory earlier in this section) also appears in correlation functions. It is therefore
extremely useful to have a way of computing β for candidate constructions of
staggered modules corresponding to various logCFTs.

In fact, the historical importance of β in the study of indecomposable Virasoro
representations should not be understated, nor should its widespread application
as a classification tool. The β notation for this distinguishing parameter between
different staggered Vir-modules appears as early as [17], and in numerous works
since (see those already noted in the abstract and introduction; [7, 8, 10, 13, 14,
18, 19, 23, 24, 31, 34, 40, 45, 46] and many others). See in particular [31] for a
comprehensive treatment of the links between β and the isomorphism classes of
staggered Virasoro modules, as well as a large amount of relevant context from the
literature. In [31], it is shown that the isomorphism class of a staggered module
comprising two highest weight Virasoro modules is uniquely determined2 by its
so-called data, the pair of vectors (L1xR, L2xR) (in our notation), up to a notion of
‘equivalence’ of data which amounts to a different choice of vacuum representative
xR ∈ π−1(VR) (called a gauge choice in by some, e.g. in [31] and [35]) which of
course does not affect the module structure. Note that the subalgebra Vir+ of
annihilation operators is generated by L1 and L2 (in the sense that [Ln, L1] =
(n − 1)Ln+1); the U † appearing in (2.8), as an element of U (Vir0 ⊕Vir+), can
be expanded as some net annihilator U † = U0(L0 − h) + U1L1 + U2L2 and thus
the data (L1xR, L2xR) appear directly in the computation of β.

Thus we are justified in our focus on β, for if there are two staggered modules
with the same left and right spaces VL, VR, the same singular vector UvL ∈ VL,

2Of course, it goes without saying that the relevant modules VL and VR must also be
specified; otherwise the question makes no sense.
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and the same β but with different data (L1xR, L2xR) and (L1yR, L2yR), then

〈xL, (U1L1 + U2L2) (xR − yR)〉 = 0 (2.9)

and so the difference (xR − yR) vanishes under annihilation operators; it belongs
to ι(VL) and the spaces are therefore related by a gauge transform – the staggered
modules are isomorphic.

2.1.1 Staggering Operators

Some features of the staggered structure do not depend on the constituent sub-
modules or indeed on the presence of the Virasoro algebra at all. Suppose we
were to consider rank-2 staggered g-modulesM of an arbitrary Lie algebra g con-
structed out of previously known g-representations VL, VR in the manner of the
short exact sequence in (2.6). Here the term rank refers not to the maximal rank
of L0 generalised eigenvectors, of course, but instead to the number of submod-
ules in the decomposition chain (in the sense of the decomposition of staggered
objects in terms of non-staggered ones described above) — an equivalent con-
cept, at least for the staggered modules with generalised L0 grading discussed in
Section 2.1.

Suppose that g has generators {X i|i ∈ I} for some index set I and structure
constants f ijk , so that (using summation notation)

[X i, Xj] = f ijk X
k. (2.10)

Since the staggered module M has vector space structure VL ⊕ VR, by writing
the g-action on M in this basis as

X̃ i =

 X i V i

0 X i

 , (2.11)

where X i 7→ X̃ i denotes the 2 × 2 block matrix form of the action of g on
the staggered module, we see that a nontrivial staggered structure corresponds
exactly to a nontrivial set of off-diagonal operators

{V i : VR → VL|i ∈ I} (2.12)

which provide the indecomposable part of the action. We will call these V i stag-
gering operators, and simply requiring X i 7→ X̃ i to be a Lie algebra representation
forces the relationship

[X i, V j] + [V i, Xj] = f ijk V
k, (2.13)

with both sides considered as operators taking VR to VL, and the X i evaluated
according to their corresponding module actions on the left and right spaces in
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the two orderings from the bracket [·, ·]. One can verify that antisymmetry and
Jacobi identity for the X̃ i follow easily from (2.13), so do not constitute additional
constraints. Note that if g is instead a more general graded Lie-type algebra (such
as a superalgebra), then the commutator in (2.13) needs simply to be replaced
with the graded commutator, and the staggering operators summarily assigned
parity appropriate to their corresponding basis element.

Having the staggering operators respect any generalised grading of the stag-
gered module itself is a requirement which must be imposed separately. In the
case of the Virasoro algebra, and of other (super)algebras containing the Virasoro
generators as a subalgebra, we expect

[Lm, Vn] + [Vm, Ln] = (m− n)Vm+n (2.14)

with each Vn being a graded operator of grade n. The central element C should
continue to act as c1 in the staggered module, with no off-diagonal components
(i.e. VC is the zero operator). One way in which we can satisfy this equation is
to have

[Lm, Vn] = −nVm+n; (2.15)

or in other words, the staggering operators are the modes of a weight-1 Virasoro
primary field. The zero mode V0 of such a field is a Virasoro intertwiner VR → VL
(that is, [Lm, V0] = 0 for all modes Lm), so in this sense finding constructions for
staggered modules is a by-product of, or at least related to, finding intertwining
maps between Virasoro modules. In certain settings, we find that specifying only
an intertwining map is sufficient information in order to be able to construct an
entire family of staggering operators. Such a construction may be made when
the left and right modules both carry an action of a second algebra, whose basis
elements also behave — up to possible additions of central elements — as the
modes of a weight-1 Virasoro primary field.

The structure of rank-2 staggered modules where the left and right spaces are
Fock modules was examined in some detail in [9], where a general formula for β
was derived. We re-present that work here, and also seek to extend this analysis
to more general situations. For instance, when the staggered module in question
is a representation space for a larger algebra, such as one of the N > 0 Virasoro
superalgebras, we must also supply staggering operators to be associated with
the other, non-Virasoro generators. In what follows, we find that the core idea of
Section 2.2 (summarised in (2.23)) may be appropriately extended in the context
of the N = 1 and N = 2 cases, and that a single intertwining map between
Fock spaces over these larger algebras also suffices to provide the full staggered
structure.

2.2 Staggered Fock Spaces

Let us put now together the pieces developed up until this point and examine
some particular constructions of (rank 2) staggered Fock modules. As we have
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seen, there are several equivalent ways of presenting such objects. Their charac-
terisation as the middle object in a non-split short exact sequence can be made
more explicit by specifying the set of staggering operators, which (apart from
defining the action of the Virasoro algebra on the staggered space) provide the
details of the Vir-module homomorphisms in the chain.

We examine staggered structures involving purely bosonic (N = 0) as well as
N = 1 and N = 2 Fock (super)spaces. In each case we provide a valid family
of staggering operators and demonstrate a way to systematically calculate β for
each of them.3

2.2.1 Bosonic (N = 0) Staggered Fock Modules

We now examine rank-2 bosonic staggered Fock modules, which as discussed we
define to be Virasoro modules M which fit into the short exact sequence

0 −→ Fa
η1,λ

ι−→M π−→ Fa
η2,λ
−→ 0 (2.16)

We fix the nature of the indecomposable Vir action by providing a family of
staggering operators, as outlined in (2.13) in general and (2.14) for the Virasoro
algebra in particular. As noted, the Laurent coefficients of a weight-1 primary
field suffice for this when the generators of the algebra consist of the Ln alone.
Any such field whose modes map between the spaces in question therefore defines
a staggered structure. Happily, we have examples of such fields.

��
Remark:

Firstly, we recall the following generic facts about Fock spaces Fa
η,λ from Chap-

ter 1 They are generated from the algebra a whose basis elements satisfy

[am, an] = mδm,−n1, [am,1] = 0 (∀m,n ∈ Z), (2.17)

and we write a(z) =
∑

n∈Z anz
−n−1 for the corresponding field. The Fock space

Fa
η with vacuum vector |η〉 (for η ∈ C) is the a-module freely generated from the

action of the algebra on |η〉 subject to the relations

a0 |η〉 = η |η〉 , an |η〉 = 0 (∀n > 0), (2.18)

and this may be given a Vir action by setting

Ln =
1

2

∑
k∈Z

: akan−k : −λ(n+ 1)an, (2.19)

3It should be noted, however, that whether β is meaningful for classifying N = 2 staggered
modules or not is still unknown.
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where : · : denotes normal ordering, for λ ∈ C. The resulting Vir representation
has highest weight h = 1

2
η(η − 2λ) and central charge c = 1− 12λ2, and

[Lm, an] = −nam+n − λn(n− 1)δm,−n1. (2.20)

For Fock spaces we explicitly constructed intertwining maps through the use of
screening operators, the zero modes of vertex operators Vµ(z), where

Vµ(z) := : exp(µ∂−1a(z)) :

= eµqzµa0

∏
n>0

exp(
µ

n
a−nz

n) exp(−µ
n
anz

−n) (2.21)

with

∂−1a(z) := q + a0 log(z)−
∑
n 6=0

1

n
anz

−n (2.22)

where the constant of integration q is a new operator with “canonical” position-
momentum commutation relations [an,q] = δn,0. V0 is defined whenever Vµ(z)
has trivial monodromy (which depends both on µ and on the eigenvalue of a0 as
evidenced by the presence of the factor zµa0), and this operator commutes with
the Virasoro generators whenever µ is such that Vµ(z) is a Virasoro primary field
of weight one. ��

Now it is easy to verify that any intertwining map φ between the left and right
spaces in this short exact sequence may be used to construct a set of staggering
operators. Since [Lm, φ] = 0 by definition, we can set

Vn := [an, φ], (2.23)

then by a simple application of the Jacobi identity we find that (2.14) is satisfied,
and the Vn thus defined form a valid set of staggering operators for Fock space
representations of Vir. We find that the task of constructing staggered Fock
modules has been reduced to finding pairs of Fock spaces related by Virasoro
intertwiners.

Recalling our prior examination of such vertex operators, one can now check
via the OPE of a(z) and Vµ(w) that the modes Vn in the resulting series expansion
are in fact identically equal to those produced by (2.23), up to a global scale factor
of µ. That is, in fact,

Vµ(z) =
1

µ

∑
n∈Z

[an, V0]z−n−1. (2.24)

While this seems to suggest that the extra step of constructing Vn as [an, V0]
may be an overcomplication, note that single vertex operators were not the most
general primary fields which produced intertwining operators. This procedure is
in fact what allows us to maintain a nontrivial family of staggering operators with
the correct commutation relations when considering more general intertwiners.
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Indeed, recall that the constrained relationship between µ, η, and λ heavily
restricts which Fock modules are non-trivially related by zero modes of vertex
operators Vµ(z), and that typically we can do much better — that is, find more
general intertwiners for a larger collection of Fock modules — by considering
the “zero modes” of compositions of several vertex operators (again with simi-
lar monodromy constraints, etc.), but with multiple variables zi to work with,
constructing a contour around which to integrate and showing that the resulting
operator is non-trivial is a difficult task. Finding one such contour for each stag-
gering operator Vn would be even harder still, but thankfully once an intertwiner
has been found, using (2.23) suffices instead.

Admissible Fock Spaces

It is important to determine the possible scope of application of the content
developed in Section 2.2. In particular, since reducible structures are of interest
to us, we now identify the exact pairs of entries in extended (p, q) Kac tables
which correspond to a given choice4 of (n,∆h). Suppose that η2 = η±r,s. Given a
fixed ∆h, we solve η1 = η2 + nµ for (r, s). We find four separate relations, each
corresponding to a different choice of η2 = η±r,s and µ = µ± (Figure 2.1).

s(r) η+
r,s η−r,s

µ+ (r + n) q
p
− ∆h

n
(r − n) q

p
+ ∆h

n

µ− (r + ∆h
n

) q
p
− n (r − ∆h

n
) q
p

+ n

Figure 2.1: s given r for Fa
η2,λ

= F±r,s within a staggered Fock module.

The Kac table locations of the left and right modules are independent of the
choice of η±, so two distinct solutions can be retrieved by fixing either ηR = η+

r,s

or ηR = η−r,s and then using the two different µ±.
A linear relation with reduced rational slope q

p
and reduced rational intercept

b
a

possesses integral solutions if and only if a divides p. If it possesses one such
solution (r0, s0), then necessarily infinitely many integral solutions (r0+kp, s0+kq)
exist, k ∈ Z. By examining the table in Figure 2.1, we see that integral solutions
always exist when n = 1. For solutions to exist for arbitrary n ∈ Z+, we require

n|p∆h (µ+), n|q∆h (µ−) (2.25)

since these are the conditions under which the denominator of the intercept di-
vides the denominator of the gradient for the rational linear relations in Figure 2.1.

4Recall that we use n for the multiplicity of vertex operator Vµ(z) used to create the inter-
twining operator, and ∆h for the difference h1 − h2 in L0 vacuum eigenvalue between the two
Fock spaces.
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However, recall that in the case at hand — for intwertwiners between reducible
Fock modules belonging to an extended Kac table — ∆h

n
is an integer (1.88). We

find the two distinct staggered modules have short exact sequences:

0 −→ F (−)

(kp−n,kq+ ∆h
n

)
−→M −→ F (−)

(kp+n,kq+ ∆h
n

)
−→ 0 (µ+) (2.26)

and

0 −→ F (−)

(kp+ ∆h
n
,kq−n)

−→M −→ F (−)

(kp+ ∆h
n
,kq+n)

−→ 0 (µ−) (2.27)

The left and right modules, and thus the staggered modules themselves, are
insensitive of the choice of k ∈ Z. Here, to reduce clutter, we have written Fr,s
to indicate that η = ηr,s, while the superscript (−) is used to indicate η = η−.
Choosing η+ instead does not give distinctM, but does relate entries at different
(r, s) in the extended table. The sequences in that case are:

0 −→ F (+)

(kp+n,kq−∆h
n

)
−→M −→ F (+)

(kp−n,kq−∆h
n

)
−→ 0 (µ+) (2.28)

and

0 −→ F (+)

(kp−∆h
n
,kq+n)

−→M −→ F (+)

(kp−∆h
n
,kq−n)

−→ 0 (µ−) (2.29)

Again, all choices of k are identical. Staggered modules in these four sequences
are isomorphic if and only if they share the same µ.

These particular solutions occur in rectangular patterns symmetrically ar-
ranged around corner entries of the extended (p, q) table with (r, s) = (kp, kq).
Left modules occur on the principal diagonal corners of this pattern, right modules
on the off-diagonal. µ+ maps vertically and µ− horizontally. Sequences involving
η+ have Fa

η1,λ
below or to the right of Fa

η2,λ
in the table, and those involving η−

have Fa
η1,λ

above or to the left. Figure 2.2 gives pictorial examples of this.
Although not pertinent to the case at hand, it is interesting to see that a

similar pattern appears when ∆h
n

/∈ Z. If we assume the conditions for the
existence of a solution are satisfied, then locating viable (r, s) in the table is
tantamount to solving for i, j ∈ Z such that

iq − jp =
p∆h

n
∈ Z (µ+), iq − jp = −q∆h

n
∈ Z (µ−), (2.30)

possible since p and q are coprime. Then the sequences become (again identical
for all k):

0 −→ F (+)
(kp+i+n,kq+j) −→M −→ F

(+)
(kp+i−n,kq+j) −→ 0

0 −→ F (−)
(kp−i−n,kq−j) −→M −→ F

(−)
(kp−i+n,kq−j) −→ 0

 µ+ (2.31)

0 −→ F (+)
(kp+i,kq+j+n) −→M −→ F

(+)
(kp+i,kq+j−n) −→ 0

0 −→ F (−)
(kp−i,kq−j−n) −→M −→ F

(−)
(kp−i,kq−j+n) −→ 0

 µ−, (2.32)
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though we note that the particular (i, j) need not be the same across the two
cases µ±. These modules exhibit the same symmetric rectangular distribution
around particular points in the extended (p, q) table, but not around the “prin-
cipal diagonal” corner entries (kp, kq). Instead they are located symmetrically
around the (kp + i, kq) and (kp, kq + j) entries (for µ+ and µ− respectively). A
cursory examination of the relations (2.30) shows that, necessarily, p|i (µ+) and
q|j (µ−). Therefore these more general sequences appear symmetrically around
other corner entries, at (r, s) = (k1p, k2q) with k1 6= k2. The other properties
mentioned (direction of mappings in the table, relative locations of left and right
modules, etc.) remain the same.

F (−)
RF (−)

L

F (−)
R

F (−)
L

F (+)
R F (+)

L

F (+)
R

F (+)
L

F (+)
RF (−)

L

F (+)
R

F (−)
L

F (−)
R F (+)

L

F (−)
R

F (+)
L

Figure 2.2: Example locations of left and right modules within an arbitrary ex-
tended Kac table. Shaded regions indicate edge entries; their intersections are
corner entries (r, s) = (k1p, k2q) — although we have principal diagonal corner
entries (k1 = k2) in the particular examples shown here. We have chosen to show
(n,∆h) = (1,−2) (left-hand diagram) and (n,∆h) = (2,−2) (right-hand dia-
gram). Horizontal arrows correspond to µ−, vertical ones to µ+. When (p, q) are
large enough compared to (n,∆h), FL and FR will belong to the bulk (implicitly
shown here), although in particular instances FL and FR may themselves be edge
or even corner entries.

It is worth noting that some authors (e.g. [35]) have considered “shifted”
extended Kac tables, designed to contain entries at fractional (r, s). Such modules
were included in order to resolve some difficulties arising from the computation
of fusion products. It is not clear (and remains to be studied) whether or not
permitting fractional (r, s) in this construction corresponds also to these staggered
modules — since the condition (1.88) is not met, intertwiners do not arise for these
modules, at least in the standard way of zero modes of screening fields.
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Calculation of β

Recall that the parameter β determines the isomorphism class of a rank-2 stag-
gered modules. It is presented in abstract terms in (2.8), but here we derive
an expression relevant to the current context. This has the benefit, once the
calculation is carried to its full extent, of being an explicit formula for β.

β is calculated via the inner product of two particular vectors in the staggered
module. Given staggered module FL −→ M −→ FR with vacua |ηL〉 , |ηR〉 and
intertwiner V0 : FR → FL, we had

β = 〈η1|U †∆h |ηR〉 (2.33)

where U∆h ∈ U (Vir) is a creation operator such that

U∆h |ηL〉 = (L0 − hR) |ηR〉 = V0 |ηR〉 (2.34)

when evaluated in the full staggered module M (recall that V0 is the staggering
operator associated with L0; we have L0 |ηR〉 = h2 |ηR〉 + V0 |ηR〉 in M). Since
V0 |ηR〉 is guaranteed to be singular in FL by the nature of V0 as an intertwiner,
the only way (2.34) can fail to hold is if this vector occurs at too deep a conformal
weight in FL for there to be a path to it from the vacuum through the submodule
diagram (c.f. Figure 1.5) — that is, there exists no such U∆h. However, it is
not hard to see that there will exist some (sub)singular vector of which it is a
descendant5, so this problem is an indication that FL is in some sense the wrong
choice of image module for V0, and that the “correct” choice for the construction
of a staggered module is some subspace or quotient of FL. If such a U∆h does not
exist, then β cannot be defined, so in order to progress we must assume that the
necessary module restriction, if possible, has been made.

