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Abstract

While rational W-algebras have enjoyed many years of attention, nonrational W-algebras are

increasingly at the center of many important developments in mathematics and physics. Despite

this, detailed knowledge of the structure and representation theory of such vertex operator algebras

is lacking. Investigation into various examples has revealed that despite their complexity, nonra-

tional W-algebras often exhibit rich features that make them suitable for logarithmic conformal

field theory and other applications.

In this thesis, we first study the representation theory of a W-algebra known as the Bershadsky–

Polyakov algebra. A classification of simple weight modules is achieved as well as the construction

of some interesting nonsimple modules. These results, in conjunction with an ’inverse’ to quantum

hamiltonian reduction, are then used to determine the modular transformations and Grothendieck

fusion rules of nonrational Bershadsky–Polyakov minimal models in terms of rational Zamolod-

chikov minimal models. Finally, we describe how features of the preceding analysis generalise to

all subregular W-algebras of type A. There, an inverse quantum hamiltonian reduction is defined

and is used to relate the representation theories of subregular and regular W-algebras despite the

generic nonrationality of the former.

Overall the results of this thesis support a holistic approach to nonrational W-algebras with

inverse quantum hamiltonian reductions playing a central role.
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Chapter 0

Introduction

0.1. Background

Logarithmic conformal field theories are increasingly playing a role in applications of confor-

mal field theories to physics. These include percolation [39,163], 4d-2d duality [29], quantum Hall

transitions [164] and string theory [90,126]. The vertex operator algebras associated to such con-

formal field theories are often nonrational. While rational vertex operator algebras, their represen-

tations/fusion rings and modular properties may be studied using general results like the Verlinde

formula [94,96,156], such results for nonrational vertex operator algebras are not known.

There are small rank examples that are particularly well-understood such as admissible-level

Lk(𝔰𝔩2) [50,52], admissible-level Lk(𝔬𝔰𝔭(1|2)) [47,142,168], the singlet and triplet algebras [8,51,

85,110], and the 𝛽𝛾 ghost vertex algebra [77,137,144]. In each case, a conjectural continuous ver-

sion of the famed Verlinde formula appears to give sensible answers for Grothendieck and genuine

fusion rules [51,146]. What is lacking in general are results about the structure and representation

theory of nonrational vertex operator algebras and a proof of such a ‘logarithmic Verlinde formula’.

A particularly important class of logarithmic conformal field theories are fractional-level Wess-

Zumino-Witten models. The associated vertex operator algebras are the fractional-level affine ver-

tex operator algebras. In the case of admissible-level Lk(𝔰𝔩2), it was quickly realised that if one

works only with highest-weight representations, the usual Verlinde formula gives nonsensical an-

swers [27,34,118].

It was later shown that fusion products in admissible-level Lk(𝔰𝔩2) also contain representa-

tions that are not highest-weight [84]. In particular, a detailed analysis of the fusion rules for

L−4/3(𝔰𝔩2) showed that the fusion of two highest-weight representations can give representations

that are reducible-but-indecomposable and some whose energy eigenvalues are not bounded below.

To define a sensible 2d chiral conformal field theory with chiral symmetry algebra given by an

admissible-level affine vertex operator algebra Lk(𝔤), the appropriate ‘larger’ class of representa-

tions that needs to be considered appears to be the relaxed highest-weight representations of the

1



2 Introduction

underlying Lk(𝔤) and their spectral flows [69]. Such representations were classified for Lk(𝔰𝔩2)

in [7], for Lk(𝔰𝔩3) in [21] and for Lk(𝔬𝔰𝔭(1|2)) in [47, 168]. Additionally, if one has a classifi-

cation of highest-weight modules for a certain quotient of the universal enveloping algebra U(𝔤),

an algorithm for the classification of relaxed modules for general Lk(𝔤) is presented in [114]. For

admissible levels, such a highest-weight classification was completed by Arakawa [18].

For admissible-level Lk(𝔰𝔩2), admissible-level Lk(𝔬𝔰𝔭(1|2)) and L−3/2(𝔰𝔩3), the characters and

conjectural Grothendieck fusion rules of relaxed highest-weight modules are known [47,50,52,113,

115]. Genuine fusion rules are only known for certain levels and modules. Curiously the characters

of relaxed modules for nondegenerate admissible-level Lk(𝔰𝔩2) contain characters for modules of

the Virasoro minimal model [52, 134], which is obtained from the simple vertex operator algebra

Lk(𝔰𝔩2) by quantum hamiltonian reduction.

Characters for relaxed highest-weight modules are also known for admissible-level Lk(𝔰𝔩𝑛+1)

[112]. Here, as in the 𝔰𝔩2 case, the character formulae contain characters of the minimal quantum

hamiltonian reduction associated to Lk(𝔰𝔩𝑛+1). Beyond this data in these specific cases, much is

still unknown.

It is suspected that, in general, the characters of admissible-level affine vertex operator algebras

Lk(𝔤) will depend on the characters of their quantum hamiltonian reductions Wk(𝔤, 𝑓 ) (so-called

W-algebras) where 𝑓 ∈ 𝔤 is nilpotent. Such reductions were first defined in terms of vertex algebras

in the case of regular nilpotent elements [65] and more generally in [102,106].

The relationship between characters of affine vertex operator algebras and of W-algebras, ex-

plored in more detail in [158], can be understood in terms of an ‘inverse’ to quantum hamiltonian

reduction. The first example of such an inverse was described by Semikhatov [147] for the case of

𝔤 = 𝔰𝔩2. It was later shown by Adamović that this inverse reduction can be deployed to understand

some of the representation theory of the universal affine vertex operator algebra Vk(𝔰𝔩2) and, at

certain levels, its simple quotient Lk(𝔰𝔩2) [2].

Crucially, the quantum hamiltonian reduction ofVk(𝔰𝔩2) is the Virasoro vertex operator algebra

Virk whose simple quotient is rational when k is admissible but not integral (the aforementioned

Virasoro minimal models) in contrast to the nonrational Lk(𝔰𝔩2). Remarkably, the relaxed highest-

weight Lk(𝔰𝔩2)-modules admit concise descriptions in terms of Virasoro minimal model modules

using inverse quantum hamiltonian reduction, explaining the relationship between characters.

In the 𝔤 = 𝔰𝔩3 case, inverse quantum hamiltonian reductions can be described from all 𝔰𝔩3
W-algebras to Vk(𝔰𝔩3), in addition to an inverse reduction relating the two nonaffine W-algebras:

the Bershadsky–Polyakov algebra BPk and the Zamolodchikov algebra [3, 4]. In the latter case,

what is being inverted is an as-of-yet undefined partial quantum hamiltonian reduction that relates

W-algebras corresponding to a fixed 𝔤.



0.2. Outline 3

As in the 𝔰𝔩2 case, the simple quotient of the Zamolodchikov algebra is rational at nondegen-

erate admissible level [17]. However, the inverse reduction relating the Zamolodchikov algebra

and Vk(𝔰𝔩3) naturally factors through the Bershadsky–Polyakov algebra which is expected to be

nonrational at these levels.

The simple quotient BPk of the Bershadsky–Polyakov algebra is known to be rational at admis-

sible levels k = −3 + u/2 where u ∈ ℤ⩾3 is odd [15]. For all other admissible levels, it is expected

that there is a class of ‘relaxed highest-weight’ modules for the Bershadsky–Polyakov algebra that

are both necessary for logarithmic conformal field theory considerations and related to modules for

the Zamolodchikov algebra using inverse quantum hamiltonian reduction. This also means that, at

these levels, BPk is a nonrational W-algebra. One of our aims here is to show that this is the case.

It therefore appears that it is necessary to investigate the structure of nonrational W-algebras

to gain additional information about fractional-level affine vertex operator algebras. Moreover,

W-algebras are interesting examples of vertex operator algebras in their own right as they appear

frequently in both physics [87, 151, 170] and mathematics [75, 161]. While there are many exam-

ples of rational W-algebras where the conformal field theoretic information is known [15, 17, 22],

nonrational W-algebras are still largely mysterious.

This project broadly aims to explore nonrational W-algebras by combining direct computa-

tions (where possible) with inverse quantum hamiltonian reductions. One important feature of this

approach is that inverse quantum hamiltonian reduction is particularly effective at simplifying cal-

culations important for conformal field theory applications. The examples of W-algebras explored

in this thesis are all examples of subregular W-algebras.

Subregular W-algebras appear in the Schur indices of 4𝐷 superconformal field theories known

as Argyres–Douglas theories [24,29,41] and the subregular nilpotent orbit also plays a crucial role

in singularity theory [148]. As such, subregular W-algebras represent an important class of vertex

operator algebras for which a greater understanding might indicate a path towards more general

W-algebras, in addition to more interdisciplinary endeavours.

0.2. Outline

Chapter 1 starts with preliminary material on vertex operator algebras and their modules in

Section 1.1. An important associative unital algebra associated to a vertex operator algebra is the

Zhu algebra. The relationship between the representation theory of a vertex operator algebra and

its Zhu algebra is reviewed in Section 1.1.4. An informal account of the Verlinde formula, relating

the fusion product of vertex operator algebra modules to modular transformations of characters, is

also given.



4 Introduction

Section 1.2 is devoted to a very important family of vertex operator algebras known as universal

affine vertex operator algebras Vk(𝔤) and their simple quotients Lk(𝔤). The modular transforma-

tions and fusion rules of Lk(𝔤) when k ∈ ℤ⩾0 are reviewed in Section 1.2.2. Detailed analysis of

such vertex operator algebras when k is admissible but not integral motivates studying W-algebras.

The construction of W-algebras by quantum hamiltonian reduction of affine vertex operator

algebras is described in Section 1.3 following [102,106]. Noting that the W-algebras corresponding

to 𝔤 = 𝔰𝔩2 are well understood, we take up the task of analysing 𝔤 = 𝔰𝔩3 W-algebras. The first of

these is the prototypical W-algebra: the Zamolodchikov algebra [170]. The representation theory,

modular transformations and fusion rules of its simple quotient W3(u, v), where k = u
v − 3 with

u, v ∈ ℤ⩾3 coprime, are well known and recalled in Section 1.3.3.

In Chapter 2 we construct the other 𝔰𝔩3 W-algebra, the universal Bershadsky–Polyakov ver-

tex operator algebra BPk and its simple quotient BPk. The BPk- and BPk-modules of interest,

untwisted and twisted relaxed highest-weight modules, are introduced in Section 2.2. We then ex-

plain how to identify these modules using the untwisted and twisted Zhu algebras of BPk. This

leads to a classification of untwisted highest-weight BPk-modules (Theorem 2.2.6).

The twisted classification (Theorem 2.2.16) requires the identification [15] of the twisted Zhu

algebra with a central extension of a Smith algebra [149] (Proposition 2.2.8). A classification of

simple weight modules, with finite-dimensional weight spaces, of this extension is achieved in

Theorem 2.2.15. This readily gives a classification of simple twisted relaxed highest-weight BPk-

modules by the twisted version of Zhu’s theorem. For later use, we also introduce coherent families

of modules for the twisted Zhu algebra of BPk, following [128].

In Section 2.3 we convert the classification results for the universal Bershadsky–Polyakov al-

gebras BPk into the corresponding results for their simple quotients BPk at nonintegral admissible

level k. After reviewing the highest-weight theory of the simple affine vertex operator algebra

Lk(𝔰𝔩3) [18, 103], we prove a crucial result on the surjectivity of quantum hamiltonian reduction

on simple highest-weight Lk(𝔰𝔩3)-modules in Section 2.3.2.

The classification of simple highest-weight BPk-modules is easily deduced from this (Theo-

rem 2.3.15). In Section 2.3.4, we show this lifts to a classification of simple relaxed highest-weight

BPk-modules using coherent families. The existence of reducible-but-indecomposable relaxed

highest-weight BPk-modules is similarly proved in Section 2.3.4. A simple consequence of these

results is that BPk is nonrational when k is admissible with v > 2. We conclude this chapter by

illustrating our classification results with some examples in Section 2.3.5.

The material presented in Chapter 2 appears in [62], and was obtained in collaboration with

Kazuya Kawasetsu and David Ridout.
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Chapter 3 is concerned with the relationship between the Bershadsky–Polyakov and Zamolod-

chikov algebras and its consequences. This takes the form of an embedding of BPk into the

Zamolodchikov algebra tensored with the ‘half lattice’ vertex algebra Π [4]. The idea, discussed

in Section 3.1, behind such embeddings is that they are partial inverses to quantum hamiltonian

reduction functors.

Importantly, for any nondegenerate admissible level, the embedding descends to an embedding

of simple quotients BPk ↩→ W3(u, v) ⊗ Π. With the modular transformations and fusion rules of

the rational minimal model W3(u, v) in hand, we use this fact to study the modular transformations

and fusion rules for BP(u, v) = BPk whose simple relaxed highest-weight modules were classified

in Chapter 2.

The results obtained thus far fit within the framework of the standard module formalism of

[51,146] with spectral flows of relaxed BP(u, v)-modules playing the role of the standard modules.

Here it is convenient to modify the conformal structure of BP(u, v) so that the standard modules

are untwisted. Section 3.2.3 then describes how to compute the characters of standard BP(u, v)-

modules in terms of W3(u, v) characters using the inverse quantum hamiltonian reduction embed-

ding. The modular S-matrix for standard one-point functions is computed in Section 3.2.5.

The standard module formalism also details how to extend this modularity to the simple highest-

weight BP(u, v)-modules and is applied in Section 3.3. To minimise complications, we first con-

sider BP(u, v) with v = 3. These cases exemplify the general structure and, subject to the con-

jectured equalities (3.3.2) (the standard Verlinde formula for nonrational vertex operator algebras),

the Grothendieck fusion rules of all simple weight modules are computed (Theorem 3.3.6). We

conclude our v = 3 studies by identifying simple currents of BP(u, 3) and exploring the example

(u, v) = (4, 3) in Section 3.3.3.

The remainder of this chapter is devoted to attacking the general nonrational minimal model

BP(u, v). Section 3.3.4 contains character formulae for all highest-weight BP(u, v)-modules and

the modular S-matrix for the simplest class of these is obtained in Theorem 3.3.15. The standard

Grothendieck fusion rules are then computed in Section 3.3.6 and simple currents are identified.

Finally, these general results are illustrated with the example (u, v) = (3, 4) in Section 3.3.7.

The material presented in Chapter 3 appears in [63], and was obtained in collaboration with

David Ridout.

Chapter 4 focuses on generalising essential ingredients of the preceding analysis to subregular

W-algebras of type-𝐴 Wk(𝔰𝔩𝑛+1, 𝑓sub). In Section 4.1.1, regular W-algebras Wk(𝔰𝔩𝑛+1, 𝑓reg) are

introduced. For example, the aforementioned Zamolodchikov algebra is the 𝔰𝔩3 regular W-algebra.

The representation theory of W𝑛+1 minimal models, which are the simple vertex operator algebras

Wk(𝔰𝔩𝑛+1, 𝑓reg) when k is nondegenerate-admissible, is well known and described following [17].
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The titular subregular W-algebras, of which the Bershadsky–Polyakov algebra is an example,

are introduced in Section 4.1.2 along with the definition of an important ‘spectral flow’ automor-

phism and an identification of the Wk(𝔰𝔩𝑛+1, 𝑓sub)-modules of interest.

Unravelling the relationship between subregular W-algebras, regular W-algebras and the half-

lattice vertex operator algebra requires free-field realisations of both the regular [123] and subreg-

ular [88] 𝔰𝔩𝑛+1 W-algebras. Such free-field realisations are the focus of Section 4.2.

In Section 4.3, these free-field realisations are used to show that for generic k, there exists

an ‘inverse quantum hamiltonian reduction’ embedding Wk(𝔰𝔩𝑛+1, 𝑓sub) ↩→ Wk(𝔰𝔩𝑛+1, 𝑓reg) ⊗ Π

with an explicitly known screening operator (Theorem 4.3.2). This embedding is made explicit in

Section 4.3.2 where we decompose free-field strong generators of Wk(𝔰𝔩𝑛+1, 𝑓sub) [89] in terms of

fields in Wk(𝔰𝔩𝑛+1, 𝑓reg) and Π for all noncritical k. That the inverse quantum hamiltonian reduction

embedding exists for all noncritical k is a consequence of these decompositions and the injectivity

of certain free-field realisations.

With the inverse quantum hamiltonian reduction embedding in hand, Section 4.3.3 explores the

consequences for the representation theory of Wk(𝔰𝔩𝑛+1, 𝑓sub). We show that taking tensor prod-

ucts of appropriate Wk(𝔰𝔩𝑛+1, 𝑓reg)- and Π-modules results in (ℤ-graded) Wk(𝔰𝔩𝑛+1, 𝑓sub)-modules.

Proposition 4.3.16 shows that relaxed highest-weight Wk(𝔰𝔩𝑛+1, 𝑓sub)-modules can be constructed

as tensor products of irreducible Wk(𝔰𝔩𝑛+1, 𝑓reg)-modules with certain relaxed Π-modules, as en-

countered for the Bershadsky–Polyakov and Zamolodchikov algebras. When the embedding in

Theorem 4.3.2 descends to an embedding Wk(𝔰𝔩𝑛+1, 𝑓sub) ↩→ Wk(𝔰𝔩𝑛+1, 𝑓reg) ⊗ Π of simple quo-

tients is determined in Section 4.3.4.

The material presented to this point in Chapter 4 appears in [61]. We conclude by using a

similar free-field approach to prove the existence of an inverse quantum hamiltonian reduction

embedding from the subregular W-algebra Wk(𝔰𝔩𝑛+1, 𝑓sub) to a hook-type W-algebra in Section 4.4,

generalising a recent result for 𝔰𝔩3 [3].



Chapter 1

Vertex Operator Algebras

1.1. Vertex Operator Algebras and their Modules

The main objects of study in this thesis are vertex operator algebras. Here we recall the main

definitions and several useful facts for our investigations. For more comprehensive accounts of the

theory of vertex operator algebras, see the excellent textbooks [72,100].

1.1.1. Vertex Algebras. Let V =
⊕

𝑛∈ 1
2ℤ

V𝑛 be a 1
2ℤ-graded vector space over ℂ. A formal

power series of the form, with 𝑎 ∈ V𝑚,

(1.1.1) 𝑎(𝑧) =
∑︁
𝑛∈ℤ

𝑎 (𝑛)𝑧
−𝑛−1 ∈ End V[[𝑧±]],

whose coefficients 𝑎 (𝑛) , the modes of 𝑎(𝑧), are homogeneous linear operators of degree −𝑛 − 1+𝑚

(i.e. 𝑎 (𝑛) (V𝑝) ⊂ V𝑝−𝑛−1+𝑚), is a field if for any 𝑣 ∈ V, 𝑎 (𝑛)𝑣 = 0 for 𝑛 ≫ 0. More general gradings

of V are possible, but all vertex algebras encountered in this thesis will involve only 1
2ℤ⩾0-graded

vector spaces.

Definition 1.1.1. A vertex algebra (V, 𝟙, 𝑌 ) consists of the data

• A vector space V,

• (vacuum vector) a distinguished vector 𝟙 ∈ V,

• (vertex map) a linear operator 𝑌 : V→ End V[[𝑧±]] whose image consists of fields,

subject to the conditions:

• 𝑌 (𝟙, 𝑧) = idV.

• For all 𝑎 ∈ V, 𝑌 (𝑎, 𝑧)𝟙 ∈ V[[𝑧]] and lim𝑧→0𝑌 (𝑎, 𝑧)𝟙 = 𝑎.

• All fields 𝑌 (𝑎, 𝑧), 𝑎 ∈ V, are mutually local. That is, for any 𝑎, 𝑏 ∈ V, there exists 𝑁 ∈ ℤ⩾0 such

that the commutator of 𝑌 (𝑎, 𝑧) and 𝑌 (𝑏, 𝑧) satisfies

(1.1.2) (𝑧 −𝑤)𝑁
[
𝑌 (𝑎, 𝑧), 𝑌 (𝑏, 𝑧)

]
= 0.

7



8 Vertex Operator Algebras

We will often denote vertex algebras (V, 𝟙, 𝑌 ) by V, on the understanding that the remaining data

is clear by context. Similarly, denote the image of the vertex map by 𝑌 (𝑎, 𝑧) by 𝑎(𝑧).

An important consequence of the locality condition in Definition 1.1.1 is the existence of op-

erator product expansions: By [100, Thm. 2.3], 𝑎(𝑧) and 𝑏 (𝑧) are mutually local if and only if, in

the region |𝑧 | > |𝑤 |,

(1.1.3) 𝑎(𝑧)𝑏 (𝑤) =
∑︁
𝑛⩾0

(𝑎𝑛𝑏) (𝑤)
(𝑧 −𝑤)𝑛+1

+ :𝑎(𝑧)𝑏 (𝑤):,

where the normally-ordered product :𝑎(𝑧)𝑏 (𝑤): is defined by

(1.1.4) :𝑎(𝑧)𝑏 (𝑤): =
∑︁
𝑛≤−1

𝑎 (𝑛)𝑧
−𝑛−1𝑏 (𝑤) + 𝑏 (𝑤)

∑︁
𝑛≥0

𝑎 (𝑛)𝑧
−𝑛−1.

The equation (1.1.5) is called the operator product expansion of 𝑎(𝑧) and 𝑏 (𝑧). The normally-

ordered product is regular in 𝑧 −𝑤 and is often omitted. The operator product expansion of 𝑎(𝑧)

and 𝑏 (𝑧) will therefore be written as

(1.1.5) 𝑎(𝑧)𝑏 (𝑤) ∼
∑︁
𝑛⩾0

(𝑎𝑛𝑏) (𝑧)
(𝑧 −𝑤)𝑛+1

.

In fact, it is often possible to specify a vertex algebra by declaring a set of ‘generating’ fields and

their operator products expansions.

Theorem 1.1.2 ([72]). Let V be a vector space and 𝟙 a nonzero vector. Let 𝑆 be a countable set

and {𝑎𝛼 }𝛼 ∈𝑆 a collection of vectors in V and a collection of fields

(1.1.6) 𝑎𝛼 (𝑧) =
∑︁
𝑛∈ℤ

𝑎𝛼(𝑛)𝑧
−𝑛−1

on V that satisfy:

• 𝑎𝛼 (𝑧)𝟙 = 𝑎𝛼 + 𝑧 (. . . ) for all 𝛼 .

• All fields 𝑎𝛼 (𝑧) are mutually local.

• V is spanned by the vectors 𝑎𝛼1
( 𝑗1) . . . 𝑎

𝛼𝑚
( 𝑗𝑚)𝟙 where 𝑗𝑖 < 0.

The assignment, for nonzero 𝑎𝛼1
( 𝑗1) . . . 𝑎

𝛼𝑚
( 𝑗𝑚)𝟙,

(1.1.7) 𝑌

(
𝑎
𝛼1
( 𝑗1) . . . 𝑎

𝛼𝑚
( 𝑗𝑚)𝟙, 𝑧

)
=

1
(− 𝑗1 − 1)! . . . (− 𝑗𝑚 − 1)! :𝜕−𝑗1−1

𝑧 𝑎𝛼1 (𝑧) . . . 𝜕−𝑗𝑚−1
𝑧 𝑎𝛼𝑚 (𝑧):

defines a vertex algebra structure on V. This is the unique vertex algebra structure on V satisfying

the conditions above, and such that the image of 𝑎𝛼 under the vertex map 𝑌 (−, 𝑧) is 𝑎𝛼 (𝑧).
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The fields {𝑎𝛼 (𝑧)}𝛼 ∈𝑆 in Theorem 1.1.2 are said to strongly generate the vertex algebra V. If the

monomials of the form 𝑎
𝛼1
( 𝑗1) . . . 𝑎

𝛼𝑚
( 𝑗𝑚)𝟙with 𝑗𝑖 ∈ ℤ (rather thanℤ⩾0) spanV, then the fields {𝑎𝛼 }𝛼 ∈𝑆

generate V.

We will frequently define the vertex algebras of interest by giving a set of strong generators and

their operator product expansions. Checking that the strong generating fields are mutually local is

sufficient and often a straightforward computation.

Like any algebraic object, homomorphisms, subalgebras and ideals of vertex algebras are

straightforward to define. For a vector space A, denote by A((𝑧)) the space of A–valued formal

Laurent series in 𝑧.

Definition 1.1.3. • A vertex algebra homomorphism is a linear map 𝜌 : V1 → V2 that maps the

vacuum vector of V1 to that of V2 and satisfies

(1.1.8) 𝜌 (𝑎(𝑧)𝑏) = 𝜌 (𝑎) (𝑧)𝜌 (𝑏),

for all 𝑎, 𝑏 ∈ V1.

• A vertex subalgebra is a subspace V′ ⊂ V that is invariant under taking derivatives of fields and

satisfies 𝟙 ∈ V′ and

(1.1.9) 𝑎(𝑧)𝑏 ∈ V′((𝑧)),

for all 𝑎, 𝑏 ∈ V′.

• A vertex algebra ideal is a subspace I ⊂ V that is invariant under taking derivatives of fields and

satisfies

(1.1.10) 𝑎(𝑧)𝑏 ∈ I((𝑧)),

for all 𝑎 ∈ I and 𝑏 ∈ V.

The quotient V/I of a vertex algebra V by an ideal I inherits the structure of a vertex algebra: by

[72, Prop. 3.2.5], the condition 𝑎(𝑧)𝑏 ∈ I((𝑧)) implies that 𝑏 (𝑧)𝑎 ∈ I((𝑧)). In other words, left

ideals of vertex algebras are always two-sided ideals. The vertex algebra structure on V therefore

descends to the quotient V/I.

Another way to build new vertex algebras out of old ones is as tensor products. Given two

vertex algebras V1 and V2, the vector space V1 ⊗ V2 has the structure of a vertex algebra with

vacuum vector 𝟙1 ⊗ 𝟙2 and vertex map defined by

(1.1.11) (𝑎1 ⊗ 𝑎2) (𝑧) = 𝑎1(𝑧) ⊗ 𝑎2(𝑧) .
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Definition 1.1.4. A vertex operator algebra is a vertex algebra V with a distinguished element

𝜔 ∈ V2 whose modes {𝜔𝑛} from the expansion

(1.1.12) 𝜔 (𝑧) =
∑︁
𝑛

𝜔 (𝑛)𝑧
−𝑛−1 =

∑︁
𝑛

𝜔𝑛𝑧
−𝑛−2

satisfy:

• [𝜔−1, 𝑌 (𝑎, 𝑧)] = 𝜕𝑌 (𝑎, 𝑧) for all 𝑎 ∈ V.

• 𝜔−1𝟙 = 0.

• 𝜔0 |V𝑛
= 𝑛 idV𝑛

• The relations of the Virasoro algebra

(1.1.13) [𝜔𝑚, 𝜔𝑛] = (𝑚 − 𝑛)𝜔𝑚+𝑛 +
c

12
(𝑚3 −𝑚)𝛿𝑚+𝑛,0,

where c is a central endomorphism of V.

The field 𝜔 (𝑧) (vector 𝜔) is commonly called an energy-momentum field (vector) or a conformal

field (vector). This is due to the intimate relationship between the Virasoro algebra and the confor-

mal symmetry of 2d conformal field theories [32].

Additionally, the central endomorphism c is taken to be multiplication by a complex number

(also denoted by c) called the central charge of V. A homogeneous vector 𝑎 ∈ Vm in a vertex

operator algebra is said to have conformal dimension Δ𝑎 = 𝑚, and is alternatively expanded in

modes according to

(1.1.14) 𝑎(𝑧) =
∑︁
𝑛∈ℤ

𝑎 (𝑛)𝑧
−𝑛−1 =

∑︁
𝑛

𝑎𝑛𝑧
−𝑛−Δ𝑎 .

Note that if the conformal dimension of 𝑎(𝑧) is a half-integer, then the above sum containing the

modes 𝑎𝑛 must be taken over 𝑛 ∈ ℤ + 1
2 .

The definitions of homomorphisms, subalgebras, ideals, quotients and tensor products also

apply to vertex operator algebras subject to additional conditions relating to the conformal vector.

Chief among these is that homomorphisms of vertex operator algebras must preserve the conformal

vector, and that the tensor product of vertex operator algebras V1 and V2 is naturally a vertex

operator algebra with conformal vector 𝜔1 ⊗ 𝟙2 + 𝟙1 ⊗ 𝜔2.

The definitions presented here admit natural generalisations to superspaces V = V0 ⊕ V1 (see

[72, Rem. 3.2.1]). The necessary modifications to define a vertex operator superalgebra are parity

conditions on elements/modes of V (such as 𝟙 and 𝜔 being required to be even) and an additional

sign in the definition of locality:

(1.1.15) (𝑧 −𝑤)𝑁𝑎(𝑧)𝑏 (𝑤) = (−1)𝑝 (𝑎)𝑝 (𝑏) (𝑧 −𝑤)𝑁𝑏 (𝑤)𝑎(𝑧).
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That is, the modes of odd fields satisfy anticommutation relations instead of commutation relations.

1.1.2. Examples.

Example (Virasoro). The ‘simplest’ vertex operator algebra is the one whose only generating

field is an energy-momentum field 𝜔 (𝑧). This vertex operator algebra is known as the Virasoro

vertex algebra Virk and its nonregular operator product expansion is

(1.1.16) 𝜔 (𝑧)𝜔 (𝑤) ∼
cVirk 𝟙

2(𝑧 −𝑤)4
+ 2𝜔 (𝑤)
(𝑧 −𝑤)2

+ 𝜕𝜔 (𝑤)
𝑧 −𝑤 , cVirk = −6k2 + 11k + 4

k + 2
,

where we parametrise the central charge cVirk in terms of the level k ∈ ℂ \ {−2}. When the level is

of the form k = u
v − 2 for some coprime u, v + 1 ∈ ℤ⩾2, Virk contains a nontrivial maximal ideal.

The simple quotient vertex operator algebra Virk at such levels is known as a Virasoro minimal

model M(u, v).

Example (Heisenberg). Let 𝔥 be a finite-dimensional ℂ-vector space with basis {𝑎𝑖} and a

nondegenerate symmetric bilinear form (−|−). Consider the affinisation 𝔥̂ = 𝔥[𝑡, 𝑡−1] ⊕ ℂ𝐾 with

𝐾 central and commutation relations, for 𝑎, 𝑏 ∈ 𝔥 and𝑚,𝑛 ∈ ℤ,

(1.1.17) [𝑎𝑚, 𝑏𝑛] =𝑚(𝑎 |𝑏)𝛿𝑚+𝑛,0𝐾,

writing ℎ𝑝 = ℎ ⊗ 𝑡𝑝 for ℎ ∈ 𝔥 and 𝑝 ∈ ℤ. The fields

(1.1.18) 𝑎(𝑧) =
∑︁
𝑛

𝑎𝑛𝑧
−𝑛−1, 𝑎 ∈ 𝔥,

are mutually local and strongly generate the Heisenberg vertex algebra H whose operator product

expansions are, for 𝑎, 𝑏 ∈ 𝔥,

(1.1.19) 𝑎(𝑧)𝑏 (𝑤) ∼ (𝑎 |𝑏)𝐾
𝑧 −𝑤 .

where the endomorphism 𝐾 acts by multiplication by some k ∈ ℂ. To make H a vertex operator

algebra, let {𝑏𝑖} be the dual basis of 𝔥 relative to (−|−) (identifying 𝔥 with 𝔥∗). The field

(1.1.20) 𝜔 (𝑧) = 1
2k

∑︁
𝑖

:𝑎𝑖 (𝑧)𝑏𝑖 (𝑧):

is an energy-momentum field of central charge 𝑐 = dim(𝔥). The conformal dimension of the fields

𝑎(𝑧), 𝑎 ∈ 𝔥, is 1 with respect to 𝜔 (𝑧). The modes of the fields of H obey the commutation relations

of 𝔥̂ given in (1.1.17).
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Example (Bosonic ghosts). Two very important vertex operator algebras are the ghost vertex

operator algebras, related to the ghost fields encountered frequently in physics in processes such

as Faddeev-Popov gauge fixing [77].

The first of these is the 𝛽𝛾 or bosonic ghost vertex algebra B introduced in physics in [137]. It

has strong generators 𝛽 (𝑧) and 𝛾 (𝑧) with operator product expansions

(1.1.21) 𝛽 (𝑧)𝛽 (𝑤) ∼ 0 ∼ 𝛾 (𝑧)𝛾 (𝑤), 𝛽 (𝑧)𝛾 (𝑤) ∼ −𝟙
𝑧 −𝑤 .

An energy-momentum field for B is given by 𝑇B(𝑧) = 1
2 (:𝜕𝛽 (𝑧)𝛾 (𝑧) − 𝜕𝛾 (𝑧)𝛽 (𝑧):). The central

charge associated to𝑇B(𝑧) is −1, and both 𝛽 (𝑧) and 𝛾 (𝑧) have conformal dimension 1
2 . The modes

of 𝛽 (𝑧) and 𝛾 (𝑧) obey the commutation relations

(1.1.22) [𝛽𝑛, 𝛽𝑛] = [𝛾𝑚, 𝛾𝑛] = 0, [𝛽𝑚, 𝛾𝑛] = −𝛿𝑚+𝑛,0𝟙.

where here, 𝟙 is the identity endomorphism of B. To generalise the 𝛽𝛾 ghost vertex algebra,

let 𝐴 be a finite-dimensional ℂ-vector space and a nondegenerate symplectic form (−|−). As for

the Heisenberg vertex algebra, consider the affinisation 𝐴 = 𝐴[𝑡, 𝑡−1] ⊕ ℂ𝐾 with 𝐾 central and

commutation relations, for 𝛿, 𝜁 ∈ 𝐴,

(1.1.23) [𝛿 (𝑚) , 𝜁 (𝑛) ] = (𝛿 |𝜁 )𝛿𝑚+𝑛,0𝐾,

writing 𝜙 (𝑝) = 𝜙 ⊗ 𝑡𝑝 for 𝜙 ∈ 𝐴 and 𝑝 ∈ ℤ. Define a field 𝛿 (𝑧) for any 𝛿 ∈ 𝐴 according to

(1.1.24) 𝛿 (𝑧) =
∑︁
𝑛

𝛿 (𝑛)𝑧
−𝑛−1.

We will call the vertex algebra B(𝐴) strongly generated by the fields 𝛿 (𝑧) for 𝛿 ∈ 𝐴, identifying

𝐾 with the identity automorphism of B(𝐴), the neutral ghost vertex algebra (c.f. [102, Ex. 1.2]).

This vertex algebra is also known as the Weyl vertex algebra or the symplectic bosons. The ‘neutral’

here refers to a charge assignment used in quantum hamiltonian reduction. The operator product

expansion of these fields is given by, for 𝛿, 𝜁 ∈ 𝐴,

(1.1.25) 𝛿 (𝑧)𝜁 (𝑤) ∼ (𝛿 |𝜁 )𝟙
𝑧 −𝑤 .

The singular part of this operator product expansion enforces that the modes of the fields of B(𝐴)

satisfy the commutation relations (1.1.23) where again 𝐾 is the identity automorphism of B(𝐴).

Let {𝛿𝑖} be a basis of 𝐴. An energy-momentum field for B(𝐴) is given by

(1.1.26) 𝑇B(𝐴) (𝑧) = 1
2

∑︁
𝑖

:𝜕𝛿𝑖 (𝑧)𝛿𝑖 (𝑧):,
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where {𝛿𝑖} is the dual basis of 𝐴 to {𝛿𝑖} with respect to (−|−). The conformal dimension of the

field 𝛿 (𝑧) is 1
2 for any 𝛿 ∈ 𝐴 and the central charge is − 1

2dim(𝐴). It is straightforward to show that

if 𝐴 is two dimensional, then B(𝐴) ≃ B.

Example (Fermionic ghosts). The second ghost vertex algebra is the 𝑏𝑐 or fermionic ghost

vertex superalgebra F introduced in physics in [138]. It has strong generators 𝑏 (𝑧) and 𝑐 (𝑧) (both

odd fields) with operator product expansions

(1.1.27) 𝑏 (𝑧)𝑏 (𝑤) ∼ 0 ∼ 𝑐 (𝑧)𝑐 (𝑤), 𝑏 (𝑧)𝑐 (𝑤) ∼ 𝟙

𝑧 −𝑤 .

An energy-momentum field for F is given by𝑇 F(𝑧) = :𝜕𝑏 (𝑧)𝑐 (𝑧):. The central charge associated to

𝑇 F(𝑧) is −2, and 𝑏 (𝑧) and 𝑐 (𝑧) have conformal dimensions 0 and 1 respectively. The modes of the

fields 𝑏 (𝑧) and 𝑐 (𝑧) obey the anticommutation relations

(1.1.28) {𝑏𝑚, 𝑏𝑛} = {𝑐𝑚, 𝑐𝑛} = 0, {𝑏𝑚, 𝑐𝑛} = 𝛿𝑚+𝑛,0𝟙.

where here, 𝟙 is the identity endomorphism ofF. To generalise the𝑏𝑐 ghost vertex superalgebra,

let 𝐴 be a finite-dimensional ℂ-vector space with basis {𝜑𝑖} and a nondegenerate symmetric form

(−|−). Suppose further that𝐴 = 𝐴+⊕𝐴− with𝐴± isotropic. The vertex superalgebra F(𝐴) strongly

generated by odd fields 𝜑 (𝑧) for 𝜑 ∈ 𝐴 with operator product expansion, for 𝜑,𝜓 ∈ 𝐴,

(1.1.29) 𝜑 (𝑧)𝜓 (𝑤) ∼ (𝜑 |𝜓 )𝟙
𝑧 −𝑤

is called the charged ghost vertex superalgebra (c.f. [102, Ex. 1.3]). Being odd fields, the modes of

the fields 𝜑 (𝑧) for 𝜑 ∈ 𝐴 satisfy the anticommutation relations, for 𝜑,𝜓 ∈ 𝐴,

(1.1.30) {𝜑 (𝑚) ,𝜓 (𝑛) } = (𝜑 |𝜓 )𝛿𝑚+𝑛,0𝟙.

The ‘charged’ here refers to the assignment of charges +1 for all fields 𝜑 (𝑧) with 𝜑 ∈ 𝐴+ and

−1 for all fields 𝜑∗(𝑧) with 𝜑∗ ∈ 𝐴−. The charged ghost vertex superalgebra can be decomposed

in terms of subalgebras F(𝐴)𝑚 consisting of all fields of charge𝑚 ∈ ℤ according to

(1.1.31) F(𝐴) =
⊕
𝑚∈ℤ

F(𝐴)𝑚 .

Let {𝜑∗𝑖 } be the basis of 𝐴− dual to the basis {𝜑𝑖} of 𝐴+. For any𝑚 ∈ ℂdim𝐴+ , there is an energy-

momentum field for F(𝐴) given by

(1.1.32) 𝑇 F(𝐴) (𝑧) = −
∑︁
𝑖

𝑚𝑖 :𝜑∗𝑖 (𝑧)𝜕𝜑𝑖 (𝑧): +
∑︁
𝑖

(1 −𝑚𝑖):𝜕𝜑∗𝑖 (𝑧)𝜑𝑖 (𝑧):.
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The conformal dimensions of the fields 𝜑𝑖 and 𝜑∗𝑖 are (1−𝑚𝑖) and𝑚𝑖 respectively, and the central

charge is −∑
𝑖 (12𝑚2

𝑖 − 12𝑚𝑖 + 2). Such general conformal structures on F(𝐴) are encountered

frequently in quantum hamiltonian reduction (see Section 1.3). As before, if 𝐴 is two dimensional

(i.e. 𝐴± ≃ ℂ as vector spaces) then F(𝐴) ≃ F.

1.1.3. Vertex Algebra Modules. The notion of a vertex (operator) algebra module comes

from allowing the modes of a field 𝑎(𝑧) of V to be endomorphisms on a vector space M in a way

compatible with the original vertex algebra structure on V.

Definition 1.1.5. Let V be a vertex algebra. A vector space M is a vertex algebra module for V if

it is equipped with an operation 𝑌𝑀 : V→ EndM[[𝑧±]] which assigns to each 𝑎 ∈ V a field

(1.1.33) 𝑌M(𝑎, 𝑧) =
∑︁
𝑛∈ℤ

𝑎M(𝑛)𝑧
−𝑛−1

on M subject to the conditions:

• 𝑌M(𝟙, 𝑧) = idM.

• For all 𝑎, 𝑏 ∈ V and 𝑐 ∈ M, the three expressions

𝑌M(𝑎, 𝑧)𝑌M(𝑏,𝑤)𝑐 ∈ M((𝑧)) ((𝑤)),(1.1.34a)

𝑌M(𝑏,𝑤)𝑌M(𝑎, 𝑧)𝑐 ∈ M((𝑤)) ((𝑧)), and(1.1.34b)

𝑌M (𝑌 (𝑎, 𝑧 −𝑤)𝑏,𝑤))𝑐 ∈ M((𝑤)) ((𝑧 −𝑤))(1.1.34c)

are expansions, in their respective domains (|𝑧 | > |𝑤 |, |𝑤 | > |𝑧 | and |𝑤 | > |𝑧 −𝑤 |), of the same

element of

(1.1.35) M[[[𝑧,𝑤]] [𝑧−1,𝑤−1, (𝑧 −𝑤)−1] .

If V is vertex operator algebra, a vertex algebra module M is a vertex operator algebra module (or

V-module for short) if M decomposes into generalised eigenspaces for 𝜔M
0 = 𝜔M

(1) .

Of course a vertex operator algebra is always a module over itself. This special module is referred

to as the vacuum module.

Definitions of vertex operator algebra modules encountered in the literature often include re-

strictions on the grading M by 𝜔M
0 . For example, as the operator 𝜔0 is the chiral part of the Hamil-

tonian of the associated 2d conformal field theory, it is sensible in many applications to require

that the (generalised) eigenvalues of 𝜔M
0 are bounded below. We will refer to such a V-module as

positive-energy. The (generalised) eigenspace of minimal 𝜔M
0 -eigenvalue is called the top space

of M and will be denoted by Mtop.
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There exists an ‘algebra of modes’ U, constructed as a certain topological completion of the

universal enveloping algebra of a Lie algebra associated to a given vertex operator algebra V [72,

Sec. 4.3]. Then a V-module is automatically a U-module as the former specifies the action of

the elements of the latter. The converse is not true in general, but is true for smooth U-modules

([72, Thm. 5.1.6]).

Given a V-module M and a vertex algebra automorphism 𝜔 of V, one can ‘twist’ M by 𝜔:

Define𝜔∗(M) to be the image of M under an (arbitrarily chosen) isomorphism𝜔∗ of vector spaces.

The action of V on 𝜔∗(M) is then defined by

(1.1.36) 𝑎(𝑧) · 𝜔∗(𝑣) = 𝜔∗(𝜔−1(𝑎(𝑧))𝑣), 𝑎(𝑧) ∈ V, 𝑣 ∈ M.

In other words,𝜔 (𝑎(𝑧))·𝜔∗(𝑣) = 𝜔∗(𝑎(𝑧)𝑣). In view of this, we shall drop the star that distinguishes

the automorphism 𝜔 from the corresponding vector space isomorphism 𝜔∗. The automorphism 𝜔

need not preserve the conformal vector as the formula (1.1.36) will define an action of V on 𝜔 (M)

regardless. Of course if 𝜔 is a vertex operator algebra automorphism, the conformal vector is

preserved by definition.

IfV contains vectors with half-integer conformal dimension, the mode index of the correspond-

ing fields can be taken to be half-integers or integers. That is, expanding such fields according to

𝑎(𝑧) = ∑
𝑛 𝑎𝑛𝑧

−𝑛−Δ𝑎 , we may take the sum over ℤ or ℤ + 1
2 . This choice corresponds to a choice

of boundary conditions for fields of half-integer conformal dimension. The choice of mode index

impacts what powers of 𝑧 are present in the mode expansion of a field with half-integer conformal

dimension.

V-modules as defined above correspond to the choice of half-integer mode indices for half-

integer conformal dimension fields. These are referred to as untwisted V-modules. On the other

hand, modifying the definition so that half-integer conformal dimension fields act with integer

mode indices results in twisted V-modules.

The ‘mode algebra’ Utw that acts on twisted V-modules is a similar topological completion of

the algebra of modes where the mode index of all fields are integers. Of course if V is ℤ-graded,

then Utw ≃ U. For more general V, this is not always the case.

1.1.4. Zhu Technology. A fundamental tool for classifying and constructing positive energy

(untwisted)V-modules are functors induced between these modules and those of the corresponding

(untwisted) Zhu algebra denoted by Zhu[V]. The idea behind this unital associative algebra was

already well known to physicists (see [67] for example), but a mathematical account was first given

by Zhu [171]. Here we follow the description of the Zhu algebra given in [145, App. B].



16 Vertex Operator Algebras

Suppose thatV is a vertex operator algebra with mode algebraU = U<⊗U0⊗U>, whereU<, U0

andU> denote the unital subalgebras ofU generated by modes 𝑎𝑛 with index𝑛 < 0, 𝑛 = 0 and𝑛 > 0

respectively. Suppose further that U admits a PBW-type basis consisting of 𝟙 and monomials of the

form 𝑎
𝑖1
𝑛1 . . . 𝑎

𝑖𝑝
𝑛𝑝 where 𝑛 𝑗 ∈ ℤ and {𝑎𝑖 𝑗 (𝑧)} is a finite collection of fields in V not including 𝟙(𝑧).

All W-algebras encountered in this thesis satisfy this property [106, Rem. 4.2]. Let U′> denote the

ideal of U> spanned by the basis elements 𝑎𝑖1𝑛1 . . . 𝑎
𝑖𝑝
𝑛𝑝 with 𝑛 𝑗 > 0 and 𝑝 > 0 (so that U> = ℂ𝟙⊕U′>

as vector spaces).

Definition 1.1.6. The untwisted Zhu algebra of V is the vector space

(1.1.37) Zhu[V] = U0
U0 ∩ (UU′>)

,

equipped with the multiplication (defined for homogeneous 𝑎 of conformal weight Δ𝑎 and extended

linearly)

(1.1.38)
[
𝑎0

] [
𝑏0

]
=

[
𝑎0𝑏0

]
=

∞∑︁
𝑛=0

(
Δ𝑎
𝑛

) [
(𝑎−Δ𝑎+𝑛𝑏)0

]
,

where
[
𝑢0

]
is the image in Zhu[V] of 𝑢0 ∈ U0.

In [171], Zhu defined two functors between the categories of V- and Zhu[V]-modules. We shall

refer to them as the Zhu functor and the Zhu induction functor. The first is quite easy to define.

Definition 1.1.7. The Zhu functor assigns to any V-module M, the Zhu[V]-module Zhu[M] =

MU′> , the subspace of M whose elements are annihilated by U′>.

The second amounts to inducing a Zhu[V]-module by treating it as a U0-module equipped with a

trivial U′>-action, and taking a quotient that imposes, among other things, the generalised commu-

tation relations of V obtained from the operator product expansions. The details may be found in

[121,171].

Proposition 1.1.8 ([171]). There exists a functor, which we call the Zhu induction functor, that

assigns to any Zhu[V]-module N a V-module Ind[N] such that Zhu[Ind[N]] ≃ N.

The Zhu functor is thus a left inverse of the Zhu induction functor, at the level of isomorphism

classes of modules. While it is not a right inverse in general, it is if we restrict to simple positive-

energy V-modules: If M is a positive-energy V-module, then Mtop is naturally a Zhu[V]-module.

In fact, it may be identified with Zhu[M] ifM is also simple, though this will not be true in general.
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Theorem 1.1.9 ([171]). Zhu[−] and Ind[−] induce a bijection between the sets of isomorphism

classes of simple positive-energy V-modules and simple Zhu[V]-modules.

To classify simple positive-energy V-modules, it is therefore sufficient to classify simple Zhu[V]-

modules and apply Ind[−]. Subject to identifying Zhu[V], this is a dramatic simplification as the

latter are modules over an associative algebra.

An important feature of the Zhu algebra Zhu[V] is how it changes upon replacing V with any

quotient V/I where I is an ideal of V. Denote by Zhu[I] the image in Zhu[V] of all elements in I.

Then Zhu[I] is a two-sided ideal in Zhu[V] [76, Prop. 1.4.2].

Proposition 1.1.10 ([76]). If I is an ideal of a vertex operator algebra V, then

(1.1.39) Zhu[V/I] ≃ Zhu[V]/Zhu[I] .

Determining whether or not a simple positive-energy V-module M is a V/I-module can be reduced

to checking whether Zhu[M] is annihilated by Zhu[I].

There is a parallel story for twistedV-modules. It was developed in different levels of generality

by Kac and Wang [108] and by Dong, Li and Mason [58]. Much of the details are identical, except

that the relevant mode algebra is the twisted mode algebra Utw of V. This is discussed in detail in

[36, App. A].

Given a vertex operator algebra V with twisted mode algebra Utw = Utw
< ⊗ Utw

0 ⊗ Utw
> , let Utw

>
′

be the ideal of Utw
> defined in the same way as U>

′ in U>.

Definition 1.1.11.

• The twisted Zhu algebra of V is the vector space

(1.1.40) Zhutw [
V
]
=

Utw
0

Utw
0 ∩ (UtwUtw

>
′)
,

equipped with the multiplication defined in (1.1.38), but where
[
𝑢0

]
is now the image inZhutw [

V
]

of 𝑢0 ∈ Utw
0 .

• The twisted Zhu functor assigns to any twisted V-module M the Zhutw [
V
]
-module Zhutw [

M
]
=

MUtw
>
′
of elements of M that are annihilated by Utw

>
′.

Using these definitions, the twisted versions of Zhu’s theorems hold. This is because, as in the

untwisted case, if M is a positive-energy twisted V-module, then Mtop is naturally a Zhutw [
V
]
-

module.
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Theorem 1.1.12 ([58]).

• There exists a twisted Zhu induction functor that takes a Zhutw [
V
]
-module N to a V-module

Indtw [
N

]
satisfying Zhutw [

Indtw [
N

] ]
≃ N.

• Zhutw [
−
]

and Indtw [
−
]

induce a bijection between the sets of isomorphism classes of simple

positive-energy twisted V-modules and simple Zhutw [
V
]
-modules.

1.1.5. Modularity and Fusion. Given a 2d conformal field theory with corresponding vertex

operator algebra V, the state space of the theory must be composed of V-modules. For a given

collection of V-modules to be suitable for this purpose, the category C comprising the collection

of V-modules must satisfy a number of necessary conditions including:

• C is closed under twisting modules by certain automorphisms of V such as conjugation.

• C is closed under the fusion product of V-modules.

• The partition function of C is modular invariant.

Additionally, there are a number of properties the category C is expected to have. For example,

it is often the case that the category C has the structure of a modular tensor category. Such structure

is known to be present in categories of modules for sufficiently nice vertex operator algebras such

as the strongly rational ones [95] but it is not known if this true for generically.

The presence of tensor-categorical structure on C allows for diagrammatic and algorithmic ap-

proaches to many vertex-algebraic questions important for conformal field theory. See for example

[116].

Given two V-modules M,N ∈ C, the fusion product is written as

(1.1.41) M ×N ≃
⊕
P∈C

N P
M,NP,

where the fusion coefficients N P
M,N

are nonnegative integers. At the level of vertex operator algebra

modules, the fusion product can be written as a quotient of the usual tensor product of two V-

modules [82,83]. Alternatively, the fusion product can be defined using a universal property with

respect to intertwining maps in C [97].

Definition 1.1.13. A 2d conformal field theory with vertex operator algebra V and category C of

V-modules is rational if all objects in C are completely reducible and C has finitely many simple

objects.

In rational 2d conformal field theories, fusion products describe the primary fields that ap-

pear in the operator product expansion of two other primary fields. This assists in, for example,

computing the correlation functions of the theory (see for example [70, Sec. 7.3.1]).



1.1. Vertex Operator Algebras and their Modules 19

We also call the vertex operator algebra V rational in C if all objects in C are completely

reducible andC has finitely many simple objects. Rational vertex operator algebras satisfy a number

of nice properties.

One remarkable property of rational vertex operator algebras is expressed by the famous Ver-

linde formula [156] that relates the fusion coefficients in (1.1.41) to the modular properties of

characters of V-modules in C: Define the character of a V-module M to be the trace

(1.1.42) ch
[
M

]
(q) = trM q𝜔0−c/24,

where 𝜔 (𝑧) is the energy-momentum field in V and c is its central charge. Let V be rational in a

category C and denote the simple objects in C by M𝑖 for 𝑖 ∈ 𝐼 in some finite indexing set.

Suppose that, in addition to being rational, dim (V/𝐶2(V)) < ∞, where𝐶2(V) is the span of all

elements of V that can be written as 𝑎 (−2)𝑏 for some 𝑎, 𝑏 ∈ V. A vertex operator algebra satisfying

this condition is 𝐶2-cofinite. Many of the well known rational vertex operator algebras are also

𝐶2-cofinite, but there are 𝐶2-cofinite W-algebras that are not rational [8,85].

It was shown by Zhu [171] that the ℂ-span of characters ch
[
M𝑖

]
(q) of such a rational 𝐶2-

cofinite vertex operator algebra admits an action of the modular group SL2(ℤ). The action of the

generating elements S and T of SL2(ℤ) are written as, writing q = e2𝜋 i𝜏 for 𝜏 in the upper half

plane,

(1.1.43) S
(
ch

[
M𝑖

]
(q)

)
= ch

[
M𝑖

] (
e−2𝜋 i/𝜏

)
=

∑︁
𝑗 ∈𝐼

S𝑖, 𝑗 ch
[
M𝑗

]
(q)

and

(1.1.44) T
(
ch

[
M𝑖

]
(q)

)
= ch

[
M𝑖

] (
e2𝜋 i(𝜏+1)

)
=

∑︁
𝑗 ∈𝐼

T𝑖, 𝑗 ch
[
M𝑗

]
(q)

respectively. The matrix whose entries are S𝑖, 𝑗 (T𝑖, 𝑗 ) is known as the S-(T-)matrix of V. The

Verlinde formula relates the entries of the S-matrix of V to the fusion coefficients of V.

Theorem 1.1.14 ([94,96,156]). Let V be a simple ℤ⩾0-graded vertex operator algebra having the

following properties:

• V is 𝐶2-cofinite.

• The only fields of conformal dimension zero are multiples of the vacuum, 𝑉0 = ℂ𝟙.

• V is isomorphic, as a V-module, to its contragradient dual.

• V is rational in a V-module category C
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Let {M𝑖}𝑖∈𝐼 be a complete set of representatives of the (isomorphism classes of) simple objects in

C where 𝐼 is a finite indexing set. Then the Verlinde formula holds:

(1.1.45) N
M𝑘

M𝑖 ,M𝑗
=

∑︁
ℓ∈𝐼

S𝑖,ℓS𝑗,ℓS
∗
𝑘,ℓ

Svac,ℓ
,

where ∗ denotes complex conjugation and Svac,ℓ are the S-matrix elements of the S-action on the

character of V.

The Verlinde formula therefore provides an easy means to compute the fusion rules of a rational

𝐶2-cofinite conformal field theory whose modular properties are well understood. One drawback

of this approach is that the q characters of a rational vertex operator algebras are often not linearly

independent so determining the S-matrix is a formidable task. There are remedies for this, as we

will see in Section 1.3.3.

There are many applications of 2d conformal field theory for which it is necessary to have a

nonsemisimple V-module category. For example, percolation problems [39, 163], 4d-2d duality

[29], quantum Hall transitions [164] and string theory [90, 125, 126]. In these cases, the Verlinde

formula is no longer guaranteed to produce nonnegative integer fusion multiplicities.

A conjectural extension of the Verlinde formula from [51] will be discussed in Section 3.3

where it will be used to obtain nonnegative integer fusion coefficients for a nonrational vertex

operator algebra.

1.2. Affine Vertex Operator Algebras

An important class of vertex operator algebras are those related to Wess-Zumino-Witten theo-

ries, which are 2d conformal field theories whose target space is a simple Lie group G [135,165–

167]. These affine vertex operator algebras are intimately related to the affine Lie algebra 𝔤̂ (where

𝔤 = Lie(G)) and are the amongst the best studied vertex operator algebras. Here, we recall their

construction and the main features of their representation theory following [72, Ch. 2] and [76].

1.2.1. Definition and Modules. Let 𝔤 be a simple finite-dimensional Lie algebra and consider

the affine Kac-Moody algebra

(1.2.1) 𝔤̂ = 𝔤 ⊗ ℂ[𝑡, 𝑡−1] ⊕ ℂ𝐾,

where 𝐾 is central. The commutation relations of 𝔤̂ are, for 𝑎, 𝑏 ∈ 𝔤 and𝑚,𝑛 ∈ ℤ

(1.2.2) [𝑎𝑚, 𝑏𝑛] = [𝑎, 𝑏]𝑚+𝑛 +𝑚𝛿𝑚+𝑛,0⟨𝑎, 𝑏⟩𝐾,
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where we write, for example, 𝑎𝑚 = 𝑎 ⊗ 𝑡𝑚. Here we use the symmetric bilinear form ⟨−,−⟩ =
1

2h∨𝜅𝔤 (−,−) where 𝜅𝔤 is the Killing form of 𝔤.

It is clear that the subset 𝔤[𝑡] spanned by all elements of the form 𝑎𝑚 with 𝑎 ∈ 𝔤 and𝑚 ⩾ 0 is

a Lie subalgebra of 𝔤̂. Let ℂk be the one-dimensional representation of 𝔤[𝑡] ⊕ ℂ𝐾 on which 𝔤[𝑡]

acts as zero and 𝐾 acts as multiplication by the level k ∈ ℂ.

To define a vertex operator algebra, we first need to specify a vector space. For this purpose,

let

(1.2.3) Vk(𝔤) = 𝑈 (̂𝔤) ⊗
𝑈 (𝔤 [𝑡 ]⊕ℂ𝐾)

ℂk,

where 𝑈 (𝔤̂) is the universal enveloping algebra of 𝔤̂ and likewise for 𝑈 (𝔤[𝑡] ⊕ ℂ𝐾). As a vector

space, Vk(𝔤) ≃ 𝑈 (𝔤 ⊗ 𝑡−1ℂ[𝑡−1]). To define a vertex algebra structure on Vk(𝔤), the next step is

to specify fields for all elements of 𝑈 (𝔤 ⊗ 𝑡−1ℂ[𝑡−1]) such that the axioms in Definition 1.1.1 are

satisfied. In this case, Theorem 1.1.2 makes it possible to specify fields for finitely many elements

of𝑈 (𝔤 ⊗ 𝑡−1ℂ[𝑡−1]):

Let {𝐽𝑎}𝑎=1,...,dim𝔤 be an ordered basis of 𝔤 and denote by 𝟙k is the image of the identity element

of𝑈 (̂𝔤) ⊗ ℂk in Vk(𝔤). In the language of vertex algebras, 𝟙k will be the vacuum vector 𝟙. By the

Poincaré-Birkhoff-Witt theorem, Vk(𝔤) admits a basis consisting of elements of the form

(1.2.4) 𝐽
𝑎1
𝑗1
. . . 𝐽

𝑎𝑚
𝑗𝑚

𝟙k,

where 𝑗1 ⩽ . . . ⩽ 𝑗𝑚 < 0 and if 𝑗𝑖 = 𝑗𝑖+1, 𝑎𝑖 ⩽ 𝑎𝑖+1. Such elements define a natural ℤ-grading of

Vk(𝔤) by defining the grade of (1.2.4) to be −∑
𝑖 𝑗𝑖 . Therefore by Theorem 1.1.2, all we require

are mutually local fields 𝐽𝑎 (𝑧), one for each element of the basis of 𝔤. Define

(1.2.5) 𝐽𝑎 (𝑧) =
∑︁
𝑛

𝐽𝑎𝑛𝑧
−𝑛−1.

The data consisting of vector space Vk(𝔤), the vacuum vector 𝟙 = 𝟙k and generating fields 𝐽𝑎 (𝑧)

defines the structure of a vertex algebra on Vk(𝔤) [76, Thm. 2.4.1]. This vertex algebra is called the

universal affine vertex algebra for 𝔤. The operator product expansions of Vk(𝔤) can be obtained

from the commutation relations (1.2.2) and are

(1.2.6) 𝐽𝑎𝑖 (𝑧) 𝐽𝑎 𝑗 (𝑤) ∼ k⟨𝐽𝑎𝑖 , 𝐽𝑎 𝑗 ⟩𝟙
(𝑧 −𝑤)2

+ [𝐽
𝑎𝑖 , 𝐽𝑎 𝑗 ] (𝑤)
𝑧 −𝑤 .

Some important modules for Vk(𝔤) can be obtained by a similar induction procedure starting

from highest-weight modules of 𝔤. First, note that the subset 𝔤̂0 of 𝔤̂ (and of 𝔤[𝑡] ⊕ ℂ𝐾) spanned

by elements of the form 𝑎0 is a Lie subalgebra isomorphic to 𝔤. In fact, the Zhu algebra of Vk(𝔤)
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is the algebra generated by elements of 𝔤̂0 and is isomorphic to the universal enveloping algebra

𝑈 (𝔤) [76, Thm. 3.1.1].

Denote by K
𝜆

the Verma 𝔤-module with highest-weight 𝜆. Let K
𝜆,k be the 𝔤[𝑡] ⊕ℂ𝐾-module,

isomorphic to K
𝜆

as a vector space, where 𝔤̂0 acts as 𝔤, 𝑡𝔤[𝑡] acts as 0 and 𝐾 acts as multiplication

by k ∈ ℂ. The vector space

(1.2.7) K𝜆 = 𝑈 (̂𝔤) ⊗
𝑈 (𝔤 [𝑡 ]⊕ℂ𝐾)

K
𝜆,k,

where 𝜆 is the unique level-k 𝔤̂ weight with finite part 𝜆, has the structure of a ℤ⩾0-graded vertex

algebra module for Vk(𝔤) [76]. The Verma modules K𝜆 for Vk(𝔤) are sometimes reducible and

we denote their simple quotients by L𝜆. Both K𝜆 and L𝜆 are highest-weight Vk(𝔤)-modules in the

sense that they are generated by vector that is annihilated by all positive modes and is an eigenvector

for all zero modes ℎ0 where ℎ is in the Cartan subalgebra of 𝔤.

An energy-momentum field for Vk(𝔤) when the level k is not equal to minus the dual Cox-

eter number h∨ of 𝔤 (k is noncritical) is given by the Sugawara construction [150, 154]: Let

{𝐽𝑎}𝑎=1,...,dim𝔤 be the dual basis of 𝔤 to {𝐽𝑎}𝑎=1,...,dim𝔤 with respect to the form ⟨−,−⟩. The field

(1.2.8) 𝑇 Sug.(𝑧) = 1
2(k + h∨)

dim𝔤∑︁
𝑎=1

:𝐽𝑎 (𝑧) 𝐽𝑎 (𝑧):

is then an energy-momentum field for Vk(𝔤) with central charge

(1.2.9) ck =
k dim𝔤

k + h∨ .

With respect to 𝑇 Sug.(𝑧), all the fields 𝐽𝑎 (𝑧) have conformal dimension equal to 1.

1.2.2. Levels and Rationality. It was shown by Kac and Wakimoto that the vertex operator

algebra Vk(𝔤) is reducible (as a module over itself) if k is an admissible level [103]. That is, when

k is of the form

(1.2.10) k + h∨ = u

v
where u, v ∈ ℤ⩾1, (u, v) = 1 and u ⩾


h∨ (r∨, v) = 1,

h (r∨, v) = r∨.

where r∨ is the lacing number of 𝔤. Denote the simple quotient of Vk(𝔤) by Lk(𝔤). When k ∈ ℤ⩾0,

Lk(𝔤) is rational in the categoryOk consisting of highest-weight modules [76]. These are the vertex

operator algebras corresponding to the aforementioned Wess-Zumino-Witten models.

Let k ∈ ℤ⩾0. The simple modules of Lk(𝔤) are the highest-weight modulesL𝜆 with 𝜆 dominant

integral and level k [76, Thm. 3.1.3]. Such modules are called ‘integrable’ as the action of the

affine Lie algebra 𝔤̂k on such modules can be integrated to define a representation of an infinite
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dimensional Lie group associated to 𝔤̂k. Denote the set of level k dominant integral 𝔤̂ weights by

Pk
⩾. A particular consequence of this is that all Lk(𝔤)-modules have finite-dimensional top spaces:

The top space of the Lk(𝔤)-module L𝜆 can be identified with the finite-dimensional highest-weight

module L
𝜆

of the Zhu algebra Zhu[Lk(𝔤)] ≃ 𝑈 (𝔤)/Zhu
[
Ik
]
, where Ik is the maximal ideal in

Vk(𝔤).

The Weyl-Kac formula expresses the character of L𝜆 in terms of certain sums over the Weyl

group W of 𝔤. What is important for the computation of fusion rules are the modular transforma-

tions of such characters. As Lk(𝔤) with k ∈ ℤ⩾0 is rational and 𝐶2-cofinite [57,76], the ℂ-span of

the characters of L𝜆 where 𝜆 ranges over Pk
⩾ admits an action of SL2(ℤ).

To describe the modular transformations of characters of Lk(𝔤) with k ∈ ℤ⩾0, let 𝑟 be the rank

of 𝔤, |Δ+ | the number of positive roots in 𝔤 and 𝐷 the determinant of the matrix whose rows are the

Dynkin labels of the simple coroots in 𝔤. As shown by Kac and Peterson [101], the S action on the

characters of Lk(𝔤) is given by

(1.2.11) S
(
ch

[
L𝜆

]
(q)

)
≃

∑︁
𝜆′∈Pk

⩾

Sk
𝜆,𝜆′ ch

[
L𝜆′

]
(q) ,

where the S-matrix elements are

(1.2.12) Sk
𝜆,𝜆′ =

i |Δ+ |
√
𝐷 (k + h∨)𝑟/2

∑︁
𝑤∈W

det𝑤 e−2𝜋 i(k+h∨) ⟨𝑤 (𝜆+𝜌),𝜆′+𝜌 ⟩ .

The fusion rules of the rational vertex operator algebra Lk(𝔤) with k ∈ ℤ⩾0

(1.2.13) L𝜆 × L𝜆′ =
⊕
𝜆′′∈Pk

⩾

Nk 𝜆′′

𝜆,𝜆′ L𝜆′′

can be obtained in a number of ways. Firstly, the Verlinde formula (1.1.45) expresses the the fusion

coefficientsNk 𝜆′′

𝜆,𝜆′ in terms of a finite sum over ratios and products of the S-matrix elements (1.2.12).

Secondly, the Kac–Walton formula [80,99,159,160] relates the fusion coefficients to tensor product

coefficients of simple 𝔤-modules:

(1.2.14) Nk 𝜆′′

𝜆,𝜆′ =
∑︁
𝑤∈Ŵ

𝑤 ·𝜆′′∈Pk
⩾

det𝑤 N 𝑤 ·𝜆′′
𝜆,𝜆′

.

Here, Ŵ is the affine Weyl group of 𝔤̂, 𝜆 is the projection of 𝜆 onto the weight space of 𝔤, andN 𝜆′′

𝜆,𝜆′

denotes the tensor product (Littlewood–Richardson) coefficients of the simple finite-dimensional

𝔤-modules L
𝜆
:

(1.2.15) L
𝜆
⊗ L

𝜆′ ≃
⊕
𝜆′′

N 𝜆′′

𝜆,𝜆′
L
𝜆′′ .
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A parallel-but-incomplete story exists for Lk(𝔤) when k is admissible but not a nonnegative in-

teger. Indeed for such k, Kac and Wakimoto defined a class of 𝔤 weights called admissible weights,

for which the characters of the associated simple highest-weight Vk(𝔤)-modules have desirable

modular properties [104]. A famous result of Arakawa then states the following:

Theorem 1.2.1 ([18, Prop. 4.6]). Let k be admissible. The Vk(𝔤)-module L𝜆 is a Lk(𝔤)-module if

and only if 𝜆 is an admissible weight.

As the set of admissible weights for a given admissible k is finite [104] and all highest-weight

Lk(𝔤)-modules are completely reducible [18], this implies that Lk(𝔤) is rational in the category Ok

of highest-weight modules. Kac and Wakimoto considered the modular properties of the corre-

sponding ℂ-span of characters and obtained an S-matrix [104, Thm. 3.6].

The natural next step is to apply the Verlinde formula using this S-matrix and obtain fusion

rules for nonintegral admissible level Lk(𝔤). However, even in the relatively simple case of 𝔤 = 𝔰𝔩2,

the Verlinde formula was shown to give negative values for the fusion coefficients [34, 118, 129].

This disagreed with attempts at direct computations of fusion rules for these examples [11,27,57,

66,81,136] and is untenable from a 2d conformal field theory point of view.

A resolution was proposed (and checked for 𝔤 = 𝔰𝔩2) in work by Creutzig and Ridout [50,52].

There, it was shown to be necessary to work in a category containing modules that were not highest-

weight. As this larger category of weight modules was known to be nonrational [7], an alternative

approach to computing nonnegative integer fusion coefficients was necessary and is known as the

standard module formalism [51].

Applying the standard module formalism to nonintegral admissible level Lk(𝔰𝔩2) results in

nonnegative fusion coefficients expressible in terms of fusion coefficients for Virasoro minimal

modules, and an explanation of the previously obtained undesirable fusion coefficients as the result

of ignoring the additional weight modules [50, 52]. The appearance of Virasoro minimal module

fusion coefficients is in fact anticipated by the early observation that the characters of admissible

level Lk(𝔰𝔩2) are related to the characters of Virasoro minimal models [134]. This is particularly

interesting as the latter is a quantum hamiltonian reduction of the former.

1.3. Quantum Hamiltonian Reduction

Originating in the work of Zamolodchikov and others [35,117,139,170], and later generalised

by various groups [54, 65, 102, 106], quantum hamiltonian reduction is a homological procedure

that produces new vertex operator algebras from affine ones. The vertex operator algebras that

result from quantum hamiltonian reduction are known as W-algebras. Here we follow the general

construction of W-algebras described in [106, Sec. 1].
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1.3.1. Construction. Let 𝔤 be a simple finite-dimensional Lie algebra, k ∈ ℂ and 𝑥, 𝑓 ∈ 𝔤

satisfying

(a) The adjoint action ad 𝑥 (−) = [𝑥,−] of 𝑥 on 𝔤 is diagonalisable with half-integer eigenvalues:

(1.3.1) 𝔤 =
⊕
𝑚∈ 1

2ℤ

𝔤𝑚,

where 𝔤𝑚 = {𝑔 ∈ 𝔤 | [𝑥, 𝑔] =𝑚𝑔}.

(b) 𝑓 ∈ 𝔤−1.

(c) The adjoint action ad 𝑓 of 𝑓 restricted to 𝔤1/2 defines a vector space isomorphism 𝔤1/2 ≃ 𝔤−1/2.

