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Abstract

Bosonic ghost systems are perhaps the least well understood of the free field conformal field
theories (CFTs). The system is generated by two bosonic fields with opposite charges and con-
formal dimensions summing to 1. This work starts by introducing some background knowledge
related to CFT, then discusses the construction of the ghost system. One particular automor-
phism is the spectral flow automorphism, which helps twist a module or a field. The thesis
then focuses on computing the correlation functions of fields with or without spectral flow by
solving differential equations including the Ward identities and an analogue of the Knizhnik-
Zamolodchikov equation. We finish by showing that the results match the known fusion rules
for the ghost CFT.
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Chapter 1

Introduction

Conformal Field Theory (CFT) is one of the special cases of Quantum Field Theory (QFT),

where strong symmetries apply, which means in this case that CFTs are of invariant under

conformal transformations. They were formally introduced in 1984 by Belavin, Polyakov

and Zamolodchikov in [BPZ84], which discussed the consequences of conformal invariance

of two-dimensional quantum field theory. More applications were developed rapidly and,

CFT found significant contributions to condensed matter physics, statistical mechanics [ISZ88,

RS93,Gur93], and string theory [BP09,GSW12a,GSW12b]. The simplest example is the free

boson, which is discussed as an introductory topic in multiple textbooks such as [DFMS97,

BP09,Sch97], and lecture notes including [Rid13]. In 2014, the bosonic ghost system of central

charge 2 was addressed by David Ridout and Simon Wood in [RW14], and shown that it is

actually a logarithmic conformal field theory by using fusion to construct representations on

which the hamiltonian acts non-diagonalisably.

Ghost systems have a long history in CFT, being first suggested in an application of

superstring theory in 1986 by Friedan, Martinec and Shenker[FMS86]. They developed a way

to quantize Faddeev-Popov ghosts [Fad09] in the conformal gauge [Pol81] and connect the

conformal algebra with the BRST quantization method [BBH00]. We will not discuss this

application to string theory here, but more information can be found in [BLT13,Erb21]. In

addition, bosonic ghosts can be used to construct more complicated theories, such as quantum

hamiltonian reduction, which is discussed in [KRW03] and [KW04].

In this thesis, we will introduce the same setup as in [RW14] about the bosonic ghost

system, but with a different approach to fusion namely solving differential equations related

to correlation functions. At the end, we will investigate if the solutions match with the fusion

rules reported in [RW14]. These rules have since been confirmed in [AP19] and [AW22].
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Outline

Throughout this thesis, we will explore the terminologies in the ghost CFT, and derive cor-

relation functions for the fields we define. We will start by introducing some background

knowledge in Chapter 2, including Lie algebras, representations, and conformal transforma-

tions, focusing on parts relevant to the ghost conformal field theory. Moreover, we will discuss

fields, states and modes, as well as the fact that modes generate fields and each field has a

corresponding state. We remark that the energy-momentum tensor generated by Virasoro

modes are the fields that exist in all CFTs, so we will use it as an example to introduce the

operator production expansion.

Next in Chapter 3, we start to consider the CFT called the bosonic ghost system based

on [RW14]. There are two Virasoro primary fields generating the ghost CFT, and in addition,

there is a current and an energy-momentum tensor. Commutation relations between the two

modes can then be derived when we have the OPE between the two corresponding fields.

Additionally, the spectral flow automorphism will be introduced, and it can act on modes

or fields. Then we define different types of primary fields, corresponding to spectral flowed

relaxed highest weight states, the relaxed highest weight states and the (conjugate) vacuum

states. Acting with modes on each type of state generates different types of modules. One last

step before computing the correlators is to compute the Ward identities for the ghost CFT,

which are different from the general forms found in textbooks.

With primary fields defined and the Ward identities obtained, we can derive differential

equations for n-point correlation functions in Chapter 4. Starting by using the ghost primaries,

we substitute the Ward identities for 1-point, 2-point, 3-point and 4-point functions to obtain

general solutions for the correlators. Then we derive a version of the Knizhnik-Zamolodchikov

equation to further constrain the solutions. Lastly, we will twist one of the fields by acting

with spectral flow, and compute the n-point correlators again up to n = 3. We then finish the

thesis by showing that the solutions agree with the fusion rules in [RW14].
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Chapter 2

Background Knowledge

This chapter aims to develop some basic principles and notations that are useful in CFT. We

will only discuss the knowledge that will be used directly later on. A standard textbook about

CFT is [DFMS97], while other details such as Lie algebras, representations can be found in

references [FS03], [RW15] and [Kac98] for interest.

2.1 Lie Algebra

One of the basic math structures underlying CFT is that of a Lie algebra [FS03, page 47-60].1

A Lie algebra g is a non-commutative, non-associative algebra, where a Lie bracket is denoted

by [, ]. The axioms of a Lie algebra satisfy bilinearity, antisymmetry, and the Jacobi identity,

respectively written as:

[ax+ by, z] = a[x, z] + b[y, z], [x, ay + bz] = a[x, y] + b[x, z],

[x, y] = −[y, x],

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0,

(2.1)

with x, y, z ∈ g and a, b being elements in a field F.2

The standard example is the general linear Lie algebra, denoted by gl(n;R) or gl(n;C),

where the Lie bracket is given by the commutator

[A,B] = AB − BA, (2.2)

with A,B being any n × n matrices in a vector space. In addition, A and B commute with

each other if [A,B] = 0. The Lie algebra is abelian if [A,B] = 0 for all A,B.

1This textbook is particularly designed for mathematics physicists, while more comprehensive textbooks
include [Hum78,Hal15].

2The only fields we focus on here are R and C.
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A Lie subalgebra of a Lie algebra g is a vector subspace h, which is closed under the Lie

bracket: x, y ∈ h ⇒ [x, y] ∈ h. In CFT, operators and generators of the fields often form Lie

algebras. For example, we have gl(1), a one-dimensional Lie algebra, and it is spanned by a

single element a. On the other hand, ĝl(1) has the basis {an : n ∈ Z} ∪ {k}, and brackets

given by

[an, am] = mδm+nk, [am, k] = 0. (2.3)

In quantum theory, the an are called operators, and in CFT they will be modes of a holomor-

phic field.3

Additionally, the Virasoro algebra Vir is an important algebra in CFT. It has an infinite

basis given by {Ln : n ∈ Z} ∪ {c} with Lie bracket

[Lm, Ln] = (m− n)Lm+n +
1

12
(m3 −m)δm+n,0c, [Lm, c] = 0, (2.4)

where Ln are modes of the energy-momentum tensor which will be introduced in Section 2.8.

2.2 Representation Theory

A representation [FS03, page 64-77]4 is a linear map π from g to gl(V ), with V being a vector

space. The map satisfies

π([x, y]) = π(x)π(y)− π(y)π(x), (2.5)

for x, y ∈ V .

V is said to be a g-module, as it is a vector space on which g acts. A submodule of a

g-module V is then a subspaceW ⊆ V , which is preserved by the g-action, i.e. w ∈ W implies

x ·w ∈ W for all x ∈ g. Every g-module V has two submodules V and {0}. If there are other

submodules, then V is reducible, if not then it is irreducible.

2.3 Lie Algebra and Representation Theory in CFT

In CFT, we decompose our Lie algebra g into a direct sum of three Lie subalgebras, i.e.

g = g< ⊕ g0 ⊕ g>, (2.6)

where each subalgebra contains creation modes, zero modes, and annihilation modes5 respec-

tively. A Cartan subalgebra is then an abelian Lie subalgebra h ⊂ g0. Its elements can also

3A holomorphic function in dimension n is a complex-valued function that is complex differentiable in a
neighbourhood of each point in a domain in C

n. Here, the function is in dimension 1.
4Again, the information about representations are quite brief, more details can be found in [FH91].
5More details in Section 2.5.
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be seen as quantum observables6 as most physicists do.

We get to choose these subalgebras. Our choice then defines two types of vectors as follows:

1. Relaxed highest weight vectors [RW15] are eigenvectors for h and annihilated by g>.

This implies that they are vacuum vectors also known as ground states.

2. Highest weight vectors are relaxed highest weight vectors where we have chosen h = g0

The word ‘relaxed’ means that we allow more possibilities for such vectors.

Hence, modules can be generated by those vectors by acting with creation modes in g.

To say that, a (relaxed) highest weight vector v generates a g-module M means that every

w ∈ M can be written as a linear combination of vectors x1 · x2 · · · xn · v for some modes

x1, · · · , xn ∈ g< ⊕ g0.

We call such a module a Verma module [Maz99], because the creation modes act freely. It

means that the only relations they obey are the Lie bracket.

2.4 Conformal Invariance

Conformal transformations are those which preserve angles. They include translations, rota-

tions, dilations and special conformal transformations [DFMS97, page 95-113]. In coordinates,

there is a finite dimensional space of conformal transformations to transform a vector from

x to x′. On the other hand, infinitesimal conformal transformations means transforming the

vector x to x + ε(x), where ε is extremely small. In 2D, the space of infinitesimal conformal

transformation is infinite dimensional. The textbook [GRAS96] can be a further reference for

interest.

Consider a function φ(x), which is also called a field, that is infinitesimal conformal trans-

formed to φ(x+ ε). By applying the infinitesimal Taylor expansion, we can obtain

φ(x+ ε) = φ(x) + εµ∂µφ(x). (2.7)

Generators of such transformations, are differential operators on φ(x), and generate a Lie

algebra called the conformal algebra. Here, the generators are simply εµ∂µ, written in Einstein

summation form.7 They give us elements of the conformal Lie algebra, and each type of

transformation corresponds to different generators. As we care more about what happens in

2 dimensions, more information about conformal transformations in higher dimensions can be

found in the textbook [Hen99] for interest.

6Quantum observables are the physical quantities that can be measured.
7This convention simplifies y =

∑n

i=1
cix

i to y = cix
i, with n being the number of coordinates.
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Now, let us focus on conformal transformations in 2 dimensions, which are on a complex

plane. The generators will then reduce to a holomorphic or antiholomorphic function in order

to preserve the angles. A basis for the corresponding Lie algebra is then

{ε(z) = zn, ε̄(z̄) = z̄n : n ∈ Z}, (2.8)

and thus we can choose a basis of generators to be

ℓn = −zn+1∂, ℓ̄n = −z̄n+1∂̄. (2.9)

By computing the commutation relations between the generators, we can then prove they are

the Virasoro modes in (2.4), but with c = 0. The reason for the constrained c value is that we

are only considering classical fields (i.e. functions).

For a quantum field φ(z), it can be Fourier decomposed as

φ(z) =
∑

n∈Z

φnz
−n−hφ , (2.10)

c can then be non-zero. Here, φn are non-commuting operators, and hφ is the conformal

dimension8 of the field. It is the eigenvalue of the Virasoro mode L0 acting on the state

corresponding to φ(z), which will be introduced in Section 2.6. In addition, the Virasoro

modes in quantum physics, denoted by Ln, are the modes of an energy momentum tensor T (z),

which must exist for the theory to be conformal. We now suggest the conformal dimension of

T (z) to be 2, and will check if it agrees with the ghost system in Section 3.1.2. It can then be

written as

T (z) =
∑

n∈Z

Lnz
−n−2. (2.11)

2.5 Normal Ordering

Normal ordering [BP09, p37-41] is a simple but useful tool which helps reorder annihilation

and creation operators to ensure the quantised equation is well defined. It also allows us to

rewrite the infinite sum of a quantised field (2.10) into two sums, each with one bound.

Consider the modes an of a field A(z), and a vacuum state |Ω〉.9 The an are called anni-

hilation operators when n > 0, while they are creation operations when n < 0. Zero mode is

when n = 0, which we also call it the quantum observable. However, acting with an on the

vacuum, denoted by an |Ω〉, gives zero when n > −hA, whether it is an annihilation operator

8A conformal dimension is also called a conformal weight or conformal spin or the energy of a field.
9A vacuum state is the ground state with minimal energy and maximum symmetry.
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or not. Hence, we define the normal-ordered product of an and bm as

: anbm : =




anbm if n < −hA,

bman otherwise,
(2.12)

where bn are the modes of another field B(z). We can then write the normal ordered product

of A(z) and B(w) as

: A(z)B(w) :=
∑

m∈Z

∑

n∈Z

: anbm : z−n−hAw−n−hB . (2.13)

2.6 State-Field Correspondence

The corresponding state of any field φ(z) defined in (2.10) is

|φ〉 = lim
z→0

φ(z) |Ω〉 . (2.14)

The relation shows that there is a bijection between states and fields, in other words, every

state in CFT corresponds to a unique field. It will be very useful when we derive the OPE of

two fields in Section 2.8.