We make use of two different expressions for the vector in (2.34), in terms of
the basis of generators of Vir and of a. Let it have the following expansions:

U∆h |ηL〉 =
∑

|τ |+∆h=0

A(τ)L−(τ) |ηL〉

=
∑

|υ|+∆h=0

B(υ)a−(υ) |ηL〉
(2.35)

for some (not necessarily nonzero) coefficients A(τ), B(υ), and where τ, υ denote
integer partitions which label the modes appearing in the monomials of creation
operators which produce the vector. Notationally, L−(τ) is to be understood as

L−(τ) = L−τ1 · · ·L−τ` (2.36)

for τ = (τ1, . . . , τ`), mutatis mutandis for monomials in the generators of a la-
belled by their respective partitions, following our previously chosen convention

5The only instance where this fails to hold is in the corner case, where there are no arrows
in the module diagrams at all. β does not exist (and cannot be defined) for indecomposable
structures built from such modules, unless in fact V0 |ηR〉 = |ηL〉, in which case β = 1.
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for ordering of basis monomials: indices non-decreasing read left to right. This
is of course so that we may legitimately use partitions as labels.

Now we compute U †∆h |ηR〉 by firstly calculating that — since τ1, . . . τ` > 0 —
for each monomial, in the full staggered module, we have

Lτ` · · ·Lτ1 |ηR〉 = (−τ1)(−τ1 − τ2) · · · (−τ1 − · · · − τ`−1)V∑
i τi
|ηR〉

=
Cτ

∆h
[a∑

i τi
, V0] |ηR〉

(2.37)

where Cτ is a combinatorial factor produced by iteratively commuting Ln through
the staggering operators;

Cτ = (−τ1 − · · · − τ`)(−τ1 − · · · − τ`−1) · · · (−τ1), (2.38)

a kind of “rising factorial” of the parts of the partition τ , but with alternating
sign. The staggering operator V∑

i τi
appears because after the first annihilator

mode Lτ1 acts upon |ηR〉, we have remaining only Vτ1 |ηR〉 ∈ ι(FL) ⊂M, which as
a rank-1 vector is thereafter acted on by the other modes without any staggered
action. We only need to commute them through the staggering operator Vτ1
which, since

[Lm, Vn] = −nVm+n, (2.39)

is the reason for both the final index
∑

i τi and the combinatorial factor Cτ .
The second equality in (2.37) follows from our definition of the staggering oper-
ators themselves, which are obtained from the intertwiner V0 through taking the
commutator with the appropriately-graded generator of a.

Now we may calculate

(U∆h)
† |ηR〉 =

1

∆h

 ∑
|τ |+∆h=0

CτAτ

 [a−∆h, V0] |ηR〉

=
1

∆h

 ∑
|τ |+∆h=0

CτAτ

 [a−∆h, B(−∆h1)a∆h + (· · · )] |ηL〉

= −B(−∆h1)

 ∑
|τ |+∆h=0

CτAτ

 |ηL〉 ,
(2.40)

where the second equality follows because [a−∆h, V0] |ηR〉 = a−∆hV0 |ηR〉 (recall
that ∆h < 0 for the staggered modules under consideration,6 so that a−∆h |ηL〉 =
0), and the third from our assumed expansion of V0 |ηR〉 = U∆h |ηL〉 in terms of
oscillator modes.

��
Remark:

6Because β is undefined otherwise.
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Since U∆h |ηL〉 is by assumption the first proper singular vector of FL, it can
be shown that the coefficient B(−∆h1) is non-vanishing, a valid concern here.

Firstly let κ : Fa
η → N be the function

κ(v) = max {k ∈ N | akv 6= 0} ∀v ∈ Fa
η . (2.41)

Notice that κ(v) = 0 if and only if v ∝ |η〉, with κ(v) > 0 otherwise.

Furthermore, if v is singular with respect to the Vir action, then it is trivial
to prove that

aκ(v)v (2.42)

is also Vir-singular (and nonzero by construction, of course). With this in mind,
if v is the first proper singular vector in the grading, the only possibility is to
have

aκ(v)v ∝ |η〉 , (2.43)

so κ(v) coincides with the grade of v, and this forces v to have a non-vanishing
coefficient on the singleton term a−κ(v) in its expansion in terms of the generators
of a. This applies to our current case, as noted. ��

At this point we can already state that

β = −〈ηL|B(−∆h1)

 ∑
|τ |+∆h=0

CτAτ

 |ηL〉 = −B(−∆h1)

 ∑
|τ |+∆h=0

CτAτ

 ,

(2.44)
so can see that using our construction method, β depends only on the nature of
the first proper singular vector of the image space of the intertwiner. As it is,
this expression contains both the Aτ and Bυ, requiring expansions of this vector
both in the generators of Vir and of a. We can in fact do better, re-expressing
B(−∆h1) in terms of the Aτ .

While computing expressions for the Aτ and Bυ in terms of each other is
generically a computationally intensive task, this is made tractable by simplifi-
cations which arise in the particular case of B(−∆h1) due to the fact that this
coefficient multiplies the singleton monomial a∆h. We proceed iteratively, one
creation element of Vir at a time, commuting successive Ls through the accu-
mulated as to act on the vacuum. Terms containing products of more than one
element of a, once created, may be discarded, because such terms may never
contribute thereafter to the final coefficient on the singleton.

With this in mind, observe that

L−τ1 · · ·L−τ` |η〉 = (τ`)(τ` + τk−1) · · · (τ` + · · ·+ τ2) [ηL + (τ` − 1)λ] a−∑
i τi
|η〉

+ (products of multiple as) |η〉 ,
(2.45)



56 CHAPTER 2. LOGARITHMIC CONFORMAL FIELD THEORY

therefore

U∆h |ηL〉 = −

 ∑
|τ |+∆h=0

1

∆h
[ηL + (τk − 1)λ]CτAτ

 a∆h |ηL〉

+ (products of multiple as) |η〉 ,

(2.46)

where Cτ is the combinatorial factor related to the partition τ ,

Cτ = (τ`)(τ` + τk−1) · · · (τ` + · · ·+ τ2)(τ` + · · ·+ τ1), (2.47)

which, like Cτ , is a kind of factorial of the parts of τ . We have now identified
B(−∆h1), so obtain the main result for this section:

2.2.1 Theorem. We have the following expression for the β invariant of a stag-
gered Fock module of the type considered above:

β =
1

∆h

 ∑
|τ |+∆h=0

[ηL + (τk − 1)λ]CτAτ

 ∑
|τ |+∆h=0

CτAτ

 (2.48)

This expression, quadratic in the coefficients of U∆h |ηL〉, almost has the form
of an inner product of the creation operator U∆h with itself. These coefficients
are themselves fixed by the requirement that U∆h |ηL〉 be singular, and as such
may be determined in terms of the parameters ηL and λ — in fact, these coeffi-
cients are bound simply by the commutation relations of Vir to be rational linear
combinations of polynomials of these parameters over the rationals.

As discussed, the staggered structure is completely determined by the choice
of the tuple (∆h, n, µ). ∆h alone sets the degree of the singular vector (and
hence the number and labels of the coefficients Aτ ), while n and µ are actually
relatable to the data ηL, ηR, λ of the two modules in the short exact sequence. β
may therefore be computed ahead of time, once for each ∆h, with n and µ left
as variables. We find, generically,

β =
1

∆hnµ2

 ∑
|τ |+∆h=0

[
1

2
(n+ τk)µ

2 − τk +
∆h

n

]
CτAτ

 ∑
|τ |+∆h=0

CτAτ

 ,

(2.49)
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the first few of these being

β(µ, n)|∆h=−1 =
n+ 1

2n2
µ−2(nµ2 − 2)

β(µ, n)|∆h=−2 =
(n+ 1)(n+ 2)

36n4
µ−2

(
n2(n2 − 1)µ4 + 6n2µ2 + 16− 4n2

)
×
(
n(n− 1)µ2 + 2n− 4

)
(nµ2 − 2)(nµ2 − 4)

β(µ, n)|∆h=−3 =
3

2048n10
µ−10(n(n+ 1)µ2 + 2n+ 6)(n(n+ 1)µ2 − 2n+ 6)

× (n(n+ 1)µ2 − 2n− 6)2(n(n− 1)µ2 + 2n+ 6)

× (n(n− 1)µ2 + 2n− 6)2(n(n− 1)µ2 − 2n+ 6)(n2µ2 − 6).

(2.50)

These expressions quickly become complicated7. For reference, we tabulate
specific choices of both ∆h and n in Figure 2.5, and choose to present these as
functions of µ alone, since all of ηL, ηR, and λ can be written in terms of this
parameter, given values of ∆h and n.

These formulae hold for generic µ, but are of most interest when µ = µ± of
a reducible (p, q) theory. We note that when we substitute particular (p, q) into
these equations, we reproduce the results of various authors (Figure 2.6). This
suggests that modes of vertex operators are the “correct” staggering operators
for free field realisations of staggered Virasoro modules, in as far as this construc-
tion agrees with staggered structures arising independently, and that Fock spaces
provide effective means of computation within them. Particular values of interest
from the literature are (n,∆h) = (2,−2) and (1,−2) because at (p, q) = (2, 3)
the former should correspond to critical percolation with β = −5

8
and the latter

to dilute polymers with β = 5
6
. Accounting for normalisation (a factor of p−2q2

for (n,∆h) = (2,−2) and p2q−2 for (1,−2)), we find this to be the case.
Some authors derive or suggest rules for general formulae for β in terms of p

and q for particular types of staggered module (e.g. the LM(2, q) modules of [35]).
These are special cases of the formula (2.49). In some cases, these authors have
commented on the surprisingly neat way in which β(t) splits into linear factors,
where t parametrises the central charge c as

c = 13− 6(t+
1

t
). (2.51)

Clearly t = µ2. We can immediately deduce that only even powers of µ may
appear, as not only is every explicit appearance of µ in (2.49) of the form µ2n,
but also every implicit appearance via the Aτ : they involve only integral powers
of hL and c, with rational coefficients, themselves quadratic in µ2.

7Recall that β is only determined up to a scale factor. In these examples we have chosen to
scale so that the coefficient on the L−∆h

−1 , that is A(1)−∆h , is set to 1, though other authors (such
as [7], [23], or [45], whose results are compared to (2.49) in Figure 2.6) have in the past taken
other conventions. Such differences have been noted in calculations wherever appropriate.
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The fact that β factorises so neatly may be related to the structure of the (p, q)
extended Kac tables. Depending on the values of p and q, the entries related via
staggered module with some fixed (n,∆h) may belong to the bulk, to the edges,
or even to the corners. Of course, corner Fock modules have no submodule
embedding structure, and are instead completely reducible (cf. Figure 1.5). This
means that β is undefined, since there is no operator U∆h which creates the first
proper singular vector. Of course, since the formulae for β are just polynomials,
we can still evaluate them at these points.

Since ∆h
n
∈ Z, this “corner collision” occurs whenever n is a multiple of p

and ∆h
n

a multiple of q, or vice versa, according to µ = µ+ or µ− respectively.
Therefore, β(µ) should be undefined at the collection of points

∏
p|n, q|∆h

n
, gcd(p,q)=1

(
µ−

√
2q

p

)
,

∏
q|n, p|∆h

n
, gcd(p,q)=1

(
µ+

√
2p

q

)

from these two contributions. By noting symmetry, we see that this is actually a
net factor of ∏

p|n, q|∆h
n
, gcd(p,q)=1

(
µ2 − 2q

p

)

When applied to the formulae seen in Figure 2.5, we see an interesting empirical
relationship between these special values and the zeroes of β, in that every such
degenerate point corresponds to a zero of β treated as a function of µ2 — but not
all zeroes of β appear to be predictable in this way. As well as missing some of
the type (µ2 − a), those of the form (µ2 + a) are entirely absent, which we note
cannot come from this kind of consideration of the extended (p, q) Kac tables
with p, q > 0. This perhaps hints that the β invariant “knows about” other
staggered Fock modules arising from generic integers (p, q). The regime where
factors (µ2 + a) could be produced corresponds to exactly one of these integers
being negative, and hence c > 1. This regime is unexplored in this work, and
the existence of staggered structures outside the commonly-studied extended Kac
tables is the subject of future efforts.

2.2.2 Fermionic (N > 0) Staggered Fock Super-Modules

Following the example of the N = 0 case, we now turn to staggered Fock super-
modules, which are modules M which fit into the short exact sequence

0 −→ S1Fση1,l1
ι−→M π−→ S1Fση2,l2 −→ 0 (2.52)

for the N = 1 case, and mutatis mutandis for N = 2. Initially we focus on N = 1.
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N = 1 Construction

We specify the construction by providing a family of staggering operators, as in
(2.13). In the specific case of s1Vir, this means we require a family of operators

{Vn | n ∈ Z} ∪ {Wn | n ∈ σ + Z} (2.53)

such that

[Lm, Vn] + [Vm, Ln] = (m− n)Vm+n

[Lm,Wn] + [Vm, Gn] = (
1

2
m− n)Wm+n

{Gm,Wn}+ {Wm, Gn} = 2Vm+n,

(2.54)

where Vn is the operator associated to the indecomposable action of Ln, and Wn

to that of Gn. It seems that having access to a single intertwining operator may
not be sufficient, but in fact, we may proceed nearly completely analogously to the
construction made for N = 0. Given such an intertwining map V0 : S1Fση2,l2 →
S1Fση1,l1 , let us define

Vn := [an, V0]

Wn := [bn, V0]
(2.55)

where, as V0 is to be associated to L0 and is hence an even operator, these are
genuine commutators (i.e., not anticommutators in the case of the Wn). Through
the use of the (super)Jacobi identity, we can easily verify that these operators as
defined satisfy (2.54), and hence comprise a valid family of staggering operators.

Admissible N = 1 Fock Superspaces

Since the literature (e.g. [5, 6, 38]) focuses on rank-2 staggered modules where
the left and right spaces are reducible, as with the purely bosonic case, we now
attempt to locate positions in any given extended Kac table which can be related
by an intertwiner of the required type. Given (1.122), solving ηR = η±r,s for r, s
by imposing ηL = ηR +nµ for a fixed ∆h reveals four different equations relating
r and s, depending on the choice of η± and µ± (Figure 2.3). When they take
integral values, subject to the sector-dependent parity constraints, they corre-
spond to entries in the extended Kac table which can be related by a non-trivial
intertwiner. One can check that, in fact, while the function s(r) takes a different
form depending on the choice of η±, the resulting module data (c, h) does not, so
while valid solutions for (r, s) will differ in the two cases (i.e., will correspond to
different locations in the extended Kac table), the resulting staggered structures
will be identical as s1Vir modules.

Recall that a reduced rational linear relation y(x) = a
b
x + c

d
has integral

solutions if and only if the denominator of the intercept divides the denominator
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s(r) η+
r,s η−r,s

µ+ q
p
r + (2n− 1) q

p
− (∆h

n
+ 1

2
) q

p
r − (2n− 1) q

p
+ (∆h

n
+ 1

2
)

µ− q
p
r − (2n− 1) + (∆h

n
+ 1

2
) q
p

q
p
r + (2n− 1)− (∆h

n
+ 1

2
) q
p

Figure 2.3: s as a function of r where (r, s) denotes an entry in a (fixed but
arbitrary) extended (p, q) Kac table

of the slope; that is if and only if d|b. If it possesses one integral solution (x0, y0),
it necessarily possesses infinitely many of the form (x0 + kb, y0 + ka), k ∈ Z.
By examining the relationships in Figure 2.3, we find conditions on n and ∆h
for the possible existence of integral solutions (and hence the potential to relate
two entries in the table through intertwiners). We do so by first noting that q

p
is

either already reduced, or that a greatest common divisor of 2 may be removed,
corresponding to p ≡ q ≡ 1 or 0 mod 2 respectively. In either case, we write p̄, q̄
for the reduced forms of these numbers. Then we note that it is impossible to
satisfy the aforementioned divisibility constraint (d|b) unless

µ = µ+ : 2n|p̄(2∆h+ n), µ = µ− : 2n|q̄(2∆h+ n), (2.56)

or in other words, either p̄
(

∆h
n

+ 1
2

)
or q̄

(
∆h
n

+ 1
2

)
is an integer. Like with the

N = 0 case, we choose to first make the simplifying assumption that, in fact,(
∆h
n

+ 1
2

)
∈ Z itself. Then we have short exact sequences

0 −→ S1F (−)

(kp−2n−1,kq+ ∆h
n

+ 1
2

)
−→M −→ S1F (−)

(kp+2n−1,kq+ ∆h
n

+ 1
2

)
−→ 0 (µ+)

(2.57)
and

0 −→ S1F (−)

(kp̄+ ∆h
n

+ 1
2
,kq̄−2n−1)

−→M −→ S1F (−)

(kp̄+ ∆h
n

+ 1
2
,kq̄+2n−1)

−→ 0 (µ−)

(2.58)
with the isomorphism class of the staggered module independent of k ∈ N, with
the proviso that the indexed modules actually exist (the corresponding locations
in the extended table must have non-negative index labels, for instance) and
that an intertwiner actually exists between them. As before, we have made an
abbreviation in writing S1Fr,s to indicate that η = ηr,s, while the superscript
(−) is used to indicate η = η−. Given the multiple different possible relationships
between the vacuum parities of the two modules, according to the fermionic parity
of the particular intertwining map involved, we have also chosen to suppress these
subscript labels.

As with the purely bosonic case, staggered modulesM constructed using the
positive root choice of the a0 eigenvalue, η+, give staggered modules isomorphic
to those already generated, though at different (r, s) in the extended table. Their
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sequences are:

0 −→ S1F (+)

(kp̄+2n+1,kq̄−∆h
n
− 1

2
)
−→M −→ S1F (+)

(kp̄−2n+1,kq̄−∆h
n
− 1

2
)
−→ 0 (µ+)

(2.59)
and

0 −→ S1F (+)

(kp̄−∆h
n
− 1

2
,kq̄+2n+1)

−→M −→ S1F (+)

(kp̄−∆h
n
− 1

2
,kq̄−2n+1)

−→ 0 (µ−)

(2.60)
Again, all valid choices of k give isomorphic M.