Let 𝐴ne = 𝔤1/2. A symplectic form (−|−)ne on 𝐴ne is given by,

(1.3.2) (𝜑 |𝜓 )ne = ⟨𝑓 , [𝜑,𝜓 ]⟩, 𝜑,𝜓 ∈ 𝐴ne,

where ⟨−,−⟩ is the usual normalised Killing form. To see that this symplectic form is nondegen-

erate, the Killing form is invariant so (𝜑 |𝜓 )ne = ⟨[𝑓 , 𝜑],𝜓 ⟩. As ad 𝑓 : 𝔤1/2 → 𝔤−1/2 is a vector

space isomorphism, (−|−)ne defines a nondegenerate pairing between 𝔤1/2 and 𝔤−1/2. Recalling

Section 1.1.2, we can therefore construct the neutral ghost vertex algebra B(𝐴ne).

Similarly, let 𝐴+ = ⊕𝑚>0 𝔤𝑚, 𝐴− = (𝐴+)∗ and 𝐴ch = 𝐴+ ⊕ 𝐴−. Define a nondegenerate

symmetric form (−|−)ch on 𝐴ch by

(1.3.3) (𝐴+ |𝐴+)ch = (𝐴− |𝐴−)ch = 0, (𝛿 |𝜉)ch = (𝜉 |𝛿)ch = 𝜉 (𝛿), 𝛿 ∈ 𝐴+, 𝜉 ∈ 𝐴−.

Again from Section 1.1.2, we can therefore construct the charged ghost vertex superalgebra F(𝐴ch).

Let G = F(𝐴ch) ⊗ B(𝐴ne) and C = Vk(𝔤) ⊗ G. The charge decomposition of F(𝐴ch) gives rise

to a charge decomposition

(1.3.4) C =
⊕
𝑚∈ℤ

C𝑚

by setting the charge of all fields in B(𝐴ne) and Vk(𝔤) to be zero. To construct a differential on the

graded vertex algebra C, fix a basis {𝐽𝑎}𝑎∈𝑆 𝑗 for each 𝔤𝑗 . Let 𝑆 = ⊔𝑗𝑆 𝑗 (so that {𝐽𝑎}𝑎∈𝑆 is a basis

of 𝔤), 𝑆+ = ⊔𝑗>0𝑆 𝑗 (so that {𝐽𝑎}𝑎∈𝑆+ is a basis of 𝐴+) and 𝐶𝑎,𝑏𝑐 ∈ ℂ be the structure constants of 𝔤

defined by

(1.3.5) [𝐽𝑎, 𝐽𝑏] =
∑︁
𝑐∈𝑆

𝐶𝑎,𝑏𝑐 𝐽𝑐 .

Denote the corresponding basis of𝐴ne by {𝛿𝑎}𝑎∈𝑆1/2 and that of𝐴+ by {𝜑𝑎}𝑎∈𝑆+ . Finally let {𝜓𝑎}𝑎∈𝑆+
be the basis of 𝐴− dual to {𝜑𝑎}𝑎∈𝑆+ with respect to (−|−)ch. That is,

(1.3.6) (𝜑𝑎 |𝜓𝑏)ch = 𝜓𝑏 (𝜑𝑎) = 𝛿𝑎,𝑏 .
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In terms of these generating fields, the charge decomposition of C is defined by giving the fields

{𝐽𝑎 (𝑧)}𝑎∈𝑆 and {𝛿𝑎 (𝑧)}𝑎∈𝑆1/2 charge zero, {𝜑𝑎 (𝑧)}𝑎∈𝑆+ charge 1 and {𝜓𝑎 (𝑧)}𝑎∈𝑆+ charge -1.

Define an odd field 𝑑 (𝑧) ∈ C of charge equal to -1 by

𝑑 (𝑧) =
∑︁
𝑎∈𝑆+

𝐽𝑎 (𝑧)𝜓𝑎 (𝑧) − 1
2

∑︁
𝑎,𝑏,𝑐∈𝑆+

𝐶𝑎,𝑏𝑐 :𝜑𝑐 (𝑧)𝜓𝑎 (𝑧)𝜓𝑏 (𝑧):(1.3.7)

+
∑︁
𝑎∈𝑆+
⟨𝑓 , 𝐽𝑎⟩𝜓𝑎 (𝑧) +

∑︁
𝑎∈𝑆1/2

𝜓𝑎 (𝑧)𝛿𝑎 (𝑧),

where we have omitted tensor product symbols. By [102, Thm. 2.1], 𝑑 (𝑧)𝑑 (𝑤) ∼ 0. A simple

consequence of this is that the zero mode 𝑑 = 𝑑0 : C𝑚 → C𝑚−1 is a differential, i.e. 𝑑2 = 0.

The homology of the chain complex (C, 𝑑) graded by charge, denoted by

(1.3.8) Wk(𝔤, 𝑥, 𝑓 ) = 𝐻𝑥,𝑓
(
Vk(𝔤)

)
,

is called a quantum hamiltonian reduction of Vk(𝔤), or a W-algebra for short. The vertex alge-

bra structure on Wk(𝔤, 𝑥, 𝑓 ) is inherited from that of C. As shown by Kac and Wakimoto [102,

Thm. 4.1], the homology is concentrated on the zeroth degree component,

(1.3.9) Wk(𝔤, 𝑥, 𝑓 ) = 𝐻 0
𝑥,𝑓

(
Vk(𝔤)

)
.

Here we denote the components of homology with upper indices𝐻 𝑗

𝑥,𝑓
(−) (as in cohomology) rather

than the usual lower indices. This notational choice is justified by the fact that we can multiply our

charge assignments by −1 and obtain a new charge decomposition of C. Denote this graded vertex

algebra by C′. Then 𝑑 (𝑧) has charge 1, and (C′, 𝑑) is a cochain complex. The cohomology of

(C′, 𝑑) coincides with the homology (C, 𝑑): By definition, the𝑚’th component of the cohomology

of (C′, 𝑑) is equal to the −𝑚’th component of the homology (C, 𝑑). The only component of the

homology of (C, 𝑑) used in this thesis is the zeroth one so distinguishing between homology and

cohomology is not necessary.

To make Wk(𝔤, 𝑥, 𝑓 ) a vertex operator algebra, we require an energy-momentum field 𝐿(𝑧) ∈

Wk(𝔤, 𝑥, 𝑓 ). This can be achieved by defining a field 𝐿(𝑧) ∈ C such that 𝑑 (𝑧) is a primary field

with conformal dimension 1. With this goal in mind, let k ≠ −h∨, {𝜉𝑎}𝑎∈𝑆1/2 be the dual basis to

{𝛿𝑎}𝑎∈𝑆1/2 with respect to (−|−)ne and {𝑚𝑎}𝑎∈𝑆 ⊂ ℂ be the set defined by [𝑥, 𝐽𝑎] = 𝑚𝑎 𝐽
𝑎. Define

the field 𝐿(𝑧) by

𝐿(𝑧) = 𝑇 Sug.(𝑧) + 𝜕𝑥 (𝑧) −
∑︁
𝑎∈𝑆+

𝑚𝑎:𝜓𝑎 (𝑧)𝜕𝜑𝑎 (𝑧):(1.3.10)

+
∑︁
𝑎∈𝑆+
(1 −𝑚𝑎):𝜕𝜓𝑎 (𝑧)𝜑𝑎 (𝑧): +

1
2

∑︁
𝑎∈𝑆1/2

:𝜕𝛿 (𝑧)𝜉𝑎 (𝑧):.
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Kac, Wakimoto and Roan showed that 𝐿(𝑧) is an energy-momentum field in C with central charge

c given by [102, Thm. 2.2(a)]

(1.3.11) c =
kdim 𝔤

k + h∨ − 12k⟨𝑥, 𝑥⟩ −
∑︁
𝑎∈𝑆+
(12𝑚2

𝑎 − 12𝑚𝑎 + 2) − 1
2

dim 𝔤1/2,

and showed that 𝑑 (𝑧) was primary of conformal dimension 1 [102, Thm. 2.3]. The non-zero image

of 𝐿(𝑧) in Wk(𝔤, 𝑥, 𝑓 ), which we also denote by 𝐿(𝑧), gives Wk(𝔤, 𝑥, 𝑓 ) the structure of a vertex

operator algebra.

The most important examples of elements 𝑥, 𝑓 ∈ 𝔤 satisfying the required conditions for quan-

tum hamiltonian reduction are those arising from 𝔰𝔩2 triples {𝑥, 𝑒, 𝑓 } ⊂ 𝔤. In such cases, the

nilpotent element 𝑓 ∈ 𝔤 determines 𝑥 ∈ 𝔤 up to conjugation by the Jacobson-Morozov theorem.

For 𝑥, 𝑓 ∈ 𝔤 belonging to 𝔰𝔩2 triples, we will therefore denote the corresponding W-algebra by

Wk(𝔤, 𝑓 ) = 𝐻𝑓
(
Vk(𝔤)

)
.

Alternatively, any element 𝑥 ∈ 𝔤 whose adjoint action grades 𝔤 with half-integer eigenvalues

determines a nilpotent element 𝑓 ∈ 𝔤 (up the action of the adjoint group of 𝔤) such that 𝑥 and 𝑓

belong to an 𝔰𝔩2 triple [106, Rem. 1.1].

The orbits of nilpotent elements in 𝔤 under the action of the adjoint group of 𝔤 are known as

the nilpotent orbits of 𝔤. Therefore the W-algebra Wk(𝔤, 𝑓 ) is determined, up to isomorphism, by

the nilpotent orbit containing 𝑓 .

All W-algebras encountered in this thesis are isomorphic to Wk(𝔤, 𝑓 ) for some nilpotent 𝑓 ∈ 𝔤.

In light of this, we restrict attention to W-algebras of this form. Many of the subsequent results

also apply to W-algebras not corresponding to 𝔰𝔩2 triples with appropriate modifications but this

level of generality is not required here.

A similar homological construction as quantum hamiltonian reduction builds W-algebra mod-

ules out of Vk(𝔤)-modules. Given a Vk(𝔤)-module M, form the chain complex (C(M), 𝑑) where

C(M) = M ⊗ G. Here, all Vk(𝔤) modes in 𝑑 = 𝑑0 act on M rather than on Vk(𝔤). Giving M

charge 0, the C-module C(M) is graded by charge. The homology 𝐻𝑓 (M) of this chain complex

is a direct sum of Wk(𝔤, 𝑓 )-modules, graded by charge with the module M given charge 0,

(1.3.12) 𝐻𝑓 (M) =
⊕
𝑗 ∈ℤ

𝐻
𝑗

𝑓
(M) .

In this way, quantum hamiltonian reduction defines a functor between suitable categories of Vk(𝔤)-

modules and Wk(𝔤, 𝑓 )-modules.

There is a natural notion of highest-weight and Verma Wk(𝔤, 𝑓 )-modules. The general defini-

tion is presented in [102, Sec. 6]. We will outline these definitions in the specific case of 𝔤 = 𝔰𝔩3 and

𝑓 = 𝑓𝜃 in Section 2.2.1. As usual, highest-weightWk(𝔤, 𝑓 )-modules are required to be generated by
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a highest-weight vector with minimal conformal dimension with respect to the energy-momentum

vector (1.3.10).

Theorem 1.3.1. Let k ≠ −h∨ and 𝜆 be a level-k 𝔤̂ weight.

• [106, Thm. 6.2] 𝐻 𝑗

𝑓
(K𝜆) = 0 for all 𝑗 ≠ 0.

• [106, Thm. 6.3] 𝐻 0
𝑓
(K𝜆) is a Verma Wk(𝔤, 𝑓 )-module with minimal conformal dimension

(1.3.13) Δ =
⟨𝜆, 𝜆 + 2𝜌⟩
2(k + h∨) − 𝜆(𝑥) .

• 𝐻 0
𝑓
(−) induces a surjection from the set of isomorphism classes of Verma Vk(𝔤)-modules to the

the set of isomorphism classes of Verma Wk(𝔤, 𝑓 )-modules.

Note that the above results do not describe the structure of the Wk(𝔤, 𝑓 )-module 𝐻𝑓 (L𝜆). In

general this is a very difficult problem. A class of W-algebras for which the results exist in this

direction are the W-algebras corresponding to the choice of nilpotent element 𝑓 = 𝑓𝜃 , the negative

root vector corresponding to the highest root in 𝔤. The W-algebras of the form Wk(𝔤, 𝑓𝜃 ) are known

as minimal W-algebras.

Theorem 1.3.2. Let k ≠ −h∨ and 𝜆 be a level-k 𝔤̂ weight with zeroth Dynkin label 𝜆0.

• [12, Thm. 6.7.4] 𝐻 0
𝑓𝜃
(L𝜆) = 0 if and only if 𝜆0 ∈ ℤ⩾0. For 𝜆0 ∉ ℤ⩾0, 𝐻 0

𝑓𝜃
(L𝜆) is a simple

highest-weight Wk(𝔤, 𝑓𝜃 )-module.

• 𝐻 0
𝑓𝜃
(−) induces a surjection from the set of isomorphism classes of simple highest-weightVk(𝔤)-

modules to the union of the set of isomorphism classes of simple highest-weight Wk(𝔤, 𝑓𝜃 )-

modules and {0}.

• [12, Cor. 6.7.3] The restriction of 𝐻 0
𝑓𝜃
(−) to the category 𝒪k of Vk(𝔤)-modules is exact.

Recall that the isomorphism classes of W-algebras for a given 𝔤 are determined by nilpotent orbits

in 𝔤. That is, Wk(𝔤, 𝑓1) ≃Wk(𝔤, 𝑓2) if and only if 𝑓1 and 𝑓2 belong to the same nilpotent orbit.

There is a well known partial ordering on the nilpotent orbits of a given 𝔤 known as the closure

or Chevalley ordering [40]. The Chevalley ordering of nilpotent orbits in 𝔤 also defines a partial

ordering on the isomorphism classes of W-algebras obtained from Vk(𝔤).

It is suspected that, in addition to the usual quantum hamiltonian reduction, one can also per-

form a ‘partial quantum hamiltonian reduction’ between two W-algebras as long as they are related

by this partial ordering.

Strong supporting evidence for this can be found in the twisted Zhu algebra: the associative

algebra Zhutw [
Wk(𝔤, 𝑓 )

]
is isomorphic to the finite W-algebra corresponding to the same 𝔤 and 𝑓
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[55]. Finite W-algebras are constructed by a hamiltonian reduction procedure from 𝑈 (𝔤), whose

‘affinisation’ is the usual quantum hamiltonian reduction of Vk(𝔤).

Partial reductions of finite W-algebras corresponding to 𝔤 = 𝔰𝔩𝑛+1 were constructed by Morgan

[133]. A partial reduction from the 𝑓1 ∈ 𝔰𝔩𝑛+1 finite W-algebra to the 𝑓2 ∈ 𝔰𝔩𝑛+1 finite W-algebra

was shown to exist when the corresponding nilpotent orbits 𝕆𝑓𝑖 satisfy 𝕆𝑓2 ⩾ 𝕆𝑓1 in the Chevalley

ordering.

While early work on partial quantum hamiltonian reductions exists in physics literature [124],

the vertex algebraic content of such a construction is not yet known.

1.3.2. The Zamolodchikov Algebra. The first W-algebra was constructed by Zamolodchikov

[170]. It is the quantum hamiltonian reduction of Vk(𝔰𝔩3) corresponding to the nilpotent orbit

of 𝔰𝔩3 containing the regular nilpotent element 𝑓𝛼1 + 𝑓𝛼2 , where 𝑓𝛼𝑖 is the negative root vector

corresponding to the simple 𝔰𝔩3 root 𝛼𝑖 .

Definition 1.3.3. The universal Zamolodchikov algebra Wk
3 = Wk(𝔰𝔩3, 𝑓𝛼1 + 𝑓𝛼2) is the vertex

algebra strongly and freely generated by fields𝑇 (𝑧) and𝑊 (𝑧) with the following operator product

expansions:

(1.3.14)

𝑇 (𝑧)𝑇 (𝑤) ∼
cW3
k

𝟙

2(𝑧 −𝑤)4
+ 2𝑇 (𝑤)
(𝑧 −𝑤)2

+ 𝜕𝑇 (𝑤)
(𝑧 −𝑤) , 𝑇 (𝑧)𝑊 (𝑤) ∼ 3𝑊 (𝑤)

(𝑧 −𝑤)2
+ 𝜕𝑊 (𝑤)(𝑧 −𝑤) ,

𝑊 (𝑧)𝑊 (𝑤) ∼ 2Λ(𝑤)
(𝑧 −𝑤)2

+ 𝜕Λ(𝑤)
(𝑧 −𝑤) +𝐴k

[ cW3
k

𝟙

3(𝑧 −𝑤)6
+ 2𝑇 (𝑤)
(𝑧 −𝑤)4

+ 𝜕𝑇 (𝑤)
(𝑧 −𝑤)3

+
3
10 𝜕

2𝑇 (𝑤)
(𝑧 −𝑤)2

+
1

15 𝜕
3𝑇 (𝑤)
(𝑧 −𝑤)

]
.

Here, we set

(1.3.15)

cW3
k

= −2(3k + 5) (4k + 9)
k + 3

,

Λ(𝑧) = :𝑇 (𝑧)𝑇 (𝑧): − 3
10
𝜕2𝑇 (𝑧),

𝐴k = −
(3k + 4) (5k + 12)

2(k + 3) =
22 + 5cW3

k

16
.

Denote the simple quotient of Wk
3 by W3,k. When the level k is of the form k = u

v − 3 for some

coprime u, v ∈ ℤ⩾3, Wk
3 is not simple [131,162]. In this case, the simple quotient is known as a W3

minimal model and is denoted by W3(u, v). These models are all rational and𝐶2-cofinite [16,17].

The central charge is invariant under exchanging u and v:

(1.3.16) cW3
u,v = −2(3u − 4v) (4u − 3v)

uv
= 2 − 24(u − v)2

uv
.
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As the defining operator product expansions (1.3.14) only depend on k through cW3
k

, it follows that

W3(u, v) = W3(v, u).

The particular normalisation for 𝑊 (𝑧) in Definition 1.3.3 is not standard. Namely we have

multiplied the standard definition of [170] by
√
𝐴k in order to cancel the poles that arise when

cW3
k

= − 22
5 , i.e. (u, v) = (3, 5) or (5, 3). In fact,𝑊 and Λ belong to the maximal ideal of Wk

3 at this

central charge, hence are zero in the simple quotient W3(3, 5) = W3(5, 3). It is not hard to see that

the W3 minimal model W3(3, 5) therefore coincides with the Virasoro minimal model M(2, 5).

The representation theory of the rational W3 minimal models is well understood. The classifi-

cation of simpleW3(u, v)-modules was obtained in [60]. These modules are all highest-weight (that

is, positive energy and generated by a vector in the top space) with one-dimensional top spaces.

Writing𝑇 (𝑧) = ∑
𝑛∈ℤ𝑇𝑛𝑧

−𝑛−2 and𝑊 (𝑧) = ∑
𝑛∈ℤ𝑊𝑛𝑧

−𝑛−3, a highest-weight vector is therefore

a simultaneous eigenvector of 𝑇0 and 𝑊0 that is annihilated by the 𝑇𝑛 and 𝑊𝑛 with 𝑛 > 0. In

light of Zhu’s theorem (Theorem 1.1.9), it is sufficient to specify the eigenvalues of 𝑇0 and𝑊0 on

the highest-weight vectors of W3(u, v)-modules to describe the classification of simple W3(u, v)-

modules. Here, we adapt the parametrisation of the highest weights given in [38].

Simple highest-weight W3(u, v)-modules are specified by pairs of 𝔰𝔩3 weights r, s where r =

[𝑟0, 𝑟1, 𝑟2] ∈ Pu−3
⩾ and s = [𝑠0, 𝑠1, 𝑠2] ∈ Pv−3

⩾ . The eigenvalues of 𝑇0 and𝑊0 on the highest-weight

vector of the simple W3(u, v)-module corresponding to the weights r, s are given by

Δ(r, s) = 1
3uv

( (
v(𝑟1 + 1) − u(𝑠1 + 1)

) (
v(𝑟2 + 1) − u(𝑠2 + 1)

)
(1.3.17a)

+
(
v(𝑟1 + 1) − u(𝑠1 + 1)

)2 +
(
v(𝑟2 + 1) − u(𝑠2 + 1)

)2 − (u − v)2
)
,

(1.3.17b) 𝑤 (r, s) =
(
v(𝑟0 − 𝑟1) − u(𝑠0 − 𝑠1)

) (
v(𝑟0 − 𝑟2) − u(𝑠0 − 𝑠2)

) (
v(𝑟1 − 𝑟2) − u(𝑠1 − 𝑠2)

)
3(3uv)3/2

,

respectively. These eigenvalues are invariant under the free ℤ3-action

(1.3.18)
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
↦−→

[
𝑟2 𝑟0 𝑟1
𝑠2 𝑠0 𝑠1

]
↦−→

[
𝑟1 𝑟2 𝑟0
𝑠1 𝑠2 𝑠0

]
↦−→

[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
.

Similarly, the conformal weight (1.3.17a) is invariant under the (nonfree) ℤ2-action

(1.3.19)
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
←→

[
𝑟0 𝑟2 𝑟1
𝑠0 𝑠2 𝑠1

]
,

whilst (1.3.17b) changes sign. The ℤ2-action corresponds to the conjugation automorphism of

W3(u, v) which is given by 𝑇 (𝑧) ↔ 𝑇 (𝑧) and𝑊 (𝑧) ↔ −𝑊 (𝑧), . We therefore get an additional

isomorphism corresponding to (1.3.19) if 𝑤 (r, s) = 0. But, (1.3.17b) shows that this happens if

and only if two of the pairs (𝑟0, 𝑠0), (𝑟1, 𝑠1) and (𝑟2, 𝑠2) coincide, in which case the conjugation
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isomorphism is already accounted for by one of the isomorphisms corresponding to the ℤ3-action

(1.3.18).

The isomorphism classes of the simple W3(u, v)-modules are therefore classified by elements

of (Pu−3
⩾ × Pv−3

⩾ )/ℤ3. Denote such modules by W(r, s) where we interpret (r, s) as an element

of (Pu−3
⩾ × Pv−3

⩾ )/ℤ3. In other words, let ∇ be ℤ3-action on the 𝔰𝔩3 weights defined by ∇(t) =

∇([𝑡0, 𝑡1, 𝑡2]) = [𝑡2, 𝑡0, 𝑡1]. Then, W(r, s) = W(∇(r),∇(s)) = W(∇2(r),∇2(s)).

1.3.3. Modularity and Fusion Rules for W3(u, v). As W3(u, v) is rational and 𝐶2-cofinite

[16, 17], by Zhu’s theorem the span of its characters admits an SL2(ℤ)-action. By the Verlinde

formula (1.1.45), knowledge of the S-matrix for W3(u, v) also allows us to determine the fusion

rules ofW3(u, v). There is however a technical subtlety to determining the elements of the S-matrix

from the characters of W3(u, v). Let M be a W3(u, v)-module and consider its q character

(1.3.20) ch
[
M

]
(𝜏) = trM q𝑇0−c

W3
u,v /24.

Applying the ℤ2-action (1.3.19) to a given W3(u, v)-module W(r, s) gives a new W3(u, v)-module

whose highest-weight vector has conformal dimension Δ(r, s) and 𝑊0 eigenvalue −𝑤 (r, s). As

W3(u, v) generically admits modules having 𝑤 (r, s) ≠ 0, this means that the image of W(r, s)

under the conjugation automorphism of W3(u, v) will always have the same character as W(r, s)

but is usually not isomorphic to it.

Put simply, the characters (1.3.20) are not linearly independent in general. Therefore defini-

tively extracting S-matrix elements from an SL2(ℤ)-action on the span of such characters is not

possible.

A remedy for the lack of linear independence of W3(u, v) characters was provided in [23]. The

proposal therein is to upgrade characters to one-point functions by inserting the zero mode of some

𝑢 ∈ W3(u, v):

(1.3.21) ch
[
W(r, s)

]
(𝜏 ; 𝑢) = trW(r,s)

(
𝑢0q

𝑇0−c
W3
u,v /24

)
.

These one-point functions are linearly independent for generic 𝑢 since W3(u, v) is rational and𝐶2-

cofinite [17]. The modular S-matrix elements obtained by transforming the one-point functions

can then be written down unambiguously. Note as well that the characters (1.3.20) are precisely

the one-point functions with 𝑢 = 𝟙.

As the highest-weight modules of W3(u, v) are completely specified by the eigenvalues of 𝑇0

and𝑊0 on the highest-weight vector, a suitable choice for 𝑢 is𝑊 . However it might be the case

that𝑊 is zero in W3(u, v). The operator product expansions of Wk
3 in (1.3.14) show that𝑊 is a
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null vector in Wk
3 if and only if cW3

k
= 0 or 𝐴k = 0. However,

(1.3.22) cW3
k

= 0⇐⇒ (u, v) = (3, 4), (4, 3), 𝐴k = 0⇐⇒ (u, v) = (3, 5), (5, 3).

The minimal model W3(3, 4) = W3(4, 3) is the trivial vertex operator algebra, while W3(3, 5) =

W3(5, 3) is the Virasoro minimal model M(2, 5). In either case, the q characters are linearly inde-

pendent. So when𝑊 is zero in W3(u, v), we can just take 𝑢 = 𝟙.

Here we specialise the results on modular properties of regular W-algebras (see Section 4.1.1)

in [23,74,105] to the case of W3. In addition, we deduce several identities satisfied by the W3(u, v)

S-matrix elements that will be crucial in our later investigations into a closely related W-algebra

called the Bershadsky–Polyakov algebra.

Denote by t = [𝑡1, 𝑡2] the projection of onto the weight space of 𝔰𝔩3 of an 𝔰𝔩3-weight t =

[𝑡0, 𝑡1, 𝑡2]. Let 𝜌 = [1, 1] denote the Weyl vector of 𝔰𝔩3, ⟨−,−⟩ = 1
6𝜅𝔰𝔩3 (−,−) its normalised Killing

form and S3 its Weyl group.

Theorem 1.3.4 ([105, Thm. 4.4], [23, Cor. 8.4]). For coprime u, v ∈ ℤ⩾3, the S-transform of the

W3(u, v) one-point function (1.3.21) is given by

(1.3.23) ch
[
W(r, s)

] (
−1
𝜏

;
𝑢

𝜏Δ𝑢

)
=

∑︁
(r′,s′) ∈(Pu−3

⩾ ×Pv−3
⩾ )/ℤ3

SW3
(r,s),(r′,s′) ch

[
W(r′, s′)

]
(𝜏 ; 𝑢) ,

and the S-matrix entries are given, for (r, s), (r′, s′) ∈ (Pu−3
⩾ × Pv−3

⩾ )/ℤ3, by

SW3
(r,s),(r′,s′) =

1
√

3uv
e2𝜋 i( ⟨r+𝜌,s′+𝜌 ⟩+⟨s+𝜌,r′+𝜌 ⟩)(1.3.24)

·
∑︁
𝑤∈S3

det𝑤 e−2𝜋 i vu ⟨𝑤 (r+𝜌),r′+𝜌 ⟩
∑︁
𝑤∈S3

det𝑤 e−2𝜋 i uv ⟨𝑤 (s+𝜌),s′+𝜌 ⟩ .

As the modules W(r, s) are independent of the choice of representatives of the ℤ3-orbit (r, s), so

too is the the S-matrix formula (1.3.24). To see this explicitly, observe that acting on r or s by the

ℤ3-generator ∇ amounts to acting with an outer automorphism of 𝔰𝔩3. It is easy to check that on

the projection onto the weight space of 𝔰𝔩3, ∇ acts as follows:

(1.3.25) ∇(t) = 𝑤1𝑤2(t) + k(t)𝜔1.

Here, 𝜔1 = [1, 0] is the first fundamental weight of 𝔰𝔩3 and k(t) is the level of t. Acting with ∇ on

(1.3.24) on r and s gives

(1.3.26)
SW3
(∇(r),s),(r′,s′) = e−2𝜋 iv ⟨𝜔1,r′+𝜌 ⟩e−v ⟨𝜔1,𝜉s′ ⟩SW3

(r,s),(r′,s′) ,

SW3
(r,∇(s)),(r′,s′) = e+2𝜋 iv ⟨𝜔1,r′+𝜌 ⟩e+v ⟨𝜔1,𝜉s′ ⟩SW3

(r,s),(r′,s′) ,



1.3. Quantum Hamiltonian Reduction 33

where 𝜉s′ = −2𝜋 iuv (s′ + 𝜌). Therefore, applying ∇ to both r and s leaves the S-matrix invariant.

Applying ∇ to both r′ and s′ also leaves the S-matrix invariant because (1.3.24) is symmetric. The

S-matrix may also be verified to be unitary, see for example [105, Prop. 4.4].

A similar calculation demonstrates that its square is the matrix whose (r, s), (r′, s′)-entry is 0

unless r′ = [𝑟2, 𝑟1] and s′ = [𝑠2, 𝑠1], in which case it is 1. This is the matrix representing the

W3(u, v) conjugation (1.3.19).

Before moving on to the computing fusion rules for W3(u, v), there are some properties of

the S-matrix (1.3.24) that will prove useful for various computations encountered in this thesis.

Some of these require extending (1.3.24) to allow arbitrary integral 𝔰𝔩3-weights r, r′, s and s′. For

example, it is straightforward to show that

(1.3.27) SW3
(r,𝑤 ·s),(r′,s′) = det𝑤 SW3

(r,s),(r′,s′) , 𝑤 ∈ S3,

where𝑤 · s = 𝑤 (s + 𝜌) − 𝜌 is the usual shifted action of the Weyl group. It follows that if 𝑠𝑖 = −1,

for 𝑖 = 1 or 2, then it is fixed by the shifted action of the 𝑖-th simple Weyl reflection𝑤𝑖 and so

(1.3.28) SW3
(r,s),(r′,s′) = 0.

Similarly, the well known decomposition of 𝑤0(s + 𝜌) as the Weyl reflection for the highest root

𝜃 followed by translation by v𝜃 leads to (1.3.27) also holding for 𝑤 = 𝑤0 (and therefore for any

𝑤 in the affine Weyl group Ŝ3 of 𝔰𝔩3). Consequently, (1.3.28) continues to hold if 𝑠0 = −1, hence

𝑤0 · s = s. It follows that the W3(u, v) S-matrix entry (1.3.24) vanishes when s lies on a shifted

affine alcove boundary. Swapping the roles of s and v with r and u gives the analogous result for r.

Remarkably, ratios of the S-matrix elements (1.3.24) are related to characters of highest-weight

𝔰𝔩3-module. The same phenomenon is present in ratios of the S-matrix elements of Lk(𝔤) for

k ∈ ℤ⩾0 (see [70, Sec. 14.6.3]). Indeed the sums present in the W3(u, v) S-matrix are superficially

of the same form as the Lk(𝔰𝔩3) S-matrix (1.2.12). This can be viewed as a consequence of the

coset construction of W3(u, v) that involves two copies of Lk(𝔰𝔩3) at specific levels [19,92].

For any 𝔰𝔩3-weight t = [𝑡1, 𝑡2], denote the character of the simple highest-weight 𝔰𝔩3-module

Lt by 𝜒t. Let 0 = [v − 3, 0, 0].

Proposition 1.3.5. Let u, v ∈ ℤ⩾3 be coprime and (r, s), (r′, s′) ∈ Pu−3
⩾ × Pv−3

⩾ /ℤ3. Then,

(1.3.29)
SW3
(r,s),(r′,s′)

SW3
(r,0),(r′,s′)

= e2𝜋 i⟨s,r′+𝜌 ⟩𝜒s(𝜉s′) .
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Proof. Substituting (1.3.24) into the left-hand-side of (1.3.29) and simplifying gives

(1.3.30)
SW3
(r,s),(r′,s′)

SW3
(r,0),(r′,s′)

= e2𝜋 i⟨s,r′+𝜌 ⟩
∑
𝑤∈S3 det𝑤 e⟨𝑤 (s+𝜌),𝜉s′ ⟩∑
𝑤∈S3 det𝑤 e⟨𝑤 (𝜌),𝜉s′ ⟩

= e2𝜋 i⟨s,r′+𝜌 ⟩𝜒s(𝜉s′),

where the final equality is the Weyl character formula. ■

The roles of r and s in Proposition 1.3.5 can be reversed to obtain a similar result involving the

character 𝜒r of Lr instead.

Finally, a generalisation of Proposition 1.3.5 that will prove useful in Chapter 3 requires a

choice of a dominant integral 𝔰𝔩3-weight t. We define

(1.3.31) SW3
(r,s⊗t),(r′,s′) ≡

∑︁
t′

SW3
(r,s+t′),(r′,s′) ,

where the sum runs over the (finitely many) weights t′ of Lt, with multiplicity, and t′ denotes the

level-0 weight of 𝔰𝔩3 whose projection onto the weight space of 𝔰𝔩3 is t′. Note that we may define

this sum for any dominant integral 𝔰𝔩3-weight t, even if s + t′ ∉ Pv−3
⩾ , by directly substituting the

right-hand side of (1.3.24) for the W3(u, v) S-matrix.

Proposition 1.3.6. Let u, v ∈ ℤ⩾3 be coprime, (r, s), (r′, s′) ∈ Pu−3
⩾ ×Pv−3

⩾ /ℤ3 and t be a dominant

integral 𝔰𝔩3-weight. Then,

(1.3.32) SW3
(r,s⊗t),(r′,s′) = e2𝜋 i⟨s,r′+𝜌 ⟩𝜒t(𝜉s′) S

W3
(r,s),(r′,s′) .

Proof. Substituting (1.3.24) into the definition (1.3.31) gives

SW3
(r,s⊗t),(r′,s′) =

1
√

3uv
e2𝜋 i( ⟨r+𝜌,s′+𝜌 ⟩+⟨s+𝜌,r′+𝜌 ⟩) ∑︁

𝑤∈S3

det𝑤 e−2𝜋 i vu ⟨𝑤 (r+𝜌),r′+𝜌 ⟩(1.3.33)

·
∑︁
t′

e2𝜋 i⟨t′,r′+𝜌 ⟩
∑︁
𝑤∈S3

det𝑤 e−2𝜋 i uv ⟨𝑤 (s+𝜌),s′+𝜌 ⟩e−2𝜋 i uv ⟨𝑤 (t′),s′+𝜌 ⟩ .

Since the weights of Lt differ by elements of the root lattice Q of 𝔰𝔩3, we may replace t′ by t in the

first exponential on the second line. Moreover, the weights of Lt are permuted by S3 so that

SW3
(r,s⊗t),(r′,s′) = e2𝜋 i⟨t,r′+𝜌 ⟩

∑︁
t′

e−2𝜋 i uv ⟨t′,s′+𝜌 ⟩SW3
(r,s),(r′,s′)(1.3.34)

= e2𝜋 i⟨s,r′+𝜌 ⟩𝜒t(𝜉s′) S
W3
(r,s),(r′,s′) . ■

As for Proposition 1.3.5, the roles of r and s in this proposition can be reversed to obtain a similar

result involving the character 𝜒r of Lr instead.

Recalling that W3 minimal models are rational and𝐶2-cofinite, their fusion coefficients may be

computed from the Verlinde formula (1.1.45). The superficial similarity between the W3 S-matrix



1.3. Quantum Hamiltonian Reduction 35

(1.3.24) and that for the rational Lk(𝔰𝔩3) (1.2.12) suggests that the corresponding fusion coefficients

are related.

As described in Section 1.2.2, for ℓ ∈ ℤ⩾0, the simple affine vertex operator algebra Lℓ (𝔰𝔩3)

of level ℓ is rational and 𝐶2-cofinite [76]. Its simple modules are the integrable highest-weight

𝔰𝔩3-modules Lt whose highest weights t lie in Pℓ⩾. Recall that the fusion products of Lℓ (𝔰𝔩3) take

the form

(1.3.35) Lt × Lt′ ≃
⊕
t′′∈Pℓ

⩾

Nℓ t′′
t,t′ Lt′′,

where the fusion coefficients Nℓ t′′
t,t′ are known. Importantly, the Lℓ (𝔰𝔩3) fusion coefficients satisfy

(1.3.36) N
ℓ ∇(t′′)
∇(t),t′ = N

ℓ ∇(t′′)
t,∇(t′) = Nℓ t′′

t,t′ ,

see [70, Eq. (16.9)] for example. Let Q denote the root lattice of 𝔰𝔩3.

Theorem 1.3.7 ([74, Thm. 4.3]). Let u, v ∈ ℤ⩾3 be coprime. Then, the W3(u, v) fusion coefficients

are given by

(1.3.37) N
W3 (r′′,s′′)
(r,s),(r′,s′) = Nu−3 r′′

r,r′ Nv−3 s′′
s,s′ ,

where we choose representatives of (r, s), (r′, s′), (r′′, s′′) ∈ Pu−3
⩾ × Pv−3

⩾ /ℤ3 so that:

• If u ∈ 3ℤ, then take s, s′, s′′ ∈ Q.

• If v ∈ 3ℤ, then take r, r′, r′′ ∈ Q.

• If u, v ∉ 3ℤ, then take either r, r′, r′′ ∈ Q or s, s′, s′′ ∈ Q (it does not matter which).

For example, the fusion coefficients for v = 3 take the form N
W3 [𝜆′′]
[𝜆], [𝜆′] = Nu−3 r′′

r,r′ , with r, r′, r′′ ∈ Q,

because in this case s = s′ = s′′ = [0, 0, 0]. It follows that the W3(u, 3) fusion ring coincides with

the subring of the Lu−3(𝔰𝔩3) fusion ring spanned by the L𝜆 with r = [𝜆1, 𝜆2] ∈ Q. That this indeed

constitutes a subring follows from (1.2.14).





Chapter 2

Bershadsky–Polyakov Algebras

2.1. Bershadsky–Polyakov Algebras From the Ground Up

Having seen the classification of modules and modularity of the W3 minimal models W3(u, v),

we now move on to similar considerations for another W-algebra related to 𝔰𝔩3.

There are exactly three (up to isomorphism) W-algebras one can obtain by applying quan-

tum hamiltonian reduction to Vk(𝔰𝔩3): Vk(𝔰𝔩3) itself, the Zamolodchikov algebra Wk
3 and the

Bershadsky–Polyakov algebra BPk [35, 139]. As the structure, representation theory and ratio-

nal minimal models for both Vk(𝔰𝔩3) and Wk
3 were discussed in Chapter 1, we will focus on BPk

for the next two chapters.

2.1.1. The Minimal 𝔰𝔩3 W-Algebra. To construct the W-algebra of interest using quantum

hamiltonian reduction, we first fix a basis for 𝔰𝔩3. Let𝑀𝑖, 𝑗 be the 3× 3 matrix whose entries are all

zeros except for the (𝑖, 𝑗)’th entry which is 1. Then, we set

(2.1.1) 𝑒𝜃 = 𝑀1,3,
𝑒𝛼1 = 𝑀1,2, ℎ𝛼1 = 𝑀1,1 −𝑀2,2, 𝑓𝛼1 = 𝑀2,1,

𝑒𝛼2 = 𝑀2.3, ℎ𝛼2 = 𝑀2,2 −𝑀,33, 𝑓𝛼2 = 𝑀3,2,
𝑓𝜃 = 𝑀3,1.

Here, 𝜃 = 𝛼1 + 𝛼2 is the highest root of 𝔰𝔩3 and we shall also set ℎ𝜃 = ℎ𝛼1 + ℎ𝛼2 = 𝑀1,1 −𝑀3,3. For

the purpose of quantum hamiltonian reduction, choose the nilpotent element 𝑓𝜃 . The associated 𝔰𝔩2
triple in 𝔰𝔩3 is {ℎ𝜃 , 𝑒𝜃 , 𝑓𝜃 }, and the grading of 𝔰𝔩3 by eigenvalue of the adjoint action of 𝑥 = 1

2ℎ𝜃 is

(2.1.2) 𝔰𝔩3 =
⊕
𝑖∈ 1

2ℤ

(𝔰𝔩3)𝑖 , where

(𝔰𝔩3)1 = spanℂ{𝑒𝜃 },

(𝔰𝔩3) 1
2
= spanℂ{𝑒𝛼1, 𝑒𝛼2},

(𝔰𝔩3)0 = spanℂ{ℎ𝛼1, ℎ𝛼2},

(𝔰𝔩3)− 1
2
= spanℂ{𝑓𝛼1, 𝑓𝛼2},

(𝔰𝔩3)−1 = spanℂ{𝑓𝜃 }.

37
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As described in Section 1.3, to form the complex we need the universal affine vertex algebra

Vk(𝔰𝔩3), the neutral ghost vertex algebra B(𝐴ne) and the charged ghost vertex superalgebra F(𝐴ch).

Let 𝑆 be the set of roots of 𝔰𝔩3 (recalling that 𝑓𝛼 = 𝑒−𝛼 ). Then 𝑆1/2 = {𝛼1, 𝛼2} and 𝑆+ = 𝑆1/2 ∪ {𝜃 }.

Recall that the nonregular operator product expansions of the ghost vertex algebras F and B are

(2.1.3) 𝑏 (𝑧)𝑐 (𝑤) ∼ 𝟙

𝑧 −𝑤 and 𝛽 (𝑧)𝛾 (𝑤) ∼ 𝟙

𝑧 −𝑤 ,

respectively. Here, in contrast to (1.1.21), we have redefined 𝛾 (𝑧) ↦→ −𝛾 (𝑧) to remove various

minus signs in the forthcoming formulae. As 𝐴ne is two dimensional, B(𝐴ne) ≃ B. In fact, letting

{𝛿𝛼1, 𝛿𝛼2} be the basis of 𝐴ne corresponding to {𝑒𝛼1, 𝑒𝛼2},

(2.1.4) 𝛿𝛼𝑖 (𝑧)𝛿𝛼 𝑗 (𝑤) ∼
(1 − 𝛿𝑖, 𝑗 )𝟙
𝑧 −𝑤 .

So we may write 𝛿𝛼1 (𝑧) = 𝛽 (𝑧) and 𝛿𝛼2 (𝑧) = 𝛾 (𝑧). Similarly, the charged ghost vertex superalgebra

F(𝐴ch) = F𝛼1 ⊗ F𝛼2 ⊗ F𝜃 where F𝛼 is the subalgebra of F(𝐴ch) generated by the fields {𝜑𝛼 ,𝜓𝛼 } for

𝛼 ∈ 𝑆+. In fact, F𝛼 ≃ F for all 𝛼 ∈ 𝑆+ by identifying 𝜑𝛼 and 𝜓𝛼 with 𝑏 and 𝑐 respectively. In light

of this, denote the generating fields by 𝜑𝛼 (𝑧) and𝜓𝛼 (𝑧) of F𝛼 by 𝑏𝛼 (𝑧) and 𝑐𝛼 (𝑧) respectively.

Collect these ghost fields into a vertex operator superalgebra G = F𝛼1 ⊗ F𝛼2 ⊗ F𝜃 ⊗ B and

let C = Vk(𝔰𝔩3) ⊗ G. In what follows, we will frequently omit tensor product symbols and tensor

products involving vacuum fields. Using (1.3.7), define the charge -1 field 𝑑 (𝑧) ∈ C by

𝑑 (𝑧) =
(
𝑒𝜃 (𝑧) + 𝟙

)
𝑐𝜃 (𝑧) +

(
𝑒𝛼1 (𝑧) + 𝛽 (𝑧)

)
𝑐𝛼1 (𝑧)(2.1.5)

+
(
𝑒𝛼2 (𝑧) + 𝛾 (𝑧)

)
𝑐𝛼2 (𝑧) + :𝑏𝜃 (𝑧)𝑐𝛼2 (𝑧)𝑐𝛼1 (𝑧):.

A straightforward computation verifies that 𝑑 (𝑧)𝑑 (𝑤) ∼ 0. We then form a differential complex

by requiring that 𝑑 (𝑧) is homogeneous of conformal weight 1 and equipping Vk(𝔰𝔩3) ⊗ G with the

differential 𝑑0. From (2.1.5), this requires that the conformal weights of 𝑐𝜃 (𝑧) and 𝑒𝜃 (𝑧) are 1 and

0 respectively. The latter has conformal weight 1 with respect to the Sugawara energy-momentum

tensor 𝑇 Sug. defined in (1.2.8), so we instead use the conformal structure on Vk(𝔰𝔩3) furnished by

𝑇 Sug. + (1/2)𝜕ℎ𝜃 . An appropriate conformal structure on C is therefore

(2.1.6) 𝐿(𝑧) = 𝑇 Sug.(𝑧) + 1
2
𝜕ℎ𝜃 (𝑧) +𝑇 F𝛼1 +𝑇 F𝛼2 +𝑇 F𝜃 +𝑇B,

where

(2.1.7) 𝑇 F𝛼𝑖 =
1
2

:𝜕𝑏𝛼𝑖𝑐𝛼𝑖 + 𝜕𝑐𝛼𝑖𝑏𝛼𝑖 :, 𝑇 F𝜃 = :𝜕𝑏𝜃𝑐𝜃 : and 𝑇B =
1
2

:𝜕𝛾𝛽 − 𝜕𝛽𝛾 :.

This is just the specialisation of the energy-momentum tensor defined in (1.3.10) to the choice

𝔤 = 𝔰𝔩3, 𝑥 = 1
2ℎ𝜃 and 𝑓 = 𝑓𝜃 .
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As described in Section 1.3.1, the W-algebra Wk(𝔰𝔩3, 𝑓𝜃 ) is defined as the zeroth homology

𝐻 0(Vk(𝔰𝔩3) ⊗ G, 𝑑0) = 𝐻 0(Vk(𝔰𝔩3)) of this differential chain complex, where we write 𝐻 0(−) =

𝐻 0
𝑓𝜃
(−). Theorem 4.1 in [106] describes strong generators for Wk(𝔰𝔩3, 𝑓𝜃 ) which we denote by

(2.1.8) {𝐿(𝑧), 𝐽 (𝑧),𝐺+(𝑧),𝐺−(𝑧)},

where 𝐿(𝑧) is given by (2.1.6) and

(2.1.9)

𝐽 =
1
3
(ℎ𝛼1 − ℎ𝛼2) + :𝑏𝛼1𝑐𝛼1 : − :𝑏𝛼2𝑐𝛼2 : − :𝛽𝛾 :,

𝐺+ = 𝑓𝛼2 + ℎ𝛼2𝛽 − :𝑏𝛼1𝑐𝜃 : − :𝑏𝛼1𝑐𝛼1𝛽: + 2:𝑏𝛼2𝑐𝛼2𝛽: + :𝑏𝜃𝑐𝜃𝛽: + :𝛽𝛽𝛾 : + (k + 1)𝜕𝛽,

𝐺− = 𝑓𝛼1 − ℎ𝛼1𝛾 + :𝑏𝛼2𝑐𝜃 : − 2:𝑏𝛼1𝑐𝛼1𝛾 :, +:𝑏𝛼2𝑐𝛼2𝛾 : − :𝑏𝜃𝑐𝜃𝛾 : + :𝛾𝛾𝛽: − (k + 1)𝜕𝛾 .

suppressing the 𝑧-dependence of fields momentarily. As it happens, Wk(𝔰𝔩3, 𝑓𝜃 ) is isomorphic to

the (universal) Bershadsky–Polyakov algebra BPk defined in [35, 139]. The strong generators of

BPk are likewise denoted by {𝐿(𝑧), 𝐽 (𝑧),𝐺±(𝑧)}. This is no accident: BPk was originally defined

as a ‘second’ quantum hamiltonian reduction associated to 𝔰𝔩3, the first being the Zamolodchikov

algebra W3 = Wk(𝔰𝔩3, 𝑓𝛼1 + 𝑓𝛼2) [170].

If instead of 𝑓𝜃 we had chosen the nilpotent element to be 𝑓𝛼1 or 𝑓𝛼2 and performed quantum

hamiltonian reduction, the resulting W-algebra would be isomorphic toWk(𝔰𝔩3, 𝑓𝜃 ). This is because

the nilpotent orbit in 𝔰𝔩3 containing 𝑓𝜃 also contains 𝑓𝛼1 and 𝑓𝛼2 [40].

As previously described, the homological construction of Wk(𝔰𝔩3, 𝑓𝜃 ) (and therefore BPk)

above extends naturally to Vk(𝔰𝔩3)-modules: Let M be a Vk(𝔰𝔩3)-module satisfying certain finite-

ness conditions and consider the differential complex formed by M ⊗ G and 𝑑0 (where all Vk(𝔰𝔩3)

modes act on M rather than Vk(𝔰𝔩3)). The zeroth homology of this complex, denoted by 𝐻 0(M),

is a BPk-module [106]. We will use this fact extensively when studying the representation theory

of BPk and its simple quotients.

2.1.2. Operator Product Expansions. Content in our knowledge that the W-algebra we seek

to understand is the Bershadsky–Polyakov algebra BPk, we will now define BPk once and for all

in terms of strong generators and operator product expansions from [35, 139] and describe some

of its properties.

Definition 2.1.1. Given k ∈ ℂ, k ≠ −3, the level-k universal Bershadsky–Polyakov algebra BPk

is the vertex operator algebra with vacuum 𝟙 that is strongly and freely generated by fields 𝐽 (𝑧),
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𝐺+(𝑧), 𝐺−(𝑧) and 𝐿(𝑧) satisfying the following operator product expansions:

(2.1.10)

𝐿(𝑧)𝐿(𝑤) ∼ − (2k + 3) (3k + 1)𝟙
2(k + 3) (𝑧 −𝑤)4

+ 2𝐿(𝑤)
(𝑧 −𝑤)2

+ 𝜕𝐿(𝑤)
(𝑧 −𝑤) ,

𝐿(𝑧) 𝐽 (𝑤) ∼ 𝐽 (𝑤)
(𝑧 −𝑤)2

+ 𝜕𝐽 (𝑤)
(𝑧 −𝑤) , 𝐿(𝑧)𝐺±(𝑤) ∼

3
2𝐺
±(𝑤)

(𝑧 −𝑤)2
+ 𝜕𝐺

±(𝑤)
(𝑧 −𝑤) ,

𝐽 (𝑧) 𝐽 (𝑤) ∼ (2k + 3)𝟙
3(𝑧 −𝑤)2

, 𝐽 (𝑧)𝐺±(𝑤) ∼ ±𝐺
±(𝑤)

(𝑧 −𝑤) , 𝐺±(𝑧)𝐺±(𝑤) ∼ 0,

𝐺+(𝑧)𝐺−(𝑤) ∼ (k + 1) (2k + 3)𝟙
(𝑧 −𝑤)3

+ 3(k + 1) 𝐽 (𝑤)
(𝑧 −𝑤)2

+
3:𝐽 𝐽 :(𝑤) + 3

2 (k + 1)𝜕𝐽 (𝑤) − (k + 3)𝐿(𝑤)
𝑧 −𝑤 .

The operator product expansions (2.1.10) are those satisfied by the fields in (2.1.6) and (2.1.9).

From (2.1.10), we see that the conformal weights of the generating fields 𝐽 (𝑧), 𝐺+(𝑧), 𝐺−(𝑧) and

𝐿(𝑧) are 1, 3
2 , 3

2 and 2, respectively, whilst the central charge is

(2.1.11) cBPk = − (2k + 3) (3k + 1)
k + 3

.

The mode algebra of BPk can be obtained from its operator product expansions by expanding the

homogeneous fields in the usual form

(2.1.12) 𝐴(𝑧) =
∑︁

𝑛∈ℤ−Δ𝐴+𝜀𝐴
𝐴𝑛𝑧

−𝑛−Δ𝐴 ,

where Δ𝐴 is the conformal weight of 𝐴(𝑧) and 𝜀𝐴 = 1
2 , if Δ𝐴 ∈ ℤ + 1

2 and 𝐴(𝑧) is acting on a

twisted BPk-module (with respect to the automorphism e2𝜋 i𝐿0), and 𝜀𝐴 = 0 otherwise. Imposing

the constraints from the operator product expansions on the modes of the fields yields the following

result.

Proposition 2.1.2. The commutation relations of the modes of the generating fields of BPk are

(2.1.13)

[𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚+𝑛 −
(2k + 3) (3k + 1)

k + 3
𝑚3 −𝑚

12
𝛿𝑚+𝑛,0𝟙,

[𝐿𝑚, 𝐽𝑛] = −𝑛𝐽𝑚+𝑛, [𝐿𝑚,𝐺±𝑠 ] =
(𝑚

2
− 𝑠

)
𝐺±𝑚+𝑠 ,

[𝐽𝑚, 𝐽𝑛] =
2k + 3

3
𝑚𝛿𝑚+𝑛,0𝟙, [𝐽𝑚,𝐺±𝑠 ] = ±𝐺±𝑚+𝑠 , [𝐺±𝑟 ,𝐺±𝑠 ] = 0,

[𝐺+𝑟 ,𝐺−𝑠 ] = 3:𝐽 𝐽 :𝑟+𝑠 − (k + 3)𝐿𝑟+𝑠 +
3
2
(k + 1) (𝑟 − 𝑠) 𝐽𝑟+𝑠 + (k + 1) (2k + 3)

𝑟2 − 1
4

2
𝛿𝑟+𝑠,0𝟙.

We call the unital associative algebra generated by the modes, with𝑚,𝑛 ∈ ℤ and 𝑟, 𝑠 ∈ ℤ + 1
2 , of

the fields of BPk the untwisted mode algebra U. Likewise we call the unital associative algebra

generated by the modes, with 𝑚,𝑛, 𝑟, 𝑠 ∈ ℤ, of the fields of BPk the twisted mode algebra Utw.
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The ‘untwisted’ and ‘twisted’ modifiers here reflect which BPk-modules the modes that form the

algebra act on.

Definition 2.1.3.

• A fractional level k ∈ ℂ for the Bershadsky–Polyakov algebras is one that is not critical, meaning

that k ≠ −3, and for which BPk is not simple.

• The level-k simple Bershadsky–Polyakov vertex operator algebra BPk is the unique simple quo-

tient of BPk.

According to [93, Thms. 0.2.1 and 9.1.2], the fractional levels are precisely the k satisfying

(2.1.14) k + 3 =
u

v
, where u ∈ ℤ⩾2, v ∈ ℤ⩾1 and gcd{u, v} = 1.

If k is fractional, then we shall refer to BPk as a Bershadsky–Polyakov minimal model and use

the special notation BP(u, v). The Bershadsky–Polyakov minimal models BP(u, 2), where u ⩾ 3

is odd, are rational [18] with only highest-weight modules and their direct sums. In addition to

this chapter, the v > 2 cases will be explored in Chapter 3 where we will describe the modular

transformations and Grothendieck fusion rules of such Bershadsky–Polyakov minimal models.

We note that the central charge of the minimal model BP(u, v) takes the form

(2.1.15) cBPu,v = − (3u − 8v) (2u − 3v)
uv

= 1 − 6(u − 2v)2
uv

.

Whilst the central charge is invariant under exchanging u
v with 4v

u , the corresponding Bershadsky–

Polyakov minimal models are not isomorphic.

2.1.3. Automorphisms. There are two types of automorphisms of BPk that will prove useful

for studying the representation theory of BPk. These are the conjugation (vertex operator algebra)

automorphism 𝛾 and the spectral flow (vertex algebra) automorphisms 𝜎 ℓ , ℓ ∈ ℤ.

Proposition 2.1.4. There exist conjugation and spectral flow automorphisms 𝛾 and 𝜎 ℓ , ℓ ∈ ℤ, of

BPk. They are uniquely determined by the following actions on the generating fields:

(2.1.16)

𝛾 (𝐽 (𝑧)) = −𝐽 (𝑧), 𝛾 (𝐺+(𝑧)) = +𝐺−(𝑧),

𝛾 (𝐺−(𝑧)) = −𝐺+(𝑧), 𝛾 (𝐿(𝑧)) = 𝐿(𝑧),

𝜎 ℓ (𝐽 (𝑧)) = 𝐽 (𝑧) − 2k + 3
3

ℓ𝑧−1𝟙, 𝜎 ℓ (𝐺+(𝑧)) = 𝑧−ℓ𝐺+(𝑧),

𝜎 ℓ (𝐿(𝑧)) = 𝐿(𝑧) − ℓ𝑧−1 𝐽 (𝑧) + 2k + 3
6

ℓ2𝑧−2𝟙, 𝜎 ℓ (𝐺−(𝑧)) = 𝑧+ℓ𝐺−(𝑧).
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That these actions define BPk automorphisms amounts to checking that the operator product ex-

pansions (2.1.10) are preserved. It is also straightforward to check that the inverse of 𝜎 ℓ is 𝜎−ℓ .

The spectral flows 𝜎 ℓ with ℓ ≠ 0 are not vertex operator algebra automorphisms because they

do not preserve the conformal structure furnished by 𝐿(𝑧). This might sound alarming but is not

an issue as our main use of these automorphism is constructing new BPk-modules out of old ones

by twisting as described in Section 1.1.3.

Note that conjugation has order 4, whilst spectral flow has infinite order. Together, they satisfy

the dihedral group relation

(2.1.17) 𝛾𝜎 ℓ = 𝜎−ℓ𝛾,

though we do not have 𝛾2 = 𝟙. Expanding the defining actions of the automorphisms from Propo-

sition 2.1.4 in terms of modes gives a characterisation of 𝜎 and 𝛾 as automorphisms of the mode

algebras of BPk.

Proposition 2.1.5. Conjugation and spectral flow act on the modes of the generating fields 𝐽 (𝑧),

𝐺+(𝑧), 𝐺−(𝑧) and 𝐿(𝑧) of BPk as follows:

(2.1.18)

𝛾 (𝐽𝑛) = −𝐽𝑛, 𝛾 (𝐺±𝑟 ) = ±𝐺∓𝑟 , 𝛾 (𝐿𝑛) = 𝐿𝑛,

𝜎 ℓ (𝐽𝑛) = 𝐽𝑛 −
2k + 3

3
ℓ𝛿𝑛,0𝟙, 𝜎 ℓ (𝐺±𝑟 ) = 𝐺±𝑟∓ℓ ,

𝜎 ℓ (𝐿𝑛) = 𝐿𝑛 − ℓ 𝐽𝑛 +
2k + 3

6
ℓ2𝛿𝑛,0𝟙.

One particularly noteworthy feature of spectral flow is its relationship with the mode algebra U,

Utw. As 𝜎 ℓ , ℓ ∈ ℤ, is a BPk automorphism, the actions in (2.1.18) also define automorphisms of

U and Utw depending on the range of 𝑟 . However if we begin with 𝑟 ∈ ℤ + 1
2 and apply 𝜎 ℓ with

ℓ ∈ ℤ + 1
2 , the mode index of 𝐺± takes values in ℤ only. That is, the action of 𝜎 ℓ with ℓ ∈ ℤ + 1

2

exchanges the twisted and untwisted mode algebras.

Each BPk-automorphism 𝜔 lifts to an autoequivalence of any category of BPk-modules that

is closed under twisting its objects by 𝜔 . The examples we have in mind are the category 𝒲k

of weight modules, with finite-dimensional weight spaces (see Definition 2.2.1 below), and the

analogous category 𝒲
tw
k of twisted modules.

The aforementioned extension of 𝜎 ℓ allowing ℓ ∈ ℤ + 1
2 defines equivalences between 𝒲k and

𝒲
tw
k . We remark that one of the important consistency requirements for building a conformal field

theory from a module category over a vertex operator algebra is that it is closed under twisting by

automorphisms, especially conjugation.
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2.2. Representation Theory of Bershadsky–Polyakov Algebras

Now we move on to the representation theory of BPk. We are interested in a class of modules

known as relaxed highest-weight modules for BPk. Relaxed highest-weight modules have been

shown to be essential to achieve consistent modular properties for many nonrational vertex operator

algebras, for example admissible-level Lk(𝔰𝔩2) [2, 7, 26, 50, 52, 84, 113, 141, 145]. The modular

properties of BPk at admissible levels, i.e. fractional levels with u ⩾ 3, that are nonintegral will be

explored in Chapter 3.

The first step in understanding the relaxed highest-weightBPk-modules with finite-dimensional

weight spaces is to classify the simple ones in both the untwisted and twisted sectors. The restric-

tion on the dimension of the weight space is in order to have well defined characters. That reducible

relaxed highest-weight modules can also be constructed (as we will see) is a strong indication that

the simple Bershadsky–Polyakov vertex operator algebra BPk is generically nonrational. When k

is nonintegral admissible and BPk is not simple, a related problem to be addressed is which simple

relaxed highest-weight BPk-modules are also BPk-modules.

2.2.1. Weight Modules. In Section 2.1, we introduced the untwisted (twisted) mode algebra

U (Utw) of the universal Bershadsky–Polyakov vertex operator algebra BPk. Any BPk-module is

obviously a U-module and likewise for the twisted versions. The converse is not true however.

As these algebras are graded by conformal weight, we have the following generalised triangular

decompositions, as in [106]:

(2.2.1) U = U< ⊗ U0 ⊗ U> and Utw = Utw
< ⊗ Utw

0 ⊗ Utw
> .

Here, U<, U0 and U> are the unital subalgebras generated by the modes 𝐴𝑛, for all homogeneous

𝐴(𝑧) ∈ BPk, with 𝑛 < 0, 𝑛 = 0 and 𝑛 > 0, respectively (and similarly for their twisted versions).

The following definitions are specialisations to BPk of definitions proposed for general vertex op-

erator algebras in [145].

Definition 2.2.1.

• A vector 𝑣 in a twisted or untwisted BPk-module M is a weight vector of weight ( 𝑗,Δ) if it is

a simultaneous eigenvector of 𝐽0 and 𝐿0 with eigenvalues 𝑗 and Δ called the charge and con-

formal weight of 𝑣 , respectively. The nonzero simultaneous eigenspaces of 𝐽0 and 𝐿0 are called

the weight spaces of M. If M has a basis of weight vectors and each weight space is finite-

dimensional, then M is a weight module.
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• A vector in an untwistedBPk-module is a highest-weight vector if it is a simultaneous eigenvector

of 𝐽0 and 𝐿0 that is annihilated by the action of U>. An untwisted BPk-module generated by a

single highest-weight vector is called an untwisted highest-weight module.

• A vector in a twisted BPk-module is a highest-weight vector if it is a simultaneous eigenvector

of 𝐽0 and 𝐿0 that is annihilated by𝐺+0 and the action of Utw
> . A twisted BPk-module generated by

a single highest-weight vector is called a twisted highest-weight module.

• A vector in a twisted or untwisted BPk-module is a relaxed highest-weight vector if it is a si-

multaneous eigenvector of 𝐽0 and 𝐿0 that is annihilated by the action of Utw
> or U>, respectively.

A BPk-module generated by a single relaxed highest-weight vector is called a relaxed highest-

weight module.

AsBP(u, v) is a quotient ofBPk with k+3 = u
v , these definitions also descend toBP(u, v)-modules.

A simple consequence of these definitions is that an untwisted relaxed highest-weight vector ofBPk

is automatically a highest-weight vector. The same is not true for twisted relaxed highest-weight

vector in general. The modules we are aiming to classify are therefore simple untwisted highest-

weight modules and simple twisted relaxed highest-weight modules.

From the actions of the conjugation and spectral flow automorphisms in (2.1.18), we deduce

the following useful facts.

Proposition 2.2.2.

• IfM is a twisted or untwistedBPk-module and 𝑣 ∈ M is a weight vector of weight ( 𝑗,Δ), then𝛾 (𝑣)

and𝜎 ℓ (𝑣) are weight vectors in𝛾
(
M

)
and𝜎 ℓ

(
M

)
of weights (− 𝑗,Δ) and ( 𝑗+ 2k+3

3 ℓ,Δ+ 𝑗ℓ+ 2k+3
6 ℓ2),

respectively.

• Let M be an untwisted BPk-module. Then, 𝑣 ∈ M is a highest-weight vector of weight ( 𝑗,Δ)

if and only if 𝜎1/2(𝑣) is a highest-weight vector in the twisted module 𝜎1/2 (M)
of weight ( 𝑗 +

2k+3
6 ,Δ + 1

2 𝑗 +
2k+3

24 ).

• M is a simple untwisted highest-weight BPk-module if and only if 𝜎1/2 (M)
is a simple twisted

highest-weight BPk-module.

In particular, to classify all simple highest-weight BPk-modules, it is enough to only classify the

untwisted ones. However many simple weight BPk-modules that we will encounter in Chapter 3

are not highest-weight, nor even relaxed highest-weight. In particular, if M is a simple relaxed

highest-weight BPk-module, then 𝜎 ℓ
(
M

)
is simple and weight, but is usually only relaxed highest-

weight for a few choices of ℓ . We believe, however, that the simple objects of the categories 𝒲k

and 𝒲
tw
k of untwisted and twisted weight BPk-modules are all spectral flows of simple relaxed

highest-weight BPk-modules, which we will now classify.
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2.2.2. Untwisted Zhu Algebra. One of the main tools that we will use in our classification

of simple relaxed highest-weight BPk-modules are the untwisted and twisted Zhu algebras from

Section 1.1.4. This is because a classification of simple modules for the untwisted (twisted) Zhu

algebra of BPk gives a classification of simple untwisted (twisted) positive-energy BPk-modules

by Theorems 1.1.9 and 1.1.12. Additionally, simple positive-energy weight BPk-modules coincide

precisely with the simple relaxed highest-weight modules.

We begin with determining the untwisted Zhu algebra Zhu
[
BPk

]
. In many results in this

section, it is possible to replace BPk with BP(u, v) as Zhu[BP(u, v)] is a quotient of Zhu
[
BPk

]
at

the appropriate level by (1.1.39) and likewise for the twisted versions.

Proposition 2.2.3. Zhu
[
BPk

]
is a quotient of ℂ[𝐽 , 𝐿].

Proof. Since the fields 𝐺±(𝑧) have half-integer conformal weights, they do not have zero

modes when acting on untwisted modules. More generally, only the (homogeneous) fields of in-

teger conformal weight have zero modes. Express the zero mode of such a field as a linear com-

bination of monomials in the modes of the generating fields 𝐽 (𝑧), 𝐺±(𝑧) and 𝐿(𝑧). Next, use the

commutation relations to order the modes so that the mode index weakly increases from left to

right — it is easy to see that this is always possible despite the nonlinear nature of the commutation

relations (2.1.13). Now remove any monomial which contains a positive mode. The image of the

zero mode in Zhu
[
BPk

]
is thus a polynomial in

[
𝐽0
]

and
[
𝐿0

]
.

Since
[
𝐿0

]
is central in Zhu

[
BPk

]
, the multiplication (1.1.38) of Zhu

[
BPk

]
matches that of

ℂ[𝐽 , 𝐿]. There is therefore a surjective homomorphism ℂ[𝐽 , 𝐿] → Zhu
[
BPk

]
determined by 𝐽 ↦→[

𝐽0
]

and 𝐿 ↦→
[
𝐿0

]
. ■

It can be shown that Zhu
[
BPk

]
≃ ℂ[𝐽 , 𝐿] using the fact that the image of the field (𝐽𝑛𝐿𝑚) (𝑧) in

Zhu
[
BPk

]
is

(2.2.2)

[
𝐽𝑛0

𝑚∏
𝑖=0
(𝐿0 + 2𝑖)

]
.

It is however sufficient for our purposes to know that Zhu
[
BPk

]
(and therefore Zhu[BPk] for all

k) is a quotient of ℂ[𝐽 , 𝐿].

2.2.3. Simple Untwisted BPk-Modules. Having identified Zhu
[
BPk

]
(and therefore its quo-

tient Zhu[BP(u, v)]) as a quotient of the free abelian algebra ℂ[𝐽 , 𝐿], we may identify its finite-

dimensional simple modules as ℂ[𝐽 , 𝐿]-modules.
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The Zhu induction of an arbitrary Zhu
[
BPk

]
-module is not guaranteed to be a weight BPk-

module. For the purposes of classifying simple relaxed highest-weightBPk-modules, it is therefore

necessary to restrict attention to a subclass of Zhu
[
BPk

]
-modules.

Definition 2.2.4. A ℂ[𝐽 , 𝐿]-module is said to be weight if 𝐽 and 𝐿 act semisimply and their simul-

taneous eigenspaces are all finite-dimensional.

The simple weight modules of ℂ[𝐽 , 𝐿] are therefore one-dimensional. We shall denote them by

ℂ𝑣 𝑗,Δ, where 𝑗 and Δ are the eigenvalues of 𝐽 and 𝐿, respectively, on 𝑣 𝑗,Δ. As every simple

Zhu
[
BPk

]
-module must also be simple as a ℂ[𝐽 , 𝐿]-module, we arrive at our first identification

result.

Proposition 2.2.5. Every simple weight Zhu
[
BPk

]
-module, and therefore every simple weight

Zhu[BP(u, v)]-module, is isomorphic to some ℂ𝑣 𝑗,Δ, where 𝑗,Δ ∈ ℂ.

Proposition 1.1.8 and Theorem 1.1.9 then guarantee that if ℂ𝑣 𝑗,Δ is a Zhu
[
BPk

]
-module, then there

exists a simple untwisted BPk-module H𝑗,Δ which is uniquely determined (up to isomorphism) by

the fact that its top space is isomorphic to ℂ𝑣 𝑗,Δ (as a ℂ[𝐽 , 𝐿]-module). As this top space is one-

dimensional, H𝑗,Δ is a highest-weight module.

Theorem 2.2.6. Every simple untwisted relaxed highest-weight BPk-module, and therefore ev-

ery simple untwisted relaxed highest-weight BP(u, v)-module, is isomorphic to some H𝑗,Δ, where

𝑗,Δ ∈ ℂ.

The fact thatZhu
[
BPk

]
≃ ℂ[𝐽 , 𝐿]means that allℂ𝑣 𝑗,Δ give rise to simple untwisted relaxed highest-

weight BPk-modules H𝑗,Δ by Zhu induction. Of course not all of these BPk-modules will be

BP(u, v)-modules.

Note that there will be other simple weight BPk- and BP(u, v)-modules such as those obtained

from the H𝑗,Δ by applying spectral flow. Simple nonweight modules also exist in general [5], but

they will not concern us here.

2.2.4. Twisted Zhu Algebra. We now move on to the twisted Zhu algebra of BPk. In contrast

to the untwisted case detailed in Section 2.2.2, the fields𝐺±(𝑧) do have zero modes when acting on

twisted modules. We therefore expect that the representation theory of Zhutw [
BPk

]
will be more

complicated than that of Zhu
[
BPk

]
.
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Definition 2.2.7. Let Zk denote the (complex) unital associative algebra generated by 𝐽 ,𝐺+,𝐺−

and 𝐿, subject to 𝐿 being central and

(2.2.3) [𝐽 ,𝐺±] = ±𝐺±, [𝐺+,𝐺−] = 𝑓k(𝐽 , 𝐿),

where 𝑓k(𝐽 , 𝐿) = 3𝐽 2 − (k + 3)𝐿 − 1
8 (k + 1) (2k + 3)𝟙.

Proposition 2.2.8. Zhutw [
BPk

]
is a quotient of Zk.