Let us consider the energy momentum T (z) defined in (2.11), we can compute the corre-

sponding state of such a field.

|T 〉 = lim
z→0

T (z) |Ω〉 = lim
z→0

∑

n∈Z

Ln |Ω〉 z
−n−2

= lim
z→0

∑

n≤−2

Ln |Ω〉 z
−n−2 = L−2 |Ω〉 , (2.15)

since the Ln annihilate the vacuum for n > −2 as stated in Section 2.5, and the terms for

n < −2 go to zero as z → 0. We can also compute |∂T 〉 using the same method

|∂T 〉 = lim
z→0

∑

n∈Z

(−n− 2)Ln |Ω〉 z
−n−3 = L−3 |0〉 . (2.16)

One can mention by experience that the Virasoro mode with index −1 always corresponds

to ∂ for any field φ(z), namely

L−1 |φ〉 ↔ |∂φ〉 . (2.17)

A partial explanation in classical physics can be L−1 being an infinitesimal translation operator

coincides with the ∂ in Section 2.4.
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2.7 Primary fields

A primary field is a field which corresponds to a vacuum (highest weight state) |Ω〉, while a

secondary field is a field which corresponds to a descendant of |Ω〉. However, in a more precise

definition, the primary field depends on which algebra we are considering. We say that a

Virasoro primary is a field corresponding to a highest weight state for the Virasoro algebra,

with

L0 |φ〉 = hφ |φ〉 , Ln |φ〉 = 0 ∀n > 0, (2.18)

where hφ is the conformal dimension appearing in (2.10). We will define another type of

primary field when we study the bosonic ghosts CFT in Chapter 3.

2.8 Operator Production Expansion

We have discussed normal ordering in Section 2.5, which was the ordering between operators.

Where here, radial ordering is the ordering between fields, which allows fields to act in time

order. Radial ordering (time ordering) of two arbitrary fields is:

R{φ(z)ψ(w)} =




φ(z)ψ(w) if |z| > |w|,

ψ(w)φ(z) if |z| < |w|.
(2.19)

As we often do not care about the regular terms, the operator production expansion (OPE)

[BP09, p23-27] of two fields is introduced as the singular terms of the radial ordering product.

We can then try to compute the OPE of two general fields A(z) and B(w). It is an

expansion of the product A(z)B(w) as a Laurent series in z − w, shown as

A(z)B(w) =
∑

m∈Z

ψm(w)(z − w)−m−hA

⇒ lim
w→0

A(z)B(w) |Ω〉 = lim
w→0

∑

m∈Z

ψm(w)(z − w)−m−hA |Ω〉

⇒ A(z) |B〉 =
∑

m∈Z

|ψ〉 z−m−hA

⇒
∑

m∈Z

Amz
−m−hA |B〉 =

∑

m∈Z

|ψ〉 z−m−hA

⇒ Am |B〉 = |ψ〉 ,

(2.20)

where hA is the conformal dimension of the field A(z), and we assume it to be an integer.

We identify the unknown fields ψm(w) using the state-field correspondence (2.14). Hence, the
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OPE is written as

A(z)B(w) =
∑

m∈Z

ψm(w)(z − w)−m−hA , (2.21)

where some of the terms can be removed depending on the property of B(w).

For example, we can derive the OPE of the energy-momentum tensor T (z) with a Virasoro

primary field φ(w), and use our definition from (2.18) that Ln |φ〉 = 0 for n > 0,

T (z)φ(w) =
∑

m≤0

ψm(w)(z − w)−m−hA

=
∑

n≤2

ψn−2(w)(z − w)−n

∼
ψ0(w)

(z − w)2
+
ψ−1(w)

z − w

∼
hφφ(w)

(z − w)2
+
∂φ(w)

z − w
, (2.22)

where we were given that |ψ0〉 = L0 |φ〉 = hφ |φ〉, and thus we have ψ0(w) = hφφ(w). We have

also applied (2.17) so that ψ−1(w) = ∂φ(w). In other words, an arbitrary field φ(w) that has

such OPE with T (z) is called a Virasoro primary field, and the coefficient in the 1
(z−w)2

term

is the conformal dimension of such a field.

The commutation relation between Ln and φ(w) can now be derived by applying the

Cauchy integral theorem and this OPE

[Ln, φ(w)] =

∮

w

T (z)φ(w)zn+1 dz

2πi

=

∮

w

(
hφφ(w)

(z − w)2
+
∂φ(w)

z − w

)
zn+1 dz

2πi

= (n+ 1)wnhφφ(w) + wn+1∂φ(w). (2.23)

Additionally, the OPE of T (z)T (w) can be computed as well to check if the energy mo-

mentum tensor is a primary field. Since we have derived |T 〉 = L−2 |Ω〉 in (2.15), we can use

the commutator of Virasoro modes (2.4) to derive

T (z) |T 〉 =
∑

n∈Z

LnL−2z
−n−2 |Ω〉

=

(
∑

n≤−2

LnL−2 +
∑

n>−2

([Ln, L−2] + L−2Ln)

)
|Ω〉 z−n−2,
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where Ln annihilates the vacuum for n > −2, we can then obtain

T (z) |T 〉 =

(
∑

n≤−2

LnL−2 +
∑

n>2

(n+ 2)Ln−2

)
|Ω〉 z−n−2

+

(
L−3

z
+

2L−2

z2
+

3L−1

z3
+

4L0 +
1
2
c

z4

)
|Ω〉

=

( 1
2
c

z4
+

2L−2

z2
+
L−3

z

)
|Ω〉+

∑

n≤−2

LnL−2z
−n−2 |Ω〉 . (2.24)

The terms for n ≤ −2 correspond to regular terms in the OPE, which we ignore. The OPE is

thus

T (z)T (w) ∼
1
2
c

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
, (2.25)

by applying (2.15) and (2.16). Comparing with (2.22), T (z) is not a primary field, but the

coefficient of the OPE with 1
(z−w)4

is half of the central charge.

2.9 Wick’s Theorem

Lastly, Wick’s theorem [Kac98] tells how to decompose the radially-ordered product of an

arbitrary number of free fields, given that we know the OPE for two. Radially-ordered product

is obtained by summing all possible contractions of the fields in normally-ordered product.

This theorem only works if we have OPE of two fields containing identity field only, i.e.

A(z)B(w) ∼ k
(z−w)hA+hB

for k ∈ C.

For example, if we have two fields written as : A(z)B(z) : C(w) by knowing the OPEs of

any of the two, we can compute the OPE of these fields being

: A(z)B(z) : C(w) ∼ : A(z)B(z)C(w) : + : A(z)B(z)C(w) : + : A(z)B(z)C(z) : , (2.26)

where two fields being contracted are replaced by their OPE, and the contraction is defined

as

(· · · )A(z)(· · · )B(w)(· · · ) =
k

(z − w)hA+hB
(· · · )(· · · )(· · · ). (2.27)

Similarly, for the OPE of two fields : A(z)B(z) : : C(w)D(w) : we have

: A(z)B(z) : : C(w)D(w) : ∼ : A(z)B(z)C(w)D(w) : + : A(z)B(z)C(w)D(w) :

: A(z)B(z)C(w)D(w) : + : A(z)B(z)C(w)D(w) :

+ A(z)B(z)C(w)D(w) + A(z)B(z)C(w)D(w). (2.28)
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We will only use Wick’s theorem for deriving OPEs in Section 3.1.2, where other extended

details can be found in [Kac98].
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Chapter 3

Introduction to Bosonic Ghost

After gaining some background knowledge related to conformal field theory, we will start to

consider CFT in the ghost system, which was first introduced in [FMS86], and discuss about

the main concepts based on [RW14]. There are two Virasoro primary fields generating the

ghost CFT. We will compute the OPEs and commutation relations related to the energy-

momentum tensor from Section 2.4, and a new field called a current. After that, the Ward

identities will be derived to compute correlators in Chapter 4.

3.1 Ghost Algebras

3.1.1 Fields introduction

The two Virasoro primary fields generating the bosonic ghost system [RW14] are β(z) with

charge 1 and conformal weight 1, and γ(z) with charge -1 and conformal weight 0. The charges

are the coefficients of (3.3) and (3.5) which will be mentioned later in Section 3.1.2. Their

OPEs are defined by

β(z)β(w) = γ(z)γ(w) ∼ 0

β(z)γ(w) ∼ −
1

z − w
.

(3.1)

We define the current and energy-momentum tensor in the bosonic ghost CFT, with radial

ordering defined in (2.8):

J(z) = : β(z)γ(w) : T (z) = − : β(z)∂γ(z) : . (3.2)
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3.1.2 OPEs and Commutation Relations

We can indeed show that the conformal charges and weights of the bosonic ghost fields agree

with Section 3.1.1 by deriving the OPEs.

J(z)β(w) = : β(z)γ(z) : β(w)

∼ : β(z)γ(z)β(w) : + : β(z)γ(z)β(w) : + : β(z)γ(z)β(w) :

∼
1

z − w
β(z) ∼

1

z − w
β(w), (3.3)

where we applied Wick’s theorem (2.26) on the second step and Taylor expanded around z = w

for the last step. We define a free boson primary field with the corresponding state satisfying

J0 |φ〉 = jφ |φ〉 , Jn |φ〉 = 0 ∀n > 0, (3.4)

so that the field has such an OPE with the current from (3.3), and their coefficient of the field

on the RHS of the OPE is the charge j. It means that β(z) is a free boson primary of charge

j = 1. The OPE of J(z)γ(w) is similarly given by

J(z)γ(w) ∼ −
1

z − w
γ(w), (3.5)

thus γ(z) is a free boson primary of charge -1. We similarly compute

T (z)β(w) ∼
1

(z − w)2
β(w) +

1

z − w
∂β(w), (3.6)

so β(z) is a Virasoro primary with conformal weight hβ = 1 based on (2.22), and

T (z)γ(w) ∼
1

z − w
∂γ(z), (3.7)

17



so γ(z) is a Virasoro primary with conformal weight hγ = 0. Finally

T (z)T (w) = : β(z)∂γ(z) : : β(w)∂γ(w) :

∼ : β(z)∂γ(z)β(w)∂γ(w) : + : β(z)∂γ(z)β(w)∂γ(w) : + β(z)∂γ(z)β(w)∂γ(w)

∼ −
1

(z − w)2
(: β(w)∂γ(w) : + : ∂γ(w)β(w) :)

−
1

(z − w)
(: ∂2γ(w)β(w) : + : ∂β(w)∂γ(w) :) +

1

(z − w)4

∼
−2

(z − w)2
: β(w)∂γ(w) : −

1

z − w

∂

∂w
(: β(w)∂γ(w) :) +

1

(z − w)4

∼
2

(z − w)2
T (w) +

1

z − w
∂T (w) +

1

(z − w)4
,

(3.8)

where we have used (2.28), and the contractions are done by applying the OPEs in (3.1). By

comparing with (2.22), T (z) is not a primary field but is an energy-momentum tensor with

central charge of this ghost system being 2. In fact, J(z) is not a Virasoro primary field either

but it has conformal weight 1,

T (z)J(w) ∼
1

z − w
∂J(w) +

1

(z − w)2
J(w)−

1

(z − w)3
. (3.9)

By writing the ghost fields in terms of modes βn and γn

β(z) =
∑

n∈Z

βnz
−n−1 γ(z) =

∑

n∈Z

γnz
−n, (3.10)

commutation relations can be derived. For [βm, γn], we can use the Cauchy integral theorem,

which is the same as in (2.23).

[βm, γn] = βmγn − γnβm

=

∮

0

∮

0

β(z)γ(w)zmwn−1 dz

2πi

dw

2πi
−

∮

0

∮

0

γ(w)β(z)zmwn−1 dz

2πi

dw

2πi

=

[∮

0

∮

0|z|>|w|

−

∮

0

∮

0|z|<|w|

]
β(z)γ(w)zmwn−1 dz

2πi

dw

2πi

=

∮

0

∮

w

[
−

1

z − w
+ : β(z)γ(w) :

]
zmwn−1 dz

2πi

dw

2πi

= −

∮

0

wmwn−1 dw

2πi

= −δm+n=01, (3.11)
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where the difference of contour around 0,
∮
0|z|>|w|

−
∮
0|z|<|w|

can be replaced by a contour

around
∮
w
, and we have substituted (3.1) into our derivation. Hence, βm and γn commute

except when m+n = 0. With the same method, one can show that βm and γm both commute

with themselves.

[βm, γn] = −δm+n=01, [βm, βn] = [γm, γn] = 0. (3.12)

We define the Lie algebra with such commutation relations as our ghost Lie algebra g.

Then the current and energy-momentum tensor can be written in terms of modes as well:

J(z) =
∑

m∈Z

∑

n∈Z

z−m−1z−n : βmγn :

=
∑

m∈Z

∑

n∈Z

: βmγn : z−m−n−1 =
∑

n∈Z

Jnz
−n−1, (3.13)

T (z) = − : β(z)∂γ(z) :

= −
∑

m∈Z

∑

n∈Z

: βmγn : z−m−1(−n)z−n−1 =
∑

m∈Z

∑

r∈Z

(r −m) : βmγr−m : z−r−2

=
∑

n≤−2

∑

m∈Z

(n−m) : βmγn−m : z−n−2 =
∑

n∈Z

Lnz
−n−2. (3.14)

By using normal ordering (2.5) and commutation relations (3.12) between βm and γn:

Jn =





∑
r∈Z βrγn−r (n 6= 0),

∑
r≤−1 βrγ−r +

∑
r≥0 γ−rβr (n = 0)

, (3.15)

Ln =





∑
m∈Z(n−m)βmγn−m (n 6= 0),

∑
m≤−1(−m)βmγ−m +

∑
m≥0(−m)γ−mβm (n = 0).

(3.16)

OPE and commutation relations of J(z) with a free boson primary field can be derived in

the same way as T (z) in (2.23) by using (2.20).