These staggered modules are arranged in patterns around corner entries in
the related extended Kac table in much the same way as the N = 0 case, except
incrementing the value of n steps these modules through the table in multiples of
4, not of 2 (consider the relative factors of

√
2 leading to the differences between

(1.94) and (1.122)).
Now we relax the condition that

(
∆h
n

+ 1
2

)
itself be an integer for the more

general construction. Solving the linear relations in Figure 2.3 is then tantamount
to solving the Diophantine equations

µ = µ+ : iq̄ − jp̄ = p̄(
∆h

n
+

1

2
) ∈ Z,

µ = µ− : iq̄ − jp̄ = −q̄(∆h

n
+

1

2
) ∈ Z,

(2.61)

for some integers i, j (note that these are not necessarily the same integers across
the two cases µ = µ±). Then we find the sequences

0 −→ S1F (+)
(kp̄+i+2n+1,kq̄+j) −→M −→ S1F (+)

(kp̄+i−2n+1,kq+j) −→ 0

0 −→ S1F (−)
(kp−i−2n−1,kq−j) −→M −→ S1F (−)

(kp−i+2n−1,kq−j) −→ 0

 µ+

(2.62)

0 −→ S1F (+)
(kp+i,kq+j+2n+1) −→M −→ S1F (+)

(kp+i,kq+j−2n+1) −→ 0

0 −→ S1F (−)
(kp−i,kq−j−2n−1) −→M −→ S1F (−)

(kp−i,kq−j+2n−1) −→ 0

 µ−

(2.63)

Calculation of β

In order to find the β invariant for M, we must compute an appropriate in-
ner product in addition to identifying an element U∆h of U (s1Vir) for which
U∆h |η + nµ〉 = V0 |η〉 for the left and right modules seen in (2.52) — in which
case, we may write

β = 〈η + nµ|U †∆h |η〉 , (2.64)

where we have also suppressed parity for the vacua, l, because of the parity
ambiguity of the operator U∆h: if this operator is even, then the parities of the two
vectors in the inner product must agree; β otherwise evaluates to zero. Likewise
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if this operator is odd, they must disagree. Having a meaningful definition for β
requires us to choose the parities of the two vectors in the inner product on a case-
by-case basis so as to give a non-zero result. In the NS sector, there is nothing
more to do than to make an initial choice and follow it through as demanded by
context (the fixed parity of the operator V0, for instance), but in the R sector,
vacuum vectors of both parities appear in the same module, so there are always
two possible ways to define β. However, beginning from |η, ↑〉 ∈ S1Fη2 , we see
that

|η, ↓〉 =
√

2b0 |η, ↑〉 , (2.65)

so that interchanging both 〈η + nµ| and |η〉 with their parity-flipped counterparts
introduces a factor of 2b2

0 = 1, so the two methods of computing β thankfully
give identical results.

We shall compute β, as in the N = 0 case, by comparing the distinguished
vector U∆h |η + nµ〉 via its two expansions: one in terms of the basis of generators
of s1Vir; the other in the oscillator basis. Firstly, suppose that the element U∆h

of the universal enveloping algebra exists such that the desired property holds:

U∆h |η + nµ〉 = V0 |η〉 . (2.66)

As with the N = 0 case, V0 |η〉 is guaranteed to be singular in S1Fη+nµ, so the
only way this can fail to occur is if this vector occurs at too deep a conformal
weight in S1Fη+nµ for there to be a path to it from the vacuum through the
embedding diagram. Again, there will then exist some (sub)singular vector of
which it is a descendant8, so this problem is an indication that S1Fη+nµ is the
wrong choice of image module, and that the “correct” choice for the construction
of a staggered module of this type is some subspace or submodule restriction of
S1Fη+nµ.

Let the vector (2.66) have the following expansions:

U∆h |η + nµ〉 =
∑

|ξ|+|ν|+∆h=0

A(ξ,ν)L−(ξ)G−(ν) |η + nµ〉

=
∑

|ρ|+|τ |+∆h=0

B(ρ,τ)a−(ρ)b−(τ) |η +Nµ〉
(2.67)

for some (not necessarily non-zero) coefficients A(ξ,ν), B(ρ,τ), and where ξ, ν, ρ, τ
denote integral or half-integral (sector-dependent) non-negative, non-increasing
partitions9 which label the modes appearing in the monomials of creation opera-
tors which produce the vector. Notationally, L−(ξ) is to be understood as

L−(ξ) = L−ξ1 · · ·L−ξ` (2.68)

8The only instance where this fails to hold is in the corner case, where there are no arrows
in the embedding diagrams at all, so staggered modules are trivial, in the sense that either
∆h = 0 (and so β is not defined) or the staggered module decomposes as a direct sum whose
staggered submodule(s) have ∆h = 0.

9Of the partitions labelling fermionic modes, only those which are non-repeating (i.e., strictly
decreasing) contribute meaningfully.
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for ξ = (ξ1, . . . , ξ`), mutatis mutandis for monomials of other generators G, a, b
labelled by their respective partitions. Recall the chosen ordering for the basis
of monomials of generators: Ls appearing in the left of the monomial, Gs on
the right, completed by demanding that indices be non-decreasing within each of
these two. This is of course so that we may legitimately use partitions as labels.
Now we compute U †∆h |η〉 by firstly calculating that, in the full staggered module,

Gνm · · ·Gν1Lξ` · · ·Lξ1 |η〉 = Cξ,ν ×

 1
∆h
V−∆h |η〉 ν even

W−∆h |η〉 ν odd
(2.69)

where the parity of a partition is simply whether it is of odd or even length, and
where Cξ,ν is a combinatorial factor relating to the partitions themselves;

Cξ,ν = (−ξ1)(−ξ1 − ξ2) · · · (−ξ1 − · · · − ξ`)
× (−ξ1 − · · · − ξ` − ν1 − ν2)

· · ·
× (−ξ1 − · · · − ξ` − ν1 − ν2 − · · · − ν(2bm/2c−1) − ν2bm/2c)

= (−1)`+bm/2c
∏̀
i=1

(
i∑

j=1

ξj

) bm/2c∏
i=1

(∑̀
k=1

ξk +
2i∑
j=1

νj

) (2.70)

where we treat empty products as factors of unity (relevant when ` = 0 or m =
0, 1). Then we see that

U †∆h |η〉 =
∑

|ξ|+|ν|+∆h=0

Cξ,νA(ξ,ν) ×

 1
∆h

[a−∆h, V0] |η〉 ν even

[b−∆h, V0] |η〉 ν odd.

 (2.71)

Note that this analysis does not yet depend on the choice of sector. Now, the
left entries of each of the commutators in (2.71) annihilate the vacuum |η〉, and
V0 |η〉 has a known expansion in terms of oscillators since it equals U∆h |η +Nµ〉
by assumption. Since this vector is homogeneous of degree ∆h, only the singleton
monomials a∆h and b∆h survive this commutation (possibly including factors of
b0 in the R sector), though in the NS sector contributions from both bosonic and
fermionic singleton monomials are impossible since there is an index mismatch.

We conclude, in the first case (c.f. (2.67)),

1

∆h
[a−∆h, V0] |η〉 = −

(
B((−∆h),∅) +B((−∆h),(0))b0

)
|η + nµ〉 (2.72)

and in the second

[b−∆h, V0] |η〉 =
(
B(∅,(−∆h)) −B(∅,(−∆h,0))b0

)
|η + nµ〉 . (2.73)

These relations display the (mutually exclusive) multiple cases simultaneously
— at most two of the four coefficients appearing could contribute to any one
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particular β: obviously in the R sector we may distinguish singular vectors by
parity,10 so that either the two first or the two second terms in each of (2.72) and
(2.73) can appear, and in the NS sector, not only is the mode b0 non-existent
(so its coefficients obviously cannot contribute), but we have either ∆h ∈ Z or
∆h ∈ 1

2
+ Z, so either B((−∆h),∅) or B(∅,(−∆h)) is zero. One may carefully check

the circumstances which determine the parity of U∆h to further constrain these
coefficients in the R sector. There are two cases:

• n even. In this case, U∆h creates an even number of fermions. Only even-
length partitions of fermions appear in the oscillator basis expansion, so
[a−∆h, V0] is the relevant operator. Since the basis monomial a∆hb0 is odd,
its coefficient B((−∆h),(0)) must be zero, and therefore only B((−∆h),∅) appears.
Since V0 and therefore [a∆h, V0] is even overall, the vacuum parities of the
two modules agree.

• n odd. Conversely, only odd-length partitions of fermions appear in U∆h, so
[b−∆h, V0] is the relevant operator. Since the basis monomial b∆hb0 is even,
its coefficient B(∅,(−∆h,0)) must be zero, and therefore only B(∅,(−∆h)) appears.
V0 is even overall, so [b−∆h, V0] is odd, although due to its construction must
create an even number of fermionic modes. The vacuum parities therefore
differ.

Hence we are able to ignore coefficients on terms involving b0 entirely and can
write

β = 〈η + nµ|U †∆h |η〉

=

 ∑
|ξ|+|ν|+∆h=0

Cξ,νA(ξ,ν)

×
 −B((−∆h),∅) n even

B(∅,(−∆h)) n odd.

(2.74)

Repeating the calculations which led to (2.69) with monomials of creation
instead of annihilation operators, we are able to find explicit values for B(−∆h),∅
and B∅,(−∆h) in terms of the coefficients A appearing in (2.67) together with
some combinatorial factors. Due to the commutation relations between the basis
elements of s1Vir and the as and bs, the full expansion of a general monomial of
Ls and Gs in terms of this oscillator basis can become very complicated. Luckily
in order to compute the desired coefficients manually, acting each mode in the
monomial one after another, we only need to retain first-order contributions, as
objects of order O(a2), O(ab), O(b2) or greater, once produced, cannot contribute
to the top-level monomials a∆h and b∆h. We find that

L−(ξ)G−(ν) |η〉 = Lξ1 · · ·L−ξ`G−ν1 · · ·G−νm |η〉

= C−ξ,−ν ×

 −1
∆h
a∆h |η〉 n even

b∆h |η〉 n odd
+ (higher terms)

(2.75)

10Consider that for U ∈ U (s1Vir) of fixed parity, U |η〉 is singular if and only if Ub0 |η〉 is
also singular.
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where again C−ξ,−ν is a combinatorial factor similar to that appearing in (2.70);

C−ξ,−ν =

(
η + 2λ(x− 1

2
)

) bm/2c∏
i=1

(
i∑

j=1

νm+1−j

)

×
∏̀
i=1

(
m∑
k=1

νk −
1

4
(1− (−1)m) ξ`+1−i +

i∑
j=1

ξ`+1−j

) (2.76)

where x = νm only if ν is not the empty partition. Otherwise, x = 1
2
ξ`. Note

that, unlike in (2.70), the parts of the partitions appear in reverse order here, and
without the alternating factor of −1. Another chief difference is the presence of
the term 1

4
(1− (−1)m) ξ`+1−i, which is a compact way of notating the different

forms of commutators [Lm, an] = −nam+n and [Lm, bn] = −
(

1
2
m+ n

)
bm+n. The

appearance of one or the other is determined by the parity of the length m of the
partition ν.

Combining this all together, we find

2.2.2 Theorem. For the staggered N = 1 super-Fock modules of s1Vir of the
type considered above, we have the following expression for β:

β = (∆h)−
1
2

(1+(−1)n)

 ∑
|ξ|+|ν|+∆h=0

Cξ,νA(ξ,ν)

 ∑
|ξ|+|ν|+∆h=0

C−ξ,−νA(ξ,ν)

 .

(2.77)

This formula is entirely general for all staggered modules constructed using
this method. It looks something like a modified inner product of the vector
U∆h |η + nµ〉. Interestingly, it does not explicitly depend in upon V0 or any of
the other staggering operators in any way (the dependence upon these operators
is implicit throughout the derivation of this expression via the assumed forms of
the singular vector and through setting Vn = [an, V0]).

The coefficients Cξ,ν and C−ξ,−ν , being purely combinatorial, do not depend
upon the particulars of the staggered module. Their values for low-lying ∆h have
been tabulated in Figure 2.4. The coefficients A(ξ,ν) do depend upon the module,
but only in that the vector they define must be singular in the left module of
(2.52), independently of the staggered structure. The singularity of this vector
is sufficient to constrain these coefficients up to a global scale, so in principle
general formulae for β may be computed without actually specifying values for n
or µ (∆h fixes the grading of the singular vector itself, so it is necessary to choose
a value for it before we are able to calculate β in closed form).

Under the assumptions that a vector at a particular grade is singular, we are
able to calculate the coefficients A(ξ,ν) and thus find a closed form for β for those
stagered modules with |∆h| equal to this grade, again up to a global scale factor.
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ξ, ν ∅,
(

1
2

)
∅, (1) ∅, (1, 0) ∅,

(
1
2

2
)

(1) , ∅ (1) , (0) ∅,
(

3
2

)
Cξ,ν 1 1 −1 −1 −1 −1 1

C−ξ,−ν η η + λ η − λ η 1
2
(η − λ) η η + 2λ

∅,
(

1
2

3
)

(1),
(

1
2

)
∅, (2) ∅, (2, 0) ∅,

(
3
2
, 1

2

)
∅, (12) ∅, (12, 0)
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Figure 2.4: Example calculations of all Cξ,ν and C−ξ,−ν with |∆h| ≤ 2. In each
instance η indicates the a0 eigenvalue of the left-hand space in (2.52).

The first few β are as follows, for the NS sector:

β(∆h=− 1
2) =

(
−1

2

)− 1
2

(1+(−1)n)

η =

(
−
√

2
)1+(−1)n

(1 + n)

2nµ

(
nµ2 − 1

)
β(∆h=−1) = 0

β(∆h=− 3
2) =

(
−3

2

)− 1
2

(1+(−1)n)
1

219n9µ9

[
(n+ 3)(n2 − 1)n3µ6 − (3n2 − 32n− 3)(n+ 1)n2µ4

−4(n+ 9)(n+ 3)(n− 1)nµ2 + 12(n2 − 9)(n+ 1)
]

×
(
(n2 − 1)n2µ2 + 32n2µ2 − 4(n2 − 9)

) (
(n+ 1)nµ2 + 2(n− 3)

)2

×
(
(n− 1)nµ2 − 2(n+ 3)

)2

β(∆h=−2) = 0

(2.78)

and for the R sector:

β(∆h=−1) = n/a11

β(∆h=−2) = 0
(2.79)

In these expressions for β, the scale factor has been chosen so that the monomial
with the lowest appearing conformal weights (alternatively, the monomial corre-
sponding to the longest partition) has a coefficient of 1. For instance, at ∆h = −3

2

in the NS sector, this means we have the coefficient of G3
− 1

2

set to 1. Curiously we

find that taking integral values of ∆h appears to make β vanish in the NS sector

11There are too many relations at depth 1 for there to exist a singular vector.
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(and see some similar, but less compelling, vanishing β in the R sector). This
is not due to any vanishing of the singular vector, of course, but rather to the
vanishing of the combination of the factors C−ξ,−ν and the expansion coefficients
A−ξ,−ν .

While much of the above is entirely analogous to theN = 0 case, this vanishing
of β at certain ∆h is new, and implies deeper structural differences in the N = 1
case beyond these superficial similarities. Indeed, when we turn to the literature
in order to compare our predicted values of β — e.g., [5,6] — we find the staggered
modules therein have left and right spaces that are not a multiple of four entries
apart in the extended Kac tables, as we found to be required of staggered modules
constructed in this manner in (1.122).

This obviously shows that the use of intertwining maps as in (1.115) is not
as complete a construction of staggered N = 1 Fock modules as in the N = 0
case. There may exist other intertwiners which fill these gaps, but recall that the
dependence of our construction on intertwining maps is a simplification based on
the fact that in order to find solutions to (2.14) it was sufficient to take the Vn
to be the modes of a weight-1 Virasoro primary field. That this is not necessarily
the case opens up yet further possibilities. From the singular vector data of
the left and right spaces involved in such constructions, it may be possible to
bootstrap the action of the staggering operators, but this would not necessarily
reveal the details of any underlying analytic structure. Without a clear systematic
procedure, examining the details of additional N = 1 staggered constructions will
have to be the subject of future work.

N = 2 Construction

Fock-type modules of the N = 2 Virasoro superalgebra s2Vir are less well un-
derstood than those of lower N , so our analysis of staggered N = 2 Fock su-
permodules is correspondingly less detailed, insofar as no analogous classification
structures like the Kac table are known for this setting. This is not to say that
no work has been done in the area (consider for instance [12,43]); rather that to
establish a setting in which the details of staggered N = 2 Fock modules could
be rigorously discussed would go beyond the scope of the current work.

The more basic algebraic details of a staggered structure may be discussed,
however, as they do not rely on an understanding of the submodule structures at
all. We extend the now-familiar method of construction for a family of staggering
operators to meet the needs of the larger algebra: given a s2Vir intertwining map
V0 : S2FR 7→ S2FL between two Fock supermodules, we define:

Vn := [Aan + Aan, V0]

Wn := [Abn, V0]

W n := [Abn, V0]

Xn := 0

(2.80)
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where Vn is the staggering operator associated with Ln, Wn and W n with Gn and
Gn respectively, and Xn with Jn. A and A are free parameters. One may check
with appropriate applications of the super-Jacobi identity that these definitions
satisfy the relations demanded by self-consistency of the representation:

[Lm, Vn] + [Vm, Ln] = (m− n)Vm+n

[Lm,Wn] + [Vm, Gn] =

(
1

2
m− n

)
Wm+n

[Lm,W n] + [Vm, Gn] =

(
1

2
m− n

)
Wm+n

[Lm, Xn] + [Vm, Jn] = −nXm+n

{Gm,Wn}+ {Wm, Gn} = 0

{Gm,W n}+ {Wm, Gn} = 0

{Gm,W n}+ {Wm, Gn} = Vm+n +
1

2
(m− n)Xm+n

[Gm, Xn] + [Wm, Jn] = −Wm+n

[Gm, Xn] + [Wm, Jn] = Wm+n

[Jm, Xn] + [Xm, Jn] = 0

(2.81)

��
Remark:

It may come as some surprise that each Xn is chosen to be identically zero.
However, when a more careful analysis is made, the conclusion seems hard to
avoid. From (2.81) with our construction as described, the Xn must satisfy

[Lm, Xn] = −nXm+n

[Gm, Xn] = 0

[Gm, Xn] = 0

[Jm, Xn] = [Jn, Xm]

(2.82)

Each of the staggering operators is (at the level of fields) a coefficient in a
Laurent expansion in some primary field whose weight is determined by the cor-
responding field of algebra generators: the Vn must partner with the Ln, which
are the modes of T (z), a weight-2 field; the Wn and W n to the modes of G(z)
and G(z), weight-3

2
fields; and the Xn to J(z), a weight-1 field. V0 itself, as an

intertwining map, is already a coefficient of a primary field of weight 1. Each Vn
(or rather, the field that they comprise) must therefore be given its net weight of
2 through multiplication by another field of weight 1 — a linear combination of
the bosons suffice12. For the Wn and W n, the deficit in weight is 1

2
, so we must use

12One can attempt to introduce terms quadratic in the fermion fields, these also being of
weight 1

2 + 1
2 = 1, but will quickly arrive at a contradiction when attempting to enforce the

relations in (2.81).



2.2. STAGGERED FOCK SPACES 69

the fermion fields. For the Xn, then, we are forced to use the modes of a weight-0
field, since there is no additional conformal weight to add. However, the only
weight-0 field in our theory is the identity field 1(z) = 1, whose coefficients are
constants and which therefore commute with V0. The “Jacobi-like” construction
consequently demands that each Xn vanish. ��

One sees that there are infinitely many staggered constructions of this type
corresponding to the full range of choices for A and A. The fact that staggered
structures are only distinct up to a global normalisation choice suggests that
only the ratio A

A
is a free parameter; the moduli space in this case is the Riemann

sphere.

Admissibility and β for N = 2

We do not delve into the complicated world of reducibility criteria for N = 2 Fock
superspaces in this work, so admissibility of reducible modules as the left and right
spaces in a short exact sequence construction of a staggered module is not our
goal. It is currently unknown if β is even relevant for N = 2 staggered modules.
However, several key features remain the same, even in this more complicated
setting.

We saw that intertwining maps for N = 2 Fock supermodules had one ad-
ditional “vacuum shift” parameter µ compared to their lower-N counterparts:
the presence of two copies of a demands two different a0 eigenvalues, one cor-
responding to each, and generic intertwining maps can potentially alter both
independently. These were mirrored by further parameters setting the relative
strengths of multiplying factors of each weight-1 combination of the free fields
themselves. We saw also that staggered structures have similar internal parame-
ters, in some sense setting the relative strengths of the two bosons in determining
the indecomposable part of the s2Vir action on the staggered module.

