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Abstract

In this thesis, we will start with a discussion of the bosonic string theory. Although this theory is not
realistic, many techniques which will be developed there are very useful for the superstirng theory as
well. After defining the bosonic string action (Polyakov action), we will study symmetries for this action
and then, conserved quantities for the theory. These will be used for quantizing the theory. Calculating
its mass spectrum, we will see that the bosonic string theory has unphysical ghost states. However, these
states can be removed at the cost of fixing the spacetime dimension at 26.

Next, we will see the bosonic string theory in a different point of view: conformal field theories.
Finally, we will discuss the RNS superstring theory along almost the same way as we do in the bosonic

string theory and we will see that there are two types of superstring theories: the type IIA and IIB (of
course, there are other types as well). We will end with a discussion of T -duality, which relates the type
IIA theory to the type IIB theory and vice versa.
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Chapter 1

Introduction

String theory arose at the end of sixties in an attempt to describe the theory of strong interactions (The
Veneziano formula by Veneziano in 1969). Therewith, Nambu and Susskind realized that the fundamental
dynamical object from which the Veneziano formula can be derived is a relativistic string, which is an
extended one-dimensional line or loop.

However, further investigations revealed that it was difficult to treat string theory as the theory of
strong interactions. The first difficulty is the existence of a critical dimension. The construction of the
quantum mechanics of relativistic strings leads to mathematically consistent theory if and only if the
spacetime dimension is 26, which is called the critical dimension. The second difficulty was the that
string theory predicts the existence of a massless spin-2 particle which is absent in the hadronic world.

In 1974, a proposal to change the view on string theory was made (by Scherk and Schwarz). Their
suggestion was to regard the massless spin-2 particle as the quantum of the gravitational interaction (the
graviton). Thus, according to their point of view, string theory could give the unifying description of all
the particles and matter forces including gravity.

Even if we accept that string theory can be defined in the unusual 26-dimensional spacetime, we
have another problem. Such a string does not include fermionic degrees of freedom in the theory and
it predicts the existence if a particle with negative mass squared, called tachyon, which is known as a
source of instability and its existence implies that the theory is not well-defined. String theory had faced
the problematic features of critical dimensions, absence of fermion and existence of tachyon.

However, by the discovery of supersymmetry, this situation of string theory greatly changed. Super-
symmetry is a symmetry between bosons and fermions (by Wess and Zumino 1974). All universe is made
of two fundamental types of particles: bosons and fermions. Bosons mediate interactions of the matter
particles, which are fermions. Many physicists hope that supersymmetry could provide an underlying
principle for unification of all interactions.

The incorporation of supersymmetry in string theory was achieved in 1971 by Ramond and shortly
after, by Neveu and Schwarz. This was dawn of the RNS (Ramond-Neveu-Schwarz) superstring. This
theory is consistent in 10 dimensions ,instead of 26 for bosonic strings. In 1977, Gliozzi, Scherk and Olive
realized that further conditions (the GSO projection) should be imposed on the spectrum of the RNS
string which leads to the removal of tachyon and, as a result, to the spacetime supersymmetry. It also
turned out that the GSO projection can be imposed in two different ways, which produce two different
types of superstrings, called the type IIA and type IIB. However, it was priven that these two superstring
theory are equivalent to each other by T -duality transformation.

In this thesis, we will start with a discussion of the bosonic string theory. Although this theory is
not realistic, many techniques which will be developed there are very useful for the superstirng theory as
well. After defining the bosonic string action (Polyakov action), we will study symmetries for this action
and then, conserved quantities for the theory. These will be used for quantizing the theory. Calculating
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4 CHAPTER 1. INTRODUCTION

its mass spectrum, we will see that the bosonic string theory has unphysical ghost states. However, these
states can be removed at the cost of fixing the spacetime dimension at 26.

Next, we will see the bosonic string theory in a different point of view: conformal field theories.
Finally, we will discuss the RNS superstring theory in almost the same way as we do in the bosonic

string theory and we will see that there are two types of superstring theories: the type IIA and IIB (of
course, there are other types as well). We will end with a discussion of T -duality, which relates the type
IIA theory to the type IIB theory and vice versa.



Chapter 2

Classical Bosonic String Theory

2.1 Classical Action for Relativistic Point Particles

In classical physics, the evolution of a theory is described by its field equations, or its equations of motion.
When we have a point particle, the field equations for spacetime coordinates of the particle X(t) results
from extremizing the action, which is given by

S =

∫
dtL, (2.1)

where L = T − V = 1
2mẊ(t)2 − V (X(t)). By setting the variation of S with respect to X(t) equal to

zero, we get the equations of motion for X(t).
Now, we apply this method to a relativistic point particle moving through a D-dimensional spacetime.

The relativistic action is given, in the system of natural units (c = ! = 1), by the invariant length of its
world-line,

S0 = −m
∫

ds, (2.2)

where m is the mass of the particle, which was included in order for S0 to be dimensionless. In this
equation, the line element ds is given by

ds2 = −gµν(X)dxµdxν , (2.3)

where the metric gµν , with µ, ν = 0, 1, . . . , D−1, describes the geometry of the background spacetime and
is chosen to have Minkowski signature (−,+, . . . ,+). The minus sign in front of gµν has been introduced
so that ds is real for a time-like trajectory.

If we parametrize the particle’s path (the world-line of the particle) by a real parameter τ , then we
can rewrite (2.3) as

−gµν(X)dXµdXν = −gµν(X)
dXµ

dτ

dXν

dτ
dτ2, (2.4)

which gives the following expression for the action S0

S0 = −m
∫

dτ
√
−gµν(X)ẊµẊν , (2.5)

where Ẋµ ≡ dXµ(τ)
dτ . An important property of the action is that it is independent of the choice of

parametrization (Proposition 1.1.1).

5



6 CHAPTER 2. CLASSICAL BOSONIC STRING THEORY

Proposition 2.1.1. The action (2.5) remains unchanged if the parameter τ is replaced by another one
τ ′ = f(τ).

Proof. Under the reparametrization τ → τ ′ = f(τ), we have

dτ → dτ ′ =
df

dτ
dτ,

and therefore,
dXµ(τ ′)

dτ
=

dXµ(τ ′)

dτ ′
dτ ′

dτ
=

dXµ(τ ′)

dτ ′
df

dτ
With these relations, we can obtain the following result:

S′
0 ≡ −m

∫
dτ ′
√
gµν(X)

dXµ(τ ′)

dτ ′
dXν(τ ′)

dτ ′

= −m
∫
∂f

∂τ
dτ

√

gµν(X)
dXµ

dτ

dXν

dτ

(
∂f

∂τ

)−2

= −m
∫

dτ
√
−gµν(X)ẊµẊν

= S0,

which means that the proposition was proved.

Due to the above proposition, one can choose a proper parametrization in order to simplify the action
and, as a result, the equations of motion. Now, this parametrization freedom will be used to simplify
the action (2.5).

The action S0 has two disadvantages. The first one is that it contains a square root, which causes
difficulty when quantizing. And the second is that this action cannot be used to describe a massless
particle. These problems can be avoided by introducing an action which is equivalent to the previous
one. The equivalent action is given by

S̃0 =
1

2

∫
dτ
[
e(τ)−1Ẋ2 −m2e(τ)

]
, (2.6)

where Ẋ2 ≡ gµνẊµẊν and e(τ) is an auxiliary field.
Now, to see that this action is equivalent to (2.5), consider the variation of S̃0 with respect to the

field e(τ).

δS̃0 = −1

2

∫
dτ
δe

e2
(Ẋ2 +m2e2).

By setting δS̃0 = 0, the field equation for e(τ) can be obtained as

e2 = −Ẋ2

m2
⇒ e =

√

−Ẋ2

m2
. (2.7)

Substituting this back into (2.6) gives

S̃0 =
1

2

[(
−Ẋ2

m2

)−1/2

Ẋ2 −m2

(
−Ẋ2

m2

)1/2 ]

= −m
∫

dτ(−Ẋ2)1/2

= S0,

which means if the equation of motion holds, then S̃0 is equivalent to S0.
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2.1.1 Reparametrization Invariance of S̃0

S̃0 should be invariant under a reparametrization (diffeomorphism) of τ . To see this, one needs to know
how the fields Xµ(τ) and e(τ) transform under an infinitesimal change of parametrization τ → τ ′ =
τ − ξ(τ).

Since the fields Xµ(τ) are scalar fields, they transform according to X ′µ(τ ′) = Xµ(τ). Therefore,

δXµ ≡ X ′µ(τ)−Xµ(τ) = X ′µ(τ ′ + ξ(τ))−Xµ(τ)

= Xµ(τ) + ξ(τ)Ẋµ −Xµ(τ)

= ξ(τ)Ẋµ. (2.8)

Also, under the reparametrization, the auxiliary field is required to transform as

e′(τ ′)dτ ′ = e(τ)dτ, (2.9)

which ensures that S̃0 is invariant as it will be seen later. Thus,

e′(τ ′)dτ ′ = e′(τ − ξ(τ))(dτ − ξ̇dτ)
=
(
e′(τ)− ξė(τ) +O(ξ2)

)
(dτ − ξ̇dτ)

= e′(τ)dτ − d

dτ
(ξe)dτ, (2.10)

where in the last line, we have replaced e′ξ̇ by eξ̇ since they are equal up to second order in ξ. Now,
equating (2.9) with (2.10), we get

d

dτ
(ξ(τ)e(τ)) = e′(τ)− e(τ) ≡ δe(τ). (2.11)

With these results, we will show that the action S̃0 is invariant under the reparametrization, for
simplicity, in the case of a flat-spacetime metric gµν(X) = ηµν . Firstly, the variation of S̃0 under a
change both in Xµ(τ) and e(τ) is given by

δS̃0 =
1

2

∫
dτ

[
−δe
e2

Ẋ2 +
2

e
ẊδẊ −m2δe

]
.

Here δẊµ is given by

δẊµ =
d

dτ
δXµ = ξ̇Ẋµ + ξẌµ.

Substituting this back into δS̃0 together with (2.11), we obtain

δS̃0 =
1

2

∫
dτ

d

dτ

[
ξ

e
Ẋ2 −m2ξe

]
,

which is the integral of a total derivative. Therefore, it can be dropped, which means S̃0 is invariant under
reparametization. This invariance can be used to set the auxiliary field to unity,1 thereby simplifying
the action, and it leads to the mass-shell condition. In fact,

δS̃0

δe

∣∣∣∣
e(τ)=1

= −1

2
(Ẋ2 +m2), (2.13)

1Let us find the transformation rule for e(τ), (2.9). Under reparametrizations τ → τ ′ = f(τ), dτ and Ẋµ transform as

dτ → dτ ′ = dτ ḟ , Ẋµ →
dXµ

dτ ′
=

Ẋµ

ḟ
.
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which implies that Ẋ2 +m2 = 0 and this is the mass-shell condition.2

2.2 Generalization to p-Branes

A p-brane is a p-dimensional object moving through a D (D ≥ p) dimensional spacetime. For example,
a 0-brane is a point particle, a 1-brane is a string, and a 2-brane is a membrane etc.

The notion of an action for a point particle (0-brane) can be generalized to an action for a p-brane.
The generalization of S0 = −m

∫
ds to a p-brane in a D(≥ p) dimensional background spacetime is

given by

Sp = −Tp

∫
dµp, (2.14)

where Tp is the p-brane tension, which has units of mass/vol and dµp is the (p+ 1) dimensional volume
element given by

dµp =
√
− det (Gαβ(X))dp+1σ, (2.15)

where Gαβ is the induced metric on the world-surface (i.e. the world-sheet for p = 1), which is given by

Gαβ(X) =
∂Xµ

∂σα

∂Xν

∂σβ
gµν(X), α,β = 0, 1, . . . p, (2.16)

where σ0 = τ and σi (i = 1, . . . p) are the p spacelike coordinates.
Also, the action (2.14) is invariant under a reparametrization of σα

Proposition 2.2.1. The action of a p-brane (2.14) is invariant under reparamerization of the p + 1
world-volume coordinates σα → σα(σ̃).

Proof. Under this change of variables, the induced metric in (2.14) transforms in the following way:

Gαβ =
∂Xµ

∂σα

∂Xν

∂σβ
gµν = (f−1) γ

α
∂Xµ

∂σ̃γ
(f−1) δ

β
∂Xν

∂σ̃δ
gµν ,

where

fα
β(σ̃) =

∂σα

∂σ̃β
.

Thus, the determinant appearing in the action, by using the Jacobian of the world-volume coordinate
transformation J = det fα

β , becomes

det

(
gµν

∂Xµ

∂σα

∂Xν

∂σβ

)
= J−2 det

(
gµν

∂Xµ

∂σ̃γ

∂Xν

∂σ̃δ

)
.

If e transforms as e → e′, then the transformation of the action (2.6) is

S̃0 →
1

2

∫
dτ
(
(e′ḟ)−1Ẋ2 −m2e′ḟ

)
.

For this to be equal to (2.6), we need

e′ =
e

ḟ
=

dτ

dτ ′
e. (2.12)

This is the transformation rule for e. Then, we want to find a transformation e → e′ such as e′(τ ′) = 1. From (2.12),
if e′ = 1, we have ḟ = e. So, we can choose f to be f(τ) =

∫
dτe(τ). Thus, given an arbitrary e(τ), we can always

appropriately choose f to go to a gauge where e′ = 1.
2The canonical momentum conjugate to Xµ(τ) is defined by

Pµ(τ) ≡
∂L

∂Ẋµ
.

In the case at the moment, the canonical momentum is given by Pµ(τ) = Ẋµ(τ). By using this, we see that the vanishing
of (2.13) is nothing more than the mass-shell condition of a particle with mass m, PµPµ +m2 = 0.
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Figure 2.1: The functions Xµ(τ,σ) describe the embedding of the string worldsheet in spacetime.

The measure of the integral transforms according to

dp+1σ = Jdp+1σ̃,

so that the action becomes

S̃p = −Tp

∫
dp+1σ̃

√

− det

(
gµν

∂Xµ

∂σ̃γ

∂Xν

∂σ̃δ

)
,

which means that the action is invariant under reparametriztion of the world-volume coordinates.

We will now specialize the p-brane action to the p = 1 case, i.e the string action.

2.2.1 The String Action

The string action is a 1-brane action, which describes a string in a D-dimensional spacetime. We will
parametrize the world-sheet of the string, which is the two- dimensional extension of the world-line, by
the two coordinates σ0 ≡ τ and σ1 ≡ σ, with τ being time-like and σ space-like. The embedding of the
string into the D-dimensional background spacetime is given by the functions (or the fields) Xµ(τ,σ),
as drawn in Fig 2.1.

If the variable σ is periodic, then the embedding gives a closed string in the spacetime.
Now, we specialize to the case of Minkowski background spacetime. Then, (2.16) becomes

G00 =
∂Xµ

∂τ

∂Xν

∂τ
ηµν ≡ Ẋ2

G11 =
∂Xµ

∂σ

∂Xν

∂σ
ηµν ≡ X ′2

G01 = G10 =
∂Xµ

∂τ

∂Xν

∂σ
ηµν ≡ Ẋ ·X ′

Thus, we obtain

Gαβ =

(
Ẋ2 Ẋ ·X ′

Ẋ ·X ′ X ′2

)
. (2.17)

As a result, the string action, from (2.14), can be written as

SNG = −T
∫

dτdσ
√
(Ẋ ·X ′)2 − (Ẋ2)(X ′2), (2.18)

which is known as the Nambu-Goto action. The integral in this action can be physically interpreted as
the area of the world-sheet swept out by the string.



10 CHAPTER 2. CLASSICAL BOSONIC STRING THEORY

2.2.2 The String Sigma Model Action (Polyakov Action)

In order to remove the square root in SNG, we can introduce an auxiliary field hαβ(τ,σ), as we did before
in the point particle case. This is the kind of metric that we use in two-dimensional general relativity,
which is therefore intrinsic metric on the world-sheet. The resulting action is called the string sigma
model action, and is given by

Sσ = −T

2

∫
dτdσ

√
−hhαβ ∂X

µ

∂σα

∂Xν

∂σβ
gµν , (2.19)

where h ≡ det (hαβ). This action is equivalent to the Nambu-Goto action at the classical level.

Proposition 2.2.2. The string sigma model action Sσ is equivalent to the Nambu-Goto action SNG.

Proof. To begin with, recall that varying any action with respect to the metric yields the stress-energy
tensor Tαβ :

Tαβ = − 2

T

1√
−h

δSσ

δhαβ
. (2.20)

The equations of motion for hαβ can be obtained by setting the variation of the action Sσ with respect
to hαβ equal to zero. That is,

δSσ ≡
∫

dτdσ
δSσ

δhαβ
δhαβ

= −T

2

∫
dτdσ

√
−hδhαβTαβ = 0, (2.21)

which holds when Tαβ = 0.
On the other hand, from the variation of Sσ in (2.19), we have by hαβ is

δSσ = −T

2

∫
dτdσ

(
δ
√
−hhαβ∂αX · ∂βX

)

= −T

2

∫
dτdσ

√
−hδhαβ

(
−1

2
hαβh

γδ∂γX · ∂δX + ∂αX · ∂βX
)
.

In the second line, we have used the formulaδ
√
−h = − 1

2

√
−hδhαβhαβ . Setting this equal to zero yields

the equations of motion for hαβ . Compared with (2.21), this gives

Tαβ ≡ −
1

2
hαβh

γδ∂γX · ∂δX + ∂αX · ∂βX︸ ︷︷ ︸
Gαβ

= 0. (2.22)

Thus, taking the determinant gives

1

2

√
−hhγδ∂γX∂̇δX =

√
− det (Gαβ),

which means that Sσ is classically equivalent to SNG.

2.3 Symmetries and Field Equations

In this section, we will discuss the symmetries which the string sigma model action has. We will consider
the background spacetime to be Minkowskian, that is, the action which we will discuss is

Sσ = −T

2

∫
dτdσ

√
−hhαβ ∂X

µ

∂σα

∂Xν

∂σβ
ηµν . (2.23)
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2.3.1 Global Symmetries

A global transformation in some spacetime is a transformation whose parameter/parameters do not
depend on where in the spacetime the transformation is performed. Invariance of a theory under global
transformations gives conserved currents and charges via Noether’s theorem.

By contrast, if a theory has local symmetries, we can these symmetries to cope with a redundancy
which the theory has in its degrees of freedom. This is known as gauge fixing.

Poincaré Transformations

These global transformations are of the form:

δXµ(τ,σ) = aµνX
ν(τ,σ) + bµ, (2.24)

δhαβ(τ,σ) = 0, (2.25)

where fields Xµ(τ,σ) are defined on the world-sheet and aµν (with aµν = −aνµ) describes infinitesimal
Lorentz transformations and bµ spacetime translations. Here, Sσ in (2.23) is invariant under the Poincaré
transformations.

Proposition 2.3.1. Sσ in (2.23) is invariant under the Poincaré transformations in (2.24) and (2.25).

Proof. Consider the following,

δSσ = −T
∫

dτdσ
√
−hhαβ∂α(δX

µ)∂βX
µηµν ,

where we have used the fact that hαβ is invariant under the transformation (2.25). Substituting δXµ

from (2.24) gives

δSσ = −T
∫

dτdσ
√
−hhαβ∂α(a

µ
κX

κ + bµ)∂βX
νηµν

= −T
∫

dτdσ
√
−h aνκ︸︷︷︸

anti

hαβ∂αX
κ∂βX

ν

︸ ︷︷ ︸
symmetric

= 0.

In the last line, we have used the fact that the contraction of an antisymmetric tensor with a symmetric
tensor equals zero. This result means that this action is invariant under the Poincaré transformations.

2.3.2 Local Symmetries

Reparametrization Invariance (diffeomorphism)

This is a local symmetry for the world-sheet parametrized by two coordinates τ and σ. Under a coordinate
transformation σα → fα(σ) = σ′α, which is a reparametrization of the world-sheet, the metric hαβ

transforms as

hαβ(σ) =
∂fγ

∂σα

∂fδ

∂σβ
h′
γδ(σ

′). (2.26)

Proposition 2.3.2. Sσ in (2.23) is invariant under the reparametrization (2.26).

Proof. We have the following relations under this reparametrization:

∂

∂σ′α =
∂σρ

∂σ′α
∂

∂σρ
and Xµ(τ,σ) = X ′µ(τ ′,σ′).
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Thus, it follows that

hαβ(τ,σ)
∂Xµ

∂σα

∂Xµ

∂σβ
= h′ρλ(τ ′,σ′)

∂X ′µ

∂σ′ρ
∂X ′

µ

∂σ′λ .