J(z)φ(w) =
∑

m≤0

ψm(w)(z − w)−m−1 ∼
ψ0(w)

z − w
∼
jφ(w)

z − w
, (3.17)

as we have |ψ0〉 = J0 |φ〉 = j |φ〉 and |ψm〉 = 0 if m > 0 recalling from (3.4). After deriving

the OPE, we can easily find the commutation relation between Jn and φ(w)

[Jn, φ(w)] =

∮

w

J(z)φ(w)zn
dz

2πi
=

∮

w

jφ(w)

z − w
zn
dz

2πi
= jφ(w)wn. (3.18)

The commutation relations of [Ln, φ(w)] and [Jn, φ(w)] will help us to derive the Ward
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identities of n-point ghost fields in Section 3.4.1.

3.1.3 Spectral Flow Automorphism

A module can be twisted by applying spectral flow σℓ, which will be useful later in Section 4.2.

Here, we only focus on ℓ ∈ Z. The spectral flow automorphism is given by

σℓ(βn) = βn−ℓ, σℓ(γn) = γn+ℓ, σℓ(1) = 1. (3.19)

The spectral flow is invertible as shown below,

βn = σ−ℓ(βn−ℓ) ⇒ σ−ℓ(βn) = βn+ℓ,

γn = σ−ℓ(γn+ℓ) ⇒ σ−ℓ(γn) = γn−ℓ.
(3.20)

Additionally,

σℓ([βm, γn]) = σℓ(−δm+n=01) = −δm+n=01,

[σℓ(βm), σ
ℓ(γn)] = [βm−ℓ, γn+ℓ] = −δm+n=01,

(3.21)

shows that the spectral flow preserves the Lie brackets. This means it is an automorphism of

the ghost Lie algebra g.

We can then derive the action of spectral flow on Jn. First for the simplier case when

n 6= 0, we have

σℓ(Jn) =
∑

r∈Z

σℓ(βrγn−r) =
∑

r∈Z

σℓ(βr)σ
ℓ(γn−r) =

∑

r∈Z

βr−ℓγn−r+ℓ =
∑

m∈Z

βmγn−m = Jn, (3.22)

where we replaced m as r − ℓ for the second last step. Then for n = 0,

σℓ(J0) =
∑

r≤−1

σℓ(βrγ−r) +
∑

r≥0

σℓ(γ−rβr) =
∑

r≤−1

βr−ℓγ−r+ℓ +
∑

r≥−ℓ

γ−r+ℓβr−ℓ

=
∑

m≤−1−ℓ

βmγ−m +
∑

m≥−ℓ

γ−mβm

=
∑

m≤−1

βmγ−m +
∑

m≥0

γ−mβm −
−1∑

m=−ℓ

βmγ−m +
ℓ∑

m=1

γ−mβm

= J0 +
ℓ∑

m=1

(−β−mγm + γ−mβm) = J0 −

ℓ∑

m=1

[βm, γ−m]

= J0 + ℓ1. (3.23)

Combining the two results gives us that

σℓ(Jn) = Jn + ℓδn=01. (3.24)
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With the same method, we can compute the spectral flow on the Virasoro modes,

σℓ(Ln) = Ln − ℓJn −
1

2
ℓ (ℓ− 1) δn=01. (3.25)

J0 and L0 can also act on a vector v in a ghost module, which we will define later in

Section 3.3. If they satisfy J0v = jv, L0v = hv, then

J0σ
ℓ(v) = (j − ℓ)σℓ(v), (3.26)

L0σ
ℓ(v) =

[
h+ ℓj +

1

2
ℓ (ℓ− 1)

]
σℓ(v). (3.27)

To show this we first have

J0σ
ℓ(v) = σℓ(σ−ℓ(J0)v) = σℓ((J0 − ℓ1)v) = σℓ((j − ℓ)v) = (j − ℓ)σℓ(v). (3.28)

and the derivation of L0σ
ℓ(v) follows the same steps.

3.2 Primary fields

Following from the definition in Section 2.7, we get to choose our own primary fields for the

ghost system. Firstly, a Virasoro primary exists in all CFT, with the corresponding state

following same rules as in (2.18). We have also defined a free boson primary in Section 3.1.2

with the corresponding state being (3.4).

Then we define a primary field as φℓ(z) with the corresponding state
∣∣φℓ
〉
, for ℓ ∈ Z. The

state is called a spectrally flowed relaxed highest weight state, defined so that

βn−ℓ

∣∣φℓ
〉
= 0, γn+ℓ

∣∣φℓ
〉
= 0, ∀n > 0

J0
∣∣φℓ
〉
= jφℓ

∣∣φℓ
〉
, L0

∣∣φℓ
〉
= hφℓ

∣∣φℓ
〉
,

(3.29)

by recalling that jφℓ being the eigenvalue of J0
∣∣φℓ
〉
, is the charge, and hφℓ is the conformal

dimension of the primary field. One can show that

Ln

∣∣φℓ
〉
= Jn

∣∣φℓ
〉
= 0 ∀n > 0, (3.30)

by substituting (3.13) and (3.16) separately. Also, notice that a primary field is a Virasoro

primary and a free boson primary.

For a more specific case, we can define a ghost primary as φ(z), and it corresponds to a

relaxed highest weight state |φ〉. We remark that φ(z) = φ0(z), which means it is a primary
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field for ℓ = 0. The field also follows the rules in (3.29), but with ℓ = 0 strictly, writing as

βn |φ〉 = 0, γn |φ〉 = 0, ∀n > 0

J0 |φ〉 = jφ |φ〉 , L0 |φ〉 = hφ |φ〉 ,
(3.31)

where jφ = jφ0 and hφ = hφ0 . The word “relaxed” means the same as in Section 2.3. We can

even compute the exact value of hφ by expressing L0 as summation of β and γ modes

L0 |φ〉 =
∑

m≤−1

(−m)βmγ−m |φ〉+
∑

m≥0

(−m)γ−mβm |φ〉 = 0

⇒ hφ |φ〉 = 0, (3.32)

because positive modes annihilates the ghost primary. Hence, we can state that the conformal

dimension of a ghost primary is always 0.

Lastly, there are two special cases, we denote them by ghost vacuum and conjugate ghost

vacuum. We choose the ghost vacuum as being a ghost primary for which the corresponding

state also satisfies

β0 |φ〉 = 0. (3.33)

The state |φ〉 is a highest weight state, as we restricted the action of the zero mode β0. On

the other hand, a conjugate ghost vacuum is a ghost primary as well but with the additional

constraint on the state being

γ0 |φ〉 = 0. (3.34)

The state |φ〉 here can then be named as a conjugate highest weight state. In fact, the reason

that we call the above primaries ghost vacuums and conjugate ghost vacuum is that the only

states that follow such constraints are the vacuum and its conjugate, respectively.

With the primary fields introduced in (3.29), we can actually compute general OPEs of

β(z), γ(z) with a primary field, denoted by φℓ(w), where the corresponding state follows

(3.29). First we can notice that βn annihilates φℓ(w) when n > −ℓ, and γn annihilates the

fields for n > ℓ. Hence, the expansion of β(z)φℓ(w) is

β(z)φℓ(w) =
∑

n≤−ℓ

ψn(w)(z − w)−n−1, (3.35)

and by following the steps from (2.20), we get that |ψn〉 = βn
∣∣φℓ
〉
. Since the terms are singular

only when n ≥ 0, we need to separate into two cases

β(z)φℓ(w) ∼





−ℓ∑

n=0

(βnφ
n)(w)

(z − w)n+1
ℓ ≤ 0

0 ℓ > 0

. (3.36)
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Similarly, we have

γ(z)φℓ(w) ∼





ℓ∑

n=1

(γnφ
n)(w)

(z − w)n
ℓ > 0

0 ℓ ≤ 0

. (3.37)

3.3 Representation Theory

With different constraints on states as shown in Section 3.2, we can choose to generate different

modules. Starting from the simplest case, modes acting on the highest weight state with

constraints (3.33) generate a Verma module as in Section 2.3. We can visualise the module

as in Fig. 3.1, showing that |φ〉 is the only highest weight state, and its corresponding field

|φ〉γ0 |φ〉γ20 |φ〉· · ·

β−1 |φ〉β−1γ0 |φ〉

β2
−1 |φ〉

· · ·

· · · · · ·

Figure 3.1: Verma module

is a ghost vacuum as we defined in Section 3.2. Meanwhile, all the other states are called

descendant states. It turns out that the only possible highest weight state is the vacuum

|Ω〉 as shown in [RW14], and the module it generates is irreducible, where we have defined

irreducibility in Section 2.2.

With the same idea, a conjugate Verma module can be generated by representations of a

conjugate highest weight state, and it is also unique and irreducible.

On the other hand, relaxed Verma modules can be generated when we allow creators and

zero modes β0 and γ0 to act freely on a relaxed highest weight state |φ〉. It is visualised as

in Fig. 3.2 . The states at the top of the module are all relaxed highest weight states, with

corresponding fields as ghost primaries, as we defined in (3.31). In this case, there are infinitely

many relaxed Verma modules, labelled by jφ, which is the charge of the field from Section 3.2.

We get to choose different weight vectors as described in proposition 1 in [RW14], and note

from the proposition that the module is irreducible unless jφ ∈ Z. In fact, the relaxed Verma

modules that differ by an integer of jφ are the same module as stated in [RW14].

Lastly, the representations of a spectral flowed relaxed highest weight state with a charge

jφℓ can generate an even more general module, which we call a spectral flowed relaxed Verma
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|φ〉γ0 |φ〉· · · · · ·β0 |φ〉

β−1 |φ〉γ−1 |φ〉 γ−1β0 |φ〉 · · ·· · ·

· · · · · · · · ·

Figure 3.2: Relaxed Verma module

module. The module can also be briefly visualised as in Fig. 3.3. By comparing with Fig. 3.2,

∣∣φℓ
〉

γℓ
∣∣φℓ
〉

β−ℓ

∣∣φℓ
〉

. . .

· · ·

. . .

Figure 3.3: Spectral flowed Verma module

this is actually generated by twisting a relaxed Verma module by σℓ. The corresponding fields

of the states at the top are now the primary fields, which agree with (3.29).

We have mentioned the charges of the fields, and we can show how they change for different

ℓ,

J0
∣∣φℓ
〉
= jφℓ

∣∣φℓ
〉
= (jφ − ℓ)

∣∣φℓ
〉
, (3.38)

by using (3.26) directly. Hence, we have the charge for a spectral flowed relaxed highest weight

state being jφℓ = jφ−ℓ. With the same idea, we can use (3.27) to find the conformal dimension

hφℓ , which is

L0

∣∣φℓ
〉
= L0σ

ℓ(|φ〉) =

(
ℓ(j + ℓ)−

1

2
ℓ(ℓ+ 1)

) ∣∣φℓ
〉
. (3.39)

The conformal dimension for a spectral flowed relaxed highest weight state is

hφℓ = ℓ(j + ℓ)−
1

2
ℓ(ℓ+ 1). (3.40)
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One can also notice that this agrees with (3.32): substituting ℓ = 0 gives hφ = 0.

To summarise the representations, we have defined 4 types of modules:

• A Verma module generated by the modes βn−1, γn for n ≤ 0 acting on highest weight

states.

• A conjugated Verma module generated by the modes βn, γn−1 for n ≤ 0 acting on

conjugate highest weight states.

• A relaxed Verma module generated by non-positive modes βn, γn acting on relaxed high-

est weight states. The corresponding fields are with charges jφ and conformal dimensions

hφ = 0.

• A spectral flow relaxed Verma module generated by non-positive modes βn−ℓ, γn−ℓ acting

on spectral flowed relaxed highest weight states, where the corresponding fields have

charges jφℓ = jφ − ℓ and conformal dimensions hφℓ = (j + ℓ)− 1
2
ℓ(ℓ+ 1).

As a Verma module is unique, and the only field corresponding to the highest weight state

is the identity field, the correlation functions are hence less worthy to investigate. The same

idea applies for the conjugate Verma module, so the first two modules are unique. Therefore,

we are more interested in the third and fourth modules above, which will be the modules to

compute the correlation functions in Section 4.1 and Section 4.2 respectively.

3.4 Ward Identity

After choosing the appropriate module, we can start to derive the constraints on correlation

functions. Recall from Section 2.5 that the Virasoro modes Ln with indices n > −2 annihilate

the vacuum. We can then derive three constraints by applying L−1, L0, L1 on the correlation

function of an n-point function, denoted by

〈Ω, φ1(z1)φ2(z2) · · ·φn(zn)Ω〉 , (3.41)

where Ω is the vacuum we defined in Section 2.5. Or more conveniently, we can write this as

〈φ1(z1)φ2(z2) · · ·φn(zn)〉 , (3.42)

depending on whether we need to act with an operator on the vacuum or not. We call such

constraints the Ward identities. Additionally, the constraint of acting with J0 on the correlator

will be mentioned later in Section 3.4.4.
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3.4.1 Ward Identity Contradiction

Ward identities can be derived by acting with L−1, L0, L1 on the correlation function. We

start by assuming that the adjoint of Ln is simply L−n, written as

L†
n = L−n. (3.43)

In fact, this is the case for most CFTs, for example in the free boson. Some articles even state

this as a general result in CFT, such as [DFMS97, page 202]. First we start by considering

a 2-point function 〈φ1(z1)φ2(z2)〉, of two Virasoro primary fields with h1 and h2 being the

conformal dimensions respectively.1 Acting with L−1 on the correlator gives us that

〈Ω, L−1φ1(z1)φ2(z2)Ω〉 =
〈
L
†
−1Ω, φ1(z1)φ2(z2)Ω

〉

= 〈L1Ω, φ1(z1)φ2(z2)Ω〉 = 0. (3.44)

In the meantime, by using (2.23) we can obtain

〈Ω, L−1φ1(z1)φ2(z2)Ω〉 = 〈Ω, ([L−1, φ1(z1)]φ2(z2) + φ1(z1)[L−1, φ2(z2)] + φ1(z1)φ2(z2)L−1) Ω〉

= 〈∂φ1(z1)φ2(z2) + φ1(z1)∂φ2(z2)〉 . (3.45)

With the same method by using the adjoints of L0 and L1 and applying (2.23), we come

up with three constraints.