Proof. Every homogeneous field of BPk has a zero mode when acting on a twisted module.

As in the proof of Proposition 2.2.3, it follows that the zero modes of the generating fields have

images that generate Zhutw [
BPk

]
. The fact that the generator

[
𝐿0

]
is central is standard [58,108],

but is also easy to verify directly in this case.

We therefore start by using (1.1.38) to compute the products of the images of 𝐽0 and 𝐺±0 in

Zhutw [
BPk

]
:

[
𝐽0
] [
𝐺±0

]
=

∞∑︁
𝑛=0

(
1
𝑛

) [
(𝐽𝑛−1𝐺

±)0
]

(2.2.4)

=
[
(𝐽0𝐺±)0

]
+

[
(𝐽−1𝐺

±)0
]

= ±
[
𝐺±0

]
+

[
:𝐽𝐺±:0

]
,

[
𝐺±0

] [
𝐽0
]
=

∞∑︁
𝑛=0

(
3/2
𝑛

) [
(𝐺±

𝑛−3/2 𝐽 )0
]

(2.2.5)

=
[
(𝐺±−3/2 𝐽 )0

]
+ 3

2
[
(𝐺±−1/2 𝐽 )0

]
=

[
(𝐽−1𝐺

±)0
]
±

[
(𝜕𝐺±)0

]
±

[
𝐺±0

]
=

[
:𝐽𝐺±:0

]
.

Here, we have noted that𝐺±−3/2 𝐽 = 𝐺
±
−3/2 𝐽−1𝟙 = 𝐽−1𝐺

±
−3/2𝟙 ∓𝐺

±
−5/2𝟙 = :𝐽𝐺±: ∓ 𝜕𝐺±, that𝐺±−1/2 𝐽 =

∓𝐺± (similarly) and that (𝜕𝐺±)0 = − 3
2𝐺
±
0 . With the surjection induced by𝐴 ↦→

[
𝐴0

]
,𝐴 = 𝐽 ,𝐺±, 𝐿,

this proves the first relation in (2.2.3). The same method works for the second relation. ■

It turns out that Zk is in fact isomorphic to Zhutw [
BPk

]
, though again we do not need this for what

follows. One can establish this isomorphism by combining the fact that Zhutw [
BPk

]
is known

[55] to be isomorphic to the finite W-algebra associated to 𝔰𝔩3 and the minimal nilpotent orbit. An

explicit presentation of this finite W-algebra is given in [153].

The associative algebra Zk is a central extension of a Smith algebra. This is well known, see

[5, 15] for instance. Smith algebras were introduced and studied in [149] as examples of algebras
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generalising the universal enveloping algebra of 𝔰𝔩2. The representation theory of Zk is therefore

quite tractable. In particular, the classification of weight modules of Smith algebras is superficially

very similar to that of 𝔰𝔩2.

2.2.5. Simple Twisted BPk-Modules. As in the untwisted case, we wish to identify simple

Zhutw [
BPk

]
-modules as Zk-modules. For this, we need a classification of the simple Zk-modules.

The similarity between Zk and 𝔰𝔩2 allows us to follow the approach in [130] for 𝔰𝔩2 with appropriate

modifications.

To begin, a triangular decomposition for Zk is given by

(2.2.6) Zk = ℂ[𝐺−] ⊗ ℂ[𝐽 , 𝐿] ⊗ ℂ[𝐺+] .

The existence of this decomposition is an easy (central) extension of [149, Cor. 1.3], which guar-

antees a Poincaré–Birkhoff–Witt-style basis for Zk. The ‘Cartan subalgebra’ of Zk is then spanned

by 𝐽 and 𝐿.

Definition 2.2.9.

• A vector in a Zk-module is a weight vector of weight ( 𝑗,Δ) if it is a simultaneous eigenvector

of 𝐽 and 𝐿 with eigenvalues 𝑗 and Δ, respectively. The nonzero simultaneous eigenspaces of 𝐽

and 𝐿 are called the weight spaces. If the Zk-module has a basis of weight vectors and its weight

spaces are all finite-dimensional, then it is a weight module.

• A vector in a Zk-module is a highest-weight vector (lowest-weight vector) if it is a weight vector

that is annihilated by 𝐺+ (by 𝐺−). A highest-weight module (lowest-weight module) is a Zk-

module that is generated by a single highest-weight vector (by a single lowest-weight vector).

• A weight Zk-module is dense if its weights coincide with the set [ 𝑗] × {Δ}, for some coset [ 𝑗] ∈

ℂ/ℤ and some Δ ∈ ℂ.

These definitions are designed to be compatible with the definitions of weights and highest weights

for BPk-modules. As Zhu
[
BPk

]
is abelian, the only weight Zhu

[
BPk

]
-modules whose weights

coincide with [ 𝑗] × {Δ} for some coset [ 𝑗] ∈ ℂ/ℤ and some Δ ∈ ℂ are infinite direct sums of

simple modules of the form

(2.2.7)
⊕
𝑛∈ℤ

(
ℂ𝑣 𝑗+𝑛,Δ

)⊕𝑖𝑛
for some 𝑖𝑛 ∈ ℤ⩾1. So simple dense modules are only possible in the twisted sector. This is only

one of the many interesting features exhibited by the twisted sector of BPk that has no analogue in

the untwisted sector.
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We note that Zk possesses a “conjugation” automorphism 𝛾 (induced by the conjugation of

BPk) defined by

(2.2.8) 𝛾 (𝐽 ) = −𝐽 , 𝛾 (𝐺+) = +𝐺−, 𝛾 (𝐺−) = −𝐺+, 𝛾 (𝐿) = 𝐿.

Conjugating a highest-weight Zk-module of highest weight ( 𝑗,Δ) then results in a lowest-weight

module of lowest weight (− 𝑗,Δ) and vice versa. The structures of highest- and lowest-weight

Zk-modules are therefore equivalent. We will focus primarily on highest-weight Zk-modules and

derive the analogous results for lowest-weight Zk-modules using conjugation.

To construct highest-weight Zk-modules, we realise them as quotients of Verma Zk-modules.

Let Z⩾
k

denote the (unital) subalgebra of Zk generated by 𝐽 , 𝐿 and 𝐺+. Let ℂ𝑗,Δ, with 𝑗,Δ ∈ ℂ, be

the one-dimensional Z⩾
k
-module, spanned by 𝑣 , on which we have 𝐽𝑣 = 𝑗𝑣 , 𝐿𝑣 = Δ𝑣 and 𝐺+𝑣 = 0.

The Verma Zk-module V𝑗,Δ is then the induced module Zk ⊗Z⩾
k
ℂ𝑗,Δ.

It is easy to check that V𝑗,Δ is a highest-weight module with highest-weight vector 𝑣 = 𝟙 ⊗ 𝑣

and one-dimensional weight spaces of weights ( 𝑗 − 𝑛,Δ), 𝑛 ∈ ℤ⩾0. Let H 𝑗,Δ denote the unique

simple quotient of V𝑗,Δ.

For convenience, we define

ℎ𝑛k (𝐽 , 𝐿) =
𝑛−1∑︁
𝑚=0

𝑓k(𝐽 −𝑚𝟙, 𝐿)(2.2.9)

= 𝑛

(
𝑛2𝟙 − 3

2
𝑛(2𝐽 + 𝟙) + 1

2
(6𝐽 2 + 6𝐽 + 𝟙) − (k + 3)𝐿 − 1

8
(k + 1) (2k + 3)𝟙

)
,

where the 𝑓k were defined in (2.2.3).

Proposition 2.2.10.

• The Verma module V𝑗,Δ is simple, so H 𝑗,Δ = V𝑗,Δ, unless ℎ𝑛
k
( 𝑗,Δ) = 0 for some 𝑛 ∈ ℤ⩾1.

• Verma Zk-modules may have at most three composition factors. Exactly one of these is infinite-

dimensional.

• If ℎ𝑛
k
( 𝑗,Δ) = 0 for some 𝑛 ∈ ℤ⩾1 and 𝑁 is the minimal such 𝑛, then H 𝑗,Δ ≃ V𝑗,Δ

/
V𝑗−𝑁,Δ and

dimH 𝑗,Δ = 𝑁 .

Proof. The first statement follows easily by noting that every proper nonzero submodule of

V𝑗,Δ is generated by a singular vector of the form (𝐺−)𝑛𝑣 , 𝑛 ∈ ℤ⩾1. The condition to be a singular

vector is

0 = 𝐺+(𝐺−)𝑛𝑣 =
𝑛−1∑︁
𝑚=0
(𝐺−)𝑛−1−𝑚 [𝐺+,𝐺−] (𝐺−)𝑚𝑣 =

𝑛−1∑︁
𝑚=0
(𝐺−)𝑛−1−𝑚 𝑓k(𝐽 , 𝐿) (𝐺−)𝑚𝑣(2.2.10)



50 Bershadsky–Polyakov Algebras

=

𝑛−1∑︁
𝑚=0
(𝐺−)𝑛−1 𝑓k(𝐽 −𝑚𝟙, 𝐿)𝑣 = (𝐺−)𝑛−1

𝑛−1∑︁
𝑚=0

𝑓k( 𝑗 −𝑚𝟙,Δ)𝑣 = ℎ𝑛k ( 𝑗,Δ) (𝐺
−)𝑛−1𝑣 .

Since ℎ𝑛
k

is a cubic polynomial in 𝑛, there can be at most three roots in ℤ⩾1, hence at most three

highest-weight vectors. The remaining statements are now clear. ■

Unlike 𝔰𝔩2, there exist nonsemisimple finite-dimensional Zk-modules. Examples include highest-

weight modules obtained by quotienting a Verma module with three composition factors by its

unique simple submodule.

This proposition completes the classification of finite-dimensional Zk-modules and highest-

weight Zk-modules. To obtain the analogous classification of lowest-weight Zk-modules, we apply

the conjugation automorphism 𝛾 . The conjugate of a simple Verma module V𝑗,Δ is the lowest-

weight Verma module of lowest weight (− 𝑗,Δ).

However, if the V𝑗,Δ is not simple and 𝑁 is the smallest positive integer such that ℎ𝑁
k
( 𝑗,Δ) = 0,

then the conjugate of H 𝑗,Δ is isomorphic to H𝑁−𝑗−1,Δ. This is in contrast to 𝔰𝔩2 where simple

finite-dimensional modules are self-conjugate.

It remains to construct simple weight Zk-modules that are neither highest- nor lowest-weight.

Such modules are necessarily dense. As for 𝔰𝔩2, the classification of simple dense Zk-modules is

greatly simplified by identifying the centraliser Ck of the Cartan subalgebra ℂ[𝐽 , 𝐿] in Zk.

Lemma 2.2.11. The centraliser Ck is the polynomial algebra ℂ[𝐽 , 𝐿,𝐺+𝐺−].

Proof. Note first that 𝐺+𝐺− obviously commutes with 𝐽 , by (2.2.3). Consider a Poincaré–

Birkhoff–Witt basis of Zk given by elements of the form 𝐽𝑎𝐿𝑏 (𝐺+)𝑐 (𝐺−)𝑑 , for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ⩾0. It is

easy to check that such a basis element belongs to Ck if and only if 𝑐 = 𝑑 . To show that 𝐽 , 𝐿 and

𝐺+𝐺− generate Ck, it therefore suffices to show that (𝐺+)𝑐 (𝐺−)𝑐 may be written as a polynomial in

𝐽 , 𝐿 and 𝐺+𝐺−, for each 𝑐 ∈ ℤ⩾0.

Proceeding by induction, this is clear for 𝑐 = 0. So take 𝑐 ⩾ 1 and assume that (𝐺+)𝑐−1(𝐺−)𝑐−1

is a polynomial in 𝐽 , 𝐿 and 𝐺+𝐺−. Then, the commutation rules (2.2.3) give

(𝐺+)𝑐 (𝐺−)𝑐 = (𝐺+𝐺−) (𝐺+)𝑐−1(𝐺−)𝑐−1 +𝐺+ [(𝐺+)𝑐−1,𝐺−] (𝐺−)𝑐−1(2.2.11)

= (𝐺+𝐺−) (𝐺+)𝑐−1(𝐺−)𝑐−1 +
𝑐−1∑︁
𝑛=1
(𝐺+)𝑛 𝑓k(𝐽 , 𝐿) (𝐺+)𝑐−1−𝑛 (𝐺−)𝑐−1.

The first term on the right-hand side is a polynomial in 𝐽 , 𝐿 and𝐺+𝐺−, by the inductive hypothesis.

For the remaining terms, note that as 𝐿 is central and 𝐺+ 𝐽 = (𝐽 − 𝟙)𝐺+, we have (𝐺+)𝑛 𝐽 = (𝐽 −
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𝑛𝟙) (𝐺+)𝑛 and hence

(2.2.12)
𝑐−1∑︁
𝑛=1
(𝐺+)𝑛 𝑓k(𝐽 , 𝐿) (𝐺+)𝑐−1−𝑛 (𝐺−)𝑐−1 =

𝑐−1∑︁
𝑛=1

𝑓k(𝐽 − 𝑛𝟙, 𝐿) (𝐺+)𝑐−1(𝐺−)𝑐−1,

which is likewise a polynomial in 𝐽 , 𝐿 and 𝐺+𝐺−. ■

Just as for the centraliser of 𝔰𝔩2 (see [130, Lem. 3.4.2]), the weight spaces of a simple weight

Zk-module are simple Ck-modules. It is easy to see that Ck is abelian, so we have the following

result.

Proposition 2.2.12. The weight spaces of simple weight Zk-modules are one-dimensional.

Specifying these weight spaces therefore requires knowledge of the eigenvalues of 𝐽 , 𝐿 and 𝐺+𝐺−

on a given simple weight Zk-module. The latter will vary with the weight ( 𝑗,Δ) in general, so it

is convenient to note that we may replace 𝐺+𝐺− by a central element of Zk whose eigenvalue is

therefore constant. Such ‘Casimir elements’ for Smith algebras are known [149, Prop. 1.5].

Lemma 2.2.13. The element

(2.2.13) Ω = 𝐺+𝐺− +𝐺−𝐺+ + 2𝐽 3 + 𝐽 − 2𝐽
(
(k + 3)𝐿 + 1

8
(k + 1) (2k + 3)𝟙

)
is central in Zk and we have 𝛾 (Ω) = −Ω and Ck = ℂ[𝐽 , 𝐿,Ω].

Proof. We start by noting that

(2.2.14) [𝐺+𝐺−,𝐺+] = −𝐺+ 𝑓k(𝐽 , 𝐿) = −𝐺+
(
3𝐽 2 − (k + 3)𝐿 − 1

8 (k + 1) (2k + 3)𝟙
)
.

Since [𝐽𝑛,𝐺+] = 𝐺+((𝐽 + 𝟙)𝑛 − 𝐽𝑛), we can cancel the terms appearing on the right-hand side

(starting with 3𝐽 2) by adding counterterms to 𝐺+𝐺−. In this way, we arrive at an element Ω̃ ∈ Zk

that commutes with 𝐽 , 𝐺+ and 𝐿:

(2.2.15) Ω̃ = 𝐺+𝐺− + 𝐽 3 − 3
2
𝐽 2 + 1

2
𝐽 − 𝐽

(
(k + 3)𝐿 + 1

8
(k + 1) (2k + 3)𝟙

)
.

By using 𝐺+𝐺− = 𝐺−𝐺+ + 𝑓k(𝐽 , 𝐿), we obtain a second expression for Ω̃. Adding the two expres-

sions, we see that

(2.2.16) Ω = 2Ω̃ + (k + 3)𝐿 + 1
8
(k + 1) (2k + 3)𝟙

also commutes with 𝐽 , 𝐺+ and 𝐿. But, the explicit form (2.2.13) shows that it also commutes with

𝐺− as the conjugation automorphism (2.2.8) sends Ω to −Ω. ■
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By (2.2.13), the eigenvalue of Ω on a highest-weight vector (+) or lowest-weight vector (−) of

weight ( 𝑗,Δ) is given by

(2.2.17) 𝜔±𝑗,Δ = (2 𝑗 ± 1)
(
𝑗 ( 𝑗 ± 1) − (k + 3)Δ − 1

8
(k + 1) (2k + 3)

)
.

These eigenvalues satisfy the following relations:

(2.2.18) 𝜔−−𝑗,Δ = −𝜔+𝑗,Δ = 𝜔+−𝑗−1,Δ .

We note that the first equality is consistent with conjugation.

Dense Zk-modules can now be constructed by inducing Ck-modules: Let ℂ𝑗,Δ,𝜔 be a one-

dimensional Ck-module, spanned by 𝑣 , on which we have 𝐽𝑣 = 𝑗𝑣 , 𝐿𝑣 = Δ𝑣 and Ω𝑣 = 𝜔𝑣 , for some

𝑗,Δ, 𝜔 ∈ ℂ. Define the Zk-module R𝑗,Δ,𝜔 = Zk ⊗Ck
ℂ𝑗,Δ,𝜔 .

A basis of R𝑗,Δ,𝜔 is given by 𝑣 = 𝟙 ⊗ 𝑣 and the (𝐺±)𝑛𝑣 with 𝑛 ∈ ℤ⩾1. This implies that the

weights of R𝑗,Δ,𝜔 coincide with [ 𝑗] × {Δ} and so R𝑗,Δ,𝜔 is a dense Zk-module generated by 𝑣 .

Proposition 2.2.14.

• For each 𝑛 ∈ ℤ⩾0, (𝐺−)𝑛+1𝑣 is a highest-weight vector of R𝑗,Δ,𝜔 if and only if 𝜔 = 𝜔+
𝑗−𝑛−1,Δ.

• For each 𝑛 ∈ ℤ⩾0, (𝐺+)𝑛+1𝑣 is a lowest-weight vector of R𝑗,Δ,𝜔 if and only if 𝜔 = 𝜔−
𝑗+𝑛+1,Δ.

• The dense Zk-module R𝑗,Δ,𝜔 is simple if and only if 𝜔 ≠ 𝜔+
𝑖,Δ (equivalently 𝜔 ≠ 𝜔−

𝑖,Δ) for any

𝑖 ∈ [ 𝑗].

• R𝑗,Δ,𝜔 has at most four composition factors. If it is not simple, then one composition factor is

infinite-dimensional highest-weight and another is infinite-dimensional lowest-weight; any other

composition factors are finite-dimensional.

Proof. The existence criteria for highest- and lowest-weight vectors is straightforward calcu-

lation using (2.2.18). The simplicity of R𝑗,Δ,𝜔 is equivalent to the absence of highest- and lowest-

weight vectors. However, 𝜔 ≠ 𝜔−
𝑗−𝑛,Δ for all 𝑛 ∈ ℤ⩾0 implies that 𝜔 ≠ 𝜔+

𝑗−𝑛−1,Δ for all 𝑛 ∈ ℤ⩾0, by

(2.2.18). Combining with𝜔 ≠ 𝜔+
𝑗+𝑛,Δ for all 𝑛 ∈ ℤ⩾0, we get the desired condition. The statements

about composition factors now follow from the fact that 𝜔 − 𝜔±
𝑖,Δ is a cubic polynomial in 𝑖, so it

can have at most three roots 𝑖 ∈ [ 𝑗]. ■

It follows from this proposition that we have isomorphisms R𝑗,Δ,𝜔 ≃ R𝑗+𝑚,Δ,𝜔 ,𝑚 ∈ ℤ, when these

modules are simple. We shall therefore denote these simple dense Zk-modules by R[ 𝑗 ],Δ,𝜔 , where

[ 𝑗] ∈ ℂ/ℤ.

We have now seen how to construct various simple Zk-modules by inducing modules over

subalgebras of Zk and taking a simple quotient when necessary. The modules we have constructed
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can be divided into four classes: finite-dimensional, infinite-dimensional highest-weight, infinite-

dimensional lowest-weight and dense. A natural question is whether there are any more simple

weight Zk-modules. The classification of weight 𝔰𝔩2-modules consists of the same four classes, so

the following result is perhaps unsurprising.

Theorem 2.2.15. Every simple weight Zk-module is isomorphic to one of the modules in the fol-

lowing list of pairwise-nonisomorphic modules:

• The finite-dimensional highest-weight (and lowest-weight) modules H 𝑗,Δ with 𝑗,Δ ∈ ℂ such that

ℎ𝑛
k
( 𝑗,Δ) = 0 for some 𝑛 ∈ ℤ⩾1.

• The infinite-dimensional highest-weight modules H 𝑗,Δ = V𝑗,Δ with 𝑗,Δ ∈ ℂ such that ℎ𝑛
k
( 𝑗,Δ) ≠

0 for all 𝑛 ∈ ℤ⩾1.

• The infinite-dimensional lowest-weight modules 𝛾 (H 𝑗,Δ) = 𝛾 (V𝑗,Δ) with 𝑗,Δ ∈ ℂ such that

ℎ𝑛
k
( 𝑗,Δ) ≠ 0 for all 𝑛 ∈ ℤ⩾1.

• The infinite-dimensional dense modulesR[ 𝑗 ],Δ,𝜔 with [ 𝑗] ∈ ℂ/ℤ and Δ, 𝜔 ∈ ℂ such that𝜔 ≠ 𝜔+
𝑖,Δ

for any 𝑖 ∈ [ 𝑗].

Proof. The classification for simple weight modules having a highest- and/or lowest-weight,

i.e. the first three cases, follows from Proposition 2.2.10 in the same way as the analogous result

for 𝔰𝔩2.

If the simple weight module has no highest- or lowest-weight, choose an arbitrary weight space.

This is a simple Ck-module, hence it is one-dimensional and spanned by 𝑣 say. As there are no

highest- or lowest-weight vectors, 𝐺+ and 𝐺− act freely on 𝑣 and so the simple weight module is

dense and so isomorphic to one of the R[ 𝑗 ],Δ,𝜔 in the list. ■

As in the untwisted case, the fact that Zhutw [
BPk

]
is a quotient of Zk means that every simple

Zhutw [
BPk

]
-module is also simple as a Zk-module. Theorem 1.1.12 then guarantees that every

simple weight Zhutw [
BPk

]
-module M corresponds to a simple twisted relaxed highest-weight

BPk-module M = Indtw [
M

]
which is uniquely determined (up to isomorphism) by the fact that its

top space is isomorphic to M (as a Zk-module).

Theorem 2.2.16. Every simple twisted relaxed highest-weight BPk-module, and hence every sim-

ple twisted relaxed highest-weight BP(u, v)-module, is isomorphic to one of the modules in the

following list of pairwise-nonisomorphic modules:

• The highest-weight modules Htw
𝑗,Δ with 𝑗,Δ ∈ ℂ such that ℎ𝑛

k
( 𝑗,Δ) = 0 for some 𝑛 ∈ ℤ⩾1.

• The highest-weight modules Htw
𝑗,Δ = Vtw

𝑗,Δ with 𝑗,Δ ∈ ℂ such that ℎ𝑛
k
( 𝑗,Δ) ≠ 0 for all 𝑛 ∈ ℤ⩾1.



54 Bershadsky–Polyakov Algebras

• The conjugate highest-weight modules 𝛾
(
Htw
𝑗,Δ

)
= 𝛾

(
Vtw
𝑗,Δ

)
with 𝑗,Δ ∈ ℂ such that ℎ𝑛

k
( 𝑗,Δ) ≠ 0

for all 𝑛 ∈ ℤ⩾1.

• The relaxed highest-weight modules Rtw
[ 𝑗 ],Δ,𝜔 with [ 𝑗] ∈ ℂ/ℤ and Δ, 𝜔 ∈ ℂ such that 𝜔 ≠ 𝜔+

𝑖,Δ

for all 𝑖 ∈ [ 𝑗].

The fact that Zhutw [
BPk

]
is isomorphic to Zk means that all modules listed in Theorem 2.2.16

appear as simple twisted relaxed highest-weight BPk-modules. We also remark that just like in the

untwisted case, spectral flow will allow us to construct simple twisted weight BPk-modules that

are not relaxed highest-weight in general.

2.2.6. Coherent Families and Reducible BPk-Modules. A crucial observation of Mathieu

[128] concerning simple dense 𝔤-modules, for 𝔤 a simple Lie algebra, is that they may be natu-

rally arranged into coherent families. Here, we extend this observation to dense Zk-modules in

preparation for showing that it also extends to Zhutw [
BP(u, v)

]
-modules.

Definition 2.2.17. A coherent family of Zk-modules is a weight module C for which:

• 𝐿 and Ω act as multiples, Δ and 𝜔 respectively, of the identity on C.

• There exists 𝑑 ∈ ℤ⩾0 such that for all 𝑗 ∈ ℂ, the dimension of the weight space C( 𝑗,Δ) of weight

( 𝑗,Δ) is 𝑑 .

• For each𝑈 ∈ Ck, the function taking 𝑗 ∈ ℂ to tr
C ( 𝑗,Δ) 𝑈 is polynomial in 𝑗 .

Coherent families are by definition highly decomposable. Indeed, that the weight space C( 𝑗,Δ)

has dimension 𝑑 for all 𝑗 ∈ ℂ implies that a coherent family of Zk-modules can be decomposed

into submodules according to

(2.2.19) C =
⊕
[ 𝑗 ] ∈ℂ/ℤ

C[ 𝑗 ] .

If all of the C[ 𝑗 ] are semisimple as Zk-modules, then C is said to be semisimple. If any of the

C[ 𝑗 ] are simple as Zk-modules, then C is said to be irreducible. These are the same definitions

introduced by Mathieu for simple Lie algebras.

It follows immediately from Proposition 2.2.12 that the common dimension 𝑑 of the weight

spaces C( 𝑗,Δ) of an irreducible coherent family of Zk-modules is 1.

We would like to form a coherent family of Zk-modules by summing over some collection of

dense modules R[ 𝑗 ],Δ,𝜔 , [ 𝑗] ∈ ℂ/ℤ, whilst holding Δ and 𝜔 fixed. Recall from Proposition 2.2.14

that R𝑗,Δ,𝜔 is simple if and only if 𝑗 is not a root of a certain cubic polynomial. When 𝑗 is such a

root, there are a number of choices for how to define R[ 𝑗 ],Δ,𝜔 :
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• The first is to define R[ 𝑗 ],Δ,𝜔 to be R
ss
𝑗,Δ,𝜔 , where the semisimplification Mss of a (finite-length)

module M is the direct sum of its composition factors. This is well defined as R
ss
𝑗,Δ,𝜔 ≃ R

ss
𝑗+1,Δ,𝜔 .

• An alternative is to define R[ 𝑗 ],Δ,𝜔 to be R
+
[ 𝑗 ],Δ,𝜔 = R𝑗+,Δ,𝜔 , where we choose 𝑗+ ∈ [ 𝑗] to have

smaller real part than those of the solutions 𝑖 ∈ [ 𝑗] of 𝜔 = 𝜔+
𝑖,Δ. This ensures that R

+
[ 𝑗 ],Δ,𝜔 has

no highest-weight vectors.

• We may instead define R[ 𝑗 ],Δ,𝜔 to be R
−
[ 𝑗 ],Δ,𝜔 = R𝑗−,Δ,𝜔 , where we choose 𝑗− ∈ [ 𝑗] to have

larger real part than those of the solutions 𝑖 ∈ [ 𝑗] of 𝜔 = 𝜔−
𝑖,Δ. This ensures that R

−
[ 𝑗 ],Δ,𝜔 has no

lowest-weight vectors.

For each of the three choices above, we can define an irreducible coherent family of Zk-modules

by taking the direct sum of the R[ 𝑗 ],Δ,𝜔 over [ 𝑗] ∈ ℂ/ℤ. That is,

(2.2.20) C
#
Δ,𝜔 =

⊕
[ 𝑗 ] ∈ℂ/ℤ

R
#
𝑗,Δ,𝜔 ,

where # ∈ {ss, +,−}, is an irreducible coherent family. All coherent families are not created equal

however. It is easy to see that C
ss
Δ,𝜔 is semisimple, whilst C

+
Δ,𝜔 and C

−
Δ,𝜔 are nonsemisimple with𝐺+

and𝐺− acting injectively, respectively. Note thatC
ss
Δ,𝜔 is the unique irreducible semisimple coherent

family of Zk-modules on which 𝐿 acts as multiplication by Δ and Ω acts as multiplication by 𝜔 , up

to isomorphism. Coherent families can be twisted by the BPk automorphisms of Proposition 2.1.4,

and we find that

(2.2.21) 𝛾 (Css
Δ,𝜔 ) ≃ C

ss
Δ,−𝜔 , 𝛾 (C±Δ,𝜔 ) ≃ C

∓
Δ,−𝜔 .

For classifying simple BP(u, v)-modules, the semisimple coherent families C
ss
Δ,𝜔 are most suit-

able. We shall also see C
+
Δ,𝜔 and C

−
Δ,𝜔 in Section 2.3.4 when considering the existence of non-

semisimple BP(u, v)-modules.

Proposition 2.2.18.

• Every simple weight Zk-module embeds into a unique irreducible semisimple coherent family.

• Every irreducible semisimple coherent family ofZk-modules has an infinite-dimensional highest-

weight submodule.

Proof. By Theorem 2.2.15, a simple dense Zk-module M is isomorphic to some R[ 𝑗 ],Δ,𝜔 ,

where [ 𝑗] ∈ ℂ/ℤ and Δ, 𝜔 ∈ ℂ satisfy 𝜔 ≠ 𝜔+
𝑖,Δ for any 𝑖 ∈ [ 𝑗]. As R

ss
[ 𝑗 ],Δ,𝜔 = R[ 𝑗 ],Δ,𝜔 , we have

an embedding M ↩→ C
ss
Δ,𝜔 . The target is obviously unique, up to isomorphism, since no other

irreducible semisimple coherent family has the correct 𝐿- and Ω-eigenvalues.

A simple highest-weight Zk-module M is isomorphic to H 𝑗,Δ, for some 𝑗,Δ ∈ ℂ. Take 𝜔 =

𝜔+
𝑗,Δ, so that R𝑗,Δ,𝜔 is not simple and there is a highest-weight vector of weight ( 𝑗,Δ) in R

ss
𝑗,Δ,𝜔 ,
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by Proposition 2.2.14. This vector generates a copy of H 𝑗,Δ, so we again have an embedding

M ↩→ C
ss
Δ,𝜔 with unique target.

Finally, if M is a simple lowest-weight Zk-module, then we have an embedding 𝛾 (M) ↩→ C
ss
Δ,𝜔

for some unique Δ, 𝜔 ∈ ℂ. By (2.2.21), we have M ↩→ C
ss
Δ,−𝜔 . This covers all possibilities, by

Theorem 2.2.15, so the first statement is established.

For the second, a given irreducible semisimple coherent family C
ss
Δ,𝜔 is uniquely specified by

choosing Δ, 𝜔 ∈ ℂ. As 𝜔 − 𝜔+
𝑖,Δ is a cubic polynomial in 𝑖, there is at least one solution in ℂ,

𝑖 = 𝑗 say. Then, R𝑗,Δ,𝜔 is not simple and has an infinite-dimensional highest-weight submodule, by

Proposition 2.2.14, hence so does R
ss
𝑗,Δ,𝜔 ⊂ C

ss
Δ,𝜔 . ■

2.3. BP Minimal Models

Recall from Section 1.1.4 that if I is an ideal of a vertex operator algebra V, then Zhu[V/I] ≃

Zhu[V]/Zhu[I]. If Jk denotes the maximal ideal of BPk, then classifying the relaxed highest-

weight modules of BPk = BPk/Jk is then just a matter of classifying those of BPk and then testing

which have Zhu-images annihilated by Zhu
[
Jk

]
. Unfortunately, it is hard to compute Zhu

[
Jk

]
in

general even for admissible k.

An alternative route to the desired classification is provided by Arakawa’s celebrated classi-

fication [18] of the highest-weight modules of all simple admissible-level affine vertex operator

algebras Lk(𝔤), specialised to 𝔤 = 𝔰𝔩3 and his results [12] on minimal quantum hamiltonian reduc-

tion.

What results is a classification of the highest-weight modules for Bershadsky–Polyakov min-

imal models. This can then be combined with the coherent families of Section 2.2.6 to obtain a

full classification of simple (twisted and untwisted) relaxed highest-weight modules. Additionally,

several classes of nonsimple relaxed highest-weight modules for Bershadsky–Polyakov minimal

models can be defined in a natural way (when v ⩾ 3).

2.3.1. Admissible-Level 𝔰𝔩3 Minimal Models. Recall from (2.1.14) the fractional levels of

BPk and their parametrisation in terms of u and v. In addition to BPk, the affine vertex operator

algebra Vk(𝔰𝔩3) is also not simple when k is a fractional level. For such k, the simple quotient will

be denoted by Lk(𝔰𝔩3) = A2(u, v). The vertex operator algebras of the form A2(u, 1) where u ∈ ℤ⩾0

are the familiar rational 𝔰𝔩3 minimal models described in Section 1.2.2.

Definition 2.3.1. An admissible level k for the affine vertex operator algebras associated to 𝔰𝔩3,

and the Bershadsky–Polyakov algebras, is a fractional level for which u ⩾ 3.
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Every highest-weight module for the affine Kac–Moody algebra 𝔰𝔩3 is a Vk(𝔰𝔩3)-module [76].

Let L𝜆 denote the simple highest-weight 𝔰𝔩3-module of highest weight 𝜆 = 𝜆0𝜔0 + 𝜆1𝜔1 + 𝜆2𝜔2,

where the 𝜆𝑖 are the Dynkin labels and the 𝜔𝑖 are the fundamental weights. Recall that a weight is

said to be level-ℓ if 𝜆0 + 𝜆1 + 𝜆2 = ℓ . Let Pℓ⩾ denote the set of dominant integral level-ℓ weights

of 𝔰𝔩3. This set is empty unless ℓ ∈ ℤ⩾0 as the Dynkin labels of dominant integral weights are

nonnegative integers. Let 𝑤𝑖 , 𝑖 = 0, 1, 2, denote the Weyl reflection corresponding to the simple

root 𝛼𝑖 of 𝔰𝔩3.

The following definition specialises that of [103] to 𝔰𝔩3 (see also [70, App. 18.B]).

Definition 2.3.2. Let k be an admissible level. A level-k admissible weight 𝜆 of 𝔰𝔩3 is one of the

form

(2.3.1) 𝜆 = 𝑤 ·
(
𝜆𝐼 − u

v
𝜆𝐹,𝑤

)
,

where 𝑤 ∈ {𝟙,𝑤1} is a Weyl transformation of 𝔰𝔩3, · is the shifted Weyl group action, 𝜆𝐼 ∈ Pu−3
⩾ ,

𝜆𝐹,𝑤 ∈ Pv−1
⩾ and 𝜆𝐹,𝑤1

1 ⩾ 1. A weight of the form (2.3.1) will be called a 𝑤 = 𝟙 or 𝑤 = 𝑤1

admissible weight according as to which𝑤 is used.

Importantly, the set of 𝑤 = 𝟙 admissible weights is disjoint to that of 𝑤 = 𝑤1 admissible weights.

One can define𝑤 admissible weights for other elements of the Weyl group by imposing appropriate

restrictions on 𝜆𝐹,𝑤 . The set of such 𝑤 admissible weights will always be equal to that of 𝟙 or 𝑤1

however [104, Prop. 2.1].

In [18], Arakawa classified the highest-weight modules of all simple admissible-level affine

vertex operator algebras Lk(𝔤), where the definition of admissible levels depends on the simple Lie

algebra 𝔤. Specialised, the classification to 𝔤 = 𝔰𝔩3 gives the following.

Theorem 2.3.3 ([18]). For k = u
v − 3 admissible, the simple level-k highest-weight module L𝜆 is

an A2(u, v)-module if and only if 𝜆 is admissible.

Recall that the universal Bershadsky–Polyakov algebra BPk is the minimal quantum hamiltonian

reduction of Vk(𝔰𝔩3); 𝐻 0(Vk(𝔰𝔩3)) = BPk. This fact allows us to construct BPk-modules by ap-

plying the minimal quantum hamiltonian reduction functor 𝐻 0(−) to Vk(𝔰𝔩3)-modules. Before

moving on to the more difficult case of BP(u, v), we note that the action of the minimal quantum

hamiltonian reduction functor on highest-weight Vk(𝔰𝔩3)-modules satisfies a number of desirable

properties. The following are specialisations to 𝔤 = 𝔰𝔩3 of general results regarding Verma modules

described in Section 1.3.1.
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Theorem 2.3.4.

• [106, Thm. 6.3] If K𝜆 denotes the Verma module of Vk(𝔰𝔩3) with highest weight 𝜆, then 𝐻 0(K𝜆)

is isomorphic to the Verma module V𝑗,Δ of BPk with

(2.3.2) 𝑗 =
𝜆1 − 𝜆2

3
and Δ =

(𝜆1 − 𝜆2)2 − 3(𝜆1 + 𝜆2)
(
2(k + 1) − 𝜆1 − 𝜆2

)
12(k + 3) .

• [12, Thm. 6.7.4] 𝐻 0(L𝜆) = 0 if and only if 𝜆0 ∈ ℤ⩾0. For 𝜆0 ∉ ℤ⩾0, we have instead 𝐻 0(L𝜆) ≃

H𝑗,Δ, where 𝑗 and Δ are given by (2.3.2).

• [12, Cor. 6.7.3] The restriction of 𝐻 0(−) to the category 𝒪k of level-k 𝔰𝔩3-modules is exact.

• 𝐻 0(−) induces a surjection from the set of isomorphism classes of simple highest-weightVk(𝔰𝔩3)-

modules to the union of {0} and the set of isomorphism classes of simple highest-weight BPk-

modules. Moreover, there are at most two inequivalent L𝜆 mapping onto the same H𝑗,Δ.

Proof. We only prove the last assertion. It follows from the second assertion above and by

inverting (2.3.2) to obtain two solutions (𝜆1, 𝜆2) for each ( 𝑗,Δ). We have to ensure that at least one

solution gives 𝜆0 ∉ ℤ⩾0. But, a simple calculation gives

(2.3.3) 𝜆0 = k − 𝜆1 − 𝜆2 = −1 ±
√︁

4(k + 3)Δ + (k + 1)2 − 3 𝑗2,

so the zeroth Dynkin labels of the two solutions sum to −2. ■

The second point in Theorem 2.3.4 specifies the action of quantum hamiltonian reduction on all

highest-weight modules L𝜆 of A2(u, v) by Theorem 2.3.3. What it does not tell us is whether

𝐻 0(L𝜆) with 𝜆 admissible satisfying 𝜆0 ∉ ℤ⩾0 is a BP(u, v)-module. Even nicer would be if all

simple highest-weight BP(u, v)-module can be described in this way. Showing that this is indeed

the case is our next job.

Definition 2.3.5. For k admissible, we shall call a level-kweight 𝜆 of 𝔰𝔩3 surviving if it is admissible

and 𝜆0 ∉ ℤ⩾0. Theorem 2.3.4 then ensures that𝐻 0(L𝜆) is nonzero (and is moreover a simple BPk-

module).

Lemma 2.3.6.

• Every𝑤 = 𝑤1 admissible weight is surviving.

• A𝑤 = 𝟙 admissible weight 𝜆 is surviving if and only if 𝜆𝐹,𝟙0 ⩾ 1.

• 𝑤0· gives a ( 𝑗,Δ)-preserving bijection between the 𝑤 = 𝟙 surviving weights and the 𝑤 = 𝑤1

admissible weights.

• If 𝜆 and 𝜇 are distinct𝑤 = 𝟙 surviving weights, then 𝐻 0(L𝜆) and 𝐻 0(L𝜇) are not isomorphic.
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Proof. The zeroth Dynkin label of a level-k admissible 𝔰𝔩3-weight 𝜆 has one of the following

two forms:

(2.3.4) 𝜆0 = 𝜆𝐼0 −
u

v
𝜆
𝐹,𝟙
0 (𝑤 = 𝟙) or 𝜆0 = 𝜆𝐼0 + 𝜆

𝐼
1 −

u

v

(
𝜆
𝐹,𝑤1
0 + 𝜆𝐹,𝑤1

1

)
+ 1 (𝑤 = 𝑤1).

Consider first a𝑤 = 𝟙 admissible weight 𝜆. Since 𝜆𝐹,𝟙 ∈ Pv−1
⩾ , we clearly have 𝜆0 ∈ ℤ if and only

if 𝜆𝐹,𝟙0 = 0. On the other hand, a𝑤 = 𝑤1 admissible weight 𝜆 necessarily has 0 < 𝜆
𝐹,𝑤1
0 +𝜆𝐹,𝑤1

1 < v,

since 𝜆𝐹,𝑤1 ∈ Pv−1
⩾ and 𝜆𝐹,𝑤1

1 ⩾ 1. It follows that the Dynkin label 𝜆0 can never be an integer in this

case. This proves the first two statements.

For the third, let 𝜇 be a level-k weight. Explicit calculation shows that the Dynkin labels of

𝑤0 ·𝑤1 · 𝜇 are

(2.3.5)
[
𝜇2 −

u

v
, 𝜇0, 𝜇1 +

u

v

]
.

Let 𝜆 = 𝑤1 ·
(
𝜆𝐼 − u

v𝜆
𝐹,𝑤1

)
be a𝑤 = 𝑤1 admissible weight. Then,𝑤0 ·𝜆 has the form 𝜇 = 𝜇𝐼 − u

v 𝜇
𝐹,𝟙

with

(2.3.6) 𝜇𝐼 =

[
𝜆𝐼2, 𝜆

𝐼
0, 𝜆

𝐼
1

]
and 𝜇𝐹,𝟙 =

[
𝜆
𝐹,𝑤1
2 + 1, 𝜆𝐹,𝑤1

0 , 𝜆
𝐹,𝑤1
1 − 1

]
.

It is easy to see that 𝜇𝐼 ∈ Pu−3
⩾ and 𝜇𝐹,𝟙 ∈ Pv−1

⩾ , so 𝜇 is a𝑤 = 𝟙 admissible weight. Moreover, 𝜇𝐹,𝟙0 ⩾

1 implies that 𝜇 is surviving. Since 𝑤0 · (−) is self-inverse, we have the desired bijection between

𝑤 = 𝟙 surviving weights and 𝑤 = 𝑤1 admissible weights. To show that it is ( 𝑗,Δ)-preserving, we

show that the functions 𝑗 (𝜆) and Δ(𝜆) defined by (2.3.2) are invariant under 𝜆 ↦→ 𝑤0 · 𝜆. This is

clear from (𝑤0 · 𝜆)1 = k + 1 − 𝜆2 and (𝑤0 · 𝜆)2 = k + 1 − 𝜆1.

Finally, let 𝜆 and 𝜇 be surviving weights and suppose that 𝐻 0(L𝜆) ≃ 𝐻 0(L𝜇), so that 𝑗 (𝜆) =

𝑗 (𝜇) and Δ(𝜆) = Δ(𝜇). We have just seen that 𝜆 and𝑤0 · 𝜆 always give the same 𝑗 and Δ. But, if 𝜆

is a 𝑤 = 𝟙 surviving weight, then 𝜇 = 𝑤0 · 𝜆 is a 𝑤 = 𝑤1 surviving weight. Since the intersection

of the sets of 𝑤 = 𝟙 and 𝑤 = 𝑤1 admissible weights is empty [104, Prop. 2.1], we have 𝜆 ≠ 𝜇.

As there are at most two weights corresponding to a given choice of 𝑗 and Δ (Theorem 2.3.4), this

shows that there are never two distinct𝑤 = 𝟙 surviving weights giving the same 𝑗 and Δ. ■

In light of the second point of Lemma 2.3.6, ‘surviving’ shall be understood to mean ‘𝑤 = 𝟙

surviving’ unless otherwise indicated. Likewise from now on, we will drop the label𝑤 from 𝜆𝐹,𝑤 ,

understanding that we mean𝑤 = 𝟙 unless otherwise indicated. Denote the set of surviving level-k

weights by Σk.

Let Ik denote the maximal ideal of Vk(𝔰𝔩3), so that Lk(𝔰𝔩3) = Vk(𝔰𝔩3)/Ik. If k is an admissible

level, then by Theorem 2.3.3 we have that Ik ·L𝜆 = 0 if and only if 𝜆 is an admissible weight. If, in
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addition, v ⩾ 2, then

(2.3.7) 𝐻 0(Lk(𝔰𝔩3)) = 𝐻 0(Lk𝜔0) ≃ H0,0 = BPk,

by Theorem 2.3.4. Moreover, the exactness of 𝐻 0(−) means that the maximal ideal Jk of BPk is

then isomorphic to 𝐻 0(Ik). It follows that 𝐻 0(L𝜆) is a BPk-module if and only if

(2.3.8) 𝐻 0(Ik) · 𝐻 0(L𝜆) = 0.

Proposition 2.3.7. Let k be admissible with v ⩾ 2. If L𝜆 is an Lk(𝔰𝔩3)-module, then 𝐻 0(L𝜆) is a

BPk-module.

Proof. The quantum hamiltonian reduction functor 𝐻 0(−) acts on modules by tensoring with

the ghost vertex operator superalgebra G and taking the zeroth homology with respect to the dif-

ferential 𝑑0, where 𝑑 (𝑧) is given by (2.1.5). Denote the homology class of a (degree-0) cocycle 𝑎

by [𝑎] (not to be confused with the notation for Zhu algebra images in Section 1.1.4).

Given (degree-0) cocycles 𝑎 and 𝑣 in the differential complexes Ik⊗G and L𝜆 ⊗G, respectively,

the action of [𝑎] ∈ 𝐻 0(Ik) on [𝑣] ∈ 𝐻 0(L𝜆) is given by

(2.3.9) [𝑎] · [𝑣] ≡ [𝑎] (𝑧) [𝑣] = [𝑎(𝑧)𝑣] ∈ 𝐻 0(Ik · L𝜆).

For 𝜆 admissible, we therefore obtain 𝐻 0(Ik) · 𝐻 0(L𝜆) ⊆ 𝐻 0(Ik · L𝜆) = 0. That is, 𝐻 0(L𝜆) is a

BPk-module. ■

Proposition 2.3.7 motivates restricting attention to fractional levels of the form

(2.3.10) k = −3 + u

v
with u ⩾ 3 and v ⩾ 2.

The restriction on u means that k is an admissible level for 𝔰𝔩3, whilst the restriction on v guaran-

tees that the minimal quantum hamiltonian reduction of Lk(𝔰𝔩3) = A2(u, v) is BPk = BP(u, v).

The main issue with using quantum hamiltonian reduction for v = 1 admissible levels is that

𝐻 0(A2(u, 1)) = 0 for u ⩾ 3. A classification of simple modules for Bershadsky–Polyakov minimal

models at admissible levels with v = 1 is known [6].

To obtain a classification of simple highest-weight BPk-modules from Arakawa’s classifica-

tion of simple highest-weight Lk(𝔰𝔩3)-modules (Theorem 2.3.3), a converse of Proposition 2.3.7 is

needed; we need to know that all simple highest-weight BPk-modules are isomorphic to 𝐻 0(L𝜆)

for some surviving weight.
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Theorem 2.3.8. Let k be admissible with v ⩾ 2. Then, every simple highest-weight BPk-module is

isomorphic to the minimal quantum hamiltonian reduction of some simple highest-weight Lk(𝔰𝔩3)-

module.

Note that if 𝜆0 ∈ ℤ⩾0, then 𝐻 0(L𝜆) = 0 is a BPk-module, irrespective of whether or not it is an

Lk(𝔰𝔩3)-module. It is therefore enough to show that if 𝜆0 ∉ ℤ⩾0 and L𝜆 is not a Lk(𝔰𝔩3)-module,

then 𝐻 0(L𝜆) is not a BPk-module. Equivalently, we must show that 𝜆0 ∉ ℤ⩾0 and Ik · L𝜆 ≠ 0

implies that 𝐻 0(Ik) · 𝐻 0(L𝜆) ≠ 0.

2.3.2. Surjectivity of Reduction. This section is devoted to the rather technical proof of The-

orem 2.3.8. If the reader is content with accepting Theorem 2.3.8 as true, skipping to Section 2.3.3

is advised.

We adopt the notation of Section 2.1.1 and assume throughout that 𝜆0 ∉ ℤ⩾0 so that𝐻 0(L𝜆) ≠

0 (and that the level k is admissible with v ⩾ 2). With these assumptions, the aim is to prove the

following assertion:

(2.3.11) Ik · L𝜆 ≠ 0 ⇒ 𝐻 0(Ik) · 𝐻 0(L𝜆) ≠ 0.

We will prove (2.3.11) (and therefore Theorem 2.3.8) by exhibiting elements 𝜒 ∈ Ik and 𝑣 ∈ L𝜆 for

which 𝜒 ⊗ |0⟩ and 𝑣 ⊗ |0⟩ are (degree-0) closed with respect to 𝑑0, such that the element 𝜒𝑛𝑣 ⊗ |0⟩

is not exact, for some 𝑛 ∈ ℤ. This then gives a nonzero element of 𝐻 0(Ik) · 𝐻 0(L𝜆) as

(2.3.12) [𝜒 ⊗ |0⟩] · [𝑣 ⊗ |0⟩] ≡ [𝜒 ⊗ |0⟩] (𝑧) [𝑣 ⊗ |0⟩] = [𝜒 (𝑧)𝑣 ⊗ |0⟩] ≠ 0.

Proving (2.3.11) requires several finer details of minimal (𝑓 = 𝑓𝜃 ) quantum hamiltonian reduction

for Vk(𝔰𝔩3) that we will now explore.

As we deformed the energy-momentum tensor of Vk(𝔰𝔩3) to𝑇 Sug. + (1/2)𝜕ℎ𝜃 in Section 2.1.1,

we now have two distinct mode conventions for affine fields. For an affine generator 𝑎 with con-

formal weight Δ̃ with respect to the deformed energy-momentum tensor, we expand 𝑎(𝑧) in modes

according to

(2.3.13) 𝑎(𝑧) =
∑︁
𝑛∈ℤ

𝑎𝑛𝑧
−𝑛−1 =

∑︁
𝑛∈ℤ−Δ̃

𝑎 (𝑛)𝑧
−𝑛−Δ̃ .

The expansions of the ghost fields will always be taken with respect to their conformal weight under∑
𝛼 ∈Δ𝑇

F𝛼 +𝑇B. We start with a well known fundamental result for the highest-weight vector 𝑣 of

L𝜆, recalling that we are assuming throughout that 𝜆0 ∉ ℤ⩾0 and that k is of the form (2.3.10).

Let |0⟩ denote the vacuum vector of G. Here again we denote the homology class of a cocycle

𝑎 by [𝑎].
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Lemma 2.3.9. For all 𝑛 ∈ ℤ⩾0, ((𝑒𝜃 )−1)𝑛𝑣 ⊗ |0⟩ is closed and inexact. In particular, [𝑣 ⊗ |0⟩] ≠ 0.

Proof. A direct calculation using (2.1.5) shows that 𝑑 (𝑣 ⊗ |0⟩) = 0 and, more generally, that

(2.3.14) 𝑑

(
((𝑒𝜃 )−1)𝑛𝑣 ⊗ |0⟩

)
= 0

for all 𝑛 ∈ ℤ⩾0. On the other hand, we have the commutation relation

(2.3.15) [𝑑, 𝑏𝜃0 ] = (𝑒𝜃 ) (0) + 𝟙 = (𝑒𝜃 )−1 + 𝟙,

where 𝟙 is the vacuum vector in C = Vk(𝔰𝔩3) ⊗ G. Hence

(2.3.16) 𝑑

(
𝑏𝜃0

(
(𝑒𝜃 )−1

)𝑛
𝑣 ⊗ |0⟩

)
=

(
(𝑒𝜃

)
−1)

𝑛+1𝑣 ⊗ |0⟩ +
(
(𝑒𝜃 )−1

)𝑛
𝑣 ⊗ |0⟩.

Therefore in homology,

(2.3.17)
[ (
(𝑒𝜃 )−1

)𝑛
𝑣 ⊗ |0⟩

]
= (−1)𝑛

[
𝑣 ⊗ |0⟩

]
.

The image of the closed subspace span
{(
(𝑒𝜃 )−1

)𝑛
𝑣 ⊗ |0⟩ : 𝑛 ∈ ℤ⩾0

}
⊂ C in homology is therefore

spanned by
[
𝑣 ⊗ |0⟩

]
. If 𝜆0 were a non-negative integer, then

(
(𝑒𝜃 )−1

)𝜆0+1𝑣 = 0 would force this

spanning homology class to be 0. However, we are assuming that 𝜆0 ∉ ℤ⩾0 and, in this case,

[12, Lemma 4.6.1, Prop. 4.7.1] proves the contrary instead. ■

We next consider the structure of the maximal ideal Ik of Vk(𝔰𝔩3).

Lemma 2.3.10. Ik is generated by a single singular vector 𝜒 whose 𝔰𝔩3-weight and conformal

weight (with respect to 𝑇 Sug.) are (u − 2)𝜃 and (u − 2)v, respectively. Moreover, 𝜒 ⊗ |0⟩ is closed.

Proof. This follows easily from [103, Cor. 1], which says that the maximal submodule of

a Verma module whose highest weight is admissible is generated by singular vectors of known

weight. The Verma module whose quotient is Vk(𝔰𝔩3) has highest weight k𝜔0 which is an ‘admis-

sible weight’ because k is.

The only generating singular vector that is nonzero in the quotient Vk(𝔰𝔩3) of this Verma mod-

ule has weight𝑤 · (k𝜔0), where𝑤 is the Weyl reflection corresponding to the root −𝜃 + v𝛿 . Here,

𝛿 denotes the standard imaginary root of 𝔰𝔩3. Denote this singular vector by 𝜒 . The 𝔰𝔩3- and con-

formal weights of 𝜒 are now easily computed.

The fact that 𝜒 ⊗ |0⟩ is closed follows from 𝜒 being a highest-weight vector. ■

Suppose now that 𝜒 (𝑧)𝑣 = 0. Because 𝜒 generates Ik, it follows that Ik · 𝑣 = 0. Since 𝑣 generates

L𝜆, as a Vk(𝔰𝔩3)-module, and Ik is a two-sided ideal of Vk(𝔰𝔩3), we get Ik · L𝜆 = 0.
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The hypothesis of (2.3.11), that L𝜆 is not an L𝑘 (𝔰𝔩3)-module, therefore requires that 𝜒𝑛𝑣 ≠ 0

for some 𝑛 ∈ ℤ. As 𝜒 has 𝔰𝔩3-weight (u− 2)𝜃 , such an 𝑛 must be of the form −(u− 2) − 𝑖 for some

𝑖 ∈ ℤ⩾0. Let 𝑁 ∈ ℤ⩾0 be minimal satisfying 𝜒−(u−2)−𝑁 𝑣 ≠ 0.

As L𝜆 is simple, the submodule generated by 𝜒−(u−2)−𝑁 𝑣 must contain a multiple of 𝑣 . That

is, there exists a Poincaré–Birkhoff–Witt monomial𝑈 ∈ U(𝔰𝔩3) such that

(2.3.18) 𝑈 𝜒−(u−2)−𝑁 𝑣 = 𝑣

(rescaling 𝜒 if necessary). We choose an ordering for the various factors of𝑈 so that

(2.3.19) (𝑓𝛼 )𝑛⩽0 < (ℎ𝛼 )𝑛<0 < (𝑒𝛼 )𝑛<0 < (𝑓𝛼 )𝑛>0 < (ℎ𝛼 )𝑛>0 < (𝑒𝛼 )𝑛⩾0.

This means, for example, that the (𝑓𝛼 )𝑛 with 𝑛 ⩽ 0 are ordered to the left in𝑈 while the (𝑒𝛼 )𝑛 with

𝑛 ⩾ 0 are ordered to the right in 𝑈 . As 𝜒 is a singular vector, (𝑒𝛼 )0𝜒 = 0 and (𝑒𝛼 )𝑛𝑣 = 0 for all

𝑛 ⩾ 0. Hence

(2.3.20) (𝑒𝛼 )𝑛𝜒−(u−2)−𝑁 𝑣 =
(
(𝑒𝛼 )0𝜒

)
−(u−2)−𝑁+𝑛𝑣 = 0.

We may therefore assume that𝑈 contains no (𝑒𝛼 )𝑛-modes with 𝑛 ⩾ 0. Similarly,

(2.3.21) (ℎ𝛼 )𝑛𝜒−(u−2)−𝑁 𝑣 = (u − 2)𝜃 (ℎ𝛼 )𝜒−(u−2)−(𝑁−𝑛)𝑣 = 0,

for 𝑛 > 0, by the minimality of 𝑁 . Thus, we may assume that 𝑈 contains no (ℎ𝛼 )𝑛-modes with

𝑛 > 0 either. Finally, 𝑣 is not in the image of any (𝑓𝛼 )𝑛, with 𝑛 ⩽ 0, (ℎ𝛼 )𝑛, with 𝑛 < 0, or (𝑒𝛼 )𝑛,

with 𝑛 < 0. All these modes may therefore also be excluded from𝑈 .

Given a partition 𝜉 = [𝜉1 ⩾ 𝜉2 ⩾ · · · ], let ℓ (𝜉) denote its length and |𝜉 | denote its weight. We

write (𝑓𝛼 )𝜉 = (𝑓𝛼 )𝜉1 (𝑓𝛼 )𝜉2 · · · . By the above discussion, there exists partitions 𝜉 , 𝜋 and 𝜌 such that

(2.3.22) 𝑈 𝜒−(u−2)−𝑁 𝑣 = (𝑓𝜃 )𝜉 (𝑓𝛼2)𝜋 (𝑓𝛼1)𝜌 𝜒−(u−2)−𝑁 𝑣 = 𝑣

with

(2.3.23) ℓ (𝜋) = ℓ (𝜌), ℓ (𝜉) + ℓ (𝜋) = u − 2 and |𝜉 | + |𝜋 | + |𝜌 | = u − 2 + 𝑁 .

The following useful result imposes bounds on the size on the parts of 𝜉 , 𝜋 and 𝜌 .

Lemma 2.3.11. Let 𝐹 (𝑧), 𝐹 ∈ 𝔰𝔩3, be an affine field and let𝑈0 be a monomial in the negative root

vectors (𝑓𝛼 )0 of 𝔰𝔩3. Then, the modes of the field (𝑈0𝜒) (𝑤) satisfy

(2.3.24) [𝐹𝑚, (𝑈0𝜒)𝑛] = (𝐹0𝑈0𝜒)𝑚+𝑛, for all𝑚,𝑛 ∈ ℤ.
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Proof. Observe that𝑈0𝜒 is annihilated by the 𝐹𝑚 with𝑚 > 0. Consequently, (2.3.24) follows

easily from the operator product expansion

■(2.3.25) 𝐹 (𝑧) (𝑈0𝜒) (𝑤) ∼
(𝐹0𝑈0𝜒) (𝑤)
𝑧 −𝑤 .

Lemma 2.3.12. If any of the parts of 𝜉 , 𝜋 or 𝜌 are greater than 1, then

(2.3.26) (𝑓𝜃 )𝜉 (𝑓𝛼2)𝜋 (𝑓𝛼1)𝜌 𝜒−(u−2)−𝑁 𝑣 = 0.

Proof. Suppose without loss of generality that 𝜉 has a part 𝜉𝑖 > 1. Then, we can form a new

partition 𝜉 ′ from 𝜉 by subtracting 1 from 𝜉𝑖 and reordering parts if necessary. Note that ℓ (𝜉 ′) = ℓ (𝜉)

and |𝜉 ′ | = |𝜉 | − 1. Then, Lemma 2.3.11 and 𝑁 being minimal give

0 = (𝑓𝜃 )𝜉′ (𝑓𝛼2)𝜋 (𝑓𝛼1)𝜌 𝜒−(u−2)−(𝑁−1)𝑣(2.3.27)

=

( (
(𝑓𝜃 )0

) ℓ (𝜉′) ((𝑓𝛼2)0
) ℓ (𝜋 ) ((𝑓𝛼1)0

) ℓ (𝜌)
𝜒

)
−(u−2)+ |𝜉′ |+ |𝜋 |+ |𝜌 |−𝑁+1

𝑣

=

( (
(𝑓𝜃 )0

) ℓ (𝜉) ((𝑓𝛼2)0
) ℓ (𝜋 ) ((𝑓𝛼1)0

) ℓ (𝜌)
𝜒

)
0
𝑣

= (𝑓𝜃 )𝜉 (𝑓𝛼2)𝜋 (𝑓𝛼1)𝜌 𝜒−(u−2)−𝑁 𝑣,

where the final equality is obtained by applying Lemma 2.3.11 to the middle term in (2.3.22). ■

As (2.3.22) is nonzero by assumption, all parts of 𝜉 , 𝜋 and 𝜌 must be 1. Imposing the constraints

(2.3.23) on such partitions then gives

(2.3.28) (𝑓𝜃 )𝜉 (𝑓𝛼2)𝜋 (𝑓𝛼1)𝜌 𝜒−(u−2)−𝑁 𝑣 = (𝑓𝜃 )u−2−𝑁
1 (𝑓𝛼2)𝑁1 (𝑓𝛼1)𝑁1 𝜒−(u−2)−𝑁 𝑣 = 𝑣 .

By rescaling 𝜒 again, if necessary, we arrive at following key result.

Proposition 2.3.13. If 𝑁 is the minimal integer such that 𝜒−(u−2)−𝑁 𝑣 ≠ 0, then

(2.3.29) (𝑓𝛼2)𝑁1 (𝑓𝛼1)𝑁1 𝜒−(u−2)−𝑁 𝑣 = (𝑒𝜃 )u−2−𝑁
−1 𝑣 .

By Lemma 2.3.9, the right-hand side of (2.3.29) is inexact when tensored with |0⟩. To show that

𝜒−(u−2)−𝑁 𝑣 is inexact, it suffices to replace the action of (𝑓𝛼𝑖 )1 with elements that commute with

the differential 𝑑 = 𝑑0, i.e. closed elements. From Section 2.1.1, in particular (2.1.9), we know

four elements of C that are closed with respect to 𝑑 . The two denoted by𝐺+ and𝐺− decompose as

𝑓𝛼2 + . . . and 𝑓𝛼1 + . . . respectively.

Lemma 2.3.14. For all 𝑖, 𝑗 ∈ ℤ⩾0, we have

(2.3.30)
(
𝐺+(1/2)

)𝑖 (
𝐺−(1/2)

) 𝑗 (
𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩

)
= (𝑓𝛼2)𝑖1(𝑓𝛼1)

𝑗

1𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩.
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Proof. We begin with the 𝐺− case. Taking the mode expansion of the decomposition of 𝐺−

in fields in C = Vk(𝔰𝔩3) ⊗ G from (2.1.9) gives

𝐺−(1/2) = (𝑓𝛼1) (1/2) −
∑︁
𝑚∈ℤ
(ℎ𝛼1) (𝑚)𝛾−𝑚+1/2 + . . .(2.3.31)

= (𝑓𝛼1)1 −
∑︁
𝑚∈ℤ
(ℎ𝛼1)𝑚𝛾−𝑚+1/2 + . . . ,

where the ellipses stands for terms containing only G modes, all of which annihilate the ghost

vacuum |0⟩ ∈ G. Proceeding by induction,

𝐺−(1/2)

(
(𝑓𝛼1)

𝑗

1𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩
)
= (𝑓𝛼1)

𝑗+1
1 𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩(2.3.32)

−
∞∑︁
𝑚=1
(ℎ𝛼1)𝑚 (𝑓𝛼1)

𝑗

1𝜒−(u−2)−𝑁 𝑣 ⊗ 𝛾−𝑚+1/2 |0⟩,

for any 𝑗 ∈ ℤ⩾0. For all𝑚 ⩾ 1, we have that (ℎ𝛼2)𝑚𝑣 = 0 as 𝑣 is a highest-weight vector. Therefore

the summands in the last term of (2.3.32) can be written as

(2.3.33) (ℎ𝛼1)𝑚 (𝑓𝛼1)
𝑗

1𝜒−(u−2)−𝑁 𝑣 = [(ℎ𝛼1)𝑚, (𝑓𝛼1)
𝑗

1]𝜒−(u−2)−𝑁 𝑣 + (𝑓𝛼1)
𝑗

1 [(ℎ𝛼1)𝑚, 𝜒−(u−2)−𝑁 ]𝑣 .

These summands are all actually zero: the first commutator is a sum of terms obtained from(
(𝑓𝛼1)1

) 𝑗 by replacing one of the (𝑓𝛼1)1 by −2(𝑓𝛼1)𝑚+1 which are all zero by Lemma 2.3.12. The

second term is proportional to 𝜒−(u−2)−(𝑁−𝑚)𝑣 which is zero by minimality of 𝑁 . Therefore

(2.3.34) 𝐺−(1/2)

(
(𝑓𝛼1)

𝑗

1𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩
)
= (𝑓𝛼1)1(𝑓𝛼1)

𝑗

1𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩,

Iterating (2.3.34) gives the 𝐺− ↔ 𝑓𝛼1 part of (2.3.30). The 𝐺+ ↔ 𝑓𝛼2 part is proved in a similar

way. ■

To summarise, 𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩ is closed and

(2.3.35)
(
𝐺+(1/2)

)𝑁 (
𝐺−(1/2)

)𝑁 (
𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩

)
is inexact. Moreover, [𝑑,𝐺±(1/2) ] as 𝐺± is closed. Suppose that 𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩ is exact. Then so

too is

(2.3.36)
(
𝐺+(1/2)

)𝑁 (
𝐺−(1/2)

)𝑁 (
𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩

)
= (𝑓𝛼2)𝑁1 (𝑓𝛼1)𝑁1 𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩ = (𝑒𝜃 )u−2−𝑁

−1 𝑣

But this contradicts Lemma 2.3.9. Therefore, 𝜒−(u−2)−𝑁 𝑣⊗|0⟩ is closed and inexact. The homology

class
[
𝜒−(u−2)−𝑁 𝑣 ⊗ |0⟩

]
is a nonzero element of 𝐻 0(Ik) · 𝐻 0(L𝜆) and Theorem 2.3.8 is proved.

2.3.3. Simple Highest-Weight BP(u, v)-Modules. By combining the results of Section 2.3.1

with Proposition 2.2.2, we arrive at the following classification result.
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Theorem 2.3.15. Let k be admissible with v ⩾ 2. Then the simple highest-weightBP(u, v)-modules

are, up to isomorphism,

• (Untwisted) H𝑗,Δ, where 𝑗 and Δ are determined from the Dynkin labels of a surviving weight

𝜆 ∈ Σk by (2.3.2).

• (Twisted) Htw
𝑗,Δ, where 𝑗 and Δ are determined from the Dynkin labels of a surviving weight

𝜆 ∈ Σk by

(2.3.37)
𝑗 =

𝜆1 − 𝜆2
3
+ 2k + 3

6
,

Δ =
(𝜆1 − 𝜆2)2 − 3(𝜆1 + 𝜆2)

(
2(k + 1) − 𝜆1 − 𝜆2

)
12(k + 3) + 𝜆1 − 𝜆2

6
+ 2k + 3

24
.

Moreover, the H𝑗,Δ and Htw
𝑗,Δ determined by the surviving weights are all mutually nonisomorphic.

In light of this classification, we let H𝜆 = H𝑗,Δ and Htw
𝜆

= Htw
𝑗,Δ, where 𝑗 and Δ are given in terms

of 𝜆 ∈ Σk by (2.3.2) and (2.3.37), respectively. Note that this implies that

(2.3.38) Htw
𝜆
≃ 𝜎1/2 (H𝜆

)
,

by Proposition 2.2.2. With this new notation, the vacuum module is H0,0 = Hk𝜔0 .

Nothing a priori guarantees that all highest-weight BP(u, v)-modules are simple. Indeed re-

ducible BP(u, v)-modules are expected to make an appearance eventually as this work is motivated

by constructing logarithmic conformal field theories. These hopes (at least for highest-weight

modules) are quickly dashed by the following strengthening of Theorem 2.3.15, following [17,

Thm. 10.10].

Theorem 2.3.16. Let k be admissible with v ⩾ 2. Then, every highest-weight BP(u, v)-module,

untwisted or twisted, is simple.

Proof. We prove this for untwisted modules as the twisted case follows immediately from

(2.3.38) and the invertibility of spectral flow. Since the simple quotient of any highest-weight

BP(u, v)-module H is isomorphic to some H𝜆 with 𝜆 ∈ Σk, by Theorem 2.3.15, it is enough to

show that H cannot have a composition factor isomorphic to H𝜇 for some 𝜇 ∈ Σk distinct from

𝜆. Indeed, it is enough to show that the Verma module V𝜆 = V𝑗,Δ of BPk does not have such a

composition factor.

Recall that K𝜆 denotes the Verma module of Vk(𝔰𝔩3) of highest weight 𝜆 and let
[
K𝜆 : L𝜈

]
denote the multiplicity with which L𝜈 appears as a composition factor of K𝜆. By Theorem 2.3.4,

quantum hamiltonian reduction takes K𝜆 to V𝜆 and only L𝜇 and L𝑤0 ·𝜇 are sent to H𝜇 . As reduction
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is exact, we must have
[
V𝜆 : H𝜇

]
=

[
K𝜆 : L𝜇

]
+

[
K𝜆 : L𝑤0 ·𝜇

]
(noting that 𝜇 and𝑤0 · 𝜇 are distinct

since 𝜇 ∈ Σk).

It follows that if V𝜆 has H𝜇 , 𝜇 ≠ 𝜆, as a composition factor, then K𝜆 has either L𝜇 or L𝑤0 ·𝜇 as

a composition factor. But, 𝜆, 𝜇 and𝑤0 · 𝜇 are all admissible 𝔰𝔩3-weights (corresponding to𝑤 = 𝟙,

𝟙 and 𝑤1, respectively, see Lemma 2.3.6), hence they are dominant. This is therefore impossible

by the linkage principle for Verma 𝔰𝔩3-modules. ■

Because the Bernšteı̆n–Gel’fand–Gel’fand category 𝒪u,v of BP(u, v)-modules (i.e. the category of

highest-weightBP(u, v)-modules) admits contragredient duals, it follows from Theorem 2.3.16 that

every extension between nonisomorphic highest-weight modules H𝜆 and H𝜇 splits. It is likewise

easy to see that a nonsplit self-extension of H𝜆 requires a nonsemisimple action of 𝐽0 or 𝐿0, and

such an extension is necessarily not in 𝒪u,v. Therefore, 𝒪u,v is semisimple and has finitely many

isomorphism classes of simple objects by Theorem 2.3.15. In other words, BP(u, v) is rational in

category 𝒪u,v.

The twisted modules appearing in Theorem 2.3.15 have top spaces that may or may not be

finite-dimensional. By Proposition 2.2.10, the dimensionality of the top space of Htw
𝜆

= Htw
𝑗,Δ is

determined by a remarkable relationship between the polynomial ℎ𝑛
k

from Proposition 2.2.10 and

the eigenvalue formulae (2.3.37).

Proposition 2.3.17. The top space of the simple twisted highest-weight BP(u, v)-module Htw
𝜆

is

finite-dimensional if and only if 𝜆𝐹1 = 0. When 𝜆𝐹1 = 0, the dimension of this top space is 𝜆𝐼1 + 1.