The Jacobian for a change in the coordinates is given by

J = det

(
∂σ′α

∂σβ

)
,

and the determinant of the metric h′
αβ is, from (2.26),

det (hαβ) = J2 det (h′
αβ).

Also, the integration measure transforms as

d2σ′ = Jd2σ

Therefore, these cancel out with each other in the following:

d2σ′√− deth′ = Jd2σ
√
−J−2 deth

= d2σ
√
− deth

Putting all of these results together, we see that a reparametrization leaves Sσ invariant.

Weyl Symmetry

Weyl transformations are those that change the scale of the metric hαβ :

hαβ(τ,σ)→ h′
αβ(τ,σ) = e2φ(σ)hαβ(τ,σ), (2.27)

δXµ(τ,σ) = 0. (2.28)

Proposition 2.3.3. Sσ in (2.23) is invariant under a Weyl transformation.

Proof. First, we need to know how
√
−h and

√
−hhαβ transform. The transformation of

√
−h is given

by

√
−h′ ≡

√
− det (h′

αβ)

= e2φ(σ)
√
−h.

Whereas, since hαβhβγ = δαγ , it follows from (2.27) that h′αβ = e−2φ(σ)hαβ . Thus, the transformation of√
−hhαβ is given by

√
−h′h′αβ = e2φ(σ)

√
−he−2φ(σ)hαβ =

√
−hhαβ .

Therefore, under a Weyl transformation, Sσ does not change.

This invariance under a Weyl transformation leads to the fact that the stress-energy tensor is traceless,
hαβTαβ = 0. To begin, from (2.20), we obtain

δSσ ≡
∫

δSσ

δhαβ
δhαβ = −T

2

∫
dτdσ

√
−hδhαβTαβ .



2.3. SYMMETRIES AND FIELD EQUATIONS 13

If we restrict to a Weyl transformation, the above variation of Sσ becomes3

δSσ = −T

2

∫
dτdσ

√
−h(−2φ)hαβTαβ ,

which must be equal to zero since δSσ = 0 under a Weyl transformation. Now, it follows from the
arbitrariness of

√
−h and φ that

hαβTαβ = 0, (2.29)

which means that for a Weyl invariant classical theory, the corresponding stress-energy tensor must be
traceless.

From now on, it will be shown that we can fix a gauge so that the intrinsic metric hαβ becomes flat
ηαβ if our theory is invariant under diffeomorphism and Weyl transformations.

First, we note that the metric hαβ has only three independent components since it is symmetric by
its definition:

hαβ =

(
h00 h01

h10 h11

)
with h01 = h10. (2.30)

A diffeomorphism can be used to change the metric into a form that is proportional to the two-dimensional
flat Minkowski metric ηαβ as follows:4

hαβ → e2φ(σ)ηαβ = e2φ(σ)
(
−1 0
0 1

)
.

Next, we can use Weyl transformations to remove the factor e2φ(σ):

hαβ → ηαβ =

(
−1 0
0 1

)
. (2.31)

Here, we should note that since gauge transformations are local ones, this transformation from the metric
hαβ to the flat metric ηαβ is generally only possible locally. However, it is known that in the case that
the Euler characteristic of the world-sheet is zero, we can extend a locally flat metric to a globally flat
metric.

With this gauge fixed flat metric, the string sigma model action Sσ becomes

Sσ = −T

2

∫
dτdσ

√
−ηηαβ∂αXµ∂βX

νηµν

=
T

2

∫
dτdσ

(
Ẋ2 −X ′2

)
. (2.32)

2.3.3 Equation of Motion for Sσ and Boundary Conditions

Let us suppose that the world-sheet topology allows the locally flat metric to be extended globally. In
this case, for a closed string, an infinite cylinder is chosen as the world-sheet and for an open string,
an infinite strip. For convenience, we will choose the coordinate σ to have the range 0 ≤ σ ≤ π. The
equations of motion for the field Xµ(τ,σ) are described by setting the variation of Sσ with respect to

3From (2.27), we have h′αβ = e−2φhαβ = (1− 2φ+ · · · )hαβ . Thus, we obtain δhαβ ≡ h′αβ − hαβ = −2φhαbeta.
4A diffeomorphism allows us to change two of the independent components by using two coordinate transformations,

to set h10 = h01 = 0 and h00 = −h11.
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Xµ equal to zero. This gives, from (2.32),

δSσ =
T

2

∫
dτdσ

(
2ẊδẊ − 2X ′δX ′

)

= T

∫
dτdσ

[
(−∂2τ + ∂2σ)X

µ
]
δXµ + T

∫
dσẊµδXµ

∣∣∣∣
∂τ

−
[
T

∫
dτX ′µδXµ

∣∣∣∣
σ=π

+T

∫
dτX ′µδXµ

∣∣∣∣
σ=0

]
,

where ∂τ represents the boundary in the τ -direction.5 In the second line, we integrated both terms by
parts. We will assume that fields vanish at τ → ±∞. As a result, the terms which are left become

δSσ = T

∫
dτdσ

[
(−∂2τ + ∂2σ)X

µ
]
δXµ

− T

∫
dτ
[
X ′µδXµ

∣∣∣∣
σ=π

+X ′µδXµ

∣∣∣∣
σ=0

]
. (2.33)

In addition to the equations of motion, which come from the first term, there are the σ boundary terms
(the second and third term), which must vanish.

Closed string

For closed strings, we take Xµ to be periodic:

Xµ(τ,σ + π) = Xµ(τ,σ). (2.34)

By imposing this condition, the boundary terms appearing in the variation of Sσ vanish. As a result, we
obtain the equations of motion for the closed string:

(
∂2τ − ∂2σ

)
Xµ = 0 (2.35)

with the boundary conditions (2.34).

Open string with Neumann boundary conditions

In this case, the derivative of Xµ with respect to σ at the boundaries vanish (see Fig 2.2):

∂σX
µ(τ,σ) = 0 at σ = 0,π. (2.36)

These conditions make the σ boundary terms vanish and the equations of motion become

(
∂2τ − ∂2σ

)
Xµ = 0 (2.37)

with the boundary conditions (2.36). Note that the Neumann boundary conditions preserve Poincaré
invariance because

∂σX
′µ
∣∣∣
σ=0,π

= ∂σ (a
µ
νX

ν + bµ)
∣∣∣
σ=0,π

= 0.

Open string with Dirichlet boundary conditions

5In a strict sense, this statement is not correct because we are taking the cylinder and strip to be infinite. The exact
meaning is infinitely distant area where fields vanish.
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Figure 2.2: Neumann (right) and Dirichlet (left) boundary conditions

For the Dirichlet boundary conditions, we set the value of Xµ at the boundary to a constant:

Xµ(τ,σ)
∣∣∣
σ=0
≡ Xµ

0 and Xµ(τ,σ)
∣∣∣
σ=π
≡ Xµ

π , (2.38)

where Xµ
0 and Xµ

π are constants (see Fig 2.2). Under these conditions, the σ boundary terms vanish.
Thus, the equations of motion become (

∂2τ − ∂2σ
)
Xµ = 0 (2.39)

with the boundary conditions (2.38). Different from the Neumann case, Dirichlet boundary conditions
do not preserve Poincaré invariance because

X ′µ
∣∣∣
σ=0,π

= (aµνX
ν + bµ)

∣∣∣
σ=0,π

)= Xµ
0,π.

This means that the ends of the string change under Poincaré transformations.
We have seen that the equations of motion are all the same under three different boundary conditions.

Furthermore, as additional constraint, the equations of motion of the world-sheet metric hαβ must be
imposed. These were given in (2.22):

0 = Tαβ = ∂αX · ∂βX −
1

2
hαβh

γδ∂γX · ∂δX.

In the gauge hαβ = ηαβ , the above equations can be written for each components as follows:

0 = T00 = T11 =
1

2

(
Ẋ2 +X ′2

)
, (2.40)

0 = T01 = T10 = Ẋ ·X ′. (2.41)

2.3.4 Solution to the equations of motion

We will solve the equations of motion by introducing light-cone coordinates for the world-sheet, which
are defined as

σ± = τ ± σ. (2.42)

The derivatives, then, in terms of the light-cone coordinates become

∂+ ≡
∂

∂σ+
=

∂τ

∂σ+

∂

∂τ
+

∂σ

∂σ+

∂

∂σ
=

1

2
(∂τ + ∂σ) ,

∂− ≡
∂

∂σ− =
∂τ

∂σ−
∂

∂τ
+

∂σ

∂σ−
∂

∂σ
=

1

2
(∂τ − ∂σ) .
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Since the metric transforms as

η′α′β′ =
∂σγ

∂σα′
∂σδ

∂σβ′ ηγδ,

we obtain the metric in terms of light-cone coordinates, which is given by 6

ηαβ = −1

2

(
0 1
1 0

)
(in l-c coordinate). (2.43)

Then the inverse ηαβ is calculated as

ηαβ = −2
(
0 1
1 0

)
(in l-c coordinate). (2.44)

With the relation ∂+∂− = 1
4

(
∂2τ − ∂2σ

)
, the equations of motion in terms of light-cone coordinates become

(
∂2τ − ∂2σ

)
Xµ = 0 ⇒ ∂+∂−X

µ = 0 (in l-c coordinate). (2.45)

Also, the equations of motion for the metric hαβ become

T++ = ∂+X
µ∂+Xµ = 0 (2.46)

T−− = ∂−X
µ∂−Xµ = 0. (2.47)

We have to solve these equations (2.45) ∼ (2.47). The general solution to the wave equation (2.45)
is given by a linear combination of two arbitrary functions whose component depends on one of the
light-cone coordinates:

Xµ(σ+,σ−) = Xµ
R(σ

−) +Xµ
L(σ

+)

= Xµ
R(τ − σ) +Xµ

L(τ + σ), (2.48)

which is a sum of right-moving and left-moving waves, which are called right-movers and left-movers,
respectively. These are expanded as follows:7

Xµ
R(τ − σ) =

xµ

2
+

l2sp
µ

2
(τ − σ) + ils

2

∑

k #=0

αµ
k

k
e−ik(τ−σ), (2.49)

Xµ
L(τ + σ) =

xµ

2
+

l2s p̄
µ

2
(τ + σ) +

ils
2

∑

k #=0

ᾱµ
k

k
e−ik(τ+σ). (2.50)

We have introduced some new terms here: xµ and pµ are constants and are the center of mass coordinate
and the total momentum of the string, respectively. Also, ls is the length of the string, which is related
to the string tension T and the Regge slope parameter α′ via

T =
1

2πα′ and
1

2
l2s = α′.

6For example, the (+,+) component is calculated as follows:

η++ = −
(
∂τ

∂σ+

)2

+

(
∂σ

∂σ+

)2

= −
1

4
+

1

4
= 0

The rest of the components can be obtained in a similar fashion.
7We should expand them with integral symbol because k is an integer. But for future convenience, we expanded them

with summation symbol.
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The αµ
k and ᾱµ

k are arbitrary modes. The function Xµ(τ,σ) must be real, so that xµ, pµ and p̄µ are real
and so that positive and negative modes are conjugated to one another,

αµ
−k = (αµ

k)
∗
,

ᾱµ
−k = (ᾱµ

k)
∗
.

Our next task is to apply the boundary conditions.

Closed strings

The closed string coordinates satisfy the periodicity boundary condition

Xµ(τ,σ + π) = Xµ(τ,σ), (2.51)

which implies that the propagation of a closed string sweeps out a cylinder in spacetime. Imposing this
condition on the general solution (2.49) and (2.50), we get

Xµ
R(τ − σ) =

xµ

2
+

l2sp
µ

2
(τ − σ) + ils

2

∑

n∈Z, #=0

αµ
n

n
e−2in(τ−σ), (2.52)

Xµ
L(τ + σ) =

xµ

2
+

l2s p̄
µ

2
(τ + σ) +

ils
2

∑

n∈Z, #=0

ᾱµ
n

n
e−2in(τ+σ), (2.53)

from which we get

∂−X
µ
R = ls

∑

n∈Z
αµ
ne

−2in(τ−σ),

∂+X
µ
L = ls

∑

n∈Z
ᾱµ
ne

−2in(τ+σ).

We defined

αµ
0 ≡

ls
2
pµ and ᾱµ

0 ≡
ls
2
p̄µ,

In addition, the periodicity condition imposes

pµ = p̄µ.

Thus, the general solution for closed strings is

Xµ(τ,σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ)

= xµ + l2sp
µτ +

ils
2

∑

n#=1

1

n
{αµ

ne
2inσ + ᾱµ

ne
−2inσ}e−2inτ . (2.54)

In preparation for the quantization, we will calculate the Poisson brackets which the modes obey.
With the definition of the canonical momentum Pµ(τ,σ) ≡ ∂L

∂Ẋµ , we can get the mode expansion of the
canonical momentum on the world-sheet:

Pµ(τ,σ) = TẊµ =
Ẋµ

πl2s

=
pµ

π
+

1

πls

∑

n#=0

(
αµ
ne

−2in(τ−σ) + ᾱµ
ne

−2in(τ+σ)
)

(2.55)
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The fields Xµ and its canonical momentum Pµ satisfy the following Poisson brackets
[
Xµ(τ,σ), Xν(τ,σ′)

]

P.B.
=
[
Pµ(τ,σ), P ν(τ,σ′)

]

P.B.
= 0,

[
Pµ(τ,σ), Xν(τ,σ′)

]

P.B.
= ηµνδ(σ − σ′).

Substituting the mode expansions for Xµ and Pµ to get the Poisson brackets in terms of αµ
n, ᾱ

µ
n, x

µ and
pµ, we obtain

[
αµ
m,αν

n

]
P.B.

=
[
ᾱµ
m, ᾱν

n

]
P.B.

= imηµνδm+n,0, (2.56)
[
αµ
m, ᾱν

n

]
P.B.

= 0 (2.57)
[
pµ, xν

]
P.B.

= ηµν . (2.58)

Open Strings with Neumann boundary conditions

Imposing the Neumann boundary conditions (2.36) at the σ = 0 end on the equations (2.49) and
(2.50) yields

X ′µ
∣∣∣
σ=0

=
l2s
2
(pµ − p̄µ) +

ls
2

∑

k #=0

e−ikτ (αµ
k − ᾱ

µ
k) = 0,

from which we can see
pµ = p̄µ and αµ

k = ᾱµ
k ,

which means that the left- and right-movers get mixed by the boundary condition. The other boundary
condition, which is imposed at the σ = π end gives

X ′µ
∣∣∣
σ=π

= ils
∑

k #=0

αµ
ke

−ikτ sin (kπ) = 0,

which implies that k must be an integer, denoting it by n. Thus, the general solution for an open string
with Neumann boundary conditions is

(NN) Xµ(τ,σ) = xµ + l2sp
µτ + ils

∑

n#=0

αµ
n

n
e−inτ cos (nσ), (2.59)

from which we get

2∂±X
µ = ls

∑

n∈Z
αµ
ne

−in(τ±σ)

αµ
0 ≡ lsp

µ.

The Poisson brackets for the modes are the same as that of closed strings.

Open Strings with Dirichlet conditions

The Dirichlet conditions (2.38) implies

∂τX
µ(τ,σ)

∣∣∣
σ=0,π

= 0.

Substitution of the equations (2.49) and (2.50) into the boundary conditions yields

p̄µ = −pµ, ᾱµ
k = −αµ

k and k ∈ Z.
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Thus, denoting k by n and imposing (2.38), the general solution for open strings with Dirichlet conditions
is

(DD) Xµ(τ,σ) = xµ +
σ

π
(Xµ

π −Xµ
0 ) + ls

∑

n#=0

αµ
n

n
e−inτ sin (nσ), (2.60)

from which we get

2∂±X
µ = ±ls

∑

n∈Z
αµ
ne

−in(τ±σ),

αµ
0 ≡

Xµ
π −Xµ

0

πls
.

The Poisson brackets for the modes are the same as that of closed strings.
We can also impose mixed boundary conditions, i.e. different boundary conditions at the two ends

of the open string. For Neumann boundary conditions at σ = 0 and Dirichlet boundary conditions at
σ = π, the general solution reads

(ND) Xµ(τ,σ) = xµ + ils
∑

r∈Z+1/2

αµ
r

r
e−irτ cos (πrσ),

where xµ is the position of the σ = π end of the open string.
For completeness, we also give the last possible combination of boundary conditions.

(DN) Xµ(τ,σ) = xµ + ls
∑

r∈Z+1/2

αµ
r

r
e−irτ sin (πrσ),

where xµ is the position of the σ = 0 end of the open string.





Chapter 3

Quantized Bosonic String Theory

According to Noether’s theorem, associated with any global symmetry of a theory. there exists a con-
served current J and a conserved charge Q:

∂αJ α = 0,

dQ

dτ
=

d

dτ

(∫
dσJ 0

)
= 0.

3.1 Conserved Quantities on the World-sheet

In the last chapter, we saw that our bosonic theory had Poincaré symmetry (translations and Lorentz
transformations). we will discuss the conserved quantities associated with this symmetry.

Translations

Translations are given by δXµ = bµ(σα) and the variation of the action in a Minkowski spacetime (2.32)
is given by

δSσ = −T
∫

dτdσ∂α (bµ(σα)) ∂αXµ,

which implies that the current is given by

J αµ = −T∂αXµ (3.1)

In fact, this current is conserved only when the equations of motion hold:

∂αJ αµ = ∂αJ µ
α = −T∂α∂αXµ = T (∂2τ − ∂2σ)Xµ

︸ ︷︷ ︸
=0

= 0.

Then, the corresponding charge is given by

pµ ≡
∫

dσJ 0µ = −
∫ π

0
dσT∂0Xµ =

∫ π

0
dσT∂0X

µ =

∫ π

0
dσPµ,

where Pµ is the canonical momentum, conjugate to the field Xµ. This charge pµ is called the total
momentum and it is the same as the term appearing in the mode expansion (2.49) and (2.50).

Lorentz transformations

21
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Lorentz transformations are given by

δXµ = aµkX
k,

Therefore,

δSσ = −T
∫

dτdσ∂α(a
µ
kX

k)∂αXνηµν

= −T
∫

dτdσ(∂αa
µ
k)X

k∂αXνηµν

= −T
∫

dτdσ(∂αaνk)X
k∂αXν ,

from which we can read off the current. However, considering the fact that aνk is antisymmetric, the
current J µν

α becomes

J µν
α = −T

2
(Xµ∂αX

ν −Xν∂αX
µ) , (3.2)

which is antisymmetric and conserved only when the equations of motion hold:

∂αJ µν
α = −T

2
(Xµ ∂α∂αX

ν

︸ ︷︷ ︸
=0

−Xν ∂α∂αX
µ

︸ ︷︷ ︸
=0

) = 0.

3.2 Hamiltonian and Energy-Momentum Tensor

The time evolution of a system is generated by the Hamiltonian. Thus, the world-sheet time evolution
is generated by the Hamiltonian defined by

H =

∫ π

0
dσ
(
ẊµP

µ − L
)
. (3.3)

In the case of the bosonic string theory, we have Pµ = TẊµ and L = T
2 (Ẋ

2 −X ′2). Substituting these
into (3.3) gives

H =
T

2

∫ π

0
dσ
(
Ẋ2 +X ′2

)
. (3.4)

Inserting the mode expansions (2.55) for closed strings, the closed string Hamiltonian is

H =
∞∑

n=−∞
(α−n · αn + ᾱ−n · ᾱn) with αµ

0 = ᾱµ
0 =

lspµ

2
, (3.5)

while for open strings we have

H =
1

2

∞∑

n=−∞
(α−n · αn) with αµ

0 = lsp
µ. (3.6)

These results only hold in the classical theory. In the quantum theory, we will have order ambiguities
when we promote the modes to operators.

Next, let us consider the mode expansions of the energy-momentum tensor, in terms of a closed string
theory. The result for open strings follows from an analogous procedure to the closed string theory.
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So then, substituting the mode expansions for Xµ
R and Xµ

L of a closed string into the components of
the stress-energy tensor given by (2.46) and (2.47) gives

T−− = l2s

∞∑

m=−∞

∞∑

n=−∞
αm−n · αne

−2im(τ−σ) (3.7)

≡ 2l2s

∞∑

m=−∞
Lme−2im(τ−σ),

where we have defined Lm as

Lm =
1

2

∞∑

n=−∞
αm−n · αn. (3.8)

On the other hand,

T++ = l2s

∞∑

m=−∞

∞∑

n=−∞
ᾱm−n · ᾱne

−2im(τ+σ) (3.9)

≡ 2l2s

∞∑

m=−∞
L̄me−2im(τ+σ),

where L̄m has been defined as

L̄m =
1

2

∞∑

n=−∞
ᾱm−n · ᾱn. (3.10)

These Fourier coefficients Lm and L̄m are called the Virasoro generators. Comparing the Hamiltonian
with Lm and L̄m, we note that for a closed string

H = 2
(
L0 + L̄0

)
=

∞∑

n=−∞
(α−n · αn + ᾱ−n · ᾱn) , (3.11)

while for an open string

H = L0 =
1

2

∞∑

n=−∞
α−n · αn. (3.12)

Next, we will consider a mass formula with these mode expansions for the Hamiltonian and the energy-
momentum tensor.