In this setting there is no reason to expect that the actual calculation of β
will be any different than what has gone before: after selecting left and right
spaces which may be related by an intertwining map, the relevant singular vector
is fixed; so are the combinatorial factors involved in its creation from the left
vacuum vector.



n\∆h −1 −2 −3

1 µ−2(µ2 − 2) −2µ−2(µ4 − 4)(µ2 − 4) 12µ−10(µ4 − 16)(µ4 − 4)(µ2 − 6)

2 3
4
µ−2(µ2 − 1) 1

2
µ2(µ4 − 4)(µ2 − 1)

45
214µ

−10(9µ4 − 25)(µ4 − 1)(µ2 − 3)

×(µ2 − 1)2(3µ2 + 1)(µ2 + 5)

3 1
3
µ−2(3µ2 − 2) 20

729
µ−2(36µ4 + 27µ2 − 10)(3µ2 + 1)(3µ2 − 2)(3µ2 − 4) µ−2(µ4 − 4)(µ4 − 1)(3µ2 − 2)

4 5
16
µ−2(2µ2 − 1) 5µ−2(5µ4 + 2µ2 − 1)(3µ2 + 1)(2µ2 − 1)(µ2 − 1)

3
4194304

µ−10(10µ2 + 7)(10µ2 − 1)(10µ2 − 7)2

×(8µ2 − 3)(6µ2 + 7)(6µ2 + 1)2(6µ2 − 1)

5 3
25
µ−2(5µ2 − 2) 14

625
µ−2(100µ4 + 25µ2 − 14)(10µ2 + 3)(5µ2 − 2)(5µ2 − 4)

6
9765625

µ−10(25µ2 − 6)(15µ2 + 8)(15µ2 − 2)

×(15µ2 − 8)2(5µ2 + 4)(5µ2 + 1)2(5µ2 − 1)

6 7
36
µ−2(3µ2 − 1) 28

729
µ−2(315µ4 + 54µ2 − 32)(15µ2 + 4)(3µ2 − 1)(3µ2 − 2)

1
4096

µ−10(7µ2 + 3)(7µ2 − 1)(7µ2 − 3)2

×(6µ2 − 1)(5µ2 + 3)(5µ2 + 1)2(5µ2 − 1)

Figure 2.5: Various β(µ) at low-lying (n,∆h). Note that these evaluations only correspond to legitimate constructions
(due to the monodromy condition of (1.88)) when n|∆h, although it is still of course possible to set n and ∆h
independently in these polynomials. We note with interest that these particular examples factorise neatly, whereas
those with n - ∆h do not.



Dense logCFTs (p, q) c β1,3 β1,4 β1,5 β1,6 β1,7 β1,8 β1,9 Ref
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[45]
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8
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[45]

Dense Polymer (1, 2) −2 −1
(1,−1)

−9
2

(1,−2)

−75
4

(1,−3)

[7, 23,45]

Percolation (2, 3) 0 −1
2

(1,−1)

−5
8

(2,−2)

−35
3

(1,−3)

−13475
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(2,−6)
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3253412172342 (?) −3976113132173191232291

55988722816232 (?) [45]
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Figure 2.6: Known values of β for various staggered modules. The A(−∆h1) = 1 normalisation convention is used,
not A(1−∆h) = 1, to match with those in the referred works. Unless marked with a (?), entries in the table have
been verified to match with those predicted by (2.49) — i.e., these staggered modules do indeed have Fock space
realisations of the type constructed here. The relevant (n,∆h) are given in small font beneath each value. Blank
spaces indicate trivial or absent staggering. βr,s indicates that the right module occurs at (r, s) in the appropriate
extended table. Dense logCFTs take µ = µ−, dilute ones µ = µ+, and both have η = η−. There is then only one way
to assign the left module, at least for the small values of (r, s) considered here.
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Chapter 3

Towards Logarithmic Vertex
Algebras

We are the music makers, and we are the dreamers of dreams

Arthur O’Shaughnessy, Ode
(via Willy Wonka)

In this chapter we examine staggered modules as state spaces of what might
be termed “logarithmic” vertex algebras. These are vertex algebras modified so
that the field content is permissive of fields containing logarithmic terms. It is
hoped that through examining such examples we will be able to determine an
appropriate definition for logarithmic vertex algebras themselves.

This treatment of logarithmic fields in the theory of vertex algebras differs
from others (notably [3, 4]) in that other authors have, to date, typically con-
sidered specific types of twisted modules of standard (non-logarithmic) vertex
algebras in which the twisted fields involve the logarithm of the formal variable.
Our approach is to instead suggest enlargements of the state spaces of vertex
algebras to accommodate new states whose corresponding fields are logarithmic
and whose state space structure is indecomposable.

The relationship to staggered modules becomes apparent when we examine
how staggered structures naturally arise in the context of induced modules — not
of oscillator algebras a and b themselves, but of slight enlargements of them. We
will likewise see that these enlargements correspond to the inclusion of vacuum
evaluations of logarithmic fields.

3.1 Induced Staggered Modules

Instead of fixing two Virasoro highest weight spaces and fitting them into a short
exact sequence via a family of staggering operators, as was done in Chapter 2,
we may alternatively produce staggered modules by an extension of the allowed

73
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operators acting on a single Fock space. In fact, the viable staggered constructions
of this kind include some which cannot be produced through our “Jacobi-like”
construction method of (2.23), and we begin with an example of such an instance.

3.1.1 µ = 0 Induced Staggered Fock Modules

The above construction of staggered Fock modules presumed the existence of an
intertwining map extracted as the zero-mode of a screening field. For the modes
of such fields Vµ(z) to be well-defined and to satisfy the correct commutation
relations (2.13), we relied on being able to tune the parameter µ to a particular
(non-zero) value as determined by the a0 vacuum eigenvalue η (1.88). If µ = 0,
then the field Vµ(z) becomes trivial, reducing to the identity map, and this ap-
proach breaks down. Clearly screening fields are the incorrect objects to consider
in what amounts to staggering a Fock space with itself.

Observe that the condition (2.13) was entirely general, and the use of screening
fields merely sufficient to meet these conditions when applied to the particular
case of the Virasoro algebra, i.e.

[Lm, Vn] + [Vm, Ln] = (m− n)Vm+n, (3.1)

since any family of staggering operators {Vn | n ∈ Z} which consisted of the
Laurent coefficients of a weight-1 primary field would do the trick.

Now consider that the bosonic field a(z) =
∑

n∈Z anz
−n−1 is a weight-1 field

(when λ = 0) whose coefficients are operators from any given bosonic Fock space
to itself. Rather than simply choosing its coefficients to be the staggering oper-
ators by setting Vn := an, however, we find we are forced by the δ term in the
commutation relation

[Lm, an] = −nam+n − n(n− 1)λδm,−n (3.2)

to take
Vn := an − λδn,0. (3.3)

Using this definition, we are able to fit any Fock space Fη into a short ex-
act sequence with itself as in (2.16). In fact, comparing to the corresponding
conditions (2.54) and (2.81) for N > 0, we find that setting

Vn = an − λδn,0
Wn = bn

(3.4)

for N = 1, and

Vn = Aan + Aan −
1

2

(
Aλ+ Aλ

)
δn,0

Wn = Abn

W n = Abn

Xn =
(
Aλ− Aλ

)
δn,0

(3.5)
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for N = 2 gives similar “µ = 0” staggered structures, with two copies of the
same Fock (super)space as the left and right pieces of the short exact sequence
of (2.16).

��
Remark:

As it is, this type of staggered space happens to have some interesting fea-
tures. Of the staggered Fock modules seen so far, it stands as a relatively unique
example, in that its family of staggering operators arises from the “lifting” of a
staggered structure consisting of oscillator (a and b) modules only (not of Vir
modules) to one also of Vir modules. This “lifting” happens automatically when
the modes of Vir (and of its super-versions) are expressed in the usual way as
infinite sums of monomials of the (now-indecomposable) oscillator modes.

Following (2.13), a staggered structure involving only a would require a family
of staggering operators {xn | n ∈ Z} such that

[am, xn] + [xm, an] = 0 (3.6)

where the right hand side vanishes as k1 ∈ a must be diagonal. While allowing
the xn to be any collection of scalar values would indeed be permitted, we are
guided by the need to respect the grading to select only one nonzero xn; the one
associated to a0:

xn = δn,0. (3.7)

When this indecomposable representation of the an is used to create a represen-
tation of Vir, since

Ln :=
1

2

∑
k∈Z

: an−kak : −(n+ 1)λan, (3.8)

and in the obvious basis we can think of each an as a 2× 2 block matrix an δn,0

0 an

 , (3.9)

this indeed gives an indecomposable Vir representation with

Vn = an − λδn,0. (3.10)

This prescription also reproduces the staggering operators of (3.4) and (3.5):
by letting

xn = δn,0, yn = 0 (3.11)

for the family of staggering operators associated to an and bn respectively, we get
(3.4); by letting

xn = Aδn,0, xn = Aδn,0

yn = 0, yn = 0
(3.12)
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for the operators associated to an, an, bn, and bn, we get (3.5). Here the same
remarks apply as those in Section 2.2.2: whereas for N < 2 there was only
one non-trivial parameter, which was in the end insensitive to overall scaling,
allowing us to fix a specific non-trivial construction (e.g. Vn = [an, V0] for the
Jacobi-like construction, or δn,0 in the present case), for N = 2 there are two such
parameters so we must keep the ability to vary both independently, for instance
here via the coefficients A,A. These choices decouple from each other for the
oscillators, essentially meaning we have two completely independent staggered
oscillator structures, but the corresponding staggered structures for the N = 2
Virasoro superalgebra enjoy no such property since the commutation relations of
the modes ultimately mix the two parameters. ��

While it is interesting that this type of staggered Virasoro module arises from
a staggered module of the underlying oscillator algebra(s), it is not the key point
of this example — we find that it has another, perhaps more fundamental1 inter-
pretation and construction.

Consider now the extended bosonic oscillator algebra a⊕Cq, which we shall
abbreviate as â. Recall that q was the operator appearing as the constant of
integration in the antiderivative of the bosonic field

∂−1a(z) = q + log(z)a0 −
∑
n6=0

1

n
anz

−n (3.13)

with commutation relations

[an,q] = δn,0 = xn (3.14)

We find in addition that

[Ln,q] = an − λδn,0 = Vn, (3.15)

(refer to (3.10) for the definition of Vn in this setting) replicating in both cases the
staggering operators of the staggered a and Vir Fock modules. Since q commutes
with all the bosonic creation operators, by including a vector q |η〉 in addition
to the original vacuum vector |η〉 we find that the standard procedure of freely
generating F from a vacuum now produces two independent copies of F instead,
related by a factor of q. Thanks to the commutation relation (3.15), the resulting
space

F ⊕ qF (3.16)

is isomorphic to the full staggered module. In fact, we not only calculate [Ln,q] =
an − λδn,0 but also [Gn,q] = bn, and introducing a second2 mode q in the N = 2

1In the sense that it underlies both, and makes contact with the field-theoretic content of
the theory.

2Thinking of course of two modes qi for the two bosonic fields ∂−1a(i)(z), i = 1, 2 satisfying

[a(i)
n ,qj ] = δn,0δi,j
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case such that

[an,q] = [an,q] = δn,0

[an,q] = [an,q] = 0
(3.17)

which results in

[Ln, Aq + Aq] = Aan + Aan −
1

2

(
Aλ+ Aλ

)
[Gn, Aq + Aq] = Abn

[Gn, Aq + Aq] = Abn

[Jn, Aq + Aq] =
(
Aλ− Aλ

)
δn,0

(3.18)

so that in fact the operator(s) q are enough to generate all of the µ = 0 staggered
structures considered above. This means that

F ⊕ qF (3.19)

is the staggered module for N = 0 and 1, and for N = 2 it is

F ⊕
(
Aq + Aq

)
F (3.20)

for appropriate constants A,A.
We may go further with this construction, which obviously generalises to

higher powers of q. We can consider such objects as

n−1⊕
k=0

qkF , (3.21)

for instance, which provide easy access to theories of arbitrary logarithmic rank,
the above being an example of a rank-n staggered module.

µ = 0 Modules of Arbitrary Finite Rank

Consider the spaceMη induced from the vacuum |η〉 by the action of the algebra
â, just as the Fock space Fη is induced from this vector by the action of a alone.
This space can be thought of as

Mη
∼= C [q]⊗Fη, (3.22)

i.e. the polynomial extension of the Fock space by powers of the operator q.
This space is isomorphic as a vector space to an infinite sum of disjoint copies of
Fη, but the extra mode q complicates its structure as a â-module. For instance,

and resulting in

q =
1√
2

(q1 + iq2) , q =
1√
2

(q1 − iq2)
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while we can produce an arbitrary staggered a module of finite rank from this
space by taking the quotient by qn, the resulting space cannot be an â-module
(nor can any finitely-generated space on which q acts non-semisimply, or indeed
any arbitrary space on which q is even locally nilpotent, if a0 has eigenvectors),
because consider that if

qnv 6= 0, qn+1v = 0 (3.23)

for some nonzero a0 eigenvector v and positive integer n, then

0 = a0

(
qn+1v

)
= qn+1a0v +

[
a0,q

n+1
]
v = (n+ 1)qnv, (3.24)

a clear contradiction. Therefore induced modules of â itself must be of infinite
rank. This is acceptable for the construction of finite rank staggered modules
of the type discussed above, of course, since we only require the action of the
algebra a to be well-defined in order to construct a representation of Vir on this
space.

LetM(r)
η be the rank-r staggered Fock module generated by taking the obvious

quotient;

M(r)
η =

C [q]

〈qr〉
⊗ Fη. (3.25)

We also have an obvious basis for the highest weight subspace consisting of

|η, 0〉 = |η〉 ,
|η, 1〉 = q |η〉 ,
|η, 2〉 = q(2) |η〉 ,
· · ·

|η, r − 1〉 = q(r−1) |η〉

(3.26)

where we have adopted the bracketed exponent notation, relatively common in
dealing with modes in state spaces of vertex algebras, indicating normalisation
by a factorial:

x(k) :=
1

k!
xk. (3.27)

Then

Ln |η, k〉 = 0, L−n |η, k〉 = q(k)L−n |η〉+ a−n |η, k − 1〉 , n > 0 (3.28)

and

L0 |η, k〉 = hη |η, k〉+ (η − λ) |η, k − 1〉+
1

2
|η, k − 2〉 . (3.29)

Mη as an â-Module

Mη as an â module has some interesting features, which we examine in a little
detail below. Note firstly that the bilinear form of Fη does not extend toMη; we
must define q†. One thing of note is that the operator q conserves the generalised
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eigenvalue of any vector it acts upon; it is therefore a weight-0 operator along
with a0. In re-defining the adjoint to take this into account, we must allow for
the possibility that

a†0 = A0a0 + Aqq, q† = Q0a0 +Qqq (3.30)

for some constants A0, Aq, Q0, Qq ∈ C. Demanding that this be an involution
compatible with the algebra structure, i.e., [x, y]† = [y†, x†] imposes

a†0 = reiθa0 + cqq, q† = c0a0 − re−iθq (3.31)

for r, c0, cq ∈ R, angle θ, and with r =
√

1− c0cq, which restricts c0cq ≤ 1.
We would also want any proposed adjoint operation to be compatible with any
conceptual inner product. Mirroring that of (1.28), we seek to define something
like

〈U1 |η〉 , U2 |η〉〉 = 〈η|
(
U †1U2 |η〉

)
(3.32)

for U1, U2 ∈ U (â) and with the linear functional 〈η| (v) = δv,|η〉, but one quickly
runs into difficulties, not least of which is that this does not generically result in
a symmetric form:

〈q |η〉 , |η〉〉 = c0η, 〈|η〉 ,q |η〉〉 = 0. (3.33)

One can conclude instantly (using this and similar symmetry constraints) that,
for generic η, we must take

a†0 = a0, q† = −q (3.34)

which results in a space whose generators qk |η〉, k = 0, 1, 2, . . . are all null (of
vanishing norm) except |η〉, the first.

In the vacuum module, where η = 0, we have a second option: to take

a†0 = q, q† = a0, (3.35)

in which case the generators qk |η〉, k = 0, 1, 2, . . . are of non-vanishing norm and
are pairwise orthogonal.

This adjoint is interesting in that it provides an alternate representation of
Vir on M0. Let us define

Λn := L†−n =

 1
2

∑
k 6=0,n : an−kak : +qan − (n+ 1)λan n 6= 0

1
2

∑
k 6=0 : a−kak : +1

2
q2 − λq n = 0

=

 Ln + (q− a0) an n 6= 0

L0 + 1
2

(q2 − a2
0)− λ (q− a0) n = 0

(3.36)



80 CHAPTER 3. TOWARDS LOGARITHMIC VERTEX ALGEBRAS

by virtue of defining † to be compatible with the bracket of â, this adjoint oper-
ation extends to Vir as well, and one finds that

[Λm,Λn] = (m− n)Λm+n +
1

12
(m3 −m)Cδm,n. (3.37)

We therefore have a representation of Vir in which the generators have the op-
posite “direction” in the staggering; operators which otherwise behave as the
Virasoro generators but which increase the rank of vectors on which they act.
Since now [Λn,q] = 0, we have (using the notation of the previous section),

Λn |0, k〉 = 0, Λ−n |0, k〉 = q(k)L−n |0〉+ (k + 1)a−n |0, k + 1〉 , n > 0
(3.38)

and

L0 |0, k〉 = −(k + 1)λ |0, k + 1〉+
1

2
(k + 1)(k + 2) |0, k + 2〉

= h0 |0, k〉+ (k + 1)(0− λ) |0, k + 1〉+
1

2
(k + 1)(k + 2) |0, k + 2〉 ,

(3.39)

exactly the type of behaviour seen in (3.28) and (3.29), albeit with additional
factors of (k + 1) and (k + 2) inserted to maintain the factorial normalisation
previously established. This representation of Vir on M0 is truly dual to the
standard one, not only through the adjoint but through the fact that Vir gener-
ators now typically increase the rank of a vector rather than decrease it. Instead
of the vacuum |0〉 = |0, 0〉 being in a sense a “terminal” object, it is now “initial”,
and M0 with this representation does not technically satisfy our definition of a
staggered module (perhaps contrary to intuition) — (Λ0 − h), for instance, is
not locally nilpotent for any h and Λ0 has no eigenvectors at all, generalised or
otherwise. Since there are not yet any obvious major implications of such a rep-
resentation onM0, it is not clear that the definition of staggered module should
be expanded to accommodate this type of structure.

Of course, the Λn do have utility in computing inner products on M0 with
the adjoint so defined. It modifies the status of certain vectors — their singular-
ity, subsingularity, etc. The relevant expressions for computing these quantities
involve commutators of the form [Λm, Ln] for m > 0 and n < 0. We find in this
case that

[Λm, Ln] = [Lm, Ln] + (q− a0)[am, Ln] + [q− a0Ln]am

= [Lm, Ln] + (q− a0)(mam +m(m− 1)λδm,−n)− anam
= [Lm, Ln] + (mq−ma0 − an)am +m(m− 1)(q− a0)λδm,−n.