Proof. By Proposition 2.2.10, (Htw
𝑗,Δ)top is finite-dimensional if and only if ℎ𝑛

k
( 𝑗,Δ) = 0 for

some𝑛 ∈ ℤ⩾1 and, if it is finite-dimensional, then the dimension is the smallest such𝑛. Substituting

(2.3.37) into the definition (2.2.9) of ℎ𝑛
k

and simplifying, we find that

(2.3.39) ℎ𝑛k ( 𝑗,Δ) = 𝑛(𝑛 − 𝜆1 − 1)
(
𝑛 + 𝜆2 + 1 − u

v

)
.

The only roots inℤ⩾1 ofℎ𝑛
k

are therefore𝑛 = 𝜆1+1 and𝑛 = u
v −𝜆2−1. Recall that surviving weights

can be expanded as 𝜆 = 𝜆𝐼 − u
v𝜆

𝐹 where 𝜆𝐼 ∈ Pu−3
⩾ and 𝜆𝐹 ∈ Pv−1

⩾ . If 𝑛 = 𝜆1 + 1, we must therefore

have 𝜆𝐹1 = 0 and therefore 𝑛 = 𝜆𝐼1 + 1 ∈ ℤ⩾1. On the other hand, if 𝑛 = −(𝜆𝐼2 + 1) + u
v (𝜆

𝐹
2 + 1) is an

integer then 𝜆𝐹2 = v − 1 which contradicts the fact that 𝜆 is a surviving weight, i.e. 𝜆𝐹0 ⩾ 1. ■

Corollary 2.3.18. Given k admissible with v ⩾ 2, there are (up to isomorphism):

• 1
4 (u − 1) (u − 2)v(v − 1) simple untwisted highest-weight BP(u, v)-modules;

• 1
2 (u−1) (u−2) (v−1) simple twisted highest-weightBP(u, v)-modules that have finite-dimensional

top spaces;
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• 1
4 (u− 1) (u− 2) (v− 1) (v− 2) simple twisted highest-weight BP(u, v)-modules that have infinite-

dimensional top spaces;

It is easy to see that there are no simple twisted highest-weight BP(u, v)-modules with infinite-

dimensional top spaces when v = 2. This is in accord with the fact that the BP(u, 2) with u ⩾ 3

are rational and𝐶2-cofinite [15] as the top spaces of modules for such a vertex operator algebra are

necessarily finite-dimensional [56].

Recall that the conjugation automorphism 𝛾 of BP(u, v), given in (2.1.18), negates 𝐽0 and

preserves 𝐿0. At the level of their eigenvalues, this is effected in (2.3.2) by exchanging the Dynkin

labels 𝜆1 and 𝜆2 of 𝜆. The result of this exchange is clearly still a surviving weight, by Lemma 2.3.6.

Proposition 2.3.19. For each 𝜆 ∈ Σk, we have:

• 𝛾
(
H[𝜆0,𝜆1,𝜆2 ]

)
≃ H[𝜆0,𝜆2,𝜆1 ] .

• If 𝜆𝐹1 = 0, then 𝛾
(
Htw
𝜆

)
≃ Htw

𝜇 , where 𝜇 = [𝜆2 − u
v , 𝜆1, 𝜆0 + u

v ], hence 𝜇𝐼 = [𝜆𝐼2, 𝜆
𝐼
1, 𝜆

𝐼
0] and

𝜇𝐹 = [𝜆𝐹2 + 1, 0, 𝜆𝐹0 − 1]. Otherwise, 𝛾
(
Htw
[𝜆0,𝜆1,𝜆2 ]

)
is not highest-weight (though it is relaxed

highest-weight).

Proof. The result of conjugating a simple untwisted highest-weight BP(u, v)-module is clear

from the above remarks, because the top spaces are one-dimensional.

For the twisted case, it is clear that the conjugate ofHtw
𝜆

is highest-weight only if its top space is

finite-dimensional (otherwise the top space of the conjugate module will be an infinite-dimensional

lowest-weight Zk-module). By Proposition 2.3.17, the top space is finite-dimensional if and only

if 𝜆𝐹1 = 0. Assuming this, recall that the charge 𝑗 and conformal weight Δ of the highest-weight

vector of Htw
𝜆

are related to 𝜆 by (2.3.37). The highest-weight vector of 𝛾
(
Htw
𝜆

)
has charge 𝜆1 − 𝑗

and conformal weight Δ as the dimension of the top space of Htw
𝜆

is 𝜆1 + 1.

We therefore need to find 𝜇 ∈ Σk corresponding to the charge 𝜆1 − 𝑗 and conformal weight Δ

under (2.3.37). Solving for 𝜇 in term of 𝜆, we find two solutions:

(2.3.40) 𝜇 = [𝜆2 − k − 3, 𝜆1, 𝜆0 + k + 3] and 𝜇 = [k + 1 − 𝜆2,−𝜆0 − 2, k + 1 − 𝜆1] .

It is easy to check that the first solution is a𝑤 = 𝟙 surviving weight by writing it in the form

(2.3.41) 𝜇0 = 𝜆𝐼2 −
u

v
(𝜆𝐹2 + 1), 𝜇1 = 𝜆𝐼1 and 𝜇2 = 𝜆𝐼0 −

u

v
(𝜆𝐹0 − 1) .

Indeed, 𝜆𝐹0 ⩾ 1 implies that 𝜇𝐼 = [𝜆𝐼2, 𝜆
𝐼
1, 𝜆

𝐼
0] ∈ Pu−3

⩾ , 𝜇𝐹 = [𝜆𝐹2 + 1, 0, 𝜆𝐹0 − 1] ∈ Pv−1
⩾ and

𝜇𝐹0 ⩾ 1, hence that 𝜇 ∈ Σk. The second solution is a 𝑤 = 𝑤1 surviving weight obtained from the
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𝑤 = 𝟙 one by applying the shifted action of𝑤0 and therefore defines the same BP(u, v)-module by

Lemma 2.3.6. ■

To determine when the spectral flow of a simple highest-weight BP(u, v)-module is another such

module, it suffices to consider the untwisted case by Proposition 2.2.2. The twisted sector still

plays a crucial role here as 𝜎
(
H𝜆

)
will be highest-weight if and only if Htw

𝜆
= 𝜎1/2 (H𝜆

)
has a

finite-dimensional top space. By Proposition 2.3.17, this is the case if and only if 𝜆𝐹1 = 0

Proposition 2.3.20. If 𝜆 ∈ Σk satisfies 𝜆𝐹1 = 0, then 𝜎
(
H𝜆

)
≃ H𝜇 , where 𝜇 = [𝜆2 − u

v , 𝜆0 + u
v , 𝜆1] ∈

Σk, hence 𝜇𝐼 = [𝜆𝐼2, 𝜆
𝐼
0, 𝜆

𝐼
1] and 𝜇𝐹 = [𝜆𝐹2 +1, 𝜆𝐹0 −1, 0]. If 𝜆𝐹1 ≠ 0, then 𝜎

(
H𝜆

)
is not highest-weight

(nor relaxed highest-weight).

Proof. Let 𝜆 ∈ Σk with 𝜆𝐹1 = 0 and denote by 𝑣 the highest-weight vector of H𝜆. The highest-

weight vector of 𝜎
(
H𝜆

)
is easily checked to be (𝐺−1/2)

𝜆𝐼1𝜎
(
𝑣
)
. The charge and conformal weight

of (𝐺−1/2)
𝜆𝐼1𝜎

(
𝑣
)

is computed using Proposition 2.2.2. The weight 𝜇 is the unique 𝑤 = 𝟙 surviving

weight that gives these eigenvalues under (2.3.2), as in the proof of Proposition 2.3.19. ■

Combining this with the dihedral relation (2.1.17) and Proposition 2.3.19, we obtain the following

characterisation of the spectral flow orbit of a simple untwisted highest-weight BP(u, v)-module

H𝜆. We recall from Proposition 2.2.2 that a twisted member 𝜎 ℓ+1/2
(
H𝜆

)
, ℓ ∈ ℤ, of this orbit is

highest-weight if and only if its untwisted predecessor 𝜎 ℓ
(
H𝜆

)
is.

Theorem 2.3.21. Take 𝜆 ∈ Σk and define 𝜇, 𝜈, 𝜇, 𝜈 ∈ Σk by

(2.3.42)
𝜇𝐼 = [𝜆𝐼2, 𝜆

𝐼
0, 𝜆

𝐼
1], 𝜇𝐹 = [𝜆𝐹2 + 1, 𝜆𝐹0 − 1, 0],

𝜇𝐼 = [𝜆𝐼1, 𝜆
𝐼
2, 𝜆

𝐼
0], 𝜇𝐹 = [𝜆𝐹1 + 1, 0, 𝜆𝐹0 − 1]

and
𝜈 𝐼 = [𝜆𝐼1, 𝜆

𝐼
2, 𝜆

𝐼
0], 𝜈𝐹 = [1, v − 2, 0],

𝜈 𝐼 = [𝜆𝐼2, 𝜆
𝐼
0, 𝜆

𝐼
1], 𝜈𝐹 = [1, 0, v − 2] .

• 𝜎
(
H𝜆

)
is highest-weight if and only if 𝜆𝐹1 = 0. In this case, 𝜎

(
H𝜆

)
≃ H𝜇 .

• 𝜎−1 (H𝜆

)
is highest-weight if and only if 𝜆𝐹2 = 0. In this case, 𝜎−1 (H𝜆

)
≃ H𝜇 .

• 𝜎2 (H𝜆

)
is highest-weight if and only if 𝜆𝐹 = [1, 0, v − 2]. In this case, 𝜎2 (H𝜆

)
≃ H𝜈 .

• 𝜎−2 (H𝜆

)
is highest-weight if and only if 𝜆𝐹 = [1, v − 2, 0]. In this case, 𝜎−2 (H𝜆

)
≃ H𝜈 .

• For |ℓ | ∈ ℤ⩾3, 𝜎 ℓ
(
H𝜆

)
is highest-weight if and only if v = 2. In this case, 𝜎±3 (H𝜆

)
≃ H𝜆.

Note that when v = 2, every 𝜆 ∈ Σk has 𝜆𝐹 = [1, 0, 0]. The spectral flow orbits thus take the form

(2.3.43) · · · 𝜎
1/2
↦−→ H𝜆

𝜎1/2
↦−→ Htw

𝜆

𝜎1/2
↦−→ H𝜇

𝜎1/2
↦−→ Htw

𝜇

𝜎1/2
↦−→ H𝜈

𝜎1/2
↦−→ Htw

𝜈

𝜎1/2
↦−→ H𝜆

𝜎1/2
↦−→ · · · ,

where 𝜇 and 𝜈 are as in (2.3.42) (with 𝜇𝐹 = 𝜈𝐹 = [1, 0, 0]).
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It follows from Theorem 2.3.21 that, for k admissible with v ⩾ 3, the spectral flow orbit of a

simple highest-weight BP(u, v)-module always contains exactly one simple twisted highest-weight

module with an infinite-dimensional top space and exactly one simple twisted conjugate highest-

weight module with an infinite-dimensional top space.

Definition 2.3.22. Let k be admissible with v ⩾ 3. We say that 𝜆 ∈ Σk is type-𝑛 whenever the

spectral flow orbit
{
𝜎 ℓ

(
H𝜆

)
: ℓ ∈ 1

2ℤ
}

contains precisely 𝑛 (untwisted) highest-weight BP(u, v)-

modules. In this case, we shall also refer to the spectral flow orbit of H𝜆, as well as any twisted or

untwisted module isomorphic to one in the orbit, as being of type-𝑛.

When v = 3, all the twisted and untwisted highest-weight BP(u, v)-modules are type-3. On the

other hand, for v > 3, there are BP(u, v)-modules of every type. The vacuum module Hk𝜔0 is

always an untwisted type-3 module.

Corollary 2.3.23. Let k be admissible with v ⩾ 3. Then, every type-𝑛 module is isomorphic to a

unique BP(u, v)-module of the form 𝜎 ℓ
(
H𝜆

)
, for some ℓ ∈ 1

2ℤ, where 𝜆 ∈ Σk satisfies one of the

following conditions:

𝑛 = 1 𝑛 = 2 𝑛 = 3

𝜆𝐹1 , 𝜆
𝐹
2 ≠ 0 𝜆𝐹1 = 0 and 𝜆𝐹2 ≠ 0, v − 2 𝜆𝐹1 = 0 and 𝜆𝐹2 = v − 2

We visualise the type-𝑛 spectral flow orbits in Figure 1. The representatives chosen in Corol-

lary 2.3.23 are the leftmost for each type in this figure.

2.3.4. Relaxed Highest-Weight BP(u, v)-Modules. Having completed the classification of

simple highest-weight BP(u, v)-modules, it remains to classify relaxed highest-weight BP(u, v)-

modules. As every simple untwisted relaxed highest-weight BP(u, v)-module is highest-weight,

the classification of simple untwisted relaxed highest-weight modules was completed in Theo-

rem 2.3.15.

Recall from Section 2.2.5 that there exist simple twisted BPk-modules whose top spaces are

not highest-weight Zk-modules. The BP(u, v)-modules whose top spaces are simple lowest-weight

Zk-modules are conjugates of the simple twisted highest-weight BP(u, v)-modules classified in

Theorem 2.3.15. By Theorem 2.2.16 what remains is to determine when the simple BPk-module

Rtw
[ 𝑗 ],Δ,𝜔 is a BP(u, v)-module.

A simple twisted relaxed highest-weight BPk-module M is a BPk-module if and only if its top

space Mtop = Zhutw [
M

]
is annihilated by Zhutw [

Jk
]
, where Jk denotes the maximal ideal of BPk.
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· · · 𝜎
1/2
↦−→ 𝜎1/2

↦−→
𝜆𝐹1 , 𝜆

𝐹
2 ≠ 0

𝜎1/2
↦−→ 𝜎1/2

↦−→ · · ·

· · · 𝜎
1/2
↦−→ 𝜎1/2

↦−→
𝜆𝐹1 = 0

𝜆𝐹2 ≠ 0, v − 2

𝜎1/2
↦−→ 𝜎1/2

↦−→
𝜆𝐹2 = 0

𝜆𝐹1 ≠ 0, v − 2

𝜎1/2
↦−→ 𝜎1/2

↦−→ · · ·

· · · 𝜎
1/2
↦−→ 𝜎1/2

↦−→
𝜆𝐹 = [1, 0, v − 2]

𝜎1/2
↦−→ 𝜎1/2

↦−→
𝜆𝐹 = [v − 1, 0, 0]

𝜎1/2
↦−→ 𝜎1/2

↦−→
𝜆𝐹 = [1, v − 2, 0]

𝜎1/2
↦−→ 𝜎1/2

↦−→ · · ·

type-1

type-2

type-3

Figure 1. A picture of the weights of the three types of spectral flow orbits through
a simple highest-weight BP(u, v)-module for k admissible with v ⩾ 3. The 𝐽0-
eigenvalue increases from left to right, whilst the 𝐿0-eigenvalue increases from
top to bottom. The conditions stated for the Dynkin labels of 𝜆𝐹 constrain the
surviving weight 𝜆 ∈ Σk of the corresponding untwisted module. The BP(u, v)-
modules encompassed by the ellipses in these spectral flow orbits are not relaxed
highest-weight modules

A consequence of Theorem 2.3.15 is that Zhutw [
Jk

]
annihilates Zhutw [

Htw
𝜆

]
≃ H 𝑗,Δ, with

𝑗 and Δ determined by 𝜆 as in (2.3.37), if and only if 𝜆 ∈ Σk. We extend this to the simple

relaxed highest-weight modules Rtw
[ 𝑗 ],Δ,𝜔 of Theorem 2.2.16 using an argument similar to that of

[114, Prop. 4.2]. As there, the crucial objects in this analysis are coherent families of Zk-modules

from Section 2.2.6.

Proposition 2.3.24. The irreducible semisimple coherent family C
ss
Δ,𝜔 of Zhutw [

BPk
]
-modules is

a Zhutw [
BP(u, v)

]
-module if and only if one of its infinite-dimensional submodules is.

Proof. It is clear that C
ss
Δ,𝜔 being a Zhutw [

BP(u, v)
]
-module implies that every one of its sub-

modules is too, in particular the infinite-dimensional ones.

Following closely the general methodology developed in [114], consider the subalgebra Ak =

Zhutw [
Jk

]
∩ Ck, where we recall that Ck = ℂ[𝐽 , 𝐿,Ω] (Lemma 2.2.13). A given simple weight

Zhutw [
BPk

]
-module M is a Zhutw [

BP(u, v)
]
-module if and only if Ak annihilates some nonzero

element of M. This fact is proved in exactly the same way as the affine version in [114, Lem. 4.1].

For each 𝑎 ∈ Ak ⊂ ℂ[𝐽 , 𝐿,Ω], there is a polynomial 𝑝𝑎 in three variables such that 𝑎 acts on

the weight space C
ss
Δ,𝜔 ( 𝑗,Δ, 𝜔) as multiplication by 𝑝𝑎 ( 𝑗,Δ, 𝜔). After choosing a coherent family

C
ss
Δ,𝜔 , Δ and 𝜔 are fixed and 𝑝𝑎 can be treated as a single-variable polynomial in 𝑗 .

Suppose one of the infinite-dimensional submodules of C
ss
Δ,𝜔 is a Zhutw [

BP(u, v)
]
-module.

That is, it is annihilated by Zhutw [
Jk

]
and thus by Ak. Therefore, for every 𝑎 ∈ Ak, we have
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𝑝𝑎 ( 𝑗,Δ, 𝜔) = 0 for infinitely many distinct values of 𝑗 . As 𝑝𝑎 (−,Δ, 𝜔) is a single-variable polyno-

mial in 𝑗 , it must be the zero polynomial. So all 𝑎 ∈ Ak act as zero on C
ss
Δ,𝜔 and therefore C

ss
Δ,𝜔 is a

Zhutw [
BP(u, v)

]
-module. ■

The top space of every (simple) Rtw
[ 𝑗 ],Δ,𝜔 embeds into some irreducible semisimple coherent family

and every such family has an infinite-dimensional highest-weight submodule H 𝑗 ′,Δ, by Proposi-

tion 2.2.18. From Theorem 2.3.15, we have classified all the simple highest-weight BP(u, v)-

modules in terms of surviving weights. By Proposition 2.3.24, the irreducible semisimple coherent

families that are Zhutw [
BP(u, v)

]
-modules are precisely those containing simple highest-weight

BP(u, v)-modules whose top spaces are infinite-dimensional:

Let Γk denote the set of (𝑤 = 𝟙) admissible 𝔰𝔩3-weights 𝜆 of level k with 𝜆𝐹0 ≠ 0, so that 𝜆 ∈ Σk

(Lemma 2.3.6), and 𝜆𝐹1 ≠ 0, i.e. thatHtw
𝜆

has an infinite-dimensional top space (Proposition 2.3.17).

Then, Γk parametrises the isomorphism classes of the simple highest-weightBP(u, v)-modules with

infinite-dimensional top spaces.

For each 𝜆 ∈ Γk, compute 𝑗 and Δ using (2.3.37), then substitute into (2.2.17) to compute 𝜔:

(2.3.44) 𝜔 = 𝜔+𝑗,Δ = − 2
27
(𝜆1 − 𝜆2 + k + 3) (2𝜆1 + 𝜆2 − k) (𝜆1 + 2𝜆2 − 2k − 3) .

This gives the eigenvalues of 𝐽 , 𝐿 and Ω on the highest-weight vector of (Htw
𝜆
)top. The Rtw

[ 𝑗 ′],Δ,𝜔

are, for all [ 𝑗 ′] ∈ ℂ/ℤ satisfying 𝜔+
𝑖,Δ ≠ 𝜔 for every 𝑖 ∈ [ 𝑗 ′], simple relaxed highest-weight

BP(u, v)-modules (by Theorem 2.2.16 and Proposition 2.3.24) and all such modules are obtained,

up to isomorphism, in this way.

Theorem 2.3.25. Let k be admissible with v ⩾ 3 and let 𝑗 be such that Rtw
[ 𝑗 ],𝜆 = Rtw

[ 𝑗 ],Δ,𝜔 (where

Δ and 𝜔 are determined by 𝜆) is simple. Then, Rtw
[ 𝑗 ],𝜆 is a (twisted) BP(u, v)-module if and only if

𝜆 ∈ Γk.

Recall from Corollary 2.3.18 (and [15]) that there are no highest-weight BP(u, v)-modules with

infinite-dimensional top spaces when v = 2.

Corollary 2.3.26. Let k be admissible with v = 2. Then, every simple (twisted) relaxed highest-

weight BP(u, v)-module is highest-weight.

For the remainder of this chapter, we will restrict attention to admissible levels of the form

(2.3.45) k = −3 + u

v
with u, v ⩾ 3
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to ensure that BP(u, v) admits modules whose top spaces are dense Zk-modules. The levels of

(2.3.45) are also known as nondegenerate admissible levels.

Suppose that C
ss
Δ,𝜔 is a Zhutw [

BP(u, v)
]
-module. By Proposition 2.2.14, the direct summands

R[ 𝑗 ],Δ,𝜔 are not simple for at least one, and at most three, [ 𝑗] ∈ ℂ/ℤ and each nonsimple summand

has precisely one infinite-dimensional highest-weight submodule.

Lemma 2.3.27. If k is nondegenerate admissible, then each irreducible semisimple coherent fam-

ily C
ss
Δ,𝜔 of Zhutw [

BP(u, v)
]
-modules has precisely three infinite-dimensional highest-weight sub-

modules. The map Γk → ℂ2 given by 𝜆 ↦→ (Δ, 𝜔) is thus 3-to-1. Moreover, the highest weights

𝜆 = 𝜆𝐼 − u
v𝜆

𝐹 of these three submodules are related by the following ℤ3-action generated by the

action ∇(𝜆) = [𝜆2 − u
v , 𝜆0, 𝜆1 + u

v ].

The orbit of a given 𝜆 ∈ Γk (as well as its fractional and integral parts) under ∇ is given by

(2.3.46)

· · · ↦−→ [𝜆0, 𝜆1, 𝜆2] ↦−→ [𝜆2 − u
v , 𝜆0, 𝜆1 + u

v ] ↦−→ [𝜆1, 𝜆2
u
v , 𝜆0 + u

v ] ↦−→ · · · ,

· · · ↦−→ [𝜆𝐼0, 𝜆
𝐼
1, 𝜆

𝐼
2] ↦−→ [𝜆

𝐼
2, 𝜆

𝐼
0, 𝜆

𝐼
1] ↦−→ [𝜆

𝐼
1, 𝜆

𝐼
2, 𝜆

𝐼
0] ↦−→ · · · ,

· · · ↦−→ [𝜆𝐹0 , 𝜆
𝐹
1 , 𝜆

𝐹
2 ] ↦−→ [𝜆

𝐹
2 + 1, 𝜆𝐹0 , 𝜆

𝐹
1 − 1] ↦−→ [𝜆𝐹1 , 𝜆

𝐹
2 + 1, 𝜆𝐹0 − 1] ↦−→ · · · .

Proof. That the weights obtained from 𝜆 ∈ Γk remain in Γk under the ℤ3-action is clear.

Therefore, the three highest-weight BPk-modules corresponding to the distinct 𝔰𝔩3 weights ∇𝑖 (𝜆),

𝑖 ∈ {0, 1, 2} are BP(u, v)-modules with infinite-dimensional top spaces if any is.

That Δ and 𝜔 are invariant under ∇ can be checked by direct computation. The three highest-

weight modules therefore arise as submodules of the same irreducible semisimple coherent family,

and are nonisomorphic as their highest weights can only coincide if both u and v are divisible by

3. ■

By combining (2.1.18), Lemma 2.2.13 and Proposition 2.3.24, we have the following set of

results.

Theorem 2.3.28. Let k be nondegenerate admissible. Then:

• There are 1
3 |Γk | =

1
12 (u − 1) (u − 2) (v − 1) (v − 2) irreducible semisimple coherent families of

Zhutw [
BP(u, v)

]
-modules C

ss
Δ,𝜔 , up to isomorphism.

• The families of twisted relaxed highest-weight BP(u, v)-modules Rtw
[ 𝑗 ],𝜆 = Rtw

[ 𝑗 ],Δ,𝜔 are in 1-to-1

correspondence with Γk/ℤ3, where ℤ3 acts freely as in (2.3.46).

• For each 𝜆 ∈ Γk, the twisted relaxed highest-weight module Rtw
[ 𝑗 ],𝜆 is a simple BP(u, v)-module

for all cosets [ 𝑗] ∈ ℂ/ℤ except three, namely the three distinct cosets that contain a root 𝑖 of the

polynomial 𝜔+
𝑖,Δ − 𝜔 .
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• The conjugate of the simple twisted relaxed highest-weight BP(u, v)-module Rtw
[ 𝑗 ],Δ,𝜔 is also a

simple twisted relaxed highest-weight BP(u, v)-module: 𝛾
(
Rtw
[ 𝑗 ],Δ,𝜔

)
≃ Rtw

[−𝑗 ],Δ,−𝜔 .

This completes the classification of simple relaxed highest-weight BP(u, v)-modules. Note that

if (Δ, 𝜔) corresponds to a coherent family of Zhutw [
BP(u, v)

]
-modules, then closure under con-

jugation requires that so must (Δ,−𝜔). In fact, it is easy to check that under the Γk-preserving

ℤ2-action

(2.3.47)

[𝜆0, 𝜆1, 𝜆2] ←→ [𝜆2 −
u

v
, 𝜆1, 𝜆0 +

u

v
],

[𝜆𝐼0, 𝜆
𝐼
1, 𝜆

𝐼
2] ←→ [𝜆

𝐼
2, 𝜆

𝐼
1, 𝜆

𝐼
0],

[𝜆𝐹0 , 𝜆
𝐹
1 , 𝜆

𝐹
2 ] ←→ [𝜆

𝐹
2 + 1, 𝜆𝐼1, 𝜆

𝐼
0 − 1],

the associated weight (Δ, 𝜔) gets mapped to (Δ,−𝜔). With (2.3.46), this defines an action of the

𝔰𝔩3 Weyl group W = S3 on Γk. The orbits clearly have length 6 unless 𝜔 = 0, in which case

Lemma 2.3.27 forces them to have length 3.

The spectral flow images 𝜎 ℓ
(
Rtw
[ 𝑗 ],𝜆

)
, ℓ ≠ 0, of these simple twisted relaxed highest-weight

BP(u, v)-modules are likewise simple BP(u, v)-modules, but they are not relaxed highest-weight

because their conformal weights are not bounded below. However such modules will play a crucial

role in the modular transformations and fusion rules of BP(u, v) in Chapter 3.

The irreducible semisimple Zk-modules C
ss
Δ,𝜔 are not the only coherent families we know. In-

deed in Section 2.2.6, we also introduced two other coherent families C
±
Δ,𝜔 that contain reducible-

but-indecomposable submodules. Just as C
ss
Δ,𝜔 played a crucial role in classifying simple relaxed

highest-weight BP(u, v)-modules, we will now see how the coherent families C
±
Δ,𝜔 allow us to con-

struct nonsemisimple BP(u, v)-modules. Here as before, assume k is nondegenerate admissible.

Recall that the simple direct summands of C
±
Δ,𝜔 are R[ 𝑗 ],Δ,𝜔 , for all but (up to) three [ 𝑗] ∈ ℂ/ℤ,

and that its nonsimple direct summands are denoted by R
±
[ 𝑗 ],Δ,𝜔 .

Proposition 2.3.29. Let 𝜆 ∈ Γk and let 𝑗 , Δ and 𝜔 be defined by (2.3.37) and (2.3.44). Then,

the nonsimple Zk-module R
±
[ 𝑗 ],Δ,𝜔 has exactly two composition factors, H 𝑗,Δ and 𝛾 (H−𝑗−1,Δ), both

of which are Zhutw [
BP(u, v)

]
-modules. Moreover, we have the following nonsplit short exact se-

quences:

(2.3.48)
0 −→ 𝛾 (H−𝑗−1,Δ) −→ R

+
[ 𝑗 ],Δ,𝜔 −→ H 𝑗,Δ −→ 0,

0 −→ H 𝑗,Δ −→ R
−
[ 𝑗 ],Δ,𝜔 −→ 𝛾 (H−𝑗−1,Δ) −→ 0.
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Proof. We only consider R
+
[ 𝑗 ],Δ,𝜔 as the argument for R

−
[ 𝑗 ],Δ,𝜔 is identical. First, note that H 𝑗,Δ

is an infinite-dimensional Zhutw [
BP(u, v)

]
-module, by Theorem 2.3.15. The irreducible semi-

simple coherent family C
ss
Δ,𝜔 is therefore a Zhutw [

BP(u, v)
]
-module too, by Proposition 2.3.24,

hence so is the lowest-weight module 𝛾 (H−𝑗−1,Δ) ⊂ R
ss
[ 𝑗 ],Δ,𝜔 . As R

ss
[ 𝑗 ],Δ,𝜔 is the semisimplification

of R
+
[ 𝑗 ],Δ,𝜔 , they have the same composition factors. To demonstrate that there are no more factors

beyond the two already found, it suffices to show that H−𝑗−1,Δ is infinite-dimensional. Since the

conjugate of H−𝑗−1,Δ is a Zhutw [
BP(u, v)

]
-module, H−𝑗−1,Δ must correspond to some 𝜇 ∈ Σk, by

Theorem 2.3.15.

Proceeding as in the proof of Lemma 2.3.6, we find that the unique solution is 𝜇 = [𝜆0, 𝜆2 −
u
v , 𝜆1 + u

v ], hence 𝜇𝐼 = [𝜆𝐼0, 𝜆
𝐼
2, 𝜆

𝐼
1] and 𝜇𝐹 = [𝜆𝐹0 , 𝜆

𝐹
2 +1, 𝜆𝐹1 −1]. Because 𝜇𝐹1 = 𝜆𝐹2 +1 ≠ 0, it follows

that 𝜇 ∈ Γk and so H−𝑗−1,Δ is infinite-dimensional, as desired. This establishes the first exact

sequence in (2.3.48). It is nonsplit because 𝐺+ acts injectively on R
+
[ 𝑗 ],Δ,𝜔 by construction. ■

It remains to show that the nonsimple Zhutw [
BPk

]
-modules R

±
[ 𝑗 ],Δ,𝜔 appearing in the short

exact sequences (2.3.48) are actually Zhutw [
BP(u, v)

]
-modules.

Proposition 2.3.30. Let 𝜆 ∈ Γk and let 𝑗 , Δ and 𝜔 be defined by (2.3.37) and (2.3.44). Then, the

nonsimple Zk-module R
±
[ 𝑗 ],Δ,𝜔 is a Zhutw [

BP(u, v)
]
-module.

Proof. We use a simplified version of the argument in [114, Thm. 5.3]. We shall also only

detail the argument for R
+
[ 𝑗 ],Δ,𝜔 . The highest-weight module in the short exact sequence (2.3.48)

containing R
+
[ 𝑗 ],Δ,𝜔 is a Zhutw [

BP(u, v)
]
-module. In other words, Zhutw [

Jk
]
·H 𝑗,Δ = 0 where Jk

is the maximal ideal of BPk. The same short exact sequence implies that Zhutw [
Jk

]
· R+[ 𝑗 ],Δ,𝜔 ⊆

𝛾 (H−𝑗−1,Δ), where 𝛾 (H−𝑗−1,Δ) is also a Zhutw [
BP(u, v)

]
-module.

That Zk is noetherian is an easy generalisation of [149, Cor. 1.3]. The ideal

(2.3.49) Zhutw [
Jk

]
⊂ Zhutw [

BPk
]
≃ Zk

is therefore generated by a finite number of elements 𝑎1, . . . , 𝑎𝑛 which we may, without loss of

generality, choose to be eigenvectors of 𝐽 . Let 𝑗𝑖 denote the 𝐽 -eigenvalue of 𝑎𝑖 , 𝑖 = 1, . . . , 𝑛.

Choose 𝑗 ′ ∈ [ 𝑗] such that 𝑗 ′ ⩽ 𝑗 −max{ 𝑗1, . . . , 𝑗𝑛}. Then, 𝑎𝑖 takes the 𝐽 -eigenspace of R
+
[ 𝑗 ],Δ,𝜔

of eigenvalue 𝑗 ′ into the 𝐽 -eigenspace of 𝛾 (H−𝑗−1,Δ) of eigenvalue 𝑗 ′+𝑎𝑖 ⩽ 𝑗 . But, the eigenvalues

of 𝐽 acting on 𝛾 (H−𝑗−1,Δ) are bounded below by 𝑗 + 1, hence 𝑎𝑖 annihilates the 𝐽 -eigenspace of

R
+
[ 𝑗 ],Δ,𝜔 of eigenvalue 𝑗 ′, for each 𝑖. It follows that Zhutw [

Jk
]

annihilates this eigenspace. As this

eigenspace generates R
+
[ 𝑗 ],Δ,𝜔 , this shows that Zhutw [

Jk
]

(being an ideal) annihilates R
+
[ 𝑗 ],Δ,𝜔 and

therefore R
+
[ 𝑗 ],Δ,𝜔 is a Zhutw [

BP(u, v)
]
-module. ■
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Using the (twisted) Zhu induction functor discussed in Section 1.1.4, we can induce twisted relaxed

highest-weight BP(u, v)-modules from each of the Zhutw [
BP(u, v)

]
-modules R

±
[ 𝑗 ],Δ,𝜔 .

Consider the submodule of this induced module obtained by summing all the submodules

whose intersection with the top space R
±
[ 𝑗 ],Δ,𝜔 is zero. Quotienting by this submodule results in a

twisted BP(u, v)-module which we shall denote by Rtw,±
[ 𝑗 ],Δ,𝜔 (or Rtw,±

𝜆
for short as 𝑗 , Δ and 𝜔 are

determined by some 𝜆 ∈ Γk), that has R
±
[ 𝑗 ],Δ,𝜔 as its top space and has the property that its nonzero

submodules intersect this top space nontrivially. The Rtw,±
𝜆

are clearly nonsemisimple BP(u, v)-

modules, because their top spaces are.

Theorem 2.3.31. When k is nondegenerate admissible, the vertex operator algebraBP(u, v) admits

nonsemisimple modules. In physical language, the corresponding minimal model conformal field

theory is logarithmic.

As all the modules in the short exact sequences (2.3.48) admit Zhu inductions giving twisted

BP(u, v)-modules, it is reasonable to expect that there are analogous short exact sequences of

BP(u, v)-modules. Ensuring that this is the case is why we quotiented the Zhu induction of R
±
[ 𝑗 ],Δ,𝜔

by the sum of all submodules that intersect trivially with the top space.

For this, it is convenient to introduce new modules Wtw,±
𝜆

= Wtw,±
[ 𝑗 ],Δ,𝜔 that are obtained by

treating R
±
[ 𝑗 ],Δ,𝜔 as a module over the twisted mode algebra Utw

0 of (2.2.1), letting Utw
> act as 0, and

then inducing to a Utw-module. It follows that Wtw,±
𝜆

is a “relaxed Verma” BPk-module whose top

space is R
±
[ 𝑗 ],Δ,𝜔 .

As such, we may consider the sum Ntw,±
𝜆

of all the submodules of Wtw,±
𝜆

whose intersection

with the top space R
±
[ 𝑗 ],Δ,𝜔 is zero. Because this top space is nonsemisimple, Ntw,±

𝜆
is a proper

submodule of the maximal submodule Mtw,±
𝜆

of Wtw,±
[ 𝑗 ],𝜆. Additionally,

(2.3.50) Rtw,±
𝜆
≃

Wtw,±
𝜆

Ntw,±
𝜆

.

We now proceed in an analogous fashion to [113, Sec. 4].

Theorem 2.3.32. Let k be nondegenerate admissible and let 𝜆 ∈ Γk. We then have the following

nonsplit short exact sequences of BP(u, v)-modules:

(2.3.51)
0 −→ 𝛾

(
Htw
𝜇

)
−→ Rtw,+

𝜆
−→ Htw

𝜆
−→ 0,

0 −→ Htw
𝜆
−→ Rtw,−

𝜆
−→ 𝛾

(
Htw
𝜇

)
−→ 0,

where 𝜇 = [𝜆0, 𝜆2 − u
v , 𝜆1 + u

v ] ∈ Γk.
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Proof. As is now familiar, we shall also only detail the argument for R
+
𝜆 . Let 𝑗 , Δ and 𝜔 be

defined by (2.3.37) and (2.3.44). As Zhu induction is exact, the short exact sequence (2.3.48) gives

(2.3.52) Vtw
𝑗,Δ ≃

Wtw,+
[ 𝑗 ],Δ,𝜔

𝛾
(
Vtw
−𝑗−1,Δ

) .
Hence, Htw

𝜆
is also a quotient of Wtw,+

𝜆
= Wtw,+

[ 𝑗 ],Δ,𝜔 and (2.3.50) gives

(2.3.53)
Rtw,+
𝜆

Mtw,+
𝜆

/
Ntw,+
𝜆

≃
Wtw,+
𝜆

Mtw,+
𝜆

≃ Htw
𝜆
,

since relaxed highest-weight modules have unique irreducible quotients. Thus, Htw
𝜆

is a quotient

of Rtw,+
𝜆

. This is the rightmost part of the short exact sequence in (2.3.51). For the leftmost part,

note that the unique maximal submodule of 𝛾
(
Vtw
−𝑗−1,Δ

)
is 𝛾

(
Vtw
−𝑗−1,Δ

)
∩ Ntw,+

𝜆
, because the only

submodule of 𝛾
(
Vtw
−𝑗−1,Δ

)
intersecting its top space nontrivially is 𝛾

(
Vtw
−𝑗−1,Δ

)
itself. Therefore

(2.3.54) 𝛾
(
Htw
𝜇

)
=

𝛾
(
Vtw
−𝑗−1,Δ

)
𝛾
(
Vtw
−𝑗−1,Δ

)
∩Ntw,+

𝜆

≃
𝛾
(
Vtw
−𝑗−1,Δ

)
+Ntw,+

𝜆

Ntw,+
𝜆

.

This is clearly a submodule of Wtw,+
𝜆

/
Ntw,+
𝜆
≃ Rtw,+

𝜆
and therefore 𝛾

(
Htw
𝜇

)
embeds into Rtw,+

𝜆
.

All that remains is to show that the sequence of BP(u, v)-modules constructed from the embedding

𝛾
(
Htw
𝜇

)
↩→ Rtw,+

𝜆
and the surjection Rtw,+

𝜆
↠ Htw

𝜆
is exact. Using (2.3.50) and (2.3.54),

(2.3.55)
Rtw,+
𝜆

𝛾
(
Htw
𝜇

) ≃ Wtw,+
𝜆

𝛾
(
Vtw
−𝑗−1,Δ

)
+Ntw,+

𝜆

≃
Vtw
𝑗,Δ(

𝛾
(
Vtw
−𝑗−1,Δ

)
+Ntw,+

𝜆

) /
𝛾
(
Htw
𝜇

) .
The BP(u, v)-module Rtw,+

𝜆

/
𝛾
(
Htw
𝜇

)
is therefore a twisted highest-weight BP(u, v)-module. By

Theorem 2.3.16, it is also simple and the quotient on the right-hand side of (2.3.55) is isomorphic

to Htw
𝜆

. ■

To summarise the results of this chapter for BP(u, v) with v ⩾ 3, we have proven that such

Bershadsky–Polyakov minimal models admit infinitely many simple modules (in addition to clas-

sifying the relaxed ones) as well as reducible-but-indecomposable modules. This nonrationality is

a significant obstacle to computing modular transformations and fusion rules, which is essential

data for constructing logarithmic conformal field theories. The next chapter details how to navigate

this obstacle.

2.3.5. Examples. We conclude this chapter by illustrating the classification for certain exam-

ples of BP(u, v).

Example (BP(3, 2)). For k = −3
2 , the central charge of the minimal model is c = 0. Since

𝜆𝐼 ∈ P0
⩾ = {[0, 0, 0]} and 𝜆𝐹 ∈ P1

⩾ is constrained by 𝜆𝐹0 ⩾ 0, the only surviving weight is
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𝜆𝐼1

𝜆𝐼2

𝜆𝐼0

(
0, 0

) ( 1
3 ,

1
30

) ( 2
3 ,

1
3
)(

−1
3 ,

1
30

)
(
− 2

3 ,
1
3
) (

0, 1
5
)
𝛾

( 1
3 ,

1
12

)
1

( 2
3 ,

17
60

)
2

(
1, 3

4
)

3
(
0,− 1

20
)

1

(
− 1

3 ,
1

12
)

1( 1
3 ,

17
60

)
2

𝛾

Figure 2. The charges and conformal weights ( 𝑗,Δ) of the untwisted (left) and
twisted (right) simple highest-weight BP(5, 2)-modules, arranged by the Dynkin
labels of the integral parts 𝜆𝐼 of the corresponding surviving weights 𝜆. The sub-
script on the twisted labels gives the dimension of the top space. Conjugation 𝛾
is indicated by reflection about the dashed line and spectral flow 𝜎 by 120◦ anti-
clockwise rotation about each triangle’s centre.

𝜆 = [0, 0, 0] − 3
2 [1, 0, 0] = [k, 0, 0]. There is therefore a unique simple untwisted highest-weight

module H−3𝜔0/2 = H0,0 and a unique simple twisted highest-weight module Htw
−3𝜔0/2 = Htw

0,0 (up to

isomorphism). This is clearly the trivial minimal model.

Example (BP(5, 2)). For k = − 1
2 , the central charge is c = 2

5 and we have 𝜆𝐼 ∈ P2
⩾ and

𝜆𝐹 = [1, 0, 0]. Therefore there are
��P2
⩾

�� = 6 simple untwisted highest-weight modules and 6 simple

twisted highest-weight modules. As 𝜆𝐹 always has 𝜆𝐹1 = 0, all twisted highest-weight modules have

finite-dimensional top spaces. We illustrate these modules and the charges and conformal weights

of their highest-weight vectorsin Figure 2, arranging them according to 𝜆𝐼 . This example is one of

the Bershadsky–Polyakov minimal models considered in [15].

Example (BP(4, 3)). Moving outside cases from [15], consider the minimal model with k =

− 5
3 and c = −1. This minimal model was studied in [5]. Here 𝜆𝐼 ∈ P1

⩾, so 𝜆𝐼 = [1, 0, 0], [0, 1, 0]

or [0, 0, 1]. Similarly, 𝜆𝐹 ∈ P2
⩾ and hence 𝜆𝐹 = [2, 0, 0], [1, 1, 0] or [1, 0, 1] (recall that 𝜆 must

be a surviving weight). Hence there are
��P1
⩾

����P1
⩾

�� = 9 simple untwisted highest-weight modules

and 9 simple twisted highest-weight modules. Of the twisted highest-weight modules, 6 have finite-

dimensional top spaces whilst the top spaces of the other 3 are infinite-dimensional. All highest-

weight modules are type-3.

As in the previous example, we arrange the highest-weight data in Figure 3. By Theorem 2.3.28,

there is one family of generically simple relaxed highest-weight BP(4, 3)-modules Rtw
[ 𝑗 ],−1/8,0, 𝑗 ≠

− 1
6 ,−

1
2 ,−

5
6 (mod 1). The corresponding semisimple coherent family has 3 distinct highest-weight

submodules, each isomorphic to one of the 3 twisted highest-weight modules with infinite dimen-

sional top spaces. This family must be closed under conjugation and so 𝜔 = 0, as can be checked

explicitly.
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Figure 3. The charges and conformal weights ( 𝑗,Δ) of the untwisted (left) and
twisted (right) simple highest-weight BP(4, 3)-modules, arranged by the Dynkin
labels of the integral (small-scale) and fractional (large-scale) parts 𝜆𝐹 of the cor-
responding surviving weights 𝜆. The subscript on the twisted labels gives the
dimension of the top space.

By Theorem 2.3.32, we know of six nonsemisimple twisted relaxed highest-weight BP(4, 3)-

modules characterised by the following nonsplit short exact sequences:

(2.3.56)

0 −→ 𝛾
(
Htw
−5/6,−1/8

)
−→ Rtw,+

[−1/6],−1/8,0 −→ Htw
−1/6,−1/8 −→ 0,

0 −→ 𝛾
(
Htw
−1/2,−1/8

)
−→ Rtw,+

[−1/2],−1/8,0 −→ Htw
−1/2,−1/8 −→ 0,

0 −→ 𝛾
(
Htw
−1/6,−1/8

)
−→ Rtw,+

[−5/6],−1/8,0 −→ Htw
−5/6,−1/8 −→ 0,

0 −→ Htw
−1/6,−1/8 −→ Rtw,−

[−1/6],−1/8,0 −→ 𝛾
(
Htw
−5/6,−1/8

)
−→ 0,

0 −→ Htw
−1/2,−1/8 −→ Rtw,−

[−1/2],−1/8,0 −→ 𝛾
(
Htw
−1/2,−1/8

)
−→ 0,

0 −→ Htw
−5/6,−1/8 −→ Rtw,−

[−5/6],−1/8,0 −→ 𝛾
(
Htw
−1/6,−1/8

)
−→ 0.

An interesting feature of this minimal model is its relation to the 𝛽𝛾 ghost vertex algebra B: It

was shown in [5, Sec. 5.2] that the Bershadsky–Polyakov minimal model vertex operator algebra

BP(4, 3) embeds into B with c = −1. Recall that B is strongly generated by 𝛽 and 𝛾 , both of

conformal weight 1
2 , subject to the operator product expansions

(2.3.57) 𝛽 (𝑧)𝛽 (𝑤) ∼ 0 ∼ 𝛾 (𝑧)𝛾 (𝑤) and 𝛽 (𝑧)𝛾 (𝑤) ∼ −𝟙
𝑧 −𝑤 .

An embedding BP(4, 3) ↩→ B is then given by

(2.3.58) 𝐽 ↦−→ 1
3

:𝛽𝛾 :, 𝐺+ ↦−→ 1
3
√

3
:𝛽𝛽𝛽:, 𝐺− ↦−→ − 1

3
√

3
:𝛽𝛽𝛽:, 𝐿 ↦−→ 1

2
(:𝜕𝛽𝛾 : − :𝜕𝛾𝛽:) .
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This suggests, and it is easy to check [5, Prop. 5.9], that BP(4, 3) is (isomorphic to) the ℤ3-orbifold

of B corresponding to the automorphism e2𝜋 i𝐽0 . We will see in Section 3.3.7 that this special rela-

tionship is reflected in the fusion rules of BP(4, 3).



Chapter 3

Inverting Quantum Hamiltonian

Reduction

In the last chapter, we introduced Bershadsky–Polyakov minimal models denoted by BP(u, v)

and classified their simple relaxed modules. Additionally, we proved the existence of reducible-

but-indecomposable BP(u, v)-modules.

The characters, modular transformations and fusion rules of BP(u, v)-modules are of crucial

importance in constructing and analysing logarithmic conformal field theories with BP(u, v) sym-

metry.

To compute this ‘physics data’, in this chapter we will leverage the fact that BPk is a quantum

hamiltonian reduction ofVk(𝔰𝔩3), whose other quantum hamiltonian reduction (the Zamolodchikov

algebra Wk
3 of Section 1.3.2) is well-understood. The idea is that the partial quantum hamiltonian

reductions of Section 1.3 can be inverted, and that such inverses can be used to relate the represen-

tation theories of the W-algebras involved.

3.1. The Idea

An ‘inverse’ to quantum hamiltonian reduction was first introduced by Semikhatov [147] for the

case of 𝔤 = 𝔰𝔩2 (see Section 3.1.2). It takes the form of an embedding Vk(𝔰𝔩2) ↩→Wk(𝔰𝔩2, 𝑓 ) ⊗ Π

where Π is a lattice vertex algebra to be defined shortly. It was later shown by Adamović that this

inverse reduction can be deployed to understand some of the representation theory of Vk(𝔰𝔩2) and,

at certain levels, Lk(𝔰𝔩2) [2].

Particularly, the inverse quantum hamiltonian reduction for 𝔤 = 𝔰𝔩2 neatly explains the appear-

ance of Virasoro minimal model characters in the characters of nondegenerate admissible-level

relaxed Lk(𝔰𝔩2)-modules [52, 113]; the Virasoro vertex operator algebra Virk is a quantum hamil-

tonian reduction of Vk(𝔰𝔩2).

81
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An important consequence of this relation is that the modular S-transforms and Grothendieck

fusion rules of Lk(𝔰𝔩2) at these levels are naturally expressed in terms of their Virasoro minimal

model analogues.

It is expected that inverse quantum hamiltonian reductions can be constructed for more general

pairs of W-algebras, and will provide nontrivial relationships between the representation theories

of the W-algebras involved.

Recall from Section 1.3.1 that the (conjectured) condition for the existence of a partial quan-

tum hamiltonian reduction from Wk(𝔤, 𝑓1) to Wk(𝔤, 𝑓2) is that 𝑓1 < 𝑓2 under the ordering on the

corresponding nilpotent orbits of 𝔤.

The philosophy we adopt here is that despite not having a complete understanding of how

partial quantum hamiltonian reduction should be defined for W-algebras, it can be inverted. That

is, for all pairs of nilpotent elements 𝑓1, 𝑓2 ∈ 𝔤 such that 𝑓1 < 𝑓2, we believe that there exists an

embedding

(3.1.1) Wk(𝔤, 𝑓1) ↩→Wk(𝔤, 𝑓2) ⊗ V

whereV is a vertex operator algebra representing the degrees of freedom ‘lost’ in performing partial

quantum hamiltonian reduction. Taking the tensor product of suitable Wk(𝔤, 𝑓2)- and V-modules

gives Wk(𝔤, 𝑓1)-modules by restriction.

The inverse reduction (3.1.1) should also descend to an embedding of simple quotients at some

levels k, and in some sense relate the conformal field theory data of Wk(𝔤, 𝑓1) and Wk(𝔤, 𝑓2) irre-

spective of rationality.

3.1.1. The Half-Lattice Vertex Algebra. To construct a given inverse quantum hamiltonian

reduction embedding (3.1.1), first a suitable vertex operator algebra V needs to be determined.

For the cases studied here, we require a “half-lattice” vertex operator algebra Π [33]. This vertex

operator algebra appears in all known examples of inverse quantum hamiltonian reduction. The

half-lattice Π is part of the vertex-algebraic content of the ‘original’ inverse reduction identified by

Semikhatov[147]. Here we follow the construction of Π presented in [4, Sec. 3].

Consider the abelian Lie algebra 𝔥 = spanℂ{𝑐, 𝑑}, equipped with the symmetric bilinear form

⟨· , ·⟩ defined by

(3.1.2) ⟨𝑐, 𝑐⟩ = ⟨𝑑, 𝑑⟩ = 0 and ⟨𝑐, 𝑑⟩ = 2.

The group algebra ℂ[ℤ𝑐] = spanℂ{𝑒𝑛𝑐 | 𝑛 ∈ ℤ} has the structure of an 𝔥-module according to the

formula

(3.1.3) ℎ(𝑒𝑛𝑐) = 𝑛⟨ℎ, 𝑐⟩𝑒𝑛𝑐 .



3.1. The Idea 83

Denote by H the Heisenberg vertex algebra defined by 𝔥 and ⟨· , ·⟩.

Definition 3.1.1. The half lattice vertex algebra Π is the lattice vertex algebra H ⊗ ℂ[ℤ𝑐] where

the action of ℎ ∈ 𝔥 on ℂ[ℤ𝑐] is identified with the action of the zero mode ℎ0 of ℎ(𝑧) ∈ 𝐻 .

A set of (strong) generating fields for Π is then {𝑐 (𝑧), 𝑑 (𝑧), e𝑚𝑐 (𝑧) :𝑚 ∈ ℤ}. The operator product

expansions of these fields are easily determined:

(3.1.4)
𝑐 (𝑧)𝑐 (𝑤) ∼ 0, 𝑐 (𝑧)𝑑 (𝑤) ∼ 2 𝟙

(𝑧 −𝑤)2
, 𝑑 (𝑧)𝑑 (𝑤) ∼ 0,

𝑐 (𝑧)e𝑚𝑐 (𝑤) ∼ 0, 𝑑 (𝑧)e𝑚𝑐 (𝑤) ∼ 2𝑚 e𝑚𝑐 (𝑤)
𝑧 −𝑤 , e𝑚𝑐 (𝑧)e𝑛𝑐 (𝑤) ∼ 0.

The half lattice vertex algebra admits a two-parameter family of energy-momentum fields given by

(3.1.5) 𝑡 (𝑧) = 1
2

:𝑐 (𝑧)𝑑 (𝑧): + 𝛼𝜕𝑐 (𝑧) + 𝛽𝜕𝑑 (𝑧), 𝛼, 𝛽 ∈ ℂ.

The corresponding central charge is 2−48𝛼𝛽. The choice of conformal structure on Π will depend

on the inverse quantum hamiltonian reduction being considered.

3.1.2. Example. As mentioned previously, the first inverse quantum hamiltonian reduction

was described by Semikhatov [147] and its vertex- and representation-theoretic content was anal-

ysed by Adamović [2]: Let 𝔤 = 𝔰𝔩2. The universal affine vertex algebra Vk(𝔰𝔩2) has strong genera-

tors ℎ(𝑧), 𝑒 (𝑧) and 𝑓 (𝑧) with operator product expansions (see (1.2.6))

(3.1.6)
ℎ(𝑧)𝑒 (𝑤) ∼ 2𝑒 (𝑤)

𝑧 −𝑤 , ℎ(𝑧) 𝑓 (𝑤) ∼ −2𝑓 (𝑤)
𝑧 −𝑤 , 𝑒 (𝑧)𝑒 (𝑤) ∼ 𝑓 (𝑧) 𝑓 (𝑤) ∼ 0,

ℎ(𝑧)ℎ(𝑤) ∼ 2k𝟙
(𝑧 −𝑤)2

, 𝑒 (𝑧) 𝑓 (𝑤) ∼ k𝟙

(𝑧 −𝑤)2
+ ℎ(𝑤)
𝑧 −𝑤 .

For k ≠ −2, the Sugawara construction (1.2.8) defines an energy-momentum field 𝑇 Sug.(𝑧) (i.e.

makes Vk(𝔰𝔩2) a vertex operator algebra) given by

(3.1.7) 𝑇 Sug.(𝑧) = 1
2(k + 2)

(
1
2

:ℎ(𝑧)ℎ(𝑧): + :𝑒 (𝑧) 𝑓 (𝑧): + :𝑓 (𝑧)𝑒 (𝑧):
)
.

The only nonaffine W-algebra obtained from Vk(𝔰𝔩2) is the W-algebra Wk(𝔰𝔩2, 𝑓 ) specified by the

identity embedding 𝔰𝔩2 ↩→ 𝔰𝔩2. In fact, this W-algebra is isomorphic to the Virasoro vertex operator

algebra Virk [28]. Denote the energy-momentum field of Virk by 𝑇 (𝑧) and recall the 𝑇 (𝑧)𝑇 (𝑤)

operator product expansion

(3.1.8) 𝑇 (𝑧)𝑇 (𝑤) ∼
cVirk 𝟙

2(𝑧 −𝑤)4
+ 2𝑇 (𝑤)
(𝑧 −𝑤)2

+ 𝜕𝑇 (𝑤)
𝑧 −𝑤 , cVirk = −6k2 + 11k + 4

k + 2
.
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Taking V = Π in (3.1.1) and giving Π the conformal structure defined by

(3.1.9) 𝑡 (𝑧) = 1
2

:𝑐 (𝑧)𝑑 (𝑧): + k

4
𝜕𝑐 (𝑧) − 1

2
𝜕𝑑 (𝑧),

an inverse quantum hamiltonian reduction embedding is straightforward to construct.

Theorem 3.1.2. [2,147] For k ≠ −2, there exists a vertex operator algebra embeddingVk(𝔰𝔩2) ↩→

Virk ⊗ Π given by

(3.1.10)
ℎ(𝑧) ↦−→ 2𝑏 (𝑧), 𝑒 (𝑧) ↦−→ e𝑐 (𝑧),

𝑓 (𝑧) ↦−→ :((k + 2)𝑇 (𝑧) − (k + 1)𝜕𝑎(𝑧) − 𝑎(𝑧)𝑎(𝑧)) e−𝑐 (𝑧):,

where 𝑎(𝑧) = −k
4𝑐 (𝑧)+

1
2𝑑 (𝑧) and𝑏 (𝑧) = k

4𝑐 (𝑧)+
1
2𝑑 (𝑧). This embedding descends to an embedding

of simple quotients Lk(𝔰𝔩2) ↩→ Virk ⊗ Π if and only if k + 1 ∉ ℤ⩾1.

An important set of levels are the nondegenerate admissible levels for 𝔰𝔩2. These are all k satisfying

k = u
v − 2 for some coprime u, v ∈ ℤ⩾2. At such k, Virk is rational and is also known as a Virasoro

minimal model [78,92,98].

The inverse quantum hamiltonian reduction of Theorem 3.1.2 therefore relates the nonrational

Lk(𝔰𝔩2) to the rational Virk, where k is a nondegenerate admissible level. No such embedding exists

for the admissible levels with v = 1, at which Lk(𝔰𝔩2) is rational.

3.2. From W3 Minimal Models to BP Minimal Models

Despite the minimal models BP(u, v) with v ⩾ 3 being nonrational, modular transformations

and fusion rules can be unravelled using a general proposed framework known as the standard

module formalism [51, 146]. This is the same method used successfully for the aforementioned

nondegenerate admissible level Lk(𝔰𝔩2) in the category of weight modules [50,52].

A key requirement for applying the standard module formalism is the existence of continuous

families of modules with linearly independent characters. For BP(u, v) with v ⩾ 3, the modules

Rtw
[ 𝑗 ],𝜆 of Theorem 2.3.25 are good candidates for standard modules. What is therefore needed are

linearly independent ‘characters’ of Rtw
[ 𝑗 ],𝜆, which we will show can be taken to be certain one-point

functions related to one-point functions of W3(u, v)-modules. This relationship between BP(u, v)-

and W3(u, v)-modules is a straightforward consequence of the existence of an inverse quantum

hamiltonian reduction between BP(u, v) and W3(u, v) in the sense of Section 3.1.

The fact that Rtw
[ 𝑗 ],𝜆 is a twisted BP(u, v)-module complicates modularity and fusion compu-

tations. Additionally, applying spectral flow 𝜎 ℓ with ℓ ≠ 0 to Rtw
[ 𝑗 ],𝜆 always results in a BP(u, v)-

module that is not positive-energy with respect to the conformal structure furnished by 𝐿(𝑧). It will
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therefore be prudent to consider an alternative conformal structure on BP(u, v). Once this is done,

the standard module formalism can be applied and certain fusion rules for BP(u, v) follow.

Crucial to the proceeding analysis is the presence of the known modular transformations and

fusion rules forW3(u, v) from Section 1.3.3. That is, despiteBP(u, v) with v ⩾ 3 being nonrational,

its relation to the rational W3(u, v) via inverse quantum hamiltonian reduction greatly assists in

determining its modular transformations and fusion rules.

3.2.1. Ordering 𝔰𝔩3 W-Algebras. The ordering of 𝔰𝔩3 W-algebras is particularly simple. This

is because there are only three distinct nilpotent orbits in 𝔰𝔩3. The 𝔰𝔩3 W-algebras corresponding to

these nilpotent orbits are the affine vertex algebra Vk(𝔰𝔩3), the Bershadsky–Polyakov algebra BPk

and the Zamolodchikov algebra Wk
3 of Section 1.3.2. The partial ordering of Section 1.3.1 for 𝔰𝔩3

is the ordering Wk
3 > BPk > Vk(𝔰𝔩3).

The inverse quantum hamiltonian reduction embeddings for 𝔰𝔩3 are all known. The embedding

corresponding to Wk
3 > BPk was described in [4], while that corresponding to BPk > Vk(𝔰𝔩3) was

described in [3]. In both cases, when the embedding descends to an embedding of simple quotients

is known.

3.2.2. Inverse Quantum Hamiltonian Reduction from W3 to BP. The inverse quantum

hamiltonian reduction relevant for our purposes is the embedding of the Bershadsky–Polyakov

minimal model vertex operator algebra BP(u, v) in the tensor product of the half-lattice vertex op-

erator algebraΠ and the minimal modelW3(u, v) from [4]. We review their main results, adapted to

our choice of conformal structure. We also twist their embedding by the conjugation automorphism

(2.1.18) in order to prioritise highest-weight BP(u, v)-modules over their conjugates.

Theorem 3.2.1 ([4, Thms. 3.6 and 6.2]). For k nondegenerate-admissible (i.e. k = −3+ u
v for some

coprime u, v ∈ ℤ⩾3), there exists a vertex operator algebra embedding BP(u, v) ↩→ W3(u, v) ⊗ Π

given by

(3.2.1)

𝐽 (𝑧) ↦−→ 𝑏 (𝑧), 𝐿(𝑧) ↦−→ 𝑇 (𝑧) + 𝑡 (𝑧), 𝐺−(𝑧) ↦−→ e−𝑐 (𝑧),

𝐺+(𝑧) ↦−→ :
(3(u − v)

v
𝜕𝑎(𝑧)𝑎(𝑧) − 𝑎(𝑧)3 − (u − v)

2

v2 𝜕2𝑎(𝑧)

+u
v
𝑇 (𝑧)𝑎(𝑧)−u(u − v)

2v2 𝜕𝑇 (𝑧) −
√︂

u3

3v3𝑊 (𝑧)
)
e𝑐 (𝑧):,

where the fields 𝑡 (𝑧), 𝑎(𝑧), 𝑏 (𝑧) ∈ Π are given by

(3.2.2)
𝑡 (𝑧) = 1

2
:𝑐 (𝑧)𝑑 (𝑧): − 3𝜅

2
𝜕𝑐 (𝑧) + 3

4
𝜕𝑑 (𝑧),

𝑎(𝑧) = −𝜅𝑐 (𝑧) + 1
2
𝑑 (𝑧), 𝑏 (𝑧) = 𝜅𝑐 (𝑧) + 1

2
𝑑 (𝑧),
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with 𝜅 = 2k+3
6 . Moreover, such an embedding does not exist when u ⩾ 2 and v = 1 or 2.

The energy-momentum field 𝑡 (𝑧) ∈ Π has central charge cΠ
k

related to 𝜅 according to

(3.2.3) cΠk = 2 + 54𝜅,

which satisfies

(3.2.4) cBPk = cΠk + c
W3
k
.

With respect to 𝑡 (𝑧), both 𝑎(𝑧) and 𝑏 (𝑧) have conformal weight 1, though 𝑎 is not quasiprimary,

whilst that of e𝑚𝑐 (𝑧) is −3𝑚
2 . The central charge and conformal dimensions are our motivation for

choosing 𝑡 (𝑧) as the energy-momentum field in Π.

Like theBP(u, v)-modules of Chapter 2, we are interested in positive-energy (indecomposable)

weight modules of Π, meaning those on which the ℎ0, with ℎ ∈ 𝔥, act semisimply and 𝑡0 has

eigenvalues that are bounded below. Such modules may be induced [33] from the ℤ𝑐-modules

generated by elements eℎ ∈ ℂ[𝔥] on which ℎ′ ∈ 𝔥 acts as ℎ′ · eℎ = ⟨ℎ′, ℎ⟩ eℎ. The following is

adapted from [4] to accommodate our choice of conformal structure.

Proposition 3.2.2 ([4, Prop. 3.4]). The (twisted) weight Π-module generated from e𝑟𝑏+𝑗𝑐 is a

positive-energy module if and only if 𝑟 = 3
2 . In this case, the twisted Π-module is simple and

the minimal 𝑡0-eigenvalue is 9
4𝜅.

The eigenvalue of 𝑏0 on e3𝑏/2+𝑗𝑐 is 𝑗 + 3𝜅. We therefore define Π [ 𝑗 ] , [ 𝑗] ∈ ℂ/ℤ, to be the sim-

ple positive-energy weight Π-module generated by e3𝑏/2+( 𝑗−3𝜅)𝑐 so that the 𝑏0-eigenvalues of Π [ 𝑗 ]
coincide with [ 𝑗]. The notation reflects the fact that the isomorphism class of this module only

depends on [ 𝑗] rather than 𝑗 itself.

Recall from Section 1.3.3 that the minimal model W3(u, v) is rational. Its modules are all

highest-weight and are denoted by W(r, s) where r = [𝑟0, 𝑟1, 𝑟2] ∈ Pu−3
⩾ and s = [𝑠0, 𝑠1, 𝑠2] ∈ Pv−3

⩾ .

This parametrisation is connected to that of the relaxed BP(u, v)-modules Rtw
[ 𝑗 ], [𝜆] in the following

way:

Given 𝜆 ∈ Γu,v = Γk, let the Dynkin labels of 𝜆𝐼 ∈ Pu−3
⩾ be r = [𝑟0, 𝑟1, 𝑟2]. Let 𝜔𝑖 , 𝑖 = 0, 1, 2,

denote the fundamental weights of 𝔰𝔩3 and let the Dynkin labels of 𝜆𝐹 = 𝜆𝐹 − 𝜔0 − 𝜔1 ∈ Pv−3
⩾ be

s = [𝑠0, 𝑠1, 𝑠2]. In other words, let

(3.2.5) 𝑟0 = 𝜆𝐼0, 𝑟1 = 𝜆𝐼1, 𝑟2 = 𝜆𝐼2 and 𝑠0 = 𝜆𝐹0 − 1, 𝑠1 = 𝜆𝐹1 − 1, 𝑠2 = 𝜆𝐹2 .
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Then, the ℤ3-action (2.3.46) becomes the cycle

(3.2.6)
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

] ∇↦−→
[
𝑟2 𝑟0 𝑟1
𝑠2 𝑠0 𝑠1

] ∇↦−→
[
𝑟1 𝑟2 𝑟0
𝑠1 𝑠2 𝑠0

] ∇↦−→
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
.

This is precisely the ℤ3 symmetry of the (r, s) parametrisation of W3(u, v)-modules described in

Section 1.3.2. We shall therefore frequently parametrise weights 𝜆 ∈ Γu,v by r and s, or by the labels

𝑟𝑖 and 𝑠𝑖 , 𝑖 = 0, 1, 2:

(3.2.7) 𝜆 = Γ(r, s) = Γ
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
=

2∑︁
𝑖=0

𝑟𝑖𝜔𝑖 − u
v

(
𝜔0 + 𝜔1 +

2∑︁
𝑖=0

𝑠𝑖𝜔𝑖

)
.

Extending this parametrisation to Σu,v = Σk means extending the allowed range of 𝑠0, 𝑠1 and 𝑠2 to

include v − 2, −1 and v − 2, respectively (but still subject to 𝑠0 + 𝑠1 + 𝑠2 = v − 3). Of course only

the 𝜆 = Γ(r, s) with r = [𝑟0, 𝑟1, 𝑟2] ∈ Pu−3
⩾ and s = [𝑠0, 𝑠1, 𝑠2] ∈ Pv−3

⩾ are relevant for labelling

W3(u, v)-modules.

We will also parametrise W3(u, v)-modules in terms of [𝜆] ∈ Γu,v/ℤ3 and use the notation

W[𝜆] = W(r, s) for 𝜆 = Γ(r, s) when it is helpful.

By restriction, W[𝜆] ⊗ Π [ 𝑗 ] is a BP(u, v)-module with several desirable properties.

Theorem 3.2.3 ([4, Thms. 5.12 and 6.3]). Let k be nondegenerate-admissible. Then, for each

[𝜆] ∈ Γu,v/ℤ3 and [ 𝑗] ∈ ℂ/ℤ:

• W[𝜆] ⊗ Π [ 𝑗 ] is an indecomposable top-dense BP(u, v)-module on which 𝐺−0 acts injectively.

• Every nonzero BP(u, v)-submodule of W[𝜆] ⊗ Π [ 𝑗 ] has nonzero intersection with its top space.

• If [ 𝑗] is not in the ∇-orbit of [ 𝑗 tw(𝜆)], then W[𝜆] ⊗ Π [ 𝑗 ] is a simple BP(u, v)-module.

In light of the classification results in Chapter 2, the BP(u, v)-module W[𝜆] ⊗Π [ 𝑗 ] (at least when it

is simple) must be a module we have seen already. Our notational choices suggest that W[𝜆] ⊗Π [ 𝑗 ] ,

when simple, is related to Rtw
[ 𝑗 ], [𝜆]

For the nonsimple cases, recall that each family of simple top-dense relaxed highest-weight

BP(u, v)-modules, corresponding to a fixed [𝜆] ∈ Γu,v/ℤ3 and parametrised by [ 𝑗] ∈ ℂ/ℤ, has

three ‘gaps’ corresponding to the [ 𝑗 tw(∇𝑖 (𝜆))], 𝑖 ∈ ℤ3. Theorem 2.3.32 shows that these gaps in

fact also correspond to top-dense, nonsimple BP(u, v)-modules. Each of these ‘gap modules’ may

be taken to be indecomposable, with two possible choices related through conjugation.

As we will be concerned with the modular properties of the characters of these twistedBP(u, v)-

modules, it does not matter which choice we make for the gap modules. Since 𝐺−0 acts injectively

on W[𝜆] ⊗ Π [ 𝑗 ] , we shall choose the indecomposable gap modules such that𝐺−0 acts injectively on

them (the ‘-’ modules in (2.3.51)). They will be denoted using the same notation Rtw
[ 𝑗 ], [𝜆] as their

simple cousins, where [ 𝑗] = [ 𝑗 tw(∇𝑖 (𝜆))], 𝑖 ∈ ℤ3.
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Proposition 3.2.4. Let k be nondegenerate-admissible, [𝜆] ∈ Γu,v/ℤ3 and [ 𝑗] ∈ ℂ/ℤ. Then,

(3.2.8) W[𝜆] ⊗ Π [ 𝑗 ] ≃ Rtw
[ 𝑗 ], [𝜆] .

Proof. Note that the W[𝜆] ⊗Π [ 𝑗 ] are completely specified by their top spaces (Theorem 3.2.3),

as are the Rtw
[ 𝑗 ], [𝜆] . It therefore suffices to show that the top spaces of each coincide as modules

over the twisted Zhu algebra of BP(u, v). The classification of such modules was completed in

Theorem 2.2.15. It therefore suffices to determine the 𝐽0-, 𝐿0- and Ω-eigenspaces in the top space

of W[𝜆] ⊗ Π [ 𝑗 ] .