3.3 Classical Mass Formula for a Bosonic String

Classically, all the components of the stress-energy tensor vanish. This implies that classically, all the
Fourier modes also vanish:

Ln = 0 and L̄n = 0 for ∀n ∈ Z.
Also, recall that the mass-shell condition is

M2 = −pµpµ,

where pµ is the total momentum of the string, which is given by

pµ =

∫ π

0
dσPµ = T

∫ π

0
dσẊµ =






2αµ
0

ls
for a closed string

αµ
0

ls
for an open string

(3.13)
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Thus,

pµpµ =

{
2α0·α0

α′ for a closed string
α0·α0
α′ for an open string,

where α′ = l2s/2. Then, for an open string, the vanishing of L0 becomes

0 = L0 =
1

2

∞∑

n=−∞
α−n · αn =

1

2

∑

n#=0

α−n · αn +
1

2
α0 · α0

=
∞∑

n=1

α−n · αn + α′pµpµ =
∞∑

n=1

α−n · αn − α′M2.

Hence, for an open string, we obtain the following mass formula:

M2 =
1

α′

∞∑

n=1

α−n · αn. (3.14)

In a similar way, for a closed string, we can get

M2 =
2

α′

∞∑

n=1

(α−n · αn + ᾱ−n · ᾱn) . (3.15)

These mass-shell conditions are only valid classically. In the quantized theory, they will get quantum
corrections.

3.4 Canonical Quantization

First, we will quantize the bosonic string theory using canonical quantization.
In the canonical quantization procedure, we quantize the theory by promoting Poisson brackets to

commutators
[ · , · ]P.B. -→ i[ · , · ] (3.16)

and the field Xµ to an operator. This results in promoting the modes αµ
n, the constant xµ and their

barred versions and hence Ln, L̄n to operators.
In particular, the results for (2.56) ∼ (2.58), via the quantization procedure (3.16), become

[αµ
m,αν

n] = [ᾱµ
m, ᾱν

n] = mηµνδm+n,0,

[αµ
m, ᾱν

n] = 0, (3.17)

[pµ, xν ] = −iηµν .

If we define new operators as

aµm ≡
1√
m
αµ
m and aµ†m ≡

1√
m
αµ†
−m for m > 0,

then the commutation relations are rewritten as

[aµm, aν†n ] = [āµm, āν†n ] = ηµνδm,n for m,n > 0.

This looks like the same algebraic structure as the algebra obeyed by the creation and annihilation
operators of harmonic oscillator except for the µ = ν = 0 case. In the case of µ = ν = 0, we get

[a0m, a0n] = η00δm,n = −δm.n. (3.18)
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We will see later that this minus sign in the right hand side leads to negative norm states (or ghost
states), which is physically unacceptable.

The ground state, which is denoted by |0〉, is defined as the state which is annihilated by the lowering
operators aµm:

aµm|0〉 = 0 for m > 0. (3.19)

Other physical states |φ〉 can be constructed by acting on the ground states with the raising operators
aµ†m :

|φ〉 = aµ1†
m1

aµ2†
m2

· · · aµn†
mn

|0; kµ〉, (3.20)

which are eigenstates of the momentum operator pµ,1

pµ|φ〉 = kµ|φ〉. (3.21)

To see the existence of negative norm states, let us consider, for example, the state |ψ〉 = a0†m |0; kµ〉
for m > 0. Then the norm of this state becomes

〈ψ|ψ〉 = 〈0; kµ|a0ma0†m |0; kµ〉
= 〈0; kµ|[a0m, a0†m ]|0; kµ〉 = −〈0; kµ|0; kµ〉.

If we define 〈0; kµ|0; kµ〉 to be positive, then we will have negative norm states in the theory. These
negative norm states cause a problem because they are unphysical. Fortunately, we can remove these
states. However, this removal will put a constraint on the number of dimensions of the background
spacetime. This will be shown later.

3.5 Virasoro Algebra

In the quantum theory, the modes αµ
m become operators, which implies that the generators Lm will also

become operators. These operators are defined to be normal ordered, that is, (for an open string)

Lm =
1

2

∞∑

n=−∞
: αm−n · αn :, (3.22)

where the symbol : denotes the normal ordering operator. According to (3.17), only when m = 0, normal
ordering ambiguity arises and L0 is given by

L0 =
1

2

∞∑

n=−∞
: α−n · αn : (3.23)

=
1

2
α2
0 +

1

2

−1∑

n=−∞
: α−n · αn : +

1

2

∞∑

n=1

: α−n · αn :

=
1

2
α2
0 +

1

2

−1∑

n=−∞
αn · α−n +

1

2

−1∑

n=−∞
α−n · αn

=
1

2
α2
0 +

∞∑

n=1

α−n · αn.

Actually, this is the only Virasoro operator for which normal ordering matters. We have to choose an
ordering but we do not know which one is a correct ordering. They all differ from the normal ordered

1This result implies that the state |0; kµ〉 is a ground state with center of mass momentum kµ.
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one by a constant, because [αµ
n,α

µ
−n] is a constant. Thus, the L0 defined in (??) should be L0 − a (a is

a constant).
Also, these Virasoro operators satisfy the relation2

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (3.24)

where c = D is the spacetime dimension (called the central charge). The second term in (3.24) is called
a central extension.

3.6 Physical States

Here we will discuss the physical states in terms of the Virasoro operators. As was mentioned above,
when we quantized the theory, we should add an constant to L0. Therefore, for an open string, the
vanishing of the L0 constraint transforms into

(L0 − a)|φ〉 = 0, (3.25)

where a is a unknown constant and |φ〉 is any physical on-shell state in the theory.
For a closed string, we instead have

(L0 − a)|φ〉 = (L̄0 − a)|φ〉 = 0. (3.26)

This normal ordering ambiguity also contributes to the mass formula. For an open string, the mass
formula becomes

α′M2 =
∞∑

n=1

α−n · αn − a ≡ N − a, (3.27)

where

N =
∞∑

n=1

α−n · αn =
∞∑

n=1

na†n · an (3.28)

is called the number operator.3

For a closed string, we have the mass formula

1

4
α′M2 =

∞∑

n=1

α−n · αn

︸ ︷︷ ︸
≡N

−a =
∞∑

n=1

ᾱ−n · ᾱn

︸ ︷︷ ︸
≡N̄

−a (3.29)

Also, from (3.26), we can get (L0 − L̄0)|φ〉 = 0, which implies

N = N̄ . (3.30)

This is known as the level matching condition and it is the constraint that relates the left moving and
the right moving modes.

2This relation can be obtained directly by calculating [Lm, Ln] from [aµm, aνn] but it is quite messy. We want to derive
it in the next chapter by using the OPE of the energy-momentum tensor.

3By using this number operator, we can see the mass spectrum.

N = 0 α′M2 = −a (ground state)

N = 1 α′M2 = −a+ 1 (first excited state)

N = 2 α′M2 = −a+ 2 (second excited state)
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3.6.1 Virasoro Generators and Physical States

In the rest of this chapter, we will not discuss closed strings. The results for closed strings can be
obtained from the results for open strings since a closed string state is a tensor product of a left- and
right-moving state. In the quantum theory, we cannot demand that the operator Lm annihilates all the
physical states, for all m )= 0, since this is incompatible with the Virasoro algebra.

Instead, we will only impose on physical states

Lm>0|φ〉 = 0 = 〈φ|L†
m>0. (3.31)

3.7 Removing Ghost States

Now that we have the physical open string states |φ〉 defined as

|φ〉 = aµ
†
1

m1
aµ

†
2

m2
· · · aµ

†
n

mn |0; kµ〉,

and obeying the following two constraints

(L0 − a)|φ〉 = 0

Lm>0|φ〉 = 0.

We also saw that there were some states whose norm was negative. However, we can remove these
unphysical negative norm states by constraining the constant a and the central charge of the Virasoro
algebra (the number of dimensions of the spacetime).

In order to construct a theory which does not include negative norm states, we will search for zero-
norm states which satisfy the physical state conditions. Thus, we need to introduce new states which
are called spurious states.

3.7.1 Spurious States

A state |ψ〉 is called spurious if it satisfies the mass-shell condition

(L0 − a)|ψ〉 = 0 (3.32)

and is orthogonal to all physical states

〈φ|ψ〉 = 0 ∀physical states |φ〉, (3.33)

which means the set of all spurious states is an orthogonal subspace to the space of all physical states.
In general, a spurious state can be written as

|ψ〉 =
∞∑

n=1

L−n|χn〉, (3.34)

where |χn〉 satisfies
(L0 − a+ n)|χn〉 = 0. (3.35)

This follows from the definition of a spurious state.4 However, any spurious state can be simplified to

|ψ〉 = L−1|χ1〉+ L−2|χ2〉. (3.36)
4The reason is as follws: From (3.32), we have

L0|ψ〉 − a|ψ〉 = 0 ⇒
∞∑

n=1

([L0, L−n] + L−nL0) |χn〉 − a|ψ〉 = 0

⇒
∞∑

n=1

(nL−n + L−nL0 − aL−n) |χn〉 = 0 ⇒
∞∑

n=1

L−n (L0 − a+ n) |χn〉 = 0,
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As an example, let us consider the state |ψ〉 = L−3|χ3〉. We will prove that the state L−3|χ3〉 can be
written as the form of (3.36). From (3.24), we have L−3 = [L−1, L−2]. Therefore,

L−3|χ3〉 = [L−1, L−2]|χ3〉
= L−1L−2|χ3〉 − L−2L−1|χ3〉,

which is of the form L−1|χ1〉+L−2|χ2〉 if we regard L−2|χ3〉 and −L−1|χ3〉 as |χ1〉 and |χ2〉, respectively.
Now then, we need to check that

(L0 − a+ 1)L−2|χ3〉 = 0 and (L0 − a+ 2)L−1|χ3〉 = 0.

Here, note that L−n raises the eigenvalue of the operator L0 by the amount n.5 Now, from (3.35), |χ3〉
satisfies (L0−a+3)|χ3〉 = 0, which implies L0|χ3〉 = (a−3)|χ3〉. Thus,L0L−2|χ3〉 = (a−3+2)L−2|χ3〉 =
(a− 1)L−2|χ3〉, which implies (L0 − a+ 1)L−2|χ3〉 = 0. This equation is just what we wanted to check.
Similarly, we can obtain L0L−1|χ3〉 = (a − 3 + 1)L−1|χ3〉, which implies (L0 − a + 2)L−1|χ3〉 = 0. We
have shown that the state L−3|χ3〉 can be written as the linear combination (3.36). As for other general
states, we can prove them in a similar manner.

The spurious states defined above are orthogonal to any physical state |φ〉 since

〈φ|ψ〉 =
∞∑

n=1

〈φ|L−n|χn〉

=
∞∑

n=1

〈χn|Ln|φ〉∗

= 0,

where the second line follows from L†
−n = Ln and the third line from Ln>0|φ〉 = 0.

If a state |ψ〉 is spurious and physical, then it is orthogonal to all physical states including itself

〈ψ|ψ〉 =
∞∑

n=1

〈χn|Ln|ψ〉 = 0.

As a result, such a state has zero-norm.
Thus, we have constructed physical states whose norm is zero. We will remove the negative norm

states by using these zero-norm states.

3.7.2 Removing the negative norm states (determination of a and c)

In order to find the suitable a value, we will start with the following physical spurious state

|ψ〉 = L−1|χ1〉,

where |χ1〉 satisfies (L0 − a + 1)|χ1〉 = 0 and Lm>0|χ1〉 = 0, where the last equation comes because we
have assumed |ψ〉 to be physical. Since we are assuming that |ψ〉 is physical, it must satisfy the condition

which holds for all states |χn〉. thus we can get (3.35).

5Let |k〉 be a state such that L0|k〉 = k|k〉. Then,

L0L−n|k〉 = ([L0, L−n] + L−nL0) |k〉
= (n+ k)L−n|k〉.

Therefore, L−n|k〉 is an eigenstate of L0 with eigenvalue n+ k.
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(L0 − a)|ψ〉 = 0 along with the condition Lm>0|ψ〉 = 0. The second condition implies that L1|ψ〉 = 0,
from which we have 0 = L1L−1|χ1〉 = ([L1, L−1]+L−1L1)|χ1〉 = [L1, L−1]|χ1〉 = 2L0|χ1〉 = 2(a−1)|χ1〉.
Thus, we can determine the value of a as 1.

Next, in order to determine the value of c, we need to construct the following physical spurious state

|ψ〉 = (L−2 + γL−1L−1)|χ2〉, (3.37)

where γ is a constant, which will have to be fixed to ensure that |ψ〉 has a zero-norm (i.e. physical) and
|χ2〉 obeys the relations: (L0 − a + 2)|χ2〉 = (L0 + 1)|χ2〉 = 0 and Lm>0|χ2〉 = 0. Now, since we are
assuming that |ψ〉 is physical, we have L1|ψ〉 = 0, which implies that 0 = L1(L−2 + γL−1L−1)|χ2〉 =
([L1, L−2 + γL−1L−1])|χ2〉 = {(3− 2γ)L−1 + 4γL0L−1}|χ2〉. The second term vanishes6 Thus, L1|ψ〉 =
(3− 2γ)L−1|χ2〉 = 0. The equality holds only for γ = 3/2. As a result, the equation (3.37) becomes

|ψ〉 = (L−2 +
3

2
L−1L−1)|χ2〉.

So then, let us consider the constraint L2|ψ〉 = 0, which implies that 0 = L2(L−2 + 3/2L−1L−1)|χ2〉 =
[L2, L−2+3/2L−1L−1]|χ2〉 = (13L0+c/2)|χ2〉 = (−13+c/2)|χ2〉. Thus, if we assume that |ψ〉 is physical
and spurious, then we must have c = 26.

Overall, if we would like to remove the negative norm states, then we have to, at least, fix the value
of a, γ and c at 1, 3/2 and 26, respectively. Since the central charge c is equal to the dimension of the
background spacetime, our theory is only physically acceptable for the case that it lives in a space of 26
dimensions. The a = 1, c = 26 bosonic string theory is called critical, where the critical dimension is 26.
(Although there can exist bosonic string theories with non-negative norm physical states for a ≤ 1 and
c ≤ 25, which are called non-critical.)

3.8 Light-Cone Gauge Quantization

In the canonical quantization, we kept the bosonic theory manifestly Lorentz invariant but it predicted
the existence of negative norm states. By contrast, light-cone quantization does not predict negative
norm states but it is no longer manifestly Lorentz invariant. When we impose the Lorentz invariance of
the theory, we will see the theory has a = 1 and c = D = 26 again.

To proceed, let us define light-cone coordinates for spacetime as

X± =
1√
2

(
X0 ±XD−1

)
. (3.38)

Then, the D spacetime coordinates Xµ consist of the null coordinates X± and the D − 2 transverse
coordinates Xi:

{X−, X+, Xi}D−2
i=1 .

In these coordinates, the inner product of two vectors v and w is given by

v · w = −v+w− − v−w+ +
D−2∑

i=1

viwi

and indices are raised and lowered by the following rules

v− = −v+, v+ = −v− and vi = vi,

6L0L−1|χ2〉 = ([L0, L−1] + L−1L0)|χ2〉 = L−1(1 + L0)|χ2〉 = 0.
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which implies that the theory is no longer manifestly Lorentz invariant in this coordinates since the two
coordinates X± are treated differently from the others.

In the light-cone gauge, we choose

X+(τ,σ) = x+ + l2sp
+τ. (3.39)

In terms of the modes, this gauge corresponds to setting α+
n = ᾱ+

n = 0 for ∀n )= 0 (see (2.54) and (2.59)).
The light-cone gauge eliminates the oscillator modes of X+.

Next, we will consider what happens to the oscillator modes of X− in the light-cone gauge. Recall
the Virasoro constraints (??), these are equivalent to

(Ẋ ±X ′)2 = 0. (3.40)

In terms of the light-cone coordinates, (3.40) becomes

Ẋ− ±X−′ =
1

2l2sp
+
(Ẋi ±Xi′)2. (3.41)

These equations are used to determine X− and for an open string with Neumann boundary conditions,
we have

X−(τ,σ) = x− + l2sp
−τ +

∑

n #=0

1

n
α−
n e

−inτ cos (nσ).

Substituting this into (3.41) gives

α−
n =

1

p+ls

(
1

2

D−2∑

i=1

∞∑

m=−∞
: αi

n−mα
i
m : −aδn,0

)
. (3.42)

In the light-cone gauge, only the zero modes for X− survive as independent degrees of freedom as was
the case for X+. Thus, we can express the bosonic string theory in terms of transverse oscillators only.

3.8.1 Mass-Shell Condition (Open Bosonic String)

In the light-cone coordinates, the mass-shell condition is given by

M2 = −pµpµ = 2p+p− −
D−2∑

i=1

pipi. (3.43)

From (3.42), we have for n = 0

p−ls ≡ α−
0 =

1

p+ls




1

2
(αi

0)
2 +

D−2∑

i=1

∑

m>0

: αi
−mα

i
m :

︸ ︷︷ ︸
≡N

−a




, (3.44)

which can be rewritten as

2p+p− − pipi =
2

l2s
(N − a).

Thus, together with (3.43), we can get M2 = 2/l2s(N − a), that is,

M2 =
2

l2s

D−2∑

i=1

∑

n>0

: αi
−nα

i
n : −a. (3.45)
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3.8.2 Mass Spectrum (Open Bosonic String)

In the light-cone gauge, all the excitations are generated by transverse oscillators αi
n. In the canonical

quantization, we had to include all the oscillators, which cause the problem of negative norm states.
However, the commutator of the transverse oscillators does not have the negative value, which comes
from η00 = −1. Thus, we do not have negative norm states in the light-cone gauge.

The first excited state is given by αi
−1|0; kµ〉, which belongs to a (D− 2)-component vector represen-

tation of the SO(D − 2) in the transverse space.
In general, it is known that Lorentz invariance implies that physical states form a representation of

SO(D − 1) for massive states and SO(D − 2) for massless states. Hence, since αi
−1|0; kµ〉 belongs to a

representation of SO(D − 2), it must correspond to a massless state if the theory is Lorentz invariant.
By using this fact, the value of a in (3.45) can be determined. Acting on the first excited state with

the mass operator,

M2
(
αi
−1|0; kµ〉

)
=

2

l2s
(N − a)

(
αi
−1|0; kµ〉

)
=

2

l2s
(1− a)

(
αi
−1|0; kµ〉

)
.

Thus, in order for the first excited state to have an eigenvalue of zero for the mass operator, and not to
contradict with Lorentz invariance, the condition a = 1 must be imposed.

After fixing the a value, the next task is to determine the spacetime dimension D, which is conducted
by calculating the normal ordering constant a directly. The normal ordering constant a occurs when we
normal order the expression

1

2

D−2∑

i=1

∞∑

m=−∞
αi
−mα

i
m.

Normal ordering this expression yields

1

2

D−2∑

i=1

∞∑

m=−∞
αi
−mα

i
m =

1

2

D−2∑

i=1

∞∑

m=−∞
: αi

−mα
i
m : +

D − 2

2

∞∑

m=1

m (3.46)

since [αi
m,αj

−m] = mδij . The second sum of the right hand side is divergent and needs to be regularized
by using ζ-function regularization.

Firstly, consider the sum ζ(s) =
∑∞

n=1 n
−s, which is defined for any complex number s. For Re(s) > 1,

this sum converges to the Riemann zeta function ζ(s). This zeta function has the following value for
s = −1: ζ(−1) = −1/12. Thus, the second sum can be written as −(D − 2)/24. Using the earlier result
that a should be equal to one, we get

D − 2

24
= 1,

from which we can conclude D = 24.

3.8.3 Analysis of the Spectrum

Open String

For convenience, the mass operator is written below.

α′M2 = N − 1, where α′ ≡ l2s
2
.

At the first few mass levels, the physical states of the open string are as follows.
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• For N = 0

There is a tachyon, which has an imaginary mass and whose mass is given by α′M2 = −1.

• For N = 1

There is a vector boson αi
−1|0; kµ〉 which is massless because of the Lorentz invariance. This state

gives a vector representation of SO(26− 2).