(∂1 + ∂2) 〈φ1(z1)φ2(z2)〉 = 0, (3.46a)

(z1∂1 + z2∂2 + h1 + h2) 〈φ1(z1)φ2(z2)〉 = 0, (3.46b)

(z21∂1 + z22∂2 + 2hz1 + 2h2z2) 〈φ1(z1)φ2(z2)〉 = 0, (3.46c)

where the ∂i stands for
∂
∂zi

. These are the Virasoro Ward identities for the 2-point function of

Virasoro primaries, and we can then solve for the two point functions using those constraints.

(3.46a) shows that the 2-point correlator does not depend on z1 + z2. To see this, define

z = z1 + z2, z12 = z1 − z2, and thus

∂ = ∂1 + ∂2, ∂12 = ∂1 − ∂2. (3.47)

Then (3.65a) becomes

(∂1 + ∂2) 〈φ1(z1)φ2(z2)〉 = ∂ 〈φ1, φ2〉 = 0, (3.48)

1Here h means the same as ∆φi
, being the conformal dimension of the field φi(z).
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so the correlator is a function depending only on z12:

〈φ1(z1)φ2(z2)〉 = f(z12). (3.49)

Substituting into (3.46b), we can compute

0 = (z1∂1 + z2∂2 + h1 + h2)f(z12)

=

(
1

2
(z + z12)(∂ + ∂12) +

1

2
(z − z12)(∂ − ∂12) + h1 + h2

)
f(z12)

=

(
1

2
(z∂ + z∂12 + z12∂ + z12∂12 + z∂ − z∂12 − z12∂ + z12∂12) + h1 + h2

)
f(z12)

= (z12∂12 + h1 + h2)f(z12), (3.50)

where we have used (3.48) to remove the terms with ∂. This is then easily solved:

∂12f(z12) +
h1 + h2

z12
f(z12) = 0

⇒ zh1+h2

12 ∂12f(z12) + zh1+h2−1
12 (h1 + h2)f(z12) = 0

⇒ ∂12(z
h1+h2f(z12)) = 0

⇒ f(z12) =
C12

zh1+h2

12

, (3.51)

where C12 is a constant. Lastly, we apply the third constraint (3.46c):

0 = (z21∂1 + z22∂2 + 2h1z1 + 2h2z2)f(z12)

= ((
z + z12

2
)2(∂ + ∂12) + (

z − z12

2
)2(∂ − ∂12) + 2h1z1 + 2h2z2)f(z12)

= (
1

4
(z + z12)

2∂12 −
1

4
(z − z12)

2∂12 + h1(z + z12) + h2(z − z12))f(z12)

= (z(z12∂12 + (h1 + h2)) + (h1 − h2)z12)f(z12)

= (h1 − h2)z12f(z12)

= (h1 − h2)
C12

zh1+h2−1
12

= 0, (3.52)

where the terms including z are removed by using (3.51). The solution for the 2-point correlator

is then

〈φ1(z1)φ2(z2)〉 =
C

zh1+h2

12

δh1=h2
. (3.53)

Note that the solution is 0 unless h1 = h2. In fact, this is a standard result for a 2-point

correlator with Virasoro primaries, which may be found in the textbook [DFMS97, eq(5.25)].

However, in the ghost CFT, we have β(z) and γ(w) as Virasoro primaries, and were given
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from (3.1) that

〈β(z)γ(w)〉 =
1

z − w
, (3.54)

where hβ = 1, hγ = 0. This contradicts (3.53) because hβ 6= hγ, and thus the assumption

(3.43) must not be true here. We thus aim to derive the correct Ward identities for the ghost

CFT, and use them to solve for the ghost correlation functions.

3.4.2 Ward Identities for Primaries Fields

To derive the adjoints of the Virasoro modes, we need to find the adjoints for the ghost modes

βn and γn first, by guessing that

β†
n = ε1γ−n, γ†n = ε2β−n, (3.55)

and using the axiom (AB)† = B†A†.

[γm, βn]
† = −[γ†m, β

†
m] = −[ε2β−m, ε1γ−n] = ε1ε2δ−m−n,01

[γm, βn] = δm+n,01,
(3.56)

with help from (3.12). As the identity is self-adjoint, the commutator of γm and βn is then

self-adjoint. Thus we can set ε1 = ε2 = 1 and obtain the adjoints as

β†
n = γ−n, γ†n = β−n. (3.57)

The adjoints for Jn and Ln can then be computed by using (3.15) and (3.16).

Firstly consider the case of Jn with n = 0,

J
†
0 = [

∑

r≤−1

βrγ−r +
∑

r≥0

γ−rβr]
† =

∑

r≤−1

γ
†
−rβ

†
r +

∑

r≥0

β†
rγ

†
−r

=
∑

r≤−1

βrγ−r +
∑

r≥0

γ−rβr = J0. (3.58)

This zero mode is then self-adjoint. When n 6= 0, the ghost modes commute with each other,

we then have

J†
n =

∑

r∈Z

(βrγn−r)
† =

∑

r∈Z

γ−rβ−n+r

=
∑

m∈Z

γ−n−mβm = J−n, (3.59)

by letting m = −n+ r and thus r = m+n. The adjoints for Ln follow from the same method,
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such that

L
†
0 =

∑

m≤−1

(−m)(βmγ−m)
† +

∑

m≥0

(−m)(γ−mβm)
†

=
∑

m≤−1

(−m)γ−mβm +
∑

m≥0

(−m)βmγ−m

= L0, (3.60)

and for n 6= 0, we have

L†
n = [

∑

m∈Z

(n−m)βmγn−m]
† =

∑

m∈Z

(n−m)β−n+mγ−m

=
∑

m∈Z

(−m)βmγ−n−m =
∑

m∈Z

(−n−m)βmγ−n−m +
∑

m∈Z

nβmγ−n−m

= L−n + nJ−n. (3.61)

This is in fact different from what we assumed in (3.43).

Now, we need to use the correct adjoints for Ln to rederive the Ward identities. Recall

from (3.13), Jn annihilates the vacuum for all n > −1. We can then apply the Virasoro

modes on an n-point correlator of primary fields. More specifically, the fields only need to be

both Virasoro primaries and free boson primaries, which means that the corresponding states

satisfy (2.18) and (3.4) at the same time. First for L−1, we have

〈Ω, L−1φ1(z1) · · ·φn(z2)Ω〉 =
〈
L
†
−1Ω, φ1(z1) · · ·φn(z2)Ω

〉

= 〈(L1 − J1)Ω, φ1(z1) · · ·φn(z2)Ω〉

= 0, (3.62)

as L1 and J1 both annihilates the vacuum. Additionally, L0 is self adjoint as shown in (3.60)

and gives zero when acting on the correlator. Therefore, the derivations of the first two Ward

identities are the same as in Section 3.4.1. The only difference is now we are dealing with an

n-point function of primary fields as defined in Section 3.2. We are then more interested in

what happens with the L1 Ward identity:

〈Ω, L1φ1(z1) · · ·φn(zn)Ω〉 =
〈
L
†
1, φ1(z1) · · ·φn(zn)Ω

〉

= 〈(L−1 + J−1)Ω, φ1(z1) · · ·φn(zn)Ω〉

= 〈J−1Ω, φ1(z1) · · ·φn(zn)Ω〉 . (3.63)

The result is nonzero as J−1 does not annihilate the vacuum. Hence, we need to compute the
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right hand side of (3.63) by using (3.18):

〈J−1Ω, φ1(z1) · · ·φn(zn)Ω〉 = 〈Ω, J1φ1(z1) · · ·φn(zn)Ω〉

= 〈Ω, [J1, φ1(z1)]φ2(z2) · · ·φn(zn) + · · ·+

φ1(z1) · · ·φn−1(zn−1)[J1, φn(zn)] + φ1(z1) · · ·φn(zn)J1Ω〉

= 〈(j1z1 + j2z2 + · · ·+ j3z3)φ1(z1) · · ·φn(zn)〉 , (3.64)

where j1, j2, . . . , jn are the charges of φ1(z1), φ2(z2), . . . , φn(zn) respectively and we have used

the condition that φi(zi) are free boson primaries. We can then substitute the result back in

(3.63), and apply (2.23) to compute the left hand side of (3.63) by noticing that φi(zi) are

Virasoro primaries as well.

Combining all the above results, we then obtain the Ward identities for an n-point corre-

lator in the ghost CFT:

n∑

i=1

∂i 〈φ1(z1) · · ·φn(zn)〉 = 0, (3.65a)

n∑

i=1

(hi + zi∂i) 〈φ1(z1) · · ·φn(zn)〉 = 0, (3.65b)

n∑

i=1

(2hizi + z2i ∂i − jizi) 〈φ1(z1) · · ·φn(zn)〉 = 0. (3.65c)

These identities will be used throughout all of our calculations in Chapter 4.

3.4.3 Checking Ward Identities

One thing before we start to compute the solutions of the correlators, is to check if our new

Ward identities are consistent with the 2-point correlator of Virasoro primaries β(z) and γ(z)

(3.54). Substitute this into the Ward identities (3.65), and (3.65a) gives

(∂z + ∂w) 〈β(z)γ(w)〉 = (∂z + ∂w)
−1

z − w
= 0, (3.66)

while (3.65b) gives

(1 + z∂z + w∂w)

(
−1

z − w

)
= 0. (3.67)

Lastly, (3.65c) tells us that

(2z + z2∂z + w2∂w − (z − w))
−1

z − w
= 0. (3.68)
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It is easy to verify that all three are true. Therefore, the new Ward identities agree with (3.1),

and we use these to compute other correlators with more general primary fields.

3.4.4 Additional constraint

In fact, there is an additional Ward identity obtained by acting with J0, given by

〈Ω, J0φ1(z1)φ2(z2) · · ·φn(zn)Ω〉 =
n∑

i=1

〈Ω, jiφ1(z1)φ2(z2) · · ·φn(zn)Ω〉+ 〈Ω, φ1 · · ·φnJ0Ω〉

=
n∑

i=1

〈Ω, jiφ1(z1)φ2(z2) · · ·φn(zn)Ω〉 , (3.69)

by recalling that J0 annihilates the vacuum and using (3.18) again. Then we use the fact that

J0 is self-adjoint from (3.58), and the LHS of the above equation is

〈Ω, J0φ1(z1)φ2(z2) · · ·φn(zn)Ω〉 = 〈J0Ω, φ1(z1)φ2(z2) · · ·φn(zn)Ω〉 = 0. (3.70)

Hence we have the fourth constraint on the correlator, written as

n∑

i=1

ji 〈φ1(z1)φ2(z2) · · ·φn(zn)〉 = 0. (3.71)

The constraint implies that the n-point correlation function must be proportional to the delta

function δj1+···+jn=0, so it can be imposed directly into the solutions in Chapter 4.
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Chapter 4

Correlators of Bosonic Ghosts

Now we have defined the modules we care about, and found the correct Ward identites for

the ghost CFT. We can start to solve our correlation relations of ghost (3.31) or primary

fields (3.29) by using the Ward identities and deriving analogues of the KZ equations. In this

chapter, we will sometimes write φi(zi) as φi for simplicity.

4.1 Fields without Spectral Flow

In this section, we choose the relaxed Verma module defined in Section 3.3, and try to solve

for the n-point correlators up to n = 4. The fields are then primaries with ℓ = 0. In particular,

they are Virasoro and free boson primaries.

4.1.1 1-Point Function

Starting with the most straightfoward case, a 1-point correlator is 〈φ1(z1)〉 with conformal

dimension h1 and charge j1. Then (3.65a) tells us that

∂1 〈φ1(z1)〉 = 0, (4.1)

which means 〈φ1(z1)〉 is a constant function 〈φ1(z1)〉 = C1. By applying (3.65b), we have

(h1 + z1∂1) 〈φ1(z1)〉 = 0

⇒ h1 〈φ1(z1)〉 = 0

⇒ 〈φ1(z1)〉 = C1δh=0. (4.2)
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Lastly, (3.65c) gives that

(
(2h1 − j1)z1 + z21∂1

)
〈φ1(z1)〉 = 0

⇒ −j1z1 〈φ1(z1)〉 = 0

⇒ 〈φ1(z1)〉 = C1δh1=0δj1=0. (4.3)

Recall that the fourth Ward identity (3.71) gives j1 = 0 for a 1-point function, which is

automatically satisfied from the solution. We then have the solution as

〈φ1(z1)〉 = C1δh1=0δj1=0. (4.4)

This implies there are non-zero solutions only when φ1(z1) is a vacuum with the conformal

dimension h1 = 0 and charge j1 = 0. We can also remark that correlator of 1-point function is

not affected by the new version of Ward identities (3.65), so it gives the same answer as being

a vacuum as in the free boson in [Rid13, eq(6.23)].