(3.40)

As can be seen, this results in a modification to the “standard” bilinear form
of the Verma module by an additional term wherein every position previously
occupied by a commutator is replaced in turn with the term following [Lm, Ln]
in the last line of the above. It should be noted that while a0 acts as the zero
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operator on the rank-0 subspace, it can no longer be discarded from general inner
products, since it acts nontrivially on vectors of higher rank.

These alternate types of adjoint and Virasoro representation may or may not
prove useful in the greater context of the fiend and representation theory —
whether it can meaningfully be applied in Ward identities, for instance. Inspect-
ing this would be beyond the scope of the current work.

Regardless of the adjoint we impose upon the vacuum â-module M0, its sta-
tus as an induced module makes a strong connection with the state spaces of
logarithmic fields. Since

∂−1a(z) = q + log(z)a0 −
∑
n 6=0

1

n
anz

−n, (3.41)

we have in the fashion of the state-field correspondence that

lim
|z|→0

∂−1a(z) |0〉 = lim
|z|→0

(
q−

∑
n>0

1

n
a−nz

n

)
|0〉

= q |0〉 .
(3.42)

This relationship suggests, just as F0 is the state space of the Heisenberg
vertex operator algebra and is generated through the state-field correspondence
by the field a(z) via its derivatives and normally ordered products thereof, that
M0 is generated through the state-field correspondence by the logarithmic field
∂−1a(z) via its derivatives and normally ordered products, and that M0 is the
state space of some corresponding logarithmic vertex operator algebra.

While there are analytical issues to resolve in defining the normally ordered
product of logarithmic fields, algebraically there is little issue: since q never
sends any vector to zero in M0, we conclude that it is a creation operator, and
correspondingly define

: qx : = qx (3.43)

for all x in â. Since q commutes with all an except a0, there is little difference
between this and any other definition extending the domain of : · : to all of â, and
hence little danger of encountering any troubles with it in the future. Indeed, we
find with this working definition that

lim
|z|→0

: ∂−1a(z)∂−1a(z) · · · ∂−1a(z)︸ ︷︷ ︸ :

n

|0〉 = qn |0〉 (3.44)

while considering a normally-ordered product of many terms to be a nested ap-
plication;

:x1x2 · · ·xn : = :x1 ( :x2 ( : · · · :xn−1xn : : ) : ) : . (3.45)

This does indeed appear to be the correct interpretation, since other vectors of
M0 are also generated in this way. For instance,

qa−1 |0〉 = lim
|z|→0

: a(z)∂−1a(z) : , (3.46)
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et cetera.

Using such a definition, working purely with modes and not attempting to
perform any contour integrals, this of course results in

∂−1a(z)∂−1a(w)− : ∂−1a(z)∂−1a(w) : = log(z) [a0,q] +

[∑
m>0

1

m
amz

−m,
∑
n<0

1

n
anw

−n

]

= log(z)−
∑
k>0

1

k

(w
z

)k
= log(z) + log

(
1− w

z

)
= log(z − w),

(3.47)

as expected, which converges since |z| > |w|. This utilises a well-known expansion
of the logarithm;

log(1− x) = −
∑
k>0

1

k
xk (3.48)

for |x| < 1 [21]. We shall have occasion to use this expansion many more times
in the sequel.

3.1.2 Symplectic Fermions

We now consider another type of staggered module of the Virasoro algebra, also
generated from modes of an oscillator algebra, and also able to be induced as the
vacuum module of a “logarithmically” extended version of the same oscillator
algebra. This is the symplectic fermion representation, so-called because the
generating set of the theory comprises two weight-one fields (or alternatively one
two-component complex fermion) whose products may be given in terms of a
symplectic form.

These fields, typically denoted

χα(z), α ∈ {+,−} (3.49)

obey the relations

χα(z)χβ(w) ∼ εαβ

(z − w)2
(3.50)

where εαβ is a totally antisymmetric 2×2 tensor; we can specify an ordered basis
with ε+− = −ε−+ = 1 and ε++ = ε−− = 0.

These fields have expansions

χα(z) =
∑
n∈Z

χαnz
−n−1, (3.51)
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so the fermionic behaviour truly comes from the symplectic form, since the mode
expansions appear bosonic in nature. Nevertheless, we do indeed find

{χαm, χβn} = mεαβδm,−n. (3.52)

An energy-momentum tensor can be defined by setting

T (z) :=
1

2
εαβ :χα(z)χβ(z) : (3.53)

where εαβ is the inverse of εαβ;

εαγε
γβ = δβα. (3.54)

Thus

Ln =
1

2
εαβ
∑
k∈Z

:χαn−kχ
β
k : (3.55)

and we construct the state space by inducing from the vacuum |0〉 satisfying

χαn |0〉 = 0, n ≥ 0. (3.56)

Up to vacuum parity, this is the unique irreducible highest weight representa-
tion of this algebra [20], and it has (c, h) = (−2, 0). There is an indecomposable
extension [30] of this representation, freely generated from a four-dimensional
space of vacuum states spanned by

{|0〉 , |θα〉 , |ω〉} (3.57)

with action of the oscillator zero modes given by

χα0 |ω〉 = − |θα〉
χα0
∣∣θβ〉 = εαβ |0〉

χα0 |0〉 = 0

(3.58)

which allows us to compute e.g.

L0 |ω〉 = |0〉 , L0 |θα〉 = 0, L0 |0〉 = 0 (3.59)

which shows that this is a logarithmic-type theory. It is technically a rank-2
staggered module, but with two additional fermionic ground states |θα〉 “between”
the generalised eigenvector pair |0〉 and |ω〉 which are in a sense invisible to the
Vir zero mode. Not so for the other Ln:

Ln |ω〉 = 0, L−n |ω〉 = P−n(χ±) |ω〉+
1

2
εβγ

(
:χβ−nχ

γ
0 : + :χβ0χ

γ
−n :

)
|ω〉

= P−n(χ±) |ω〉 − χ−−n
∣∣θ+
〉

+ χ+
−n
∣∣θ−〉

Ln |θα〉 = 0 L−n |θα〉 = Q−n(χ±) |θα〉+
1

2
εβγ

(
:χβ−nχ

γ
0 : + :χβ0χ

γ
−n :

)
|θα〉

= P−n(χ±) + χα−n |0〉
(3.60)

for all n > 0, and where P−n is a polynomial of χ+ and χ− modes specific to L−n
(in reality it is all the pairs of creation operators appearing in the expansion of
L−n except for the pair containing the zero mode).



84 CHAPTER 3. TOWARDS LOGARITHMIC VERTEX ALGEBRAS

Symplectic Fermions as a (Logarithmic) bc System

The bc system consists of a pair of anticommuting fields whose conformal dimen-
sions hb and hc add to 1. We parametrise these possible systems by setting hb = λ
and hc = 1− λ for some λ ≥ 1

2
. We make a comparison between the symplectic

fermions discussed above and the bc system at λ = 1.
We have

b(z)c(w) ∼ 1

z − w
(3.61)

for all λ, which of course implies

{bm, cn} = δm,−n (3.62)

Now obviously the λ = 1 bc system has the wrong weights to be directly compa-
rable to the symplectic fermions. This is evidenced by the missing factor of m in
the above anticommutation relation. We rectify this by identifying (say) χ+(z)
with b(z) but χ−(z) with ∂c(z). Then one can compute directly from the field
product

b(z)∂c(w) ∼ ∂w
1

(z − w)hb+hc
=

1

(z − w)2
∼ χ+(z)χ−(w) (3.63)

that the modes of these fields obey the same relations, so generate the same
highest weight space on the vacuum. One must nevertheless consider such com-
parisons with caution: ∂c, being a derivative, lacks a mode at at z−1 if c is purely
meromorphic, and the constant piece c0 also drops away. In the prescription at
hand, the “missing” mode on z−1 is to be identified with χ−0 , which actually
acts as the zero operator on the vacuum module anyway, so in this instance this
hand-waving poses no real problem. The same concerns apply to c0, which has no
corresponding mode of χ−(z) since it does not appear in ∂c(z). If we truly wish
to identify the symplectic fermions and the bc system, c must have logarithmic
singularities, and this identification must involve a strict subalgebra of the modes
of c(z).

Indeed, typically b(z) and c(z) are written

b(z) =
∑
n∈Z

bnz
−n−λ, c(z) =

∑
n∈Z

cnz
−n−1+λ (3.64)

but note that log(z) is also of weight 0 (its first derivative is z−1, of weight −1),
meaning we should redefine

c(z) = log(z)clog +
∑
n∈Z

cnz
−n, (3.65)

writing

c(z) = q− + log(z)χ−0 −
∑
n 6=0

1

n
χ−n z

−n; (3.66)
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that is,

clog = χ−0 , c0 = q−, cn =
1

n
χ−n , (n 6= 0). (3.67)

The already-known relations of the modes {cn} enforce {bn,q−} = δm,0. It
is the new mode clog for which we must find relations. However, this is fully
determined by (3.61):

log(w)
∑
m∈Z

{bm, clog}+
∑
m,n∈Z

{bm, cn}z−m−1w−n =
∑
k∈Z

z−k−1wk, (3.68)

implying {bm, clog} = 0, consistent with our identification of χ+
m = bm and each

χ−n with the modes of ∂c.

The behaviour of the mode q− hints at a possible induced structure as in
Section 3.1.1. Indeed, if we allow the new3 mode to act freely on the vacuum |0〉,
the new state q− |0〉 satisfies

χ+
0 q− |0〉 = |0〉
χ−0 q− |0〉 = 0,

(3.69)

and since this also ensures the modes of Vir act in the right way on this vector,
we can confidently identify q− |0〉 with |θ−〉. Is it possible to integrate b(z) to
introduce a corresponding mode q+ which generates |θ+〉? Indeed, let us write

∂−1b(z) = q+ + log(z)b0 −
∑
n6=0

1

n
bnz
−n. (3.70)

Then we expect

c(z)∂−1b(w) ∼ ∂−1
w

1

z − w
∼ − log(z − w), (3.71)

and just by examining the orders of the variables attached to each mode, we must
expect

{q+, cn} = 0, n ∈ Z\{0}. (3.72)

Indeed, treating q+ as a creation operator (so that it is placed to the right
of any normal ordering), we find (writing ∂−1b+ and c− for the annihilation and

3Recall that, while q− = c0 is not new, it was not previously identified with any χ−
n since it

does not appear in ∂c.
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creation operators of the two fields)

c(z)∂−1b(w)− : c(z)∂−1b(w) : = {c+(z), ∂−1b−(w)}

= log(z){clog,q
+}+

∑
m>0

{cm,q+}z−n

− log(z)
∑
n<0

1

n
{clog, bn}w−n −

∑
m>0

∑
n<0

1

n
{cm, bn}z−mw−n

= log(z){clog,q
+}+

∑
m>0

{cm,q+}z−n +
∑
k>0

1

n

(w
z

)k
= log(z){clog,q

+}+
∑
m>0

{cm,q+}z−n − log
(

1− w

z

)
(3.73)

where we have again used the series evaluation (3.48) as the ordering of the
product implies |w| < |z|. In order for the above to be consistent, we see we must
take

{cn,q+} = −δn,0, {clog,q
+} = 0 (3.74)

so that, in all,
{χαn,qβ} = εαβδn,0 (3.75)

and the four distinct states |0〉, q+ |0〉, q− |0〉 and 1
2
εαβq

αqβ |0〉 satisfy

1

2
χγ0εαβq

αqβ |0〉 = −qγ |0〉

χα0 qβ |0〉 = εαβ |0〉
(3.76)

and, for example,
L0εαβq

αqβ |0〉 = |0〉 . (3.77)

So we clearly can identify

ω =
1

2
εαβq

αqβ |0〉

θα = qα |0〉
(3.78)

and can also give state-field correspondences

1

2
εαβq

αqβ |0〉 = lim
z→0

1

2
εαβ
(

: ∂−1χα∂−1χβ :
)

(z) |0〉

qα |0〉 = lim
z→0

∂−1χα(z) |0〉
(3.79)

wherein
: qαqβ : = qαqβ, {qα,qβ} = 0. (3.80)

Note that these particular relations between the q± are consistent with what has
been introduced so far, but not explicitly implied by it, e.g. notably with the
particular definition of the normally ordered product of two fields used in (3.73).
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Explicit relations such as these will be found to come readily from more careful
considerations of the operator product expansion for logarithmic fields. Since
∂−1b and c are fermionic, 1

2
εαβq

αqβ is the highest degree of q operators that may
be applied to |0〉; the chain-like structure of powers of q seen in Mη naturally
terminates in this instance.

3.1.3 µ 6= 0 Induced Staggered Fock Modules

In Section 3.1.1 we saw how staggered Fock modules could be induced from the
vacuum vector in the same way as ordinary Fock spaces. In Section 3.1.2 we
saw how this same idea could be used to produce other types of indecomposable
structures involving the Virasoro algebra. This general construction relied on the
introduction of new modes q into the underlying oscillator algebras such that
the commutation relations with the Vir generators reproduced the staggering
operators necessary to the staggered structure. In the case of the symplectic
fermions this was slightly obscured by the fact that there were two such “staggered
structures” (as we have defined them), and consequently two such operators.
Their fermionic nature ensured that the resulting space was generated by only
finitely many vacuum vectors. An analogous bosonic structure would be that
of the two complex bosons a(z) and a(z); their field integrals would introduce
commuting creation modes q and q which would generate a non-negative integer
lattice of ground states qmqn |0〉, m,n ≥ 0.

We would like to think of these structures in the following general way:

3.1.1 Definition. LetM be a rank-2 staggered module with family of staggering
operators {Vn | n ∈ Z}. Furthermore let there be an operator Q such that

[Ln, Q] = Vn. (3.81)

Then we call Q a co-staggering operator for M.

3.1.2 Proposition. Let M, {Vn}n∈Z, and Q be as in Definition 3.1.1. Define
M(1) ⊂ M to be the submodule consisting of all rank-1 generalised eigenvectors
of L0 (i.e., the span of all genuine L0 eigenvectors), and

M(2) =M/M(1) (3.82)

to be the (non-staggered) quotient by this maximal non-staggered submodule. We
then have

U (Vir) ·
(
QM(2)

)
(3.83)

as a staggered submodule of M, where QM(2) is a module which consists of all
objects of the type Qv for v ∈M(2); that is, with linear identification Qv+Qw :=
Q(v + w) for vectors v and w and kQv = Q(kv) for scalars k. The action of the
Virasoro algebra is then defined be

Ln(Qv) := Q(Lnv) + [Ln, Q]v (3.84)
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which one can see results in an object which must interpreted as an element of
M(1) ⊕QM(2). One can also check that the image space given in (3.83) behaves
as it should and is a genuine Virasoro module. Since QM(2) is isomorphic to
M(2), we can realise this whole apparatus as a (sub)module of M. Note that the
submodule generated in this way therefore equals M itself only if the combined
images of all the staggering operators exhausts M(1).

Proof. Reasonably simple. Since the staggering operators associated with Q
are maps M(2) → M(1) and by definition the commutation relations of the
co-staggering operator reproduce the indecomposable action of Vir on M, we
have it that the resulting module must firstly be staggered and secondly be
strictly contained in M. In addition, if the combined mappings of the stag-
gering operators are onto, the underlying space is isomorphic as a vector space
to M(1) ⊕M(2)

∼=Vec M.

��
Remark:

One can easily see how these concepts generalise further to staggered modules
of higher rank, as we saw implicitly in Section 3.1.1, for instance, by simply con-
sidering induced structures like that in (3.1.2) which begin from a higher power
of Q. In this case, however, one must be careful about the exact commutation
relations to be enforced between the generators of Vir and the co-staggering op-
erator, since higher-rank staggered structures can demand more than one family
of staggering operator. In fact, we require 1

2
r(r − 1) many families in a generic

rank-r module — the number of strictly upper-diagonal entries when the Virasoro
generators are treated as r× r upper-diagonal block matrices acting on the total
space. ��

This seems a circuitous route by which to make more formal contact with the
structures seen so far. Certainly the extra abstraction seems unnecessary when
dealing with spaces induced simply by the inclusion of the new mode q, not least
because we have already examined such staggered modules Mη

∼= Fη[q] with a
less convoluted polynomial-type extension.

However, recall that the type of staggered Fock (super)modules constructed
in Chapter 2 is completely at odds with the induced staggered modules so far.
All of the co-staggering operators to this point have been of grade 0, and so the
generating sets of vacuum vectors have been in the same highest-weight gener-
alised eigenspace of L0. The different-ranked pieces in the decomposition chain of
the full staggered module (e.g., M(1) and M(2) of Proposition 3.1.2) have there-
fore been able to be identified with each other, with the co-staggering operator
playing little more role than that of a formal variable keeping the ranked pieces
separate.

Contrast this with more general indecomposable structures, such as the ones
seen in Chapter 2, which cannot simply be realised as Fη,λ [Q] for some co-
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staggering operator Q, since the staggering operators map between genuinely
distinct spaces. For example, Fη,λ is contained nowhere in U (Vir) ·QFη,λ; it does
not correspond to the rank-1 subspace of the rank-2 staggered module induced
by Q, because the staggering operators [Ln, Q] do not map to Fη,λ but rather to
Fη+nµ,λ for some vacuum shift nµ.

So is it actually possible to create a co-staggering operator Q for the types of
staggered Fock modules defined in Chapter 2? One can note certain similarities,
comparing the staggering operators of these modules

Vn := [an, V0] (3.85)

to the staggering operators of the µ = 0 induced modules seen above;

an − λδn,0, (3.86)

which correspond to the co-staggering operator q. If we substitute the co-
staggering operator into this prescription, we find that setting

Q := [q, V0] (3.87)

gives, by an application of the Jacobi identity,

[Ln, Q] = Vn (3.88)

and even
[Gn, Q] = Wn (3.89)

in the case of N = 1 and

[Gn, Q] = Wn

[Gn, Q] = W n

[Jn, Q] = Xn

(3.90)

where Q := [Aq +Aq, V0] for N = 2 (compare (2.80) and (3.18) for the source of
these claims).

So the surprising answer to the question posed above is: yes! We apparently
can produce such a co-staggering operator Q — with suspicious ease. It seems
remarkable that such a simple operator q should hold so much power. It points
to how deeply staggered modules are tied to logarithmic fields; how Vir and its
superalgebra cousins, being realisable in terms of an oscillator algebra, are altered
when this oscillator algebra is extended to allow for indecomposable structures.
Not only this, but the indecomposable structures are in a sense natural in that
they arise only from allowing the new modes to act freely upon a vacuum, as one
would allow any creation mode to act in a state space.

Unfortunately, of course, there is a complication, which brings the whole thing
crashing down:4

[q, V0] = 0 (3.91)

4It is logarithmic conformal field theory, after all!
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if we just calculate at the level of oscillator modes. This is because q only
commutes nontrivially with a0, which “disappears” from Vn×µ(z) when evaluated
on a particular module, as is done when extracting the zero mode V0. There are
multiple potential ways to address this issue, each with their own advantages and
disadvantages.