• For N = 2

We have the first states with positive mass. The states are

αi
−2|0; kµ〉 and αi

−1α
j
−1|0; kµ〉 with α′M2 = 1.

These are 24 and 24 ∗ 25/2 states, respectively. Thus, the total number of states is 324, which is
the dimensionality of the symmetric traceless second-rank tensor representation of SO(25). So, in
this sense, the spectrum consists of a single massive spin-two state at the N = 2 mass level.

Closed String

The spectrum of the closed string can be obtained from the spectrum of the open string since a closed
string state is a tensor product of a left-moving state and a right-moving state. In addition, we must
consider the level matching condition (3.30) for left-moving and right-moving modes.

The mass operator of the closed string is given by

α′M2 = 4(N − 1) = 4(N̄ − 1)

The physical state of the closed string at the first two mass levels are as follows.

• For N = 0 = N̄

We have α′M2 = −4. Thus, the ground state |0; kµ〉 is again a tachyon.

• For N = 1 = N̄

We have the massless states
αi
−1ᾱ

j
−1|0; kµ〉,

which corresponds to the tensor product of two massless vectors (one left-mover and one right-
mover). The number of the states is 242 = 576 states.



Chapter 4

Conformal Field Theory

4.1 Role of CFT in String Theory

We will discuss why conformal field theories are important in string theory. It will turn out that two-
dimensional conformal field theories are very important to describe the world-sheet dynamics.

A string has internal degrees of freedom described by its vibrational modes. The different vibrational
modes of the string are interpreted as particles.

The vibrational modes of the string can be studied by investigating the world-sheet, which is a two-
dimensional surface. It will turn out that when studying the world-sheet, the vibrational modes of the
string are described by a two-dimensional conformal field theory.

4.2 Conformal Group in d dimensions

The conformal group is defined as follows. If one has a metric gαβ(x) in d dimensional spacetime, then
under a coordinate change x → x′ (such that xµ = fµ(x′ν) we have, since the metric is a second-rank
tensor,

gµν(x)→ g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν gαβ (f(x
′)) . (4.1)

The conformal group is defined to be the subgroup of coordinate transformations that leaves the metric
unchanged, up to a scale factor Ω(x), (i.e. preserves angles)

gµν(x)→ g′µν(x
′) = Ω(x)gµν(x). (4.2)

The transformation x→ x′ is called a conformal transformation and, roughly speaking, a conformal field
theory is a field theory which respects these transformations.

The transformation of (4.2) has a different interpretation depending on whether we are considering
a fixed background metric or a dynamical background metric. When the background is dynamical,
the transformation is a diffeomorphism, which is a gauge symmetry. When the background is fixed,
the transformation is a global symmetry, with a corresponding current. We will see later that the
corresponding charges for this current are the Virasoro generators.

We will start with a flat background metric1. We can find the infinitesimal generators of the conformal
group. For an infinitesimal conformal transformation xµ → fµ(x′ν) = xµ + εµ, we have, from (4.1),

g′µν(x
α + εα) = gµν + ∂µεν + ∂νεµ,

1In two dimensions, this is not a restriction on the theory since we have seen that if the theory has a Weyl symmetry
and reparametrization invariance, then we can make the metric flat with this symmetry.

33
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which must be equal to (4.2). Thus, we get

(Ω(x)− 1) gµν = ∂µεν + ∂νεµ. (4.3)

Multiplying gµν on the both sides and taking the trace gives

Ω(x)− 1 =
2

d
(∂ · ε).

Substituting this back into (4.3) yields

∂µεν + ∂νεµ =
2

d
(∂ · ε)gµν . (4.4)

The solutions to the above equation correspond to infinitesimal conformal transformations.
For d > 2, we obtain the following solutions.

1. εµ = aµ (aµ is a constant.)

These correspond to translations.

2. εµ = ωµ
νx

ν (ωµ
ν is an antisymmetric tensor.)

These correspond to Lorentz transformations.

3. εµ = λxµ (λ is a number.)

These correspond to scale transformations.

4. εµ = bµx2 − 2xµb · c

These are known as the special conformal transformations.

Then, the finite transformations for each of them are given as

1. x′µ = xµ + aµ.

2. x′µ = Λµ
νx

ν (Λ ∈ SO(1, d)).

3. x′µ = λxµ.

4. x′µ = xµ+bµx2

1+2b·x+b2x2 .

These transformations form the conformal group in d dimensions. The generators for them are

1. Pµ = ∂µ.

2. Mµν = 1
2 (xµ∂ν − xν∂µ).

3. D = xµ∂µ.

4. kµ = x2∂µ − 2xµxν∂ν .
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4.3 Two dimensional Conformal Algebra

We will take d = 2 and gµν = δµν , where δµν is the two dimensional Euclidean metric.2 Under this
situation, the equation (4.4) becomes

∂µεν + ∂νεµ = (∂ · ε) δµν . (4.5)

• For µ = ν = 1 and µ = ν = 2,

we have
∂1ε1 = ∂2ε2. (4.6)

• For µ = 1 and ν = 2,

we have
∂1ε2 = −∂2ε1. (4.7)

Thus, we see that the equation (4.4), in the case of two dimensions, are the Cauchy-Riemann equations.
That is, in the two dimensional case, infinitesimal conformal transformations are functions which obey
the C-R equations.

In terms of the two dimensional complex coordinates

z, z̄ = x1 ± ix2,

defining ε = ε1 + iε2 and ε̄ = ε1 − ε2, the equations (4.6) and (??) can be rewritten as

∂z̄ε = 0 and ∂z ε̄ = 0.

Thus, in two dimensions, conformal transformations coincide with the holomorphic and the antiholomor-
phic coordinate transformations given by

z → f(z)

z̄ → f̄(z̄),

where ∂z̄f(z) = ∂z f̄(z̄) = 0.
In order to obtain the generators, let us consider the infinitesimal coordinate transformations

z → z′ = z + ε(z) and z̄ → z̄′ = z̄ + ε̄(z̄),

where ε(z) and ε̄(z̄) can be expanded as

ε(z) =
∑

n∈Z
εnz

n+1 (4.8)

ε̄(z̄) =
∑

n∈Z
ε̄nz̄

n+1. (4.9)

Then, the corresponding infinitesimal generators can be obtained as

ln = −zn+1∂z (4.10)

l̄n = −z̄n+1∂z̄. (4.11)

2Until now it has been assumed that the string world-sheet has a Lorentzian signature metric. However, it is convenient
to make a Wick rotation τ → −iτ , so as to obtain a world-sheet with Euclidean signature, and thereby make the world-sheet
metric hαβ positive definite.
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The set {ln, l̄n}n∈Z forms an algebra and its commutators are given by

[lm, ln] = (m− n)lm+n (4.12)

[l̄m, l̄n] = (m− n)l̄m+n (4.13)

[lm, l̄n] = 0. (4.14)

These commutation relations are modified a little after the quantization.
The generators l0,±1 and l̄0,±1 are a special case because these form a subalgebra and generate finite

conformal transformations. Specifically,

1. Translation

l−1 = −∂z, l̄−1 = −∂z̄

2. Scaling + Rotation

l0 = −z∂z, l̄0 = −z̄∂z̄
To be exact, l0 + l̄0 is the generator of scaling and i(l0 − l̄0) is the generator of rotation.

3. SCF

l1 = −z2∂z, l̄1 = −z̄2∂z̄

4.4 Conformal Field Theories in Two Dimensions

A conformal field theory is a field theory that respects conformal transformations (4.2). Here, we will
adopt a Euclidean metric:

ds2 =
(
dx1
)2

+
(
dx2
)2

. (4.15)

In terms of the complex coordinates z = x1 + ix2, the above equation can be rewritten as

ds2 = dzdz̄. (4.16)

Under a coordinate transformation z → f(z) and z̄ → f̄(z̄), ds2 transforms as

ds2 → ∂f

∂z

∂f̄

∂z̄
ds2. (4.17)

A field Φ(z, z̄) is called a primary field with a conformal weight (h, h̄) if, under a conformal transfor-
mation z → f(z) and z̄ → f̄(z̄), it transforms as

Φ(z, z̄)→
(
∂f

∂z

)h(∂f̄
∂z̄

)h̄

Φ(f(z), f̄(z̄)). (4.18)

Especially, under an infinitesimal transformation f(z) = z + ε(z) and f̄(z̄) = z̄ + ε̄(z̄), we can get

(
∂f

∂z

)h

= (1 + ∂zε(z))
h = 1 + h∂zε(z) +O(ε2)

(
∂f̄

∂z̄

)h̄

= (1 + ∂z̄ ε̄(z̄))
h̄ = 1 + h̄∂z̄ ε̄(z̄) +O(ε̄2)
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Then, the infinitesimal transformation of the field Φ(z, z̄) is given by

Φ(z, z̄)→ (1 + h∂zε(z) +O(ε2))(1 + h̄∂z̄ ε̄(z̄) +O(ε̄2))Φ(z + ε(z), z̄ + ε̄(z̄))

= Φ(z, z̄) +
[
(h∂zε(z) + ε(z)∂z) + (h̄∂z̄ ε̄(z̄) + ε̄(z̄)∂z̄)

]
Φ(z, z̄) +O(ε2, ε̄2, εε̄).

Thus, the variation of the field Φ(z, z̄) becomes, up to the first order in ε and ε̄,

δε,ε̄Φ(z, z̄) =
[
(h∂zε(z) + ε(z)∂z) + (h̄∂z̄ ε̄(z̄) + ε̄(z̄)∂z̄)

]
Φ(z, z̄). (4.19)

4.4.1 Correlation Functions

The transformation rule of two primary fields in (4.19) gives constraints on the correlation functions of
the primary fields.

Since a two-point correlation function of primary fields, G(2)(zi, z̄i) ≡ 〈Φ1(z1, z̄1Φ1(z2, z̄2〉, is invariant
under an infinitesimal transformation δε,ε̄, now if we assume that the transformation δε,ε̄ is a derivation,
then we have

0 = δε,ε̄G
(2)(zi, z̄i)

= 〈(δε,ε̄Φ1)Φ2〉+ 〈Φ1(δε,ε̄Φ2)〉
= 〈(ε(z1)∂z1Φ1 + h1∂z1ε(z1)Φ1)Φ2〉+ 〈(ε̄(z̄1)∂z̄1Φ1 + h̄1∂z̄1 ε̄(z̄1)Φ1)Φ2〉

+ 〈Φ1(ε(z2)∂z2Φ2 + h2∂z2ε(z2)Φ2)〉+ 〈Φ1(ε̄(z̄2)∂z̄2Φ2 + h̄2∂z̄2 ε̄(z̄2)Φ2)〉
=
[
(ε(z1)∂z1 + h1∂z1ε(z1)) + (ε(z2)∂z2 + h2∂z2ε(z2))

+ (ε̄(z̄1)∂z̄1 + h̄1∂z̄1 ε̄(z1)) + (ε̄(z̄2)∂z̄2 + h̄2∂z̄2 ε̄(z2))
]
G(2)(zi, z̄i).

Thus, we get

0 =
[
(ε(z1)∂z1 + h1∂z1ε(z1)) + (ε(z2)∂z2 + h2∂z2ε(z2))

+anti part
]
G(2)(zi, z̄i).

For an infinitesimal translation ε(z) = ε−1, ε̄(z̄) = ε̄−1, the two-point function G(2) satisfies

(∂z1 + ∂z2)G
(2) = (∂z̄1 + ∂z̄2)G

(2) = 0, (4.20)

from which we see that G(2) is the function of z12 ≡ z1− z2 and z̄12 ≡ z̄1− z̄2. Then, for an infinitesimal
dilatation ε(z) = ε0z, ε̄(z̄) = ε̄0z̄, G(2) satisfies

(h1 + z1∂z1 + h2 + z2∂z2)G
(2) = (h̄1 + z̄1∂z̄1 + h̄2 + z̄2∂z̄2)G

(2) = 0. (4.21)

By using (4.20), (4.21) becomes

(h1 + h2 + z12∂z1G
(2) = (h̄1 + h̄2 + z̄12∂z̄1G

(2) = 0.

Solving this equation, we can get

G(2)(zi, z̄i) =
C

zh1+h2
12 z̄h̄1+h̄2

12

. (4.22)

Finally, the differential equations for an infinitesimal SCT ε(z) = ε1z2, ε̄(z̄) = ε̄1z̄2, are

(2h1z1 + z21∂z1 + 2h2z2 + z22∂z2)G
(2) = (2h̄1z̄1 + z̄21∂z̄1 + 2h̄2z̄2 + z̄22∂z̄2)G

(2) = 0. (4.23)

Consider the holomorphic part. By using (4.20) and substituting (4.22) into (4.23), we can see that G(2)

satisfies
(2h1z1 + 2h2z2 − (h1 + h2)(z1 + z2))G

(2) = 0.
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For this equation to hold for any z1 and z2, the following must be satisfied.
{
2h1 = h1 + h2

2h2 = h1 + h2
=⇒ h1 = h2.

In a similar way, we can get h̄1 = h̄2. Thus, we see that the two-point function is constrained to take
the form

G(2)(zi, z̄i) =

{
C

z2h
12 z̄

2h̄
12

if h1 = h2 and h̄1 = h̄2,

0 if h1 )= h2 or h̄1 )= h̄2.
(4.24)

4.5 Radial Quantization

We will begin with a flat two-dimensional Euclidean surface with the coordinates labeled by σ0 for a
time-like coordinate and σ1 for a space-like coordinate. Then, the metric on the surface is given by

ds2 = (dσ0)2 + (dσ1)2. (4.25)

Let us consider the worldsheet of a free closed string (cylinder) parametrized by σ1 ∈ [0, 2π] and σ0 ∈
(−∞,∞). Then, we can regard this Euclidean surface as the product space R× S1, where S1 denotes a
circle. Now, we define light-cone coordinates for this Euclidean surface by

ζ, ζ̄ = σ0 ± iσ1,

which are Wick rotation of the light-cone coordinates used for Minkowski string worldsheet in the previous
chapter. In terms of these coordinates, the metric becomes

ds2 = dζdζ̄. (4.26)

We can introduce the complex plane with coordinates z using ζ and ζ̄ via the map

ζ → z = e2ζ = e2(σ
0+iσ1)

ζ̄ → z̄ = e2ζ̄ = e2(σ
0−iσ1),

(4.27)

where the factor of 2 in the exponents reflects the earlier convention of choosing the periodicity of the
closed-string parametrization to be σ → σ + π. We can see, from the mapping, that the infinite past
(σ0 = −∞) and future (σ0 = ∞) of the cylinder are mapped to the point z = 0 and the point z = ∞,
respectively. Also, equal time slices of the cylinder, i.e. the surface defined by σ0 = const and σ1 ∈ [0,π),
become circles of constant radius exp 2σ0 in the complex plane (see Fig 4.1). Also, time translations,
σ0 + a (a is a constant), are the dilatations in the complex plane. Recall that the Hamiltonian generates
time translations. Thus, we can see that the dilatation generator on the complex plane corresponds to
the Hamiltonian on the cylinder. Therefore, the Hilbert space defined on the cylinder is built up of
constant time slices while the Hilbert space defined on the complex plane is built up of circles of constant
radius. In the end,this procedure of quantizing a theory on a manifold where geometry is given by the
complex plane is known as radial quantization.

4.6 Conserved Charges and Symmetry Generators

Before we begin to study the conserved charges on the complex z plane, we need to know the components
of the metric and the stress energy tensor in the complex coordinates z and z̄. The metric on the Euclidean
surface (cylinder) was given by, in the light-cone coordinates, (4.26). According to (4.27), we see that
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Figure 4.1: Mapping from the cylinder to the complex plane.

ζ = 1/2 ln z and ζ̄ = 1/2 ln z̄, which give us ds2 = 1
4

1
|z|2 dzdz̄. The scaling factor of 1/(4|z|2) can be

removed via a conformal transformation and since the theory which we are considering is a CFT, it
should be invariant under this transformation. Therefore, we can take the metric on the complex plane
to be

ds2 = dzdz̄, (4.28)

from which we can find that the components of the metric in the complex coordinates z is given by

gzz = gz̄z̄ = 0

gzz̄ = gz̄z = 1/2.

Next, we would like to find the components of the stress energy tensor in terms of the complex coordinates
z and z̄. The components are given by

Tzz =
1

4
(T00 − 2iT10 − T11) (4.29)

Tz̄z̄z =
1

4
(T00 + 2iT10 − T11) (4.30)

Tzz̄ = Tz̄z =
1

4
(T00 + T11) =

1

4
Tµ

µ. (4.31)

Now, by the translational invariance, we have ∂νTµν = 0,3 which implies that

∂z̄Tzz + ∂zTz̄z = 0 (4.32)

∂zTz̄z̄ + ∂z̄Tzz̄ = 0. (4.33)

Also, imposing dilatational invariance gives us that the stress energy tensor is traceless, Tµ
µ = 0.4 This

implies, from (4.31), that Tz̄z = Tzz̄ = 0. Combining this result with (4.32) and (4.33) gives us

∂zTz̄z̄ = 0 (4.34)

∂z̄Tzz = 0, (4.35)

3If the theory is invariant under an infinitesimal coordinate transformation, xµ → xµ + εµ, then the corresponding
conserved current is given by jµ = Tµνεν , where Tµν is the stress energy tensor. In particular, for translations along xα

by a, we have εµα = aδµα. Thus, the current is given by jµα = aTµα. If the theory is translationally invariant, this current
gets conserved, ∂αTµα = 0.

4For dilatations (scaling), we have εµ = bxµ, where b is the constant of proportionality. Thus, the current corresponding
to this transformation is bTµνxν . If the theory is invariant under dilatation, we have ∂µjµ = 0, which implies 0 =
∂µ(bTµνxν) = bT µ

µ . The second equality, in fact, is not correct but it becomes correct in the sense that a total derivative
vanishes in the action of the theory. Thus, in a conformally invariant theory, the stress energy tensor is traceless.
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Figure 4.2: The illustration of the new contour C′.

which tell us that Tz̄z̄ is a holomorphic function of z̄ only and Tzz is an anti-holomorphic function of z,

Tzz ≡ T (z) and Tz̄z̄ ≡ T̄ (z̄),

which are the only non-vanishing components of the stress energy tensor for two-dimensional CFT.
Now, we are ready to study symmetries and their corresponding conserved charges for two-dimensional

CFT. For an infinitesimal conformal transformation δz = ε(z) and δz̄ = ε̄(z̄), the associated conserved
charge is given by

Q =
1

2πi

∮

C

(
dzT (z)ε(z) + dz̄T̄ (z̄)ε̄(z̄)

)
, (4.36)

where the contour C is over a circle in the complex plane. The variation of a field Φ(w, w̄) with respect
to the above transformation is then given by the equal-radius commutator

δεε̄Φ(w, w̄) ≡ [Q,Φ(w, w̄)]

=
1

2πi

∮

C
dzε(z)

[
T (z),Φ(w, w̄)

]
+(the anti-holomorphic part). (4.37)

Products of fields are only defined if we put them in radial order. Radial order is defined in analogy
with time order in QFT as follows:

R[A(z)B(w)] =

{
A(z)B(w) for |w| < |z|
B(w)A(z) for |z| < |w|,

(4.38)

where R is the radial ordering operator. Then, we can rewrite δε,ε̄Φ(w, w̄) in (4.37) as

δε,ε̄Φ(w, w̄) =
1

2πi

(∮

|w|<|z|
−
∮

|z|<|w|

)
(
dzε(z)R

[
T (z)Φ(w, w̄)

]
+(anti-holomorphic part)

)

=
1

2πi

∮

C′

(
dzε(z)R

[
T (z)Φ(w, w̄)

]
+(anti-holomorphic part)

)
, (4.39)

where the new contour C′ is the contour enclosing the point w and is shown in Fig 4.2.
We know the infinitesimal transformation of the primary field under conformal transformations was

given by (4.19). Then, by equating (4.19) with (4.39) and using the Cauchy-Riemann formula, we can
infer any primary field must have the following radial-ordered operator product with T (z).

R
[
T (z)Φ(w, w̄)

]
=

hΦ(w, w̄)

(z − w)2
+
∂wΦ(w, w̄)

z − w
+ regular terms (4.40)

R
[
T̄ (z̄)Φ(w, w̄)

]
=

h̄Φ(w, w̄)

(z̄ − w̄)2
+
∂w̄Φ(w, w̄)

z̄ − w̄
+ regular terms, (4.41)



4.7. THE FREE MASSLESS BOSONIC FIELD 41

Figure 4.3: Subtraction of contours.

where (h, h̄) are called the conformal weights of the primary field Φ(w, w̄). We have seen that the
transformation property of primary fields leads to a short distance operator product expansion (OPE)
for the holomorphic and anto-holomorphic stress energy tensor with the field Φ. From now on, we will
drop the R symbol as a shorthand notation.