The check for 𝐽0 is immediate, while that for 𝐿0 = 𝑇0 + 𝑡0 follows from the equality

(3.2.9) Δ𝜆 +
9𝜅
4

= Δtw(𝜆),

where Δ𝜆 = Δ(r, s) with 𝜆 = Γ(r, s). The action of Ω on the top space of W[𝜆] ⊗ Π [ 𝑗 ] is obtained

from (3.2.1) and (2.2.13). That it agrees with (2.3.44) can be checked directly. ■

3.2.3. Characters for Standard BP(u, v)-Modules. For a BP(u, v)-module M, we define its

character to be

(3.2.10) ch
[
M

]
(𝜃𝜁 𝜏) = y𝜅 trM

(
z𝐽0q𝐿0−cBPu,v /24

)
,

where y = e2𝜋 i𝜃 , z = e2𝜋 i𝜁 and q = e2𝜋 i𝜏 . The additional factor involving 𝜅 is for convenience in

deriving modular transformations. These characters do not always distinguish inequivalent simple

modules as they do not keep track of the eigenvalue of Ω. This will be fixed in Section 3.2.4 by

upgrading to one-point functions.

Our working hypothesis, for k = u
v − 3 nondegenerate-admissible, is that the standard modules

of BP(u, v) are spectral flows of the top-dense BP(u, v)-modules Rtw
[ 𝑗 ], [𝜆] (with [ 𝑗] ∈ ℝ/ℤ and

[𝜆] ∈ Γu,v/ℤ3). Having standard modules in the twisted module category 𝒲
tw
u,v , while the vacuum

module belongs to the untwisted module category𝒲u,v, is inconvenient for Verlinde considerations.

Hence we shall modify the conformal structure of the vertex operator algebraBP(u, v), under which

certain spectral flows Rtw
[ 𝑗 ], [𝜆] are both untwisted and relaxed.

The minimal model BP(u, v) admits a one-parameter family of conformal structures given by

(3.2.11) 𝐿̃(𝑧) = 𝐿(𝑧) + 𝛼𝜕𝐽 (𝑧), 𝛼 ∈ ℂ,

with corresponding central charges c̃BPu,v = cBPu,v − 24𝛼2𝜅. As modules are then graded by the eigen-

value of 𝐽0 and 𝐿̃0 = 𝐿0 −𝛼 𝐽0, the appropriate choice of characters for this new conformal structure



3.2. From W3 Minimal Models to BP Minimal Models 89

is

(3.2.12) c̃h
[
M

]
(𝜃𝜁 𝜏) = y𝜅 trM

(
z𝐽0q𝐿0−̃cBPu,v /24

)
= ch

[
M

] (
𝜃 + 𝛼2𝜏

𝜁 − 𝛼𝜏𝜏 ) .
In general, a BP(u, v)-module that is positive-energy with respect to 𝐿(𝑧) is not positive-energy

with respect to 𝐿̃(𝑧). This is certainly true of the relaxed modules Rtw
[ 𝑗 ], [𝜆] .

Proposition 3.2.5. Let k be nondegenerate-admissible and assume that 𝛼 ∈ 1
2ℤ. Then,

(3.2.13) R̃[ 𝑗 ], [𝜆] = 𝜎
𝛼
(
Rtw
[ 𝑗−2𝛼𝜅 ], [𝜆]

)
is a relaxed highest-weight module with respect to 𝐿̃(𝑧).

Proof. It follows from (2.1.18) and (3.2.11) that

(3.2.14) 𝜎 ℓ
(
𝐿̃0

)
= 𝐿0 − (ℓ + 𝛼) 𝐽0 + ℓ (ℓ + 2𝛼)𝜅𝟙 = 𝐿̃0 − ℓ 𝐽0 + ℓ (ℓ + 2𝛼)𝜅𝟙.

If 𝑣 𝑗 denotes a relaxed highest-weight vector of Rtw
[ 𝑗 ], [𝜆] of 𝐽0-eigenvalue 𝑗 , then

(3.2.15)
𝐿̃0𝜎

ℓ
(
𝑣 𝑗

)
= 𝜎 ℓ

(
(𝐿0 + (ℓ − 𝛼) 𝐽0 + ℓ (ℓ − 2𝛼)𝜅𝟙)𝑣 𝑗

)
=

(
Δtw(𝜆) + (ℓ − 𝛼) 𝑗 + ℓ (ℓ − 2𝛼)𝜅

)
𝜎 ℓ

(
𝑣 𝑗

)
,

hence the 𝐿̃0-eigenvalue is 𝑗-independent if and only if ℓ = 𝛼 . ■

Note that the shift in 𝑗 on the right-hand side of (3.2.13) ensures that the 𝐽0-eigenvalues of R̃[ 𝑗 ], [𝜆]
coincide with the coset [ 𝑗] ∈ ℂ/ℤ. To ensure that the relaxed modules in (3.2.13) are untwisted,

we shall choose the conformal structure on BP(u, v) given by 𝐿̃(𝑧) with 𝛼 = 1
2 . The corresponding

modules R̃[ 𝑗 ], [𝜆] are untwisted and relaxed as desired. We therefore take our standard modules to

be those of the form

(3.2.16) 𝜎 ℓ
(
R̃[ 𝑗 ], [𝜆]

)
,

with ℓ ∈ ℤ, [ 𝑗] ∈ ℝ/ℤ and [𝜆] ∈ Γu,v/ℤ3. As spectral flow features heavily in what follows, we

will occasionally denote the spectral flow of BP(u, v)-module M by 𝜎 ℓ
(
M

)
= Mℓ .

With the standard modules now identified, the first step is to compute their characters. Our

approach is to use Proposition 3.2.4 to compute the characters of Rtw
[ 𝑗 ], [𝜆] . The characters of the

standard modules can then be obtained using the following lemma.
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Lemma 3.2.6. Given any BP(u, v)-module M that possesses a character and ℓ ∈ 1
2ℤ, we have

(3.2.17)
ch

[
Mℓ

]
(𝜃𝜁 𝜏) = ch

[
M

] (
𝜃 + 2ℓ𝜁 + ℓ2𝜏

𝜁 + ℓ𝜏𝜏 )
and c̃h

[
Mℓ

]
(𝜃𝜁 𝜏) = c̃h

[
M

]
(𝜃 + 2ℓ𝜁 + ℓ (ℓ + 1)𝜏𝜁 + ℓ𝜏𝜏) .

Proof. The first character identity follows easily from (2.1.18):

ch
[
Mℓ

]
(𝜃𝜁 𝜏) = tr

𝜎ℓ
(
M
) (y𝜅z𝐽0q𝐿0−cBPu,v /24

)
(3.2.18)

= trM
(
y𝜅z𝜎

−ℓ
(
𝐽0
)
q𝜎
−ℓ
(
𝐿0
)
−cBPu,v /24

)
= trM

(
y𝜅z𝐽0+2𝜅ℓ𝟙q𝐿0+ℓ 𝐽0+𝜅ℓ2𝟙−cBPu,v /24

)
= ch

[
M

] (
𝜃 + 2ℓ𝜁 + ℓ2𝜏

𝜁 + ℓ𝜏𝜏 ) .
The second follows in the same way, but using that 𝐿̃0 = 𝐿0 − 1

2 𝐽0. ■

By Proposition 3.2.4, the character of Rtw
[ 𝑗 ], [𝜆] is the product of the characters of W[𝜆] and Π [ 𝑗 ] ,

which are defined as

(3.2.19) ch
[
W[𝜆]

]
(𝜏) = trW[𝜆] q

𝑇0−c
W3
u,v /24 and ch

[
Π [ 𝑗 ]

]
(𝜁 𝜏) = trΠ [ 𝑗 ]

(
z𝑏0q𝑡0−c

Π
u,v/24

)
.

Being modules over a lattice vertex operator algebra, the Π [ 𝑗 ] have easily computed characters.

Proposition 3.2.7. For all [ 𝑗] ∈ ℂ/ℤ, we have

(3.2.20) ch
[
Π [ 𝑗 ]

]
(𝜁 𝜏) = z𝑗

𝜂 (𝜏)2
∑︁
𝑚∈ℤ

z𝑚,

where 𝜂 (𝜏) = q1/24 ∏∞
𝑛=1(1 − q𝑛) is the Dedekind eta function.

The characters of the W[𝜆] may be found in many places, for example [37, 74]. Explicit ex-

pressions are not needed for our purposes however. This is because the modular transformations of

the W3(u, v) characters are what is needed for the Verlinde formula, not the characters themselves.

By Proposition 3.2.4, we have that

ch
[
Rtw
[ 𝑗 ], [𝜆]

]
(𝜃𝜁 𝜏) = y𝜅 ch

[
W[𝜆]

]
(𝜏) ch

[
Π [ 𝑗 ]

]
(𝜁 𝜏)(3.2.21)

=
y𝜅z𝑗 ch

[
W[𝜆]

]
(𝜏)

𝜂 (𝜏)2
∑︁
𝑚∈ℤ

z𝑚 .
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Proposition 3.2.8. Let k be nondegenerate-admissible. Then, for all ℓ ∈ 1
2ℤ, [ 𝑗] ∈ ℂ/ℤ and

[𝜆] ∈ Γu,v/ℤ3, the standard characters have the form

(3.2.22) c̃h
[
R̃ℓ[ 𝑗 ], [𝜆]

]
(𝜃𝜁 𝜏) = e2𝜋 i𝜅

(
𝜃−ℓ (ℓ+1)𝜏

) ch
[
W[𝜆]

]
(𝜏)

𝜂 (𝜏)2
∑︁
𝑚∈ℤ

e2𝜋 i𝑚 ( 𝑗+2𝜅ℓ)𝛿 (𝜁 + ℓ𝜏 −𝑚) .

Proof. The untilded character of R̃ℓ[ 𝑗 ], [𝜆] is related to that of Rtw
[ 𝑗−𝜅 ], [𝜆] in (3.2.21) by (3.2.13)

and Lemma 3.2.6:

ch
[
R̃ℓ[ 𝑗 ], [𝜆]

]
(𝜃𝜁 𝜏) = ch

[
𝜎 ℓ+1/2

(
Rtw
[ 𝑗−𝜅 ], [𝜆]

) ]
(𝜃𝜁 𝜏)(3.2.23)

=
y𝜅z𝑗+2ℓ𝜅q(ℓ+1/2) 𝑗+(ℓ

2−1/4)𝜅 ch
[
W[𝜆]

]
(𝜏)

𝜂 (𝜏)2
∑︁
𝑚∈ℤ

z𝑚q(ℓ+1/2)𝑚 .

By (3.2.12),

(3.2.24) c̃h
[
R̃ℓ[ 𝑗 ], [𝜆]

]
(𝜃𝜁 𝜏) = y𝜅z𝑗+2ℓ𝜅qℓ 𝑗+ℓ (ℓ−1)𝜅 ch

[
W[𝜆]

]
(𝜏)

𝜂 (𝜏)2
∑︁
𝑚∈ℤ

z𝑚qℓ𝑚 .

The delta function in the character is obtained using the identity
∑
𝑚∈ℤ e2𝜋 i𝑚𝑥 =

∑
𝑚∈ℤ 𝛿 (𝑥−𝑚). ■

3.2.4. One-Point Functions for Standard BP(u, v)-Modules. As mentioned previously, an

important feature of standard modules is that their characters are linearly independent. The stan-

dard characters of (3.2.22) do not satisfy this property. This can be seen directly from (3.2.22) (or

rather (3.2.19)), as the characters for W3(u, v) do not keep track of the eigenvalue of𝑊0. The con-

jugation automorphism (1.3.19) of W3(u, v) negates𝑊0-eigenvalues and preserves𝑇0-eigenvalues.

Therefore if W3(u, v) admits a highest-weight vector with a nonzero𝑊0-eigenvalue, its character

will be the same as its (distinct) conjugate. By Proposition 3.2.4, the characters (3.2.22) ofBP(u, v)

for such u and v will have the same issue.

A remedy for the lack of linear independence of W3(u, v) characters was provided in [23]

and detailed in Section 1.3.3. The proposal therein is to upgrade W3(u, v) characters to one-point

functions by inserting the zero mode of some 𝑢 ∈ W3(u, v). As explained previously, it is always

possible to choose 𝑢 ∈ W3(u, v) that gives linearly independent one-point functions and allows for

the computation of an S-matrix and fusion rules.

We can similarly upgrade the definition of BP(u, v)-characters to one-point functions as fol-

lows:

(3.2.25)
ch

[
M

]
(𝜃𝜁 𝜏 ; 𝑢) = y𝜅 trM

(
𝑢0z

𝐽0q𝐿0−cBPu,v /24
)
,

c̃h
[
M

]
(𝜃𝜁 𝜏 ; 𝑢) = y𝜅 trM

(
𝑢0z

𝐽0q𝐿0−̃cBPu,v /24
)
,

𝑢 ∈ BP(u, v) .
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Here we would also like to choose 𝑢 such that the one-point functions of standard modules are

linearly independent. The one-point functions of interest here are those of standard modules, which

by Proposition 3.2.4 are always W3(u, v) ⊗ Π-modules.

It therefore suffices to take 𝑢 to be an element of W3(u, v) ⊗ Π and know that the one-point

functions (3.2.25), with M standard, are well defined. In particular, choose 𝑢 = 𝟙 ⊗ 𝟙 when

(u, v) ∈
{
(3, 4), (4, 3), (3, 5), (5, 3)

}
and 𝑢 =𝑊 ⊗ 𝟙 otherwise. As the Π part of 𝑢 is always 𝟙, we

may treat 𝑢 as an element of W3(u, v).

Proposition 3.2.9. Let k be nondegenerate-admissible. Then, for all ℓ ∈ 1
2ℤ, [ 𝑗] ∈ ℂ/ℤ and

[𝜆] ∈ Γu,v/ℤ3, we have

(3.2.26)

c̃h
[
R̃ℓ[ 𝑗 ], [𝜆]

]
(𝜃𝜁 𝜏 ; 𝑢) = e2𝜋 i𝜅

(
𝜃−ℓ (ℓ+1)𝜏

) ch
[
W[𝜆]

]
(𝜏 ; 𝑢)

𝜂 (𝜏)2
∑︁
𝑚∈ℤ

e2𝜋 i𝑚 ( 𝑗+2𝜅ℓ)𝛿 (𝜁 + ℓ𝜏 −𝑚).

Moreover, if we take 𝑢 = 𝟙 when (u, v) ∈
{
(3, 4), (4, 3), (3, 5), (5, 3)

}
and 𝑢 =𝑊 otherwise, then

these standard one-point functions are linearly independent.

3.2.5. Modular Transformations of Standard One-Point Functions. Recall from Theo-

rem 1.3.4 that the S-transform of the W3(u, v) one-point functions takes the following simple form:

(3.2.27) ch
[
W[𝜆]

] (
−1
𝜏

;
𝑢

𝜏Δ𝑢

)
=

∑︁
[𝜆′] ∈Γu,v/ℤ3

SW3
[𝜆], [𝜆′] ch

[
W[𝜆′]

]
(𝜏 ; 𝑢) ,

where we have defined SW3
[𝜆], [𝜆′] = SW3

(r,s),(r′,s′) for 𝜆 = Γ(r, s) and 𝜆′ = Γ(r′, s′). The explicit form of

the W3(u, v) S-matrix SW3
[𝜆], [𝜆′] is given in (1.3.24).

Define the following transformations on the parameter space (𝜃𝜁 𝜏 ;𝑢):

(3.2.28)
S : (𝜃𝜁 𝜏 ; 𝑢) ↦−→

(
𝜃 − 𝜁

2

𝜏
− 𝜁
𝜏
+ 𝜁

𝜁𝜏 −1
𝜏

;
𝑢

𝜏Δ𝑢

)
,

T : (𝜃𝜁 𝜏 ; 𝑢) ↦−→ (𝜃𝜁 𝜏 + 1 ; 𝑢) .

That this defines an SL2(ℤ)-action is a straightforward computation:

(3.2.29) S2 = (ST)3 = C : (𝜃𝜁 𝜏 ; 𝑢) ↦−→
(
𝜃 + 2𝜁 −𝜁 𝜏 ; (−1)Δ𝑢𝑢

)
.

Obviously, C squares to the identity as required.

Theorem 3.2.10. Let k be nondegenerate-admissible. Then, for each ℓ ∈ ℤ, [ 𝑗] ∈ ℝ/ℤ and

[𝜆] ∈ Γu,v/ℤ3, the S-transform of the one-point function of R̃ℓ[ 𝑗 ], [𝜆] is given by

(3.2.30) S
{
c̃h

[
R̃ℓ[ 𝑗 ], [𝜆]

]}
=
|𝜏 |
−i𝜏

∑︁
ℓ′∈ℤ

∫
ℝ/ℤ

∑︁
[𝜆′] ∈Γu,v/ℤ3

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ, [ 𝑗 ], [𝜆] c̃h

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]

d[ 𝑗 ′],
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where the entries of the ‘S-matrix’ (integral kernel) are

(3.2.31) Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ, [ 𝑗 ], [𝜆] = SW3

[𝜆], [𝜆′]e
−2𝜋 i

(
2𝜅ℓℓ′+ℓ ( 𝑗 ′−𝜅)+( 𝑗−𝜅)ℓ′

)
.

Proof. Our strategy is to evaluate and simplify both sides of (3.2.30). Starting with the left-

hand side, we have

S
{
c̃h

[
R̃ℓ[ 𝑗 ], [𝜆]

]
(𝜃𝜁 𝜏 ; 𝑢)

}
= c̃h

[
R̃ℓ[ 𝑗 ], [𝜆]

] (
𝜃 − 𝜁

2

𝜏
− 𝜁
𝜏
+ 𝜁

𝜁𝜏 −1
𝜏

;
𝑢

𝜏Δ𝑢

)(3.2.32)

= exp
[
2𝜋 i𝜅

(
𝜃 − 𝜁

2

𝜏
− 𝜁
𝜏
+ 𝜁 + ℓ (ℓ + 1)

𝜏

)]
·

ch
[
W[𝜆]

] (
−1
𝜏

; 𝑢

𝜏Δ𝑢

)
−i𝜏𝜂 (𝜏)2

∑︁
𝑚∈ℤ

e2𝜋 i𝑚 ( 𝑗+2𝜅ℓ)𝛿

(
𝜁

𝜏
− ℓ
𝜏
−𝑚

)
=

|𝜏 |
−i𝜏𝜂 (𝜏)2

∑︁
[𝜆′]

SW3
[𝜆], [𝜆′] ch

[
W[𝜆′]

]
(𝜏 ; 𝑢)

· exp
[
2𝜋 i𝜅

(
𝜃 − 𝜁

2

𝜏
− 𝜁
𝜏
+ 𝜁 + ℓ (ℓ + 1)

𝜏

)] ∑︁
𝑚∈ℤ

e2𝜋 i( 𝑗+2𝜅ℓ)𝑚𝛿 (𝜁 − ℓ −𝑚𝜏)

=
|𝜏 |

−i𝜏𝜂 (𝜏)2
∑︁
[𝜆′]

SW3
[𝜆], [𝜆′] ch

[
W[𝜆′]

]
e2𝜋 i𝜅 (𝜃+ℓ)

∑︁
𝑚∈ℤ

e−2𝜋 i
(
( 𝑗−𝜅)𝑚+𝜅𝑚 (𝑚+1)𝜏

)
𝛿 (𝜁 +𝑚𝜏 − ℓ) ,

using (3.2.26), (3.2.27) and the well known S-transform of Dedekind’s eta function. Here, and

below, the [𝜆′]-sums run over Γu,v/ℤ3.

Inserting the S-matrix elements (3.2.31) into the right-hand side of (3.2.30),

|𝜏 |
−i𝜏

∑︁
ℓ′∈ℤ

∫
ℝ/ℤ

∑︁
[𝜆′]

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ, [ 𝑗 ], [𝜆] c̃h

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]

d[ 𝑗 ′]

(3.2.33)

=
|𝜏 |

−i𝜏𝜂 (𝜏)2
∑︁
[𝜆′]

SW3
[𝜆], [𝜆′] ch

[
W[𝜆′]

]
·
∑︁
ℓ′∈ℤ

∫
ℝ/ℤ

e−2𝜋 i
(
2𝜅ℓℓ′+ℓ ( 𝑗 ′−𝜅)+( 𝑗−𝜅)ℓ′

)
e2𝜋 i𝜅

(
𝜃−ℓ′ (ℓ′+1)𝜏

) ∑︁
𝑚∈ℤ

e2𝜋𝑖 ( 𝑗 ′+2𝜅ℓ′)𝑚𝛿 (𝜁 + ℓ ′𝜏 −𝑚) d[ 𝑗 ′]

=
|𝜏 |

−i𝜏𝜂 (𝜏)2
∑︁
[𝜆′]

SW3
[𝜆], [𝜆′] ch

[
W[𝜆′]

] ∑︁
ℓ′∈ℤ

e−2𝜋𝑖
(
( 𝑗−𝜅)ℓ′−𝜅ℓ

)
e2𝜋𝑖𝜅

(
𝜃−ℓ′ (ℓ′+1)𝜏

)
𝛿 (𝜁 + ℓ ′𝜏 − ℓ)

=
|𝜏 |

−i𝜏𝜂 (𝜏)2
∑︁
[𝜆′]

SW3
[𝜆], [𝜆′] ch

[
W[𝜆′]

]
e2𝜋 i𝜅 (𝜃+ℓ)

∑︁
𝑚∈ℤ

e−2𝜋 i
(
( 𝑗−𝜅)𝑚+𝜅𝑚 (𝑚+1)𝜏

)
𝛿 (𝜁 +𝑚𝜏 − ℓ) . ■

An explicit formula for the (diagonal) T-matrix of the standard one-point functions is very easy to

derive. Only the S-matrix of one-point functions is needed here however.
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The ‘matrix element’ Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ, [ 𝑗 ], [𝜆] is symmetric because the corresponding W3(u, v) S-matrix

element SW3
[𝜆], [𝜆′] is. It is also easy to check that the BP(u, v) S-matrix is unitary and its square

represents conjugation, properties which again follow from those of the W3(u, v) S-matrix.

3.3. Fusion Rules for BP Minimal Models

Crucial to the standard module formalism is that all simple objects in the category of weight

BP(u, v)-modules can be resolved in terms of the nonsimple standard modules to which we give

the special notation

(3.3.1) 𝜎 ℓ+1/2
(
Rtw
𝜆

)
= 𝜎 ℓ+1/2

(
Rtw
[ 𝑗 tw (𝜆) ], [𝜆]

)
= 𝜎 ℓ

(
R̃[ 𝑗 tw (𝜆)+𝜅 ], [𝜆]

)
= R̃ℓ

𝜆
, ℓ ∈ ℤ, 𝜆 ∈ Γu,v .

Note that this notation breaks the ∇-orbit symmetry for the nonsimple ‘gap’ modules: Rtw
𝜆
≃ Rtw

𝜇

if and only if 𝜆 = 𝜇 in Γu,v.

In this section, we shall derive the desired resolutions and determine the consequent modularity

of a subset of the remaining simple modules (the type-3 modules). This includes the modularity of

the vacuum module, recalling that the the S-matrix elements of the vacuum module play a promi-

nent role in the usual Verlinde formula (1.1.45). We then move on to the computation of fusion

coefficients and rules.

For logarithmic vertex operator algebras such as BP(u, v) with v ⩾ 3, the Verlinde formula is

no longer guaranteed to produce nonnegative integer fusion coefficients. Fortunately the standard

module formalism provides a conjectural extension that has been successfully tested in a wide

range of examples. This is known as the standard Verlinde formula [51, 146]. The ingredients of

the standard Verlinde formula are the modular transformations of the standard modules (3.2.31)

and that of the vacuum module.

As all modular transformations are obtained by analysis of BP(u, v) one-point functions, the

quantities computed by the standard Verlinde formula do not distinguish between a BP(u, v)-

module and its semisimplification. This is of course not a problem for rational vertex operator

algebras where all modules are completely reducible. So rather than computing the fusion coeffi-

cients of BP(u, v), the standard Verlinde formula computes the Grothendieck fusion coefficients.

These are the structure constants of the Grothendieck group of the category of standard modules,

equipped with (the image of) the fusion product. It is often possible, as we will see, to ‘upgrade’

Grothendieck fusion rules to fusion rules using conformal grading considerations to rule out non-

split extensions.

To consistently equip the Grothendieck group with the fusion product, one needs to know that

fusing with a standard module defines an exact functor. This appears to be very difficult to establish,

so we shall have to conjecture that it does hold. In fact, we believe that a slightly stronger statement
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is true: the category of weight BP(u, v)-modules is rigid. Assuming this, the standard Verlinde

conjecture is as follows.

Conjecture. Let k be admissible-nondegenerate. Then, for ℓ, ℓ ′ ∈ ℤ, [ 𝑗], [ 𝑗 ′] ∈ ℝ/ℤ and

[𝜆], [𝜆′] ∈ Γu,v/ℤ3, the Grothendieck fusion rules of the standard BP(u, v)-modules are given by

(3.3.2a)[
R̃ℓ[ 𝑗 ], [𝜆]

]
⊠

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]
=

∑︁
ℓ′′∈ℤ

∫
ℝ/ℤ

∑︁
[𝜆′′] ∈Γu,v/ℤ3

(
ℓ ′′, [ 𝑗 ′′], [𝜆′′]

ℓ, [ 𝑗], [𝜆] ℓ ′, [ 𝑗 ′], [𝜆′]

) [
R̃ℓ
′′

[ 𝑗 ′′], [𝜆′′]
]

d[ 𝑗 ′′] .

The Grothendieck fusion coefficients are given by

(3.3.2b)(
ℓ ′′, [ 𝑗 ′′], [𝜆′′]

ℓ, [ 𝑗], [𝜆] ℓ ′, [ 𝑗 ′], [𝜆′]

)
=

∑︁
𝑚∈ℤ

∫
ℝ/ℤ

∑︁
[𝜇 ] ∈Γu,v/ℤ3

S
𝑚, [𝑘 ], [𝜇 ]
ℓ, [ 𝑗 ], [𝜆] S

𝑚, [𝑘 ], [𝜇 ]
ℓ′, [ 𝑗 ′], [𝜆′]

(
S
𝑚, [𝑘 ], [𝜇 ]
ℓ′′, [ 𝑗 ′′], [𝜆′′]

)∗
S
𝑚, [𝑘 ], [𝜇 ]
vac.

d[𝑘],

where S𝑚, [𝑘 ], [𝜇 ]vac. is the S-matrix element corresponding to the vacuum moduleHk𝜔0 , and the asterisk

indicates complex conjugation.

The standard Verlinde formula (3.3.2b) is superficially very similar to the Verlinde formula (1.1.45).

The key difference is the need to integrate (rather than sum) over part of the parametrisation of

standard modules. The results obtained in the remainder of this section will implicitly assume that

this conjecture holds.

The Bershadsky–Polyakov minimal models with with v = 3 have the desirable feature that

every highest-weight module is type-3 (Corollary 2.3.23). This means that the resolutions of these

modules all have the same form up to spectral flow. We will therefore begin with the analysis of

BP(u, 3), purely to present the analysis with a minimum of complications. The more technically

demanding case of v > 3 will be discussed in Section 3.3.4.

For convenience, we will frequently use the following notation for BP(u, v)-modules:

(3.3.3)

H𝜆 = H(r, s) = H
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
, Htw

𝜆
= Htw(r, s) = Htw [

𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
,

Rtw
[ 𝑗 ], [𝜆] = Rtw

[ 𝑗 ]
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
, Rtw

𝜆
= Rtw(r, s) = Rtw [

𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
,

R̃[ 𝑗 ], [𝜆] = R̃[ 𝑗 ]
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
, R̃𝜆 = R̃(r, s) = R̃

[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
,

when 𝜆 = Γ(r, s) = Γ
[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
. The ranges r ∈ Pu−3

⩾ and s ∈ Pv−3
⩾ cover all 𝜆 ∈ Γu,v, while allowing

𝑠0, 𝑠1 and 𝑠2 to take the values v−2, −1 and v−2 respectively (but still subject to 𝑠0+𝑠1+𝑠2 = v−3)

gives the remaining elements of Σu,v.

By recasting Theorem 2.3.32 in terms of r and s and applying Proposition 2.3.19, we obtain a

short exact sequence that will prove very useful in resolving highest-weight BP(u, v)-modules:
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Proposition 3.3.1. Let k be nondegenerate-admissible and choose Γ(r, s) ∈ Σu,v leftmost in its

orbit, as pictured in Figure 1. Then, we have the following nonsplit short exact sequence:

(3.3.4) 0 −→ H
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+1 𝑠2−1

]1 −→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+1 𝑠2−1

]
−→ H

[
𝑟0 𝑟1 𝑟2
𝑠0 𝑠1 𝑠2

]
−→ 0.

Here, Γ
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+1 𝑠2−1

]
∈ Γu,v is the rightmost in its orbit. It is type-𝑛 under the following conditions:

𝑛 = 1 𝑛 = 2 𝑛 = 3

𝑠2 ≠ 1 𝑠1 ≠ v − 4 and 𝑠2 = 1 s1 = [0, v − 4, 1]

3.3.1. One-Point Functions for Highest-Weight BP(u, 3)-Modules. For v = 3, the allowed

weights s such that Γ(r, s) ∈ Σu,v are [0,−1, 1], [1,−1, 0] and [0, 0, 0]. All highest-weight BP(u, 3)-

modules are type-3, and those leftmost in their spectral flow orbits have s = [0,−1, 1]. The short

exact sequence of Proposition 3.3.1 is thus

(3.3.5) 0 −→ H
[
𝑟0 𝑟1 𝑟2
0 0 0

]1 −→ R̃
[
𝑟0 𝑟1 𝑟2
0 0 0

]
−→ H

[
𝑟0 𝑟1 𝑟2
0 −1 1

]
−→ 0.

The highest weight of H
[
𝑟0 𝑟1 𝑟2
0 0 0

]
is in Γu,3, hence it is the rightmost in its orbit. As the spec-

tral flow orbit is type-3, it is obtained from the leftmost by spectrally flowing twice. That is, by

Theorem 2.3.21,

(3.3.6) H
[
𝑟0 𝑟1 𝑟2
0 0 0

]
≃ H

[
𝑟2 𝑟0 𝑟1
0 −1 1

]2
.

As spectral flow is exact, we can therefore splice the exact sequence (3.3.5) with that obtained by

applying 𝜎3 to the corresponding exact sequence with quotient H
[
𝑟2 𝑟0 𝑟1
0 −1 1

]
. Iterating this results

in infinite length resolutions of type-3 BP(u, 3)-modules in terms of nonsimple standard modules:

Proposition 3.3.2. Let k be admissible with v = 3. Then, every simple highest-weight BP(u, 3)-

module is resolved by the nonsimple standard modules as follows:

· · · → R̃
[
𝑟0 𝑟1 𝑟2
0 0 0

]9 → R̃
[
𝑟1 𝑟2 𝑟0
0 0 0

]6 → R̃
[
𝑟2 𝑟0 𝑟1
0 0 0

]3 → R̃
[
𝑟0 𝑟1 𝑟2
0 0 0

]
→ H

[
𝑟0 𝑟1 𝑟2
0 −1 1

]
→ 0,(3.3.7a)

· · · → R̃
[
𝑟1 𝑟2 𝑟0
0 0 0

]10 → R̃
[
𝑟2 𝑟0 𝑟1
0 0 0

]7 → R̃
[
𝑟0 𝑟1 𝑟2
0 0 0

]4 → R̃
[
𝑟1 𝑟2 𝑟0
0 0 0

]1 → H
[
𝑟0 𝑟1 𝑟2
1 −1 0

]
→ 0,

(3.3.7b)

· · · → R̃
[
𝑟2 𝑟0 𝑟1
0 0 0

]11 → R̃
[
𝑟0 𝑟1 𝑟2
0 0 0

]8 → R̃
[
𝑟1 𝑟2 𝑟0
0 0 0

]5 → R̃
[
𝑟2 𝑟0 𝑟1
0 0 0

]2 → H
[
𝑟0 𝑟1 𝑟2
0 0 0

]
→ 0.

(3.3.7c)

Proof. The first resolution is the result of the aforementioned splicing the short exact sequence

(3.3.5). The other two resolutions are obtained from the first by applying a suitable amount of

spectral flow. ■
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The one-point functions of a highest-weight BP(u, 3)-module can be easily read off from its cor-

responding resolution. For reasons that will become clear shortly, we centre our analysis on the

highest-weight BP(u, 3)-modules with s = [1,−1, 0]. We will also suppress the arguments of one-

point functions for readability.

Corollary 3.3.3. Let k be admissible with v = 3. Then, for all r ∈ Pu−3
⩾ and ℓ ∈ 1

2ℤ, we have

c̃h
[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ℓ ]
=

∞∑︁
𝑛=0
(−1)𝑛

(
c̃h

[
R̃

[
𝑟1 𝑟2 𝑟0
0 0 0

] ℓ+9𝑛+1](3.3.8)

− c̃h
[
R̃

[
𝑟0 𝑟1 𝑟2
0 0 0

] ℓ+9𝑛+4]
+ c̃h

[
R̃

[
𝑟2 𝑟0 𝑟1
0 0 0

] ℓ+9𝑛+7] )
.

As the 𝑟 -labels of the three summands appearing on the right-hand side of (3.3.8) are related by

the ℤ3-action, we can rewrite (3.3.8) in the following alternative form:

c̃h
[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ℓ ]
=

∞∑︁
𝑛=0
(−1)𝑛

(
c̃h

[
R̃(∇−1(r), 0)ℓ+9𝑛+1

]
(3.3.9)

− c̃h
[
R̃(r, 0)ℓ+9𝑛+4

]
+ c̃h

[
R̃(∇(r), 0)ℓ+9𝑛+7

] )
.

where 0 is shorthand for the 𝑠-triple [0, 0, 0]. The S-transforms of the highest-weight one-point

functions thus follow from the standard ones, computed in Theorem 3.2.10. For this, it is convenient

to introduce notation for the 𝐽0-eigenvalue of a highest weight with s = [1,−1, 0]:

(3.3.10) 𝑗 (r) ≡ 𝑗
(
Γ(r, [1,−1, 0])

)
= 1

3 (𝑟1 − 𝑟2).

Theorem 3.3.4. Let k be admissible with v = 3, and r ∈ Pu−3
⩾ . Then for all ℓ ∈ ℤ, the S-transform

of the one-point function of H
[
𝑟0 𝑟1 𝑟2
1 −1 0

] ℓ is given by

(3.3.11) S
{
c̃h

[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ℓ ]}
=
|𝜏 |
−i𝜏

∑︁
ℓ′∈ℤ

∫
ℝ/ℤ

∑︁
[𝜆′] ∈Γu,3/ℤ3

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,r c̃h

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]

d[ 𝑗 ′],

where the entries of the ‘highest-weight S-matrix’ are given by

(3.3.12) Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,r = SW3

[Γ (r,0) ], [𝜆′]
e−2𝜋 i

(
2𝜅 (ℓ−1/2)ℓ′+(ℓ−1/2) ( 𝑗 ′−𝜅)+𝑗 (r)ℓ′

)
2 cos

(
3𝜋 ( 𝑗 ′ − 𝜅)

) .

Proof. By Corollary 3.3.3, the S-matrix entry Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,r from the S-transform of the one-point

function of H
[
𝑟0 𝑟1 𝑟2
1 −1 0

] ℓ may be written as an infinite linear combination of standard S-matrix

entries (3.2.31). Recall that R̃𝜇 = R̃[ 𝑗 (𝜇)+2𝜅 ], [𝜇 ] and note that the 𝜇 ∈ Γu,v appearing in the standard
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one-point functions on the right-hand side of (3.3.9) all belong to the same class [Γ(r, 0)] in Γu,3/ℤ3.

Comparing each 𝑗 (𝜇) with 𝑗 (r) and noting that u = 9(𝜅 + 1
2 ) (since v = 3) gives

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,r =

∞∑︁
𝑛=0
(−1)𝑛

(
Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+9𝑛+1, [ 𝑗 (r)−2𝜅 ], [Γ (r,0) ](3.3.13)

− Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+9𝑛+4, [ 𝑗 (r)+𝜅− 1

2 ], [Γ (r,0) ]

+ Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+9𝑛+7, [ 𝑗 (r)+4𝜅 ], [Γ (r,0) ]

)
.

Here we have also used the linear independence of standard one-point functions (Proposition 3.2.9).

From (3.2.31), we obtain

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+9𝑛+1, [ 𝑗 (r)−2𝜅 ], [Γ (r,0) ] = SW3

[Γ (r,0) ], [𝜆′]e
−2𝜋 i

(
2𝜅 (ℓ+9𝑛+1)ℓ′+(ℓ+9𝑛+1) ( 𝑗 ′−𝜅)+( 𝑗 (r)−3𝜅)ℓ′

)
,(3.3.14a)

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+9𝑛+4, [ 𝑗 (r)+𝜅− 1

2 ], [Γ (r,0) ]
= e−6𝜋 i( 𝑗 ′−𝜅)Sℓ

′, [ 𝑗 ′], [𝜆′]
ℓ+9𝑛+1, [ 𝑗 (r)−2𝜅 ], [Γ (r,0) ],(3.3.14b)

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+9𝑛+7, [ 𝑗 (r)+4𝜅 ], [Γ (r,0) ] = e−12𝜋 i( 𝑗 ′−𝜅)Sℓ

′, [ 𝑗 ′], [𝜆′]
ℓ+9𝑛+1, [ 𝑗 (r)−2𝜅 ], [Γ (r,0) ] .(3.3.14c)

Substituting into (3.3.13) gives

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,r =

(
1 − e−6𝜋 i( 𝑗 ′−𝜅) + e−12𝜋 i( 𝑗 ′−𝜅)

)(3.3.15)

· SW3
[Γ (r,0) ], [𝜆′]

∞∑︁
𝑛=0
(−1)𝑛e−2𝜋 i

(
2𝜅 (ℓ+9𝑛+1)ℓ′+(ℓ+9𝑛+1) ( 𝑗 ′−𝜅)+( 𝑗 (r)−3𝜅)ℓ′

)
=

1 + e−18𝜋 i( 𝑗 ′−𝜅)

1 + e−6𝜋 i( 𝑗 ′−𝜅) S
W3
[Γ (r,0) ], [𝜆′]e

−2𝜋 i
(
2𝜅 (ℓ+1)ℓ′+(ℓ+1) ( 𝑗 ′−𝜅)+( 𝑗 (r)−3𝜅)ℓ′

) 1
1 + e−18𝜋 i( 𝑗 ′−𝜅)

= SW3
[Γ (r,0) ], [𝜆′]

e−2𝜋 i
(
2𝜅 (ℓ−1/2)ℓ′+(ℓ−1/2) ( 𝑗 ′−𝜅)+𝑗 (r)ℓ′

)
2 cos

(
3𝜋 ( 𝑗 ′ − 𝜅)

) . ■

A particularly important type-3 weight is k𝜔0 = Γ
[
u−3 0 0

1 −1 0
]
, whose corresponding highest-weight

BP(u, 3)-module is the vacuum module. This is due to its distinguished role in the standard Ver-

linde formula (3.3.2b). Recall the special notation Sℓ
′, [ 𝑗 ′], [𝜆′]

vac. = Sℓ
′, [ 𝑗 ′], [𝜆′]

0, [u−3,0,0] .

Corollary 3.3.5. Let k be admissible with v = 3. Then,

(3.3.16) Sℓ
′, [ 𝑗 ′], [𝜆′]

vac. = SW3
vac., [𝜆′]

e2𝜋 i𝜅ℓ′e𝜋 i( 𝑗
′−𝜅)

2 cos
(
3𝜋 ( 𝑗 ′ − 𝜅)

) , SW3
vac., [𝜆′] = SW3

[Γ ( [u−3,0,0],0) ], [𝜆′] .

Note that W( [u − 3, 0, 0], 0) is the vacuum module of W3(u, 3) because (1.3.17) gives

(3.3.17) Δ
[
u−3 0 0

0 0 0
]
= 𝑤

[
u−3 0 0

0 0 0
]
= 0.
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Interestingly, the vacuum S-matrix element (3.3.16) diverges when R̃ℓ
′

[ 𝑗 ′], [𝜆′] is nonsimple. This

same phenomenon was encountered in the analysis of the nonrational admissible-level 𝔰𝔩2 minimal

models reported in [52]. To see this divergence, recall that R̃ℓ′[ 𝑗 ′], [𝜆′] is nonsimple when [ 𝑗 ′] =

[ 𝑗 tw
(
(∇𝑖 (𝜆′)

)
+𝜅] for some 𝑖 ∈ ℤ3. As ∇𝑖 (𝜆′) ∈ Γu,3, it can be written as Γ(r, 0) for some r ∈ Pu−3

⩾ .

However,

(3.3.18) 𝑗 tw (Γ(r, 0)) + 𝜅 = 1
3 (𝑟1 − 𝑟2) − 1

2 ,

so the denominator of (3.3.16) becomes cos
(
𝜋 (𝑟1 − 𝑟2) − 3𝜋

2
)
= 0.

3.3.2. Grothendieck Fusion Rules for BP(u, 3). With the ‘S-matrix elements’ (3.2.31) and

(3.3.16) in hand, we are now in a position to compute the Grothendieck fusion rules of theBP(u, 3)-

modules using the standard Verlinde formula (3.3.2b). The first and most important fusion rule is

that between the standard modules.

The S-matrix for an ℓ ≠ 0 standard module can be expressed in terms of that of an ℓ = 0

standard module by

(3.3.19) S
𝑚, [𝑘 ], [𝜇 ]
ℓ, [ 𝑗 ], [𝜆] = e−2𝜋 iℓ (2𝜅ℓ′+𝑗 ′−𝜅)S

𝑚, [𝑘 ], [𝜇 ]
0, [ 𝑗 ], [𝜆] .

By the standard Verlinde formula, this means that

(3.3.20)
(

ℓ ′′, [ 𝑗 ′′], [𝜆′′]
ℓ, [ 𝑗], [𝜆] ℓ ′, [ 𝑗 ′], [𝜆′]

)
=

(
ℓ ′′ − ℓ ′ − ℓ, [ 𝑗 ′′], [𝜆′′]
0, [ 𝑗], [𝜆] 0, [ 𝑗 ′], [𝜆′]

)
,

for all ℓ, ℓ ′ ∈ 1
2ℤ. In other words, the Grothendieck fusion rule for

[
R̃ℓ[ 𝑗 ], [𝜆]

]
⊠

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]

may be

obtained by applying 𝜎 ℓ+ℓ′ to the rule for
[
R̃[ 𝑗 ], [𝜆]

]
⊠

[
R̃[ 𝑗 ′], [𝜆′]

]
.

Theorem 3.3.6. Let k be admissible with v = 3. Then for all ℓ, ℓ ′ ∈ 1
2ℤ, [ 𝑗], [ 𝑗 ′] ∈ ℝ/ℤ and

[𝜆], [𝜆′] ∈ Γu,3/ℤ3, the Grothendieck fusion rules of the standard BP(u, 3)-modules are

(3.3.21)
[
R̃ℓ[ 𝑗 ], [𝜆]

]
⊠

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]
=

∑︁
[𝜆′′] ∈Γu,3/ℤ3

N
W3 [𝜆′′]
[𝜆], [𝜆′]

( [
R̃ℓ+ℓ

′+2
[ 𝑗+𝑗 ′−4𝜅 ], [𝜆′′]

]
+

[
R̃ℓ+ℓ

′−1
[ 𝑗+𝑗 ′+2𝜅 ], [𝜆′′]

] )
.

Proof. The desired Grothendieck fusion coefficients are given by the standard Verlinde for-

mula (3.3.2b) with ℓ = ℓ ′ = 0. Using (3.2.31) and (3.3.16),

(
ℓ ′′, [ 𝑗 ′′], [𝜆′′]

0, [ 𝑗], [𝜆] 0, [ 𝑗 ′], [𝜆′]

)
=

∑︁
[𝜇 ]

SW3
[𝜆], [𝜇 ]S

W3
[𝜆′], [𝜇 ]

(
SW3
[𝜆′′], [𝜇 ]

)∗
SW3

vac., [𝜇 ]

∑︁
𝑚∈ℤ

e−2𝜋 i( 𝑗+𝑗 ′−𝑗 ′′−2𝜅ℓ′′)𝑚

(3.3.22)

·
∫
ℝ/ℤ

e2𝜋 i(ℓ′′−1/2) (𝑘−𝜅)2 cos
(
3𝜋 (𝑘 − 𝜅)

)
d[𝑘]
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= N
W3 [𝜆′′]
[𝜆], [𝜆′] 𝛿

(
[ 𝑗 ′′] − [ 𝑗 + 𝑗 ′ − 2𝜅ℓ ′′]

) (
𝛿ℓ′′,2 + 𝛿ℓ′′,−1

)
= N

W3 [𝜆′′]
[𝜆], [𝜆′]

(
𝛿
(
[ 𝑗 ′′] − [ 𝑗 + 𝑗 ′ − 4𝜅]

)
𝛿ℓ′′,2 + 𝛿

(
[ 𝑗 ′′] − [ 𝑗 + 𝑗 ′ + 2𝜅]

)
𝛿ℓ′′,−1

)
.

Substituting this result into (3.3.2a) and applying 𝜎 ℓ+ℓ′ to both sides recovers (3.3.21). ■

The asymmetry in the shifts of the spectral flow indices and 𝐽0-eigenvalues in (3.3.21) is a

reflection of our choice of conformal structure: the fields the conformal weights of𝐺+ and𝐺− have

different conformal weight with respect to 𝐿̃(𝑧) (1 and 2 respectively).

As the Grothendieck fusion rules do not depend on the choice of conformal grading, it is easy to

translate (3.3.21) to a more symmetric setting. Under the conformal structure defined by 𝐿(𝑧), 𝐺+

and𝐺− both have conformal weight 3
2 . The positive-energy relaxed modules under this conformal

structure are the twisted BP(u, 3)-modules Rtw
[ 𝑗 ], [𝜆] whose Grothendieck fusion rules are much

more symmetric:

[
𝜎 ℓ

(
Rtw
[ 𝑗 ], [𝜆]

) ]
⊠

[
𝜎 ℓ
′ (
Rtw
[ 𝑗 ′], [𝜆′]

) ]
=

[
R̃
ℓ−1/2
[ 𝑗+𝜅 ], [𝜆]

]
⊠

[
R̃
ℓ′−1/2
[ 𝑗 ′+𝜅 ], [𝜆′]

](3.3.23)

=
∑︁

[𝜆′′] ∈Γu,3/ℤ3

N
W3 [𝜆′′]
[𝜆], [𝜆′]

( [
R̃ℓ+ℓ

′+1
[ 𝑗+𝑗 ′−2𝜅 ], [𝜆′′]

]
+

[
R̃ℓ+ℓ

′−2
[ 𝑗+𝑗 ′+4𝜅 ], [𝜆′′]

] )
=

∑︁
[𝜆′′] ∈Γu,3/ℤ3

N
W3 [𝜆′′]
[𝜆], [𝜆′]

( [
𝜎 ℓ+ℓ

′+3/2 (Rtw
[ 𝑗+𝑗 ′−3𝜅 ], [𝜆′′]

) ]
+

[
𝜎 ℓ+ℓ

′−3/2 (Rtw
[ 𝑗+𝑗 ′+3𝜅 ], [𝜆′′]

) ] )
.

The remaining Grothendieck fusion rules of BP(u, 3)-module are straightforward to compute. As

every highest-weight BP(u, 3)-module is type-3, any such module can be written as a spectral flow

of one whose highest weight corresponds to s = [1,−1, 0]. Moreover, as the standard one-point

functions are linearly independent, (3.3.8) lifts to the following identity in the Grothendieck group:

(3.3.24)
[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ]
=

∞∑︁
𝑛=0
(−1)𝑛

( [
R̃

[
𝑟1 𝑟2 𝑟0
0 0 0

]9𝑛+1] − [
R̃

[
𝑟0 𝑟1 𝑟2
0 0 0

]9𝑛+4] + [
R̃

[
𝑟2 𝑟0 𝑟1
0 0 0

]9𝑛+7] )
.

Corollary 3.3.7. Let k be admissible with v = 3. Then for all ℓ, ℓ ′ ∈ 1
2ℤ, [ 𝑗 ′] ∈ ℝ/ℤ, r ∈ Pu−3

⩾ ,

and [𝜆′] ∈ Γu,3/ℤ3, we have the following Grothendieck fusion rules:

(3.3.25)
[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ℓ ]
⊠

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]
=

∑︁
[𝜆′′] ∈Γu,3/ℤ3

N
W3 [𝜆′′]
[Γ (r,0) ], [𝜆′]

[
R̃ℓ+ℓ

′

[ 𝑗 (r)+𝑗 ′], [𝜆′′]
]
.

Proof. As in the proof of Theorem 3.3.4, we rewrite the standard modules in the form required

by the standard-by-standard rules:

(3.3.26)[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ]
=

∞∑︁
𝑛=0
(−1)𝑛

( [
R̃9𝑛+1
[ 𝑗 (r)−2𝜅 ], [Γ (r,0) ]

]
−

[
R̃9𝑛+4
[ 𝑗 (r)+𝜅−1/2], [Γ (r,0) ]

]
+

[
R̃9𝑛+7
[ 𝑗 (r)+4𝜅 ], [Γ (r,0) ]

] )
.
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By fusing both sides with
[
R̃[ 𝑗 ′], [𝜆′]

]
and applying the standard-by-standard rules (3.3.21), almost

every term cancels and we arrive at the ℓ = ℓ ′ = 0 version of (3.3.26). Applying 𝜎 ℓ+ℓ′ to both sides

recovers (3.3.26) in full generality. ■

The highest-weight-by-standard Grothendieck fusion rules can also be obtained by directly apply-

ing the standard Verlinde formula (3.3.2b), in light of Theorems 3.2.10 and 3.3.4. This approach

is particularly quick as the cosine in the denominator of (3.3.12) does not depend on the weight

Γ(r, 0).

The only remaining Grothendieck fusion rules are the highest-weight-by-highest-weight rules.

For this, recall from Theorem 1.3.7 that W3(u, 3) fusion coefficients may be expressed in terms of

fusion coefficients for the rational 𝔰𝔩3 minimal model Lu−3(𝔰𝔩3):

(3.3.27) N
W3 [𝜆′′]
[𝜆], [𝜆′] = Nu−3 r′′

r,r′ .

As made clear in Theorem 1.3.7, such decompositions require choosing representatives of the in-

volved 𝜆 ∈ [𝜆] so that r = [𝑟1, 𝑟2] ∈ Q, the root lattice of 𝔰𝔩3. Since

(3.3.28) ∇(r) − r = u𝜔1 mod Q,

u ∉ 3ℤ implies that such representatives always exist and are unique.

Corollary 3.3.8. Let k be admissible with v = 3. Then for all ℓ, ℓ ′ ∈ 1
2ℤ and all r, r′ ∈ Pu−3

⩾ , we

have the following Grothendieck fusion rules:

(3.3.29)
[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ℓ ]
⊠

[
H

[
𝑟 ′0 𝑟 ′1 𝑟 ′2
1 −1 0

] ℓ′]
=

∑︁
r′′∈Pu−3

⩾

Nu−3 r′′
r,r′

[
H

[
𝑟 ′′0 𝑟 ′′1 𝑟 ′′2
1 −1 0

] ℓ+ℓ′]
.

Proof. Substituting the primed version of (3.3.26) and applying term by term the highest-

weight-by-standard Grothendieck fusion rule (3.3.25) results in[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ℓ ]
⊠

[
H

[
𝑟 ′0 𝑟 ′1 𝑟 ′2
1 −1 0

] ℓ′]
(3.3.30)

=
∑︁
[Γ (r′′,0) ]

N
W3 [Γ (r′′,0) ]
[Γ (r,0) ], [Γ (r′,0) ]

∞∑︁
𝑛=0
(−1)𝑛

( [
R̃9𝑛+1
[ 𝑗 (r)+𝑗 (r′)−2𝜅 ], [Γ (r′′,0) ]

]
−

[
R̃9𝑛+4
[ 𝑗 (r)+𝑗 (r′)+𝜅−1/2], [Γ (r′′,0) ]

]
+

[
R̃9𝑛+7
[ 𝑗 (r)+𝑗 (r′)+4𝜅 ], [Γ (r′′,0) ]

] )
.

What remains to show is that for each [Γ(r′′, 0)] ∈ Γu,3/ℤ3, the sum over 𝑛 is
[
H

[
𝑟 ′′0 𝑟 ′′1 𝑟 ′′2
1 −1 0

] ]
for

some unique r′′ ∈ Pu−3
⩾ . There are three candidates for r′′ as the ℤ3-orbit is fixed. The desired r′′

must also satisfy [ 𝑗 (r′′)] = [ 𝑗 (r) + 𝑗 (r′)] (by the double primed version of (3.3.26)).
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To show that this constraint picks exactly one representative of theℤ3-orbit, recall from (3.3.10)

that 𝑗 (r) ∈ 1
3ℤ. On the other hand, an easy calculation gives 𝑗

(
∇(r)

)
− 𝑗 (r) ∈ ℤ+ u

3 . Since u ∉ 3ℤ,

it follows that the three elements of the ℤ3-orbit have distinct charges modulo 1. There thus exists a

unique r′′ that corresponds to a weight in the requiredℤ3-orbit and satisfies [ 𝑗 (r′′)] = [ 𝑗 (r)+ 𝑗 (r′)].

It only remains to replace the W3(u, 3) fusion coefficients in (3.3.30) by Lu−3(𝔰𝔩3) ones. We

may choose the representative r′′ to satisfy r′′ ∈ Q, but we cannot assume that r or r′ satisfy the

analogous constraints. Thus, (1.3.37) gives

(3.3.31) N
W3 [Γ (r′′,0) ]
[Γ (r,0) ], [Γ (r′,0) ] = Nu−3 r′′

∇𝑚 (r),∇𝑛 (r′) = N
u−3 ∇−𝑚−𝑛 (r′′)
r,r′ ,

for some 𝑚,𝑛 ∈ ℤ3. This fusion coefficient is zero unless r + r′ − ∇−𝑚−𝑛 (r′′) ∈ Q, by the Kac–

Walton formula (1.2.14). It can therefore be nonzero for at most one −𝑚 − 𝑛 ∈ ℤ3, by (3.3.28).

We may therefore replace the sum in (3.3.30) by one over all r′′ ∈ Pu−3
⩾ , dropping the constraint

[ 𝑗 (r′′)] = [ 𝑗 (r) + 𝑗 (r′)], because the Lu−3(𝔰𝔩3) fusion coefficient is zero when this constraint is not

satisfied. ■

Theorem 3.3.6, Corollary 3.3.8 and Corollary 3.3.7 taken together specify all Grothendieck fusion

rules of BP(u, 3) minimal models.

An interesting consequence of what we have found is the Grothendieck fusion of H
[ 0 u−3 0

1 −1 0
]

with another highest-weight module. Let 0 = [u − 3, 0, 0]. The fusion rule (3.3.29) and (1.3.36)

now give [
H

[ 0 u−3 0
1 −1 0

] ]
⊠

[
H

[
𝑟 ′0 𝑟 ′1 𝑟 ′2
1 −1 0

] ]
=

∑︁
r′′∈Pu−3

⩾

Nu−3 r′′

∇(0),r′
[
H

[
𝑟 ′′0 𝑟 ′′1 𝑟 ′′2
1 −1 0

] ]
(3.3.32)

=
∑︁

r′′∈Pu−3
⩾

N
u−3 ∇−1 (r′′)
0,r′

[
H

[
𝑟 ′′0 𝑟 ′′1 𝑟 ′′2
1 −1 0

] ]
=

∑︁
r′′∈Pu−3

⩾

𝛿r′′,∇(r′)
[
H

[
𝑟 ′′0 𝑟 ′′1 𝑟 ′′2
1 −1 0

] ]
=

[
H

[
𝑟 ′2 𝑟 ′0 𝑟 ′1
1 −1 0

] ]
.

This, and another nearly identical calculation for H
[ 0 0 u−3

1 −1 0
]
, proves the following proposition.

These computations prove the existence of simple currents in the fusion ring of BP(u, v). That is,

modules that act invertibly on the fusion ring under the fusion product.

Proposition 3.3.9. Let k be admissible with v = 3. Then, H
[ 0 u−3 0

1 −1 0
]

and H
[ 0 0 u−3

1 −1 0
]

are simple

currents of order 3, inverse to one another. Their highest weights (with respect to 𝐽0 and 𝐿0) are

(3.3.33) ( 𝑗,Δ) = (+u−3
3 , u−3

2 ) and ( 𝑗,Δ) = (−u−3
3 , u−3

2 ),

respectively.
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Additionally, observe that Corollary 3.3.8 shows the existence of a set ofBP(u, 3)-modules labelled

by weights r′′ ∈ Pu−3
⩾ having Grothendieck fusion rules with coefficients given by the fusion coef-

ficients of Lu−3(𝔰𝔩3). One might reasonably suspect that if the Grothendieck fusion rules (3.3.29)

can be upgraded to genuine fusion rules, these highest-weight BP(u, 3)-modules can be identified

with Lu−3(𝔰𝔩3)-modules in a fusion-preserving way. The following proposition says that this is the

case.

Proposition 3.3.10. Let k be admissible with v = 3. Then, the fusion subring of BP(u, 3)-modules

generated by the H
[
𝑟0 𝑟1 𝑟2
1 −1 0

]
∈ Σu,3, is isomorphic to the fusion ring of the affine vertex operator

algebra Lu−3(𝔰𝔩3).

Proof. By (3.3.29), the Grothendieck fusion subring generated by the
[
H

[
𝑟0 𝑟1 𝑟2
1 −1 0

] ]
is clearly

isomorphic to the fusion ring of Lu−3(𝔰𝔩3). An obvious isomorphism consists of identifying the

simple highest-weight BP(u, 3)-module H
[
𝑟0 𝑟1 𝑟2
1 −1 0

]
with the simple highest-weight Lu−3(𝔰𝔩3)-

module Lr whose highest weight is r = [𝑟0, 𝑟1, 𝑟2].

To show that this gives an isomorphism of fusion rings, we only need to show that theBP(u, 3)-

modules of the form H
[
𝑟0 𝑟1 𝑟2
1 −1 0

]
generate a semisimple fusion subring. That is, that (3.3.29) can

be lifted to a genuine fusion rule. For this, it is useful to consider the weight r = [u − 4, 1, 0]. The

Lu−3(𝔰𝔩3) fusion coefficients on the right-hand side of (3.3.29) (when one of the weights on the

left-hand side is [u−4, 1, 0]) that appear can be computed using the Kac–Walton formula (1.2.14):

(3.3.34) L[u−4,1,0] × L[𝑟 ′0,𝑟 ′1,𝑟 ′2 ] ≃ L[𝑟 ′0−1,𝑟 ′1+1,𝑟
′
2 ] ⊕ L[𝑟 ′0+1,𝑟

′
1,𝑟
′
2−1] ⊕ L[𝑟 ′0,𝑟

′
1−1,𝑟 ′2+1] .

Here, the modules appearing on the right-hand side are understood to be 0 if the 𝑟 -labels do not

define a weight in Pu−3
⩾ . It follows that

(3.3.35)[
H

[
u−4 1 0

1 −1 0
] ]
⊠

[
H

[
𝑟 ′0 𝑟 ′1 𝑟 ′2
1 −1 0

] ]
=

[
H

[
𝑟 ′0−1 𝑟 ′1+1 𝑟

′
2

1 −1 0

] ]
+

[
H

[
𝑟 ′0+1 𝑟 ′1 𝑟 ′2−1

1 −1 0

] ]
+

[
H

[
𝑟 ′0 𝑟

′
1−1 𝑟 ′2+1

1 −1 0

] ]
,

where again, the modules appearing on the right-hand side are understood to be 0 if the 𝑟 -labels do

not define a weight in Pu−3
⩾ . To see that (3.3.35) can be lifted to a genuine fusion rule, it suffices to

show that the 𝐿̃0-eigenvalues of the highest-weight vectors of any two of the modules appearing on

the right-hand side differ by nonintegers. That is, that these modules admit no nonsplit extensions.

A straightforward calculation shows that this is the case, and therefore

(3.3.36) H
[
u−4 1 0

1 −1 0
]
×H

[
𝑟 ′0 𝑟 ′1 𝑟 ′2
1 −1 0

]
≃ H

[
𝑟 ′0−1 𝑟 ′1+1 𝑟

′
2

1 −1 0

]
⊕H

[
𝑟 ′0+1 𝑟 ′1 𝑟 ′2−1

1 −1 0

]
⊕H

[
𝑟 ′0 𝑟

′
1−1 𝑟 ′2+1

1 −1 0

]
.

An identical approach yields an analogous result for r = [u − 4, 0, 1]. It can then be shown that

H
[
u−4 1 0

1 −1 0
]

and H
[
u−4 0 1

1 −1 0
]

generate the desired semisimple fusion subring of BP(u, 3). ■
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3.3.3. Examples. We conclude our v = 3 studies by revisiting one of the examples from

Section 2.3.5.

Example (BP(4, 3)). Recall that the minimal model BP(4, 3) has level k = − 5
3 and central

charge cBP4,3 = −1 with respect to the conformal vector 𝐿.

There are 9 untwisted highest-weight modules that are arranged into 3 spectral flow orbits as

follows:

(3.3.37)

· · · 𝜎−→ H
[ 1 0 0

0 −1 1
] 𝜎−→ H

[ 0 1 0
1 −1 0

] 𝜎−→ H
[ 0 0 1

0 0 0
] 𝜎−→ · · · ,

· · · 𝜎−→ H
[ 0 0 1

0 −1 1
] 𝜎−→ H

[ 1 0 0
1 −1 0

] 𝜎−→ H
[ 0 1 0

0 0 0
] 𝜎−→ · · · ,

· · · 𝜎−→ H
[ 0 1 0

0 −1 1
] 𝜎−→ H

[ 0 0 1
1 −1 0

] 𝜎−→ H
[ 1 0 0

0 0 0
] 𝜎−→ · · · .

The first line in (3.3.37) consists of spectral flows of the vacuum module, while the remaining

modules are spectral flows of the simple currents from Proposition 3.3.9. Therefore the fusion

rules of highest-weight modules are determined by (3.3.32) (and the [0, 0, u − 3] version) and the

fact that fusion with the vacuum does not change the module. For example,

H
[ 1 0 0

0 −1 1
]
×H

[ 1 0 0
0 0 0

]
≃ 𝜎−1 (H [ 0 1 0

1 −1 0
] )
× 𝜎

(
H

[ 0 0 1
1 −1 0

] )
(3.3.38)

≃ H
[ 0 1 0

1 −1 0
]
×H

[ 0 0 1
1 −1 0

]
≃ H

[ 1 0 0
1 −1 0

]
.

There is a single family of twisted relaxed highest-weight BP(4, 3)-modules Rtw
[ 𝑗 ], [𝜆] , where [𝜆] =

[Γ
[ 1 0 0

0 0 0
]
] ∈ Γ4,3/ℤ3 and [ 𝑗] ∈ ℝ/ℤ. We shall simplify the notation by dropping the dependence

on [𝜆]: Rtw
[ 𝑗 ] ≡ Rtw

[ 𝑗 ], [𝜆] . The condition on [ 𝑗] for Rtw
[ 𝑗 ] to be simple is 𝑗 ≠ 1

6 ,
1
2 ,

5
6 (mod 1),

by Theorem 2.3.25. When 𝑗 assumes one of these values, Rtw
[ 𝑗 ] is nonsemisimple with 𝐺−0 acting

injectively.

The highest-weight-by-relaxed Grothendieck fusion rules are easily obtained as every highest-

weight BP(4, 3)-module is the spectral flow of the vacuum module or a simple current:

(3.3.39)
[
H

[ 0 1 0
1 −1 0

] ]
⊠

[
Rtw
[ 𝑗 ′]

]
=

[
Rtw
[ 𝑗 ′+u/3]

]
,

using (3.3.25). If the relaxed module on the left-hand side is simple, then so is that on the right.

We therefore obtain the following genuine fusion rule:

(3.3.40) H
[ 0 1 0

1 −1 0
]
× Rtw

[ 𝑗 ′] ≃ Rtw
[ 𝑗 ′+u/3], 𝑗 ′ ∉ 1

3ℤ +
1
6 .

The remaining Grothendieck fusion rules are the relaxed-by-relaxed rules, which are given by

(3.3.41)
[
Rtw
[ 𝑗 ]

]
⊠

[
Rtw
[ 𝑗 ′]

]
=

[
𝜎3/2 (Rtw

[ 𝑗+𝑗 ′+1/6]
) ]
+

[
𝜎−3/2 (Rtw

[ 𝑗+𝑗 ′−1/6]
) ]
.
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By comparing conformal weights for the summands on the right-hand side, we conclude that this

can be uplifted to a genuine fusion rule for almost all 𝑗:

(3.3.42) Rtw
[ 𝑗 ] × R

tw
[ 𝑗 ′] ≃ 𝜎

3/2 (Rtw
[ 𝑗+𝑗 ′+1/6]

)
⊕ 𝜎−3/2 (Rtw

[ 𝑗+𝑗 ′−1/6]
)
, 𝑗 + 𝑗 ′ ∉ 1

3ℤ.

When 𝑗 + 𝑗 ′ ∈ 1
3ℤ, we conjecture that the fusion product is nonsemisimple. In fact, we expect that

the fusion products are staggered BP(4, 3)-modules in the sense of [120].

Recall that BP(4, 3) is known to be a ℤ3-orbifold of the 𝛽𝛾 ghost vertex algebra B. The field

identifications were given in (2.3.58). In the opposite direction, the simple current extension of

BP(4, 3) corresponding to H
[ 0 1 0

1 −1 0
]

and H
[ 0 0 1

1 −1 0
]

is the vertex operator algebra B′, whose

vacuum module decomposes as

(3.3.43) B′ = H
[ 0 1 0

1 −1 0
]
⊕H

[ 1 0 0
1 −1 0

]
⊕H

[ 0 0 1
1 −1 0

]
.

It is easy to check that the field 𝛽 (𝑧) of weight ( 13 ,
1
2 ) and the field 𝛾 (𝑧) of weight (−1

3 ,
1
2 ) generate a

copy of the bosonic ghosts vertex operator algebra in B′. As the generating fields of BP(4, 3) can

be expressed in terms of 𝛽 and 𝛾 , B′ ≃ B.

The simple current orbits

(3.3.44) H
[ 1 0 0

0 −1 1
]
⊕H

[ 0 0 1
0 −1 1

]
⊕H

[ 0 1 0
0 −1 1

]
and H

[ 0 0 1
0 0 0

]
⊕H

[ 0 1 0
0 0 0

]
⊕H

[ 1 0 0
0 0 0

]
are not B′-modules as they are not 1

2ℤ-graded by conformal weight. In fact, 𝜎 ℓ
(
B′

)
is an untwisted

B′-module (is 1
2ℤ-graded) if and only if ℓ ∈ 3ℤ and is a twisted B′-module (is ℤ-graded) if and

only if ℓ ∈ 3(ℤ + 1
2 ). This reflects the fact that the natural unit of ghost spectral flow is 𝜎3, not 𝜎

(see [144, (2.2)]).

Consider the simple current orbit of the twisted relaxed highest-weight BP(4, 3)-module:

(3.3.45) B⟦𝑗⟧ = Rtw
[ 𝑗−1/3] ⊕ Rtw

[ 𝑗 ] ⊕ Rtw
[ 𝑗+1/3], ⟦ 𝑗⟧ ∈ ℝ

/ 1
3ℤ.

Conformal weight considerations show that it is a simple twisted B-module for all ⟦ 𝑗⟧ ≠ ⟦1
6⟧.

Thus we have constructed two classes of (untwisted or twisted) B′-modules: 𝜎 ℓ
(
B′

)
and 𝜎 ℓ

(
B⟦𝑗⟧

)
with either ℓ ∈ 3ℤ or ℓ ∈ 3(ℤ + 1

2 ).

Fusion rules for these B′-modules may be obtained from the BP(4, 3) fusion rules by induction

[146], see also [48]. Those involving the simple current extension B′ (and its spectral flows) are

obvious, so the only nontrivial fusion rule is

(3.3.46) B⟦𝑗⟧ ×B⟦𝑗 ′⟧ ≃ 𝜎3/2 (B⟦𝑗+𝑗 ′+1/6⟧) ⊕ 𝜎−3/2 (B⟦𝑗+𝑗 ′−1/6⟧
)
, ⟦ 𝑗 + 𝑗 ′⟧ ≠ ⟦0⟧.
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Unsurprisingly, this fusion rule is identical to the bosonic ghosts fusion rule computed in [144,

App. A], up to rescaling charges and spectral flow indices by a factor of 3.

3.3.4. One-Point Functions for Highest-WeightBP(u, v)-Modules. We now turn to the gen-

eralisation of our v = 3 modularity results to v > 3. Here, there are always highest-weight modules

of every type. The same strategy as before largely works in this context too: construct resolutions

that express the one-point functions of the highest-weight modules in terms of those of the stan-

dard modules and use these to obtain modular transformations. The technical complexity of the

computations increases considerably and so we shall not be exhaustive in our investigations.

The first order of business is obtaining resolutions for highest-weight BP(u, v)-modules. Since

spectral flow is an exact functor, it suffices to choose a representative highest-weight BP(u, v)-

module in each orbit. We therefore take Γ(r, s) ∈ Σu,v to be as in Corollary 2.3.23, thus the leftmost

in its orbit (as pictured in Figure 1). Then, 𝑠2 ≠ 0 and Proposition 3.3.1 gives the following short

exact sequence:

(3.3.47) 0 −→ H
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+1 𝑠2−1

]1 −→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+1 𝑠2−1

]
−→ H(r, s) −→ 0.

Note that H
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+1 𝑠2−1

]
is rightmost in its orbit. As long as 𝑠2 ≠ 1, it is type-1 and thus also

leftmost. The sequence (3.3.47) can therefore be spliced until we reach a highest-weight module

with 𝑠2 = 0 which is no longer type-1.

What results from this procedure is the exact sequence

(3.3.48)
0→ H

[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+𝑠2 0

]𝑠2 → R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+𝑠2 0

]𝑠2−1 → . . .

. . .→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+2 𝑠2−2

]1 → R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+1 𝑠2−1

]
→ H(r, s) → 0.

Resolving highest-weight modules therefore reduces to resolving those with 𝑠2 = 0. Indeed the

module H
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+𝑠2 0

]
= H

[ 𝑟0 𝑟1 𝑟2
𝑠0 v−3−𝑠0 0

]
is type-2 if 𝑠0 ≠ 0, and type-3 if 𝑠0 = 0. Being rightmost

in its orbit, this module is therefore obtained from the leftmost by applying one or two units of

spectral flow, respectively. By Theorem 2.3.21,

(3.3.49) H
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+𝑠2 0

]𝑠2 ≃

H

[ 𝑟1 𝑟2 𝑟0
v−2−𝑠0 −1 𝑠0

]𝑠2+1 if 𝑠0 ≠ 0,

H
[
𝑟2 𝑟0 𝑟1
0 −1 v−2

]𝑠2+2 if 𝑠0 = 0.