Integrals of Vertex Operators

Given an intertwiner V0 of vacuum shift nµ and the subsequent family of stag-
gering operators Vn = [an, V0] created from it, regardless of the multiplicity n of
screening fields used to generate it, we can form a weight-1 primary field in the
following way:

V[nµ](z) :=
∑
n∈Z

Vnz
−n−1, (3.92)

i.e., this means

T (z)V[nµ](w) ∼ ∂w

(
V[nµ](w)

z − w

)
. (3.93)

Then if we write

V̂[nµ](z) = ∂−1V[nµ](z) := Q+ log(z)V0 −
∑
n6=0

1

n
Vnz

−n (3.94)

we expect

T (z)V̂[nµ](w) ∼ Vnµ(w)

z − w
(3.95)

which implies of course that∑
m∈Z

∑
n 6=0

−1

n
[Lm, Vn]z−m−2w−n +

∑
m∈Z

[Lm, Q]z−m−2 =

(∑
i∈Z

Viw
−i−1

)(∑
k∈Z

z−k−1wk

)
=⇒

∑
m∈Z

∑
n6=0

Vm+nz
−m−2w−n +

∑
m∈Z

[Lm, Q]z−m−2 =
∑
i,k∈Z

Viz
−k−1wk−i−1

=⇒
∑
m∈Z

[Lm−1, Q]z−m−1 =
∑
m∈Z

Vm−1z
−m−1.

(3.96)

giving
[Lm, Q] = Vm. (3.97)

This circumvents the issue of determining the internal structure of Q and
whether or not it makes sense to try and think of it in terms of a decomposition
of oscillator modes. By ignoring the problem, so to speak, or rather by turning it
into one of field theory, we also pave the way to building higher-rank staggered
modules of this type. We can consider some Q-induced module which involves
higher powers of Q. The main issue to resolve is how to commute

[Q, Vn], (3.98)
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which, at least for the case of a single screening field (n = 1), can be computed
in certain cases from the general expression

Vµ(z)Vν(w) = (z − w)µν :Vµ(z)Vν(w) : , (3.99)

giving, if µ2 = M ∈ N (this only occurs in a discrete series of modules where
c = 13− 3M − 12

M
for M = 1, 2, . . .),

V√M(z)V√M(w) ∼ 0, =⇒ V̂[n
√
M ](z)V[n

√
M ](w) ∼ 0 (3.100)

implying [Q, Vn] = 0.
These are exactly the vertex fields for which repeated composition makes

sense; those for which the vacuum evaluation of zµa0 remains singly-valued re-
gardless of how many multiples of µ are added to a0. The total space can be
generated from any vacuum vector |η〉 with η of the form m

µ
= m√

M
for some

m ∈ Z. We do not need to be concerned in the case of higher-ranked modules
about generating higher-order families of staggering operators, since the effect of
acting a mode Ln on any one vector Qkv is fully determined by repeated appli-
cations of the commutation relations.

However, one detail to work out is exactly what is meant by something like

ViVj |η〉 . (3.101)

Since Vj takes the module generated by |η〉 into that generated by |η + nµ〉,
what exactly is meant by the index i on Vi in the above? An application of
the composite vertex field Vn×µ(z1, · · · , zn) to |η + nµ〉 has a different vacuum
evaluation of (z1 · · · zn)µa0 compared to when acting on |η〉, hence a different
index shift on its variables, hence a different intertwining operator V0 generated
from the contour integration — hence, crucially, a different but related family of
staggering operators, index-shifted from the first.

While true, it should be noted that it is not the composite field Vn×µ(z1, · · · , zn)
that we are working with, but the “fake” screening field V[nµ](z) of a single variable
which we created as a proxy weight-1 primary in order to introduce its integral
V̂[nµ](z) and thus the constant of integration, the co-staggering operator Q:

V[nµ](z) =
∑
k∈Z

[ak, V0]z−k−1. (3.102)

As such, it contains no appearances of a0 and hence has no sensitivity on its
own to the vacuum evaluation. The only thing which needs to be taken care of
is those multiples of a0 introduced under commutation with the Vir generators
(since, for example, [Ln, a−n] = na0 − n(n + 1)λ, and V0 consists of an infinite
sum of normally ordered homogeneous polynomials in the generators of a).

There is a way to compute this directly. Note that the method of achieving
the different vacuum |η〉 7→ |η + nµ〉 is entirely through the action of q, or rather
its exponential enµq. This means we need not view the representation of a, nor
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the representation of Vir, as ever actually changing — all of the difference in
vacuum evaluation coming purely from twist-like terms which appear when com-
muting the operators through this exponential. There is, in this sense, only one
highest weight representation of a (assuming K 6= 0), and hence only one Vir
representation on Fock space for each value of the central charge: the vacuum
representation.

Fη,λ QFη,λ

Fη+nµ,λ

Q2Fη,λ

QFη+nµ,λ

Fη+2nµ,λ

Q3Fη,λ

Q2Fη+nµ,λ

QFη+2nµ,λ

Fη+3nµ,λ

· · ·

· · ·

· · ·

· · ·

Figure 3.1: A diagrammatic representation of the indecomposable Vir module
induced by the polynomial extension of a Fock module by the co-staggering oper-
ator Q. Nodes represent subsets which can be identified with some Fock module
(as vector spaces). Arrows indicate maps under certain module actions. Dotted
arrows indicate the action of Q. Solid vertical arrows show the action of the
Virasoro algebra. Each rth vertical chain, when taken in isolation, forms a rank-
r staggered module. Filled nodes denote the “bottom” subspaces consisting of
rank-1 vectors, unfilled nodes denote the “top” subspaces of rank-r vectors, and
partially filled nodes denote subspaces of intermediate rank. The module con-
structed in Proposition 3.1.2 can therefore be identified with the length-2 chain
in this diagram.

Let ãn and L̃n denote this “true vacuum” representation; the one on |0〉 with

ãn |0〉 = 0, n ≥ 0 =⇒ L̃n |0〉 = 0, n ≥ −1. (3.103)

We can simulate arbitrary Fock space representations generated from other vacua
|η〉, η ∈ C by an additive shift:

ãn 7→ a(η)
n := ãn + ηδn,0. (3.104)

One can easily calculate that this results in a corresponding Vir representation

L(η)
n = L̃n + ηãn, n 6= 0, L

(η)
0 = L̃0 + ηã0 + hη (3.105)

and that these “new” representation satisfy (for instance)

a
(η)
0 |0〉 = η |0〉 , L

(η)
0 |0〉 = hη |0〉 , (3.106)
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as well as all the other relations expected of these algebras acting on the vacuum
|η〉. Finally observe that

[L̃n, e
ηq] = eηq (ηãn) , n 6= 0 (3.107)

and

[L̃0, e
ηq] = eηq (hη + ηã0) , (3.108)

which correctly5 reproduces the action of the L
(η)
n on |0〉. This means that instead

of considering the action of the Virasoro algebra on the domain and image space
of an intertwining map as that of two distinct representations, we instead consider
this as the action of one fixed representation, the vacuum representation L̃n, with
an appropriate exponential of q simply another creation operator mediating and
modifying the action. When this is the case and we have an intertwiner Ṽ0 for
the vacuum representation, we can compute

[L(η)
m , Ṽn] = [L̃m, Ṽn] + η[ãm, Ṽn]

= −nṼm+n + ηµṼm+n

= −(n− ηµ)Ṽm+n

(3.109)

This aligns with our understanding of how the screening operators affect the
conformal weight of the vacuum in a nonlinear fashion. The conformal grade
of the very same combination of modes Ṽn depends on the a0 eigenvalue of the
vector it acts upon. It is clear that in a module shifted to have vacuum eigenvalue
η, we need to take

Vn = Ṽn+ηµ, (3.110)

and this holds true not just for the vacuum representation L̃n but for any pair of
representations whose a0 eigenvalues differ by η. Thus we interpret

Vn1Vn2 · · ·Vnk |η〉 = Ṽn1+ηµ+(k−1)µ2Ṽn2+ηµ+(k−2)µ2 · · · Ṽn1+ηµ |0〉 (3.111)

Does this make it impossible to induce higher-ranked modules with Q in a
grading-consistent way, given that [Ln, Q] = Vn was fixed? Not necessarily; while
Q itself never changes, the effective representation of Vir does. This action,
combined with taking [Q, Vn] = 0 for all n, induces a very large space compared
to the fixed-rank staggered modules of Chapter 2. Indeed, the induced module
Fη,λ[Q] consists of an infinite chain of rank-r staggered modules for r = 1, 2, . . .
(c.f. Figure 3.1), all with Fη,λ as the top-rank space.

5The ã0 term appearing in L̃0’s relation is what allows

[L̃0, e
ηqeχq] = eηqeχq (hη+χ + χã0) ,

providing an extra term so the quadratic hη and hχ add correctly to give hη+χ
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The Virasoro generators have the following block matrix action on each rank-r
staggered subspace of this Q-induced module:

Ln Ṽn+ηµ+(r−2)µ2

Ln Ṽn+ηµ+(r−3)µ2

. . . . . .

Ln Ṽn+ηµ

Ln


(3.112)

Like with Sections 3.1.1 and Section 3.1.2 we also note a kind of state-field cor-
respondence on the true vacuum for the field V̂µ(z). Although a grade-0 operator,

Ṽ0 is a net annihilator of oscillator modes; it satisfies

Ṽ0 |0〉 = 0. (3.113)

Thus

lim
z→0

V̂µ(z) |0〉 = lim
z→0

(
Q+ log(z)[a0, Ṽ0]−

∑
n6=0

1

n
[anṼ0]z−n

)
|0〉

= lim
z→0

(
Q |0〉+

∑
n>0

1

n
znṼ0a−n |0〉

)
= Q |0〉

(3.114)

as one expects.

Extension by a Logarithmic Variable

There is another way of interpreting the assignment

Q := [q, V0] (3.115)

and which has strong similarities with that of Section 3.1.3. Let us begin with
the operator product expansion

a(z)Vµ(w) ∼ µVµ(w)

z − w
, (3.116)

giving

∑
m∈Z

∑
n∈Z

[am, Vn]z−m−1w−n−1 =

(∑
i∈Z

Viw
−i−1

)(∑
k∈Z

z−k−1wk

)
(3.117)
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which implies6

[am, Vn] = µVm+n, (3.118)

but also the operator product expansion can be used to evaluate the more inter-
esting

∂−1a(z)Vµ(w) ∼ log(z − w). (3.119)

We can use the logarithmic operator product expansion (see Section 3.2) to eval-
uate this, and we find, along with [am, Vn] = Vm+n, that we are forced to take

[q, Vn] = −µ log(w)Vn (3.120)

since this is demanded by (3.119).
In a sense this is an absurd requirement; that the commutator of one mode

with another depend on the variable of their parent field(s).7 In another sense it
is just what is necessary for the commutator to be non-trivial, since:

[q, zµa0 ] = −µ log(w)zµa0 , (3.121)

matches the only term appearing in Vµ(w) which commutes non-trivially with q.
Somehow demanding consistency between logarithmic modules and logarithmic-
type operator products has broken the boundary between modes and fields.

However, this in itself is not so much of a problem if we re-examine what
features of the vertex operator are important from the point of view of producing
intertwiners. These vertex fields operators a sad double life: they are defined
through the normally ordered exponential of the logarithmic field ∂−1a(z), but
are not well-defined as fields themselves unless they are acted upon a Fock module
a posteriori, at which point the inherent variability from the factor of zµa0 they
contain is “frozen out”. It is these fields, not the vertex operators themselves,
which are contour-integrated to extract intertwining operators; formal polynomial
combinations of creation and annihilation operators of a together with the vacuum
shift operator eµq. It is these terms which have the desired commutation relations
with the Virasoro algebra. In fact;

[Ln, z
µa0 ] = 0 ∀n, (3.122)

so the only thing which is achieved by the vacuum evaluation of this term and
subsequent contour integration is the removal of the indeterminate z and an
index shift on the Vn to give the correct conformal grade to each. Looking again
at (3.120), we seem to require

Q := −µ log(w)V0, (3.123)

6This looks like it “proves” our making use of this prescription in (2.23) to form the staggering
operators of Chapter 2, but note that here we are only dealing with a single vertex operator
(n = 1), not a general composition of them.

7Not the last time we will see such a thing occurring for logarithmic fields.
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so the above facts suggest identifying the staggered an extension of the base Fock
module by formal variables z and ζ = log(z) which satisfy

∂zζ =
1

z
, ∂ζz = z. (3.124)

This would require a modification of the Vir action so that

[Ln,−µζV0] = Vn. (3.125)

This can be done by setting

Ln 7→ Ln −
1

µ
(an − λδn,0) ∂ζ −

1

2µ2
δn,0∂

2
ζ . (3.126)

One finds that this prescription satisfies the commutation relations of the Virasoro
algebra, and has the desired commutation properties. Provided the composition
of the modes Vn is well defined (c.f. the considerations made in Section 3.1.3), the
resulting module induced from the action of this Q bears some strong similarities
to that seen in Figure 3.1. Vectors of rank r are multiplied by powers ζr of the
formal variable, but since each ζ is accompanied by a factor of V0, in fact each
rank r subspace QrFη can be identified with its image V r

0 Fη in Fη+rnµ from the
outset (every nontrivial V0 is injective).

As was noted in Section 3.1.3, the identity of an intertwiner V0 changes de-
pending on the a0 eigenvalue of the module, but can only ever change to another
of Vµ(z)’s modes. Using the notation of that section to denote true vacuum
representations (i.e. on |0〉),

Vn = Ṽn+ηµ. (3.127)

which depends on the number of other Vn to the right through the parameter η,
as in (3.111).

It is still possible to realise this Q as the constant piece of a field with loga-
rithmic terms. If (recall (3.92)):

V[nµ](z) := [a(z), V0], (3.128)

then we have
∂−1
z V[nµ](z) := [∂−1

z a(z), V0] (3.129)

giving the staggering operators and co-staggering operator as previously defined.
It is, however, unclear as to the benefits of choosing this construction over that
of Section 3.1.3.

3.2 Logarithmic Vertex Algebras

By now we have already laid the principles of what we would like to call a loga-
rithmic vertex algebra. We have been manipulating logarithmic field expressions
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in operator product expansions to compute commutation relations (and more)
without much regard for the deeper validity of what was happening. In this sec-
tion we would like to address this, introducing some definitive concepts which will
hopefully pave the way for future work in making vertex algebras of logarithmic
more rigorous.

Such logarithmic extensions have been considered by other authors. As noted
in the introduction to this chapter, one might contrast the approach outlined
here with those of e.g. [3,4] where twisted modules of standard (non-logarithmic)
vertex algebras in which the twisted fields involve the logarithm of the formal
variable are given. Our approach is to instead suggest enlargements of the state
spaces of vertex algebras to accommodate new states whose corresponding fields
are logarithmic and whose state space structure is indecomposable. The extension
to logarithmic fields has been seen before, in [36], [1], and others, but we point
out that the approach here appears unique in its motivation by the appearance of
staggered modules as induced modules and the naturalness of their construction
once the underlying algebras are enlarged to include modes which generate the
staggering operators through the Lie bracket; the fact that these modes appar-
ently correspond to the vacuum evaluation of logarithmic fields appears almost
accidentally.

One of the core principles behind the operator product expansion is that the
(time-ordered)8 product A(z)B(w) of two fields A(z) and B(w), up to a possible
addition of terms regular in the variables z and w, is a function of z and w which
converges to a finite sum of singular terms in the domain |z| > |w|. These are
not just any singular terms, in fact the result consists only of poles in (z −w) of
finite order;

A(z)B(w) ∼
N∑
k=1

Ck(w)

(z − w)k
. (3.130)

for some N ∈ N \ {0} and some coefficient fields Ck(w), which can have at worst
poles at 0 or ∞.

This is an analytic approach to field theory; one can extract the coefficient
fields, the “structure constants” of the vertex algebra, by performing contour inte-
grals around w — which must be delicately deformed into two oppositely-oriented
loops around the origin; this accounts for the necessary ordering differences of the
fields A and B along the contour about w as it passes through the two domains
|z| > |w| and |z| < |w|. It seems that any attempt to introduce logarithmic
singularities is doomed to fall at the very first hurdle, since such an integral is
impossible.

Though still essentially analytic in nature, there is an alternative approach to
presenting the information contained in (3.130). The time-ordered difference of
this expression is, on the left hand side, the commutator of two fields, while on
the right hand side it is the difference of two convergent expressions with disjoint

8This refers to the time ordering of events, where time is associated to the magnitude of the
complex variable
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domains of convergence. More details on how this is correctly interpreted may be
found in Appendix A, but suffice it to say that we write the difference of these two
competing convergent expansions as a single formal power series without regard
for any convergent behaviour. This is in order to interpret it as an object without
singularities away from the special9 points 0 and ∞.

As long as one is careful about the specific space such an identity is being
evaluated in, all of this is perfectly legal. The entire algebraic machinery of the
operator product expansion is consistent with treating, for instance, derivatives
of field products as one would intuitively expect;

∂mz ∂
n
w (A(z)B(w)) = (∂mA)(z)(∂nB)(w) ∼ ∂mz ∂

n
w

N∑
k=1

Ck(w)(z − w)−k. (3.131)

When attempting to include logarithmic behaviour into this machinery, it is
hard to decide which properties may be relaxed and which are too important to
alter. It is also difficult to decide just how and where to introduce this logarithmic
behaviour, since one can see how potentially many different starting points may
be used.

At the very least, it seems that having access to the usual operations of
calculus is desirable, so we will seek to make this logarithmic behaviour consistent
with the derivative operations mentioned above. Since the logarithmic singularity
is the first antiderivative of the first order pole (or rather, since we would like to
be thinking in terms of derivatives, the first order pole is the derivative of the
logarithmic singularity), we would like to introduce a family of objects ∂−kw δ(z−w)
which may be used to express logarithmic field commutators in the manner of
(A.11). Using (A.8), we are able to show that if such a formal series as ∂−1

w δ(z−w)
exists, then it satisfies

∂w
(
(z − w)∂−1

w δ(z − w)
)

= −∂−1
w δ(z − w) (3.132)

so that multiplication by powers of (z −w), instead of annihilating ∂−1
w δ(z −w),

generates all its antiderivatives:

∂−k−1
w δ(z − w) =

(−1)k

k!
(z − w)k∂−1

w δ(z − w). (3.133)

Note that we are not requesting the existence of a new allowed operation ∂−1
w , only

the existence of antiderivatives of δ(z − w) a priori. Näıvely, the antiderivative
of δ(z − w) with respect to w is

log(w) +
∑
n6=0

1

n

(w
z

)n
+ C(z), (3.134)

9In typical CFT usage, such points represent the infinite past and infinite future, so actually
sit outside the valid domain, any any singularities there can be “safely” ignored.
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and since ∂zf(z−w) = −∂wf(z−w) for any function of the difference (z−w), we
must have either ∂zC(z) = 0 or ∂zC(z)− = 1

z
, since these are the only terms of

δ(z−w) which do not contain a power of w (and mutando mutandis for constant
terms not containing powers of z). In fact, enforcing that ∂z∂

−1
w δ(z−w) ∝ δ(z−w)

gives
C(z) = − log(z) + C (3.135)

for some constant of integration C, so we should expect

∂−1
w δ(z − w) = C + log

(w
z

)
+
∑
n6=0

1

n

(w
z

)n
. (3.136)

The presence of the constant C is a curious “gauge-type” choice which makes little
to no contact with the field content. It is typical of the kind of indeterminacies
that arise in treating logarithmic singularities — the indeterminacy in the choice
of sheet for the complex logarithm, for instance. This degeneracy of absolute
angle appears when we consider the time-ordered expansions of two logarithmic
type singularities — for not only should the existence of this antiderivative apply
on the right hand side of (A.11), but on the left too. This means that we should
have, in particular,

∂−1
w

(
ιz,w

1

z − w
− ιw,z

1

z − w

)
= ιw,z (log(z − w) + C1(z))−ιz,w (log(z − w) + C2(z))

(3.137)
where considerations similar to the above fix Ci(z) = Ci for constants Ci ∈ C,
i = 1, 2. Here we make use of a very convenient expansion of the logarithm [21].
We have

log(1− x) = −
∑
n>0

1

n
xn (3.138)

whenever |x| < 1. Therefore

ιz,w log(z − w) = ιz,w

(
log(z)− log

(
1− w

z

))
= log(z)−

∑
n>0

1

n

(w
z

)n
(3.139)

with a similar expansion for ιw,z, except with an additional additive term10 of
log(−1) from log(z−w) = log(−w)+log

(
1− z

w

)
and log(−w) = log(w)+log(−1).