As an aside, we would like to relate OPEs to commutators here. Let a(z) and b(z) be two holomorphic
fields and consider the integral

∮
w dza(z)b(w), where the integration contour circles counterclockwise

around w. This expression has an operator meaning within correlation functions as long as it is radially
ordered. Accordingly, we split the contour into two fixed-time circles (see Fig 4.3.) going in opposite
directions. Thus, the above integral is seen to be a commutator,

∮

w
dza(z)b(w) =

∮

C1

dza(z)b(w)−
∮

C2

dzb(w)a(z)

≡ [A, b(w)], (4.42)

where the operator A is the integral over space of fixed-time of the field a(z), A =
∮
a(z)dz and C1 and

C2 are fixed-time contours of radii respectively equal to |w + ε| and |w − ε|, with ε being infinitesimal.
The commutator obtained is then, in a sense, an equal time commutator.

The commutator [A,B] of two operators, each of which is the integral of a holomorphic field, is
obtained by integrating (4.42) over w,

[A,B] =

∮

o
dw

∮

w
dza(z)b(w), (4.43)

where the integral over z is taken around w and the integral over w around the origin and A =
∮
a(z)dz,

B =
∮
b(z)dz.

4.7 The Free Massless Bosonic Field

In this section, we will calculate the OPE’s for some specific quantities in the free bosonic field theory.
Then, we will show that the corresponding charges for the conserved current arising from global conformal
transformations are the Virasoro generators Lm.

The action for the bosonic theory is given by

S =
1

2π

∫
dzdz̄∂zX(z, z̄)∂z̄X(z, z̄). (4.44)

The equation of motion is given by
∂z∂z̄X(z, z̄) = 0, (4.45)
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from which, we can see that the field X(z, z̄) decomposes into a holomorphic and anti-holomorphic part,

X(z, z̄) = X(z) + X̄(z̄). (4.46)

To find the propagator X(z, z̄)X(w, w̄) for this theory, we calculate the following equation.

0 =
1

Z

∫
DX

δ

δX(z, z̄)

(
e−SX(w, w̄)

)

=
1

Z

∫
DXe−S

(
δ(2)(z − w, z̄ − w̄) +

1

2π
∂z∂z̄X(z, z̄)X(w, w̄)

)
.

Thus, we have

0 =
〈
δ(2)(z − w, z̄ − w̄)

〉
+

1

2π
∂z∂z̄ X(z, z̄)X(w, w̄).

By using ∂z(1/z̄) = 2πδ(2)(z, z̄) = ∂z̄(1/z), we can integrate the above equation to become

X(z, z̄)X(w, w̄) = − log |z − w|2

= − log(z − w)− log(z̄ − w̄). (4.47)

On the other hand,

X(z, z̄)X(w, w̄) = X(z)X(w) + X̄(z̄)X(w) +X(z)X̄(w̄) + X̄(z̄)X̄(w̄). (4.48)

Since the correlation function of two dimensional CFTs has translation invariance, the contraction

X(z)X̄(w̄) is equal to some function of z − w̄. Thus, we can infer that, compared with (4.47) and
(4.48),

X(z)X̄(w̄) = 0, X̄(z̄)X(w) = 0, (4.49)

X(z)X(w) = − log(z − w), X̄(z̄)X̄(w̄) = − log(z̄ − w̄). (4.50)

Next, we will define the stress energy tensor. From the action in (4.44), the holomorphic5 part of it
should be given by

T (z) = −1

2
: ∂zX(z)∂zX(z) :

≡ −1

2
lim
z→w

(∂zX(z)∂wX(w)− singularity) ,

where the singularity is, from Wick’s theorem, given by

singularity = ∂z X(z)∂wX(w) = ∂z∂w



X(z)X(w)





= − 1

(z − w)2
. (∵ (4.50)) (4.51)

5The anti-holomorphic part can inferred from the holomorphic part easily.
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Thus, the holomorphic part of the stress energy tensor is defined to be

T (z) = −1

2
: ∂zX(z)∂zX(z) :≡ −1

2
lim
z→w

(
∂zX(z)∂wX(w) +

1

(z − w)2

)
. (4.52)

Finally, we can calculate the OPEs of some fields with the stress energy tensor to see whether or not
these fields are primary in the free bosonic field theory.

• The OPE of T (z)X(w)

T (z)X(w) =
1

2
: ∂zX(z)∂zX(z) : X(w)

= −∂zX(z)∂z



X(z)X(w)



+ regular terms

= −∂zX(z)∂z (− log(z − w)) + regular terms

∼ ∂zX(z)

z − w
,

where ∼ means that equivalence holds up to regular terms. By expanding ∂zX(z) around the point
w, we get

T (z)X(w) =
(
∂wX(w) + ∂2wX(w)(z − w) + · · ·

)( 1

z − w

)

∼ ∂wX(w)

z − w
,

which means that the field X(w) is not a primary field6 Therefore, X(w, w̄) is also not a primary
field.

• The OPE of T (z)∂wX(w)

T (z)∂wX(w) = −1

2
: ∂zX(z)∂ZX(z) : ∂wX(w)

∼ −∂zX(z)∂z∂w



X(z)X(w)





∼ ∂zXz

(z − w)2

∼
(
∂wX(w) + (z − w)∂2wXw + · · ·

) 1

(z − w)2

∼ ∂wX(w)

(z − w)2
+
∂2wX(w)

z − w
,

which means that ∂wX(w) is a primary field with the conformal weight h = 1. Thus,
T (z)∂wX(w, w̄) is also a primary field.

Here, as an aside, we would like to calculate the commutation relation of bosonic modes (3.17) in
terms of OPE calculation. Generally, a primary field φ(z, z̄) of conformal weights (h, h̄) may be

6Recall that the OPE of a primary field with the conformal weight h with the stress energy tensor was given by (4.40).
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mode expanded as follows:

φ(z, z̄) =
∑

m∈Z

∑

n∈Z
z−m−hz̄−n−h̄φm,n, (4.53)

φm,n =
1

2πi

∮
dzzm+h−1 1

2πi

∮
dz̄z̄n+h̄−1, (4.54)

where the second equation can be obtained by Cauchy’s theorem. Thus, from the above result, we
can see that ∂zX(z) is mode expanded as 7

∂zX
µ(z) =

∑

n∈Z
z−n−1αµ

n, (4.56)

αµ
n =

1

2πi

∮
dzzn∂xX

µ(z). (4.57)

By using the formula (4.43), we can finally calculate the commutator as follows.

[αµ
m,αν

n] =

∮

0

dw

2πi

∮

w

dz

2πi
∂zX

µ(z)∂wX
ν(w)zmzn

=

∮

0

dw

2πi

∮

w

dz

2πi

zmwn

(z − w)2
ηµν (∵ (4.55))

= mδm+n,0η
µν ,

which is the same as (3.17).

• The OPE of T (z)T (w)

T (z)T (w) =
1

4
: ∂zX(z)∂zX(z) :: ∂wX(w)∂wX(w) :

∼ 1

(z − w)2
: ∂zX(z)∂wX(w) : +

1/2

(z − w)4

∼ 2T (w)

(z − w)2
+
∂wT (w)

z − w
+

1/2

(z − w)4
,

from which we see that the stress energy tensor is not strictly a primary field because of the
anomalous term (1/2)/(z − w)4. Suppose we have d scalar fields Xµ with µ = 0, . . . , d− 1. Then,
we get the following expression for T (z),

T (z) = −1

2
: ∂zX

µ(z)∂zXµ(z) : . (4.58)

The OPE of T (z)T (w) can be obtained in a similar fashion,

T (z)T (w) =
d/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
, (4.59)

in which d is called the central charge, usually labeled by c. The central charge is the dimensionality
of the spacetime.

7We will write this mode expansion in terms of d scalar fields in the Minkowski flat worldsheet. As a result, the OPE
of the equation (4.51) is rewritten as

∂zX
µ(z)∂wXν(w) ∼

ηµν

(z − w)2
, (4.55)

which will be used for calculating th commutation relation.
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4.8 Charges of the Conformal Symmetry Currents

The classical current corresponding to conformal symmetry was given by

j(z) = T (z)ε(z), (4.60)

where ε(z) is a holomorphic function. Similarly, the anti-holomorphic part of the current is j̄(z̄) =
T̄ (z̄)ε̄(z̄). Thus, substituting (4.8) and (4.9) into the above ε(z) and ε̄(z̄), the charges Ln and L̄n

corresponding to ε(z) and ε̄(z̄) are given by

Ln =

∮
dz

2πi
zn+1T (z) and L̄n =

∮
dz̄

2πi
z̄n+1T̄ (z̄), (4.61)

where the contour is taken to enclose the origin z, z̄ = 0. Then, by using the Cauchy’s theorem, the
mode expansions for T (z) and T̄ (z̄) are given by

T (z) =
∑

n∈Z
z−n−2Ln and T̄ (z̄) =

∑

n∈Z
z̄−n−2L̄n. (4.62)

Promoting these to operators, we will find the algebra of commutators satisfied by the operator Ln

by using the formula (4.43).

[Lm, Ln] =

∮

0

dw

2πi

∮

w

dz

2πi
T (z)T (w)zm+1wn+1

=

∮

o

dw

2πi

∮

w

dz

2πi
zm+1wn+1

(
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ reg

)
(use (4.59) with d→ c)

=
1

2πi

∮

o
dwwn+1

(
1

12
c(m+ 1)m(m− 1)wm−2 + 2(m+ 1)wmT (w) + wm+1∂wT (w)

)

=
1

12
cm(m2 − 1)δm+n,0 + 2(m+ 1)Ln+m −

1

2πi

∮

o
dw(m+ n+ 2)wm+n+1T (w)

=
1

12
cm(m2 − 1)δm+n,0 + (m− n)Lm+n,

where, in the fourth line, the last term has been integrated by parts. In a similar way, we can get

[Lm, L̄n] = 0,

[L̄m, L̄n] =
1

12
cm(m2 − 1)δm+n,0 + (m− n)L̄m+n.

These commutators have the same algebraic structure obeyed by the Virasoro algebra.

4.9 Free Massless Fermion Field

The action for this theory is given by, in two component spinor Ψ = (ψ, ψ̄),

SF =
1

2π

∫
dzdz̄(ψ∂z̄ψ + ψ̄∂zψ̄). (4.63)

The equations of motion, resulting from the above action, are given by

∂zψ̄ = 0 and ∂z̄ψ = 0, (4.64)
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which tell us that the field ψ is holomorphic, while the field ψ̄ is antiholomprphic. Therefore, we can only
focus on one part, either holomorphic or antiholomorphic, since the other can be obtained by removing
bars. Then, we will focus on the holomorphic part.

In order to derive the OPE of the fermionic field with itself, we begin with the partition function and
the assumption that the path integral of a total functional derivative vanishes, just as we do for ordinary
integrals. Thus, we can write

0 =

∫
DψDψ̄ δ

δψ(z)
(e−SFψ(w))

=

∫
DψDψ̄

[( δ

δψ(z)
e−SF

)
ψ(w) + e−SF

(
δ

δψ(z)
ψ(w)

)]

=

∫
DψDψ̄e−SF

(
− 1

2π
∂z̄ψ(z)ψ(w) + δ(z − w)

)
,

which implies that

∂z̄ψ(z)ψ(w) = 2πδ(z − w) = ∂z̄

(
1

z − w

)
.

Integrating the both sides of the above equation, we obtain the OPE of the fermion with itself,

ψ(z)ψ(w) ∼ 1

z − w
. (4.65)

In a similar way we also get

ψ̄(z̄)ψ̄(w̄) ∼ 1

z̄ − w̄
. (4.66)

Now that we have obtained the OPE of the fermionic field with itself, we want to calculate the OPE
of the energy momentum tensor with the fermionic field and itself. The energy momentum tensor can
be defined as

TF (z) = −
1

2
: ψ(z)∂zψ(z) :, (4.67)

where we have used the normal-ordered product,

: ψ(z)∂zψ(w) ≡ lim
w→z



ψ(z)∂wψ(w)− ψ(z)∂wψ(w)



 .

Then, the OPE between TF and ψ can be calculated by using Wick’s theorem:

TF (z)ψ(w) = −
1

2
: ψ(z)∂zψ(z) : ψ(w)

= −(−1)1
2
: ψ(z)∂zψ(z) : ψ(w)−

1

2
: ψ(z)∂z ψ(z) : ψ(w)

∼ ∂zψ(z)

2(z − w)
+

ψ(z)

2(z − w)2

∼
1
2ψ(w)

(z − w)2
+
∂wψ(w)

z − w
.
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We see, from this result, that the fermionic field ψ is a primary field with a conformal weight h = 1/2.
Thus, from (4.53) and (4.54), we can mode expand this ψ as

ψµ(z) =
∑

k∈Z+a

z−k−1/2bµk , (4.68)

bµk =
1

2πi

∮
dzzk−1/2ψµ(z), (4.69)

where we have introduced the parameter a to distinguish NS and R sectors. Integer modes (a = 0)
corresponds to the R sectors and half-integer modes (a = 1/2) to the NS sectors, which will be discussed
later in the next chapter. Also, note that, as we did before, we mode expanded ψ in terms of d fermions
in the Minkowski flat worldsheet. As a result, the OPE of (4.65) can be rewritten as8

ψµ(z)ψν(w) ∼ ηµν

z − w
.

Then, by using the formula (4.43), we can derive the commutator which the modes bµk obey.

{bµk , b
ν
q} =

∮

0

dw

2πi

∮

w

dz

2πi
ψµ(z)ψν(w)zk−1/2wq−1/2

=

∮

0

dw

2πi

∮

w

dz

2πi

zk−1/2wq−1/2

z − w
ηµν

= ηµνδm+n,0,

which will be the same as the fermionic commutator we will see later although b will be replaced by d
when k and q take integer values.

Next, the OPE of TF with itself is calculated in the same way, and the result is given by

TF (z)TF (w) =
1

4
: ψ(z)∂zψ(z) :: ψ(w)∂wψ(w) :

∼
1
4

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
.

4.10 The Ghost System

The action for this theory is given by

Sgh =
1

2π

∫
dzdz̄(b∂z̄c+ b̄∂z c̄), (4.70)

where b and c fields are called ghosts and are fermions. These fields arise from a change of variables in
some functional integrals in the Faddeev-Popov analysis of the path integral.

This ghost action gives the following equations of motion,

∂z b̄ = ∂z̄b = ∂z c̄ = ∂z̄c = 0, (4.71)

which tells us that the fields b and c are holomorphic and the fields b̄ and c̄ are antiholomorphic. Thus,
as usual, we will focus on the holomorphic part.

8Note that we, in addition to d fermions extension rescaled ψ to iψ.
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In order to calculate the OPE of b and c fields, we start with, as we did in the last section, the ghost
partition function and assume that the path integral of a total functional derivative vanishes. Namely,

0 =

∫
DbDc

δ

δb(z)

(
e−Sghb(w)

)

=

∫
DbDc

(
− 1

2π
∂z̄c(z)b(w) + δ(z − w)

)
,

which implies that

∂z̄c(z)b(w) = 2πδ(z − w) = ∂z̄

(
1

z − w

)
.

Integrating the both sides gives the OPE for c(z)b(w),

c(z)b(w) ∼ 1

z − w
. (4.72)

In the above calculation, using δ/δc(z) instead of δ/δb(z), gives the OPE for b(z)c(w),

b(z)c(w) ∼ 1

z − w
, (4.73)

from which we can immediately derive the following.

b(z)∂wc(w) ∼
1

(z − w)2
, (4.74)

∂zb(z)c(w) ∼ −
1

(z − w)2
. (4.75)

The energy momentum tensor for this theory is defined as

Tgh = 2 : ∂zc(z)b(z) : + : c(z)∂zb(z) : . (4.76)

Thus, we can calculate the OPE of Tgh with the field c(w) as follows.

Tgh(z)c(w) = (2 : ∂zc(z)b(z) : + : c(z)∂zb(z)) c(w)

∼ 2∂zc(z)

z − w
− c(z)

(z − w)2

∼ −c(w)
(z − w)2

+
∂wc(w)

z − w
.

On the other hand, for the b field, we get

Tgh(z)b(w) = (2 : ∂zc(z)b(z) : + : c(z)∂zb(z)) b(w)

∼ 2b(w)

(z − w)2
+
∂wb(w)

z − w
.

From these results, we can see that c(z) is a primary field of conformal weight h = −1, while b(z) is a
primary field of conformal weight h = 2.

Also, the expression for the OPE of the ghost energy momentum tensor with itself can be calculated
in the exactly same way.

Tgh(z)Tgh(w) ∼
−13

(z − w)4
+

2Tgh(w)

(z − w)2
+
∂wTgh(w)

z − w
,

which implies that the central charge is cgh = −26, which precisely cancels the conformal anomaly that
arises from the matter energy momentum tensor TX (, which is the bosonic energy momentum tensor
here).



Chapter 5

Superstring Theories

The bosonic string theory which we discussed so far is unsatisfactory in two aspects. First, the string
spectrum contains a tachyon. Tachyons are unphysical. The second is that the spectrum does not contain
fermions, which include quarks and leptons in the standard model. Thus, if we want to describe nature
by the string theory, we have to incorporate fermions into it.

The inclusion of fermions into the string theory turns out to be require supersymmetry, which is a
symmetry that relates bosons Xµ(τ,σ) to fermions Ψµ(τ,σ). The latter are two-component spinors given
by

Ψµ(τ,σ) =

(
ψµ
−(τ,σ)
ψµ
+(τ,σ)

)
, (5.1)

where we call ψµ
A(τ,σ) (A = ±) the chiral components of the spinor. This resulting supersymmetric

string theory is called superstring theory.

In this thesis, we will discuss superstring theory with RNS formalism.

• Ramond-Neveu-Schwarz (RNS) Formalism: It uses two-dimensional worldsheet supersymmetry
and it requires the Gliozzi-Scherck-Olive (GSO) projection to remove unphysical states and make
the theory supersymmetric..

5.1 RNS strings

In the RNS formalism, we add D free Majorana fermion fields1 Ψµ(τ,σ) to our D-dimensional bosonic
string theory. The fields Ψµ(τ,σ) are two-component spinors which describe fermions living on the world-
sheet and they transform as vectors under a Lorentz transformation of the D-dimensional background
spacetime. We incorporate these fermions by modifying the bosonic action.

The new action is now given by adding to the bosonic action SB (see (2.32)) the Dirac action for D
free massless fermions SF , for the string tension T = 1/π,

S = SB + SF

= − 1

2π

∫
dτdσ∂αX

µ∂αXµ −
1

2π

∫
dτdσΨ̄µρα∂αΨµ, (5.2)

1A necessary condition for supersymmetric theory is that the number of bosonic degrees of freedom is equal to the
number of fermionic degrees of freedom. Thus, we add D fermionic fields to pair up with the D bosonic fields.
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where ρα with α = 0, 1 is a two-dimensional representation of the Dirac algebra2 and Ψ̄µ is the Dirac
conjugate to Ψµ, defined by

Ψ̄µ ≡ (Ψµ)† iρ0. (5.3)

We will choose a basis in which the matrices ρα take the form

ρ0 =

(
0 −1
1 0

)
and ρ1 =

(
0 1
1 0

)
.

The above form of the Dirac matrices is called a Majorana representation. Also, in the Majorana
representation, reality conditions on the spinors are imposed,

(Ψµ)T C = (Ψµ)† iρ0, (5.4)

where C is the charge conjugate matrix defined by C ≡ iρ0 in two dimensions, from which we can easily
see that the reality condition (5.4) gives us the fact that the spinors have real components:

(
ψµ
±
)∗

= ψµ
±, (5.5)

which are called Majorana spinors.
Classically, the Majorana spinors are Grassman numbers, which imply that they obey the anti-

commutation relations
{ψµ

A,ψ
ν
B} = 0. (5.6)

This, of course, changes after quantization.
Now, substituting (5.1) into the action (5.2), we get, in world-sheet light-cone coordinates,

S =
1

π

∫
dσ+dσ−∂+X

µ(σ−,σ+)∂−Xµ(σ
−,σ+)

+
1

2π

∫
dσ+dσ−

(
ψµ
−(σ

−,σ+)∂+ψ−µ(σ
−,σ+)

+ ψµ
+(σ

−,σ+)∂−ψ+µ(σ
−,σ+)

)
. (5.7)

To see this expression is correct, we will show it only for the fermionic part. Since ∂± = 1
2 (∂0 ± ∂1), we

have

ρα∂α = 2

(
0 −∂−
∂+ 0

)
.