The modules on the right-hand side are now leftmost in their orbits and are therefore fit into a short

exact sequence of the form (3.3.47). We can therefore iteratively splice spectral flows of (3.3.48)

to obtain the desired resolution for 𝑠2 = 0 highest-weight modules.
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If we start with a highest-weight module having 𝑠0 = 0, then all the sequences (3.3.48) to be

spliced together will have 𝑠0 = 0 and the resolutions will only involve type-1 and type-3 highest

weights.

Similarly, if we start with 𝑠0 ≠ 0, then the sequences being spliced will all have 𝑠0 ≠ 0 because

H(r, s) was chosen to be leftmost in its orbit and so we cannot have 𝑠0 = v−2. Thus the resolutions

will only involve type-1 and type-2 highest weights.

The easiest resolution obtained in this manner are those involving type-3 BP(u, v)-modules.

Of course when v = 3, these are the only highest-weight modules in the spectrum. The following

proposition (along with its spectral flows) is therefore a generalisation of Proposition 3.3.2. Note

as well that the the vacuum module is always type-3.

Proposition 3.3.11. Let k be nondegenerate-admissible. Then, the BP(u, v)-modules of the form

H
[ 𝑟0 𝑟1 𝑟2

0 𝑠1 𝑠2

]
(chosen as in Figure 1 to be leftmost in its spectral flow orbit) is resolved by the non-

simple standard modules as follows:

· · · → R̃
[
𝑟0 𝑟1 𝑟2
0 v−3 0

]𝑠2−1+3v −→ . . . −→ R̃
[
𝑟0 𝑟1 𝑟2
0 1 v−4

]𝑠2+3+2v −→ R̃
[
𝑟0 𝑟1 𝑟2
0 0 v−3

]𝑠2+2+2v
(3.3.50)

−→ R̃
[
𝑟1 𝑟2 𝑟0
0 v−3 0

]𝑠2−1+2v −→ . . . −→ R̃
[
𝑟1 𝑟2 𝑟0
0 1 v−4

]𝑠2+3+v −→ R̃
[
𝑟1 𝑟2 𝑟0
0 0 v−3

]𝑠2+2+v

−→ R̃
[
𝑟2 𝑟0 𝑟1
0 v−3 0

]𝑠2−1+v −→ . . . −→ R̃
[
𝑟2 𝑟0 𝑟1
0 1 v−4

]𝑠2+3 −→ R̃
[
𝑟2 𝑟0 𝑟1
0 0 v−3

]𝑠2+2

−→ R̃
[
𝑟0 𝑟1 𝑟2
0 v−3 0

]𝑠2−1 −→ . . . −→ R̃
[ 𝑟0 𝑟1 𝑟2

0 𝑠1+2 𝑠2−2
]1 −→ R̃

[ 𝑟0 𝑟1 𝑟2
0 𝑠1+1 𝑠2−1

]
−→ H

[ 𝑟0 𝑟1 𝑟2
0 𝑠1 𝑠2

]
→ 0.

The resolution for 𝑠0 ≠ 0 is somewhat more complicated.

Proposition 3.3.12. Let k be nondegenerate-admissible with v > 3 and suppose that 𝑠0 ≠ 0.

Then, the BP(u, v)-module H(r, s) (chosen as in Figure 1 to be leftmost in its spectral flow orbit)

is resolved by the nonsimple standard modules as follows:

· · · −→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 v−3−𝑠0 0

]3v+𝑠2−1 −→ . . . −→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 1 v−4−𝑠0

]3v−𝑠1 −→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 0 v−3−𝑠0

]3v−𝑠1−1
(3.3.51)

−→ R̃
[ 𝑟2 𝑟0 𝑟1
v−2−𝑠0 𝑠0−1 0

]3v−𝑠1−3 −→ . . . −→ R̃
[ 𝑟2 𝑟0 𝑟1
v−2−𝑠0 1 𝑠0−2

]2v+𝑠2+2 −→ R̃
[ 𝑟2 𝑟0 𝑟1
v−2−𝑠0 0 𝑠0−1

]2v+𝑠2+1

−→ R̃
[ 𝑟1 𝑟2 𝑟0
𝑠0 v−3−𝑠0 0

]2v+𝑠2−1 −→ . . . −→ R̃
[ 𝑟1 𝑟2 𝑟0
𝑠0 1 v−4−𝑠0

]2v−𝑠1 −→ R̃
[ 𝑟1 𝑟2 𝑟0
𝑠0 0 v−3−𝑠0

]2v−𝑠1−1

−→ R̃
[ 𝑟0 𝑟1 𝑟2
v−2−𝑠0 𝑠0−1 0

]2v−𝑠1−3 −→ . . . −→ R̃
[ 𝑟0 𝑟1 𝑟2
v−2−𝑠0 1 𝑠0−2

]v+𝑠2+2 −→ R̃
[ 𝑟0 𝑟1 𝑟2
v−2−𝑠0 0 𝑠0−1

]v+𝑠2+1

−→ R̃
[ 𝑟2 𝑟0 𝑟1
𝑠0 v−3−𝑠0 0

]v+𝑠2−1 −→ . . . −→ R̃
[ 𝑟2 𝑟0 𝑟1
𝑠0 1 v−4−𝑠0

]v−𝑠1 −→ R̃
[ 𝑟2 𝑟0 𝑟1
𝑠0 0 v−3−𝑠0

]v−𝑠1−1

−→ R̃
[ 𝑟1 𝑟2 𝑟0
v−2−𝑠0 𝑠0−1 0

]v−𝑠1−3 −→ . . . −→ R̃
[ 𝑟1 𝑟2 𝑟0
v−2−𝑠0 1 𝑠0−2

]𝑠2+2 −→ R̃
[ 𝑟1 𝑟2 𝑟0
v−2−𝑠0 0 𝑠0−1

]𝑠2+1

−→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 v−3−𝑠0 0

]𝑠2−1 −→ . . . −→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+2 𝑠2−2

]1 −→ R̃
[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+1 𝑠2−1

]
−→ H(r, s) −→ 0.
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The type-3 resolution (3.3.50) may be recovered from (3.3.51) by setting 𝑠0 = 0, i.e. by delet-

ing every second line. As for v = 3, the one-point functions for spectral flows of highest-weight

BP(u, v)-modules are easily obtained from the resolution (3.3.51).

Corollary 3.3.13. For k nondegenerate-admissible, the one-point function of H(r, s) (chosen as in

Figure 1 to be leftmost in its spectral flow orbit) is given by

c̃h
[
H(r, s)

]
=

𝑠2−1∑︁
𝑚=0
(−1)𝑚 c̃h

[
R̃

[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑠1+𝑚+1 𝑠2−𝑚−1

]𝑚](3.3.52)

+
∞∑︁
𝑛=0

𝑠0−1∑︁
𝑚=0
(−1)𝑠2+𝑚+𝑛v

(
c̃h

[
R̃

[ 𝑟1 𝑟2 𝑟0
v−2−𝑠0 𝑚 𝑠0−𝑚−1

]𝑚+3𝑛v+𝑠2+1]
+ (−1)v c̃h

[
R̃

[ 𝑟0 𝑟1 𝑟2
v−2−𝑠0 𝑚 𝑠0−𝑚−1

]𝑚+(3𝑛+1)v+𝑠2+1]
+ c̃h

[
R̃

[ 𝑟2 𝑟0 𝑟1
v−2−𝑠0 𝑚 𝑠0−𝑚−1

]𝑚+(3𝑛+2)v+𝑠2+1] )
−
∞∑︁
𝑛=1

v−3−𝑠0∑︁
𝑚=0
(−1)𝑠1+𝑚+𝑛v

(
c̃h

[
R̃

[ 𝑟2 𝑟0 𝑟1
𝑠0 𝑚 v−3−𝑠0−𝑚

]𝑚+(3𝑛−2)v−𝑠1−1]
+ (−1)v c̃h

[
R̃

[ 𝑟1 𝑟2 𝑟0
𝑠0 𝑚 v−3−𝑠0−𝑚

]𝑚+(3𝑛−1)v−𝑠1−1]
+ c̃h

[
R̃

[ 𝑟0 𝑟1 𝑟2
𝑠0 𝑚 v−3−𝑠0−𝑚

]𝑚+3𝑛v−𝑠1−1] )
.

The one-point function of the spectrally flow module H(r, s)ℓ with ℓ ≠ 0 is obtained from (3.3.52)

by simply adding ℓ to all spectral flow indices on the right-hand side.

The most important highest-weight module is the type-3 vacuum module which has r = [u −

3, 0, 0] and s = [v − 2,−1, 0]. The one-point function formula (3.3.52) simplifies greatly for the

vacuum module. In fact, it simplifies considerably for all type-3 BP(u, v)-modules. Rather than

choosing the representative of highest-weight type-3 modules to be the leftmost one in Figure 1,

we shall find it convenient to choose the middle module as the representative of the type-3 spectral

flow orbits. In particular, the vacuum module is such a type-3 representative.

Corollary 3.3.14. For k be nondegenerate-admissible, the one-point function of the type-3 module

H
[
𝑟0 𝑟1 𝑟2
v−2 −1 0

]
is given by

c̃h
[
H

[
𝑟0 𝑟1 𝑟2
v−2 −1 0

] ]
=

∞∑︁
𝑛=0

v−3∑︁
𝑚=0
(−1)𝑚+𝑛v

(
c̃h

[
R̃

[
𝑟1 𝑟2 𝑟0
0 𝑚 v−3−𝑚

]𝑚+3𝑛v+1](3.3.53)
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+ (−1)v c̃h
[
R̃

[
𝑟0 𝑟1 𝑟2
0 𝑚 v−3−𝑚

]𝑚+(3𝑛+1)v+1] + c̃h
[
R̃

[
𝑟2 𝑟0 𝑟1
0 𝑚 v−3−𝑚

]𝑚+(3𝑛+2)v+1] )
=

∞∑︁
𝑛=0

v−3∑︁
𝑚=0

2∑︁
𝑖=0
(−1)𝑚+(𝑛+𝑖)v c̃h

[
R̃(∇𝑖−1(r), [0,𝑚, v − 3 −𝑚])𝑚+(3𝑛+𝑖)v+1

]
.

Before turning to the modular transforms of the type-3 one-point functions, we generalise the no-

tation (3.3.10) to v ⩾ 3:

(3.3.54)
𝑗 (r, s) = 𝑗

(
Γ(r, s)

)
= 1

3 (𝑟1 − 𝑟2) − u
3v (𝑠1 − 𝑠2 + 1),

𝑗 tw(r, s) = 𝑗 (r, s) + 𝜅 = 1
3 (𝑟1 − 𝑟2) − u

3v (𝑠1 − 𝑠2) − 1
2 .

For each 𝜆 = Γ
[
𝑟0 𝑟1 𝑟2
v−2 −1 0

]
∈ Σu,v, we define the convenient notation 𝜆 = 𝜆 + u

v (𝜔0 − 𝜔1), noting

that

(3.3.55) 𝜆 = Γ
[
𝑟0 𝑟1 𝑟2
v−2 −1 0

]
∈ Σu,v ⇒ 𝜆 = Γ

[
𝑟0 𝑟1 𝑟2
v−3 0 0

]
∈ Γu,v .

The S-transforms of the type-3 one-point functions when v > 3 are found in a similar way to those

for v = 3 in Theorem 3.3.4. The main additional complication is the presence of one-point functions

of standard modules with differing s labels. The saving grace here is the relationship between the

W3 S-matrix and characters of simple highest-weight 𝔰𝔩3-modules described in Section 1.3.3.

Theorem 3.3.15. Let k be nondegenerate-admissible and let 𝜆 = Γ
[
𝑟0 𝑟1 𝑟2
v−2 −1 0

]
∈ Σu,v. Then for all

ℓ ∈ ℤ, the S-transform of the one-point function of 𝜎 ℓ
(
H𝜆

)
= H

[
𝑟0 𝑟1 𝑟2
v−2 −1 0

] ℓ is given by

(3.3.56) S
{
c̃h

[
𝜎 ℓ

(
H𝜆

) ] }
=
|𝜏 |
−i𝜏

∑︁
ℓ′∈ℤ

∫
ℝ/ℤ

∑︁
[𝜆′] ∈Γu,v/ℤ3

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,𝜆

c̃h
[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]

d[ 𝑗 ′],

where the entries of the ‘highest-weight S-matrix’ are given by

(3.3.57) Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,𝜆

= SW3
[𝜆], [𝜆′]

e−2𝜋 i
(
2𝜅 (ℓ−1/2)ℓ′+(ℓ−1/2) ( 𝑗 ′−𝜅)+𝑗 (𝜆)ℓ′

)
2 cos

(
3𝜋 ( 𝑗 ′ − 𝜅)

)
−∑

𝑖∈ℤ3 2 cos
(
𝜋𝑎𝑖 ( 𝑗 ′, 𝜆′)

)
and 𝑎𝑖 ( 𝑗, 𝜆) = ( 𝑗 − 𝜅) + 2 𝑗 tw

(
∇𝑖 (𝜆)

)
.

Proof. Let r = [𝑟0, 𝑟1, 𝑟2] and s = [v − 2,−1, 0], so that 𝜆 = Γ(r, s). The relaxed modules

appearing in (3.3.53) have linearly independent one-point functions, so the ‘highest-weight’ S-

matrix element corresponding to 𝜎 ℓ
(
H𝜆

)
and R̃ℓ

′

[ 𝑗 ′], [𝜆′] is

Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,𝜆

=

∞∑︁
𝑛=0

v−3∑︁
𝑚=0
(−1)𝑚+𝑛v

(
Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+𝑚+3𝑛v+1, [ 𝑗 tw (∇−1 (r),s𝑚)+𝜅 ], [Γ (∇−1 (r),s𝑚) ]

(3.3.58)

+ (−1)vSℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+𝑚+(3𝑛+1)v+1, [ 𝑗 tw (r,s𝑚)+𝜅 ], [Γ (r,s𝑚) ]
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+ Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ+𝑚+(3𝑛+2)v+1, [ 𝑗 tw (∇(r),s𝑚)+𝜅 ], [Γ (∇(r),s𝑚) ]

)
,

where s𝑚 = [0,𝑚, v − 3 −𝑚]. Extracting the 𝑛 dependent factors on the right-hand side using

(3.2.31) and summing over 𝑛 gives

(3.3.59)
∞∑︁
𝑛=0
(−1)𝑛ve−2𝜋 i

(
3v( 𝑗 ′−𝜅)+6𝑣𝜅ℓ′

)
𝑛 =

1
1 − (−1)ve−6𝜋 iv( 𝑗 ′−𝜅) ,

using that 6v𝜅 = 2u − 3v. To simplify the 𝑛-independent part, first note that

(3.3.60) [ 𝑗 tw(∇(r), s)] = [ 𝑗 tw(r, s) + u
3 ], [6v 𝑗 tw(𝜆′)] = [v]

for all 𝜆′ ∈ Γu,v. The W3(u, v) S-matrix entries in (3.3.58) (after expanding the BP S-matrix

elements according to (3.2.31)) are related by (1.3.26). Putting this all together, the 𝑛-independent

part of (3.3.58) reduces to

1 − (−1)ve−6𝜋 iv( 𝑗 ′−𝜅)

1 − e−2𝜋 iv( 𝑗 ′−𝜅)e2𝜋 iv 𝑗 tw (𝜆′)

(3.3.61)

·
v−3∑︁
𝑚=0
(−1)𝑚e−2𝜋 i(ℓ+𝑚+1) ( 𝑗 ′−𝜅)e−4𝜋 i𝜅 (ℓ+𝑚+1)ℓ′e−2𝜋 i𝑗 tw (∇−1 (r),s𝑚)ℓ′SW3

[Γ (∇−1 (r),s𝑚) ], [𝜆′]
.

What remains to evaluate is the tricky sum over 𝑚. Note that when v = 3, only the 𝑚 = 0 term

remains and we get the S-matrix element (3.3.16).

To attack this sum when v > 3, firstly note that

(3.3.62) [ 𝑗 tw(r, s𝑚)] = [ 𝑗 tw(r, s0) − 2𝜅𝑚] .

The W3(u, v) S-matrix entries in (3.3.61) can also be simplified using Proposition 1.3.5:

SW3
[Γ (∇−1 (r),s𝑚) ], [𝜆′]

SW3
[Γ (r,∇(s0)) ], [𝜆′]

=
SW3
[Γ (r,∇(s𝑚)) ], [Γ (r′,s′) ]

SW3
[Γ (r,0) ], [Γ (r′,s′) ]

(3.3.63)

= e2𝜋 i⟨r′+𝜌,∇(s𝑚) ⟩𝜒∇(s𝑚) (𝜉s′)

= e2𝜋 i𝑚 ⟨r′+𝜌,𝜔2 ⟩𝜒𝑚𝜔2 (𝜉s′),

where 𝜆′ = Γ(r′, s′), 0 = [v − 3, 0, 0] and 𝜒𝑚𝜔2 (𝜉s′) is the character of the simple highest-weight

𝔰𝔩3-module L𝑚𝜔2 evaluated at the 𝔰𝔩3 weight

(3.3.64) 𝜉s′ = −2𝜋 iuv (s′ + 𝜌) .
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The sum over𝑚 in (3.3.61) thus simplifies to, using that [𝜆] = [Γ(r,∇(s0))],

(3.3.65) e−2𝜋 i(ℓ+1) ( 𝑗 ′−𝜅)e−4𝜋 i𝜅 (ℓ+1)ℓ′e−2𝜋 i𝑗 tw (∇−1 (r),s0)ℓ′SW3
[𝜆], [𝜆′]

v−3∑︁
𝑚=0

𝑥𝑚𝜒𝑚𝜔2 (𝜉s′),

where 𝑥 = −e2𝜋 i( ⟨r′+𝜌,𝜔2 ⟩−( 𝑗 ′−𝜅)) . The remaining sum over𝑚 can be evaluated (see Section 3.3.5)

and is given by

(3.3.66)
v−3∑︁
𝑚=0

𝑥𝑚𝜒𝑚𝜔2 (𝜉s′) = e3𝜋 i( 𝑗 ′−𝜅) 1 − e−2𝜋 iv( 𝑗 ′−𝜅)e2𝜋 iv 𝑗 tw (𝜆′)

8 sin(𝜋𝑐1) sin(𝜋𝑐2) sin(𝜋𝑐3)
,

where 𝑐𝑖 = ( 𝑗 ′−𝜅) − 𝑗 tw
(
∇𝑖 (𝜆′)

)
. Finally, putting (3.3.59), (3.3.61), (3.3.65) and (3.3.66) together,

we obtain

(3.3.67) Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,𝜆

=
e−2𝜋 i(ℓ−1/2) ( 𝑗 ′−𝜅)e−4𝜋 i𝜅 (ℓ+1)ℓ′e−2𝜋 i𝑗 tw (∇−1 (r),s0)ℓ′

8 sin(𝜋𝑐1) sin(𝜋𝑐2) sin(𝜋𝑐3)
SW3
[𝜆], [𝜆′] .

The proof is completed by applying the trigonometric product-to-sum formula twice:

(3.3.68) 8 sin(𝜋𝑐1) sin(𝜋𝑐2) sin(𝜋𝑐3) = 2 cos
(
3𝜋 ( 𝑗 ′ − 𝜅)

)
−

∑︁
𝑖∈ℤ3

2 cos
(
𝜋𝑎𝑖 ( 𝑗 ′, 𝜆′)

)
,

where 𝑎𝑖 ( 𝑗, 𝜆) = ( 𝑗 − 𝜅) + 2 𝑗 tw
(
∇𝑖 (𝜆)

)
. ■

Observe that the denominator of the S-matrix entries (3.3.57) only depends on 𝑗 ′ and 𝜆′: the de-

pendence of Sℓ
′, [ 𝑗 ′], [𝜆′]
ℓ,𝜆

on the type-3 module Hℓ
𝜆

is confined entirely to the exponential term and

the W3(u, v) S-matrix element. This will prove useful when calculating Grothendieck fusion rules

involving type-3 modules.

As always, the S-matrix elements involving the vacuum module Hk𝜔0 = H
[
u−3 0 0
v−2 −1 0

]
are of

particular importance in Verlinde computations. These will again be given the special notation

Sℓ
′, [ 𝑗 ′], [𝜆′]

vac. = Sℓ
′, [ 𝑗 ′], [𝜆′]

0,k𝜔0
.

Corollary 3.3.16. Let k be nondegenerate-admissible. Then,

(3.3.69)

Sℓ
′, [ 𝑗 ′], [𝜆′]

vac. = SW3
vac., [𝜆′]

e2𝜋 i𝜅ℓ′e𝜋 i( 𝑗
′−𝜅)

2 cos
(
3𝜋 ( 𝑗 ′ − 𝜅)

)
−∑

𝑖∈ℤ3 2 cos
(
𝜋𝑎𝑖 ( 𝑗 ′, 𝜆′)

) , SW3
vac., [𝜆′] = SW3

[k𝜔0 ], [𝜆′] .

As the denominator of (3.3.69) is proportional to sin(𝑐1𝜋) sin(𝑐2𝜋) sin(𝑐3𝜋) (see (3.3.66)) it van-

ishes if and only if one of the 𝑐𝑖 is an integer. This is equivalent to having

(3.3.70) [ 𝑗 ′] = [ 𝑗 tw
(
∇𝑖 (𝜆′)

)
+ 𝜅]

for some 𝑖 ∈ ℤ3. Therefore the vacuum S-matrix elements again diverge precisely when R̃ℓ
′

[ 𝑗 ′], [𝜆′]

is nonsimple.
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3.3.5. A Character Identity. This section is devoted to the proof of the character identity

(3.3.66). The techniques used here are largely independent of the previous sections.

To begin, given that 𝜒𝜔2 = e𝜔2 + e𝜔1−𝜔2 + e−𝜔1 and L𝑚𝜔2 is isomorphic to the𝑚-th symmetric

product of L𝜔2 , the character of L𝑚𝜔2 is

(3.3.71) 𝜒𝑚𝜔2 = ℎ𝑚 (e𝜔2, e𝜔1−𝜔2, e−𝜔1) ,

where ℎ𝑚 is the 𝑚-th complete symmetric polynomial. The following proposition evaluates the

required weighted sum for general arguments.

Lemma 3.3.17. Let 𝑥,𝑋1, 𝑋2, 𝑋3 ∈ ℂ be such that the𝑋𝑖 are distinct and 𝑥 ≠ 𝑋−1
𝑖 , for all 𝑖 = 1, 2, 3.

Suppose further that 𝑋 v
1 = 𝑋 v

2 = 𝑋 v
3 for some v ∈ ℤ⩾3. Then,

(3.3.72)
v−3∑︁
𝑚=0

𝑥𝑚ℎ𝑚 (𝑋1, 𝑋2, 𝑋3) =
1 − 𝑥v𝑋 v

2
(1 − 𝑥𝑋1) (1 − 𝑥𝑋2) (1 − 𝑥𝑋3)

.

Proof. By computing a partial fraction decomposition for the standard generating function of

the complete symmetric polynomials, we arrive at the identity

(3.3.73) ℎ𝑚 (𝑋1, 𝑋2, 𝑋3) =
𝑋𝑚+21

(𝑋1 − 𝑋2) (𝑋1 − 𝑋3)
+

𝑋𝑚+22
(𝑋2 − 𝑋1) (𝑋2 − 𝑋3)

+
𝑋𝑚+23

(𝑋3 − 𝑋1) (𝑋3 − 𝑋2)
.

Since 𝑋 v
1 = 𝑋 v

2 = 𝑋 v
3 , explicit calculation now gives

v−3∑︁
𝑚=0

𝑥𝑚ℎ𝑚 (𝑋1, 𝑋2, 𝑋3)(3.3.74)

=
𝑋 2

1 (1 − 𝑥
v−2𝑋 v−2

1 )
(𝑋1 − 𝑋2) (𝑋1 − 𝑋3) (1 − 𝑥𝑋1)

+
𝑋 2

2 (1 − 𝑥
v−2𝑋 v−2

2 )
(𝑋2 − 𝑋1) (𝑋2 − 𝑋3) (1 − 𝑥𝑋2)

+
𝑋 2

3 (1 − 𝑥
v−2𝑋 v−2

3 )
(𝑋3 − 𝑋1) (𝑋3 − 𝑋2) (1 − 𝑥𝑋3)

=
𝑋 2

1 − 𝑥
v−2𝑋 v

2
(𝑋1 − 𝑋2) (𝑋1 − 𝑋3) (1 − 𝑥𝑋1)

+
𝑋 2

2 − 𝑥
v−2𝑋 v

2
(𝑋2 − 𝑋1) (𝑋2 − 𝑋3) (1 − 𝑥𝑋2)

+
𝑋 2

3 − 𝑥
v−2𝑋 v

2
(𝑋3 − 𝑋1) (𝑋3 − 𝑋2) (1 − 𝑥𝑋3)

=
1 − 𝑥v𝑋 v

2
(1 − 𝑥𝑋1) (1 − 𝑥𝑋2) (1 − 𝑥𝑋3)

. ■

Proposition 3.3.18. Let k be nondegenerate-admissible, [𝜆′] = [Γ(r′, s′)] ∈ Γu,v/ℤ3, [ 𝑗 ′] ∈ ℝ/ℤ,

𝜉s′ be as in (3.3.64) and 𝑥 = −e2𝜋 i( ⟨r′+𝜌,𝜔2 ⟩−( 𝑗 ′−𝜅)) . Then,

(3.3.75)
v−3∑︁
𝑚=0

𝑥𝑚𝜒𝑚𝜔2 (𝜉s′) =
(
1 − e−2𝜋 iv( 𝑗 ′−𝜅)e2𝜋 iv 𝑗 tw (𝜆′)

) e3𝜋 i( 𝑗 ′−𝜅)

8 sin(𝜋𝑐1) sin(𝜋𝑐2) sin(𝜋𝑐3)
,
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where 𝑐𝑖 = ( 𝑗 ′ − 𝜅) − 𝑗 tw
(
∇𝑖 (𝜆′)

)
.

Proof. For each 𝔰𝔩3-weight 𝜔 , we have

(3.3.76)
(
e⟨𝜔,𝜉s′ ⟩

)v
= e−2𝜋 iu⟨𝜔,s′+𝜌 ⟩,

which is clearly invariant under shifting 𝜔 by elements of Q. It follows that if we set

(3.3.77) 𝑋1 = e⟨𝜔2,𝜉s′ ⟩, 𝑋2 = e⟨𝜔1−𝜔2,𝜉s′ ⟩ and 𝑋3 = e⟨−𝜔1,𝜉s′ ⟩,

then 𝑋 v
1 = 𝑋 v

2 = 𝑋 v
3 . This allows us to apply Lemma 3.3.17, which results in

(3.3.78)
v−3∑︁
𝑚=0

𝑥𝑚𝜒𝑚𝜔2 (𝜉s′) =
v−3∑︁
𝑚=0

𝑥𝑚ℎ𝑚 (𝑋1, 𝑋2, 𝑋3) =
1 − 𝑥v𝑋 v

2
(1 − 𝑥𝑋1) (1 − 𝑥𝑋2) (1 − 𝑥𝑋3)

.

Since

⟨r′ + 𝜌 − u
v (s′ + 𝜌), 𝜔2⟩ = 1

3 (𝑟
′
1 + 2𝑟 ′2 + 3) − u

3v (𝑠
′
1 + 2𝑠 ′2 + 3) = 𝑗 tw

(
∇2(𝜆′)

)
+ 1

2 ,(3.3.79a)

⟨r′ + 𝜌 − u
v (s′ + 𝜌), 𝜔1 − 𝜔2⟩ = 𝑗 tw(𝜆′) + 1

2 ,(3.3.79b)

⟨r′ + 𝜌 − u
v (s′ + 𝜌),−𝜔1⟩ = 𝑗 tw

(
∇(𝜆′)

)
+ 1

2 ,(3.3.79c)

we obtain

(3.3.80) 𝑥𝑋𝑖 = e−2𝜋 i( 𝑗 ′−𝜅)e2𝜋 i𝑗 tw(∇𝑖+1 (𝜆′)) .

Substituting into (3.3.78), we arrive at the desired result by rearranging the exponentials and ob-

serving that
∑
𝑖∈ℤ3 𝑗

tw (
∇𝑖 (𝜆′)

)
= − 3

2 . ■

3.3.6. Grothendieck Fusion Rules for BP(u, v). We now have all the information necessary

to apply the standard Verlinde formula (3.3.2b) and obtain the standard-by-standard Grothendieck

fusion rules for BP(u, v).

Theorem 3.3.19. Let k be nondegenerate-admissible. Then for ℓ, ℓ ′ ∈ 1
2ℤ, [ 𝑗], [ 𝑗] ′ ∈ ℝ/ℤ and

[𝜆], [𝜆′] ∈ Γu,v/ℤ3, the Grothendieck fusion rules of the standard BP(u, v)-modules are[
R̃ℓ[ 𝑗 ], [𝜆]

]
⊠

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]
=

∑︁
[𝜆′′] ∈Γu,v/ℤ3

N
W3 [𝜆′′]
[𝜆], [𝜆′]

( [
R̃ℓ+ℓ

′+2
[ 𝑗+𝑗 ′−4𝜅 ], [𝜆′′]

]
+

[
R̃ℓ+ℓ

′−1
[ 𝑗+𝑗 ′+2𝜅 ], [𝜆′′]

] )
(3.3.81)

+
∑︁

[𝜆′′] ∈Γu,v/ℤ3

∑︁
𝑖∈ℤ3

(
N

W3 [𝜆′′]
[𝜆], [Γ (r′,s′−𝜔𝑖+𝜔𝑖+1) ]

[
R̃ℓ+ℓ

′+1
[ 𝑗+𝑗 ′−2𝜅 ], [𝜆′′]

]
+NW3 [𝜆′′]

[𝜆], [Γ (r′,s′+𝜔𝑖−𝜔𝑖+1) ]
[
R̃ℓ+ℓ

′

[ 𝑗+𝑗 ′], [𝜆′′]
] )
,

where 𝜆′ = Γ(r′, s′).
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Proof. As in the v = 3 case, we apply the standard Verlinde formula (3.3.2b) with ℓ = ℓ ′ = 0

using (3.2.31) and (3.3.69):

(3.3.82)(
ℓ ′′, [ 𝑗 ′′], [𝜆′′]

0, [ 𝑗], [𝜆] 0, [ 𝑗 ′], [𝜆′]

)
=

∑︁
[𝜇 ] ∈Γu,v/ℤ3

SW3
[𝜆], [𝜇 ]S

W3
[𝜆′], [𝜇 ]

(
SW3
[𝜆′′], [𝜇 ]

)∗
SW3

vac., [𝜇 ]

∑︁
𝑚∈ℤ

e−2𝜋 i( 𝑗+𝑗 ′−𝑗 ′′−2𝜅ℓ′′)𝑚

·
∫
ℝ/ℤ

e2𝜋 i(ℓ′′−1/2) (𝑘−𝜅)
(
2 cos

(
3𝜋 (𝑘 − 𝜅)

)
−

∑︁
𝑖∈ℤ3

2 cos
(
𝜋𝑎𝑖 (𝑘, 𝜇)

) )
d[𝑘] .

The Grothendieck fusion coefficient thus naturally splits as a sum of two contributions. That which

involves the term 2 cos
(
3𝜋 (𝑘 −𝜅)

)
is identical to the v = 3 coefficient computed in Theorem 3.3.6:

(3.3.83) N
W3 [𝜆′′]
[𝜆], [𝜆′]

(
𝛿
(
[ 𝑗 ′′] − [ 𝑗 + 𝑗 ′ − 4𝜅]

)
𝛿ℓ′′,2 + 𝛿

(
[ 𝑗 ′′] − [ 𝑗 + 𝑗 ′ + 2𝜅]

)
𝛿ℓ′′,−1

)
.

The remaining contributions involving 2 cos
(
𝜋𝑎𝑖 (𝑘, 𝜇)

)
simplify to

(3.3.84)

−
∑︁

[𝜇 ] ∈Γu,v/ℤ3

∑︁
𝜀=±1

∑︁
𝑖∈ℤ3

e2𝜋 i𝜀 𝑗 tw(∇𝑖 (𝜇))
SW3
[𝜆], [𝜇 ]S

W3
[𝜆′], [𝜇 ]

(
SW3
[𝜆′′], [𝜇 ]

)∗
SW3

vac., [𝜇 ]

𝛿
(
[ 𝑗 ′′] − [ 𝑗 + 𝑗 ′− (1−𝜀)𝜅]

)
𝛿ℓ′′, 12 (1−𝜀)

.

This contribution can be evaluated with help from (3.3.79) and the W3 S-matrix identity Proposi-

tion 1.3.6 (with t = 𝜔2):

(3.3.85)
∑︁
𝑖∈ℤ3

e2𝜋 i𝑗 tw(∇𝑖 (𝜇))SW3
[𝜆′], [𝜇 ] = −S

W3
[Γ (r′,s′⊗𝜔2) ], [𝜇 ] = −

∑︁
𝑖∈ℤ3

SW3
[Γ (r′,s′+𝜔𝑖−𝜔𝑖+1) ], [𝜇 ],

where 𝜆′ = Γ(r′, s′). Similarly, t = 𝜔1 results in

(3.3.86)
∑︁
𝑖∈ℤ3

e−2𝜋 i𝑗 tw(∇𝑖 (𝜇))SW3
[𝜆′], [𝜇 ] = −S

W3
[Γ (r′,s′⊗𝜔1) ], [𝜇 ] = −

∑︁
𝑖∈ℤ3

SW3
[Γ (r′,s′−𝜔𝑖+𝜔𝑖+1) ], [𝜇 ] .

As s′ ∈ Pv−3
⩾ , the weight s′ + 𝜀 (𝜔𝑖 − 𝜔𝑖+1) is either in Pv−3

⩾ or it lies on a boundary of a shifted

affine alcove, in which case the corresponding S-matrix entry is 0 (see (1.3.28) and the surrounding

discussion). The [𝜇]-sum in (3.3.84) therefore evaluates to

(3.3.87)
∑︁
𝜀=±1

∑︁
𝑖∈ℤ3

N
W3 [𝜆′′]
[𝜆],Γ (r′,s′+𝜀 (𝜔𝑖−𝜔𝑖+1))𝛿

(
[ 𝑗 ′′] − [ 𝑗 + 𝑗 ′ − (1 − 𝜀)𝜅]

)
𝛿ℓ′′, 12 (1−𝜀)

,

where the W3(u, v) fusion coefficient is understood to be 0 whenever s′ + 𝜀 (𝜔𝑖 −𝜔𝑖+1) ∉ Pv−3
⩾ . ■

Reassuringly, all the standard-by-standard Grothendieck fusion coefficients are nonnegative inte-

gers.
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As in the v = 3 case, the asymmetry in spectral flow indices and 𝐽0-eigenvalues can be remedied

by recasting the (3.3.81) in terms of the twisted modules Rtw
[ 𝑗 ], [𝜆] :[

𝜎 ℓ
(
Rtw
[ 𝑗 ], [𝜆]

) ]
⊠

[
𝜎 ℓ
′ (
Rtw
[ 𝑗 ′], [𝜆′]

) ]
(3.3.88)

=
∑︁

[𝜆′′] ∈Γu,v/ℤ3

N
W3 [𝜆′′]
[𝜆], [𝜆′]

( [
𝜎 ℓ+ℓ

′+3/2 (Rtw
[ 𝑗+𝑗 ′−3𝜅 ], [𝜆′′]

) ]
+

[
𝜎 ℓ+ℓ

′−3/2 (Rtw
[ 𝑗+𝑗 ′+3𝜅 ], [𝜆′′]

) ] )
+

∑︁
[𝜆′′] ∈Γu,v/ℤ3

∑︁
𝑖∈ℤ3

(
N

W3 [𝜆′′]
[𝜆], [Γ (r′,s′−𝜔𝑖+𝜔𝑖+1) ]

[
𝜎 ℓ+ℓ

′+1/2 (Rtw
[ 𝑗+𝑗 ′−𝜅 ], [𝜆′′]

) ]
+NW3 [𝜆′′]

[𝜆], [Γ (r′,s′+𝜔𝑖−𝜔𝑖+1) ]
[
𝜎 ℓ+ℓ

′−1/2 (Rtw
[ 𝑗+𝑗 ′+𝜅 ], [𝜆′′]

) ] )
.

In principle, all Grothendieck fusion rules involving a highest-weight BP(u, v)-module can now be

derived using the resolutions of Section 3.3.4. The general approach being: identify the highest-

weight BP(u, v)-module M as a spectral flow of a highest-weight BP(u, v)-module leftmost in its

spectral flow orbit. Then, (a spectral flow of) (3.3.52) gives an equality between the Grothendieck

image [M] and a weighted sum of Grothendieck images of standard modules. The desired fusion

rule can then be obtained by applying the rule (3.3.81) term-by-term.

The fact that we were able to derive the type-3 S-matrix coefficients in Theorem 3.3.15 means

that we can avoid this process for the type-3-by-standard Grothendieck fusion rule, by way of the

standard Verlinde formula (3.3.2b).

Corollary 3.3.20. Let k be nondegenerate-admissible. Then for ℓ, ℓ ′ ∈ 1
2ℤ, [ 𝑗 ′] ∈ ℝ/ℤ, 𝜆 =

Γ
[
𝑟0 𝑟1 𝑟2
v−2 −1 0

]
∈ Σu,v and [𝜆′] ∈ Γu,v/ℤ3, the type-3-by-standard Grothendieck fusion rules are

(3.3.89)
[
𝜎 ℓ

(
H𝜆

) ]
⊠

[
R̃ℓ
′

[ 𝑗 ′], [𝜆′]
]
=

∑︁
[𝜆′′] ∈Γuv/ℤ3

N
W3 [𝜆′′]
[𝜆], [𝜆′]

[
R̃ℓ+ℓ

′

[ 𝑗 (𝜆)+𝑗 ′], [𝜆′′]
]
.

Proof. By (3.3.2b), the coefficients for the Grothendieck fusion of 𝜎 ℓ
(
H𝜆

)
and R̃ℓ

′

[ 𝑗 ′], [𝜆′] are

given by

(3.3.90)
∑︁
𝑚∈ℤ

∫
ℝ/ℤ

∑︁
[𝜇 ] ∈Γu,v/ℤ3

S
𝑚, [𝑘 ], [𝜇 ]
ℓ,𝜆

S
𝑚, [𝑘 ], [𝜇 ]
ℓ′, [ 𝑗 ′], [𝜆′]

(
S
𝑚, [𝑘 ], [𝜇 ]
ℓ′′, [ 𝑗 ′′], [𝜆′′]

)∗
S
𝑚, [𝑘 ], [𝜇 ]
vac.

d[𝑘] .

Substituting (3.2.31), (3.3.57) and (3.3.69) and noting that the trigonometric factors all cancel, this

evaluates to

N
W3 [𝜆′′]
[𝜆], [𝜆′]

∑︁
𝑚∈ℤ

∫
ℝ/ℤ

e−2𝜋 i
(
2𝜅 (ℓ+ℓ′−ℓ′′)𝑚+( 𝑗 (𝜆)+𝑗 ′−𝑗 ′′)𝑚+(ℓ+ℓ′−ℓ′′) (𝑘−𝜅)

)
d[𝑘](3.3.91)

= N
W3 [𝜆′′]
[𝜆], [𝜆′] 𝛿

(
[ 𝑗 ′′] − [ 𝑗 (𝜆) + 𝑗 ′]

)
𝛿ℓ′′,ℓ+ℓ′ .

■
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More difficult are the type-3-by-type-3 Grothendieck fusion rules. Here, applying (3.3.2b) is tech-

nically demanding due to the abundance of trigonometric factors that must be handled. So we shall

compute this fusion rule using the resolutions from Proposition 3.3.12.

Noting that all standard modules in the resolution (3.3.51) are nonsimple, it is useful to consider

the type-3-by-nonsimple standard fusion rule more carefully:[
𝜎 ℓ

(
H𝜆

) ]
⊠

[
R̃ℓ
′

𝜆′
]
=

[
𝜎 ℓ

(
H𝜆

) ]
⊠

[
R̃ℓ
′

[ 𝑗 tw (𝜆′)+𝜅 ], [𝜆′]
]

(3.3.92)

=
∑︁

[𝜆′′] ∈Γuv/ℤ3

N
W3 [𝜆′′]
[𝜆], [𝜆′]

[
R̃ℓ+ℓ

′

[ 𝑗 (𝜆)+𝑗 tw (𝜆′)+𝜅 ], [𝜆′′]
]
.

Our first task is to show that the standard modules appearing on the right-hand side are also non-

simple.

Without loss of generality, let 𝜆′′ = Γ(r′′, s′′) ∈ [𝜆′′] be a representative satisfying the condi-

tions required by Theorem 1.3.7. Since 𝜆, 𝜆′ ∈ Γu,v are fixed in the (Grothendieck) fusion of H𝜆 and

R̃𝜆′, the corresponding representatives of [𝜆] and [𝜆′] will have the form∇𝑚 (𝜆) and∇𝑛 (𝜆′), respec-

tively, for some𝑚,𝑛 ∈ ℤ3. Write 𝜆 = Γ(r′, 0), where 0 ≡ [v − 3, 0, 0] as usual, and 𝜆′ = Γ(r′, s′).

Then, by (1.3.37) and (1.3.36), the W3 fusion coefficient in the summand of (3.3.92) decomposes

according to

N
W3 [𝜆′′]
[𝜆], [𝜆′] = Nu−3 r′′

∇𝑚 (r),∇𝑛 (r′)N
v−3 s′′

∇𝑚 (0),∇𝑛 (s′)(3.3.93)

= N
u−3 ∇−𝑚−𝑛 (r′′)
r,r′ N

v−3 ∇−𝑚−𝑛 (s′′)
0,s′

= N
u−3 ∇−𝑚−𝑛 (r′′)
r,r′ 𝛿s′,∇−𝑚−𝑛 (s′′) .

Hence, the W3 fusion coefficient is only nonzero when 𝜆′′ = ∇𝑚+𝑛
(
Γ(t′′, s′)

)
, for some t′′ ∈ Pu−3

⩾ .

On the other hand, ifNu−3 ∇−𝑚−𝑛 (r′′)
r,r′ = Nu−3 t′′

r,r′ is nonzero, then by the Kac–Walton formula (1.2.14)

we must have that 𝑡 ′′ = 𝑟 + 𝑟 ′ mod Q. Then,

(3.3.94) [ 𝑗 (𝜆) + 𝑗 tw(𝜆′) + 𝜅] = [ 𝑗 tw
(
∇−𝑚−𝑛 (𝜆′′)

)
+ 𝜅] = [ 𝑗 tw(t′′, s′) + 𝜅] .

Therefore the standard modules on the right-hand side of (3.3.92) are the nonsimple modules

R̃ℓ+ℓ
′

Γ (t′′,s′) , where 𝑡 ′′ satisfies the equation above. That is,

(3.3.95)
[
𝜎 ℓ

(
H𝜆

) ]
⊠

[
R̃ℓ
′

𝜆′
]
=

∑︁
t′′∈Pu−3

⩾
[ 𝑗 (t′′) ]=[ 𝑗 (r)+𝑗 (r′) ]

N
W3 [Γ (t′′,s′) ]
[𝜆], [𝜆′]

[
R̃ℓ+ℓ

′

Γ (t′′,s′)
]
.
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As in the proof of Corollary 3.3.8, the additional constraint on t′′ may be removed by convert-

ing the W3(u, v) fusion coefficient to a Lu−3(𝔰𝔩3) one. Replacing t′′ with r′′, the final type-3-by-

nonsimple standard Grothendieck fusion rule is

(3.3.96)
[
𝜎 ℓ

(
H𝜆

) ]
⊠

[
R̃ℓ
′

𝜆′
]
=

∑︁
r′′∈Pu−3

⩾

Nu−3 r′′
r,r′

[
R̃ℓ+ℓ

′

Γ (r′′,s′)
]
.

Corollary 3.3.21. Let k be nondegenerate-admissible. Then for all ℓ, ℓ ′ ∈ 1
2ℤ, 𝜆 = Γ

[
𝑟0 𝑟1 𝑟2
v−2 −1 0

]
∈

Σu,v and 𝜆′ = Γ
[
𝑟 ′0 𝑟 ′1 𝑟 ′2
v−2 −1 0

]
∈ Σu,v, the Grothendieck fusion rules between type-3 highest-weight

BP(u, v)-modules are

(3.3.97)
[
𝜎 ℓ

(
H𝜆

) ]
⊠

[
𝜎 ℓ

(
H𝜆′

) ]
=

∑︁
r′′∈Pu−3

⩾

Nu−3 r′′
r,r′

[
𝜎 ℓ+ℓ

′ (
H

[
𝑟 ′′0 𝑟 ′′1 𝑟 ′′2
v−2 −1 0

] ) ]
.

Proof. As usual, it is sufficient to prove (3.3.97) with ℓ = ℓ ′ = 0. Let s′𝑚 = [0,𝑚, v − 3 −𝑚].

Substituting (3.3.53) and then (3.3.95) into the left-hand side of (3.3.97) gives

[
H𝜆

]
⊠

[
H𝜆′

]
=

∞∑︁
𝑛=0

v−3∑︁
𝑚=0

2∑︁
𝑖=0
(−1)𝑚+(𝑛+𝑖)v

[
H𝜆

]
⊠

[
R̃
𝑚+(3𝑛+𝑖)v+1
Γ (∇𝑖−1 (r′),s′𝑚)

]
(3.3.98)

=

∞∑︁
𝑛=0

v−3∑︁
𝑚=0

2∑︁
𝑖=0
(−1)𝑚+(𝑛+𝑖)v

∑︁
𝑟 ′′∈Pu−3

⩾

Nu−3 r′′

r,∇𝑖−1 (r′)
[
R̃
𝑚+(3𝑛+𝑖)v+1
Γ (r′′,s′𝑚)

]
=

∑︁
𝑟 ′′∈Pu−3

⩾

Nu−3 r′′
r,r′

∞∑︁
𝑛=0

v−3∑︁
𝑚=0

2∑︁
𝑖=0
(−1)𝑚+(𝑛+𝑖)v

[
R̃
𝑚+(3𝑛+𝑖)v+1
Γ (∇𝑖−1 (r′′),s′𝑚)

]
=

∑︁
𝑟 ′′∈Pu−3

⩾

Nu−3 r′′
r,r′

[
H

[
𝑟 ′′0 𝑟 ′′1 𝑟 ′′2
v−2 −1 0

] ]
,

where the final equality is (3.3.53) for the highest-weight module H
[
𝑟 ′′0 𝑟 ′′1 𝑟 ′′2
v−2 −1 0

]
. ■

We therefore know all Grothendieck fusion rules between standard and type-3 BP(u, v)-modules.

Before discussing other fusion rules, we are in a position to generalise several of the results for

v = 3 from Section 3.3.2.

Firstly, as the simple highest-weight Lu−3(𝔰𝔩3)-modules of highest weights [0, u − 3, 0] and

[0, 0, u − 3] are simple currents, Corollary 3.3.21 implies the existence of simple currents for

BP(u, v).

Proposition 3.3.22. Let k be nondegenerate-admissible with u > 3. Then, H
[ 0 u−3 0
v−2 −1 0

]
and

H
[ 0 0 u−3
v−2 −1 0

]
are simple currents of order 3, inverse to one another. Their highest weights (with

respect to 𝐽0 and 𝐿0) are

(3.3.99) ( 𝑗,Δ) = (+u−3
3 ,
(u−3) (2v−3)

6 ) and ( 𝑗,Δ) = (−u−3
3 ,
(u−3) (2v−3)

6 ),
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respectively.

This generalises Proposition 3.3.9 to admissible levels with v > 3. Secondly, Proposition 3.3.10

also generalises to v > 3. The proofs are largely unchanged so we omit them.

Proposition 3.3.23. Let k be nondegenerate-admissible. Then, the fusion subring of BP(u, v)-

modules generated by the type-3 simple highest-weight BP(u, v)-modules H𝜆, 𝜆 = Γ
[
𝑟0 𝑟1 𝑟2
v−2 −1 0

]
∈

Σu,v, is isomorphic to the fusion ring of the affine vertex operator algebra Lu−3(𝔰𝔩3).

Of course there are highest-weight BP(u, v)-modules of type-1 and type-2 to care about. The

Grothendieck fusion rules of such modules with standard modules is manageable. The more general

highest-weight-by-highest-weight fusion rules are considerably more difficult. The reason being

that the sheer number of terms encountered when expanding highest-weight Grothendieck images

makes the result of fusion difficult to identify.

There are small cases, such as type-1 weights with 𝑠2 = 1, where it is possible to identify such

cancellations but even this limited case involves handling a large number of terms.

Rather than writing down closed-form expressions for all Grothendieck fusion rules explicitly,

our philosophy is that it is better to provide an algorithmic means to construct the desired rules in in-

dividual cases. In other words, the resolutions and standard-by-standard Grothendieck fusion rules

should be enough to compute all Grothendieck fusion rules for BP(u, v) at a given nondegenerate

admissible level.

3.3.7. Examples. To illustrate the aforementioned philosophy, we will determine all of the

Grothendieck fusion rules for the ‘smallest’ BP minimal model with v > 3.

Example (BP(3, 4)). Consider the Bershadsky–Polyakov minimal modelBP(3, 4) with k = − 9
4

and c = − 23
2 . This minimal model is denoted by B4 in [53]. By the results of Chapter 2 (also shown

in [5]), there are 6 untwisted (with respect to 𝐿(𝑧)) simple highest-weight modules. We arrange

them as in Figure 1, also adding the action of ∇ to the spectral flow orbits:

(3.3.100)

H
[ 0 0 0

0 −1 2
]

H
[ 0 0 0

2 −1 0
]

H
[ 0 0 0

0 1 0
]

H
[ 0 0 0

1 −1 1
]

H
[ 0 0 0

1 0 0
]

H
[ 0 0 0

0 0 1
]

𝜎 𝜎

𝜎

∇

∇

type-1:

type-2:

type-3:

As can be clearly seen, ∇ only acts on highest-weight BP(3, 4)-modules with infinite-dimensional

top spaces.
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In addition to these highest-weight modules, there is a single one-parameter family of untwisted

relaxed highest-weight modules

(3.3.101) R̃[ 𝑗 ] = R̃[ 𝑗 ], [Γ ( [0,0,0], [1,0,0]) ] .

These modules are simple for all [ 𝑗] ∈ ℝ/ℤ except [ 𝑗] = [0], [ 12 ] or [ 34 ]. The nonsimple cases

are labelled by elements of Γ3,4 according to

(3.3.102) R̃
[ 0 0 0

0 0 1
]
= R̃[1/2], R̃

[ 0 0 0
1 0 0

]
= R̃[1/4], R̃

[ 0 0 0
0 1 0

]
= R̃[0] .

By the short exact sequence (3.3.47), the Grothendieck images of the nonsimple relaxed highest-

weight modules satisfy the equalities

(3.3.103)

[
R̃[1/2]

]
=

[
H

[ 0 0 0
0 0 1

]1] + [
H

[ 0 0 0
2 −1 0

]−1]
,[

R̃[1/4]
]
=

[
H

[ 0 0 0
1 0 0

]1] + [
H

[ 0 0 0
1 0 0

]−1]
,[

R̃[0]
]
=

[
H

[ 0 0 0
2 −1 0

]2] + [
H

[ 0 0 0
0 0 1

] ]
.

From (3.3.100), all type-3 modules are spectral flows of the vacuum module so their Grothendieck

fusion rules are easy to determine.

To unpack the standard-by-standard Grothendieck fusion rule of Theorem 3.3.19, observe that

Γ3,4 has only one ℤ3-orbit. Additionally, the representatives used in W3(3, 4) fusion coefficients as

per Theorem 1.3.7 all have the form 𝜆 = Γ(r, s), with r = [0, 0, 0] and s = [1, 0, 0] because u = 3.

The relevant fusion coefficients in (3.3.81) for (u, v) = (3, 4) are then

(3.3.104) N
W3 [𝜆]
[𝜆], [𝜆] = N

1 [0,0]
[0,0], [0,0] = 1,

N
W3 [𝜆]
[𝜆], [Γ (r,s−𝜔𝑖+𝜔𝑖+1) ] = 𝛿𝑖,0N

1 [0,0]
[0,0], [0,0] = 𝛿𝑖,0,

N
W3 [𝜆]
[𝜆], [Γ (r,s+𝜔𝑖−𝜔𝑖+1) ] = 𝛿𝑖,2N

1 [0,0]
[0,0], [0,0] = 𝛿𝑖,2,

since, for example, [Γ(r, s−𝜔𝑖 +𝜔𝑖+1)] = [Γ(r, [0, 1, 0])] = [𝜆] when 𝑖 = 0 and s−𝜔𝑖 +𝜔𝑖+1 ∉ P1
⩾

otherwise. The standard-by-standard Grothendieck fusion rule is therefore

(3.3.105)
[
R̃ℓ[ 𝑗 ]

]
⊠

[
R̃ℓ
′

[ 𝑗 ′]
]
=

[
R̃ℓ+ℓ

′−1
[ 𝑗+𝑗 ′+1/2]

]
+

[
R̃ℓ+ℓ

′

[ 𝑗+𝑗 ′]
]
+

[
R̃ℓ+ℓ

′+1
[ 𝑗+𝑗 ′+1/2]

]
+

[
R̃ℓ+ℓ

′+2
[ 𝑗+𝑗 ′]

]
.

We now move on to fusion rules involving type-1 modules. Using (3.3.47), the type-1-by-standard

Grothendieck fusion rule can be easily computed and is

(3.3.106)
[
H

[ 0 0 0
0 0 1

] ℓ ]
⊠

[
R̃ℓ
′

[ 𝑗 ′]
]
=

[
R̃ℓ+ℓ

′−1
[ 𝑗 ′+1/2]

]
+

[
R̃ℓ+ℓ

′

[ 𝑗 ]
]
+

[
R̃ℓ+ℓ

′+1
[ 𝑗 ′+1/2]

]
.

The type-1-by-type-1 Grothendieck fusion rule follows from this using (3.3.103):[
H

[ 0 0 0
0 0 1

] ℓ ]
⊠

[
H

[ 0 0 0
0 0 1

] ℓ′]
=

[
R̃ℓ+ℓ

′−1
[1/2]

]
+

[
R̃ℓ+ℓ

′

[0]
]
+

[
R̃ℓ+ℓ

′+1
[1/2]

]
−

[
H

[ 0 0 0
0 0 1

] ℓ+ℓ′+2](3.3.107)



120 Inverting Quantum Hamiltonian Reduction

= 2
[
H

[ 0 0 0
0 0 1

] ℓ+ℓ′] + [
H

[ 0 0 0
2 −1 0

] ℓ+ℓ′−2]
+

[
H

[ 0 0 0
2 −1 0

] ℓ+ℓ′] + [
H

[ 0 0 0
2 −1 0

] ℓ+ℓ′+2]
.

Unlike the type-1 case where (3.3.103) involves type-1 modules and type-3 modules, type-2 cases

only involve type-2 modules. So rather than using (3.3.47) to compute the type-2-by-standard

Grothendieck fusion rule, we must use the full type-2 resolution (3.3.51) and the corresponding

Grothendieck image identity:

(3.3.108)
[
H

[ 0 0 0
1 −1 1

] ℓ ]
=

∞∑︁
𝑛=0
(−1)𝑛

[
R̃

[ 0 0 0
1 0 0

]2𝑛+ℓ ]
.

Grothendieck fusing both sides with R̃ℓ
′

[ 𝑗 ′] results in an alternating sum that simplifies nicely to

(3.3.109)
[
H

[ 0 0 0
1 −1 1

] ℓ ]
⊠

[
R̃ℓ
′

[ 𝑗 ′]
]
=

[
R̃ℓ+ℓ

′−1
[ 𝑗 ′−1/4]

]
+

[
R̃ℓ+ℓ

′

[ 𝑗 ′+1/4]
]
.

As for type-1, the type-2-by-type-2 Grothendieck fusion rule follows from the type-2-by-standard

one and (3.3.103):

(3.3.110)
[
H

[ 0 0 0
1 0 0

] ℓ ]
⊠

[
H

[ 0 0 0
1 −1 1

] ℓ′]
=

[
H

[ 0 0 0
0 0 1

] ℓ+ℓ′] + [
H

[ 0 0 0
2 −1 0

] ℓ+ℓ′]
.

All that remains is the type-1-by-type-2 Grothendieck fusion rules. This can be computed in a

number of ways, each involving expanding in terms of standard modules and cancelling terms

until one obtains:

(3.3.111)
[
H

[ 0 0 0
0 0 1

] ℓ ]
⊠

[
H

[ 0 0 0
1 −1 1

] ℓ′]
=

[
H

[ 0 0 0
1 −1 1

] ℓ+ℓ′] + [
R̃ℓ+ℓ

′−1
[3/4]

]
.

One nice feature of this example is that these fusion rules can actually be checked: The coset

of BP(3, 4) by the Heisenberg subalgebra generated by 𝐽 is the singlet algebra𝑊 0(1, 4) [53]. So

the representation theory of the latter may then be constructed from that of the former, using the

results of [46].

The triplet algebra𝑊 (1, 4) of central charge − 25
2 [111] is an infinite-order simple current ex-

tension of 𝑊 0(1, 4) [143] and again, the representation theory of the latter may be constructed

from that of the former. The fusion rules of𝑊 (1, 4) are well known (see [79,86,155]) and can, in

principle, be compared against those obtained from BP(3, 4) by the aforementioned coset and sim-

ple current extension construction. We do not perform this check here. Exploring this construction

of fusion rules for𝑊 (1, 4) is an interesting direction of future study.



Chapter 4

Subregular W-Algebras

4.1. 𝔰𝔩𝑛+1 W-Algebras

As we have seen in the previous chapter, inverse quantum hamiltonian reduction is a powerful

tool for unpacking the representation theory of Bershadsky–Polyakov algebras, particularly with

respect to vertex operator algebraic data important in logarithmic conformal field theory. Motivated

by the success of this approach for BP(u, v), we now consider more general cases for which inverse

quantum hamiltonian reductions can be defined and analysed.

The examples of inverse quantum hamiltonian reduction we have mentioned so far involve W-

algebras related to 𝔰𝔩2 (Section 3.1.2) and 𝔰𝔩3 (Section 3.2.2). In both of these cases, there is a path

in the ordering of W-algebras from the ‘bottom-most’ W-algebra to the corresponding affine vertex

operator algebra consisting of known inverse quantum hamiltonian reductions.

The other inverse quantum hamiltonian reduction in the path for 𝔰𝔩3 is the one between Vk(𝔰𝔩3)

and BPk. This was explicitly defined by Adamović, Creutzig and Genra in [3], and takes the form

Wk(𝔰𝔩2, 0) ≃ Vk(𝔰𝔩2)

Wk(𝔰𝔩2, 𝑓 ) ≃ Virk

[2,147]

Wk(𝔰𝔩3, 𝑓𝜃 ) ≃ BPk

Wk(𝔰𝔩3, 𝑓𝛼1 + 𝑓𝛼2) ≃Wk
3

[4]

Wk(𝔰𝔩3, 0) ≃ Vk(𝔰𝔩3)

[3]

Figure 1. The partial ordering of W-algebras for 𝔰𝔩2 and 𝔰𝔩3. Solid downward
arrows represent quantum hamiltonian reduction, dashed downward arrows rep-
resent partial quantum hamiltonian reduction and blue upwards arrows represent
inverse quantum hamiltonian reduction.

121
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of an embedding Vk(𝔰𝔩3) ↩→ BPk ⊗ Π ⊗ B where B is the 𝛽𝛾 ghost vertex algebra and Π is the

half-lattice vertex algebra of Section 3.1.1.

For 𝔰𝔩𝑛+1 with 𝑛 > 2, there are many more W-algebras to consider. Recall that the partial

ordering on 𝔰𝔩𝑛+1 W-algebras of interest is that induced by the partial ordering on 𝔰𝔩𝑛+1 nilpotent

orbits.

Nilpotent orbits of 𝔰𝔩𝑛+1 are indexed by partitions of 𝑛 + 1; the partition of 𝑛 + 1 corresponding

to the nilpotent orbit containing some 𝑀 ∈ 𝔰𝔩𝑛+1 is the unique non-increasing sequence of Jordan

block sizes in the Jordan normal form of 𝑀 . For this reason, we will denote the nilpotent orbit in

𝔰𝔩𝑛+1 corresponding to the partition 𝜆 of 𝑛 + 1 byO𝜆

The partial ordering on nilpotent orbits of 𝔰𝔩𝑛+1 is given by the dominance ordering on the

partitions of 𝑛 + 1 [91]. For 𝑛 < 5, this partial ordering is actually a total ordering. For 𝑛 ⩾ 5,

the structure of the partial ordering of nilpotent orbits is complicated but there are generic features

that are noteworthy.

For example, the largest nilpotent orbit is always Oreg = O(𝑛+1) (the regular nilpotent orbit),

while the smallest is O(1𝑛+1) = {0}. The subregular nilpotent orbit Osub = O(𝑛,1) is always

smaller than Oreg and larger than all other nilpotent orbits. Similarly, the minimal nilpotent orbit

Omin = O(2,1𝑛−1) is always larger thanO(1𝑛+1) but smaller than all other nilpotent orbits.

Sprinkled throughout this partial ordering are nilpotent orbits of the form O(𝐴𝐵 ) where (𝐴𝐵)

is the partition consisting of 𝐵 copies of 𝐴 (subject to 𝐴𝐵 = 𝑛 + 1). The corresponding W-algebras

are known as rectangular W-algebras and have interesting connections to theories of higher spin

gravity [45].

Owing to the structure of the partial ordering of 𝔰𝔩𝑛+1 W-algebras induced by the partial order-

ing of nilpotent orbits, the ‘simplest’ class of 𝔰𝔩𝑛+1 W-algebras for which we might expect there to

be an inverse quantum hamiltonian reduction are the universal regular W-algebras Wk(𝔰𝔩𝑛+1, 𝑓reg)

and the universal subregular W-algebras Wk(𝔰𝔩𝑛+1, 𝑓sub) where 𝑓reg ∈ Oreg and 𝑓sub ∈ Osub. This

can be seen as the first step in constructing a path from the bottom-most 𝔰𝔩𝑛+1 W-algebra to the

affine vertex operator algebra Vk(𝔰𝔩𝑛+1).

Much recent work in physics and mathematics has subregular W-algebras Wk(𝔤, 𝑓sub) playing a

central role. For example, subregular W-algebras appear in the Schur index of 4𝐷 superconformal

field theories known as Argyres–Douglas theories [24, 29, 41]. The nilpotent orbit Osub plays a

crucial role in singularity theory: the ADE classification of simple surface singularities connects

to the ADE classification of simply-laced Lie algebras through the geometry of the Slodowy slice

corresponding toOsub [148]. In light of these and many more motivations, much recent work has

been done to improve our understanding of the structure and representation theory of subregular

W-algebras [7,43,44,49,59,89].
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Wk(𝔰𝔩6, 0) ≃ Vk(𝔰𝔩6)

Wk(𝔰𝔩6, 𝑓min)

Wk(𝔰𝔩6, 𝑓(2,2,1,1) )

Wk(𝔰𝔩6, 𝑓(2,2,2) )Wk(𝔰𝔩6, 𝑓(3,1,1,1) )

Wk(𝔰𝔩6, 𝑓(3,3) )Wk(𝔰𝔩6, 𝑓(4,1,1) )

Wk(𝔰𝔩6, 𝑓(3,2,1) )

Wk(𝔰𝔩6, 𝑓(4,2) )

Wk(𝔰𝔩6, 𝑓sub)

Wk(𝔰𝔩6, 𝑓reg)

Figure 2. The partial ordering of W-algebras for 𝔰𝔩6. Here we choose an element
𝑓𝜆 from each nilpotent orbit O𝜆. The nilpotent orbits in 𝔰𝔩6 associated to the W-
algebras increase in size from top to bottom. The W-algebras appearing at the
same height (e.g. Wk(𝔰𝔩6, 𝑓(4,1,1) ) and Wk(𝔰𝔩6, 𝑓(3,3) )) are not related by the partial
ordering however.

Another notable feature of the regular-subregular case of inverse quantum hamiltonian reduc-

tion is that the simple regular W-algebra Wk(𝔤, 𝑓reg) is rational [17] for nondegenerate admissible

levels. At these levels, one goal is to construct relaxed Wk(𝔤, 𝑓sub)-modules out of the (finitely

many) Wk(𝔤, 𝑓reg)-modules and eventually use these to construct ‘logarithmic minimal models’

with admissible-level Wk(𝔤, 𝑓sub) symmetry. This has been done for 𝔤 = 𝔰𝔩2 [52], as well as for 𝔰𝔩3
(Section 2.3).

As explained in Section 3.1 regarding the existence of inverse quantum hamiltonian reductions

for W-algebras, what we expect concretely is the existence of an embedding of the subregular W-

algebra into the regular W-algebra tensored with some vertex operator algebra. The hope is that
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the mysterious subregular W-algebra can be understood in terms of the regular W-algebra whose

representation theory is comparatively well-understood.

It is easy to see that Vk(𝔰𝔩2) and BPk are the universal subregular W-algebras for 𝔰𝔩2 and 𝔰𝔩3

respectively. In these cases, the lattice vertex algebra part of the inverse reduction embedding is

the half-lattice vertex algebra from Section 3.1.1.

What is therefore desired is an embedding Wk(𝔰𝔩𝑛+1, 𝑓sub) ↩→Wk(𝔰𝔩𝑛+1, 𝑓reg) ⊗Π for noncriti-

cal k generalising the embeddings (3.1.10) and (3.2.1). The representation theory ofWk(𝔰𝔩𝑛+1, 𝑓sub)

can then be analysed in terms of that of Wk(𝔰𝔩𝑛+1, 𝑓reg) and Π, as has been done for 𝔰𝔩2 and 𝔰𝔩3

Before describing such an embedding, we outline some definitions and facts relating to the

regular and subregular 𝔰𝔩𝑛+1 W-algebras.

4.1.1. Regular. By far the most studied and well-understood W-algebras are the regular (or

principal) W-algebras Wk(𝔤, 𝑓reg). This vertex operator algebra has been at the forefront of many

developments in mathematics and physics. See [10,20,31,73,169] for example. Consequentially,

there is much one can say about these vertex operator algebras (see for example the reviews [37,38]).

We restrict our discussions to what is needed in the quest to unravel subregular W-algebras.

Definition 4.1.1. Let 𝔤 be a simple, finite-dimensional Lie algebra over ℂ and k ≠ −ℎ∨. The

(universal) regular W-algebra Wk(𝔤, 𝑓reg) is defined as the quantum hamiltonian reduction of the

level-k universal affine vertex operator algebra Vk(𝔤) corresponding to the regular nilpotent orbit

in 𝔤. Denote its unique simple quotient by Wk(𝔤, 𝑓reg).

Let 𝔤 = 𝔰𝔩𝑛+1 (i.e. type 𝐴𝑛) and use the notation

(4.1.1) Wk
𝑛+1 = Wk(𝔤, 𝑓reg), W𝑛+1,k = Wk(𝔤, 𝑓reg) .

In this case, the nilpotent element 𝑓reg ∈ 𝔰𝔩𝑛+1 can be taken to be 𝑓𝛼1+ 𝑓𝛼2+· · ·+ 𝑓𝛼𝑛 , where 𝛼𝑖 denotes

the 𝑖’th simple root of 𝔰𝔩𝑛+1 and {ℎ𝛼𝑖 , 𝑒𝛼𝑖 , 𝑓𝛼𝑖 } is the corresponding 𝔰𝔩2 triple in the Chevalley basis

of 𝔰𝔩𝑛+1. The partition corresponding to the regular nilpotent orbit is (𝑛 + 1). This W-algebra

was first defined in the 𝔤 = 𝔰𝔩3 case (the Zamolodchikov algebra of Section 1.3.2) [170] and later

for 𝔤 = 𝔰𝔩𝑛+1 [123]. Wk
𝑛+1 has strong generators denoted by {𝑊2(𝑧), . . . ,𝑊𝑛+1(𝑧)} that we will

describe in Section 4.2.1 by way of a free-field realisation. The field 𝑇 (𝑧) = 1
k+𝑛+1𝑊2(𝑧) is an

energy-momentum field with central charge [123]

(4.1.2) c𝑛+1k = −
𝑛

(
(𝑛 + 1) (k − 1) + 𝑛2 + 2𝑛

) (
(𝑛 + 2)k + (𝑛 + 1)2

)
k + 𝑛 + 1

.
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The generating fields𝑊𝑖 (𝑧) have conformal weight 𝑖 with repect to𝑇 (𝑧). It is known that the vertex

operator algebra Wk
𝑛+1 is reducible if k is a nondegenerate admissible level [14]. That is,

(4.1.3) k + 𝑛 + 1 =
u

v
, where u, v ∈ ℤ⩾𝑛+1 and gcd{u, v} = 1.

At these levels, W𝑛+1,k is rational [17]. For this reason, we use the special notation W𝑛+1(u, v) =

W𝑛+1,k when k is nondegenerate-admissible. The modules of W𝑛+1(u, v) are all highest-weight

modules and admit a parametrisation in terms of 𝔰𝔩𝑛+1 weights.

Following Section 8.3 in [23], let Prk be the set of principal admissible 𝔰𝔩𝑛+1 weights of level

k. Each weight 𝜆 ∈ Prk defines a central character 𝛾𝜆 : 𝑍 (𝔰𝔩𝑛+1) → ℂ by evaluation. Let Prk
W

be the set of all such central characters with 𝜆 ranging over Prk. Associated to each 𝛾 ∈ Prk
W

is

a simple W𝑛+1(u, v)-module W𝛾 . The simple W𝑛+1(u, v)-modules have been classified [17] and

consist only of the set of modules

(4.1.4) {W𝛾 | 𝛾 ∈ PrkW}.

All of these modules are highest-weight with one-dimensional top spaces and are mutually non-

isomorphic. Let 𝑣𝛾 be the highest-weight vector of W𝛾 . Without loss of generality and owing

to the fields 𝑊𝑖 (𝑧) being strong generators of Wk
𝑛+1, we can view 𝛾 as an element of ℂ𝑛 with

𝛾 ↔ (𝛾2, . . . , 𝛾𝑛+1) defined by

(4.1.5) (𝑊𝑖)0 𝑣𝛾 = 𝛾𝑖𝑣𝛾 .

For example, the vacuum module is W𝑛+1(u, v) ≃W0.

4.1.2. Subregular. We now move on to defining the main vertex operator algebras of inter-

est and establishing some useful notation. A more detailed account of the strong generators of

Wk(𝔰𝔩𝑛+1, 𝑓sub) following [89] will be deferred to Section 4.2.2.

Definition 4.1.2. Let 𝔤 be a simple, finite-dimensional Lie algebra over ℂ and k ≠ −ℎ∨. The

(universal) subregular W-algebra Wk(𝔤, 𝑓sub) is the quantum hamiltonian reduction of the level-k

universal affine vertex operator algebra Vk(𝔤) corresponding to the subregular nilpotent orbit in

𝔤. Denote its unique simple quotient by Wk(𝔤, 𝑓sub).