Therefore

∂−1
w δ(z − w) = C + log

(w
z

)
+
∑
n6=0

1

n

(w
z

)n
, (3.140)

where C = log(−1) + C1 − C2 is the indeterminate constant of integration. One
can compute further that

∂−nw log(z − w) =
(−1)n+1

n!
(z − w)n (log(z − w)−Hn) , (3.141)

10We will use this term to capture the multiple possible values of the complex logarithm.
log(z) and log(w) we can assume to be on the principal branch, or otherwise simply a particular
fixed sheet in common.
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where

Hn =
n∑
k=1

1

k
(3.142)

is the nth harmonic number, but note that the additional polynomial part −Hn
n!

∑n
k=1

1
k
(z−

w)n in (3.141) drops away when we take the time-ordered difference of the two
expansions (its expansions are the same in both domains), consistent with our
knowledge from (3.133) that higher order antiderivatives of δ(z −w) can be gen-
erated via multiplication by the variable (z − w).

��
Remark:

The issue of choosing a branch of log, or rather of having logarithmic cor-
relation functions be indeterminate up to a constant, could be avoided if the
field theory were made achiral; that is, if fields were generically nontrivial func-
tions of both z and z, and in such a way that it is log |z − w| which appears in
operator product expansions. An issue with this is that the modulus function,
while continuous everywhere, is complex differentiable nowhere, so applications
of derivatives do not make sense on the right hand side of operator product ex-
pansions. Whether or not this is a problem for internal consistency of calculation
is a somewhat subtle point, since the application of derivatives to both sides of an
operator product expansion in the first place is, more precisely, just a shorthand
for how singular terms of the derivative fields behave compared to those of the
original fields. In reality being able to make this shorthand comes from proper-
ties of contour integrals of finite-order poles, at least if we are taking the analytic
route to defining operator product expansions. One could argue that now such
an approach is generically invalid, but it is not clear what interpretation should
replace it.

In either case, we have

log |z − w| = log(z − w)− iΘ(z − w) (3.143)

where Θ is the argument function. This is where both the problem with the differ-
entiability of log |z − w| (Θ is not complex-differentiable) and the indeterminacy
of ∂−1

w δ(z − w) (Θ(x) = Θ0(x) + 2nπ for some integer n and any other choice of
branch Θ0) comes from. We can conceivably pull this additive piece of Θ from
the integration constant C in order to change between the two interpretations of
log(z − w) and log |z − w| as necessary. ��

In order to actually compute logarithmic operator product expansions a priori
(rather than relying on already knowing the expansions of some derivative fields
and then taking antiderivatives) we will use an algebraic approach, which corre-
sponds to the analytic one in non-logarithmic applications. We have in standard



3.2. LOGARITHMIC VERTEX ALGEBRAS 101

field theory that

A(z)B(w) =
N∑
k=1

Ck(w)

(z − w)k
+ :A(z)B(w) : (3.144)

so we will opt to take as our definition of expansion, even for fields with logarith-
mic behaviour,

A(z)B(w) ∼ A(z)B(w)− :A(z)B(w) : , (3.145)

so provided we have a good understanding of what a normally ordered product
of logarithmic modes look like, we are in principle able to compute expansions of
logarithmic fields.

We should therefore expect the generic logarithmic operator product expan-
sion to be of the following form:

A(z)B(w) ∼
N∑
n=1

Cn,0(w)

(z − w)n
+ log(z − w)

∞∑
n=−N1

Cn,1(w)(z − w)n

+ log(z − w)2

∞∑
n=−N2

Cn,2(w)(z − w)n + · · ·

· · ·+ log(z − w)L
∞∑

n=−NL

Cn,L(w)(z − w)n

(3.146)

for some maximum power L ∈ N of complex logarithm. While we could plausibly
allow for unbounded degree of log appearing in this expansion, we expect to
operate with vertex algebraic structures produced from fields whose logarithmic
singularities are the result of a finite number of antiderivatives applied to fields
with regular singularities. This has held in every “example” of a logarithmic field
theory we have seen so far. What is more, we have found that such fields can
correspond to reasonable states in some vector space — since the logarithmic
terms come from such antiderivatives, they correspond to coefficients which were
previously associated to singular terms, so which annihilate the vacuum state.

For a formal Laurent series A(z) then, let us make the following partitioning
of its modes:

A(z) = AL(z) + A+(z) + A−(z) (3.147)

where A+(z) contains only negative powers of the variable,11 A−(z) contains only
non-negative powers, and AL(z) contains only terms with a non-zero power of
log(z) — so all the logarithmic behaviour of A(z) is pushed into AL(z). We
expect, for such fields to have well-defined vacuum evaluations, that both AL(z)
and A+(z) must annihilate the vacuum vector. Therefore we define

:A(z)B(w) : := A(z)B(w)− [AL(z) + A+(z), B−(w)] (3.148)
11One must excuse this backwards-seeming notion, because of course the + then refers to

the sign of the indices labelling the modes, which are (in this case) positive. Both this and the
opposite labelling choice have equal potential for causing confusion.
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3.2.1 Example. By way of example, recall the field ∂−1a(z) = q + a0 log(z) −∑
n6=0

1
n
anz

−n first used to construct the screening operators in (1.2.5). We have,
of course

∂−1aL(z) = a0 log(z)

∂−1a−(z) = q +
∑
n>0

1

n
a−nz

n

∂−1a+(z) = −
∑
n>0

1

n
anz

−n

(3.149)

and therefore we may calculate, as the only non-zero contributing terms,

[∂−1aL(z) + ∂−1a+(z), ∂−1a−(w)] = [a0,q] log(z)−
∑
m>0

∑
n>0

1

mn
[am, a−n]z−mwn

= log(z)−
∑
n>0

1

n

(w
z

)n
= log(z) + log

(
1− w

z

)
(3.150)

where the last equality follows by the assumption of time-ordering (|z| > |w|)
and the series identity (3.48), giving us

∂−1a(z)∂−1a(w) ∼ [∂−1aL(z) + ∂−1a+(z), ∂−1a−(w)] = log(z − w) (3.151)

as we know we must expect from other arguments above. Where has the a2
0 log(z) log(w)

term, quadratic in the logarithm, disappeared to? Of course, it has the same form
in either the time-ordered or the normally ordered product, so it disappears in
their difference.

It is reasonable to have qualms about this blasé appeal to algebraic manip-
ulations in the definition of the normally ordered product of logarithmic fields,
especially when so much of the non-logarithmic theory depends on (equivalent)
analytic constructions. In particular, is it possible to take z 7→ w to get a suitable
definition for :AB : (w), when a typical implementation of such a thing from the
field theory (at least in the setting of theoretical physics) makes use of contour
integration techniques not strictly applicable here?

Well, log(z) and its powers are perfectly regular at z = w for nonzero w, and
is amenable to a series expansion, so there is not even any real analytic concern
in taking the Taylor series

A(z) = A(w) + (z − w)
dA(w)

dw
+

1

2
(z − w)2 d2A(w)

dw2
+ · · · (3.152)

and taking z to w.
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3.2.2 Example. Consider a slightly more complicated example involving the
second antiderivative of the bosonic field. We write

â(z) = ∂−2
z a(z) = q1 + q0z + a0z (log(z)− 1)− a1 log(z) +

∑
n6=0,1

1

n(n− 1)
anz

−n+1

(3.153)
where the integration constant q1 is a new mode with as-yet unknown commu-
tation relations, and q0 is a relabelling of the old integration constant q in order
to distinguish the two. We have

â+(z) = −a0z +
∑
n>1

1

n(n− 1)
anz

−n+1

âL(z) = −a1 log(z) + a0z log(z)

â−(z) = q1 + q0z +
∑
n>0

1

n(n+ 1)
a−nz

n+1

(3.154)

so that we get

[â+(z), â−(w)] = −[a0,q1]z +
∑
n>1

1

n(n− 1)
[an,q1]z−n+1

− zw + zw
∑
n>1

1

n(n− 1)(n+ 1)

(w
z

)n
= −[a0,q1]z +

∑
n>1

1

n(n− 1)
[an,q1]z−n+1

+
1

2
(z − w)2

∑
n>0

1

n

(w
z

)n
− 3

2
zw +

3

4
w2

(3.155)

and

[âL(z), â−(w)] = log(z)

(
[a0,q1]z − [a1,q1] + zw − 1

2
w2

)
(3.156)

and at this stage it seems untenable that there should be any appropriate algebra
relations for q1 which will allow these expressions to yield what we naively expect
for the field expansion of â with itself, namely:

[â+(z) + âL(z), â−(w)] = −1

2
(z − w)2

(
log(z − w)− 3

2

)
. (3.157)

Indeed, while we have a few terms of an expanded (z − w)2 with factors of the
right series to make use of the identity (3.48), any choice at all for these relations
leaves us with insufficient powers of the variables to collect a factor of (z − w)2

in its entirety.
Unless, that is, if we make an unconventional choice and set

[an,q1] = − 1

n+ 1
zn+1, (3.158)
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at least for all n > 0, so that commutators involving q1 somehow “remember”
the variable associated to the field of the other algebra element. We have seen
similar crossover memory between the field and algebra before, in Section 3.1.3.
In this case, we find

[â+(z), â−(w)] =

(
1−

∑
n>1

1

n(n− 1)(n+ 1)

)
z2

1

2
(z − w)2

∑
n>0

1

n

(w
z

)n
− 3

2
zw +

3

4
w2

=
1

2
(z − w)2

(∑
n>0

1

n

(w
z

)n
+

3

2

) (3.159)

because the infinite sum
∑

n>1
1

n(n−1)(n+1)
evaluates to 1

4
, and

[âL(z), â−(w)] = −1

2
(z − w)2 log(z) (3.160)

giving, in all,

[â+(z) + âL(z), â−(w)] = −1

2
(z − w)2

(
log(z − w)− 3

2

)
(3.161)

after a single use of (3.48) and a regrouping of

log(z − w) = log(z) + log
(

1− w

z

)
. (3.162)

This agrees with our näıve expectations for the value of this logarithmic OPE.

Despite the fact that using (3.158) yields the “correct” expression for the field
expansion of â(z)â(w), the presence of the variable z is, perhaps, more concerning
than whatever benefit is gained from it. Certainly it holds strong implications
for the kinds of spaces which might serve as the base vector spaces of states
within any proposed definition of a logarithmic vertex algebra. The commutator
with q1 is required to “remember” the variable associated to a field. To compute
commutators involving q1 strictly within the space of states, where the field
coefficients act as linear operators in the absence of formal variables, we must
come up with a satisfactory answer to the question: which variable should be
used?

Extensions of state spaces by a formal variable seem like a legitimate option,
since this preserves their nature as vector spaces and by linearity does not interfere
with the field map. If this were a separate special variable, say ζ, not appearing
in any field, it would in effect be a new grading consisting of Z many copies of
the base state space. This does not remove the awkwardness of having to treat
commutators as requiring contextual information external to the linear operators
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themselves, but there seems to be little choice in the matter if logarithmic field
expansions are to behave as “expected”. An obvious means of pushing our un-
derstanding further in this aspect would be to compute the same expansions with
higher-order antiderivatives (for integration constant modes q2,q3, . . .), hopefully
obtaining some kind of

All of the above leads us to tentatively define a logarithmic vertex algebra.

3.2.1 Definition

This subsection presents a collection of conjecture and intuition relating to the
proper formulation of logarithmic vertex algebras and some of their structure.
Sadly, to develop what follows in any great detail would represent a body of
work many times larger than suitable for the remaining space constraints of this
document.

It is hoped that these concepts can provide a basis for later work. The need
to find a useful definition of a logarithmic vertex (operator) algebra is driven by
the apparent fact that they are the field structures associated to indecomposable
representations of the Virasoro algebra. With such a theoretical basis from which
to work, these so-called staggered structures are likely to be treatable in a much
more consistent and comprehensive manner than has been the case in the past.

3.2.3 Definition (Logarithmic Vertex Algebra). A logarithmic vertex algebra
(V, |0〉 , T, Y ) is a tuple consisting of the following objects:

• (State space) A vector space V

• (Vacuum vector) A vector |0〉 ∈ V

• (Translation operator) A linear map T : V → V

• ((Logarithmic) vertex operators) A linear map

Y (·, z) : V → EndV [[z±1]][log(z)] (3.163)

taking each A ∈ V to a logarithmic field

Y (A, z) =

LA∑
`=0

∑
n∈Z

An,`z
−n−hA log(z)` (3.164)

where the constants LA, hA ∈ Z are allowed to depend on the particular
vector A.

and subject to the following axioms:

• (Vacuum axiom) Y (|0〉 , z) = IdV , and for any A ∈ V we have

Y (A, z) |0〉 ∈ V [[z]], (3.165)
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and
Y (A, z) |0〉|z=0 = A. (3.166)

An immediate consequence of this is A−hA |0〉 = A, and furthermore that
An,0 |0〉 = 0 for all n > −hA and An,` |0〉 = 0 for all n and ` > 0.

• (Translation axiom) For any A ∈ V ,

[T, Y (A, z)] = ∂zY (A, z) (3.167)

and T |0〉 = 0.

• (Locality axiom Logarithmic OPE ) Instead of the standard locality axiom,
we require that for every pair of states A,B ∈ V there exist non-negative
integers N and L such that

(z − w)NY (A, z)Y (B,w) ∼ 0

+ log(z − w)
∞∑

n=−N1

Cn,1(w)(z − w)n+N + · · ·

· · ·+ log(z − w)L
∞∑

n=−NL

Cn,L(w)(z − w)n+N .

(3.168)

where each Cn,`(w ∈ EndV [[z±]].

This last axiom differs stylistically from the locality axiom of non-logarithmic
vertex algebras (c.f. Definition A.2.1) in that it does not give some kind of
statement relating to the commutation of two fields, and does not easily translate
to some concept of the structure constants of an algebra. But a logarithmic
vertex algebra, being an extension of a non-logarithmic one, must have some
measure of this familiar structure — the restriction of its fields to the set of
those with pairwise non-logarithmic expansion products must be a vertex algebra.
In addition, the fields with logarithmic behaviour seen in any kind of relevant
contexts have been those which were nothing more than antiderivatives of such
fields. Fields with arbitrarily bad logarithmic behaviour are, in some some sense,
quite unmotivated, but must exist within the algebraic structure of a logarithmic
vertex operator if we are to retain a multiplicative type operation. we look at
a particular subset of logarithmic fields whose “bad behaviour” in this regard is
not so extreme.

3.2.4 Definition (Weak Locality). We will say that two fields A(z) and B(w)
are weakly local if there exists non-negative integers N , m, and n such that

(z − w)N∂mz A(z)∂nwB(w) = (z − w)N∂nwB(w)∂mz A(z) (3.169)

holds. That is, the fields themselves are not local, but there exist sufficiently high
derivatives which are.
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This definition captures fields whose expansions contain at most a single power
of log(z). It is fields whose expansions contain higher powers of the logarithm
which make it particularly difficult to state a logarithmic analogue of the locality
property in terms recognisable as such. Antiderivatives of non-logarithmic fields
are mutually weakly local with every other, and it is this mutuality, and their
closeness to regularity, which motivates the following.

3.2.5 Conjecture (Logarithmic Dong’s Lemma). Let A1(z1), A2(z2), . . . , Aa(za)
and B1(w1), B2(w2), . . . Bb(wb) be mutually weakly local fields. Then we conjec-
ture that the field product

( :A1A2 · · ·Aa : ) (z) ( :B1B2 · · ·Bb : ) (w) (3.170)

satisfies the Logarithmic OPE axiom of Definition 3.2.3.

��
Remark:

The above conjecture, if true, gives a way to study (certain) logarithmic ver-
tex algebras from their generating fields, just as we are able to do so with non-
logarithmic ones. Weakly local fields should be “all we need”: it has been appar-
ent thus far that interesting staggered structures appear from when an antideriva-
tive operation is allowed on base fields relevant in the equivalent non-staggered
structures. However, it is also readily apparent that introducing logarithmic field
behaviour has far deeper repercussions than the very simple examples relevant to
staggered Virasoro modules. This can be seen, for instance, in how even the very
simple step of considering the second antiderivative of a bosonic field demands
the introduction of structure dramatically different from anything seen in the
non-logarithmic case (consider, e.g., (3.158). ��

3.2.6 Example (Logarithmic Free Boson). Subject to Conjecture 3.2.5, we then
have a logarithmic vertex algebra generated by normally ordered products of the
field

∂−N−1a(z) =
N∑
n=0

1

n!
qN−nz

n +
1

N !

N∑
n=0

(−1)N−n
(
N

n

)
aN−nz

n [log(z)−Hn]

+ (−1)N+1
∑

n6=0,1,2,...N

1

n(n− 1) · · · (n−N)
anz

−n+N

(3.171)

and its derivatives, where Hn is the nth harmonic number, that is;

Hn =
n∑
k=1

1

k
(3.172)

with H0 = 0 by definition.
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One reliable tactic in the study of vertex algebras is to make contact with
either the field content or the underlying Lie algebraic structure as convenient —
for instance, working with infinite collections of difficult combinatorial relations
at the level of modes can often be avoided entirely simply a single equivalent
statement at the level of the fields. If (3.158) is any indication, it may unfortu-
nately prove impossible to make use of such conveniences in studying structures
on general logarithmic fields.

The axioms and structural concepts of well-understood areas of mathematics
often have many equivalent formulations. Vertex algebras are no exception, hav-
ing been subjected to intense scrutiny from all sides for several decades: there are
combinatorial formulations; analytic ones; ones which rely on fields as Laurent se-
ries of operators; ones which rely on formal differences of convergent expansions;
ones which utilise only the linear operators; ones which never do. There are vari-
ous methods of proof of important statements, each using techniques peculiar to
the assumption of good behaviour in one of the above aspects; all equivalent.