Next,
Ψ†iρ0 = i(ψ+,−ψ−),

where we used the fact that ψ∗
A = ψA since Ψ is a Majorana spinor. Now, we need to calculate the

Jacobian for the change of coordinates (τ,σ) → (σ−,σ+). The Jacobian is given by J = 1/2. Thus,
we have dτdσ = Jdσ+dσ− = 1

2dσ
+σ−. Finally, substituting all of them into the fermionic action gives

(5.7). By varying SF , we see that the equations of motion for the two spinor components are given by
the Dirac equation, which in the world-sheet light-cone coordinates, is given by

∂+ψ
µ
− = 0 and ∂−ψ

µ
+ = 0, (5.8)

which imply that the first equation describes a left-moving wave while the second one a right-moving
wave.

2The Dirac matrices span a representation of a Clifford algebra, {ρα, ρβ} = 2ηαβ , where { · , · } is the anti-commutator
and ηαβ is the Minkowskian flat metric
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5.2 Global World-sheet Supersymmetry

The total action (5.7) has a global symmetry under the infinitesimal transformations

δXµ = ε†iρ0Ψµ ≡ ε̄Ψµ, (5.9)

δΨµ = ρα∂αX
µε, (5.10)

where ε is a infinitesimal constant Majorana spinor, given by

ε =

(
ε−
ε+

)
,

with the components ε− and ε+ being real Grassmann numbers. Since ε is not dependent on σ and τ ,
the transformations (5.9) and (5.10) are global symmetries and they are, in fact, supersymmetries since
they mix the bosonic fields and fermionic fields. Thus, we can see that this RNS superstring theory is a
theory which has supersymmetries on the world-sheet.

In terms of the spinor components, the transformations (5.9) and (5.10) are

δXµ = i(ε+ψ
µ
− − ε−ψ

µ
+), (5.11)

δψµ
− = −2∂−Xµε+, (5.12)

δψµ
+ = 2∂+X

µε−. (5.13)

To see that the action (5.7) is invariant under the susy3 transformations (5.9) and (5.10), let us see how
the action varies under the transformations. The variation of the action is given by

δS =
1

π

∫
dσ+dσ−

(
2∂+(δX)∂−X + 2∂+X∂−(δX)

+ i(δψ−)∂+ψ− + iψ−∂+(δψ−)

+ i(δψ+)∂−ψ+ + iψ+∂−(δψ+)
)
. (5.14)

Substituting (5.11) ∼ (5.13) into the above gives

δS =
2i

π

∫
dσ+dσ−{ε+ (∂+∂−(ψ−X))− ε− (∂+∂−(ψ+X))

}
.

Thus, if we assume that the boundary terms vanish, then we can finally see that under the susy trans-
formations the RNS action (5.7) is invariant, which implies that there exists a supersymmetry in our
theory.

5.3 Supercurrents and the Super-Virasoro Constraints

We will canonically quantize the RNS superstring and see that ghost states appear in the RNS theory.
However, we will be able to eliminate them by using the super-Virasoro constraints which follow from
the superconformal symmetry of the RNS theory, when the critical dimension is D = 10.

In order to derive the constraint equations, we begin with the two conserved currents associated to
the two global symmetries of the RNS action (5.2). These two currents are the supercurrent, which comes
form the supersymmetry of the action, and the stress-energy tensor, which comes from the translation
symmetry of the action on the world-sheet. To begin, we will start with the supercurrent.

3Susy is a shorthand notation for supersymmetry or supersymmetric.
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Since the supersymmetry is a global world-sheet symmetry, we get, via Noether’s theorem, an asso-
ciated conserved current, called the worldsheet supercurrent. The explicit form of the supercurrent is
constructed as follows. By taking the supersymmetry spinor parameter ε to be dependent on world-sheet
coordinates, we find that the total action (5.2) varies under this now local symmetry, as

δS =
1

2π

∫
dτdσ

[
2∂α(δX

µ)∂αXµ − (δΨ̄µ)ρα∂αΨµ + Ψ̄µρα∂α(δΨµ)
]

∼
∫

dτdσ

(
∂α

(
1

2
ε̄Ψµ∂αXµ

)
− ∂αε̄

(
1

2
ρβραΨµ∂βX

µ

))

=

∫
dτdσ∂αε̄

(
−1

2
ρβραΨµ∂βX

µ

)
,

where we used the fact that a total derivative does not contribute to the variation of the action. Thus,
we can see that the supercurrent is given by

Jα
A = −1

2

(
ρβραΨµ

)
A
∂βX

µ, (5.15)

where A indicates spinor components: A ∈ {+,−}. It can be shown that the supercurrent satisfies

(ρα)ABJ
α
B = 0, (5.16)

where A and B indicate spinor components. This implies that the supercurrent has two independent
components, labeled by j− and j+.

We, actually, want to have an expression for the supercurrent in terms of the worldsheet light-cone
coordinates. Substituting the ε− susy transformation4 into (5.14), we get for the integrand

2∂+(−iε−ψ+)∂−X + 2∂+X∂−(−iε−ψ+)

+ i(0)∂+ψ− + iψ−∂+(0)

+ i(2∂+Xε−) + iψ+∂−(2∂+Xε−),

which is equal to, up to a total derivative,

4iε−∂−(ψ+∂+X).

Substituting this back into (5.14) gives

δS =
4i

π

∫
dσ+dσ−ε−∂−(ψ+∂+X),

which becomes after integrating by parts,

δS = −4i

π

∫
dσ+dσ−(∂−ε−)(ψ+∂+X).

Thus, choosing an appropriate normalization, the supercurrent associated with the ε− transformation is
given by

j+ ≡ ψµ
+∂+Xµ. (5.17)

4From (5.11) ∼ (5.13), we can easily read off the ε− susy transformation as

δ−Xµ = −iε−ψ
µ
+, δ−ψ

µ
− = 0, δ−ψ

|mu
+ = 2∂+Xµε−.



5.3. SUPERCURRENTS AND THE SUPER-VIRASORO CONSTRAINTS 53

Similarly, the ε+ transformation gives
j− ≡ ψµ

−∂−Xµ. (5.18)

It can be shown that the supercurrents are conserved as follows:

∂+j− = ∂+(ψ
µ
−∂−Xµ)

= ∂+ψ
µ
−∂−Xµ + ψµ

−∂+∂−Xµ

= 0,

where the last line follows by the field equations for ψ− and X. Similarly, we can show that

∂−j+ = 0.

Combining these results, we get
∂αJ

α
A = 0, (5.19)

which implies that the supercurrent is conserved.
The next current is the stress energy tensor and it is given by

Tαβ = ∂αX
µ∂βXµ +

1

4
Ψ̄µρα∂βΨµ +

1

4
Ψ̄µρβ∂αΨµ − (trace). (5.20)

To derive this, let us consider an infinitesimal translation εα which is used to vary the world-sheet
coordinates σα → σα + εα. Then, we can write the change of the bosonic and fermionic fields by

Xµ → Xµ + εα∂αX
µ, (5.21)

Ψµ → Ψµ + εα∂αΨ
µ. (5.22)

Following the Noether’s method, we vary the action as if εα depended on the world-sheet coordinates.
Since we have already considered the bosonic part, we will look at only the fermionic part here. Using
(5.22), we vary SF in (5.2) as follows:

δSF = − 1

2π

∫
dτdσ

(
(δΨ̄µ)ρα∂αΨµ + Ψ̄µρα∂α(δΨµ)

)

= − 1

2π

∫
dτdσ

(
εβ∂βΨ̄

µρα∂αΨ
µ + Ψ̄µρα∂α(ε

β∂βΨ
µ)
)

= − 1

2π

∫
dτdσ∂αε

β

(
1

2
Ψ̄µρα∂βΨµ

)
.

The term in the parentheses should be the stress energy tensor. However, this is not correct because it
should be symmetric. Thus, we take

δSF = − 1

π

∫
dτdσ∂αε

β

(
1

4
Ψ̄µρα∂βΨµ +

1

4
Ψ̄µρβ∂αΨµ

)
.

Together with the bosonic part, the stress energy tensor is given by (5.20).
We can rewrite this in terms of the world-sheet light-cone coordinates as

T++ = ∂+X
µ∂+Xµ +

i

2
ψµ
+∂+ψ+µ, (5.23)

T−− = ∂−X
µ∂−Xµ +

i

2
ψµ
−∂−ψ−µ, (5.24)

T−+ = T+− = 0. (5.25)
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Note that we can obtain conservation laws for the energy-momentum tensor: ∂−T++ = ∂+T−− = 0.
Equations (5.23) ∼ (5.25) can be obtained as follows. We consider the infinitesimal translation (5.21)
and (5.22), focusing here on δ+X = ε+∂+X and δ+ΨA = ε+∂+ΨA since the ε− transformation can be
done in exactly the same way. From (5.14), the variation of the action under this transformation is given
by

δS =
1

π

∫
dσ+dσ−

(
2∂+(δ+X)∂−X + 2∂+X∂−(δ+X) + i(δ+ψ−)∂+ψ−

+ iψ−∂+(δ+ψ−) + i(δ+ψ+)∂−ψ+ + iψ+∂−(δ+ψ+)
)

=
1

π

∫
dσ+dσ−ε+

(
2∂+∂+X∂−X + 2∂+X∂+∂−X + i∂+ψ−∂+ψ−

+ i∂−ψ+∂+ψ− + i∂+ψ+∂−ψ+ + iψ+∂+∂−ψ+

)

=
1

π

∫
dσ+dσ−

(
−2∂−(∂+X∂+X) + i∂+(ψ−∂+ψ−)− i∂−(ψ+∂+ψ+)

)
,

where the last line holds up to a total derivative. Identifying this with

−2ε+(∂−T++ + ∂+T−+)

gives us T++ = ∂+X∂+X + (i/2)ψ+∂+ψ+ and T−+ = −(i/2)ψ−∂+∂−. However, T−+ vanishes by the
equation of motion (5.8). Similarly, the ε− variation gives (5.24).

Now, in the RNS theory, we set super-Virasoro constraints, which are given by

T++ = T−− = j+ = j− = 0. (5.26)

In the next section, we will find the mode expansions of our fields.

5.4 Boundary Conditions and Mode Expansions

From now on, we will write our integration measure as d2σ = dτdσ instead of dσ+dσ− although we
still write the integrand as functions of the world-sheet light-cone coordinates. Also, we will ignore the
constant appearing due to the Jacobian of the coordinate transformation.

Since we have already studied the bosonic part, we will consider only the fermionic part here. Varying
the fermionic action in (5.2) with respect to ψ± gives, if the equations of motion (5.8) are satisfied,

δSF ∼
∫

dτ(ψ−δψ− − ψ+δψ+)
∣∣∣
σ=π
−
∫

dτ(ψ−δψ− − ψ+δψ+)
∣∣∣
σ=0

. (5.27)

5.4.1 Open RNS Strings

In the case of open strings, the two boundary terms in (5.27) must vanish separately. We can achieve
this by setting

ψµ
+ = ±ψµ

− (5.28)

at each of the string’s endpoints. The relative sign between ψµ
+ and ψµ

− is a matter of convention. Thus,
without loss of generality, we can choose to set

ψµ
+

∣∣
σ=0

= ψµ
−
∣∣
σ=0

= 0. (5.29)

Then, the relative sign at the other end has meaning and there are two possible cases, which are called
sectors.
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Ramond Sector (R sector):

In this case, we choose, at the other end of the string,

ψµ
+

∣∣
σ=π

= ψµ
−
∣∣
σ=π

. (5.30)

We will see later that the Ramond boundary condition (5.30) leads to fermions on the background
spacetime. Then, because the field equations for the fermionic fields (5.8) implies that ψ− = ψ−(σ−)
and ψ+ = ψ+(σ+). imposing the Ramond boundary condition gives us, for the mode expansion of the
fermionic fields,

ψµ
−(τ,σ) =

1√
2

∑

n∈Z
dµne

−in(τ−σ), (5.31)

ψµ
+(τ,σ) =

1√
2

∑

n∈Z
dµne

−in(τ+σ), (5.32)

where the factor 1/
√
2 has been chosen for future convenience. In addition, the Majorana condition of

ψ± (5.5) gives us
dµ−n = (dµn)

†. (5.33)

Neveu-Schwarz Sector (NS sector):

In this case, we choose, at the other end of the string,

ψµ
+

∣∣
σ=π

= −ψµ
−
∣∣
σ=π

. (5.34)

The NS boundary condition will give rise to bosons on the background spacetime. In this sector, the
mode expansion satisfying (5.34) is given by

ψµ
−(τ,σ) =

1√
2

∑

r∈Z+ 1
2

bµr e
−ir(τ−σ), (5.35)

ψµ
+(τ,σ) =

1√
2

∑

r∈Z+ 1
2

bµr e
−ir(τ+σ), (5.36)

In the following, the letters m and n are used for integers while r and s will denote half-integers.

5.4.2 Closed RNS Strings

Closed string boundary conditions give two sets of fermionic modes, corresponding to the left- and right-
moving sectors. There are two possible periodicity conditions which make the boundary terms vanish:

ψµ
±(τ,σ) = ±ψµ

±(τ,σ + π), (5.37)

where the positive sign describes periodic boundary conditions (called R boundary conditions) while the
negative sign describes anti-periodic boundary conditions (called NS boundary conditions). It is possible
to impose either the R or the NS boundary conditions on the left- and the right-movers separately. This
means that, for the right-movers, we can choose

ψµ
−(τ,σ) =

∑

n∈Z
dµne

−2in(τ−σ) or ψµ
−(τ,σ) =

∑

r∈Z+ 1
2

bµr e
−2in(τ−σ), (5.38)
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while, for the left-movers, we can choose

ψµ
+(τ,σ) =

∑

n∈Z
d̄µne

−2in(τ+σ) or ψµ
+(τ,σ) =

∑

r∈Z+ 1
2

b̄µr e
−2in(τ+σ), (5.39)

Since real states are tensor products of a left- and right-mover, there are four different closed string
sectors. We will see later that states in the NS-NS and R-R sectors are spacetime bosons, while states
in the NS-R and R-NS sectors are spacetime fermions.

5.5 Canonical Quantization of the RNS superstring theory

By using the mode expansions, we will quantize the RNS theory.
We begin by promoting the modes α and ᾱ, which come from the bosonic fields and the modes b, b̄, d

and d̄, which come from the fermionic fields to operators. The bosonic fields obey the same commutators
as those we discussed already, which were given by (3.17). The fermionic fields obey the free Dirac
equation on the worldsheet. As a result, the canonical anti-commutation relations are given by

{ψµ
A(τ,σ),ψ

ν
B(τ,σ

′)} = πηµνδABδ(σ − σ′),

which implies that the modes satisfy

{bµr , bνs} = {b̄µr , b̄νs} = δr+sη
µν , (5.40)

{dµm, dνn} = {d̄µm, d̄νn} = δm+nη
µν , (5.41)

with the other anti-commutation relations vanishing. Since the spacetime metric ηµν appears on the
right hand side of the anti-commutators above, the time components of the fermionic oscillators give
rise to ghost states, as well. However, we can remove these ghost states by using the super-Virasoro
constraints (5.26). From here on, we will consider only the open string.

We will define the ground states of the RNS theory. Since we have two sectors, we are supposed to
have two ground states, one for the R sector, labeled by |0〉R, and one for the NS sector, labeled by
|0〉NS . They are defined by

αµ
m|0〉R = dµm|0〉R = 0, for m > 0 (5.42)

for the R sector and
αµ
m|0〉NS = bµr |0〉NS = 0, for m, r > 0 (5.43)

for the NS sector. The excited states are constructed by acting on the ground states with the negative
mode oscillators. There are some important differences between the R ground state and the NS ground
state.

5.5.1 R ground state and NS ground state

In the NS sector, the ground state is unique and it corresponds to a state of spin zero, i.e. a boson. Since
all the oscillators αµ

n and bµr transform as spacetime vectors under a Lorentz transformation, the excited
states in the NS sector will be spacetime bosons. Also, acting on a state with negative modes increases
the mass of the state.

In the R sector, the ground state is degenerate, which can be understood as follows. The operators
dµ0 can act without effecting the mass of the state since they commute with the number operator N ,
which is defined by

N =
∞∑

n=1

α−n · αn +
∞∑

n=1

nd−n · dn, (5.44)
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whose eigenvalue determines the mass squared. Thus, |0〉R and dµ0 |0〉R are degenerate in mass. Now,
from the oscillator algebra (5.41), we see that the dµ0 obey the same algebraic relations as the Clifford
algebra,up to a factor of 2:

{dµ0 , dν0} = δ0,0η
µν = ηµν .

Thus, since the above algebra is identical to the Dirac algebra, it implies that the set of degenerate
ground states in the R sector must furnish a representation of the Dirac algebra. This implies that there
is a set of degenerate ground states, which can be written in the form |a〉 with a being a spinor index,
such that

dµ0 |a〉 =
1√
2
Γµ
ba|b〉, (5.45)

where Γµ is an a dimensional matrix representation of dµ0 , i.e. a Dirac matrix. Hence, the R sector
ground state is a spacetime fermion. Now, since all of the oscillators αµ

n and dµn transform as spacetime
vectors and since every state in the R sector can be obtained by acting with the negative modes on the
ground state |0〉R, we see that all the states in the R sector are spacetime fermions.

5.5.2 Super-Virasoro Constraints for Open Strings

The super-Virasoro generators are the modes of the stress energy tensor Tαβ and the supercurrent Jα
A.

Thus, for an open string, the super-Virasoro generators are given by

Lm =
1

π

∫ π

π
dσeimσT++ = L(b)

m + L(f)
m , (5.46)

where the contribution from the bosonic modes was given by (??). Here, since we have two sectors for the
fermionic modes of the RNS theory, we will get a different contribution to the super-Virasoro generators
in each sector.

NS sector:

The contribution from the fermionic modes is given by

L(f)
m =

1

2

∑

r∈Z+ 1
2

(
r +

m

2

)
: b−r · bm+r :, m ∈ Z, (5.47)

and the modes of the supercurrent are

Gr =

√
2

π

∫ π

−π
eirσj+ =

∑

n∈Z
α−n · br+n. (5.48)

We can write the operator L0 in the form

L0 =
1

2
α2
0 +N, (5.49)

where N is the number operator, defined by

N ≡
∞∑

n=1

α−n · αn +
∞∑

r=1/2

rb−r · br, (5.50)

whose eigenvalues determine the mass squared of an excited state as in the bosonic theory.
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R sector:

The contribution from the fermionic modes is given by

L(f)
m =

1

2

∑

n∈Z

(
n+

m

2

)
: d−n · dm+n :, m ∈ Z, (5.51)

and the modes of the supercurrent are given by

Fm =

√
2

π

∫ π

−π
eimσj+ =

∑

n∈Z
α−n · dm+n. (5.52)

Note that there is no normal-ordering ambiguity in the definition of F0.
We will get a super-Virasoro algebra whose elements consist of the super-Virasoro generators and

the modes of the supercurrent as we did in the bosonic theory. Since we have two different expressions
for the super-Virasoro generator and the supercurrent, corresponding to the two sectors, we will get two
sets of super-Virasoro algebras.

NS Sector:

The super-Virasoro algebra is given by

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n, (5.53)

[Lm, Gr] =
(m
2
− r
)
Gm+r, (5.54)

{Gr, Gs} = 2Lr+s +
c

12

(
4r2 − 1

)
δr,−s, (5.55)

where the central charge is related to the spacetime dimension by c = D +D/2.

R Sector:

The super-Virasoro algebra is given by

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm,−n, (5.56)

[Lm, Fn] =
(m
2
− n

)
Fm+n, (5.57)

{Fm, Fn} = 2Lm+n +
D

2
m2δm,−n. (5.58)

5.5.3 Physical State Condition

In the bosonic string theory, the physical states were characterized as such states |φ〉 that

L(b)
m |φ〉 = 0, (5.59)

(L(b)
0 − a)|φ〉 = 0. (5.60)

In the RNS superstring theory, we have analogous conditions. We will again get two different physical
state conditions corresponding to two different sectors, i.e. quantum versions of T (z) = 0.
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NS Sector:

The physical state condition is characterized as follows. If |φ〉 is a physical state, then it must satisfy

Lm|φ〉 = 0 m > 0, (5.61)

Gr|φ〉 = 0 r > 0, (5.62)

(L0 − aNS)|φ〉 = 0, (5.63)

where aNS is a constant which arises due to the normal-ordering ambiguity of L0. The last of these
conditions implies that α′M2 = N − aNS , where M is the mass of a state |φ〉 and N is the eigenvalue of
the number operator on the state |φ〉.