While not much is known about subregular W-algebras of type 𝐴, even less is known about other

types. The most studied, non-type 𝐴, non-super example is the type 𝐶2 (𝔤 = 𝔰𝔭4 ≃ 𝔰𝔬5) sub-

regular W-algebra whose operator product expansions are listed in Section 5 of [59], where the

representation theory of Wk(𝔰𝔭4, 𝑓sub) at certain levels is explored. Work on the inverse quantum
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hamiltonian reduction question for Wk(𝔰𝔭4, 𝑓sub) has been done from a 4D superconformal field

theoretic perspective [30].

Let 𝔤 = 𝔰𝔩𝑛+1 and use the notation

(4.1.6) W
k

𝑛+1 = Wk(𝔰𝔩𝑛+1, 𝑓sub), W𝑛+1,k = Wk(𝔰𝔩𝑛+1, 𝑓sub).

The nilpotent element 𝑓sub ∈ 𝔰𝔩𝑛+1 can be taken to be 𝑓𝛼2 + · · · + 𝑓𝛼𝑛 . The partition corresponding to

the subregular nilpotent orbit is (𝑛, 1). The vertex algebra W
k

𝑛+1 was long suspected to be isomor-

phic to the Feigin–Semikhatov vertex algebra W
(2)
𝑛+1 [68]. This was proven recently (Theorem 6.9

in [88]) utilising a certain free-field realisation of W
k

𝑛+1. We will return to free-field realisations of

W
k

𝑛+1 in Section 4.2.2 as they provide us with convenient explicit formulae for strong generators of

W
k

𝑛+1.

Certain choices for 𝑛 in W
k

𝑛+1 give vertex operator algebras that are well-known. Indeed the

main motivation for applying the approach described in this chapter to W
k

𝑛+1 is the success of this

approach in small 𝑛 cases.

Example (𝑛 = 1). W
k

2 is the universal affine vertex algebra Vk(𝔰𝔩2). It has strong generators

denoted by ℎ(𝑧), 𝑒 (𝑧) and 𝑓 (𝑧). Their operator product expansions are well-known and are given

in Section 3.1.2.

That this is an affine vertex algebra and not something more exotic is due to the subregular

nilpotent orbit of 𝔰𝔩2 being equal to {
[ 0 0

0 0
]
}. This is the only 𝑛 for which the affine vertex algebra

and subregular W-algebra coincide.

Example (𝑛 = 2). W
k

3 is isomorphic to the Bershadsky–Polyakov algebra BPk discussed in

detail in Chapter 2. Interestingly the Bershadsky–Polyakov algebra is also isomorphic to the mini-

mal W-algebra corresponding to 𝔰𝔩3. This helps in, for example, the classification of highest-weight

BPk-modules as we saw in Section 2.3.1. This is the only 𝑛 for which the subregular and minimal

nilpotent orbits/W-algebras coincide.

In general there exists a set of strongly generating fields

(4.1.7)
{
𝐺+(𝑧), 𝐽 (𝑧), 𝐿(𝑧),𝑈3(𝑧), . . . ,𝑈𝑛 (𝑧),𝐺−(𝑧)

}
⊂ W

k

𝑛+1,

where we omit the fields 𝐿(𝑧), 𝑈𝑖 (𝑧) when 𝑛 = 1 and omit just the fields 𝑈𝑖 (𝑧) when 𝑛 = 2. For

𝑛 > 1, we can take 𝐿 to be a conformal vector. The conformal vector of W
k

2 is given by the usual

Sugawara construction for Vk(𝔰𝔩2).
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That such strongly generating fields of W
k

𝑛+1 exist is a consequence of Theorem 4.1 in [106].

We can choose the conformal field 𝐿(𝑧) such that conformal weights of the strong generators of

W
k

𝑛+1 above are 1, 1, 2, 3, . . . , 𝑛, 𝑛 respectively, and the central charge is

(4.1.8) c𝑛+1k = −
(𝑛(k + 𝑛) − 1)

(
k(𝑛 − 1) (𝑛2 + 5𝑛 − 2) + (𝑛 + 1) (𝑛3 + 3𝑛2 − 9𝑛 + 2)

)
(𝑛 + 1) (k + 𝑛 + 1) .

This can be seen explicitly with the free-field realisation and corresponding strong generators of

W
k

𝑛+1 described in [89]. The details of this construction are recounted in Sections 4.2.2 and 4.3.2.

As mentioned earlier, the case when k is an admissible level for 𝔰𝔩𝑛+1 is of particular importance

for applications to logarithmic conformal field theory. Admissible levels are those k satisfying

(4.1.9) k + 𝑛 + 1 =
u

v
, where u ∈ ℤ⩾𝑛+1, v ∈ ℤ⩾1 and gcd{u, v} = 1.

At such levels, we use the special notation W𝑛+1(u, v) = W𝑛+1,k. When v = 𝑛, (𝔰𝔩𝑛+1, k) forms an

exceptional pair [107]. The simple vertex operator algebra W𝑛+1(u, 𝑛) is rational and the modular

transformations of characters and fusion rules are in principle known [22].

Operator product expansions for W
k

𝑛+1 can be worked out on a case-by-case basis in principle

but only a handful are required in what follows. For example, with ℓ𝑛 (k) = 𝑛k
𝑛+1 + 𝑛 − 1:

(4.1.10)

𝐽 (𝑧)𝐺±(𝑤) ∼ ±𝐺
±(𝑤)

𝑧 −𝑤 , 𝐽 (𝑧) 𝐽 (𝑤) ∼ ℓ𝑛 (k)𝟙
(𝑧 −𝑤)2

,

𝐿(𝑧)𝐺±(𝑤) ∼ (𝑛 + 1 ± (1 − 𝑛))𝐺±(𝑤)
2(𝑧 −𝑤)2

+ 𝜕𝐺
±(𝑤)

𝑧 −𝑤 ,

𝐿(𝑧) 𝐽 (𝑤) ∼ −(𝑛 − 1)ℓ𝑛 (k)𝟙
(𝑧 −𝑤)3

+ 𝐽 (𝑤)
(𝑧 −𝑤)2

+ 𝜕𝐽 (𝑤)
𝑧 −𝑤 .

Another important operator product expansion is that between the fields 𝐺+(𝑧) and 𝐺−(𝑧). The

other strong generators of W
k

𝑛+1 in (4.1.7) all appear somewhere in this expansion. That is,𝐺+ and

𝐺− actually generate W
k

𝑛+1 [68]. The complexity of each successive singular term grows rather

quickly so we only show the first few terms here. The ellipsis contains all singular terms of order

𝑗 < 𝑛 − 1.

𝐺+(𝑧)𝐺−(𝑤) ∼ 𝜆𝑛 (𝑛, k)𝟙
(𝑧 −𝑤)𝑛+1

+ (𝑛 + 1)𝜆𝑛−1(𝑛, k) 𝐽 (𝑤)
(𝑧 −𝑤)𝑛(4.1.11)

+ 𝜆𝑛−2(𝑛, k) (𝑧 −𝑤)𝑛−1

(
𝑛

2
(𝑛 + 1):𝐽 𝐽 :(𝑤) − (k + 𝑛 + 1)𝐿(𝑧)

+ 1
2

(
(𝑛 + 1) (𝑛2 − 2) + k(𝑛 + 2) (𝑛 − 1)

)
𝜕𝐽 (𝑤)

)
+ . . . ,
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where

(4.1.12) 𝜆 𝑗 (𝑛, k) =
𝑗∏

𝑚=1
(𝑚(𝑘 + 𝑛) − 1).

Additional terms of this operator product expansion are presented in Appendix A of [68] albeit

with respect to a slightly different set of strong generators. To appreciate the complexity of the

full set of operator product expansions of W
k

𝑛+1 for 𝑛 > 2, one needs only to refer to the operator

product expansions for W
k

4 presented in Appendix A.3 of [61].

Choosing the conformal structure defined by 𝐿 has the drawback of making 𝐽 (𝑧) not quasipri-

mary and introducing an asymmetry in the conformal weights of𝐺+ and𝐺−. This is not a problem

a priori but can be rectified by choosing the conformal field to be

(4.1.13) 𝐿̃(𝑧) = 𝐿(𝑧) − 𝑛 − 1
2

𝜕𝐽 (𝑧) .

With respect to 𝐿̃, 𝐺+ and 𝐺− have conformal weight (𝑛 + 1)/2 and 𝐽 (𝑧) is a primary field of

conformal weight 1. The 𝐿̃ conformal structure has the drawback of requiring the consideration of

twisted modules when 𝑛 is even owing to the half-integer conformal weight of 𝐺±.

An important extension of the results in this chapter is to consider the modularity of conjectured

standard W𝑛+1,k-modules and compute their Grothendieck fusion rules. The presence of twisted

modules complicates such computations as care must be given to which sector one is working in.

Therefore unless otherwise indicated we will keep 𝐿 as the conformal vector.

This is the same phenomenon encountered for BPk in Section 3.2.3 that prompted a change in

conformal structure. Note that the fields 𝐿(𝑧), 𝐿̃(𝑧) ∈ BPk from Section 2.1.2 have been renamed

to 𝐿̃(𝑧), 𝐿(𝑧) respectively in the basis (4.1.7) for 𝑛 = 2 and (4.1.13). This is simply to emphasise

that the ‘asymmetric’ conformal structure on W
k

𝑛+1 is best suited for modularity considerations.

Another reason for sidestepping twisted modules is the existence of a spectral flow automor-

phism of W
k

𝑛+1 that exchanges twisted and untwisted sectors when 𝑛 is even. To construct this

automorphism, as before we expand homogeneous fields of W
k

𝑛+1 as

(4.1.14) 𝐴(𝑧) =
∑︁
𝑚∈ℤ

𝐴 (𝑚)𝑧
−𝑚−1 =

∑︁
𝑚∈ℤ

𝐴𝑚𝑧
−𝑚−Δ𝐴 ,

where Δ𝐴 is the conformal weight of 𝐴 with respect to 𝐿(𝑧). The spectral flow automorphism is

constructed using certain intertwining operators [122].

Proposition 4.1.3. Let ℓ ∈ ℤ. The map 𝜎 ℓ : W
k

𝑛+1 →W
k

𝑛+1 defined by

(4.1.15) 𝜎 ℓ
(
𝐴(𝑧)

)
= 𝑌 (Λ(ℓ 𝐽 , 𝑧)𝐴, 𝑧) ,
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where

(4.1.16) Λ(ℓ 𝐽 , 𝑧) = 𝑧−ℓ 𝐽0
∞∏
𝑚=1

exp
(
(−1)𝑚
𝑚

ℓ𝐽𝑚𝑧
−𝑚

)
,

is a vertex algebra automorphism, where 𝑌 is the vertex map for W
k

𝑛+1.

That this a vertex algebra automorphism is a straightforward application of Proposition 3.2 in [122].

Direct computation shows that

(4.1.17)
𝜎 ℓ

(
𝐺±(𝑧)

)
= 𝑧∓ℓ𝐺±(𝑧), 𝜎 ℓ

(
𝐽 (𝑧)

)
= 𝐽 (𝑧) − ℓ𝑛 (k)ℓ𝑧−1,

𝜎 ℓ
(
𝐿̃(𝑧)

)
= 𝐿̃(𝑧) − ℓ𝑧−1 𝐽 (𝑧) + 1

2
ℓ𝑛 (k)ℓ2𝑧−2.

The action of spectral flow can also be written in terms of modes as follows:

(4.1.18)
𝜎 ℓ

(
𝐺±𝑚

)
= 𝐺±𝑚∓ℓ , 𝜎 ℓ

(
𝐽𝑚

)
= 𝐽𝑚 − ℓ𝑛 (k)ℓ𝛿𝑚,0𝟙,

𝜎 ℓ
(
𝐿̃𝑚

)
= 𝐿̃𝑚 − ℓ 𝐽𝑚 +

1
2
ℓ𝑛 (k)ℓ2𝛿𝑚,0𝟙.

These formulae reproduce the spectral flow automorphism of BPk (2.1.18) when 𝑛 = 2. In

principle, for any fixed 𝑛, one could also compute the action of spectral flow on the the fields

𝑈3(𝑧), . . . ,𝑈𝑛 (𝑧) given complete information about the relevant operator product expansions. In

the first case where one gets such fields (𝑛 = 3), spectral flow acts on the field𝑈3(𝑧) as the identity

automorphism. However, for general 𝑛 where the operator product expansions are more involved,

the action of spectral flow on the fields𝑈𝑖 (𝑧) is more difficult to determine.

What can be shown using the free-field expansions described in Section 4.2.2 is that the fields

{𝑈3(𝑧), . . . ,𝑈𝑛 (𝑧)} have ‘𝐽 -charge’ 0, i.e. that 𝐽0𝑈𝑖 = 0 for all 𝑖. Therefore by (4.1.15), spectral

flow acts on the modes of the form (𝑈𝑖)𝑚 as

(4.1.19) 𝜎 ℓ
(
(𝑈𝑖)𝑚

)
= (𝑈𝑖)𝑚 + . . . .

As the characters we will eventually define here for W
k

𝑛+1-modules only keep track of 𝐽0- and 𝐿0-

eigenvalues, the formulae (4.1.17) and the fact that the 𝑈𝑖 (𝑧) have 𝐽 -charge 0 is sufficient for our

purposes.

From the definition of spectral flow (4.1.15) it is clear that the inverse of 𝜎 ℓ is 𝜎−ℓ . Moreover,

spectral flow is only a vertex operator algebra automorphism for ℓ = 0 by (4.1.17).

As in the 𝑛 = 1 and 2 cases, we restrict attention to a particular subclass of W
k

𝑛+1-modules

called weight modules. The corresponding category 𝒲k of weight modules for the simple quotient

W𝑛+1,k is expected to have the modular properties desirable for defining a logarithmic conformal

field theory for certain k.
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To define weight modules, letU be the mode algebra ofW
k

𝑛+1. That is,U is the unital associative

ℂ-algebra spanned by the modes 𝐴𝑛 for 𝐴(𝑧) ∈ W
k

𝑛+1 subject to the generalised commutation

relations defined by the operator product expansions. The grading on U by [𝐿0, ·]-eigenvalue gives

a generalised triangular decomposition [106]

(4.1.20) U = U> ⊗ U0 ⊗ U<,

where U>, U0 and U< denote the unital subalgebras generated by 𝐴𝑚 for all homogeneous 𝐴(𝑧) ∈

W
k

𝑛+1 with𝑚 > 0,𝑚 = 0 and𝑚 < 0 respectively.

Definition 4.1.4. • A vector 𝑣 in a W𝑛+1,k-module M is a weight vector of weight ( 𝑗,Δ) where

𝑗 , Δ ∈ ℂ if it is a simultaneous eigenvector of 𝐽0 and 𝐿0 with eigenvalues 𝑗 (charge) and

Δ (conformal weight) respectively. The nonzero simultaneous eigenspaces of 𝐽0 and 𝐿0 are

called weight spaces of M. If M has a basis of weight vectors and each weight space is finite-

dimensional, then M is a weight module.

• A vector in a W
k

𝑛+1-module is a highest-weight vector if it is a weight vector that is annihilated

by the action of U> and𝐺+0 . A highest-weight module is a W
k

𝑛+1-module generated by a highest-

weight vector.

• A vector in a W
k

𝑛+1-module is a relaxed highest-weight vector if it is a weight vector that is

annihilated by the action of U>. A relaxed highest-weight module is a W
k

𝑛+1-module generated

by a relaxed highest-weight vector.

Observe that we do not require that the zero modes (𝑈𝑖)0 act semisimply on weight modules.

The definition of conjugate highest-weight vectors and modules is identical except with 𝐺+0
replaced with 𝐺−0 . From the actions (4.1.17) of the spectral flow automorphism, we see that if

𝑣 ∈ M is a weight vector of charge 𝑗 and conformal weight Δ, 𝜎 ℓ
(
𝑣
)
∈ 𝜎 ℓ

(
M

)
is a weight vector

with charge and conformal weight

(4.1.21) 𝑗 ′ = 𝑗 + ℓ𝑛 (k)ℓ, Δ′ = Δ + 𝑗ℓ + 1
2
ℓ𝑛 (k)

(
ℓ2 − ℓ (𝑛 − 1)

)
respectively.

4.2. Free-Field Realisations

An inverse quantum hamiltonian reduction embedding W
k

𝑛+1 ↩→Wk
𝑛+1 ⊗Π for 𝑛 = 1 and 2 can

be obtained by fairly direct methods; In these cases, the operator product expansions are known on

both sides and are straightforward to work with. The desired map can be obtained by making some
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reasonable assumptions (the embedding is conformal, the Heisenberg field gets mapped to a linear

combination of 𝑐 (𝑧) and 𝑑 (𝑧), . . . ) and imposing the operator product expansions of W
k

𝑛+1.

Once this is done, the work of showing that the image of W
k

𝑛+1 is isomorphic to W
k

𝑛+1 and not

one of its quotients remains. In both the 𝑛 = 1 and 2 cases, this can be shown directly using suitable

bases of the vertex algebras involved.

When 𝑛 > 2, the complexity of the operator product expansions makes this approach ex-

ceedingly difficult. Therefore to prove the existence of this embedding in general, we need some

more information about W
k

𝑛+1. This information takes the form of the free-field realisations of

W-algebras obtained as the kernel of certain screening operators [88].

An additional benefit of the free-field approach is that the map W
k

𝑛+1 → Wk
𝑛+1 ⊗ Π we get

is automatically injective. This is because the map is a composition of the free-field realisation

of W
k

𝑛+1 (which is injective [88]), the FMS bosonisation of the 𝛽𝛾 ghost vertex algebra (which is

injective [77]) and a vertex algebra isomorphism.

4.2.1. Free-Field Realisation for Regular W-Algebras. In [123] the regular W-algebra is

described as the intersection of kernels of certain screening operators: Let H𝛼 be the Heisenberg

vertex algebra (see Section 1.1.2) strongly generated by 𝑛 fields 𝛼1(𝑧), . . . , 𝛼𝑛 (𝑧) with operator

product expansions

(4.2.1) 𝛼𝑖 (𝑧)𝛼 𝑗 (𝑤) ∼
𝐴𝑖, 𝑗 (k + 𝑛 + 1)1
(𝑧 −𝑤)2

,

where 𝐴 = [𝐴𝑖, 𝑗 ] is the Cartan matrix of 𝔰𝔩𝑛+1.

Proposition 4.2.1. Let k ≠ −𝑛 − 1. The regular W-algebra Wk
𝑛+1 embeds into H𝛼 . Additionally,

for generic k,

(4.2.2) Wk
𝑛+1 ≃

𝑛⋂
𝑖=1

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧 ⊂ H𝛼 .

Here, a level k is called generic (for a given 𝑓 ∈ 𝔤) if the homology of certain sub-complexes of the

quantum hamiltonian reduction complex for 𝑓 ∈ 𝔤 are isomorphic (see [88, Def. 4.5]). It is known

that the set of generic levels is Zariski dense in ℂ [88, Lem. 4.4].

At non-generic levels, isomorphisms such as (4.2.2) need not exist. For example, if 𝑛 = 1 and

k + 2 ∈ ℤ⩾2, the intersection of kernels of screening operators in (4.2.2) defines the singlet vertex

algebra [1] that contains Wk
2 as a proper sub-vertex algebra. The precise details of what makes a

level generic or not is not important for our purposes.

The identification in (4.2.2) gives a useful free-field description of strong generators for the

regular W-algebra using the Miura transform.
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Following the presentation in Section 6.3.3 of [38], let 𝜀𝑠 , 𝑠 = 1, . . . , 𝑛 + 1 denote the weights

of the defining representation of 𝔰𝔩𝑛+1 ordered so that 𝛼𝑖 = 𝜀𝑖 − 𝜀𝑖+1 for all simple roots 𝛼𝑖 of 𝔰𝔩𝑛+1,

and
∑
𝑠 𝜀𝑠 = 0. The relationship between the simple roots 𝛼𝑖 and weights 𝜀𝑠 can be inverted and

upgraded to a relationship between fields given by

(4.2.3) 𝜀𝑠 (𝑧) = −
𝑠−1∑︁
𝑗=1

𝑗

𝑛 + 1
𝛼 𝑗 (𝑧) +

𝑛∑︁
𝑗=𝑠

𝑛 + 1 − 𝑗
𝑛 + 1

𝛼 𝑗 (𝑧).

Define the generating function of a set of fields {𝑊0(𝑧),𝑊1(𝑧), . . . ,𝑊𝑛+1(𝑧)} ⊂ H𝛼 by

𝑅𝑛 (𝑧) = −
𝑛+1∑︁
𝑠=0

𝑊𝑠 (𝑧) ((k + 𝑛)𝜕)𝑛+1−𝑠(4.2.4)

= ((𝑘 + 𝑛)𝜕 − 𝜀𝑛+1(𝑧)) · · · ((𝑘 + 𝑛)𝜕 − 𝜀1(𝑧)) .

It can be shown that the singular part of the operator product expansion of 𝑅𝑛 (𝑧) and the screening

operators in (4.2.2) is a total derivative, so the component fields𝑊𝑠 (𝑧) are all Wk
𝑛+1 fields. Ad-

ditionally, the fields𝑊2(𝑧), . . . ,𝑊𝑛+1(𝑧) strongly generate Wk
𝑛+1 for all k [123]. These fields are

not in general quasi-primary but one can usually take appropriate linear combinations of them and

their derivatives to obtain primary fields. Fortunately this is not necessary for our purposes.

To find convenient closed-form expressions for the fields𝑊𝑠 (𝑧) in terms of the fields of H𝛼 ,

we recall the noncommutative elementary symmetric polynomials described in [132, Ch. 12].

Definition 4.2.2. Let 𝜔1, . . . , 𝜔𝑁 be 𝑁 mutually associative operators. The m-th noncommutative

elementary symmetric polynomial in 𝜔1, . . . , 𝜔𝑁 is

(4.2.5) 𝐸𝑚 (𝜔1, . . . , 𝜔𝑁 ) =
∑︁

𝑖1>· · ·>𝑖𝑚
𝜔𝑖1 · · ·𝜔𝑖𝑚 .

Rewriting 𝑅𝑛 in terms of modes from H𝛼 ,(
(𝑘 + 𝑛)𝜕 − (𝜀𝑛+1)−1

)
· · ·

(
(𝑘 + 𝑛)𝜕 − (𝜀1)−1

)
(4.2.6)

= 𝐸𝑛+1
(
(𝑘 + 𝑛)𝜕 − (𝜀1)−1, . . . , (𝑘 + 𝑛)𝜕 − (𝜀𝑛+1)−1

)
= −

𝑛+1∑︁
𝑠=0
(𝑊𝑠) (−1) ((k + 𝑛)𝜕)𝑛+1−𝑠 .

By Proposition 12.4.4 of [132],

(4.2.7) 𝑊𝑠 = −𝐸𝑠
(
(𝑘 + 𝑛)𝜕 − (𝜀1)−1, . . . , (𝑘 + 𝑛)𝜕 − (𝜀𝑛+1)−1

)
1,
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where 1 denotes the vacuum of H𝛼 . For example,𝑊0(𝑧) = −1(𝑧),𝑊1(𝑧) = 0 and

(4.2.8) 𝑊2(𝑧) = (𝑘 + 𝑛)
𝑛+1∑︁
𝑗=1
(𝑛 + 1 − 𝑗)𝜕𝜀 𝑗 (𝑧) −

∑︁
𝑖> 𝑗

:𝜀𝑖 (𝑧)𝜀 𝑗 (𝑧):.

We will often refer to the set of fields {𝑊2(𝑧), . . . ,𝑊𝑛+1(𝑧)} as the Miura basis of Wk
𝑛+1

4.2.2. Free-Field Realisations for Subregular W-Algebras. Screening operators for general

W-algebras were obtained in [88]. For W
k

𝑛+1, the screening operators described therein are super-

ficially similar to those for Wk
𝑛+1 from Section 4.2.1. Let B be the 𝛽𝛾 ghost vertex algebra from

Section 1.1.2 and H𝛼 be the Heisenberg vertex algebra from the free-field realisation of Wk
𝑛+1.

To minimise notational clutter, we will suppress the tensor product symbol when it is clear on

which vertex algebra the involved fields are acting. We will also suppress tensor products involving

vacuum fields when possible.

Proposition 4.2.3 (Theorem 3.2 [43]). Let k ≠ −𝑛 − 1. The subregular W-algebra W
k

𝑛+1 embeds

into H𝛼 ⊗ B. Additionally, for generic k,

(4.2.9) W
k

𝑛+1 ≃
(

ker
∫

𝛽 (𝑧)e −1
k+𝑛+1𝛼1 (𝑧) d𝑧

)
∩

(
𝑛⋂
𝑖=2

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧

)
⊂ H𝛼 ⊗ B.

This identification defines a free-field realisation of W
k

𝑛+1 in terms of the fields from B and H𝛼 . The

exact decomposition of the strong generators (4.1.7) of W
k

𝑛+1 in terms of B and H𝛼 is not important

for our purposes.

As can be seen, the key difference between the screening operators in (4.2.9) and (4.2.2) is the

𝛽 (𝑧) factor in the screening operator involving 𝛼1(𝑧). It is conceivable that there is some chain

complex involving W
k

𝑛+1 with associated differential whereupon taking the zeroth homology has

the effect of setting 𝛽 (𝑧) = 1, reminiscent of the usual quantum hamiltonian reduction of affine

vertex algebras from Section 1.3. Indeed this is exactly what one would expect a partial quantum

hamiltonian reduction from W
k

𝑛+1 to Wk
𝑛+1 to do. Our interest here however is the ‘inverse’ of this

as-of-yet undefined partial reduction.

The free-field realisation defined by Proposition 4.2.3 is not the only free-field realisation of

W
k

𝑛+1 available to us. Owing to the fact that W
k

𝑛+1 is isomorphic to the Feigin–Semikhatov algebra

W
(2)
𝑛+1, a free-field realisation of the latter is automatically a free-field realisation of the former. In

[68], 𝑛+2 different free-field realisations of W(2)
𝑛+1 are described. For our immediate purposes, only

the ‘maximally asymmetric’ realisation described in Section 2.1.1 of [68] is required.

The screening operators of W(2)
𝑛+1(and therefore W

k

𝑛+1) from this realisation act on a vertex

algebra Hk generated by fields 𝐴1(𝑧), . . . , 𝐴𝑛 (𝑧), 𝑄 (𝑧), 𝑌 (𝑧) and e𝑚𝑌 (𝑧) where𝑚 ∈ ℤ. To define
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the operator product expansions of these fields, let 𝕍 = ℂ𝐴𝑛 ⊕ · · · ⊕ ℂ𝐴1 ⊕ ℂ𝑄 ⊕ ℂ𝑌 and define a

symmetric bilinear form (·, ·) on 𝕍 by

(4.2.10) (𝐴𝑖 , 𝐴 𝑗 ) = 𝐴𝑖, 𝑗 (k + 𝑛 + 1), (𝐴1, 𝑄) = −(k + 𝑛 + 1), (𝑄,𝑄) = 1, (𝑄,𝑌 ) = 1,

with all omitted evaluations yielding zero. The operator product expansions of Hk can be written

as, for all 𝐴, 𝐵 ∈ 𝕍,

(4.2.11) 𝐴(𝑧)𝐵(𝑤) ∼ (𝐴, 𝐵)
(𝑧 −𝑤)2

, e𝑚𝑌 (𝑧)e𝑛𝑌 (𝑤) ∼ 0, 𝐴(𝑧)e𝑚𝑌 (𝑤) ∼ (𝐴,𝑚𝑌 )e
𝑚𝑌 (𝑤)

𝑧 −𝑤 .

Similar to e𝑚𝑌 (𝑧), we also have vertex operators e𝐶 (𝑧) where 𝐶 ∈ {𝐴1, . . . , 𝐴𝑛, 𝑄}. The zero

modes of these operators are interpreted as intertwining maps for certain representations of Hk.

Their operator product expansions are

(4.2.12)
𝐴(𝑧)e𝐶 (𝑤) ∼ (𝐴,𝐶)e

𝐶 (𝑤)
𝑧 −𝑤 , 𝑒𝐴𝑖 (𝑧)e𝑚𝑌 (𝑤) ∼ 0,

𝑒𝑄 (𝑧)e𝑚𝑌 (𝑤) ∼ (𝑧 −𝑤)𝑚e𝑚𝑌+𝑄 (𝑤) .

Using the presentation in [89, Prop. 2.1], we obtain an embedding W
k

𝑛+1 ↩→ Hk at non-critical

level with

(4.2.13) W
k

𝑛+1 ≃
(

ker
∫

e𝑄 (𝑧) d𝑧
)
∩

(
𝑛⋂
𝑖=1

∫
e𝐴𝑖 (𝑧) d𝑧

)
for generic k.

4.3. From Regular W-Algebras to Subregular W-Algebras

4.3.1. Inverse Quantum Hamiltonian Reduction. To be able to recognise the Wk
𝑛+1 screen-

ing operators in (4.2.9), we need to deal with the factor of 𝛽 (𝑧) appearing in the first screening oper-

ator. This is done by ‘absorbing’ it into the vertex operator it sits next to in the free-field-realisation

of W
k

𝑛+1 from Proposition 4.2.3. In order to do this, we use the Friedan-Martinec-Shenker (FMS)

bosonisation of the 𝛽𝛾 ghost vertex algebra B with operator product expansions (1.1.21) [77].

Proposition 4.3.1. The vertex algebra homomorphism 𝜑 : B→ Π defined by

(4.3.1) 𝛽 (𝑧) ↦→ e𝑐 (𝑧), 𝛾 (𝑧) ↦→ 1
2

:(𝑐 (𝑧) + 𝑑 (𝑧)) e−𝑐 (𝑧):

is an embedding whose image is specified by

(4.3.2) 𝜑 (B) ≃ ker
∫

e
1
2𝑐+

1
2𝑑 (𝑧) d𝑧.
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We can therefore compose the embedding W
k

𝑛+1 ↩→ H𝛼 ⊗ B with FMS bosonisation 𝜑 tensored

with the identity map idH𝛼
to obtain an embedding W

k

𝑛+1 ↩→ H𝛼 ⊗ Π. To describe this embedding

using screening operators, let 𝑆 (𝑧) be one of the screening fields in (4.2.9). Let 𝐹𝑆 be the Fock

space of H𝛼 that
∫
𝑆 (𝑧) d𝑧 maps H𝛼 to. Then,

(4.3.3)
∫

𝑆 (𝑧) d𝑧 : H𝛼 ⊗ B→ 𝐹𝑆 ⊗ B.

What we would like is a screening operator
∫
𝑆 ′(𝑧) d𝑧 : H𝛼 ⊗ Π → 𝐹𝑆 ⊗ Π such the following

diagram commutes:

(4.3.4)

H𝛼 ⊗ B

H𝛼 ⊗ Π

idH𝛼
⊗ 𝜑

𝐹𝑆 ⊗ B

∫
𝑆 (𝑧) d𝑧

𝐹𝑆 ⊗ Π

∫
𝑆 ′(𝑧) d𝑧

id𝐹𝑆 ⊗ 𝜑

If the screening operator
∫
𝑆 ′(𝑧) d𝑧 exists, it follows that

(4.3.5)
(
idH𝛼
⊗ 𝜑

) (
ker

(∫
𝑆 (𝑧) d𝑧

))
= ker

(∫
𝑆 ′(𝑧) d𝑧

)
∩ im

(
idH𝛼
⊗ 𝜑

)
.

For 𝑆 (𝑧) = e−1/(k+𝑛+1)𝛼𝑖 (𝑧) with 𝑖 = 2, . . . , 𝑛, we can take 𝑆 ′(𝑧) = 𝑆 (𝑧) as 𝑆 (𝑧) doesn’t act on B.

For 𝑆 (𝑧) = 𝛽 (𝑧)e−1/(k+𝑛+1)𝛼1 (𝑧), since all arrows in (4.3.4) are vertex algebra homomorphisms it

is sufficient to replace 𝛽 (𝑧) with its image under 𝜑 to obtain 𝑆 ′(𝑧) = e𝑐 (𝑧)e−1/(k+𝑛+1)𝛼1 (𝑧).

Therefore the image of the embedding W
k

𝑛+1 ↩→ H𝛼 ⊗ Π is specified by

W
k

𝑛+1 ≃
(

ker
∫

e𝑐 (𝑧)e −1
k+𝑛+1𝛼1 (𝑧) d𝑧

)
∩

(
𝑛⋂
𝑖=2

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧

)
∩ im

(
idH𝛼
⊗ 𝜑

)
(4.3.6)

≃
(
𝑛⋂
𝑖=1

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧

)
∩

(
ker

∫
e

1
2𝑐+

1
2𝑑 (𝑧) d𝑧

)
,

where 𝛼1 = 𝛼1 − (k + 𝑛 + 1)𝑐 and 𝛼𝑖 = 𝛼𝑖 otherwise. As the conformal structure on Π defined by
1
2 :𝑐 (𝑧)𝑑 (𝑧): gives e𝑐 (𝑧) conformal weight zero and e−1/(k+𝑛+1)𝛼1 (𝑧) has conformal weight one with

respect to𝑇 (𝑧), e−1/(k+𝑛+1)𝛼1 (𝑧) is a screening field on H𝛼 ⊗ Π. The embedding W
k

𝑛+1 ↩→ H𝛼 ⊗ Π

defined by (4.3.6) was first considered by Creutzig, Genra and Nakatsuka where it is used to analyse

the coset of W
k

𝑛+1 by the Heisenberg vertex subalgebra generated by 𝐽 (𝑧) [43].

The first 𝑛 screening operators in (4.3.6) superficially appear to be the screening operators for

Wk
𝑛+1. The difference between these sets of operators is that the 𝛼𝑖 screening operators act on both

H𝛼 and Π non-trivially while the 𝛼𝑖 screening operators only act on H𝛼 . So the corresponding

kernels of vertex operators need not agree.
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To decouple the 𝛼𝑖 fields from the rest of H𝛼 ⊗ Π, let H𝛼̃ ⊂ H𝛼 ⊗ Π be the vertex subalgebra

generated by 𝛼1(𝑧), . . . , 𝛼𝑛 (𝑧). It is easy to see that H𝛼̃ ≃ H𝛼 . Let Π̃ be the vertex subalgebra of

H𝛼 ⊗ Π generated by

(4.3.7) 𝑐 (𝑧) = 𝑐 (𝑧), e𝑚𝑐 (𝑧) = e𝑚𝑐 (𝑧), 𝑑 (𝑧) = 𝑑 (𝑧) − 𝑛

𝑛 + 1
(k + 𝑛 + 1)𝑐 (𝑧) + 2𝜔1(𝑧),

where𝜔1(𝑧) = 1
𝑛+1

∑𝑛
𝑖=1(𝑛−𝑖+1)𝛼𝑖 (𝑧). That is,𝜔1(𝑧) is the field associated to the first fundamental

coweight of 𝔰𝔩𝑛+1. As before it is easy to show that Π̃ ≃ Π.

A direct computation shows that the operator product expansion𝐴(𝑧)𝐵(𝑤) of any fields𝐴(𝑧) ∈

H𝛼̃ and 𝐵(𝑧) ∈ Π̃ is nonsingular. Moreover, the expressions in (4.3.7) along with those for 𝛼𝑖 (𝑧)

can be inverted to express the strong generators of H𝛼 ⊗Π in terms of linear combinations of fields

in H𝛼̃ and Π̃. Therefore H𝛼̃ ⊗ Π̃ = H𝛼 ⊗ Π. By performing this ‘change of basis’, we see that the

𝛼𝑖 screening operators are the screening operators for Wk
𝑛+1 with respect to the Heisenberg vertex

algebra H𝛼̃ .

Before seeing how this change of basis leads to the embedding W
k

𝑛+1 ↩→Wk
𝑛+1 ⊗Π, it is useful

to define the following Heisenberg fields 𝑎(𝑧), 𝑏 (𝑧) ∈ Π by

(4.3.8) 𝑎(𝑧) = − ℓ𝑛 (k)
2

𝑐 (𝑧) + 1
2
𝑑 (𝑧) and 𝑏 (𝑧) = ℓ𝑛 (k)

2
𝑐 (𝑧) + 1

2
𝑑 (𝑧) .

Note that −⟨𝑎, 𝑎⟩ = ⟨𝑏,𝑏⟩ = ℓ𝑛 (k), while ⟨𝑎, 𝑏⟩ = 0. Substituting 𝑛 = 1 and 𝑛 = 2 into (4.3.8) repro-

duces the basis of the Heisenberg fields of Π used in the inverse quantum hamiltonian reductions

for Vk(𝔰𝔩2) and BPk in Theorem 3.1.2 and Theorem 3.2.1 respectively.

Theorem 4.3.2. Let k be generic. There exists an embedding W
k

𝑛+1 ↩→Wk
𝑛+1 ⊗ Π with

(4.3.9) W
k

𝑛+1 ≃ ker
∫

e𝑎−𝜔1 (𝑧) d𝑧,

where e−𝜔1 (𝑧) acts on fields in Wk
𝑛+1 by way of the strong generators given in the Miura basis

(4.2.6).

Proof. By (4.3.6), the fields of W
k

𝑛+1 must be of the form 𝐹 (𝑧) = ∑
𝑚 𝐴𝑚 (𝑧) ⊗𝐵𝑚 (𝑧) for some

𝐴𝑚 (𝑧) ∈ H𝛼 and 𝐵𝑚 (𝑧) ∈ Π. By the above discussion, we can also write 𝐹 (𝑧) = ∑
𝑚 𝐴̃𝑚 (𝑧)𝐵̃𝑚 (𝑧)

for some fields 𝐴̃𝑚 (𝑧) ∈ H𝛼̃ , 𝐵̃𝑚 (𝑧) ∈ Π̃ and inserting tensor products when necessary.

For convenience, suppose that the fields 𝐵̃𝑚 (𝑧) are linearly independent. If they are not we

can simply redefine the fields 𝐴̃𝑚 (𝑧) and reduce the range of 𝑚 such that this is the case. Since

𝛼𝑖 (𝑧)𝐵̃𝑚 (𝑤) ∼ 0 for all 𝑖 ∈ {1, . . . , 𝑛} and𝑚, 𝐹 (𝑧) satisfying

(4.3.10)
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧)𝐹 (𝑤) d𝑧 = 0
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for all 𝑖 ∈ {1, . . . , 𝑛} is equivalent to

(4.3.11)
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧)𝐴̃𝑚 (𝑤) d𝑧 = 0

for all 𝑖 ∈ {1, . . . , 𝑛} and 𝑚 by the linear independence of the fields 𝐵̃𝑚 (𝑧). Therefore if 𝐹 (𝑧) ∈

W
k

𝑛+1,

(4.3.12) 𝐴̃𝑚 (𝑤) ∈
𝑛⋂
𝑖=1

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧 for all𝑚.

As 𝐴̃𝑚 (𝑧) ∈ H𝛼̃ , this means that 𝐴̃𝑚 (𝑧) ∈ Wk
𝑛+1 by (4.2.2). More precisely, 𝐴̃𝑚 (𝑧) is a normally

ordered product of the fields 𝛼𝑖 (𝑧) and their derivatives. Imposing (4.3.11) for 𝑖 = 1, . . . , 𝑛 on

𝐴̃𝑚 (𝑧) constrains this expansion to be a normally ordered product of the fields (4.2.6) (replacing

𝛼𝑖 with 𝛼𝑖) and their derivatives, which strongly generate a vertex operator algebra isomorphic to

Wk
𝑛+1.

Hence we may treat the fields 𝐴̃𝑚 (𝑧) as fields in Wk
𝑛+1. The fields 𝐵̃𝑚 (𝑧) ∈ Π̃ are unaffected by

the 𝛼𝑖 screening operators and are therefore unconstrained up to this point. The screening operator

from FMS bosonisation (4.3.2) present in (4.3.6) therefore dictates how the fields 𝐴̃𝑚 (𝑧) ∈ Wk
𝑛+1

and 𝐵̃𝑚 (𝑧) ∈ Π̃ are combined to form a field in W
k

𝑛+1.

The FMS bosonisation screening field e
1
2𝑐+

1
2𝑑 (𝑧) can be written in terms of the tilded fields

using (4.3.7) and the definition of H𝛼̃ , and its exponent becomes

(4.3.13)
1
2
𝑐 (𝑧) + 1

2
𝑑 (𝑧) =

(
− ℓ𝑛 (k)

2
𝑐 (𝑧) + 1

2
𝑑 (𝑧)

)
− 1
𝑛 + 1

𝑛∑︁
𝑖=1
(𝑛 − 𝑖 + 1)𝛼𝑖 (𝑧) .

The corresponding mapW
k

𝑛+1 →Wk
𝑛+1⊗ Π̃ is an embedding since its image is equal to the image of

the embedding W
k

𝑛+1 ↩→ H𝛼 ⊗ Π defined by (4.3.6), treating Wk
𝑛+1 as a vertex subalgebra of H𝛼̃ ⊂

H𝛼 ⊗ Π. The desired result and screening field description (4.3.9) follow from the isomorphisms

H𝛼̃ ≃ H𝛼 and Π̃ ≃ Π. ■

4.3.2. Explicit Expressions. While Theorem 4.3.2 proves the existence of an embedding

W
k

𝑛+1 ↩→ Wk
𝑛+1 ⊗ Π at generic levels k and gives an associated screening operator, one might

also want expressions for the strongly generating fields (4.1.7) in terms of fields from Wk
𝑛+1 and Π.

Some fields of W
k

𝑛+1 can be readily extracted using the screening operator in (4.3.9). For example,

since ⟨𝑎, 𝑏⟩ = 0,

(4.3.14) 𝑏 (𝑧) ∈ ker
∫

e𝑎−𝜔1 (𝑧) d𝑧.

The corresponding W
k

𝑛+1 field is denoted by 𝐽 (𝑧). Similarly, the field e𝑐 (𝑧) has nonsingular oper-

ator product expansion with the screening field so we can treat it as a field 𝐺+(𝑧) in W
k

𝑛+1. One
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can quickly check that these assignments reproduce the relevant operator product expansions in

(4.1.10).

Since we are free to choose a conformal structure on Π, choose the conformal structure fur-

nished by the Π field

(4.3.15) 𝑡 (𝑧) = 1
2

:𝑐 (𝑧)𝑑 (𝑧): + 𝑛
2
ℓ𝑛 (k)𝜕𝑐 (𝑧) −

1
2
𝜕𝑑 (𝑧) .

With respect to 𝑡 (𝑧), both 𝑎(𝑧) and𝑏 (𝑧) have conformal weight 1 (though neither are quasiprimary)

whilst that of e𝑚𝑐 (𝑧) is𝑚. The associated central charge cΠ
k

satisfies

(4.3.16) cΠk + c
𝑛+1
k = c𝑛+1k .

The energy-momentum field 𝐿(𝑧) of W
k

𝑛+1 can be decomposed according to

(4.3.17) 𝐿(𝑧) = 𝑇 (𝑧) + 𝑡 (𝑧),

as the operator product expansion of the right-hand-side with the screening operator in (4.3.9) is

a total derivative. In particular, this shows that the embedding W
k

𝑛+1 ↩→ Wk
𝑛+1 ⊗ Π is conformal

(with the chosen conformal structure on Π).

To find similar expressions for the remaining strong generators of W
k

𝑛+1, we use explicit ex-

pressions for the aforementioned strong generators of W
k

𝑛+1 [89]. These expressions rely on the

fact that the subregular W-algebra of type A W
k

𝑛+1 is isomorphic to the Feigin–Semikhatov algebra

W
(2)
𝑛+1 [88, Thm. 6.9] and screening operators for the latter are known [68]. These screening oper-

ators for W(2)
𝑛+1 (and therefore W

k

𝑛+1) were recounted in Section 4.2.2 and act on the vertex algebra

Hk.

Importantly, expressions for the strong generators 𝐿,𝐺+, 𝐽 ,𝑈3, . . . ,𝑈𝑛,𝐺− in terms of the fields

in Hk are known [89]. So we have two different free-field realisations of W
k

𝑛+1, one of which has

been analysed further to obtain expressions for strong generators of W
k

𝑛+1. In order to use the Hk

expressions in our present setting of H𝛼 ⊗ Π, we must understand how Hk and (4.2.13) relate to

H𝛼 ⊗ Π and (4.3.6).

Proposition 4.3.3. Define𝜓 : Hk → H𝛼 ⊗ Π to be the vertex algebra map defined by

(4.3.18) 𝐴𝑖 (𝑧) ↦→ 𝛼𝑖 (𝑧), 𝑌 (𝑧) ↦→ 𝑐 (𝑧), e𝑚𝑌 (𝑧) ↦→ e𝑚𝑐 (𝑧), 𝑄 (𝑧) ↦→ 𝑎(𝑧) − 𝜔1(𝑧) .

Then𝜓 is a vertex algebra isomorphism.

As this is an isomorphism, the kernel of the screening operator
∫
e𝑄 (𝑧) d𝑧 is equal to𝜓−1 applied

to the kernel of the screening operator in (4.3.9). The kernel of the screening operator
∫
e𝐴𝑖 (𝑧) d𝑧
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is equal to 𝜓−1 applied to the kernel of
∫
e𝛼𝑖 (𝑧) d𝑧. By Feigin–Frenkel duality for the Virasoro

vertex algebra (see [72, Ch. 15]),

(4.3.19) ker
∫

e𝛼𝑖 (𝑧) d𝑧 = ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧

for 𝑖 = 1, . . . , 𝑛. So the isomorphism𝜓 maps the intersection of kernels in (4.2.13) to that in (4.3.6).

In other words, 𝜓 intertwines the action of the screening operators on Hk and H𝛼 ⊗ Π that define

embeddings of W
k

𝑛+1.

To summarise what we have shown thus far, applying 𝜓 to the strong generators of W
k

𝑛+1 in

terms of the fields of Hk presented in [89] gives strong generators of W
k

𝑛+1 in terms of fields of

H𝛼 ⊗ Π. The latter set of strong generators also belong to (and therefore strongly generate) the

intersection of kernels in (4.3.6), and by Theorem 4.3.2 must consist of fields of Wk
𝑛+1 ⊗ Π only,

treating Wk
𝑛+1 as a subalgebra of H𝛼 by way of the Miura transformation.

To write down the generators obtained by applying 𝜓 to those in [89], let 𝟙𝑅 and 𝟙Π be the

vacuum states of Wk
𝑛+1 and Π respectively. Then the vacuum of Wk

𝑛+1 ⊗ Π is 𝟙 = 𝟙𝑅 ⊗ 𝟙Π. We will

frequently omit tensor product symbols in what follows when it is clear which modes act on which

component of H𝛼 ⊗ Π. Define operators 𝜌0, 𝜌1, . . . , 𝜌𝑛+1 on H𝛼 ⊗ Π by

(4.3.20) 𝜌0 = (k + 𝑛) (𝜕 + 𝑐−1), 𝜌𝑖 = (k + 𝑛)𝜕 + 𝑏−1 +
k + 𝑛 + 1
𝑛 + 1

𝑐−1 − (𝜀𝑖)−1.

As 𝑇 + 𝑡 is a conformal vector, we may write 𝜕 = 𝑇−1 + 𝑡−1. Observe that

(4.3.21) 𝜌𝑖e
−𝑐 = 𝑎−1e

−𝑐 + ((k + 𝑛)𝑇−1 − (𝜀𝑖)−1) e−𝑐 .

Proposition 4.3.4. Let k ≠ −𝑛 − 1. Define the fields 𝐿(𝑧),𝐺+(𝑧), 𝐽 (𝑧),𝑈3(𝑧), . . . ,𝑈𝑛 (𝑧),𝐺−(𝑧) ∈

H𝛼 ⊗ Π by

(4.3.22)

𝐿 = 𝑇 + 𝑡, 𝐽 = 𝑏, 𝐺+ = e𝑐 ,

𝐺− = −𝐸𝑛+1(𝜌1, . . . , 𝜌𝑛+1)e−𝑐 ,

𝑈𝑖 =

𝑖∑︁
𝑗=0
(−1)𝑖+𝑗

(
𝑗∏

𝑚=1

𝑚(k + 𝑛) + 1
𝑚(k + 𝑛)

)
𝐸𝑖−𝑗 (𝜌1, . . . , 𝜌𝑛+1)𝜌 𝑗0𝟙.

The associated fields strongly generate W
k

𝑛+1 and satisfy the operator product expansions (4.1.10)

and (4.1.11).

Proof. These fields are 𝜓 applied to the strong generators described in Remark 3.14 in [89]

except for 𝐿(𝑧). The relationship between 𝐿(𝑧) and the field𝑈2(𝑧), which is defined using the above
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formula for𝑈𝑖 (𝑧), is a straightforward calculation and is of the form

(4.3.23) 𝐿(𝑧) = 1
k + 𝑛 + 1

(−𝑈2(𝑧) + 𝑎1𝜕𝐽 (𝑧) + 𝑎2:𝐽 (𝑧) 𝐽 (𝑧):) ,

with 𝑎1, 𝑎2 ∈ ℝ[k] whose precise form is not important. Since the set {𝐺+(𝑧), 𝐽 (𝑧), 𝑈2(𝑧),

𝑈3(𝑧), . . . , 𝑈𝑛 (𝑧), 𝐺−(𝑧)} strongly generates W
k

𝑛+1, the same set with 𝑈2(𝑧) replaced with 𝐿(𝑧)

also strongly generates W
k

𝑛+1. ■

The apparent singularity at k = −𝑛 in the formula (4.3.22) for 𝑈𝑖 is taken care of by the factor of

(k + 𝑛) in (4.3.20) for 𝜌0. To see how the fields above decompose in terms of Wk
𝑛+1 fields, notice

that the only place where fields of H𝛼 appear (outside of 𝑇 in 𝐿) is in the symmetric polynomials

involving the operators 𝜌𝑖 : Since the vacuum is translation invariant, 𝜌0𝟙 = (k+𝑛)𝑐 and successive

applications of 𝜌0 do not introduce any additional modes/states from H𝛼 as𝑇−1 commutes with all

modes in Π and 𝑇−1𝟙 = (𝑇−1𝟙𝑅) ⊗ 𝟙Π = 0. Therefore all that remains is to determine which Wk
𝑛+1

modes appear in 𝐸𝑚 (𝜌1, . . . , 𝜌𝑛+1).

Lemma 4.3.5. Let𝑚 ∈ {1, . . . , 𝑛 + 1}. Then,

𝐸𝑚 (𝜌1, . . . , 𝜌𝑛+1)(4.3.24)

=

𝑚∑︁
𝑗=0

(
𝑛 + 1 − 𝑗
𝑚 − 𝑗

)
𝐸 𝑗 (𝜎1, . . . , 𝜎𝑛+1)

(
(k + 𝑛)𝑡−1 + 𝑏−1 +

k + 𝑛 + 1
𝑛 + 1

𝑐−1

)𝑚−𝑗
,

where 𝜎𝑖 = (k + 𝑛)𝑇−1 − (𝜀𝑖)−1.

Proof. This is Proposition 12.4.4 in [132] with 𝑁 = 𝑛 + 1. In terms of the notation used

therein,

(4.3.25) 𝜏 + 𝜇𝑖 [−1] = 𝜎𝑖 , 𝑢 = (k + 𝑛)𝑡−1 + 𝑏−1 +
k + 𝑛 + 1
𝑛 + 1

𝑐−1

and under this identification, 𝜌𝑖 = 𝑢 + 𝜏 + 𝜇𝑖 [−1]. ■

The above lemma shows that the only H𝛼 fields that appear in the free-field realisation of W
k

𝑛+1 in

Proposition 4.3.4 are those given by (4.2.6), i.e. fields of Wk
𝑛+1 as expected. The ‘Wk

𝑛+1 content’

of the strong generators 𝐿(𝑧), 𝐺+(𝑧), 𝐽 (𝑧) is clear from the formulae given earlier. For the fields

𝑈3(𝑧), . . . ,𝑈𝑛 (𝑧), 𝐺−(𝑧), we have the following structural result.

Theorem 4.3.6. For each 𝑖 ∈ {3, . . . , 𝑛}, there exist 𝑖 fields 𝜋𝑖, 𝑗 (𝑧), 𝑗 = 0, . . . , 𝑖 − 1, in the vertex

subalgebra of Π generated by 𝑐 (𝑧) and 𝑑 (𝑧) such that

(4.3.26) 𝑈𝑖 (𝑧) = (−1)𝑖+1𝑊𝑖 (𝑧) +
𝑖−1∑︁
𝑗=0
𝑊𝑗 (𝑧) ⊗ 𝜋𝑖, 𝑗 (𝑧) .
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The field 𝐺−(𝑧) can be written as

(4.3.27) 𝐺−(𝑧) =𝑊𝑛+1(𝑧) ⊗ e−𝑐 (𝑧) +
𝑛∑︁
𝑗=0
𝑊𝑗 (𝑧) ⊗

(
𝜋
−, 𝑗
(−1)e

−𝑐 (𝑧)
)
,

where 𝜋−, 𝑗 ∈ Π is given by

(4.3.28) 𝜋−, 𝑗 =
(
(k + 𝑛)𝑡−1 + 𝑎−1

)𝑛+1−𝑗
𝟙Π .

Proof. Substituting (4.3.24) into the expression for 𝐺− in Proposition 4.3.4 gives

𝐺− = −
𝑛+1∑︁
𝑗=0

(
𝐸 𝑗 (𝜎1, . . . , 𝜎𝑛+1)𝟙𝑅

)
⊗

((
(k + 𝑛)𝑡−1 + 𝑏−1 +

k + 𝑛 + 1
𝑛 + 1

𝑐−1

)𝑛+1−𝑗
e−𝑐

)
(4.3.29)

=

𝑛+1∑︁
𝑗=0
𝑊𝑗 ⊗

(
𝜋
−, 𝑗
(−1)e

−𝑐
)

for some field 𝜋−, 𝑗 (𝑧) ∈ Π. That 𝜋−, 𝑗 = 𝜋−, 𝑗 follows from the action 𝑡−1e
−𝑐 = −𝑐−1e

−𝑐 and the

fact that negative modes in Π commute. The decomposition of𝑈𝑖 (𝑧) in terms of𝑊𝑗 (𝑧) for 𝑗 ⩽ 𝑖 is

similarly obtained by substituting (4.3.24) into the expression for𝑈𝑖 given in Proposition 4.3.4. ■

A consequence of these formulae is that the embeddingW
k

𝑛+1 ↩→Wk
𝑛+1⊗Π exists for all non-critical

k. This is because the strong generators {𝐺+, 𝐽 , 𝐿,𝑈3, . . . ,𝑈𝑛,𝐺
−} and {𝑇,𝑊3, . . . ,𝑊𝑛+1} of W

k

𝑛+1

and Wk
𝑛+1 respectively exist for all non-critical k, and the decompositions of the former in terms

of the latter and states in Π are well-defined for all non-critical k. Injectivity of the corresponding

vertex operator algebra homomorphism W
k

𝑛+1 → Wk
𝑛+1 ⊗ Π follows from the injectivity of the

free-field realisations W
k

𝑛+1 ↩→ H𝛼 ⊗ Π [89] and Wk
𝑛+1 ↩→ H𝛼̃ [14].

When k is generic, Proposition 4.3.3 shows that the explicit embedding described in this section

is indeed the one specified by the screening operator in (4.3.9).

The critical level embedding of vertex algebras W
−𝑛−1
𝑛+1 ↩→ W−𝑛−1

𝑛+1 ⊗ Π, as described in [89],

is obtained using the same formulae as in the non-critical case except for multiplying 𝐿 = 𝑇 + 𝑡 by

(k + 𝑛 + 1).

An important feature of these decompositions is that the Miura basis Wk
𝑛+1 fields appear undis-

turbed in the sense that their derivatives and normally ordered products do not appear. Moreover,

all Miura basis fields of Wk
𝑛+1 appear somewhere in these expansions. These properties will al-

low us to prove the almost-simplicity of a large class of W
k

𝑛+1-modules that we construct using the

inverse reduction embedding in an analogous way to that used in Section 5 of [4].
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The identifications 𝐽 (𝑧) = 𝑏 (𝑧),𝐺+(𝑧) = e𝑐 (𝑧) and 𝐿(𝑧) = 𝑇 (𝑧) +𝑡 (𝑧) with the decompositions

in Theorem 4.3.6 reproduce the embeddings BPk ↩→ Wk
3 ⊗ Π and Vk(𝔰𝔩2) ↩→ Virk ⊗ Π. Com-

posing the former with certain isomorphisms of Π and BPk gives precisely the embedding used in

Section 3.2.2 as mentioned therein.

The next simplest example is the embedding W
k

4 ↩→ Wk
4 ⊗ Π for k ≠ −4. The regular W-

algebra Wk
4 is also known as the spin-4 extended conformal algebra [109]. As usual, denote the

Miura basis fields of Wk
4 by 𝑇 (𝑧),𝑊3(𝑧) and𝑊4(𝑧). Define the Π fields

(4.3.30) 𝑎(𝑧) = −3k + 8
8

𝑐 (𝑧) + 1
2
𝑑 (𝑧), 𝑏 (𝑧) = 3k + 8

8
𝑐 (𝑧) + 1

2
𝑑 (𝑧),

and give Π the conformal structure furnished by the energy-momentum field

(4.3.31) 𝑡 (𝑧) = 1
2

:𝑐 (𝑧)𝑑 (𝑧): + 3(3k + 8)
8

𝜕𝑐 (𝑧) − 1
2
𝜕𝑑 (𝑧) .

The embedding W
k

4 ↩→Wk
4 ⊗ Π for k ≠ −4 given by Theorem 4.3.2 is

𝐽 (𝑧) ↦→ 𝑏 (𝑧), 𝐿(𝑧) ↦→ 𝑇 (𝑧) + 𝑡 (𝑧), 𝐺+(𝑧) ↦→ e𝑐 (𝑧),

𝐺−(𝑧) ↦→𝑊4(𝑧) ⊗ e−𝑐 (𝑧) +𝑊3(𝑧) ⊗ :𝑎(𝑧)e−𝑐 (𝑧):

+𝑊2(𝑧) ⊗ :
(
(k + 3)𝜕𝑎(𝑧) + 𝑎(𝑧)2

)
e−𝑐 (𝑧):

− :
(
𝑎(𝑧)4 + (k + 3)3𝜕3𝑎(𝑧) + 3(k + 3)𝜕𝑎(𝑧)2

+ 4(k + 3)2𝑎(𝑧)𝜕2𝑎(𝑧) + 6𝑎(𝑧)2𝜕𝑎(𝑧)
)
e−𝑐 (𝑧):,(4.3.32)

𝑈3(𝑧) ↦→𝑊3(𝑧) + 2𝑊2(𝑧) ⊗𝑚(𝑧) − 4(k + 3)2𝜕2𝑚(𝑧) − 12(k + 3):𝑚(𝑧)𝜕𝑚(𝑧): − 4:𝑚(𝑧)3:

+ (k + 4)
(
−𝑊2(𝑧) ⊗ 𝑐 (𝑧) + 6(k + 3)2𝜕2𝑐 (𝑧) + 6(k + 3):𝜕𝑚(𝑧)𝑐 (𝑧):

+ 12(k + 3):𝑚(𝑧)𝜕𝑐 (𝑧): + 6:𝑚(𝑧)2𝑐 (𝑧):
)

− 2(k + 4) (2k + 7)
(
(k + 3) (𝜕2𝑐 (𝑧) + :𝑐 (𝑧)𝜕𝑐 (𝑧):)

+ :𝑚(𝑧)𝜕𝑐 (𝑧): + :𝑚(𝑧)𝑐 (𝑧)2:
)

+ (k + 4) (2k + 7) (3k + 10)
6

(
𝜕2𝑐 (𝑧) + 3:𝑐 (𝑧)𝜕𝑐 (𝑧): + :𝑐 (𝑧)3:

)
,

where𝑚(𝑧) = 𝑏 (𝑧) + k+4
4 𝑐 (𝑧) ∈ Π. Define the W

k

4 field

𝑊 (𝑧) = − 1
k + 2

𝑈3(𝑧) −
2(2k + 5)

3
𝜕2 𝐽 (𝑧) + 4(k + 4)

3k + 8
:𝐽 (𝑧)𝐿(𝑧):(4.3.33)

− 6:𝐽 (𝑧)𝜕𝐽 (𝑧): + k + 4
2

𝜕𝐿(𝑧) − 8(11k + 32)
3(3k + 8)2

:𝐽 (𝑧)3:.
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This is a primary field of conformal weight 3. The fields {𝐽 (𝑧), 𝐿(𝑧),𝑊 (𝑧),𝐺±(𝑧)} also strongly

generate W
k

4. The operator product expansions of these fields are given in [49], albeit with 𝐿(𝑧)

replaced with 𝐿̃(𝑧). Checking that the above embedding correctly reproduces the desired operator

product expansions can be done tediously by hand or quickly using a computer using tools such as

the Mathematica package OPEdefs [152].

4.3.3. Relaxed Modules for Subregular W-Algebras. In Chapter 2, we saw that the repre-

sentation theory of W
k

3 (the Bershadsky–Polyakov algebra) can be largely understood in terms of

representations of its untwisted and twisted Zhu algebrs. For 𝑛 > 2, the complexity of the operator

product expansion of 𝐺+(𝑧) and 𝐺−(𝑧) makes determining these algebras difficult.

However, the existence of an embedding W
k

𝑛+1 ↩→ Wk
𝑛+1 ⊗ Π for any non-critical level allows

us to construct infinite families of W
k

𝑛+1-modules by taking appropriate tensor products of Wk
𝑛+1-

and Π-modules. Particularly important amongst modules for subregular W-algebras are relaxed

modules.

These play a central role in computing modular transformations and fusion rules for admissible-

level Lk(𝔰𝔩2) and admissible-levelBPk. In both cases, this is precisely because the relaxed modules

for the simple subregular W-algebra can be realised in terms of modules for the corresponding

simple regular W-algebra and forΠ using inverse quantum hamiltonian reduction. This is described

in detail in Section 7.1 of [2] for 𝑛 = 1 and Section 3.2.2 for 𝑛 = 2. It is therefore reasonable to

anticipate that some of the W
k

𝑛+1-modules that we will construct by way of our embedding will play

a central role in the representation theory of W𝑛+1,k and the construction of ‘logarithmic minimal

models’ with W𝑛+1,k symmetry.

Much of this section follows the approach taken for 𝑛 = 2 described in [4]. As we are interested

in extracting information out of this embedding, we assume that k is non-critical for the remainder

of this section. We will also frequently identify W
k

𝑛+1 with its image under the embedding obtained

in Proposition 4.3.4.

Before constructing W
k

𝑛+1-modules, we recall some general properties and definitions of mod-

ules over vertex operator algebras as used in the analysis of relaxed modules for Bershadsky–

Polyakov algebras in [4].

Definition 4.3.7. Let 𝑉 be a vertex operator algebra, 𝑀 a ℤ⩾0-graded 𝑉 -module and denote the

top space of 𝑀 by 𝑀 top = 𝑀0.

• 𝑀 is top-generated if 𝑀 is generated by 𝑀 top.

• 𝑀 has only top-submodules if every nonzero submodule of𝑀 has nonzero intersection with𝑀 top.

• 𝑀 is almost-irreducible if it is top-generated and has only top-submodules.
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By Zhu’s theorem [171], 𝑀 top is a module for the associative algebra Zhu[𝑉 ]. When looking to

construct irreducible V-modules, it is convenient to consider V-modules𝑀 whose submodules are

all generated by Zhu[V]-submodules of 𝑀 top. This is because checking if such a V-module 𝑀 is

irreducible requires only checking if 𝑀 top is an irreducible Zhu[V]-module:

Proposition 4.3.8 (Proposition 5.2 [4]). If 𝑀 is almost-irreducible and 𝑀 top is irreducible as a

Zhu[𝑉 ]-module then 𝑀 is irreducible.

A key ingredient for constructing relaxed W
k

𝑛+1-modules is relaxed Π-modules as we saw for BPk

in Section 3.2.2. The relaxed Π-modules we require for W
k

𝑛+1 are defined in the same way as the

modules Π [ 𝑗 ] but are slightly modified to be positive-energy with respect to the conformal structure

defined by 𝑡 (𝑧) ∈ Π. That is, we induce Π-modules from the ℤ𝑐-modules generated by (certain)

elements eℎ ∈ ℂ[𝔥] on which ℎ′ ∈ 𝔥 acts as ℎ′ · eℎ = ⟨ℎ′, ℎ⟩ eℎ [33].

Proposition 4.3.9. The weight Π-module generated from e𝑟𝑏+𝜆𝑐 is positive-energy if and only if

𝑟 = −1. In this case, the Π-module is ℤ-graded, simple and the minimal 𝑡0-eigenvalue is 𝑛
2 ℓ𝑛 (𝜅).

Denote the Π-module generated from e𝑟𝑏+𝜆𝑐 by Π𝑟
(
𝜆
)
. These Π-modules satisfy a number of nice

properties: By direct computation, the eigenvalue of 𝑏0 on e−𝑏+𝜆𝑐 is 𝜆 − ℓ𝑛 (k). The zero modes

e±𝑐0 act injectively on the top space of Π−1
(
𝜆
)
. In general, Π𝑟

(
𝜆
)

is ℤ-graded as long as 𝑟 ∈ ℤ and

ℤ + 1
2 -graded when 𝑟 ∈ ℤ + 1

2 . In either case, Π𝑟
(
𝜆
)
≃ Π𝑟

(
𝜆 + 𝑛

)
as Π-modules for all 𝑛 ∈ ℤ.

As forW
k

𝑛+1 we can use the Heisenberg field𝑏 (𝑧) ∈ Π to define an vertex algebra automorphism

of Π called spectral flow 𝜌ℓ for all ℓ ∈ ℤ.

Proposition 4.3.10. Let ℓ ∈ ℤ. The map 𝜌ℓ : Π → Π defined by

(4.3.34) 𝜌ℓ (𝐴(𝑧)) = 𝑌 (Λ(ℓ𝑏, 𝑧)𝐴, 𝑧) , where Λ(ℓ𝑏, 𝑧) = 𝑧−ℓ𝑏0

∞∏
𝑚=1

exp
(
(−1)𝑚
𝑚

ℓ𝑏𝑚𝑧
−𝑚

)
,

is a vertex algebra automorphism, where 𝑌 is the vertex map for Π.

The action of spectral flow on the fields 𝑎(𝑧), 𝑏 (𝑧) and e𝑚𝑐 (𝑧) where 𝑚 ∈ ℤ can be explicitly

computed with help from (3.1.4) and is given by

(4.3.35) 𝜌ℓ (𝑎(𝑧)) = 𝑎(𝑧), 𝜌ℓ (𝑏 (𝑧)) = 𝑏 (𝑧) − ℓ𝑛 (k)ℓ𝑧−1, 𝜌ℓ (e𝑚𝑐 (𝑧)) = 𝑧−𝑚ℓe𝑚𝑐 (𝑧) .

This is only a vertex operator algebra automorphism when the conformal vector 𝑡 (𝑧) is preserved

i.e. when ℓ = 0. As usual, for any Π-module and any nonzero ℓ ∈ ℤ we get a new Π-module by

applying spectral flow 𝜌ℓ (𝑀).
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Here as before, the range of ℓ can be extended to include ℤ + 1
2 in which case a ℤ-graded

Π-module becomes (ℤ + 1
2 )-graded upon twisting with respect to 𝜌ℓ and vice-versa.

By the embedding (4.3.22), there are two strong generators of W
k

𝑛+1 living only in Π: 𝐺+ → e𝑐

and 𝐽 → 𝑏. Let 𝑈 be the vertex subalgebra of Π generated by 𝑏 and e𝑐 . As a 𝑈 -module, Π−1
(
𝜆
)

satisfies the many of the same properties that the 𝑛 = 2 version was shown to satisfy in [4]:

Proposition 4.3.11. Π−1
(
𝜆
)

is almost-irreducible as a𝑈 -module.

Proof. The proof for all 𝑛 is identical to that for the 𝑛 = 2 case described in Section 5.1 of [4].

Adapting it to the case of general 𝑛 simply requires replacing 𝑗 and 𝑖 with 𝑏 and 𝑎 respectively and

keeping in mind the different conformal structures. ■

Again, under the identification described in Section 4.3.1, the generators of 𝟙𝑅 ⊗ 𝑈 are elements

of W
k

𝑛+1. So 𝟙𝑅 ⊗ 𝑈 is also a vertex subalgebra of W
k

𝑛+1.

Given a Wk
𝑛+1-module𝑀 , the (Wk

𝑛+1⊗Π)-module𝑀 (𝑟, 𝜆) = 𝑀 ⊗Π𝑟
(
𝜆
)
, where 𝑟 ∈ ℤ to ensure

ℤ-grading, is also a W
k

𝑛+1-module by restriction. As Π𝑟
(
𝜆
)
≃ Π𝑟

(
𝜆+𝑛

)
as Π-modules for all 𝑛 ∈ ℤ,

𝑀 (𝑟, 𝜆) ≃ 𝑀 (𝑟, 𝜆 + 𝑛) as W
k

𝑛+1-modules. Additionally, 𝐽 (𝑧) ∈ Wk

𝑛+1 is identified with 𝑏 (𝑧) under

the embedding of Theorem 4.3.2 so applying the W
k

𝑛+1 version of spectral flow (4.1.15) to𝑀 (𝑟, 𝜆)

can be performed purely in terms of the Π version of spectral flow:

(4.3.36) 𝜎 ℓ
(
𝑀 (𝑟, 𝜆)

)
= 𝜎 ℓ

(
𝑀 ⊗ Π𝑟

(
𝜆
) )

= 𝑀 ⊗ 𝜌ℓ
(
Π𝑟

(
𝜆
) )

= 𝑀 ⊗ Π𝑟+ℓ
(
𝜆
)
= 𝑀 (𝑟 + ℓ, 𝜆) .

We therefore interpret the label ‘𝑟 ’ in𝑀 (𝑟, 𝜆) as a spectral flow index. Owing again to the simplicity

of the expressions for 𝐽 (𝑧) and 𝐿(𝑧) in terms of Wk
𝑛+1 and Π fields, character formulae for 𝑀 (𝑟, 𝜆)

are immediate from their construction:

As Π𝑟
(
𝜆
)

are all relaxed modules for a lattice-like vertex algebra, their characters are straight-

forward to compute. Here, we define the character of a Π-module 𝑀 to be

(4.3.37) ch
[
𝑀

]
(z, q) = tr𝑀

(
z𝑏0q𝑡0−

cΠ
k

24

)
.