4.1.2 2-Point Function

As we have computed the 2-point function of Virasoro primaries in Section 3.4.1, and (3.46a),

(3.46b) agree with the Ward identities in ghost CFT (3.65a) and (3.65b). We can use the

result (3.50) directly, which is

f(z12) =
C12

zh1+h2

12

, (4.5)

where C12 is a constant. Then, use (3.65c) to further constrain the correlation function and

have

(z21∂1 + z22∂2 + 2h1z1 + 2h2z2 − j1z1 − j2z2)f(z12) = 0. (4.6)

By applying z = z1 + z2, z12 = z1 − z2, ∂ = ∂1 + ∂2, ∂12 = ∂1 − ∂2 again to obtain

0 = ((
z + z12

2
)2(∂ + ∂12) + (

z − z12

2
)2(∂ − ∂12) + (2h1 − j1)(

z + z12

2
)

+ (2h2 − j2)(
z − z12

2
))f(z12)

= (z(z12∂12 + (h1 + h2)) + (h1 − h2)z12 −
1

2
j1(z + z12)−

1

2
j2(z − z12))f(z12)

= (z12(h1 − h2 −
1

2
j1 +

1

2
j2)−

1

2
z(j1 + j2))

C12

zh1+h2

12

, (4.7)
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where we have used (3.51) again to remove z(z12∂12 + h1 + h2). Then if C12 is non zero, we

will have

z12(h1 − h2 −
1

2
j1 +

1

2
j2)−

1

2
z(j1 + j2) = 0. (4.8)

The coefficients in z12 and z must be zero for non-zero solutions. Hence we have

h1 − h2 =
1

2
(j1 − j2), j1 + j2 = 0, (4.9)

where the fourth Ward identity (3.71) is automatically satisfied. The Ward identities give the

general solution

〈φ1(z1)φ2(z2)〉 =
C12δh1−h2=j1δj1+j2=0

(z1 − z2)h1+h2
, (4.10)

for a constant C12. Comparing to (3.53), we can notice the correlators for ghost primaries

differs from the textbook result by shifting h1 − h2 = 0 to h1 − h2 = j1. Additionally, we can

further solve for the solution by applying (3.32), such that h1 = h2 = 0. To satisfy the delta

functions, we need to have j1 = j2 = 0. Therefore, the solution for the 2-point ghost primaries

can be written as

〈φ1(z1)φ2(z2)〉 = C12δh1=h2=j1=j2=0, (4.11)

implying that solutions can be nonzero only when φ1(z1) and φ2(z2) are vacuums.

4.1.3 3-Point Function

Now, for a 3-point correlator, we can start by introducing the fourth Ward identity (3.71)

such that

〈φ1(z1)φ2(z2)φ3(z3)〉 = δj1+j2+j3=0F (z1, z2, z3), (4.12)

where F (z1, z2, z3) is the function we want to solve for later. We then let z = z1+z2+z3, z12 =

z1 − z2, z23 = z2 − z3, and ∂ = ∂1 + ∂2 + ∂3, ∂12 = ∂1 − ∂2, ∂23 = ∂2 − ∂3. Expressing them

in terms of z1, z2 and z3 gives

3z1 = z + 2z12 + z23, ∂1 = ∂ + ∂12,

3z2 = z − z12 + z23, ∂2 = ∂ − ∂12 + ∂23,

3z3 = z − z12 − 2z23, ∂3 = ∂ − ∂23.

(4.13)

Again, (3.65a) tells us the correlator does not depend on z1 + z2 + z3,

(∂1 + ∂2 + ∂3) 〈φ1(z1)φ2(z2)φ3(z3)〉 = ∂ 〈φ1(z1)φ2(z2)φ3(z3)〉 = 0

⇒ 〈φ1(z1)φ2(z2)φ3(z3)〉 = δj1+j2+j3=0f(z12, z23). (4.14)
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Now express (3.65b) in terms of the expressions in (4.13).

0 = (z1∂1 + z2∂2 + z3∂3 + h1 + h2 + h3)f(z12, z23)δj1+j2+j3=0. (4.15)

Then substitute (4.13) into the first three terms to have

z1∂1 + z2∂2 + z3∂3 =
1

3
[(z + 2z12 + z23)(∂ + ∂12)

+ (z − z12 + z23)(∂ − ∂12 + ∂23) + (z − z12 − 2z23)(∂ − ∂23)]

=
1

3
(z∂12 + 2z12∂12 + z23∂12 − z∂12 + z∂23 + z12∂12 − z12∂23

− z23∂12 + z23∂23 − z∂23 + z12∂23 + 2z23∂23)

= z12∂12 + z23∂23. (4.16)

We have changed equation (4.15) into

0 = (z12∂12 + z23∂23 + h1 + h2 + h3)f(z12, z23)δj1+j2+j3=0. (4.17)

This is a first order PDE, so we can apply the method of characteristics by parametrising zi

to be dependent on t. Then by chain rule df
dt

= ∂f
∂z12

dz12
dt

+ ∂f
∂z23

dz23
dt

, and we have

dz12

dt
= z12,

dz23

dt
= z23,

df

dt
= (z12∂12 + z23∂23)f(z12, z23) = −(h1 + h2 + h3)f(z12, z23),

(4.18)

by rearranging (4.17) to obtain df
dt
. Then we solve for the three ODEs, giving us the following

solutions

z12 = z12(0)e
t, z23 = z23(0)e

t, f = f(0)e−(h1+h2+h3)t. (4.19)

Notice that z23
z12

= z23(0)
z12(0)

is a constant with respect to t, so we can write f(0) in terms of z23
z12

.

The solution for f will be

f(z12, z23) = g(
z23

z12
)z

−(h1+h2+h3)
12 . (4.20)

Now we want to solve for the function g( z23
z12

) by first changing the variables as v = z23
z12

and

u = z12 so that we have

∂g

∂z1
=
dg

dv

∂v

∂z1
= −

v

u
∂vg,

∂g

∂z2
=
dg

dv

∂v

∂z2
=

1 + v

u
∂vg,

∂g

∂z3
=
dg

dv

∂v

∂z3
= −

1

u
∂vg, (4.21)

and

f(u, v) = g(v)u−h1−h2−h3 . (4.22)
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Then use (3.65c) to obtain the equation

0 = (z21∂1 + z22∂2 + z23∂3 + (2h1 − j1)z1 + (2h2 − j2)z2 + (2h3 − j3)z3)f(z12, z23). (4.23)

Substitute (4.22) and compute the partial derivatives, and as the equation is long, we break it

into two expressions. We first compute the terms z21∂1 + z22∂2 + z23∂3 + 2h1z1 + 2h2z2 + 2h3z3,

denoted by (∗), as some terms may cancel out

(∗) = z21(−h1 − h2 − h3)u
−h1−h2−h3−1g(v) + z21u

−h1−h2−h3

(
−v

u

)
∂vg

+ z22(h1 + h2 + h3)u
−h1−h2−h3−1g(v) + z22u

−h1−h2−h3

(
1 + v

u

)
∂vg

+ z23u
−h1−h2−h3

(
−1

u

)
∂vg + 2(h1z1 + h2z2 + h3z3)u

−h1−h2−h3g(v).

Extract the common factors and write as

= (−z21v + z22(1 + v)− z23)u
−h1−h2−h3−1∂vg

− (z21 − z22)(h1 + h2 + h3)u
−h1−h2−h3−1g(v) + 2(h1z1 + h2z2 + h3z3)u

−h1−h2−h3g(v)

= (−(z21 − z22)v + (z22 − z23))u
−h1−h2−h3−1∂vg

+ (h1z1 − h1z2 + h2z2 − h2z1 + 2h3z3 − h3z1 − h3z2)u
−h1−h2−h3g(v)

Then write v back to z23
z12

, and extract common terms so that we have

(∗) = (z2 − z3)(z2 + z3 − z1 − z2)u
−h1−h2−h3−1∂vg + h1u− h2u− h3(2uv + u)u−h1−h2−h3g(v)

= −uv(u+ uv)u−h1−h2−h3−1∂vg + u(h1 − h2 − 2h3v − h3)u
−h1−h2−h3g(v)

= −v(u+ uv)u−h1−h2−h3∂vg + u(h1 − h2 − 2h3v − h3)u
−h1−h2−h3g(v),

(4.24)

where the second last step is obtained by noticing z23 = uv. Then we focus back on the terms

with j’s, we will need to substitute (4.13) and write it in terms of u and v as well.

j1z1 + j2z2 + j3z3 =
1

3
j1(z + 2z12 + z23) +

1

3
j2(z − z12 + z23) +

1

3
j3(z − z12 − 2z23)

=
1

3
(z(j1 + j2 + j3) + z12(2j1 − j2 − j3) + z23(j1 + j2 − 2j3)) . (4.25)

We then use (3.71) to have j1 + j2 + j3 = 0, so that the expression becomes

j1z1 + j2z2 + j3z3 = j1z12 − j3z23 = j1u− j3uv. (4.26)
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After simplifying all the terms, we can substitute them back into (4.23) to obtain

0 = −uv(1 + v)u−h1−h2−h3∂vg + u[h1 − h2 − 2h3v − h3 − (j1 − j3v)]u
−h1−h2−h3g(v)

⇒ 0 = −v(1 + v)∂vg + (h1 − h2 − 2h3v − h3 − j1 + j3v)g(v), (4.27)

where we divided the equation by u−h1−h2−h3+1. Now the equation becomes an ODE that

depends on v only, so we can solve for it to obtain:

∂vg =
h1 − h2 − 2h3v − h3 − j1 + j3v

v(1 + v)
g(v) =

[
h1 − h2 − h3 − j1

v(1 + v)
+
j3 − 2j3
1 + v

]
g(v)

⇒ g(v) =
C123

v−h1+h2+h3+j1(1 + v)h1−h2+h3−j3−j1
. (4.28)

Finally, we can substitute g(v) back into (4.22) and write everything in zj’s again by reminding

that zij = zi − zj.

f(z12, z23) = δj1+j2+j3=0z
−h1−h2−h3

12 g(
z23

z12
)

=
C123δj1+j2+j3=0

zh1+h2+h3

12 ( z23
z12

)−h1+h2+h3+j1(1 + z23
z12

)h1−h2+h3−j3−j1

=
C123δj1+j2+j3=0

z
h1+h2−h3+j3
12 z

−h1+h2+h3+j1
23 z

h1−h2+h3+j2
13

. (4.29)

Therefore, the general solution for a 3-point correlation function is

〈φ1(z1)φ2(z2)φ3(z3)〉 =
C123δj1+j2+j3=0

z
h1+h2−h3+j3
12 z

−h1+h2+h3+j1
23 z

h1−h2+h3+j2
13

, (4.30)

where C123 is a constant. Now we can use (3.32) again to simplify the solution for the correlator

of ghost primaries

〈φ1(z1)φ2(z2)φ3(z3)〉 =
C123δj1+j2+j3=0

z
j3
12z

j1
23z

j2
13

, (4.31)

as h1 = h2 = h3 = 0. Note that unlike in 1-point and 2-point function, the solution does not

tell us about the exact values of j1, j2 and j3.

4.1.4 4-Point Function

Remark that 1-point, 2-point and 3-point functions can be solved up to constant factors

directly from the Ward identities. However, a 4-point function is a little more tricky to solve.

To start, again, we apply (3.71) to write the correlator as

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉 = δj1+j2+j3+j4=0F (z1, z2, z3, z4), (4.32)
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we make a change of variables by letting

z = z1 + z2 + z3 + z4, ∂ = ∂1 + ∂2 + ∂3 + ∂4,

z12 = z1 − z2, ∂12 = ∂1 − ∂2,

z23 = z2 − z3, ∂23 = ∂2 − ∂3,

z34 = z3 − z4, ∂34 = ∂3 − ∂4,

(4.33)

and rearrange the expressions to write z1, z2, z3, z4 in terms of z, z12, z23, z34:

4z1 = z + 3z12 + 2z23 + z34, ∂1 = ∂ + ∂12,

4z2 = z − z12 + 2z23 + z34, ∂2 = ∂ − ∂12 + ∂23,

4z3 = z − z12 − 2z23 + z34, ∂3 = ∂ − ∂23 + ∂34,

4z4 = z − z12 − 2z23 − 3z34, ∂4 = ∂ − ∂34.

(4.34)

Then following the same steps, we apply (3.65a) and find out that the correlator does not

depend on z.

0 = (∂1 + ∂2 + ∂3 + ∂4) 〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉

= ∂ 〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉 , (4.35)

so that we have

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉 = δj1+j2+j3+j4=0f(z12, z23, z34). (4.36)

Apply the second Ward identity (3.65b), and substitute (4.34) to obtain

0 = (z1∂1 + z2∂2 + z3∂3 + z4∂4 + h1 + h2 + h3 + h4) 〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉

= (z12∂12 + z23∂23 + z34∂34 + h1 + h2 + h3 + h4)f(z12, z23, z34)δj1+j2+j3+j4=0. (4.37)

We skipped the steps for these substitutions as there are not any new techniques involved.

This is again a PDE but with 3 variables, so we can use method of characteristics, the same

way as in the 3-point function Section 4.1.3.

df

dt
=

∂f

∂z12

dz12

dt
+

∂f

∂z23

dz23

dt
+

∂f

∂z34

dz34

dt
, (4.38)
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so that
dz12

dt
= z12 ⇒ z12 = z12(0)e

t,

dz23

dt
= z23 ⇒ z23 = z23(0)e

t,

dz34

dt
= z34 ⇒ z34 = z34(0)e

t.