R Sector:

The physical state condition is as follows.

Lm|φ〉 = 0 m > 0, (5.64)

Fn|φ〉 = 0 n ≥ 0, (5.65)

(L0 − aR)|φ〉 = 0, (5.66)

where aR is a constant which arises due to the normal-ordering ambiguity of L0.

5.5.4 Removing the Ghost States

Let us consider a few examples of zero-norm spurious states to calculate the values of aNS , aR and D.
Recall that these are states that are orthogonal to physical states and decouple from the theory even
though they satisfy physical conditions.

NS Sector:

To begin, we consider a state of the form

|φ〉 = G−1/2|χ〉,

where |χ〉 satisfies the conditions

Lm>0|χ〉 = 0, (5.67)

G1/2|χ〉 = G3/2|χ〉 = (L0 − aNS +
1

2
)|χ〉 = 0, (5.68)

where the last equality follows from (5.63).5 It is, therefore, sufficient to show that G1/2|φ〉 = G3/2|φ〉 = 0
in order for |φ〉 to be physical.6 Since the G3/2 condition obviously holds by the corresponding condition

5This is because of the fact that G−1/2 raises the eigenvalue of L0 by 1/2.
6This is because all Gr for r > 3/2 can be written in terms of the generators Lm>0, G1/2 and G3/2. For example, we

can get, from (5.54),

G5/2 = G1+3/2 =
1

1/2− 3/2
[L1, G3/2] = −[L1, G3/2].
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for |χ〉, we only have to check the G1/2 condition. This is given by G1/2|φ〉 = G1/2G−1/2|χ〉. Now, since
G1/2G−1/2 = {G−1/2, G1/2}−G−1/2G1/2 and {G−1/2, G1/2} = 2L0, we can see that G1/2|φ〉 becomes

G1/2|φ〉 =
(
2L0 −G−1/2G1/2

)
|χ〉 = 2L0|χ〉

= 2(aNS − 1/2)|χ〉.

For this to vanish, we need aNS = 1/2. This choice gives a family of zero-norm spurious state |φ〉. Such
a state satisfies the conditions for physical state conditions with aNS = 1/2. Moreover, |φ〉 is orthogonal
to all physical states |α〉, since 〈α|φ〉 = 〈α|G−1/2|χ〉 = 〈χ|G1/2|α〉∗ = 0. Therefore, for aNS = 1/2, these
are zero-norm spurious states.

In order to calculate the critical dimension, let us consider a second class of zero-norm spurious state

|φ〉 = (G−3/2 + λG−1/2L−1)|χ〉. (5.69)

Also, suppose that

G1/2|χ〉 = G3/2|χ〉 = (L0 + 1)|χ〉 = 0. (5.70)

Next, we need to show, as before, G1/2|φ〉 = 0 and G3/2|φ〉 = 0. The G1/2 condition becomes, by using
(5.53) ∼ (5.55), G1/2|φ〉 = (2− λ)L−1|χ〉. For this to vanish, we need λ = 2. Then, the G3/2 condition
becomes, in a similar way, G3/2|φ〉 = (D − 2− 4λ) = (D − 10)|χ〉. Thus, for G3/2 to annihilate |φ〉, we
need to have the critical dimension D = 10.

R Sector:

We do not need to use spurious states to calculate the aR value. we do this as follows. From (5.58),
if m = n = 0, we obtain L0 = F 2

0 . Then, from (5.65) we obtain F0|φ〉 = 0. Acting on this equation with
F0 gives F0(F0|φ〉) = F 2

0 |φ〉 = L0|φ〉 = 0. However, we have (5.66), which leads to aR = 0.
In order to calculate the critical dimension, consider the state

|φ〉 = F0F−1|χ〉, (5.71)

where |χ〉 satisfies
F1|χ〉 = (L0 + 1)|χ〉 = 0. (5.72)

Also, F0|φ〉 = 0 holds. If the state |φ〉 is also annihilated by L1, then it is a zero-norm physical state.
Thus, we have L1|φ〉 = (1/2F1 + F0F1)F−1|χ〉 = 1/4(D − 10)|χ〉. For this to vanish, we need D = 10.

5.6 Light-Cone Quantization

We imposed the light-cone gauge condition of (3.39) since we had a residual symmetry after fixing the
gauge symmetry. Now, this is also true for the RNS theory. We have a residual fermionic symmetry,
which will allow us to impose more conditions on our RNS theory. Namely, we will set, in addition to
(3.39),

Ψ+(τ,σ) = 0. (5.73)

Note that, in the R sector, we should keep the zero mode. In the light-cone gauge, the coordinates X−

and Ψ−, due to the super-Virasoro constraints, are not independent degrees of freedom. This implies
that all the physical states are given by acting with the transverse raising modes of the bosonic and
fermionic fields.
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5.6.1 Open RNS String Mass Spectrum

Let us analyze some open RNS superstring states in the light-cone gauge. As usual, the mass spectrum
depends on the two different sectors.

• NS Sector:

The mass formula is given by

α′M2 =
∞∑

n=1

αi
−nα

i
n +

∞∑

r=1/2

rbi−rb
i
r −

1

2
, (5.74)

where we substituted aNS = 1/2.

Ground State:

The NS ground state is annihilated by all positive modes,

αi
n|0; kµ〉NS = bir|0; kµ〉NS = 0, (5.75)

and
αµ
0 |0; kµ〉NS =

√
2α′kµ|0; kµ〉NS , (5.76)

where
√
2α′ is from normalization. Calculating the mass of the NS ground state, we get, by using (5.75),

α′M2|0; kµ〉NS = −1

2
|0; kµ〉NS .

Thus, the mass is given by α′M2 = −1/2, which implies that the ground state is a tachyon. We will see
later that there is a way to consistently truncate this state from the spectrum.

First Excited State:

The first excited state is given by
bi−1/2|0; kµ〉NS . (5.77)

Since this operator is a vector in spacetime and it is acting on a bosonic ground state, which is a spacetime
scalar, the resulting state is a spacetime vector. Also, now we are working in the light-cone gauge, so
the label i runs from 1 to D − 2 = 8, corresponding to the transverse directions. Thus, the first excited
state has a total of 8 polarizations, which is required for a massless vector in ten dimensions. To see
that this state is indeed massless, note that the mass of the state is given by α′M2 = 1/2− αNS . Since
aNS = 1/2, the state is massless.

• R Sector:

The mass formula is given by

α′M2 =
∞∑

n=1

αi
−nα

i
n +

∞∑

n=1

ndi−nd
i
n. (5.78)
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Ground State:

The R ground state satisfies

αi
n|0; kµ〉R = din|0; kµ〉R = 0 n > 0, (5.79)

and

F0|0; kµ〉R = 0. (5.80)

Calculating the mass squared of the R ground state gives α′M2|0; kµ〉R = 0, which implies that the R
ground state is massless. Then, the equation (5.80) implies, from (5.52), that

0 =

(
αi
0d

i
0 +

∞∑

n=1

(αi
−nd

i
n + di−nα

i
n)

)
|0; kµ〉R

= di0
√
2α′ki)|0; kµ〉R

∝ di0k
i|0; kµ〉R,

which is the Dirac equation in the momentum representation. As was mentioned earlier, the R ground
state is not unique due to the fact that the zero modes satisfy a D = 10 dimensional Dirac algebra.
This implies that the ground state is a spin(9, 1) spinor. The operation of multiplying with the operator
dµ0 is the nothing more that multiplying with a 10 dimensional Dirac matrix. This, in turn, implies
that the R ground state is a spinor with 32 components.7 However, in 10 dimensions, it is known that
we can impose the Majorana condition and the Weyl condition on spinors, which reduce the number
of independent components by 1/2. As a result, our ground state is described by a spinor with 16
independent components. But, note that this spinor satisfies the Dirac equation, so that the number of
independent components reduces to 8. Thus, the R ground state has 8 degrees of freedom corresponding
to an irreducible spinor of spin(8).

As was mentioned before, the states in the R sector correspond to fermions in the background
spacetime. Also, since the first excited state of the NS sector is a bosonic state with 8 degrees of freedom
and the R ground state is a fermionic state with 8 degrees of freedom, if we could shift the NS first
excited state back to its ground state, then we could think of the total open RNS string theory as a
hopefully supersymmetric theory which have 8 massless bosons and 8 massless fermions in the background
spacetime. However, we still would have a problem even if we could do this. The problem is that the
NS ground state is a tachyon and there is nothing corresponding to this in the R sector.

However, we will see later that we can impose a further condition on our states, called the GSO
projection, which removes the NS tachyon state and shift the NS first excited state to the NS ground
state.

First Excited State:

The excited states are obtained by acting on the R ground state with αi
−n or di−n. Since these

operators are spacetime vectors, the resulting states are spacetime spinors. The possibilities for excited
states are further restricted by the GSO projection, which will be discussed now.

7It is known that a spinor in a 2k-dimensional space has 2k components.
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5.6.2 GSO projection

In the last section, we have seen that the spectrum of RNS string states has several problems. The NS
ground state is a tachyon and also the spectrum is not spacetime supersymmetric.

We will explain here how to make the RNS string theory a consistent theory, by truncating the
spectrum in a very specific way that eliminates the tachyon and gives supersymmetic theory in ten
dimensional spacetime. This is called the GSO projection.

In order to describe the truncation of the spectrum, first let us define operators which count the
number of b-oscillators in the NS sector, and d-oscillators in the R sector, which are given by, respectively,

FNS =
∞∑

r=1/2

bi−rb
i
r, (5.81)

FR =
∞∑

n=1

di−nd
i
n. (5.82)

Then, by using these operators, we can construct new operators, called the G-parity operators, which is
given by, in the NS sector,

G = (−1)FNS+1 = (−1)
∑∞

r=1/2 bi−rb
i
r+1. (5.83)

In the R sector, we have

G = Γ11(−1)FR = Γ11(−1)
∑∞

n=1 di
−nd

i
n , (5.84)

where Γ11 is defined by
Γ11 ≡ Γ0Γ1 · · ·Γ9, (5.85)

which can be thought of as the ten dimensional analog of the γ5 Dirac matrix in four dimensions. Thus,
just as the γ5 matrix, the Γ11 satisfies the following relations.

(Γ11)
2 = 1 and {Γ11,Γ

µ} = 0. (5.86)

Spinors Ψµ which satisfy
Γ11Ψ

µ = Ψµ, (5.87)

are said to have positive chirality, while spinors which satisfy

Γ11Ψ
µ = −Ψµ, (5.88)

are said to have negative chirality. A spinor with a definite chirality is called a Weyl spinor.
Now, in the NS sector, we will impose the GSO projection which consists of keeping only the states

with a positive G-parity, i.e. we keep only the states |Ω〉 such that

G|Ω〉 = (−1)FNS+1|Ω〉 = |Ω〉,

which implies that we have
1 = (−1)FNS+1 = (−1)FNS (−1).

For this to hold, FNS has to take an odd number. Thus, in the NS sector, we keep only the states with
an odd number of b oscillator excitations. In the R sector, we can project on states with positive or
negative G-parity depending on the chirality of the spinor ground state. The choice is purely a matter
of convention.

The GSO projection eliminates the open string tachyon from the spectrum since it has negative
G-parity, G|0〉NS = −|0〉NS . The first excited state bi−1/2|0〉NS has positive G-parity and survives the
projection. After the GSO projection, this massless vector boson becomes the ground state of the NS
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sector. This matches nicely with the fact that the ground state in the fermionic sector (the R sector) is
a massless spinor. Also, the ground state of the NS sector after the GS projection is bi−1/2|0〉NS , which
has only eight degrees of freedom. This matches the number of degrees of freedom for the fermionic
ground state. This is a first indication that the spectrum could be spacetime supersymmetric after the
GSO projection.

We will now show that there are the same number of physical degrees of freedom in the NS sector and
the R sector at the first massive level after performing the GSO projection. To begin, note that at this
level, we have N = 3/2 for the NS sector states and N = 1 for the R sector states. Also, the G-parity
constraint in the NS sector requires the states to have an odd number of b oscillator excitations, while
in the R sector the constraint correlates the number of d oscillator excitations with the chirality of the
spinor. Now, in the NS sector, the states which survive the GSO projection, at this level, are given by

αi
−1b

j
−1/2|0; k

µ〉NS , bi−1/2b
j
−1/2b

k
−1/2|0; kµ〉NS , bi−3/2|0; kµ〉NS .

Counting the number of these states gives us a total of 64+ 56+ 8 = 128. For the R sector, we have the
allowed states,

αi
−1|ψ0; k

µ〉, di−1|ψ′
0; k

µ〉,

where |ψ0; kµ〉 and |ψ′
0; k

µ〉 denote a pair of Majorana-Weyl spinors of the R ground state of opposite
chirality and each has 16 real components. However, note that they have only 8 degrees of physical
freedom since they must satisfy the Dirac equation. Thus, counting the number of independent states
in the R sector gives 64 + 64 = 128 As a result, for the first massive excited state we see that after the
GSO projection, both the NS and R sector have the same degrees of freedom.

5.6.3 Closed RNS String Spectrum

The closed string has left- and right-mover. Also, there is the possibility that each mover has either NS
or R boundary conditions, which implies that we must consider the four possible sectors: R-R, R-NS,
NS-R and NS-NS. As before, by projecting onto states with a positive G-parity in the NS sector, we can
remove the tachyon state. For the R sector, we can project onto states with positive or negative G-parity
depending on the chirality of the ground state. Thus, two different theories, the type IIA and the type I
IB superstring theory, can be obtained depending on whether the G-parity of the left- and right-moving
R sector is the same or opposite.

In the type IIB theory, the left- and right-moving R ground states have the same chirality, chosen to
be positive for the definiteness. Therefore, the two R sectors have the same G-parity. Let us denote each
of them by |+〉R. With these considerations, the massless states in the type IIB closed string spectrum
are

|+〉R ⊗ |+〉R,
b̄i−1/2|0〉NS ⊗ bi−1/2|0〉NS ,

b̄i−1/2|0〉NS ⊗ |+〉R,

|+〉R ⊗ bi−1/2|0〉NS .

Since the state |+〉R is a spinor with eight components, we see that each of the four sectors contains
8× 8 = 64 states.

In the type IIA theory, the left- and right-moving R ground states have opposite chirality, which we
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labeled as |+〉R and |−〉R. The massless states in the type IIA closed string spectrum are given by

|−〉R ⊗ |+〉R,
b̄i−1/2|0〉NS ⊗ bi−1/2|0〉NS ,

b̄i−1/2|0〉NS ⊗ |+〉R,

|−〉R ⊗ bi−1/2|0〉NS .

We can see that each of the four sectors have 64 states as in the type IIB theory.
The different types of states in the massless sectors of the two theories are summarized as follows.

• R-R Sector: These states are bosons obtained by performing the tensor product of a pair of
Majorana-Weyl spinors. In the type IIA, the two Majorana-Weyl spinors have opposite chirality,
and we obtain a one-form (vector) gauge field (8 states) and a three-form gauge field (56 states).
In the type IIB, the two Majorana-Weyl spinors have the same chirality, and we obtain a zero-form
(scalar) gauge field (1 state), a two-form gauge field (28 states) and a four-form gauge field with a
self-dual field strength (35 states).

• NS-NS Sector: This sector is the same for the type IIA and type IIB. We obtain a scalar called
dilaton (1 state), an antisymmetric two-form gauge field (28 states) called the Kalb-Ramond firld
and a symmetric traceless rank 2 tensor called the graviton (35 states).

• NS-R and R-NS Sector: Each spectrum of these sectors contains a spin 3/2 gravitino (56 states)
and a spin 1/2 fermion called the dilatino (8 states). In the type IIB, the two gravitino have the
same chirality, while in the type IIA, opposite chirality.





Chapter 6

T-duality and Dp-brane

6.1 T-duality and Closed Bosonic Strings

We will consider the bosonic string theory with one of its spatial dimensions compactified. Namely,
we assume that this spatial dimension has a periodic boundary condition. This implies that our back-
ground spacetime is topologically equivalent to the space given by Cartesian product of 25-dimensional
Minkowski spacetime and a circle of radius R, i.e. R24,1 × S1

R. We describe this procedure as compact-
ification on a circle of radius R. We will choose to compactify the X25(τ,σ) coordinate. We can now
think of our background spacetime as that given in Fig 6.1, We will study the changes in the bosonic
string theory by introducing this compactification.

In the non-compact theory, which we have discussed so far, closed strings satisfied the periodic
boundary condition (2.34), which was stated with the implicit assumption where the string was moving
in a spacetime with non-compact dimensions, but now in our modified situation, we let the 25th dimension
be a circle of radius R. This changes the boundary condition (2.34) as follows, but only for X25:

X25(τ,σ + π) = X25(τ,σ) + 2πRW, (6.1)

Xi(τ,σ + π) = Xi(τ,σ) i = 0, . . . , 24 (6.2)

where W is called the winding number.1 The equation (6.1) implies that now the string has winding
states. Simply put, the string can wind around the compactified dimension any number of times.

Figure 6.1: A compactified background spacetime.

1The winding number indicates how many times the string winds around the circle and its sign encodes the direction.
For example, if we take each counterclockwise winding to be +1, then each clockwise winding is −1.

67
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6.1.1 Mode Expansion for the Compactified Dimensions

The modified boundary condition (6.1) gives a modified mode expansion on X25, while the mode expan-
sions for Xi remain unchanged. The general solution for new boundary conditions for X25 is given by
adding a term linear in σ to (2.54) in order to incorporate the boundary condition (6.1),

X25(τ,σ) = x25 + 2α′p25τ + 2RWσ +
i

2

√
2α′

∑

n#=0

1

n
(α25

n e2inσ + ᾱ25
n e−2inσ)e−2inτ . (6.3)

Also, since one dimension is compact, the momentum eigenvalue along that direction, p25, has to be
quantized because, from quantum mechanics, we know that the wave function contains the factor eip

25x25
.

As a result, if we increase x25 by the amount 2πR, which corresponds to a winding number W = 1, the
wave function should be mapped back to the initial value, i.e. the wave function should be single-valued
on the circle. This implies that the momentum in the 25th direction has to be of the form

p25 =
K

R
, K ∈ Z, (6.4)

where K is called the Kaluza-Klein excitation number. Thus, without the compactified dimensions,
the center of mass momentum of the string was arbitrary, while compactifying one of the dimensions
quantizes the center of mass momentum along that direction.

Now, splitting the expansion (6.3) into left- and right-movers gives

X25(τ,σ) = X25
L (τ + σ) +X25

R (τ − σ) (6.5)

with

X25
L (τ + σ) =

1

2
(x25 + x̄25) +

(
α′K

R
+WR

)
(τ + σ) +

i

2

√
2α′

∑

n #=0

1

n
ᾱ25
n e−2in(τ+σ),

X25
R (τ − σ) = 1

2
(x25 − x̄25) +

(
α′K

R
−WR

)
(τ − σ) + i

2

√
2α′

∑

n#=0

1

n
α25
n e−2in(τ−σ),

where x̄25 is some constant which cancels in the sum to form X25(τ,σ). Furthermore, defining the zero
modes,

√
2α′ᾱ25

0 ≡
(
α′K

R
+WR

)
, (6.6)

√
2α′α25

0 ≡
(
α′K

R
−WR

)
, (6.7)

we can rewrite the expression for the left- and right-movers as

X25
L (τ + σ) =

1

2
(x25 + x̄25) +

√
2α′ᾱ25

0 (τ + σ) +
i

2

√
2α′

∑

n#=0

1

n
ᾱ25
n e−2in(τ+σ), (6.8)

X25
R (τ − σ) = 1

2
(x25 − x̄25) +

√
2α′α25

0 (τ − σ) + i

2

√
2α′

∑

n #=0

1

n
α25
n e−2in(τ−σ). (6.9)

We note that now we have generally α25
0 )= ᾱ25

n .
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6.1.2 Modified Mass Formula

The mass formula for the string with one dimension compactified on a circle can be interpreted from
a 25-dimensional viewpoint in which we regard each of the Kaluza-Klein excitations on X25, which are
given by K, as distinct particles. In general, the mass formula is given by

M2 = −
24∑

µ=0

pµp
µ, (6.10)

where note that we are only performing the sum over the non-compact dimensions.
On the other hand, we still have the requirement that all on-shell physical states are annihilated by

the operators L0 − 1 and L̄0 − 1, which imply that L0 = 1 and L̄0 = 1. These equations become

1

2
α′M2 = (ᾱ25

0 )2 + 2NL − 2

= (α25
0 )2 + 2NR − 2,

where NL and NR are the number operators for the left- and right-movers, respectively. The above
equations can be confirmed as follows. From (??), we have

L0 =
1

2
α2
0 +

∞∑

n=1

α−n · αn

=
1

2
(α25

0 )2 − α′

4
M2 +NR, (∵ (3.3) and (6.10))

which is equal to 1. This is what we want to confirm.
Taking the difference of the above two expression for (1/2)α′M2 and using (6.6) and (6.7) gives

NR −NL = WK, (6.11)

which is the modified level matching condition. In a similar way, taking the sum gives

α′M2 = α′

[(
K

R

)2

+

(
WR

α′

)2
]
+2NL + 2NR − 4, (6.12)

which is the modified mass formula for a string with one spatial dimension compactified.