A computation using a PBW basis for Π shows that

(4.3.38) ch
[
Π−1

(
𝜆
) ]
(z, q) = z𝜆−ℓ𝑛 (k)

𝜂 (q)2
∑︁
𝑖∈ℤ

z𝑖 ,

which also gives the characters of Π𝑟
(
𝜆
)

for all 𝑟 ∈ 1
2ℤ as

ch
[
Π𝑟

(
𝜆
) ]
(z, q) = tr

𝜌𝑟+1
(
Π−1

(
𝜆
) ) (

z𝑏0q𝑡0−
cΠ
k

24

)
(4.3.39)

= tr
Π−1

(
𝜆
) (

z𝜌
−𝑟−1 (𝑏0)q𝜌

−𝑟−1 (𝑡0)−
cΠ
k

24

)
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= z(𝑟+1)ℓ𝑛 (k)q(𝑟+1) (𝑟+2−𝑛)
ℓ𝑛 (k)

2 ch
[
Π−1

(
𝜆
) ] (

zq𝑟+1, q
)
.

Corollary 4.3.12. Suppose that 𝑀 is a Wk
𝑛+1-module with q-character

(4.3.40) ch
[
𝑀

]
(q) = tr𝑀

(
q𝑇0−c𝑛+1k

/24
)
.

Then the W
k

𝑛+1-module 𝑀 (𝑟, 𝜆) has character

ch
[
𝑀 (𝑟, 𝜆)

]
(z, q) = tr𝑀 (𝑟,𝜆)

(
z𝐽0q𝐿0−

c𝑛+1
k
24

)
(4.3.41)

= ch
[
𝑀

]
(q) ch

[
Π𝑟

(
𝜆
) ]
(z, q) ,

where ch
[
Π𝑟

(
𝜆
) ]
(z, q) is given by (4.3.39).

It is useful to know what properties of𝑀 are inherited by𝑀 (−1, 𝜆) (recall that by Proposition 4.3.9,

Π𝑟
(
𝜆
)

is positive-energy with respect to 𝑡 (𝑧) only when 𝑟 = −1). For example, only having top-

submodules and being top-generated. Fortunately, Π−1
(
𝜆
)

being an almost-irreducible 𝑈 -module

is strong enough to require fairly mild constraints on the𝑀 for which such properties are inherited

by 𝑀 (−1, 𝜆). As in the 𝑛 = 2 case, it is convenient to introduce 𝑈𝑛+1 = (−1)𝑛𝐺−(−1)𝐺
+ ∈ W

k

𝑛+1.

This field can be expanded as

(4.3.42) 𝑈𝑛+1(𝑧) = (−1)𝑛𝑊𝑛+1(𝑧) +
𝑛∑︁
𝑗=0
𝑊𝑗 (𝑧) ⊗ 𝜋𝑛+1, 𝑗 (𝑧)

for some fields 𝜋𝑛+1, 𝑗 (𝑧) in the vertex subalgebra of Π generated by 𝑐 (𝑧) and 𝑑 (𝑧). The following

theorems are generalisations of Theorems 5.9 and 5.10 in [4]. The main difference when 𝑛 > 2 is

the existence of strong-generating fields 𝑈𝑖 (𝑧). This would be an issue if not for the structure of

the decompositions (4.3.26) of such fields in terms of fields in Wk
𝑛+1 (i.e. the lack of derivatives or

normally ordered products).

Theorem 4.3.13. If 𝑀 is a weight Wk
𝑛+1-module that has only top-submodules, then the weight

W
k

𝑛+1-module 𝑀 (−1, 𝜆) has only top-submodules for all 𝜆 ∈ ℂ.

Proof. The proof used here follows the same approach used for 𝑛 = 2 in Theorem 5.9 of

[4]. Assume that 𝑁 is a nonzero W
k

𝑛+1-submodule of 𝑀 (−1, 𝜆) and let 𝑤 ∈ 𝑁 be a weight vector.

As Π−1
(
𝜆
)

has only top-submodules as a 𝑈 -module, 𝑤 can be sent to a nonzero element of 𝑀 ⊗

Π−1
(
𝜆
) top under the action of modes from 𝟙𝑅 ⊗ 𝑈 ⊂ W

k

𝑛+1. The result is therefore an element

𝑤0 = 𝑢0 ⊗ 𝑣 top ∈ 𝑁 where 𝑢0 ∈ 𝑀 and 𝑣 top ∈ Π−1
(
𝜆
) top.
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If we can show that applying suitable modes from W
k

𝑛+1 to𝑤0 results in an element of the top

space 𝑀 (−1, 𝜆)top = 𝑀 top ⊗ Π−1
(
𝜆
) top then we are done. We will do this recursively by defining

𝑤1, . . . ,𝑤𝑘 ∈ 𝑁 with 𝑤𝑝 = 𝑢𝑝 ⊗ 𝑣 top such that the conformal weight strictly decreases at each step

and 𝑤𝑘 ∈ 𝑀 (−1, 𝜆)top for some 𝑘 ∈ ℤ⩾0. In other words, we recursively move up the submodule

until we reach the top space and do so in such a way that 𝑣 top is untouched at each step.

To define this recursion, let 𝑤𝑝 = 𝑢𝑝 ⊗ 𝑣 top ∈ 𝑁 be nonzero. If (𝑊𝑗 )𝑚𝑢𝑝 = 0 for all 𝑗 ∈

{2, . . . , 𝑛 + 1} and𝑚 > 0, then 𝑢𝑝 generates a highest-weight submodule of 𝑀 . Since 𝑀 only has

top-submodules, it follows that 𝑢𝑝 ∈ 𝑀 top and therefore that𝑤𝑝 ∈ 𝑀 (−1, 𝜆)top.

Otherwise, let 𝑖 ∈ {2, ..., 𝑛 + 1} be minimal satisfying

(4.3.43) (𝑊𝑗 )ℓ𝑢𝑝 = 0 for all ℓ ∈ ℤ>0 and 𝑗 < 𝑖,

and there exists𝑚 ∈ ℤ>0 such that (𝑊𝑖)𝑚𝑢𝑝 ≠ 0. That is, 𝑢𝑝 is annihilated by all positive modes

of the Wk
𝑛+1 fields𝑊2(𝑧), . . . ,𝑊𝑖−1(𝑧) and is not annihilated by all positive modes of𝑊𝑖 (𝑧).

Define 𝑤𝑝+1 = (𝑈𝑖)𝑚𝑤𝑝 . As 𝑤𝑝+1 is obtained from 𝑤𝑝 by the action of a mode from W
k

𝑛+1, it

follows that 𝑤𝑝+1 ∈ 𝑁 . Additionally, conformal weight of 𝑤𝑝+1 is strictly smaller than that of 𝑤𝑝 .

By the decompositions (4.3.6),

𝑤𝑝+1 =
©­«(−1)𝑖+1𝑊𝑖 (𝑧) +

𝑖−1∑︁
𝑗=0
𝑊𝑗 (𝑧) ⊗ 𝜋𝑖, 𝑗 (𝑧)

ª®¬𝑚 𝑢𝑝 ⊗ 𝑣 top(4.3.44)

= (−1)𝑖+1(𝑊𝑖)𝑚𝑢𝑝 ⊗ 𝑣 top +
𝑖−1∑︁
𝑗=0

∞∑︁
𝑟=0
(𝑊𝑗 )𝑚+𝑟𝑢𝑝 ⊗ 𝜋𝑖, 𝑗−𝑟𝑣 top

= (−1)𝑖+1(𝑊𝑖)𝑚𝑢𝑝 ⊗ 𝑣 top ≠ 0.

As the conformal weight of 𝑢𝑝 decreases at each iteration and 𝑀 is positive-energy, applying this

procedure sufficiently many times will yield a nonzero 𝑢𝑘 ∈ 𝑀 top. That is, 𝑤𝑘 ∈ 𝑀 (−1, 𝜆)top ∩ 𝑁

and therefore 𝑀 (−1, 𝜆) has only top-submodules. ■

Theorem 4.3.14. If 𝑀 is a top-generated weight Wk
𝑛+1-module, then 𝑀 (−1, 𝜆) is a top-generated

weight W
k

𝑛+1-module for all 𝜆 ∈ ℂ.

Proof. The proof used here follows the same approach used for 𝑛 = 2 in Theorem 5.10 of [4].

Let 𝑁 be the submodule of 𝑀 (−1, 𝜆) generated by the top space 𝑀 (−1, 𝜆)top = 𝑀 top ⊗ Π−1
(
𝜆
) top.

We begin by showing that𝑀⊗Π−1
(
𝜆
) top ⊂ 𝑁 . Once established, it then follows that𝑀 (−1, 𝜆) ⊂ 𝑁 .

This is because Π−1
(
𝜆
)

being top generated as a𝑈 -module means that any𝑢 ⊗ 𝑣 ∈ 𝑀 (−1, 𝜆) can be

written as a collection of modes from 𝟙𝑅 ⊗𝑈 ⊂ W
k

𝑛+1 acting on 𝑢 ⊗ 𝑣 top for some 𝑣 top ∈ Π−1
(
𝜆
) top.
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With this in mind, let 𝑢 ⊗ 𝑣 top ∈ 𝑀 ⊗ Π−1
(
𝜆
) top. If 𝑢 ∈ 𝑀 top, then it is clear that 𝑢 ⊗ 𝑣 top ∈ 𝑁 .

Otherwise, as𝑀 is top-generated, 𝑢 is obtained from some𝑢top ∈ 𝑀 top by the application of modes

of the fields𝑊2(𝑧), . . . ,𝑊𝑛+1(𝑧).

It therefore suffices to show that if𝑢⊗𝑣 top ∈ 𝑁 for all 𝑣 top ∈ Π−1
(
𝜆
) top, then so is (𝑊𝑖)−𝑚𝑢⊗𝑣 top

for all 𝑖 = 2, . . . , 𝑛 + 1 and𝑚 > 0. Starting with 𝑖 = 2,

(4.3.45) (𝑈2)−𝑚
(
𝑢 ⊗ 𝑣 top) = −(𝑊2)−𝑚𝑢 ⊗ 𝑣 top − 𝑢 ⊗ 𝜋2,0

−𝑚𝑣
top ∈ 𝑁 .

As Π−1
(
𝜆
)

is top-generated as a𝑈 -module, 𝜋2,0
−𝑚𝑣

top can be obtained from some 𝑣 ′ top by the action

of modes from 𝑈 . So the right most term above can be written as modes from 𝟙𝑅 ⊗ 𝑈 ⊂ W
k

𝑛+1

acting on 𝑢 ⊗ 𝑣 ′ top ∈ 𝑁 and is therefore also in 𝑁 . Hence (𝑊2)−𝑚𝑢 ⊗ 𝑣 top ∈ 𝑁 for all𝑚 > 0. For

𝑖 = 3,

(𝑈3)−𝑚
(
𝑢 ⊗ 𝑣 top) = (𝑊3 +𝑊2 ⊗ 𝜋3,2 − 𝜋3,0)−𝑚𝑢 ⊗ 𝑣 top(4.3.46)

= (𝑊3)−𝑚𝑢 ⊗ 𝑣 top +
∞∑︁
𝑟=0
(𝑊2)−𝑚+𝑟𝑢 ⊗ 𝜋3,2

−𝑟 𝑣
top − 𝑢 ⊗ 𝜋3,0

−𝑚𝑣
top ∈ 𝑁 .

An identical argument as in the 𝑖 = 2 case shows that 𝑢 ⊗ 𝜋3,0
−𝑚𝑣

top ∈ 𝑁 . That the summands

(𝑊2)−𝑚+𝑟𝑢 ⊗ 𝜋3,2
−𝑟 𝑣

top ∈ 𝑁 follows from Π−1
(
𝜆
)

being top-generated, also using a similar argument

to the 𝑖 = 2 case. Hence (𝑊3)−𝑚𝑢 ⊗ 𝑣 top ∈ 𝑁 for all𝑚 > 0.

That (𝑊𝑖)−𝑚𝑢 ⊗ 𝑣 top ∈ 𝑁 can be established in the same way as in the 𝑖 = 3 case, where we use

the expansions (4.3.26) to reduce to the 𝑗 < 𝑖 cases and use that Π−1
(
𝜆
)

is top-generated. Hence

we conclude that 𝑀 ⊗ Π−1
(
𝜆
) top ⊂ 𝑁 as required. ■

Corollary 4.3.15. If 𝑀 is an almost-irreducible weight Wk
𝑛+1-module then 𝑀 (−1, 𝜆) is an almost-

irreducible weight W
k

𝑛+1-module for all 𝜆 ∈ ℂ.

We conclude this section with the case of 𝑀 being an irreducible Wk
𝑛+1-module. This is particu-

larly important when we eventually want to discuss W𝑛+1,k and its modules: W𝑛+1,k is irreducible

as a Wk
𝑛+1-module and, for nondegenerate admissible k, W𝑛+1,k-modules are all direct sums of

irreducible Wk
𝑛+1-modules [17].

Proposition 4.3.16. Let 𝑀 be an irreducible Wk
𝑛+1-module. Then

• 𝑀 (−1, 𝜆) is an indecomposable relaxed highest-weight W
k

𝑛+1-module for all 𝜆 ∈ ℂ.

• 𝑀 (−1, 𝜆) is irreducible for almost all 𝜆 ∈ ℂ.
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Proof. As𝑀 is irreducible,𝑀 top is a module for Zhu
[
Wk
𝑛+1

]
which is abelian [17]. Therefore,

𝑀 top is one-dimensional and spanned by a vector 𝑣𝛾 with 𝛾 = (𝛾2, . . . , 𝛾𝑛+1) defined by

(4.3.47) (𝑊𝑖)0 𝑣𝛾 = 𝛾𝑖𝑣𝛾 .

The top space of 𝑀 (−1, 𝜆) is spanned by the set {𝑣𝛾 ⊗ e−𝑏+(𝜆+𝑚)𝑐 |𝑚 ∈ ℤ}. To show that 𝑀 (−1, 𝜆)

is a relaxed highest-weight W
k

𝑛+1-module, we need to find a relaxed highest-weight vector that

generates 𝑀 (−1, 𝜆). As 𝑀 (−1, 𝜆) is top-generated by Theorem 4.3.14, it suffices to find an𝑚 for

which 𝑣𝛾⊗e−𝑏+(𝜆+𝑚)𝑐 generates𝑀 (−1, 𝜆)top. The modes𝐺−0 and𝐺+0 act on 𝑣𝛾⊗e−𝑏+(𝜆+𝑚)𝑐 according

to

(4.3.48)
𝐺+0

(
𝑣𝛾 ⊗ e−𝑏+(𝜆+𝑚)𝑐

)
= 𝑣𝛾 ⊗ e−𝑏+(𝜆+𝑚+1)𝑐 ,

𝐺−0

(
𝑣𝛾 ⊗ e−𝑏+(𝜆+𝑚)𝑐

)
= 𝑝 (𝛾, 𝜆 +𝑚)𝑣𝛾 ⊗ e−𝑏+(𝜆+𝑚−1)𝑐 ,

where 𝑝 (𝛾, 𝑥) is a polynomial in 𝑥 of order at most 𝑛 + 1 by Theorem 4.3.6. Choose𝑚′ ∈ ℤ such

that 𝜆 +𝑚′ is strictly less than the real parts of all roots of 𝑝 (𝛾, 𝑥). As 𝐺+0 and 𝐺−0 act injectively

on 𝑣𝛾 ⊗ e−𝑏+(𝜆+𝑚
′)𝑐 , 𝑣𝛾 ⊗ e−𝑏+(𝜆+𝑚)𝑐 is a relaxed highest-weight vector of 𝑀 (−1, 𝜆) that generates

𝑀 (−1, 𝜆)top and therefore 𝑀 (−1, 𝜆).

That 𝑀 (−1, 𝜆) is indecomposable follows from 𝑀 (−1, 𝜆) being uniserial as in the 𝑛 = 2 case

described in the proof of Theorem 5.12 of [4].

Finally, recall that 𝑀 (−1, 𝜆) has only top-submodules so any submodule of 𝑁 ⊂ 𝑀 (−1, 𝜆)

must contain an element of the form e−𝑏+(𝜆+𝑚)𝑐 . As𝐺+0 acts injectively on𝑀 (−1, 𝜆)top, there exists

𝑚′ ⩽ 𝑚 such 𝐺−0 e
−𝑏+(𝜆+𝑚′)𝑐 = 0. That is, 𝜆 +𝑚′ is a root of 𝑝 (𝛾, 𝑥). As 𝑝 (𝛾, 𝑥) is polynomial in 𝑥

for fixed 𝛾 , there are finitely many [𝜆] ∈ ℂ/ℤ such that [𝜆] contains a root of 𝑝 (𝛾, 𝑥). ■

Corollary 4.3.17. Let 𝑀 be an irreducible Wk
𝑛+1-module. Conjugate highest-weight vectors in

𝑀 (−1, 𝜆) are of the form 𝑣𝛾⊗e−𝑏+(𝜆+𝑚)𝑐 with 𝑝 (𝛾, 𝜆+𝑚) = 0. If conjugate highest-weight vectors are

present (i.e. when 𝑀 (−1, 𝜆) is reducible), let𝑚′ ∈ ℤ be the maximal𝑚 satisfying 𝑝 (𝛾, 𝜆 +𝑚) = 0.

Then the submodule of𝑀 (−1, 𝜆) generated by 𝑣𝛾 ⊗ e−𝑗+(𝜆+𝑚
′)𝑐 is an irreducible conjugate highest-

weight W
k

𝑛+1-module.

Given𝛾 ∈ ℂ𝑛, it is not immediately clear what the roots of the polynomial 𝑝 (𝛾, 𝑥) are. For𝑛 = 1 and

2, the roots of the polynomials 𝑝 (𝛾, 𝑥) corresponding to W𝑛+1,k-modules of the form𝑀 (−1, 𝜆) can

be described using data from quantum hamiltonian reductions of certain highest-weight Lk(𝔰𝔩2)-

and Lk(𝔰𝔩3)-modules respectively. The 𝑛 = 2 case is essentially the third point in Theorem 2.3.28.

It is expected that such a description holds for general 𝑛. That is, for any W𝑛+1,k-module of

the form 𝑀 (−1, 𝜆), the roots of the corresponding polynomial 𝑝 (𝛾, 𝑥) should be related to the
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eigenvalues of various W
k

𝑛+1 zero modes on the highest-weight vector of quantum hamiltonian

reductions of certain highest-weight Lk(𝔰𝔩𝑛+1)-modules. Moreover the ℤ𝑛+1 symmetry of Wk
𝑛+1

should relate these roots as seen in 𝑛 = 2 (Lemma 2.3.27).

Knowledge about the subregular quantum hamiltonian reduction functor is not currently suffi-

cient to address this problem at present.

4.3.4. Simple Quotients. A natural question to ask is when the inverse quantum hamiltonian

reduction embedding W
k

𝑛+1 ↩→ Wk
𝑛+1 ⊗ Π descends to an embedding of simple quotients. As we

will see, this is almost-always true and depends on the level k. The restrictions for k are known for

𝑛 = 1 [2] and 𝑛 = 2 [4]:

(4.3.49)
L𝔰𝔩2 (k) ≃W2,k ↩→W2,k ⊗ Π ≃ Virk ⊗ Π ⇔ k + 1 ∉ ℤ⩾1,

BPk ≃W3,k ↩→W3,k ⊗ Π ⇔ k + 2, 2k + 4 ∉ ℤ⩾1.

A nice feature of (4.3.49) is that when k is admissible, these conditions exclude precisely the de-

generate admissible levels. Then, results similar to Proposition 4.3.16 allow for the construction

of continuous families of almost-always simple relaxed W𝑛+1,k-modules for 𝑛 = 1 and 2.

As we saw in the 𝑛 = 2 case in Section 3.2, the modules constructed in this manner and their

spectral flows are referred to as standard modules and play a fundamental role in the determination

of modular transformations and Grothendieck fusion rules for the simple subregular W-algebra at

nondegenerate admissible levels. This is because the corresponding information for the simple

regular W-algebra at these levels (also known as W𝑛+1 minimal models) is known and the standard

modules allow us to ‘lift’ this information using the relaxed modules defined by inverse quantum

hamiltonian reduction.

Generalising this story to the 𝑛 > 2 case fully is out of the scope of this thesis but is expected

to follow the same lines as in Section 3.2.

Explicit formulae for singular vectors in W
k

𝑛+1 are only known for particular pairs of 𝑛 and k.

When 𝑛 = 1, the Malikov–Feigin–Fuchs formula for singular vectors in Verma modules for 𝔰𝔩2
[127] can be used to describe singular vectors in admissible-level Lk(𝔰𝔩2) [7]. Singular vectors for

W
k

3 are known for k = − 5
3 , k = − 9

4 and k ∈ ℤ⩾−1 [5], in addition to admissible levels of the form

k = −3 + u
2 where u > 2 is odd [15].

Little is known about singular vectors and the corresponding ideals ofW
k

𝑛+1 for general𝑛 and k.

Fortunately, determining when embeddings of simple quotients exist only requires the knowledge

we have about relaxed W
k

𝑛+1-modules from Section 4.3.3 and an understanding of singular vectors

of a particular form.
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Proposition 4.3.18. The vector (𝐺+−1)
𝑚𝟙,𝑚 > 0, is singular in W

k

𝑛+1 if and only if 𝑖 (k + 𝑛) = 𝑚

for some 𝑖 ∈ {1, . . . , 𝑛}.

Proof. By charge and conformal weight considerations, it is clear that 𝐽𝑠 , 𝐿𝑠 , (𝑈𝑖)𝑠 , 𝐺+𝑠−1

and 𝐺−
𝑠+1 annihilate (𝐺+−1)

𝑚𝟙 for all 𝑠 > 0. All that remains to check is when 𝐺−1 (𝐺
+
−1)

𝑚𝟙 =

𝐺−(𝑛) (𝐺
+)𝑚 = 0. By the embedding, we can identify (𝐺+)𝑚 with e𝑚𝑐 and 𝐺− with −𝜌𝑛+1 · · · 𝜌1e

−𝑐 .

Again using charge and conformal weight considerations, ((𝐺+)𝑚) (𝑛′)𝐺− = 0 for all 𝑛′ > 𝑛 and

therefore

(4.3.50) 𝐺−(𝑛) (𝐺
+
−1)

𝑚 = (−1)𝑛+1(e𝑚𝑐) (𝑛) (−𝜌𝑛+1 · · · 𝜌1e
−𝑐) .

While this appears to have superficially made things more complicated, the above form allows us

to explicitly compute the 𝑛-th product by performing the computation in Wk
𝑛+1 ⊗ Π. The following

technical lemma is the most tedious part of this proof but the result gives the desired conditions on

k automatically.

The idea is to not compute the 𝑛’th product directly but to sneak up on it by gradually inserting

more 𝜌 𝑗 operators while simultaneously raising the mode index on e𝑚𝑐 .

Lemma 4.3.19. Let 𝑗 ∈ {0, 1, . . . , 𝑛}. Then

(4.3.51) (e𝑚𝑐) ( 𝑗)
(
−𝜌 𝑗+1 · · · 𝜌1e

−𝑐 ) =𝑚 𝑗∏
𝑖=1
(𝑖 (k + 𝑛) −𝑚) e(𝑚−1)𝑐 .

Proof. We proceed by induction. The 𝑗 = 0 case can be checked directly:

(e𝑚𝑐) (0) (−𝜌1e
−𝑐) = −(e𝑚𝑐) (0)

(
(k + 𝑛)𝑡−1 + 𝑏−1 +

k + 𝑛 + 1
𝑛 + 1

𝑐−1

)
e−𝑐(4.3.52)

= −(e𝑚𝑐) (0) (𝑎−1e
−𝑐)

=
[
𝑎−1, (e𝑚𝑐) (0)

]
e−𝑐

=𝑚e(𝑚−1)𝑐 .

For the inductive step, suppose that (4.3.51) holds for some 𝑗 . By the same charge and conformal

weight considerations used earlier, (e𝑚𝑐) ( 𝑗 ′)
(
−𝜌 𝑗+1 . . . 𝜌1e

−𝑐 ) = 0 for all 𝑗 ′ > 𝑗 . To see that (4.3.51)

being true for 𝑗 implies that (4.3.51) is true for 𝑗 + 1, we simply need to expand 𝜌 𝑗+2 and reduce

back to the 𝑗 case. That is,

(e𝑚𝑐) ( 𝑗+1)
(
− 𝜌 𝑗+2𝜌 𝑗+1 . . . 𝜌1e

−𝑐 )(4.3.53)

= (e𝑚𝑐) ( 𝑗+1)
(
−

(
(k + 𝑛)𝜕 + 𝑏−1 +

k + 𝑛 + 1
𝑛 + 1

𝑐−1 − (𝜀 𝑗+2)−1

)
𝜌 𝑗+1 . . . 𝜌1e

−𝑐
)
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= (e𝑚𝑐) ( 𝑗+1)
(
−

(
(k + 𝑛)𝑡−1 + 𝑏−1 +

k + 𝑛 + 1
𝑛 + 1

𝑐−1

)
𝜌 𝑗+1 . . . 𝜌1e

−𝑐
)

= −(k + 𝑛) (e𝑚𝑐) ( 𝑗+1)
(
𝑡−1𝜌 𝑗+1 . . . 𝜌1e

−𝑐 ) −𝑚(e𝑚𝑐) ( 𝑗) (−𝜌 𝑗+1 . . . 𝜌1e
−𝑐 )

using the commutation relation, for 𝑝, 𝑞 ∈ ℤ,

(4.3.54)
[
𝐴𝑐 (𝑝) + 𝐵𝑑 (𝑝) , e𝑚𝑐(𝑞)

]
= 2𝐵𝑚 e𝑚𝑐(𝑝+𝑞) .

The term involving 𝑡−1 can be simplified using standard identities involving derivatives and 𝑖’th

products described in, for example, [108]. Here we attack this head-on using the operator product

expansions of e𝑚𝑐 (𝑧) and
(
−𝜌 𝑗+1 · · · 𝜌1e

−𝑐 ) (𝑧). This is of course equivalent to working with 𝑖’th

products.

By the inductive hypothesis and the observation earlier that the 𝑗 ′’th product vanishes for 𝑗 ′ > 𝑗 ,

(4.3.55) e𝑚𝑐 (𝑧)
(
−𝜌 𝑗+1 · · · 𝜌1e

−𝑐 ) (𝑤) ∼ 𝑚∏𝑗

𝑖=1 (𝑖 (k + 𝑛) −𝑚) e
(𝑚−1)𝑐 (𝑤)

(𝑧 −𝑤) 𝑗+1
+ . . . .

where the ellipses contains singular terms with an order ⩽ 𝑗 pole in 𝑧 −𝑤 . Applying 𝜕𝑤 to both

sides and extracting the coefficient field of the order 𝑗 + 2 pole finally gives

(4.3.56) − (k + 𝑛) (e𝑚𝑐) ( 𝑗+1)
(
𝑡−1𝜌 𝑗+1 . . . 𝜌1e

−𝑐 ) = ( 𝑗 + 1) (k + 𝑛)𝑚
𝑗∏
𝑖=1
(𝑖 (k + 𝑛) −𝑚) e(𝑚−1)𝑐 .

Combining this with (4.3.53) shows that (4.3.51) being true for 𝑗 implies that (4.3.51) is also true

for 𝑗 + 1 and therefore, by induction, we have our desired result. ■

Continuing the proof of Proposition 4.3.18, substituting 𝑗 = 𝑛 into (4.3.51) gives

(4.3.57) 𝐺−(𝑛) (𝐺
+
−1)

𝑚 = (−1)𝑛+1𝑚
𝑛∏
𝑖=1
(𝑖 (k + 𝑛) −𝑚) (𝐺+−1)

𝑚−1,

and from here it is clear that the right-hand-side vanishes exactly when 𝑖 (k + 𝑛) = 𝑚 for some

𝑖 ∈ {1, . . . , 𝑛} as required. ■

Substituting 𝑛 = 1 and 2 reproduces the conditions for Lk(𝔰𝔩2) and BPk respectively. With this

result in hand, we are in a position to answer the question of when our embedding W
k

𝑛+1 ↩→Wk
𝑛+1⊗

Π descends to an embedding of simple quotients. Let𝜓k denote the composition of the embedding

W
k

𝑛+1 ↩→Wk
𝑛+1 ⊗ Π with the projection from Wk

𝑛+1 to its simple quotient W𝑛+1,k. That is,

(4.3.58) 𝜓k : W
k

𝑛+1 ↩→Wk
𝑛+1 ⊗ Π ↠W𝑛+1,k ⊗ Π.

This is clearly non-zero as image of the vacuum of W
k

𝑛+1 is the vacuum of W𝑛+1,k ⊗ Π. In terms of

𝜓k, the question at hand then becomes: for which k is𝜓k(W
k

𝑛+1) simple, i.e. 𝜓k(W
k

𝑛+1) ≃W𝑛+1,k?
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Theorem 4.3.20. The simple quotient W𝑛+1,k embeds into W𝑛+1,k ⊗ Π if and only if 𝑖 (k+𝑛) ∉ ℤ⩾1

for all 𝑖 ∈ {1, . . . , 𝑛} .

Proof. The proof of this statement is very similar to the 𝑛 = 2 case presented in Theorem 6.2

of [4]. Indeed the only modification in our present context is the slightly different definition of the

relevant Π-modules and having to care about the action of modes from a few more fields.

Following the proof provided therein, suppose𝜓k(W
k

𝑛+1) is not simple as a W
k

𝑛+1-module and

therefore has a non-zero proper ideal 𝐼 . As W
k

𝑛+1-modules,

(4.3.59) 𝐼 ⊂ W𝑛+1,k ⊗ Π = W𝑛+1,k ⊗ Π0
(
0
)
.

Applying the spectral flow W
k

𝑛+1-automorphism 𝜎−1 to both sides and observing that spectral flow

can be realised using Wk
𝑛+1- and Π-automorphisms according to 𝜎−1 = id𝑟 ⊗ 𝜌−1,

(4.3.60) 𝜎−1 (𝐼 ) ⊂ W𝑛+1,k ⊗ Π−1
(
0
)
= W𝑛+1,k(−1, 0).

As W𝑛+1,k is an irreducible weight Wk
𝑛+1-module, W𝑛+1,k(−1, 0) is an almost-irreducible W

k

𝑛+1-

module by Corollary 4.3.15. The top space of W𝑛+1,k(−1, 0) is spanned by the vectors 𝟙𝑅 ⊗ e−𝑗+𝑚𝑐 .

Hence there exists𝑚 ∈ ℤ such that 𝟙𝑅 ⊗ e−𝑏+𝑚𝑐 ∈ 𝜎−1 (𝐼 ) and therefore after applying spectral flow

again 𝟙𝑅 ⊗ e𝑚𝑐 ∈ 𝐼 .

As W
k

𝑛+1 contains only fields of nonnegative conformal weight, it must be that𝑚 ⩾ 0. Even

better, if 𝑚 = 0 then 𝐼 contains the vacuum of Wk
𝑛+1 and therefore 𝐼 = 𝜓k(W

k

𝑛+1) which is a

contradiction. Take𝑚 > 0 to be minimal satisfying 𝟙𝑅 ⊗ e𝑚𝑐 ∈ 𝐼 . In particular, 𝟙𝑅 ⊗ e(𝑚−1)𝑐 ∉ 𝐼 .

As 𝜓k((𝐺+)𝑚) = 𝟙𝑅 ⊗ e𝑚𝑐 is annihilated by all 𝐽𝑠 , 𝐿𝑠 , (𝑈𝑖)𝑠 , 𝐺+𝑠−1 and 𝐺−𝑠 with 𝑠 > 0, it is a

singular vector in 𝐼 . As the embedding of Theorem 4.3.2 sends (𝐺+)ℓ to 𝟙𝑅 ⊗ eℓ𝑐 for all ℓ ⩾ 0

and composing with the projection map Wk
𝑛+1 ↠ W𝑛+1,k leaves Π untouched, 𝜓k((𝐺+)𝑚−1) =

𝟙𝑅 ⊗ e(𝑚−1)𝑐 is non-zero. Hence (𝐺+)𝑚 is singular in W
k

𝑛+1. By Proposition 4.3.18, if 𝑖 (k+𝑛) ≠𝑚

for some 𝑖 ∈ {1, . . . , 𝑛} then this cannot occur and therefore𝜓k(W
k

𝑛+1) is simple.

For the converse, if 𝑖 (k +𝑛) =𝑚 for some 𝑖 ∈ {1, . . . , 𝑛} then (𝐺+)𝑚 is singular in W
k

𝑛+1. Then

𝜓k((𝐺+)𝑚) ≠ 0 is singular in𝜓k(W
k

𝑛+1) and therefore𝜓k(W
k

𝑛+1) is not simple. ■

Anticipating that admissible levels are both interesting and important from a logarithmic con-

formal field theory point of view, it is useful to know when admissible-level W𝑛+1,k is related to

admissible-level W𝑛+1,k using the inverse quantum hamiltonian reduction of Theorem 4.3.20. An

admissible level k for 𝔰𝔩𝑛+1 is one that satisfies

(4.3.61) k + 𝑛 + 1 =
u

v
, where u ∈ ℤ⩾𝑛+1, v ∈ ℤ⩾1 and gcd{u, v} = 1.
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Corollary 4.3.21. Let k = −𝑛 − 1 + u
v be admissible. W𝑛+1,k embeds into W𝑛+1,k ⊗ Π if and only if

v > 𝑛 (i.e. k is nondegenerate admissible). That is,

(4.3.62) W𝑛+1(u, v) ↩→W𝑛+1(u, v) ⊗ Π.

Proof. Suppose that k = −𝑛 − 1 + u
v with v ⩽ 𝑛. Then 𝑣 (k + 𝑛) = u − v ∈ ℤ⩾1 as u ∈ ℤ⩾𝑛+1.

So for such k, W𝑛+1,k does not embed into W𝑛+1,k ⊗ Π. If v > 𝑛, 𝑖 (k + 𝑛) = 𝑖 uv − 𝑖 is not an integer

for all 𝑖 ∈ {1, . . . , 𝑛} so W𝑛+1(u, v) ↩→W𝑛+1(u, v) ⊗ Π by Theorem 4.3.20. ■

Theorem 4.3.20 also shows there exists an embedding W𝑛+1,k ↩→ W𝑛+1,k ⊗ Π for certain non-

admissible levels. This includes fractional levels of the form k = −𝑛 − 1 + 𝑛
𝑛+1 , at which Wk

𝑛+1 is

reducible [14].

Mirroring the construction of relaxed modules for the universal subregular W-algebraW
k

𝑛+1 us-

ing the inverse reduction embedding, relaxed modules for the simple subregular W-algebra W𝑛+1,k

can be constructed when the embedding W𝑛+1,k ↩→W𝑛+1,k ⊗ Π exists.

At non-admissible level, the representation theory of the affine vertex operator algebras and W-

algebras is largely mysterious. Despite this, Proposition 4.3.16 shows that W𝑛+1,k admits infinitely

many irreducible modules of the form W𝑛+1,k(−1, 𝜆) for k = −𝑛−1+ 𝑛
𝑛+1 , and likely for many other

non-admissible levels.

Returning to a nondegenerate admissible level k = −𝑛 − 1 + u
v , W𝑛+1,k = W𝑛+1(u, v) is ra-

tional and hence has finitely many irreducible modules denoted by W𝛾 for 𝛾 ∈ Pr𝑘
W

as described

in Section 4.1.1. Therefore by Corollary 4.3.21 and Proposition 4.3.16, the W𝑛+1(u, v)-module

W𝛾 (−1, 𝜆) is an indecomposable relaxed highest-weight module that is almost-always irreducible.

This shows that W𝑛+1(u, v) is nonrational in the category of weight modules.

The relaxed modulesW𝛾 (−1, 𝜆) play the role of ‘standard modules’ in the computation of mod-

ular transformations and fusion rules of W𝑛+1(u, v) when 𝑛 = 1 [52] and 𝑛 = 2 (Section 3.2). Much

of the representation-theoretic structure present in those cases is present for all 𝑛. It is therefore ex-

pected that the relaxed W𝑛+1(u, v)-modules W𝛾 (−1, 𝜆) will be essential in computing logarithmic

conformal field theoretic data when 𝑛 > 2 as well.

4.4. Beyond Subregular W-Algebras

In Section 4.3, we saw how to define an inverse quantum hamiltonian reduction from 𝔰𝔩𝑛+1

regular W-algebras to 𝔰𝔩𝑛+1 subregular W-algebras. A useful way of thinking about this example

is that by bosonising the 𝛽𝛾 ghost vertex algebra, we have enough ‘room’ to change a nontrivial

screening operator (𝛽 (𝑧)e−1/(k+𝑛+1)𝛼1 (𝑧)) into a regular-like screening operator (e−1/(k+𝑛+1)𝛼1 (𝑧)).



4.4. Beyond Subregular W-Algebras 155

Another place where the screening operator 𝛽 (𝑧)e−1/(k+𝑛+1)𝛼1 (𝑧) appears is in the Wakimoto real-

isation of Vk(𝔰𝔩𝑛+1) [64, 157]. This is an embedding Vk(𝔰𝔩𝑛+1) ↩→ H𝛼 ⊗ B⊗
𝑛 (𝑛+1)

2 for noncritical

level k.

The Wakimoto realisation of Vk(𝔰𝔩𝑛+1) can be described in terms of 𝑛 screening operators∫
𝑆𝑖 (𝑧)d𝑧 acting on H𝛼 ⊗ B⊗

𝑛 (𝑛+1)
2 : Following [71], let 𝑁+ be the Lie subgroup of SL(𝑛 + 1) corre-

sponding to the upper nilpotent subalgebra 𝔫+ of 𝔰𝔩𝑛+1. That is, 𝑁+ consists of all matrices of the

form

(4.4.1)



1 𝑥1 𝑥𝑛+1 · · · 𝑥 1
2 (𝑛2+𝑛−4) 𝑥 𝑛 (𝑛+1)

2

0 1 𝑥2 𝑥 1
2 (𝑛+2) (𝑛−1)

...
. . .

...

𝑥𝑛−1 𝑥2𝑛−1

0 1 𝑥𝑛

0 0 · · · 0 1


,

where 𝑥1, . . . , 𝑥 𝑛 (𝑛+1)
2
∈ ℂ. The right action of 𝑁+ on 𝑁+ by matrix multiplication induces an anti-

homomorphism 𝜌𝑅 : 𝔫+ → D(𝑁+) whereD(𝑁+) is the ring of differential operators on𝑁+. Denote

the image of 𝑎 ∈ 𝔫+ by 𝜌𝑅 (𝑎) ∈ ℂ[𝑥 𝑗 , 𝜕
𝜕𝑥 𝑗
] and let 𝑒𝛼𝑖 be the positive root vector in 𝔫+ ⊂ 𝔰𝔩𝑛+1

corresponding to the 𝑖’th simple root of 𝔰𝔩𝑛+1. We can write

(4.4.2) 𝜌𝑅 (𝑒𝛼𝑖 ) =
𝜕

𝜕𝑥𝑖
+

𝑛 (𝑛+1)
2∑︁
𝑗=1

𝑃
𝑅,𝑖
𝑗

(
𝑥1, . . . , 𝑥 𝑛 (𝑛+1)

2

) 𝜕

𝜕𝑥 𝑗

for some polynomials 𝑃𝑅,𝑖
𝑗
∈ ℂ[𝑥1, . . . , 𝑥 𝑛 (𝑛+1)

2
] [71, Sec. 1.5]. The screening fields 𝑆𝑖 (𝑧), 𝑖 ∈

{1, . . . , 𝑛}, of the Wakimoto realisation of Vk(𝔰𝔩𝑛+1) are given by

(4.4.3) 𝑆𝑖 (𝑧) = :
©­­«𝛽𝑖 (𝑧) +

𝑛 (𝑛+1)
2∑︁
𝑗=1

𝑃
𝑅,𝑖
𝑗

(
𝛾1(𝑧), . . . , 𝛾 𝑛 (𝑛+1)

2
(𝑧)

)
𝛽 𝑗 (𝑧)

ª®®¬ e
−1

k+𝑛+1𝛼𝑖 (𝑧):,

where 𝛽 𝑗 (𝑧), 𝛾 𝑗 (𝑧) are the fields of the 𝑗 ′𝑡ℎ copy of B in B⊗
𝑛 (𝑛+1)

2 . Here, the fields 𝛽 𝑗 (𝑧) and 𝛾 𝑗 (𝑧)

satisfy the operator product expansions of 𝛽 (𝑧) and 𝛾 (𝑧) in (2.1.3), rather than (1.1.21) in order to

be consistent with [71, 119]. So, the image of the embedding Vk(𝔰𝔩𝑛+1) ↩→ H𝛼 ⊗ B⊗
𝑛 (𝑛+1)

2 of the

Wakimoto realisation is specified, for generic k, by

(4.4.4) Vk(𝔰𝔩𝑛+1) ≃
𝑛⋂
𝑖=1

ker
∫

𝑆𝑖 (𝑧) d𝑧 ⊂ H𝛼 ⊗ B
𝑛 (𝑛+1)

2 .
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With respect to the choice of (homogeneous) coordinates in (4.4.1), the first few screening fields

of the Wakimoto realisation are

(4.4.5)

𝑆1(𝑧) = :𝛽1(𝑧)e
−1

k+𝑛+1𝛼1 (𝑧):,

𝑆2(𝑧) = :
(
𝛽2(𝑧) + 𝛾1(𝑧)𝛽𝑛+1(𝑧)

)
e
−1

k+𝑛+1𝛼2 (𝑧):,

𝑆3(𝑧) = :
(
𝛽3(𝑧) + 𝛾2(𝑧)𝛽𝑛+2(𝑧) + 𝛾𝑛+1(𝑧)𝛽2𝑛 (𝑧)

)
e
−1

k+𝑛+1𝛼3 (𝑧):.

Explicit formulae for the other screening operators can be found in [119].

Choosing different coordinates on 𝑁+ (as long as they are homogeneous in the sense defined

in [71]) might result in different expressions for the screening operators 𝑆𝑖 (𝑧). However the image

of the screening operators obtained from 𝑆𝑖 (𝑧) is independent, up to canonical isomorphism, of

the choice of homogeneous coordinates. The Wakimoto realisation can be defined in a coordinate-

independent way, but this level of generality is not required for our purposes.

We can rewrite the free-field realisation (4.2.9) of the type-A subregular W-algebra W
k

𝑛+1 in

the notation of the Wakimoto realisation as

(4.4.6) W
k

𝑛+1 ≃
(
ker

∫
𝑆1(𝑧) d𝑧

)
∩

(
𝑛⋂
𝑖=2

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧

)
⊂ H𝛼 ⊗ B.

The regular and subregular W-algebras of type A are contained in a larger, more mysterious class

of W-algebras known as hook-type W-algebras of type A. These are the 𝔰𝔩𝑛+1 W-algebras specified

by nilpotent orbits whose partitions are of the form (𝐴, 1𝐵) where 𝐴 + 𝐵 = 𝑛 + 1. Let𝑚 ∈ ℤ such

that 𝑛 + 1 ⩾ 𝑚 ⩾ 1.

Define the nilpotent element

(4.4.7) 𝑓 (𝑚) =
𝑛∑︁
𝑖=𝑚

𝑓𝛼𝑖 .

and 𝑓 (𝑛+1) = 0. The nilpotent orbit of 𝔰𝔩𝑛+1 containing 𝑓 (𝑚) isO(𝑛−𝑚+2,1𝑚−1) .

Definition 4.4.1. The hook-type W-algebra corresponding to the partition (𝑛−𝑚+2, 1𝑚−1) of 𝑛+1

is the quantum hamiltonian reduction Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚) ) of Vk(𝔰𝔩𝑛+1)

For example, the hook-type W-algebras Wk(𝔰𝔩𝑛+1, 𝑓 (1) ) and Wk(𝔰𝔩𝑛+1, 𝑓 (2) ) are the regular W-

algebra Wk
𝑛+1 and subregular W-algebra W

k

𝑛+1 respectively. The affine vertex algebra Vk(𝔰𝔩𝑛+1) is

isomorphic to Wk(𝔰𝔩𝑛+1, 𝑓 (𝑛+1) ).

Hook-type W-algebras (at generic levels) all admit screening operator descriptions related to

the Wakimoto realisation [42]:

(4.4.8) Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚) ) ≃
(
𝑚−1⋂
𝑖=1

ker
∫

𝑆𝑖 (𝑧) d𝑧

)
∩

(
𝑛⋂
𝑗=𝑚

ker
∫

e
−1

k+𝑛+1𝛼 𝑗 (𝑧) d𝑧

)
⊂ H𝛼 ⊗ B

𝑚 (𝑚−1)
2 .
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In Section 4.3, we showed how to take the first step up the partial ordering of 𝔰𝔩𝑛+1 W-algebras

using inverse quantum hamiltonian reduction from regular W-algebras to subregular W-algebras.

A natural question to ask is where to go from here. In the 𝑛 = 2 case, the only remaining W-

algebra is Vk(𝔰𝔩3) and the inverse quantum hamiltonian reduction from the subregular W-algebra

to Vk(𝔰𝔩3) is known [3].

For larger 𝑛 > 2, there are a number of choices for the W-algebras involved in the inverse

reduction. For 𝔰𝔩4, the affine Vk(𝔰𝔩4), the minimal Wk(𝔰𝔩4, 𝑓 (3) ) and the rectangular Wk(𝔰𝔩4, 𝑓(2,2) )

all have nilpotent orbits less than that of the subregular Wk(𝔰𝔩4, 𝑓 (2) ) in the Chevalley ordering.

As the screening operators for hook-type W-algebras are particularly nice, we will focus on

inverse quantum hamiltonian reduction from the subregular W-algebraWk(𝔰𝔩𝑛+1, 𝑓 (2) ) to the hook-

type W-algebra Wk(𝔰𝔩𝑛+1, 𝑓 (3) ). To ensure that such a hook-type W-algebra exists, assume that

𝑛 ⩾ 3 in 𝔰𝔩𝑛+1.

The existence argument is a simple generalisation of that used for 𝔰𝔩3 in [3] and is reminiscent

of the argument used in Section 4.3.1.

4.4.1. From Subregular W-Algebras to Hook-Type W-Algebras. Substituting 𝑚 = 3 into

(4.4.8) and using (4.4.5), we have an embedding Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) ↩→ H𝛼 ⊗ B⊗3 for k ≠ −𝑛 − 1

whose image is specified (for generic k) by

Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) ≃
(
ker

∫
𝛽1(𝑧)e

−1
k+𝑛+1𝛼1 (𝑧) d𝑧

)
(4.4.9)

∩
(
ker

∫
(𝛽2(𝑧) + 𝛾1(𝑧)𝛽3(𝑧)) e

−1
k+𝑛+1𝛼2 (𝑧) d𝑧

)
∩

(
𝑛⋂
𝑖=3

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧

)
⊂ H𝛼 ⊗ B⊗3.

Guided by the approach taken in [3], we apply FMS bosonisation to 𝛽3(𝑧), 𝛾3(𝑧). The same ar-

gument used for the regular-subregular case in Section 4.3.1 allows us to describe the resulting

embedding Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) ↩→ H𝛼 ⊗Π ⊗B⊗2 for generic k as the intersection of kernels of screen-

ing operators according to

Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) ≃
(
ker

∫
𝛽1(𝑧)e

−1
k+𝑛+1𝛼1 (𝑧) d𝑧

)
(4.4.10)

∩
(
ker

∫
(𝛽2(𝑧)e−𝑐 (𝑧) + 𝛾1(𝑧)) e

−1
k+𝑛+1𝛼2 (𝑧) d𝑧

)
∩

(
𝑛⋂
𝑖=3

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧

)
∩

(
ker

∫
e

1
2𝑐+

1
2𝑑 (𝑧) d𝑧

)
,

where 𝛼2(𝑧) = 𝛼2(𝑧) − (k + 𝑛 + 1)𝑐 (𝑧) and 𝛼𝑖 (𝑧) = 𝛼𝑖 (𝑧) for 𝑖 = 1 and 𝑖 ⩾ 3. Comparing the

free-field content of (4.4.10) and (4.2.9), we expect the inverse quantum hamiltonian reduction to
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be of the form

(4.4.11) Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) ↩→Wk(𝔰𝔩𝑛+1, 𝑓 (2) ) ⊗ Π ⊗ B.

To obtain screening operators for the subregular W-algebra from (4.4.10), we use yet another

free-field realisation for Wk(𝔰𝔩𝑛+1, 𝑓 (2) ) obtained by Feigin and Semikhatov in [68]: There is an

embedding Wk(𝔰𝔩𝑛+1, 𝑓 (2) ) ↩→ H𝛼 ⊗ B for k ≠ −𝑛 − 1 whose image is specified by

Wk(𝔰𝔩𝑛+1, 𝑓 (2) ) = W
k

𝑛+1 ≃
(
ker

∫
𝛽 (𝑧)e −1

k+𝑛+1𝛼1 (𝑧) d𝑧
)

(4.4.12)

∩
(
ker

∫
𝛾 (𝑧)e −1

k+𝑛+1𝛼2 (𝑧) d𝑧
)

∩
(
𝑛⋂
𝑖=2

ker
∫

e
−1

k+𝑛+1𝛼𝑖 (𝑧) d𝑧

)
for generic k. Let H𝛼̃ ⊂ H𝛼 ⊗ Π ⊗ B⊗2 be the vertex subalgebra generated by 𝛼1(𝑧), . . . , 𝛼𝑛 (𝑧). It

is easy to see that H𝛼̃ ≃ H𝛼 . Let B̃ be the vertex subalgebra of H𝛼 ⊗ Π ⊗ B⊗2 isomorphic to B

generated by

(4.4.13) 𝛽 (𝑧) = 𝛽1(𝑧), 𝛾 (𝑧) = 𝛾1(𝑧) + 𝛽2(𝑧)e−𝑐 (𝑧) .

Finally, let B̂ and Π̂ be the vertex subalgebras of H𝛼 ⊗ Π ⊗ B⊗2 generated by

(4.4.14) 𝛽 (𝑧) = 𝛽2(𝑧), 𝛾 (𝑧) = 𝛾2(𝑧) + 𝛽1(𝑧)e−𝑐 (𝑧)

and

(4.4.15)
𝑐̂ (𝑧) = 𝑐 (𝑧), e𝑚𝑐̂ (𝑧) = e𝑚𝑐 (𝑧),

𝑑 (𝑧) = 𝑑 (𝑧) − (k + 𝑛 + 1) 2(𝑛 − 1)
𝑛 + 1

𝑐 (𝑧) − 2𝛽2(𝑧)𝛽1(𝑧)e−𝑐 (𝑧) + 2𝜔2(𝑧) .

respectively, where 𝜔2(𝑧) is the field associated to the second fundamental coweight of 𝔰𝔩𝑛+1. A

straightforward calculation shows that H𝛼 ⊗ Π ⊗ B⊗2 = H𝛼̃ ⊗ B̃ ⊗ Π̂ ⊗ B̂. The definitions of H𝛼̃ ,

B̃, B̂ and Π̂ for 𝑛 = 2 can also be found in [3].

The first𝑛 screening operators of (4.4.10) act non trivially only onH𝛼̃ ⊗B̃. In fact, if we rewrite

the first 𝑛 screening operators in (4.4.10) in terms of the fields of H𝛼̃ ⊗ B̃ ⊗ Π̂ ⊗ B̂, we get exactly

the tilded versions of the screening operators (4.4.12).

Theorem 4.4.2. Let k be generic. There exists an embedding

(4.4.16) Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) ↩→Wk(𝔰𝔩𝑛+1, 𝑓 (2) ) ⊗ Π ⊗ B,
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whose image is specified by

(4.4.17) Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) ≃ ker
∫

e𝐴 (𝑧) d𝑧,

where

(4.4.18) 𝐴(𝑧) = 1
2

(
1 − 2(k + 𝑛 + 1)𝑛 − 1

𝑛 + 1

)
𝑐 (𝑧) + 1

2
𝑑 (𝑧) + 𝛽 (2) (𝑧)𝛽 (𝑧)e−𝑐 (𝑧) − 𝜔2(𝑧).

Here, 𝛽 (𝑧) refers to the ghost field in B and the fields 𝛽 (2) (𝑧) and 𝜔2(𝑧) act on the subregular

W-algebra Wk(𝔰𝔩𝑛+1, 𝑓 (2) ) by way of the free-field realisation (4.2.9). That is, 𝛽 (2) (𝑧) denotes the

ghost field in the free-field realisation Wk(𝔰𝔩𝑛+1, 𝑓 (2) ) ↩→ H𝛼 ⊗ B.

Proof. The argument here is the same as that in the proof of Theorem 4.3.2. ■

When 𝑛 = 2, this is the embedding described in [3]. For 𝑛 = 3, the embedding of Theorem 4.4.2

is an inverse quantum hamiltonian reduction from the subregular 𝔰𝔩4 W-algebra to the minimal 𝔰𝔩4
W-algebra.

It would be interesting to explore the representation theory of Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) using Theo-

rem 4.4.2 in the same way as the subregular W-algebra was explored in Section 4.3.3. One would

expect that the relaxed and logarithmic modules present in the 𝑛 = 2 case from [3] are present for

all 𝑛.





Chapter 5

Conclusion

5.1. Summary of Results

In this thesis, we have developed the representation theory of examples of nonrational W-

algebras in various levels of detail.

The first W-algebras studied here were Bershadsky–Polyakov algebras. The first result of Chap-

ter 2 was the explicit determination of their untwisted and twisted Zhu algebras. Then, the clas-

sification of simple modules for these algebras gave a classification of simple relaxed highest-

weight modules of the universal Bershadsky–Polyakov algebra BPk (Theorems 2.2.6 and 2.2.16)

by Zhu’s theorem and its twisted analogue. In addition to these, several families of reducible-but-

indecomposable BPk-modules were identified.

Determining when the above BPk-modules are modules for the simple quotient BPk is difficult

in general. However we found that specialising to admissible levels of the form k = u
v − 3, where

u ⩾ 3 and v ⩾ 2 are coprime, allowed us to leverage results of Arakawa regarding the minimal

quantum hamiltonian reduction functor [13]. In particular, we showed that all untwisted highest-

weight BPk = BP(u, v)-modules are obtained from highest-weight Lk(𝔰𝔩3)-modules by quantum

hamiltonian reduction (Theorems 2.3.8 and 2.3.16).

Combining this surjectivity result with spectral flow of BP(u, v) and coherent families of

Zhutw [
BP(u, v)

]
-modules allowed us to classify simple (untwisted and twisted) relaxed highest-

weight BP(u, v)-modules with finite-dimensional weight spaces (Theorem 2.3.25). A related ar-

gument proved the existence of reducible-but-indecomposable positive-energy BP(u, v)-modules

when v ⩾ 3, and short exact sequences for these modules were found (Theorem 2.3.32).

These results in particular show that BP(u, v) is a nonrational W-algebra when v ⩾ 3. The

further analysis of BP(u, v) at these levels in Chapter 3 was greatly assisted by the inverse quan-

tum hamiltonian reduction relating the nonrational BP(u, v), the rational Zamolodchikov minimal

modelW3(u, v) and the half lattice vertex algebra Π [4]. In particular, the characters of the (spectral

161
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flows of) simple and reducible-but-indecomposableBP(u, v)-modules of Chapter 2 were expressed

in terms of W3(u, v) and Π characters (Proposition 3.2.8 and Corollary 3.3.13).

To determine modular transformations and Grothendieck fusion rules, we used the standard

module formalism [51,146]. After modifying the conformal structure of BP(u, v) for convenience,

identifying a suitable class of standard modules (3.2.16) and explaining how to define linearly

independent one-point functions of these standard modules, we derived a modular S-matrix for the

one-point functions of standard modules (Theorem 3.2.10). The modular transformations for the

vacuum module were obtained using the aforementioned character formulae (Corollary 3.3.16).

The (conjectural) standard Verlinde formula (3.3.2b) was then applied to compute (conjectural)

Grothendieck fusion rules for the standard modules (Theorem 3.3.19). This is quite a nontrivial

calculation, requiring several identities involving W3 minimal model fusion coefficients. That the

conjectural Grothendieck fusion coefficients are nonnegative integers is strong evidence that they

are indeed the structure constants of the Grothendieck ring of BP(u, v). As every simple weight

BPk-module is resolved in terms of standard modules (Proposition 3.3.12), this result implies the

Grothendieck fusion rules for all BP(u, v)-modules from Chapter 2. We also identified interesting

simple currents in BP(u, v) (Proposition 3.3.22) and explored the example of BP(3, 4).

The second family of W-algebras explored were the subregular W-algebras Wk(𝔰𝔩𝑛+1, 𝑓sub) in

Chapter 4, examples of which are affine 𝔰𝔩2 vertex operator algebras and Bershadsky–Polyakov

algebras BPk. Utilising free-field realisations for the universal regular W-algebra Wk(𝔰𝔩𝑛+1, 𝑓reg)

[123] and subregular W-algebras of type 𝐴 [88], and the FMS bosonisation of the 𝛽𝛾 ghost ver-

tex algebra [77], we proved the existence of an inverse quantum hamiltonain reduction embed-

ding generalising that used for BPk (Theorem 4.3.2). Explicit formulae for strong generators for

Wk(𝔰𝔩𝑛+1, 𝑓sub) in terms of fields in Wk(𝔰𝔩𝑛+1, 𝑓reg) and the half lattice Π were obtained in Sec-

tion 4.3.2.

Recalling the importance of BP(u, v)-modules obtained from inverse quantum hamiltonian

reduction in Chapter 3, we constructed relaxed highest-weight Wk(𝔰𝔩𝑛+1, 𝑓sub)-modules by tak-

ing the tensor products of irreducible Wk(𝔰𝔩𝑛+1, 𝑓reg)-modules with relaxed Π-modules (Proposi-

tion 4.3.16). Such modules were shown to exhibit many of the properties present in the analogous

modules for BPk. The characters of these relaxed Wk(𝔰𝔩𝑛+1, 𝑓sub)-modules were shown to be prod-

ucts of characters for Wk(𝔰𝔩𝑛+1, 𝑓reg)- and Π-modules (Corollary 4.3.12).

When the aforementioned inverse quantum hamiltonian reduction embedding descends to an

embedding Wk(𝔰𝔩𝑛+1, 𝑓sub) ↩→ Wk(𝔰𝔩𝑛+1, 𝑓reg) ⊗ Π of simple quotients was determined (Theo-

rem 4.3.20). This is highly nontrivial as expressions for singular vectors in both regular and sub-

regular W-algebras are difficult to obtain in general. When k is a nondegenerate admissible level for

𝔰𝔩𝑛+1, W𝑛+1(u, v) = Wk(𝔰𝔩𝑛+1, 𝑓sub) and its relaxed modules can be realised in terms of the rational
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minimal model W𝑛+1(u, v) and Π (Corollary 4.3.21). A consequence of this is that W𝑛+1(u, v) is

nonrational in the category of weight modules at these levels.

The final family of W-algebras considered in this thesis were hook-type W-algebras of type 𝐴.

Our final result was proving the existence of an inverse quantum hamiltonian reduction relating

the subregular W-algebra of type 𝐴 to a hook-type W-algebra of type 𝐴 (Theorem 4.4.2) using

free-field realisations related to the Wakimoto realisation of Vk(𝔰𝔩𝑛+1).

5.2. Future Directions

5.2.1. Bershadsky–Polyakov Algebras. While our studies of BP(u, v) were fairly compre-

hensive, there are many features of the category of weight BP(u, v)-modules that remain unex-

plored. For example, identifying projective covers for the simple BP(u, v)-modules defined in

Chapter 2 and defining other reducible-but-indecomposable BP(u, v)-modules. An example of the

latter are staggered modules, which exist for BP(5, 3) due to its relationship with an admissible

level 𝔰𝔩2 minimal model known to exhibit such modules [2,9,62]. This is also the case for BP(4, 3)

and BP(3, 4) due to their relationship to the 𝛽𝛾 ghost vertex algebra [5, Sec. 5.2] and triplet al-

gebra [53, 143] respectively. More evidence for staggered BP(u, v)-modules is in the form of the

Grothendieck fusion of reducible standard modules (3.3.81).

There are also other levels inBPk that are of interest. Outside of admissible levels, the structure

of the maximal ideal of Vk(𝔰𝔩𝑛+1) is more complicated and therefore so is addressing which of the

simple relaxed highest-weight BPk-modules are BPk-modules. It is not immediately clear how

much of the proof Theorem 2.3.8 can be adapted in this case but quantum hamiltonian reduction

should play a role here too.

A classification of simple modules for the nonadmissible-level BPk where k ∈ ℤ⩾−1 is known

but uses explicit formulae for singular vectors in BPk at such levels [5, 6] rather than quantum

hamiltonian reduction. It would be interesting to see how our results can be adapted to these non-

admissible levels and others.

5.2.2. Subregular W-Algebras. There are aspects of the analysis in Chapter 2 that might

generalise to other subregular W-algebras of type𝐴 outside of what we have explored in this thesis.

For example, the (twisted) Zhu algebra of a W-algebra is isomorphic to the finite W-algebra of the

same type [55], and the finite W-algebra corresponding to the subregular nilpotent orbit in 𝔰𝔩𝑛+1 is

known to be a central extension of a Smith algebra for all𝑛 [140, Thm. 7.10]. As Smith algebras are

‘𝔰𝔩2-like’, the classification of simple weight modules for Smith algebras is an easy generalisation

of that presented in Section 2.2.5 using constructions in [149].
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Therefore, in principle, the simple relaxed highest-weight modules for universal subregular

𝔰𝔩𝑛+1 W-algebras Wk(𝔰𝔩𝑛+1, 𝑓sub) are known up to isomorphism. However these isomorphisms

make it difficult to identify such relaxed highest-weight modules in terms of Wk(𝔰𝔩𝑛+1, 𝑓sub) fields,

in the sense of the action of zero modes on the top space. Of course for Bershadsky–Polyakov

algebras, we have a presentation (2.2.3) of the finite W-algebra in terms of the (images of) zero

modes of BPk fields. Such a presentation of the subregular 𝔰𝔩𝑛+1 finite W-algebra in terms of the

zero modes of the fields (4.1.7) may be achievable using a related presentation in [89].

Which of these simple relaxed highest-weight modules are also modules for the simple sub-

regular 𝔰𝔩𝑛+1 W-algebra Wk(𝔰𝔩𝑛+1, 𝑓sub) is a difficult question in general. Here, the Bershadsky–

Polyakov algebra being minimal comes in handy. A classification of highest-weightWk(𝔰𝔩𝑛+1, 𝑓sub)

is unknown even in admissible level cases W𝑛+1(u, v).

One potential means for obtaining such a classification is through inverse quantum hamiltonian

reduction: recall that simple relaxed highest-weight BP(u, v)-modules are either standard modules

(obtained by inverse quantum hamiltonian reduction and spectral flow) or their submodules and

simple quotients. In this way, the classification of such BP(u, v)-modules reduces to construct-

ing the standard modules by inverse quantum hamiltonian reduction and analysing their structure.

Whether this strategy works more generally is an open question.

For the subregular W-algebras W𝑛+1(u, v), we have completed the first step. Determining pre-

cisely when the standard modules are reducible is difficult and requires more information about

the polynomial 𝑝 (𝛾, 𝑥) in (4.3.48). This difficulty is related the complexity of the operator product

expansion between𝐺+(𝑧) and𝐺−(𝑧). More detailed knowledge about how the subregular quantum

hamiltonian reduction functor acts on highest-weight Lk(𝔰𝔩𝑛+1)-modules (analogous to Arakawa’s

results in the minimal case) will likely assist in this direction.

One area where such an understanding of highest-weight W𝑛+1(u, v)-modules, in particular

the vacuum module, is required is in computing modular transformations and Grothendieck fusion

rules for W𝑛+1(u, v). Subject to being able to upgrade W𝑛+1(u, v) characters to one-point functions

in an appropriate manner (as in Section 3.2.4), a standard S-matrix for W𝑛+1(u, v) can be straight-

forwardly obtained from the character formula (4.3.12) and is of the expected form: the S-matrix

of the corresponding W𝑛+1(u, v)-modules multiplied by an exponential containing the ‘Π data’ of

the standard modules involved.

The natural next step from here would be to compute the Grothendieck fusion rules, which

requires the S-matrix elements corresponding to the vacuum module W𝑛+1(u, v). While the struc-

ture of the vacuum module should be simpler than that of other highest-weightW𝑛+1(u, v)-modules

(c.f. the vacuum module being type-3 for BP(u, v) from Section 2.3.3), much is still unknown in

this direction.
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One example of subregular minimal models of particular interest is W𝑛+1(𝑛 + 1, 𝑛 + 2), which

is isomorphic to the logarithmic B𝑛+1-algebra [25, 53]. Tensor categories related to B𝑛+1 that are

braided, rigid and non-semisimple have been constructed using a conjectural relationship between

B𝑛+1 and the unrolled restricted quantum groups of 𝔰𝔩2 [25]. It would be interesting to see if

our preliminary representation-theoretic results for W𝑛+1(𝑛 + 1, 𝑛 + 2) are able to reproduce this

categorical data, and if such data can shed light on the Grothendieck fusion rules of the standard

modules of W𝑛+1(𝑛 + 1, 𝑛 + 2).

There are of course also non-type-A subregular W-algebras that might be accessible using

inverse quantum hamiltonian reductions and the free-field approach. One such example is the

case of the subregular 𝔰𝔭4 W-algebra. An embedding involving the the regular 𝔰𝔭4 W-algebra

and the half lattice was proposed in [30]. An identical screening operator argument to that used in

Theorem 4.3.2 provides an alternative construction of this embedding. The representation-theoretic

content of the subregular 𝔰𝔭4 W-algebra inverse reduction remains to be explored, as well as looking

at other subregular W-algebras.

In general types, subregular W-algebras are an important class of W-algebras from a number

of perspectives. As mentioned previously, subregular W-algebras appear in the Schur index of 4𝐷

superconformal field theories known as Argyres–Douglas theories [24, 29, 41]. The ADE clas-

sification of simple surface singularities connects to the ADE classification of simply-laced Lie

algebras through the geometry of the Slodowy slice corresponding to the subregular nilpotent orbit

[148], and this connection is expressed beautifully in the associated variety of the subregular W-

algebra [16]. Our new results on the structure and representation theory of subregular W-algebras

therefore might have implications in these areas.

5.2.3. Other W-Algebras. Of course if we want to use inverse quantum hamiltonian reduc-

tions to learn about admissible-level affine vertex operator algebras, we eventually need to move

on from subregular W-algebras.

The 𝑛 = 2 version of the hook-type inverse quantum hamiltonian reduction in Theorem 4.4.2

was used in [3] to construct logarithmic and relaxed modules for Lk(𝔰𝔩3). Obtaining such results

for Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) for 𝑛 ⩾ 3 requires an understanding of when the embedding of Theorem 4.4.2

descends to an embedding of simple quotients.

The difficulty here is that unlike in the subregular case, expressions for strong generators of

Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) in terms of fields in Wk(𝔰𝔩𝑛+1, 𝑓sub), Π and B are not known. Subject to deter-

mining the restrictions on the level k to get an embedding of simple quotients and making this

inverse reduction more explicit, similar logarithmic and relaxed modules for Wk(𝔰𝔩𝑛+1, 𝑓 (3) ) might

be obtainable using a similar approach as [3].
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Wk(𝔰𝔩6, 0) ≃ Vk(𝔰𝔩6)

Wk(𝔰𝔩6, 𝑓min)

Wk(𝔰𝔩6, 𝑓(2,2,1,1) )

Wk(𝔰𝔩6, 𝑓(2,2,2) )Wk(𝔰𝔩6, 𝑓(3,1,1,1) )

Wk(𝔰𝔩6, 𝑓(3,3) )Wk(𝔰𝔩6, 𝑓(4,1,1) )

Wk(𝔰𝔩6, 𝑓(3,2,1) )

Wk(𝔰𝔩6, 𝑓(4,2) )

Wk(𝔰𝔩6, 𝑓sub)

Wk(𝔰𝔩6, 𝑓reg)

Figure 1. Inverse quantum Hamiltonian reductions for hook-type 𝔰𝔩6 W-algebras
are depicted by the pink upwards arrows.

The systematic construction of the inverse quantum hamiltonian reductions in Sections 4.3.1

and 4.4.1 using screening operators suggests a potential path of inverse reductions starting from

the regular 𝔰𝔩𝑛+1 W-algebra to the affine vertex algebra Vk(𝔰𝔩𝑛+1).

Consider the 𝔰𝔩6 case, where the ordering of W-algebras is presented in Figure 1. Starting from

Wk(𝔰𝔩6, 𝑓reg), the first pink arrow represents the inverse quantum hamiltonian reduction described

in Theorem 4.3.2, while the second represents that of Theorem 4.4.2. Interestingly, the latter skips

the W-algebra Wk(𝔰𝔩6, 𝑓(4,2) ).

It therefore appears that hook-type W-algebras define a traversable path from a regular W-

algebra to an affine vertex algebra, along which inverse quantum hamiltonian reductions can be

described using the Wakimoto realisation of Vk(𝔰𝔩𝑛+1) and the screening operators of [88].

In order to better understand what the inverse quantum hamiltonian reductions along the path of

hook-type W-algebras look like, the Wakimoto-type free-field realisation of hook-type W-algebras



5.2. Future Directions 167

[42] takes the form of embeddings

(5.2.1) Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚) ) ↩→ H𝛼 ⊗ B
𝑚 (𝑚−1)

2 .

Hence the free-field realisation of Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚+1) ) requires𝑚 more copies of the 𝛽𝛾 ghost vertex

algebra B than the free-field realisation of Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚) ). In Theorem 4.3.2 and Theorem 4.4.2,

it was only necessary to bosonise a single B in order to define an inverse quantum hamiltonian

reduction embedding.

Conjecture. Let k ≠ −𝑛 − 1. There exists an embedding

(5.2.2) Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚+1) ) ↩→Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚) ) ⊗ Π ⊗ B⊗(𝑚−1) .

The key claim in the Conjecture is that only one 𝛽𝛾 ghost vertex algebra needs to be bosonised in

order to define an inverse quantum hamiltonian reduction embedding.

If the Conjecture were true, the embeddings (5.2.2) could be composed. It would therefore

be possible to realise the affine vertex algebra Vk(𝔰𝔩𝑛+1) in terms of any hook-type W-algebra

Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚) ) by way of an embedding, at noncritical k, of the form

(5.2.3) Vk(𝔰𝔩𝑛+1) ↩→Wk(𝔰𝔩𝑛+1, 𝑓 (𝑚) ) ⊗ Π𝑛−𝑚+1 ⊗ B⊗
1
2 (𝑛+𝑚−2) (𝑛−𝑚+1) .

In light of the results of Section 3.2, such embeddings might assist in uncovering the highly sought-

after modular transformations and fusion rules of admissible-level Lk(𝔰𝔩𝑛+1).

Finally, there is also likely to be a finite W-algebra analogue of inverse quantum hamiltonian

reduction. This is because finite W-algebras can be constructed as the (twisted) Zhu algebra corre-

sponding to W-algebras [55]. Partial reduction for finite W-algebras, at least for type 𝐴, has been

described [133]. It is likely that the inverse quantum hamiltonian reductions described here are

the ‘affinisation’ of inverses to such partial reductions but there is much work to be done in this

direction.
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