(4.39)

Then use (4.37) to obtain

df

dt
= (z12∂12 + z23∂23 + z34∂34)f

= −(h1 + h2 + h3 + h4)f(z12, z23, z34)

⇒ f(z12, z23, z34) = z−h
12 g(

z23

z12
,
z34

z12
), (4.40)

by noticing that z23
z12

and z34
z12

are constants independent of t.

Lastly, apply (3.65c) so that we have

0 = (z21∂1 + z22∂2 + z23∂3 + z24∂4 + (2h1 − j1)z1 + (2h2 − j2)z2

+ (2h3 − j3)z3 + (2h4 − j4)z4)z
−h
12 g(

z23

z12
,
z34

z12
). (4.41)

Now we can take u = z23
z12
, v = z34

z12
so that f = z−h

12 g(u, v). By using chain rule, we can find

derivatives of g with respect to zj’s.

∂g

∂z1
= −

z23

z212
∂ug −

z34

z212
∂vg,

∂g

∂z2
=
z12 + z23

z212
∂ug +

z34

z212
∂vg,

∂g

∂z3
= −

1

z12
∂ug +

1

z12
∂vg,

∂g

∂z4
= −

1

z12
∂vg.

(4.42)

Then use (3.71), which tells us j1 + j2 + j3 + j4 = 0 to simplify j1z1 + j2z2 + j3z3 + j4z4

j1z1 + j2z2 + j3z3 + j4z4 =
1

4
[j1(z + 3z12 + 2z23 + z34) + j2(z − z12 + 2z23 + z34)

+ j3(z − z12 − 2z23 + z34) + j4(z − z12 − 2z23 − 3z34)]

=
1

4
[z12(3j1 − j2 − j3 − j4) + z23(2j1 + 2j2 − 2j3 − 2j4)

+ z34(j1 + j2 + j3 − 3j4)]

= j1z12 + (j1 + j2)z23 − j4z34. (4.43)
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Now, substitute into the equation (4.41) and simplify the terms, giving us

0 = −u(1 + u)z12∂ug − v(1 + 2u+ v)z12∂vg

+ [(h1 − h2)z12 + h3(−z12 − 2z23) + h4(−z12 − 2z23 − 2z34)] g

− [(j1z12 + (j1 + j2)z23 − j4z34)] g

⇒ 0 = −u(1 + u)∂ug − v(1 + 2u+ v)∂vg + (h1 − h2 − h3 − h4 − j1)g

+ [u(−2h3 − 2h4 − (j1 + j2)) + v(−2h4 + j4)]g

= u(1 + u)∂ug + v(1 + 2u+ v)∂vg + (−h1 + h2 + h3 + h4 + j1)g

+ [u(2h3 + 2h4 + (j1 + j2)) + v(2h4 − j4)]g. (4.44)

Apply the method of characteristics once more to obtain the below solution for g,

g = uh1−h2−h3−h4+j1(1 + u)−h1+h2−h3−h4+j2

(
−
u(1 + u)

v

)2h4+j4

G

(
u(1 + u+ v)

v

)
. (4.45)

Now we have an expression containing an unknown function of ratio G. By simplifying
u(1+u+v)

v
, we can find out that G depends on a ratio of zj’s. Hence, set G = G(η), where

η = z14z23
z12z34

. We can substitute u = z23
z12
, v = z34

z12
into g.

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉

= G(η)z−h1−h2−h3−h4

12

(
z23

z12

)h1−h2−h3−h4+j1 (z13
z12

)−h1+h2−h3−h4+j2 (z23z13
z12z34

)2h4+j4

= G(η)z−h1−h2+h3−h4+j3
12 z

h1−h2−h3+h4+j1+j4
23 z

−h1+h2−h3+h4+j2+j4
13 z

−2h4−j4
34 . (4.46)

As we want to write it in terms of a products of zij’s. We guess that

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉 = H(η)
∏

a<b

z
h/3−ha−hb−αja−βjb
ab . (4.47)

Then divide the solution by (4.47), and find α and β by equating the powers of z12, z23, z34

and z14 separately,

G(η)z−h1−h2+h3−h4+j3
12 z

h1−h2−h3+h4+j1+j4
23 z

−h1+h2−h3+h4+j2+j4
13 z

−2h4−j4
34

H(η)
∏

a<b z
h/3−ha−hb−αja−βjb
ab

, (4.48)

which gives α = 1
2
, β = 1

2
. The solution for 4-point correlation function that we obtain from

the Ward identities is then

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉 = δj1+j2+j3+j4=0H(η)
∏

a<b

z
h/3−ha−hb−ja/2−jb/2
ab , (4.49)
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by including the constraint in (3.4.4) whereH(η) is an undetermined function. Then substitute

h1 = h2 = h3 = h4 = 0 so that

〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉 = δj1+j2+j3+j4=0H(η)
∏

a<b

z
−ja/2−jb/2
ab , (4.50)

which is the solution for the 4-point correlator with ghost primaries.

4.1.5 Knizhnik-Zamolodchikov Equations

The Knizhnik-Zamolodchikov (KZ) equation for an n-point correlator are derived by acting

with L−1 on φ1(z1) in the correlator〈φ1φ2 · · ·φn〉. Recall from (2.17) that the correlator be-

comes

〈L−1φ1φ2 · · ·φn〉 = 〈∂φ1φ2 · · ·φn〉 , (4.51)

which forms the LHS of the KZ equation. For the other side of the KZ, one can substitute

the mode expansion of L−1 from (3.16) such that

L−1 =
∑

m∈Z

(−1−m)βmγ1−m

⇒ L−1 |φ1〉 =
∑

m∈Z

(−1−m)βmγ−1−m |φ〉 = −γ−1β0 |φ1〉

⇒ 〈L−1φ1φ2 · · ·φn〉 = −〈(γ−1β0φ1)φ2 · · ·φn〉 , (4.52)

as other modes annihilate the ghost primaries. β0 acting on φ1(z1) is a primary field as well,

but the additional γ−1 makes γ−1β0φ1(z1) a secondary field following from Fig. 3.2. This forms

the RHS of the KZ equation. Combining (4.51) and (4.52) gives us the KZ equation as

〈∂φ1φ2 · · ·φn〉 = −〈(γ−1β0φ1)φ2 · · ·φn〉 . (4.53)

Substituting the solutions derived from the Ward identities to the LHS, and apply Cauchy

integral theorem on the RHS may provide us with some new information about the constants

in 2-point and 3-point correlators, and help us solve for the constant function g(η) in (4.50).

Remark that this is not the only form of the KZ equation as we can also act with L−1 on

other fields to obtain the KZ as other forms. However, the equations appear to have the same

solutions since all of the fields are ghost primaries here, while in Section 4.1 with primary

fields involved, different KZ equations may provide us with different information.

Now with the KZ equation of ghost primaries introduced, we can start to simplify the

RHS of (4.53). Apply Cauchy integral theorem and then use the fact that a contour around

z1 is the same as a very large contour around all zi minus contours around the other zi, for
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i = 2, 3, . . . , n, written as ∮

z1

=

∮

∞

−

n∑

i=2

∮

zi

. (4.54)

Then RHS of (4.53) becomes

−〈(γ−1β0φ1)φ2 · · ·φn〉 = −

∮

z1

〈
γ(z)(β0φ1)(z1)

(z − z1)2
φ2 · · ·φn

〉
dz

2πi

= (−

∮

∞

+
n∑

i=2

∮

zi

)

〈
(β0φ1)(z1)

(z − z1)2
φ2 · · · γ(z)φi · · ·φn

〉
dz

2πi
. (4.55)

Recall that we had γ(z)φℓ(w) ∼ 0 for ℓ ≤ 0, meaning that γ(z)φi(zi) always has a regular

OPE. Additionally, by intuition the infinite integral does not contribute here, but we will

prove this formally in Section 4.2.1. Hence the RHS of the KZ equation gives us that

⇒ −〈(γ−1β0φ1)φ2 · · ·φn〉 = 0. (4.56)

This is a general result for any n-point correlator. Then, compute the LHS of the KZ equation

for 1-point, 2-point, 3-point and 4-point functions by substituting the results derived from the

Ward identities.

Firstly, the KZ equation for 1-point correlator does not give us any new information as the

first Ward identity (3.65a) already tells us that ∂ 〈φ1〉 = 0. Then LHS is 0, agreeing with the

RHS.

For the 2-point correlator, differentiate (4.10) with respect to z1 gives zero as the solution

is a constant.

〈∂φ1φ2〉 = ∂1(C12δh1=h2=j1=j2=0) = 0. (4.57)

Hence, once again, the KZ equation does not tell us anything new as we already knew that

the solution of the 2-point correlation function is a constant.

Now, differentiate the 3-point correlator with respect to z1, we can obtain

〈φ1(z1)φ2(z2)φ3(z3)〉 = ∂1

[
C123δj1+j2+j3=0

z
j3
12z

j1
23z

j2
13

]

=

(
−j3
z12

+
−j2
z13

)
C123δj1+j2+j3=0

z
j3
12z

j1
23z

j2
13

, (4.58)

which is the LHS of the KZ equation, and equating with the RHS gives us

(
−j3
z12

+
−j2
z13

)
C123δj1+j2+j3=0

z
j3
12z

j1
23z

j2
13

= 0. (4.59)

To satisfy this equation, we must have j1 = j2 = j3 = 0 or C123 = 0. Hence, KZ tells us
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that the solution of 3-point correlator can only be nonzero when φ1(z1), φ2(z2), φ3(z3) are all

vacuums.

Lastly, substituting the 4-point correlator into the LHS of the KZ equation tells us

〈∂φ1φ2φ3φ4〉 = ∂1

[
δj1+j2+j3+j4=0g(η)

∏

a<b

z
−ja/2−jb/2
ab

]

=

(
−j1 − j2

2z12
+

−j1 − j3

2z13
+

−j1 − j4

2z14

)
δj1+j2+j3+j4=0g(η)

∏

a<b

z
−ja/2−jb/2
ab . (4.60)

Again, to satisfy with the RHS of (4.53) and obtain nonzero solutions, we need

j1 + j2 = 0, j1 + j3 = 0, j1 + j4 = 0, j1 + j2 + j3 + j4 = 0. (4.61)

By combining the equations, we will have j1 = j2 = j3 = j4 = 0. Same as previous results, all

of the ghost primaries in the correlator are vacuums for nonzero solutions, and the solution is

a constant.

Therefore, we can conclude that the n-point correlation functions of ghost primaries are

zero unless the fields are all vacuums, which is not an exciting result. Hence, we want to twist

at least one field by acting with σℓ on the field to have a primary field, and investigate what

the solutions can be.

4.2 Fields with Spectral Flow

Now we start to compute the solutions of the n-point correlators involving one primary field

φℓ
n(z), while the others remain as ghost primaries φi(zi), for i = 1, 2, . . . , n− 1, written as

〈
φ1(z1)φ2(z2) · · ·φn−1(zn−1)φ

ℓ
n(zn)

〉
. (4.62)

One thing makes life easier is that the Ward identities are the same for correlators of any

primary fields with ℓ ∈ Z, as the ghost primaries are special form of the primaries with ℓ = 0.

We can use the results from Section 4.1 directly and only rederive the KZ equations.

4.2.1 Essential Steps Towards KZ Equations

Techniques from Section 3.1.3 can be used to derive the following results. Recall from (3.26)

and (3.27) that the charge and conformal dimension of a primary field are

jφℓ = jφ − ℓ, hφℓ = ℓ(j + ℓ)−
1

2
ℓ(ℓ+ 1). (4.63)

43



We can then act with L−1 on the primary field define in (3.29) to obtain

L−1

∣∣φℓ
〉
=
∑

m∈Z

(−1−m)βmγ−1−m

∣∣φℓ
〉

= ℓβ−ℓ−1γℓ
∣∣φℓ
〉
+ (−1 + ℓ)γℓ−1β−ℓ

∣∣φℓ
〉
, (4.64)

where remind from (2.17) that L−1

∣∣φℓ
〉
corresponds to

∣∣∂φℓ
〉
. Then for J−1 acting on the

primary field, we have

J−1

∣∣φℓ
〉
=
∑

m∈Z

βmγ−1−m

∣∣φℓ
〉

= β−ℓ−1γℓ
∣∣φℓ
〉
+ γℓ−1β−ℓ

∣∣φℓ
〉
. (4.65)

This will be applied in our later derivations for the KZ equation.

Consider back to our large contour in (4.54), we need to check when it does not contribute.