Of course, when making some extension of a previously well-known area of
mathematics, equivalences between its different formulations almost always break
down, and it is usually very difficult to intuit which of its previously equivalent
statements, if any, is appropriate to take as the “true” formulation, the one
which is used to guide the development of the extended theory. Again, vertex
algebras are no exception in this regard, and the inclusion of logarithms into
the field content — apparently necessary for the natural appearance of staggered
structures — will certainly require a careful, detailed approach.

There is sufficient self-consistency apparent in the logarithmic content ex-
plored up until now to inspire confidence in its development. It seems to provide
a fruitful ground for investigation: a combination of reassuringly reasonable fa-
miliarity and surprising (exciting!) new features. It is hoped that this can be the
subject of future work.
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Conclusion

Nature does not hurry, yet everything is accomplished

Laozi, Tao Te Ching

We have seen how staggered structures seen in rank-2 logarithmic conformal
field theories can be realised using a free field construction. We verified, though
comparisons of the module invariant β, that the staggered Fock spaces developed
here agree with the staggered modules in the literature. We did so by defining the
staggering operators of a staggered module, which capture the indecomposable
“gluing” of two Virasoro modules, and then giving a method for constructing these
operators whenever the two Virasoro modules were related by an intertwining
map.

The resulting formulae for β in these staggered modules and supermodules
displayed a common theme, like a modified inner product of the first singular
vector of the left hand space in the short exact sequence construction of the
staggered module. There was some discussion of the factorisation of β as a
function of the vacuum momentum shift µ, and an apparent empirical relationship
was noted between the zeroes of β(µ) and certain degeneracies of the staggered
construction; where the left and right spaces in the short exact sequence collided
with the corner entries in the relevant extended Kac table.

After repeating this construction for the N = 1 and N = 2 Viasoro superalge-
bras, to some degree of success (but noting that certain constructions seen in the
literature were “missing”), we then turned to an examination of induced modules
which exhibit staggered structure. These induced structures relied on the intro-
duction of new modes into the oscillator algebras, which arose as the integration
constants of antiderivatives of the free fields involved. Taking antiderivatives in
this way introduced logarithmic behaviour into the fields of the theory, making
contact between staggered modules and the types of state spaces demanded by the
existence of logarithmic fields, and what could possibly lead to a self-consistent
systematic understanding of logarithmic vertex algebras themselves. We make
some conjectural efforts in this direction, although a proper examination of what
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threatens to be such a monstrous effort remains outside the scope of this work.
There are many avenues for future developments from this work. An obvious

topic of interest is, of course, this continued development of logarithmic vertex
algebras in a rigorous setting. Since the construction of staggering operators
was defined in detail only for rank-2 staggered modules, but nevertheless has
an obvious generalisation, another possible course of future work is to examine
higher-rank staggered modules in more detail in this manner. Yet another is to fill
out the study of staggered supermodules at N ≥ 2, though this relies on further
foundational work on the structure of the Fock superspaces that are involved as
sNVir-modules. Finally, all of the developmental work here — staggering opera-
tors and their algebraic constraints, costaggering operators and their relationship
to both the staggering operators and the staggered module they induce, logarith-
mic fields and their vacuum evaluations and logarithmic product expansions —
all could be translated to apply to algebraic structures in the absence of both the
Virasoro algebra and the oscillator algebras with very little extra effort. We could
use this machinery to describe indecomposable staggered-type representations for
algebras associated to arbitrary vertex algebras.



Appendix A

Fields and Vertex Algebras

And Jonathan said unto David, Come, and let us go out into the field. And
they went out both of them into the field.

1 Samuel 20:11, King James Edition

We provide a brief overview of the theory of vertex algebras and vertex op-
erator algebras, important objects in (and an attempt at providing a mathemat-
ically rigorous foundation for) the study of quantum field theories. All of this
content and more can be found treated in great depth in many dedicated works,
e.g. [15], [26], or [32].

A.1 Fields

There are some subtleties to be taken of care of in regards to the expansion of
infinite series in different domains of convergence. For what follows, we will use
the following notations:

C[z] =

{
N∑
n=0

anz
n |N ∈ N, an ∈ C

}

C(z) =

{
N2∑

n=−N1

anz
n |N1, N2 ∈ N, an ∈ C

}

C[[z]] =

{
∞∑
n=0

anz
n | an ∈ C

}

C((z)) =

{
∞∑

n=−N

anz
n |N ∈ N, an ∈ C

}

C[[z±]] =

{
∞∑

n=−∞

anz
n | an ∈ C

}

(A.1)

111



112 APPENDIX A. FIELDS AND VERTEX ALGEBRAS

where in each case z is a formal variable (we do not require convergence of any
kind of these elements as functions on C). In order, they are the (formal) Taylor
polynomials, Laurent polynomials, Taylor series, Laurent half-series, and general
Laurent series. Each of these sets except the Laurent series are closed under
multiplication, forming commutative algebras. Attempting to take the product
of two Laurent series in this way would result in infinite sums for the coefficient
of each power of the variable. While the sequences are formal and need not
converge, the individual coefficients must be definite elements of the scalar field.
This concept of course need not be restricted to having coefficients in C.

A.1.1 Definition (R-valued formal series). Note that all of the concepts and
notations of (A.1) may be extended to R-valued formal series for some C-vector
space R. This is done by simply replacing C with R in the name of the set and
requiring that all coefficients be from R. That is,

R[z] =

{
N∑
n=0

anz
n |N ∈ N, an ∈ R

}

R(z) =

{
N2∑

n=−N1

anz
n |N1, N2 ∈ N, an ∈ R

}

R[[z]] =

{
∞∑
n=0

anz
n | an ∈ R

}

R((z)) =

{
∞∑

n=−N

anz
n |N ∈ N, an ∈ R

}

R[[z±]] =

{
∞∑

n=−∞

anz
n | an ∈ R

}
.

(A.2)

The notation for the Laurent series is a kind of special case of the notation
we will employ for multivairate polynomials and series. For instance,

R[[z, w]] :=

{
∞∑

m,n=−∞

am,nz
mwn | am,n ∈ R

}
, (A.3)

and similarly for the other sets defined in (A.1). One can now attempt to examine
the possibility of multiplication maps like R((z))× R((w)) → R((z, w)), though
care must be taken when interpreting such products as elements of larger spaces,
as different inclusion maps may be possible. This difference is in fact what permits
the existence of non-trivial vertex algebras.

A.1.2 Definition (Fields). Let A(z) ∈ EndV [[z±]], i.e. a formal Laurent series
whose coefficients are linear operators on some C-vector space V . Then A(z) is
said to be a field if

A(z)v ∈ V ((z)), ∀v ∈ V. (A.4)
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Fields make it tenable to take compositions of operator-valued Laurent series
acting on some vector space. We would like to develop a reasonable analogue of
commutativity for operator-valued series. Note that the composition A(z)B(z)
does not necessarily have a well-defined V action for any two arbitrary series
A(z), B(w) on V .

We look at the product A(z)B(w) in more detail. When acted upon a vector
v ∈ V the result may be interpreted as an object both in V ((z))((w)) and in the
larger space V[[z±, w±]]. The other ordering B(w)A(z), acting on the same vector,
results in an element both of V ((w))((z)) and of V[[z±, w±]]. If A(z) and B(w)
commute, then the two must be equal and the result must belong to the intersec-
tion of V ((z))((w)) and V ((w))((z)) in V [[z±, w±]], which is V [[z, w]][z−1, w−1].
One finds, however, that the algebraic structures satisfying this property are in
a sense trivial. A slightly weaker condition is that these series are two different
expansions1 of the same rational function from V ((z, w))[(z − w)−1]. A discus-
sion on why this particular space of rational functions might be thought of as
a mathematically astute choice can be found in [15]. This space of functions
is a physically meaningful choice for the simple fact that if A(z) and B(w) are
thought of as operators (standing in for interactions) creating elements of a space
of physical states, then their composition must a) be some definite third operator,
and b) can by physical symmetries only depend upon the separation (z − w) of
the two variables.

If we assume that this is the case, one can then study the different evaluations
of elements of this space through the two different inclusion maps

V ((z, w))[(z − w)−1]

V ((z))((w))

V ((w))((z))

V [[z±, w±]]

(A.5)

Within the context of quantum field theory, we conceptualise the two orderings
A(z)B(w) and B(w)A(z) as two different orderings of events — the time-ordered
difference. For our purposes here, these two orderings correspond to the cases
|z| > |w| and |w| > |z| respectively, though only for the purposes of determining
the images of the inclusion maps (i.e. z and w are formal variables only and
convergence is not a concern, but these two “domains” instead inform the validity
of making expansions in terms of w

z
and/or z

w
). The most important example of

1Such expansions and comparisons should more precisely be made over C, by taking the
evaluation of these series with a linear functional on V . This amounts to a condition on the
matrix elements of the field products with respect to some basis of V .
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this is the first-order pole, whose time-ordered difference looks like

ιz,w
1

z − w
− ιw,z

1

z − w
= ιz,w

1

z

1

1− w
z

+ ιw,z
1

w

1

1− z
w

=
1

z

∞∑
k=0

(w
z

)k
+

1

w

∞∑
k=0

( z
w

)k
=
∑
k∈Z

z−k−1wk

= δ(z − w),

(A.6)

where ιz,w denotes the expansion of the expression following it in the domain
|z| > |w|, and vice versa for ιw,z. This expression earns the label δ(z − w) and
the title of “delta function”, because

f(z)δ(z − w) =

(∑
n,k∈Z

fnz
n−k+1wk

)
=

(∑
m,j∈Z

fmz
−j+1wj+m

)
= f(w)δ(z − w)

(A.7)
for f(z)

∑
n∈Z fnz

n. In particular,

(z − w)δ(z − w) = 0. (A.8)

Higher-order poles (z − w)−k are also just suitably normalised derivatives of
the first order one. From (A.8) we can prove by induction that

(z − w)n+1∂nwδ(z − w) = 0 (A.9)

and hence that

ιz,w
1

(z − w)n+1
− ιw,z

1

(z − w)n+1
= ∂(n)

w δ(z − w) (A.10)

(where ∂
(n)
w = 1

n!
∂nw).

We may use this fact to write down commutators of fields, which as the
difference of two orderings of a field composition is the difference of two expansions
of the same element of EndV ((z, w))[(z − w)−1]. This gives the general form

[A(z), B(w)] =
N∑
k=1

Ck(w)∂(k−1)
w δ(z − w), (A.11)

thus motivating the definition:

A.1.3 Definition (Locality). Fields A(z) and B(w) are termed local if there
exists a N ∈ N such that

(z − w)N [A(z), B(w)] = 0, (A.12)
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since multiplication by a sufficiently high power of (z − w) removes all of
the singularities from the composition of the fields, leaving us with an element
of EndV ((z, w)), which has the same convergent expansion in EndV [[z±, w±]]
regardless of the ordering of fields, causing the commutator to vanish.

This is a kind of notational shorthand to indicate thatA(z)B(w) andB(w)A(z)
have convergent expansions, in the domains |z| > |w| and |w| > |z| respectively,
which agree up to a linear combination of poles in (z − w) of finite order.2 The
expansion of the field product A(z)B(w) can therefore be written as a singular
piece plus a piece which stays finite as z → w. This can be taken as the definition
of the normally-ordered product :A(z)B(w) : , the regular part of the product.
We see from (A.11) that this regular piece must satisfy

:A(z)B(w) : = :B(w)A(z) : (A.13)

and, in addition, that

:AB : (z) = lim
w→z

:A(z)B(w) : (A.14)

exists.

A.2 Vertex Algebras

The expansions field productsA(z)B(w) as the sum of singular terms
∑N

k=1 Ck(w)(z−
w)−k and a regular, normally-ordered piece :A(z)B(w) : indicates an algebraic
structure on the fields over a particular vector space, with the fields Ck(w) to be
thought of as structure constants. This algebraic structure is known as a vertex
algebra, and for historical reasons relating to its development from the study of
quantum field theories, its definition contains data in addition to the set of fields.

A.2.1 Definition. A vertex algebra (V, |0〉 , T, Y ) is a tuple consisting of the
following objects:

• (State space) A vector space V

• (Vacuum vector) A vector |0〉 ∈ V

• (Translation operator) A linear map T : V → V

• (Vertex operators) A linear map

Y (·, z) : V → EndV [[z±1]] (A.15)

2Equivalently that their commutator, as a formal Laurent series in two variables with coef-
ficients in EndV , may be expressed as a linear combination of δ(z − w) and its derivatives, as
in (A.11)
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taking each A ∈ V to a field on V

Y (A, z) =
∑
n∈Z

Anz
−n−hA (A.16)

where the constant hA ∈ Z is allowed to depend on the particular vector A.

and subject to the following axioms:

• (Vacuum axiom) Y (|0〉 , z) = IdV , and for any A ∈ V we have

Y (A, z) |0〉 ∈ V [[z]], (A.17)

and
Y (A, z) |0〉|z=0 = A. (A.18)

An immediate consequence of this is A−hA |0〉 = A, and furthermore that
An |0〉 = 0 for all n > −hA.

• (Translation axiom) For any A ∈ V ,

[T, Y (A, z)] = ∂zY (A, z) (A.19)

and T |0〉 = 0.

• (Locality axiom) For every pair of vectors A,B ∈ V , the fields Y (A, z) and
Y (B,w) are local.

A.2.2 Example (Heisenberg vertex algebra). A standard example is the heisen-
berg vertex algebra. Its state space is the bosonic Fock space F0 generated from
the vacuum vector |0〉. We can construct a translation operator by setting

T =
∞∑
k=1

a−kak−1. (A.20)

It is easy to check that this is a well-defined linear operator on the state space,
as only finitely many terms of the sum can give non-zero result when acted upon
any particular v ∈ F0. It is no coincidence that this operator is equal to the mode
L−1 of the λ = 0 representation of Vir on F0.

Finally, the linear map Y taking states to vertex operators. We define it on a
single basis vector of F0 and extend linearly. To a basis vector

a−n1a−n2 · · · a−nk |0〉 (A.21)

(for not necessarily distinct positive integers n1, n2, . . . , nk) we associate the nor-
mally ordered product

: ∂(n1−1)a(z)∂n2−1a(z) · · · ∂(nk−1)a(z) : . (A.22)

Of course, it remains to prove that these assignments satisfy the various ax-
ioms of a vertex algebra, not least that these infinitely many fields are actually
mutually local. For this in particular we turn to Dong’s lemma.
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A.2.3 Lemma (Dong’s lemma). If A(z), B(w), and C(x) are three mutually
local fields, then the fields :AB : (z) and C(w) are local.

Proof. A repeated application of the definition of locality. Refer to (e.g.) [28,33]
for a formal proof, but the outline is as follows.

Since the three fields are mutually local, we may find integers n large enough
so that the products (z−w)nA(z)B(w), (z−x)nA(z)C(x) and (w−x)nB(w)C(x)
are commutative. By writing (e.g.) (z − x) = (z − w) − (w − x) we may also
make an expansion of powers one of these differences in terms of the other two;
by taking n initially large enough we may do so in such a way that all terms in
the expansion contain enough factors to commute C through both A and B, and
A and B through each other, where necessary.

A.2.4 Example (Heisenberg vertex algebra continued). One can check, now,
that

∂(m)
z a(z)∂(n)

w a(w) ∼ (−1)m
(
m+ n

m

)
1 +m+ n

(z − w)2+m+n
(A.23)

for all m,n ≥ 0, so all derivatives of the field Y (a−1, z) (corresponding to the
fields Y (a−k, z) for k = 1, 2, 3, . . .) are mutually local, hence all their normally
ordered products are mutually local, and locality holds in the heisenberg vertex
algebra.

It is now easy to check that the other axioms of a vertex algebra hold. For
instance, for translation it suffices to check that [T, Y (a−k, z)] = ∂zY (a−k, z) for
k > 0. We will not do this here, but will point out another important feature of
the heisenberg vertex algebra, and that is its grading.

Recall that the state space F0 of this vertex algebra, a bosonic Fock space,
carries a natural Z-grading which is compatible with the action of the algebra.
The field associated to a monomial of algebra generators preserves this sense of
grading; in the expansion of the field as a Laurent series we find that the total
degree of each term — the sum of the coefficient’s grade as an operator on F0

and the power of the variable it is attached to — is constant. What is more, this
total grading is preserved by the OPE, in that the product expansion of a pair of
fields will have degree equal to the sum of their individual degrees.

A.2.5 Definition (Z Graded vertex algebra). A vertex algebra (V, |0〉 , T, Y ) is
said to be Z-graded if V is Z-graded, T is a graded operator of degree 1, and for
each v ∈ Vm (the mth graded piece of V ) we have Y (v, z) =

∑
n∈Z vnz

−n+m with
each vn an operator of grade n.

A.2.6 Definition. A Z-graded vertex algebra (V, |0〉 , T, Y ) is said to be confor-
mal if it possesses a distinguished vector ω ∈ V of grade 2 such that

Y (ω, z) =
∑
n∈Z

Lnz
−n−2 (A.24)

where the coefficients Ln satisfy the Virasoro commutation relation for some cen-
tral charge cω. If in addition the vector space V consists only of finite-dimensional



118 APPENDIX A. FIELDS AND VERTEX ALGEBRAS

graded subspaces with some minimal grade h for which all Vn with n < h are triv-
ial (in other words, if V is a highest weight space), the we say that (V, |0〉 , T, Y )
is a vertex operator algebra.

A.2.7 Example (Heisenberg vertex algebra continued II). Consider the vector

ω =

(
1

2
a−1 + λa−2

)
|0〉 ∈ F0. (A.25)

We have, in the heisenberg vertex algebra,

Y (ω, z) =
1

2
: a(z)2 : +λ∂a(z) (A.26)

whose modes Ln satisfy

[Lm, Ln] = (m− n)Lm+n +
1

12
(m3 −m)(1− 12λ2)δm,−n, (A.27)

meaning that the heisenberg vertex algebra is indeed a vertex operator algebra.

We go no further here with our discussion of vertex algebras, the purpose only
being to provide some introduction and background on the sporadic appearances
of field theory within the body of the main text. Chapter 3 does contain somewhat
more than a basic amount of field theory, but in this case we direct the interested
reader to any of the excellent stand-alone works on the topic already mentioned
at the start of this appendix; e.g. [15], [26], or [32].
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Mη module induced from â acting
on |η〉, page 75
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page 19
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±
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page 85

T (z) energy-momentum tensor;
field of Virasoro generators,
page 6
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relating elements of a given
M, page 52

Un generic element of U (Vir) of
weight n, page 52

V
(0)
µ (z), V

( 1
2

)
µ (z) even/odd vertex op-

erator couplet in N = 1 Fock
superspace, page 33

V0 Fock space intertwiner aris-
ing as the zero mode of some
Vµ(z) or composition thereof,
page 27
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Vµ(z) vertex operator of vacuum
shift µ, page 26

Vn bosonic staggering operators
(equivalently, modes of a
sreening field), page 48

V[nµ](z), V̂[nµ](z) Virasoro primary
fields constructed from stag-
gering operator data, page 88

Vn×µ(z) n-fold composition of Vµ(z),

page 27

Wn fermionic staggering opera-
tors, page 58

x(n) bracketed index notation for
normalisation of powers by a
factor of n!, page 76

Xn weight-1 bosonic staggering
operators, page 67
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