6.1.3 T -duality of the Bosonic String

The level matching condition (6.11) and the mass formula (6.12) are invariant under interchange of W
and K, provided that we simultaneously send R to R̃ = α′/R. This symmetry is called T -duality. It
tells us that a theory compactified on a circle of radius R has the same mass spectrum as a theory which
is compactified on a circle of radius R̃, and vice versa. (See Fig 6.2.) Also, note that the interchange
of W and K implies that the momentum excitations K in one description corresponds to winding-mode
excitations in the dual description, and vice versa.

The T -duality transformation

T : R24,1 × S1
R ←→ R24,1 × S1

R̃
,

T : W ←→ K,
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Figure 6.2: The T -duality of closed bosonic string theories.

is equivalent to the following transformation in terms of the modes in the expansion of the compactified
dimension,

α25
0 −→ −α25

0 , (6.13)

ᾱ25
0 −→ ᾱ25

0 , (6.14)

which can be seen easily from (6.6) and (6.7). In fact, it is not just the zero mode, but the entire
right-moving part of the compact coordinate that flips sign under the T -duality transformation,

T : X25
R −→ −X25

R and T : X25
L −→ X25

L . (6.15)

Thus, we see that X25(τ,σ) is mapped to, under the T -duality transformation,

T : X25(τ,σ)→ X̃25(τ,σ) = XL(τ + σ)−XR(τ − σ), (6.16)

which has the expression,

X̃25(τ,σ) = x̃25 + 2α′K

R
σ + 2RW τ +

i

2

√
2α′

∑

n #=0

1

n
(ᾱ25

−ne
−2inσ − α25

n e2inσ)e−2inτ . (6.17)

We should note that the coordinate x25, which parametrizes the original circle with periodicity 2πR, has
been replaced by a coordinate x̄25. It is clear that this parametrizes the dual circle with periodicity 2πR̃,
because the conjugate momentum is p̄25 = RW/α′ = W/R̃.

We will now see that T -duality interchanges X25 and X̃25 from the viewpoint of the world-sheet. To
begin, consider the following world-sheet action

S =

∫
dτdσ

(
1

2
V αVα − εαβX25(τ,σ)∂βVα

)
. (6.18)

Varying this action with respect to X25 gives us the equations of motion

εαβ∂βVα = 0,⇒ ∂1V2 − ∂2V1 = 0,

whose solution is given by Vα = ∂αX̃25, where X̃25 is an arbitrary function.
On the other hand, varying the action with respect to Vα gives the equation of motion

Vα = −ε β
α ∂βX

25(τ,σ). (6.19)

Now, comparing the two expressions for Vα gives ∂αX̃25 = −ε β
α ∂βX

25, which implies

∂+X̃
25 = ∂+X

25, ∂−X̃
25 = −∂−X25.
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The first and second equations imply X̃25
L = X25

L and X̃25
R = −X25

R , respectively. That is, a T -duality
transformation can be expressed in the compact dimension as X25

R → −X25
R and X25

L → X25
L , as was

stated previously. In addition, substituting (6.19) back into(6.18) gives

1

2

∫
dτdσ∂αX25∂αX

25,

which is the bosonic action (the Polyakov action) for the X25 component, which makes this discussion
reasonable.

We will repeat the previous arguments for the case of open strings.

6.2 T -duality and Open Strings

Previously, we saw that when we varied the Polyakov action in conformal gauge, we got a bulk term
whose vanishing gave the equation of motion and the boundary term

δS =
[
− 1

2πα′

∫
dτdσ∂σXµδX

µ
]σ=π

σ=0
.

Now, as before, we need to make this boundary term vanish. This is achieved by forcing the ends of the
open string to obey either Neumann boundary conditions (2.36) or Dirichlet boundary conditions (2.38).
However, in order to satisfy Poincaré invariance for all 26 dimensions, we choose Neumann boundary
conditions for the open string.

Now, we will assume that we compactify the X25 coordinate. Then, we want to perform a T -duality
transformation on the open string theory in the X25 direction.

But before we study the quantitative properties which arise from the transformation, we will see
what kind of qualitative changes we will get. The first thing to notice is when we apply the T -duality
transformation on the bosonic string which is compactified on a circle, we see that the winding number
is meaningless. This is due to the fact that an open string cannot wind around the compact dimension.
Hence, open strings do not have winding modes and so W = 0. Since the winding modes were critical to
relate the closed string spectra of two bosonic theories by using T -duality, we then expect not to have
open strings transform in this way.

In order to see how the open string transform under T -duality transformation, we first start with the
mode expansion for the coordinate Xµ, which are given by setting ls = 1 or α′ = 1/2 in (2.59), with the
Neumann boundary conditions.

Xµ(τ,σ) = xµ + pµτ + i
∑

n #=0

1

n
αµ
ne

−inτ cos (nσ). (6.20)

We can further split the mode expansions into two parts, left- and right-movers, just as was done for
closed strings. They are given by

Xµ
R(τ − σ) =

1

2
(xµ − x̄µ) +

1

2
pµ(τ − σ) + i

2

∑

n#=0

1

n
αµ
ne

−in(τ−σ), (6.21)

Xµ
L(τ + σ) =

1

2
(xµ + x̄µ) +

1

2
pµ(τ + σ) +

i

2

∑

n#=0

1

n
αµ
ne

−in(τ+σ). (6.22)

(6.23)

When we compactify the X25 coordinate and apply the T -duality transformation to this direction, we
get, as was shown already,

T : X25
L → X25

L and X25
R → −X25

R .
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(That is why we have written the open string modes in terms of left- and right-movers.) Thus, under
the T -duality transformation, for the X25 coordinate we obtain

T : X25 → X̃25 ≡ X25
L −X25

R

= x̄25 + p25σ +
i

2

∑

n#=0

1

n
α25
n e−inτ

(
e−inσ − einσ

)

= x̄25 + p25σ +
∑

n#=0

1

n
α25
n e−inτ sin (nσ), (6.24)

from which we can read off the properties of T -duality. First, note that since there is no linear term in
τ , we see that the T -dual open string has no momentum in the X25 direction. Also, we see that the
T -dual open string has fixed endpoints at σ = 0,π since the oscillator term vanishes at these points.
Note that this is equivalent to the Dirichlet boundary conditions for an open string. Thus, we see that
the T -duality transformation maps the X25 coordinate with Neumann boundary conditions to that with
Dirichlet boundary conditions (and vice versa). Explicitly, the boundary conditions of theX25 coordinate
of the T -dual string, which are Dirichlet conditions, are given by

X̃25(τ, 0) = x̄25, (6.25)

X̃25(τ,π) = x̄25 +
πK

R
= x̄25 + 2πKR̃, (6.26)

where we have used p25 = K/R and R̃ = α′/R = 1/(2R). Hence, we get

X̃25(τ,π)− X̃25(τ, 0) = 2πKR̃,

which tells us that the dual string winds around the dual dimension of radius R̃ with winding number
K. This winding mode is topologically stable since the endpoints of the string are fixed by the Dirichlet
boundary conditions. Therefore, this string cannot unwind without breaking.

Summarizing:

• T -duality transforms a bosonic open string with Neumann boundary conditions on a circle of radius
R into a bosonic open string with Dirichlet boundary conditions on a circle of radius R̃.

• T -duality transforms a string that has momentum and no winding in the circular direction into a
string that has winding but no momentum in the dual circular direction.

• The ends of the dual open string are attached to the 25-dimensional hyperplane X̃25 = x̄25 in
spacetime.

• The ends of the dual open string can wrap around the circle an integer number of times.

This hyperplane is an example of Dp-brane, where D is for Dirichlet while p stands for the number of
spatial dimensions of the hyperplane. In general, a Dp-brane is defined as a hyper-surface on which an
open string can end, as illustrated in Fig 6.3, We should note that Dp-branes are also physical objects,
i.e. they have their own dynamics. In the above example, the hyper-surface X̃25 = x̃25 is a D24-brane.

By applying a T -duality transformation to open bosonic strings with Neumann boundary conditions
in all directions, we learned that in the dual theory, the corresponding open strings have Dirichlet
boundary conditions along the dual circle and therefore end on a D24-brane. This reasoning can be
iterated by taking other directions to be circular and performing T -duality transformations on those
directions. Starting with n such circles (or an n-torus), we end up with a T -dual description in which the
open string has Dirichlet boundary conditions in the n directions. This implies that the string ends on a
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Figure 6.3: Dp-branes and open strings ending on them.

D(25− n)-brane. What this means for the open string in the original description, which had Neumann
boundary conditions for all directions, is that this is clearly the n = 0 case. So, the open string should be
regarded as ending on a spacetime-filling D25-brane. In general, we can consider a set-up in which there
are a number of D-branes of various dimensions. They are replaced by D-branes of other dimensions in
T -dual formulations.

6.2.1 Mass spectrum of Open Strings on Dp-branes

Let us consider a configuration for our bosonic string theory in which the coordinates X0, X1, . . . , Xp ≡
Xµ have Neumann boundary conditions and the coordinates Xp+1, Xp+2, . . . , X25 ≡ XI have Dirichlet
boundary conditions. Then, the mode expansion for Xµ is the same as (2.59) and is given by

Xµ = xµ + l2sp
µτ + ils

∑

n#=0

1

n
αµ
ne

−inτ cos (nσ), (6.27)

where we note that µ runs from 0 to p. The mode expansion for XI is the same as (2.60) and is given by

XI = xI +
σ

π
(xI

j − xI
i ) + ls

∑

n #=0

1

n
αµ
ne

−inτ sin (nσ), (6.28)

where i and j label the different Dp-branes. (See Fig 6.4.) Now, from these mode expansions, we can
derive the mass-shell condition. Namely, we have, from (3.12),

L0 = H =
T

2

∫ π

0
dσ
(
Ẋ2 +X ′2

)

=
T

2

∫ π

0
dσ
(
(Ẋµ)2 + (X ′µ)2 + (ẊI)2 + (X ′I)2

)

=
∞∑

n=1

αµ
−nαnµ + α′pµpµ +

∞∑

n=1

αI
−nαnI +

1

4α′

(
xI
i − xI

j

π

)2

.

Thus, we can get

L0 = N − α′M +
1

4α′

(
xI
i − xI

j

π

)2

, (6.29)
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Figure 6.4: A compactified background spacetime.

where we have defined N as

N ≡
∞∑

n=1

αµ
−nαnµ +

∞∑

n=1

αI
−nαnI

=
∞∑

n=1

αν
−nαnν , (6.30)

with ν = 0, 1, . . . , 25. Furthermore, imposing the physical state condition, L0 − 1 = 0, leads to

M2 =
N − 1

α′ + T 2(xI
i − xI

j )
2, (6.31)

where T is the tension, defined by T = 1/(2πα′). Note that we can think of (xI
i − xI

j )
2 as the energy

stored in the tension of a string stretched between a Dp-brane at xi and a Dp-brane at xj .
Let us now investigate the spectrum for our theory.

Massless State

• One Dp-brane:

For the case of one Dp-brane, the term T 2(xI
i −xI

j )
2 vanishes. This fact gives us the following expression

for the mass

M2 =
N − 1

α′ ,

which implies that there is still a tachyon for N = 0. Thus, we seen that for the massless states of the
bosonic string theory with one Dp-brane, we must have N = 1. That is, the only massless states with
one Dp-brane are level 1 states. These states are given by

αµ
−1|0; kν〉, (6.32)

which corresponds to a p+ 1-dimensional vector, which we denote by Aµ, and also

αI
−1|0; kν〉, (6.33)

which corresponds to 25 − p scalars, which we denote by XI . We can interpret Aµ as a gauge field
and XI as the position of the Dp-brane. This implies that a Dp-brane has a U(1) gauge field on its
world-volume and has a massless scalar for each direction normal to the Dp-brane.
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• Two Dp-branes:

For this case, the mass formula is given by

M2 =
N − 1

α′ + T 2(xI
i − xI

j )
2,

with i, j = 1, 2. Now, if the two Dp-branes are at the same position (i.e. xi = xj), then we get extra
massless modes which arise from 1 − 2 and 2 − 1 strings, compared to 1 − 1 and 2 − 2 strings for one
brane.2 The states are given by

(Aµ)αβ and XI
αβ , (6.34)

where α,β = 1, 2. The four component entity denoted by (Aµ)αβ describes a U(2) gauge theory. Thus,
when the two branes are coincident, we get a U(2) gauge theory living on them. In general, it is known
that if we have N coincident Dp-branes, then we get a U(N) gauge theory living on them and the fields
are given by

(Aµ)αβ and XI
αβ , (6.35)

where α,β = 1, 2, . . . , N . Also, note that when one of the Dp-branes moves apart from the others, U(N)
divides into U(N−1)×U(1). Thus, for example, in the case of two Dp-branes, if they are not coincident,
then the gauge symmetry is U(1)× U(1).

Dp-branes are not a story restricted to the bosonic theory. They can also exist in superstring theories.

6.3 Type II Superstrings and T -duality

We have seen that in the closed bosonic string theory, T -duality maps the theory which is compactified
on a circle of radius R into an identical theory on a dual circle of radius R̃ = α′/R. Let us examine the
same T -duality transformations for type II superstring theories. It will turn out that the type IIA theory
is mapped to the type IIB theory and vice versa.

Consider the case of a single circle, i.e. consider that the X9 coordinate of a type II is compactified
on a circle of radius R and that a T -duality transformation is performed for this coordinate. The
transformation for the bosonic coordinate is the same as for the bosonic string, namely,

X9
L → X9

L and X9
R → −X9

R, (6.36)

which interchange momentum and winding numbers. In the RNS formalism, world-sheet supersymmetry
requires the world-sheet fermion Ψ9 to transform in the same way as its bosonic partner X9, namely,

Ψ9
L → Ψ9

L and Ψ9
R → −Ψ9

R, (6.37)

which imply that in particular, the zero mode of Ψ9
R in the Ramond sector transforms

d90 → −d90.

Now, we have the relation between Ramond sector zero modes and ten-dimensional Dirac matrices,
Γµ =

√
2dµ0 . Thus, a T -duality transformation yields, in terms of Γµ,

Γµ → Γµ for µ )= 9 and Γ9 → −Γ9,

from which we can find that the chirality operator Γ11 behaves as

Γ11 ≡ Γ0Γ1 · · ·Γ9 → −Γ11,
2We call a string which goes from a brane at xi to a brane at xj a i− j string.
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which means that the chirality of the right-moving Ramond ground state is reversed.
The relative chirality of the left-moving and right-moving ground states is what distinguishes the

type IIA and type IIB theories. Then, we conclude that T -duality flips the chirality for right-moving
spinors and thus transforms the various superstring sectors as

(R+, R±) −→ (R+, R∓)

(NS+, R±) −→ (NS+, R∓)

This exchanges type IIB theory and type IIA theory. The precise statement of this T -duality between
both theories is

Type IIB on S1 with radius R ↔ Type IIA on S1 with radius R̃.

6.3.1 Branes in Type II Superstring Theory

First, note that a point particle, i.e. D0-brane couples naturally to a gauge field Aµ as follows:

SA =

∫

C
AµẊ

µdτ =

∫

C
Aµ

dXµ

dτ
dτ ≡

∫

C
A(1), (6.38)

where C is the world-line of the particle. In this way, we can construct a one-form,3 which is denoted
by A(1), from a gauge field. For example, we know that a charges point particle couples to an electric
or magnetic field, described by a gauge field Aµ, as it moves through spacetime. Also, given a one-form
A(1), which is defined by a gauge field Aµ, then we can construct an object called the field strength F(2),
which is associated to the one-form via the following definition:

F(2) ≡ dA(1), (6.41)

where d is the exterior derivative. Note that since F(2) is defined as the exterior derivative of a one-form,
F(2) is a two-form.

The above discussion can be generalized to 1-brane. Namely, a 1-brane couples naturally to a two-
form gauge potential B(2) = BµνdXµ ∧ dXν via the action

SB =

∫

M
dτdσBµν∂αX

µ∂βX
νεαβ ≡

∫

M
B(2), (6.42)

where M is the world-sheet mapped out by the 1-brane (i.e. the string). Indeed, the spectrum of closed
superstrings contains an antisymmetric two-form Bµν , called the Kalb-Ramond field. This, in turn, can
be used to define its associated field strength H(3) = dB(2), which is a 3-form. Furthermore it is known
that this can be generalized to p-branes as follows. A p-brane couples naturally to a p + 1-form gauge
potential C(p+1) via the action

SC =

∫

M
dσ0dσ1 · · · dσpCµ1µ2···µp+1∂α1X

µ1 · · · ∂αp+1X
µp+1εα1···αp+1 ≡

∫

M
C(p+1), (6.43)

3Generally, given a gauge field Aµ, we can construct a one-form A(1) by defining it as

A(1) = Aµdx
µ. (6.39)

Similarly, given a gauge field with n components Aµ1µ2···µn , we can construct a n-form A(n) via

A(n) =
1

n!
Aµ1µ2···µndx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµn . (6.40)
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where M is the world-volume mapped out by the p-brane. Also, its associated p+ 2-form field strength
F(p+2) is defined as F(p+2) ≡ dC(p+1).

We can use the above information about the coupling of branes to gauge potentials in order to see
what kind of stable branes we can expect in a string theory. Since we know what kind of gauge fields
are present in the type IIA and IIB theories, we can see what kind of branes these two theories have by
using this knowledge. To begin, let us start with the type IIA theory.

• Type IIA:

In the type IIA theory, there exist 1-form and 3-form gauge potentials. Since D0-branes couple
to 1-form gauge potentials and D2-branes couple to 3-form gauge potentials, we see that there
exist D0-brane and D2-brane in the type IIA theory. However, this is not all because, given a
field strength, which is associated to a form potential, we can construct another field strength by
taking the Hodge dual. Foe example, if we have a gauge potential C(1), there is a field strength
F(2) = dC(1) and by taking the Hodge dual of F(2), we get another field strength ∗F(2). Thus,
back to our case, we have 1- and 3-form potentials which defines 2- and 4-form field strengths and,
since D = 10 for type IIA theories, there are a dual 8- and 6-form field strengths, corresponding
to the 2- and 4-field strengths, respectively. In addition, associated to the dual 8- and 6-form
field strengths, there are a 7- and 5-form gauge potential, respectively. They couple to D6- and
D4-branes, respectively. As a result, the type IIA theory has D0-, D2-, D4 and D6-branes.

• Type IIB:

The type IIB theory has 0-form (scalar), 2-form and 4-form gauge potentials, which are coupled to
D(−1)-, D1- and D3-branes, respectively. The D(−1)-brane is an object which is localized in time
as well as in space, i.e. it is interpreted as a D-instanton, In addition, by taking the Hodge dual as
in the type IIA theory,we have dual D5- and D7-branes. Note that in the type IIA case, we had two
types of branes (D0 and D2) and they gave rise to two types of dual branes (D4 and D6). But,
in the type IIB case, we have three types of branes (D(−1), D1 and D3), which give rise to only
two types of dual branes (D5 and D7). The reason why this happen is as follows: the D3-brane
couples to a 4-form gauge potential, which defines a 5-form field strength. But the Hodge dual of
this field strength is a dual 5-form field strength, which gives a 4-form gauge potential. Then, it
couples to a D3-brane. Thus, the Hodge dualizing of the D3-brane does not give any new branes.
In that sense, D3-branes are called self-dual with respect to the Hodge star operator.

Summarizing: the type IIA theory has D0-, D2-, D4- and D6-branes, while the type IIB theory has
D(−1)-, D1-, D3-, D5- and D7-branes. Lastly, T -duality maps a type IIA theory compactified on a
circle of radius R to a type IIB theory compactified on a circle of radius R̃, sends the Neumann boundary
conditions to Dirichlet boundary conditions and maps various Dp-branes (p even) into other Dq-branes
(q odd), and vice versa.
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