We are now choosing a mode Am of a general field A(z), that is acting on a primary field

φℓ
n(zn), the Cauchy integral theorem then gives

〈
Ω, φ1(z1)φ2(z2) · · ·Amφ

ℓ
n(zn)Ω

〉
=

∮

zn

〈
Ω, φ1(z1)φ2(z2) · · ·A(z)φ

ℓ
n(zn)Ω

〉
(z − zn)

m+hA−1 dz

2πi
,

(4.66)

where hA is the conformal weight of A(z). We can then replace the contour as follows:

∮

zn

=

∮

∞

−
n−1∑

i=1

∮

zi

. (4.67)

To check if the infinity contour contributes, we expand A(z) as A(z) =
∑

k Akz
−k−hA and set
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w = 1
z
to evaluate the contour around 0

∮

∞

〈
Ω, A(z)φ1(z1)φ2(z2) · · ·φ

ℓ
n(zn)Ω

〉
(z − zn)

m+hA−1 dz

2πi

=

∮

∞

∑

k

〈
Ω, Akz

−k−hAφ1(z1)φ2(z2) · · ·φ
ℓ
n(zn)Ω

〉
(z − zn)

m+hA−1 dz

2πi

=

∮

∞

∑

k

〈
A

†
kΩ, φ1(z1)φ2(z2) · · ·φ

ℓ
n(zn)Ω

〉
(z − zn)

m+hA−1z−k−hA
dz

2πi

=

∮

∞

∑

−k≤−h
A†

〈
(A†)−kΩ, φ1(z1)φ2(z2) · · ·φ

ℓ
n(zn)Ω

〉
z−k−hA(z − zn)

m+hA−1 dz

2πi

=

∮

0

∑

−k≤−h
A†

〈
(A†)−kΩ, φ1(z1)φ2(z2) · · ·φ

ℓ
n(zn)

〉
wk+hA−2(

1

w
− zn)

m+hA−1 dw

2πi

=

∮

0

∑

k≥h
A†

〈
(A†)−kΩ, φ1(z1)φ2(z2) · · ·φ

ℓ
n(zn)

〉
(1− znw)

m+hA−1wk−m−1 dw

2πi
. (4.68)

In the ghost system, Ak can be γk, βk or Jk, which annihilates the vacuum for any k < −hA.

Thus the nonzero terms remaining for (A†)−k are −k ≤ −hA† , explaining the second last

step. We can also remark that changing the integral from infinity to 0 flips the contour from

anticlockwise to clockwise. The last step is then positive. After adjusting the expression, we

obtain the power of w to be k − m − 1. As we do not want the integral to contribute, we

need the term to be regular at w = 0, which means k −m − 1 ≥ 0 is required, and from the

summation that k ≥ hA† also needs to be satisfied.

Therefore, a constraint for m can be obtained by substituting k in:

m ≤ k − 1 ∀k ≥ hA†

⇒ m ≤ hA† − 1, (4.69)

by taking the minimum of k. We can say that for these values of m, (4.68) vanishes.

Now let Am be γm or βm to see which modes for each operator are allowed to use such

trick. When Am = βm:

A†
m = β†

m = γ−m ⇒ m ≤ −1. (4.70)

As hA† = 0 being γ has conformal weight 0. When Am = γm:

A†
m = γ†m = β−m ⇒ m ≤ 0. (4.71)

As hA† = 1 being β has conformal weight 1.

Hence, the contour around infinity does not contribute except when mode index is negative
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for β and non-negative for γ, when the mode acts on a primary field. This has to be checked

every time we apply such trick.

4.2.2 Knizhnik-Zamolodchikov Equations

Now we can derive a general form of the KZ equation for the n-point correlator of primary

fields in (4.62). There are two methods to be used in deriving the KZ equation. Method 1 is

the same as in Section 4.1.5, with L−1 acting on φ1(z1), so we have the KZ equation written

as 〈
∂φ1(z1)φ2(z2) · · ·φ

ℓ
n

〉
= −

〈
γ−1(β0φ1)φ2 · · ·φ

ℓ
n(zn)

〉
. (4.72)

Then we compute the RHS again using the trick from (4.54)

RHS = −

∮

z1

〈
γ(z)(β0φ1)

(z − z1)2
φ2 · · ·φ

ℓ
n

〉
dz

=
n∑

i=2

∮

zi

〈
(β0φ1)

(z − z1)2
φ2 · · · γ(z)φi · · ·φ

ℓ
n

〉
dz

=

∮

zn

1

(z − z1)2

〈
(β0φ1)φ2 · · ·φn−1

[
γℓφ

ℓ
n

(z − zn)ℓ
+ · · ·+

γ1φ
ℓ
n

z − zn

]〉
. (4.73)

As γ is with mode −1 and based on (4.71), the contour around infinity does not contribute.

Remind from (3.37) that γ(z)φi(z) are regular for i = 2, 3, . . . , n − 1, so the only term that

contributes is when γ(z) acts on φℓ
n. Then Fourier expand γ(z) and apply the definition of

(3.29) that γn annihilates φℓ
n for n > ℓ. Hence we obtain the expression of the KZ in method

1.

Additionally, recall from (3.37) that γ(z)φℓ(w) is regular for ℓ ≤ 0, so that RHS of the KZ

equation gives zero as well for ℓ < 0, and the correlators will give constant solutions for the

non contributing infinite contour. We will then focus on ℓ > 0 when we solve for the 2-point

and 3-point correlators.

Method 2 is to apply L−1 on the field with spectral flow, which is always the last field

φℓ
n(zn) for an n-point correlator here. Hence the KZ equation becomes

〈
φ1(z1)φ2(z2) · · · ∂φ

ℓ
n(zn)

〉
=
〈
φ1(z1)φ2(z2) · · · (ℓβ−ℓ−1γℓ + (−1 + ℓ)γℓ−1β−ℓ)φ

ℓ
n(zn)

〉
, (4.74)

where we have applied (4.64) for the RHS. Then the RHS can be further written as

RHS =

∮

zn

(
ℓ

(z − zn)ℓ+1

〈
φ1φ2 · · · β(z)(γℓφ

ℓ
n)
〉
+

(−1 + ℓ)

(z − zn)−ℓ+2

〈
φ1φ2 · · · γ(z)(β−ℓφ

ℓ
n)
〉) dz

2πi
.

(4.75)

However, γℓ−1 will have a positive index when ℓ > 1, meaning that the infinity contour can
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not be cancelled based on our result in (4.71). As we want this method to be workable for all

ℓ > 0, we will modify the KZ equation in (4.74). By observing (4.65), the expression

L−1 − (ℓ− 1)J−1, (4.76)

happens to cancel out the term that contains γ−ℓ−1 in (4.64). We can then obtain a modified

method 2 with the KZ equation, with the RHS being

RHS =
〈
φ1 · · ·φn−1L−1φ

ℓ
n

〉
− (ℓ− 1)

〈
φ1 · · ·φn−1J−1φ

ℓ
n

〉

=
〈
φ1 · · ·φn−1(ℓβ−ℓ−1γℓ + (−1 + ℓ)γℓ−1β−ℓ − (ℓ− 1)β−ℓ−1γℓ − (ℓ− 1)β−ℓγℓ−1)φ

ℓ
n

〉

=
〈
φ1 · · ·φn−1β−ℓ−1(γℓφ

ℓ
n)
〉
. (4.77)

The KZ equation is then

〈
φ1φ2 · · · ∂φ

ℓ
n

〉
− (ℓ− 1)

〈
φ1φ2 · · · J−1φ

ℓ
n

〉
=
〈
φ1 · · ·φn−1β−ℓ−1(γℓφ

ℓ
n)
〉
. (4.78)

However, we do not have the corresponding state for J−1φ
ℓ
2. We need to compute the term by

using the Cauchy integral theorem

〈
φ1 · · · J−1φ

ℓ
n

〉
=

∮

zn

〈
φ1J(z)φ

ℓ
n

〉

z − zn

dz

2πi
= −

n−1∑

i=1

∮

zi

〈
φ1 · · · J(z)φi · · ·φ

ℓ
n

〉

(z − zn)

dz

2πi

= −

n−1∑

i=1

∮

zi

ji
〈
φ1 · · ·φ

ℓ
n

〉

(z − zn)(z − zi)

dz

2πi
, (4.79)

by recalling from (3.17) that J(z)φ(w) ∼ jφ(w)
z−w

. Hence, the LHS becomes

LHS =
〈
φ1φ2 · · · ∂φ

ℓ
n

〉
+ (ℓ− 1)

n−1∑

i=1

∮

zi

ji
〈
φ1 · · ·φ

ℓ
n

〉

(z − zn)(z − zi)

dz

2πi
. (4.80)

Then apply the trick (4.54) on RHS again, where now the large contour vanishes according to

(4.70), as the modes of β is −ℓ− 1, which is negative for ℓ > 0:

RHS =

∮

zn

〈
φ1 · · · β(z)(γℓφ

ℓ
n)
〉
(z − zn)

−ℓ−1 dz

2πi

= −
n−1∑

i=1

∮

zi

〈
φ1 · · · β(z)φi · · · (γℓφ

ℓ
n)
〉
(z − zn)

−ℓ−1 dz

2πi

= −
n−1∑

i=1

∮

zi

〈
φ1 · · · β0φi · · · (γℓφ

ℓ
n)
〉
(z − zn)

−ℓ−1 dz

2πi
, (4.81)
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where we have used the OPE for β(z)φℓ(w) from (3.36).

We will then use method 1 and modified method 2 to solve for the 2-point and 3-point

correlators.

4.2.3 2-Point Function

The 2-point correlator with the second field φ2(z2) being spectral flowed is written as

〈
φ1(z1)φ

ℓ
2(z2)

〉
. (4.82)

Define φ1(z1) to have the charge and conformal dimension (j1, h1 = 0), where the conformal

dimension of φ1(z1) is derived from (3.32) for ℓ = 0. Also, we define φℓ
2(z2) to have the charge

and conformal dimension (j2, h2), where h2 is given in (4.63). Apply method 1, we can first

use (4.10) to derive the LHS of the KZ equation

LHS = ∂1

[
C12δj1+j2=0δh1−h2=j1

(z1 − z2)h1+h2

]
=

−h2C12δj1+j2=0δ−h2=j1

zh2+1
12

, (4.83)

by recalling that z12 = z1 − z2.

Then for the RHS, we have

RHS =

∮

zn

1

(z − z1)2

〈
(β0φ1)

[
γℓφ2

(z − zn)ℓ
+ · · ·+

γ1φ2

z − zn

]〉
. (4.84)

As the integral depends on ℓ, we will try with different values of ℓ. Additionally, as we stated

in Section 4.2.2, the RHS is zero for ℓ ≤ 0, so we will discuss the cases for ℓ > 0 only.

First, consider ℓ = 1, and apply (4.63) to obtain h2 = j2. Then we can express h2 in terms

of j2 and (4.83) becomes

LHS =
−j2C12δj1+j2=0δ−h2=j1

z
j2+1
12

. (4.85)

Then RHS of the KZ equation is

RHS =

∮

z2

1

(z − z1)2(z − z2)

〈
(β0φ1)(γ1φ

1
2)
〉 dz
2πi

=
1

(z2 − z1)2
〈
(β0φ1)(γ1φ

1
2)
〉
. (4.86)

Now, we have two new primary fields in RHS, (β0φ1)(z1) and (γ1φ
1
2)(z2), and denote the

charges and conformal dimensions by (j′1, 0), (j
′
2, h

′
2) respectively. To find the charges for these

fields, we can use the fact in Section 3.1.1 that β(z) has a charge of 1, and γ(z) has the charge

-1, so j′1 = j1 + 1, j′2 = j2 − 1. Additionally, the conformal dimension of (γ1φ
1
2)(z2) becomes

h′2 = j′2 = j2 − 1. Then we obtain the charges and conformal dimensions of the two fields as
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being (j1 + 1, 0) and (j2 − 1, j2 − 1). Hence, the RHS follows by substituting this data into

(3.50)

RHS =
1

(z1 − z2)2
C ′

12δj′1+j′
2
=0

(z1 − z2)j2−1

=
C ′

12δj1+j2=0

(z12)j2+1
, (4.87)

where C ′
12 is another constant that is different from C12 in (4.85). Lastly, equating LHS and

RHS gives us a KZ equation for the 2-point function:

−(j2 − 1)C12

z
j2+1
12

=
C ′

12

(z12)j2+1
. (4.88)

Therefore, the 2-point correlation function with ℓ = 1 has only the zero solution unless C ′
12 =

−(j2 − 1)C12, so the 2-point correlator function 〈φ1φ
1
2〉 need not to be constants.

Next, we can try to apply method 1 to compute the KZ equation for ℓ = 2. From (4.63)

we have h2 = 2j2 + 1 for ℓ = 2, and method 1 gives:

〈
∂φ1φ

2
2

〉
=

∮

z2

1

(z − z1)2

〈
(β0φ1)

(
γ2φ

2
2

(z − z2)2
+

γ1φ
2
2

z − z2

)〉
dz

2πi
. (4.89)

Notice that the second term contains a non-primary field with (γ1φ
2
2)(z1), the infinite integral

is then non-zero as γ has index 1, and we do not have the technique to solve it for now.

Alternatively, we can try to apply the modified method 2 in Section 4.2.2, starting by

checking if ℓ = 1 agrees with the result from method 1. From (4.80), the second term of the

LHS of the KZ equation vanishes, so we have

LHS = ∂2

[
C12δj1+j2=0δ−h2=j1

(z1 − z2)h2

]
=
j2C12δj1+j2=0

z
j2+1
12

. (4.90)

From what we derived in (4.78),

RHS = −

∮

z1

β(z)
〈φ1(γ1φ

1
2)〉

(z − z2)2
dz

2πi
= −

1

(z1 − z2)2
〈
(β0φ1)(γ1φ

1
2)
〉
= −

C ′
12δj1+j2=0

z
j2+1
12

. (4.91)

We can see that power of z12 in the RHS in the modified method 2 is the same as in method

1. Equating LHS and RHS gives us

j2C12δj1+j2=0

z
j2+1
12

= −
C ′

12δj1+j2=0

z
j2+1
12

, (4.92)

which agrees with (4.88) for having nonzero solutions when C ′
12 = j2C12 is satisfied. Hence,
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both methods give us the same result, and then we can use the modified method 2 to compute

for ℓ = 2. From (4.80) we have

LHS = ∂2
〈
φ1φ

2
2

〉
+ (2− 1)

∮

z1

j1 〈φ1φ
2
2〉

(z − z2)(z − z1)

dz

2πi

=
−h2C12δj1+j2=0

zh2+1
12

+
j1C12δj1+j2=0

zh2+1
12

. (4.93)

Then use (4.81) so that

RHS = −

∮

z1

〈
(β0φ1)(γℓφ

ℓ
3)
〉

(z − z2)ℓ+1(z − z1)

dz

2πi
=

−C ′
12δj1+j2=0

z
ℓ+h′

2
+1

12

, (4.94)

by substituting (4.10) with conformal charges and weights (j′1 = j1+1, h1 = 0), (j′2 = j2−1, h′2).

As we have h2 = 2j2 + 1 from (4.63), and the LHS and RHS of the KZ equation are

LHS =
(−2j2 − 1 + j1)C12δj1+j2=0

z
2j2+2
12

, RHS =
−C ′

12δj1+j2=0

z
2j2+4
12

. (4.95)

Equating LHS and RHS does not give a non-zero solution as the powers of z12 are different.

The only possibility is when C12 = C12′ = 0. With the same idea, the powers of z12 do not

match in the KZ equation for ℓ > 2, all of them give solutions as zeros. As a matter of fact,

if we combine the deltas δj1+j2=0 and δh1−h2=j1 in the result from the Ward identities (4.10),

we can find out that h2 = j2 must be true for LHS of the KZ equation (4.83) to be non-zero,

given that h1 = 0. Hence, the only 2-point correlator that has non trivial solutions is when

ℓ = 1.

4.2.4 3-Point Function

Based on our previous experience, we can use method 1 for the ℓ = 1 case to find the solutions

for 3-point correlator
〈
φ1(z1)φ2(z2)φ

ℓ
3(z3)

〉
as well, and the modified method 2 to check for

ℓ = 1 and derive for ℓ > 1.

First with method 1, consider for ℓ = 1, we have h2 = j2, apply (4.30) and the LHS of the

KZ equation is

LHS = ∂1

[
C123δj1+j2+j3=0

z
j3+j1
23 z

j3+j2
13

]
=

−(j3 + j2)C123δj1+j2+j3=0

z
j3+j1
23 z

j3+j2+1
13

. (4.96)
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Then, we compute the RHS as being

RHS =
〈
∂φ1(z1)φ2(z2)φ

1
3(z3)

〉
=

∮

z3

1

(z − z1)2(z − z3)

〈
(β0φ1)φ2(γ1φ

1
3)
〉

=
1

z213

〈
(β0φ1)φ2(γ1φ

1
3)
〉
=

1

z213

C ′
123δj1+j2+j3=0

z
j3+j1
23 z

j3+j2−1
13

, (4.97)

with charges and conformal dimensions of the three primary fields (β0φ1)(z1), φ2(z2), (γ1φ
1
3)(z3)

being (j′1 = j1 + 1, 0), (j2, 0), (j
′
3 = j3 − 1, h′3 = j3 − 1) respectively. Equating the RHS and

LHS to find the relations between the constants:

−(j3 + j2)C123δj1+j2+j3=0

z
j3+j1
23 z

j3+j2+1
13

=
C ′

123δj1+j2+j3=0

z
j3+j1
23 z

j3+j2+1
13

. (4.98)

The powers of the variables are the same, so the correlator has non-zero solutions when

C ′
123 = −(j3 + j2)C123.

After that, we will apply modified method 2 as shown in (4.78) and compute the LHS and

RHS of the KZ equation for ℓ > 0. The LHS can be computed by using (4.80) again

LHS =
〈
φ1φ2∂φ

ℓ
3

〉
+ (ℓ− 1)

(∮

z1

j1
〈
φ1φ2φ

ℓ
3

〉

(z − z3)(z − z1)

dz

2πi
−

∮

z2

j2
〈
φ1φ2φ

ℓ
3

〉

(z − z3)(z − z2)

dz

2πi

)

=
〈
φ1φ2∂φ

ℓ
3

〉
+
j1
〈
φ1φ2φ

ℓ
3

〉

z13
+
j2
〈
φ1φ2φ

ℓ
3

〉

z23
. (4.99)

Hence, we can obtain the LHS by substituting the result derived from the Ward identities

(4.30):

LHS = (
h3 + j2 + (ℓ− 1)j1

z13
+
h3 + j1 + (ℓ− 1)j2

z23
)

C123δj1+j2+j3=0

z
−h3+j3
12 z

h3+j2
13 z

h3+j1
23

, (4.100)

with conformal charges and dimensions of φ1, φ2, φ3 being (j1, 0), (j2, 0), (j3, h3) respectively.

While the RHS is obtained from (4.81) such that

RHS = −

∮

z1

〈
β0φ1φ2(γℓφ

ℓ
3)
〉

(z − z3)ℓ+1(z − z1)

dz

2πi
−

∮

z2

〈
φ1(β0φ2)(γℓφ

ℓ
3)
〉

(z2 − z3)ℓ+1(z − z2)

dz

2πi

=
−C ′

123δj1+j2+j3=0

z
−h′

3
+j3−1

12 z
h′
3
+j2+ℓ+1

13 z
h′
3
+j1+1

23

−
C ′′

123δj1+j2+j3=0

z
−h′

3
+j3−1

12 z
h′
3
+j2+1

13 z
h′
3
+j1+ℓ+1

23

, (4.101)

by applying (4.30) again with conformal charges and dimensions (j1 +1, 0), (j2, 0), (j3 − 1, h′3)

respectively for the first term and (j1, 0), (j2 + 1, 0), (j3 − 1, h′3) respectively for the second

term. According to our previous result (4.63), which is h3 = ℓ(j3 + ℓ) − 1
2
ℓ(ℓ + 1), we can

further express h′3 in terms of h3 as h′3 = ℓ(j3 − 1 + ℓ) − 1
2
ℓ(ℓ + 1) = h3 − ℓ. Then the RHS
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can be written in terms of h3:

RHS =
−C ′

123δj1+j2+j3=0

z
−h3+j3−1+ℓ
12 z

h3+j2+1
13 z

h3+j1+1−ℓ
23

−
C ′′

123δj1+j2+j3=0

z
−h3+j3−1+ℓ
12 z

h3+j2+1−ℓ
13 z

h3+j1+1
23

=
δj1+j2+j3=0

z
−h3+j3
12 z

h3+j2
13 z

h3+j1
23

(
−C ′

123

z−1+ℓ
12 z13z

1−ℓ
23

+
−C ′′

123

z−1+ℓ
12 z1−ℓ

13 z23
). (4.102)

To check if this method works in the 3-point correlator, we can check again with ℓ = 1 by

substituting h3 = j3 in the equations,

LHS = (
j3 + j2

z13
+
j3 + j1

z23
)
C123δj1+j2+j3=0

z012z
j3+j2
13 z

j3+j1
23

RHS =
δj1+j2+j3=0

z
−j3+j3
12 z

j3+j2
13 z

h3+j1
23

(
−C ′

123

z012z13z
0
23

+
−C ′′

123

z012z
0
13z23

). (4.103)

When equating LHS and RHS, we obtain the two relations between the constants:

C ′
123 = −C123(j3 + j2) = C123j1

C ′′
123 = −C123(j3 + j1) = C123j2. (4.104)

Hence, the 3-point correlator may have non-zero solutions for ℓ = 1, which agrees with method

1.

Now can work on the cases of larger ℓ, for instance when ℓ = 2, by substituting h3 = 2j3+1

into LHS and RHS to obtain

LHS = (
2j3 − 1 + j2 + j1

z13
+

2j3 − 1 + j1 + j2

z23
)

C123δj1+j2+j3=0

z
−j3−1
12 z

2j3+j2+1
13 z

2j3+j1+1
23

= (
j3 − 1

z13
+
j3 − 1

z23
)

C123δj1+j2+j3=0

z
−j3−1
12 z

2j3+j2+1
13 z

2j3+j1+1
23

RHS = −
δj1+j2+j3=0

z
−j3−1
12 z

2j3+j2+1
13 z

2j3+j1+1
23

(C ′
123

z23

z13z12
+ C ′′

123

z13

z23z12
)

= −
δj1+j2+j3=0

z
−j3−1
12 z

2j3+j2+1
13 z

2j3+j1+1
23

(C ′
123

z12 − z13

z13z12
+ C ′′

123

z12 + z23

z23z12
)

= −
δj1+j2+j3=0

z
−j3−1
12 z

2j3+j2+1
13 z

2j3+j1+1
23

(C ′
123(

1

z13
−

1

z12
) + C ′′

123(
1

z23
+

1

z12
)). (4.105)

Matching the common powers will give us the relations between the constants as

C ′
123 = −C123(j3 − 1)

C ′′
123 = C123(j3 − 1)

C ′
123 + C ′′

123 = 0. (4.106)
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Therefore, a 3-point correlator with ℓ = 2 may have non-zero solutions if the constants follow

the above constraints.

Furthermore, we can consider the case for ℓ = 3, where h3 = 3j3. Then LHS is written as

LHS = (
3j3 + j2 + 2j1

z13
+

3j3 + j1 + 2j2
z23

)
C123δj1+j2+j3=0

z
−2j3
12 z

3j3+j2
13 z

3j3+j1
23

, (4.107)

RHS =
δj1+j2+j3=0

z
−2j3
12 z

3j3+j2
13 z

3j3+j1
23

(
−C ′

123

z212z13z
−2
23

+
−C ′′

123

z212z
−2
13 z23

)

=
δj1+j2+j3=0

z
−h3+j3
12 z

h3+j2
13 z

h3+j1
23

[−C ′
123(

z13

z212
−

2

z12
+
z212
z13

)− C ′′
123(

z23

z212
+

2

z12
+
z212
z23

)]. (4.108)

The powers of the terms on RHS do not match with LHS, which means the only solution is

when C ′
123 = C ′′

123 = 0. The same idea applies for larger ℓ, that means for ℓ > 2 in 3-point

function, there are no terms in RHS that can be expressed in terms of 1
z13

and 1
z23

, thus all of

them would give zero solutions.

To conclude, we can make connections with the fusion rules derived in [RW14]. Following

from Corollary 10 in [RW14], we can decompose primary fields and descendants of primary

fields, defined in Section 3.2, into a sum of a generic OPE. Ignoring the descendants, this gives

the fusion rule

φ1 × φℓ
2 = φℓ

3 + φℓ−1
3 , (4.109)

where j3 = −j1 − j2. Hence here, an OPE for the 3-point correlator can be obtained as being

〈
φj1φj2φ

ℓ
j3

〉
∼
〈
φj1φ

ℓ
j2+j3

〉
+
〈
φj1φ

ℓ−1
j2+j3

〉
. (4.110)

Recall from Section 4.1.2 that 〈φj1φj2〉 only has non-zero solutions for ℓ = 1. Substituting

into (4.110) gives us that the 3-point correlator is non-zero when ℓ = 1, where the first term

does not vanish, or ℓ = 2, where the second term does not vanish. Therefore, the results we

derived in this chapter agree with the fusion rules.
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Chapter 5

Conclusion

In this thesis, we started by introducing some fundamental information in Chapter 2 about

general conformal field theory, including Lie algebras, representations and conformal trans-

formations. Then we investigated how modes act on a state, which corresponds to a field.

Primary fields are also introduced with an example of the energy-momentum tensor.

After gaining the necessary knowledge, we established the ghost CFT and discussed the

ghost algebras in Chapter 3. With the spectral flow automorphisms introduced and the pri-

mary fields defined, we were able to generate modules, including a Verma module, where the

only highest weight state was the vacuum, relaxed Verma modules, where the states correspond

to ghost primaries, and spectral flowed relaxed Verma modules, with states corresponding to

primary fields. We were interested in the last two modules. In addition, we found out that

the usual Ward identities do not apply in ghost CFT because L†
n 6= L−n in general, so that

we derived new constraints for the correlators, which were checked to be applicable.

In Chapter 4, we first tried to solve for the correlators with ghost primaries. After sub-

stituting the new Ward identities and solving for the differential equations, we were able to

obtain some general solutions containing unknown constants for 1-point, 2-point and 3-point

functions, while an unknown constant function for 4-point function. However, a version of the

Knizhnik-Zamolodchikov (KZ) equation told us the solutions are all constants, and are only

non-zero when the fields are vacuums. This forced us to twist one of the field by acting with

the spectral flow σℓ and rederive the correlations. Luckily, the solutions from the Ward identi-

ties are general, which means they are true for correlators of primary fields. After applying for

the KZ equation, we discovered that the 2-point correlator is non-zero only when the module

is twisted by 1, i.e. ℓ = 1. The 3-point correlator is non-zero for ℓ = 1 and ℓ = 2. Then we

concluded the thesis by confirming that these results agree with the fusion rules in [RW14]

Further research can be investigating the 4-point correlator
〈
φ1(z1)φ2(z2)φ3(z3)φ

ℓ
4(z4)

〉
in

(4.49). By applying the KZ equation, the unknown function in the correlator is expected to

be solved. In fact, [RW14] shows that 4-point correlator can give a logarithmic solution, which
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results in the ghost CFT being a logarithmic CFT. In addition, the solution can be substituted

back into the 3-point correlator to deduce the values of the constant C123.
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