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Abstract

This thesis presents an algebraic study of two areas of conformal field theory. The first part extends the

theory of Galilean conformal algebras. These algebras are extended conformal symmetry algebras

for two-dimensional quantum field theories, formed through a process known as Galilean contraction.

Analogous to an Inonu-Wigner contraction, the Galilean contraction procedure takes two conformal

symmetry algebras, equivalent up to central charge, as input and produces a new conformal symmetry

algebra. We extend the theory of Galilean contractions in several directions. First, we develop the

theory to allow input of any number of symmetry algebras. These generalised algebras have a truncated

graded structure. We develop a theory for multi-graded Galilean algebras, whereby we extend to

structures which are graded by sequences. Finally, we present a comprehensive analysis of the possible

algebras which arise when the input algebras are no longer required to be equivalent. We refer to this

as the asymmetric Galilean contraction. For each stage of generalisation, we present several pertinent

examples, discuss the Sugawara construction of a Galilean Virasoro algebra given an affine Lie algebra,

and apply our results to the W-algebra W3.

The second part of this thesis presents an exploratory study of reducible but indecomposable modules

of the N = 2 superconformal algebras, known as staggered modules. These modules are characterised

by a non-diagonalisable action of L0, the Virasoro zero-mode. Using recent results on the coset

construction of N = 2 minimal models, we are able to construct the first examples of staggered

modules for the N = 2 algebras. We determine the structure of a family of such modules for all

admissible values of the central charge. Furthermore, we investigate the action of symmetries such as

spectral flow on these modules. We present the results along with a range of examples, and discuss

possible paths towards a classification of such modules for the Neveu-Schwarz and Ramond N = 2

superconformal algebras.
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Chapter 1

Introduction to conformal field theory

We begin by introducing the reader to fundamental concepts in conformal field theory which will

be relevant for the thesis. We note however, that this introduction is not exhaustive. Moreover, the

introduction presents material in a way that best relates to the results featured later on. We make

this remark because of the many different presentations of conformal field theory. We will begin

by introducing the Virasoro algebra, the algebra which generates infinitesimal conformal symmetry,

along with a discussion of highest-weight modules. This is followed by a discussion of the fields of a

conformal field theory, and the state-field correspondence. Following this we introduce the Virasoro

unitary minimal models, and rational conformal field theory. We briefly discuss the important example

of conformal field theories given by affine Lie algebras, and introduce the coset construction of

conformal symmetry algebras. Finally, we conclude with a brief introduction to the extended symmetry

algebras known as W -algebras. Throughout the introduction we draw primarily on the sources [5–9].

All of these texts cover almost all of the included information in the chapter. We remark here that our

introduction in this section is focused primarily on important results, and not on the derivation of those

results. The derivations of these results can be found in the referenced papers, as well as in the texts

mentioned earlier.

1.1 Conformal symmetry in two dimensions

For physical quantum systems, the symmetries of the system give rise to conserved currents. The

modes of those currents form a Lie algebra, encoding the infinitesimal symmetries of the system. The

state spaces of the quantum system are then representations of the underlying Lie algebra.

The study of conformal field theory is the study of field theories (not necessarily quantum, but we will

focus on quantum systems) for which there is conformal symmetry. A surprising property of such

systems, discovered in [10], was that when restricted to two dimensions, these quantum field theories

have an infinite number of conserved quantities. Correspondingly, the Lie algebra of symmetries is

infinite dimensional. Moreover, having an infinite number of conserved quantities implies that the
1
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corresponding conformal field theories are likely to be exactly solvable. That is, the spectrum of states

for such theories can be completely deduced using the action of the algebra.

The infinite-dimensional Lie algebra which generates the infinitesimal conformal symmetry is known

as the Virasoro algebra. The Virasoro algebra, denoted Vir, is a Lie algebra over the complex field

(we will always consider algebras over the field C), spanned by elements {Ln,c | n ∈ Z}, with defining

commutation relations

[Lm,Ln] = (m−n)Lm+n +
c

12
m(m2−1)δm+n,0. (1.1)

The element c is central in the Lie algebra, and is referred to as the central charge.

1.2 The Virasoro algebra and its representation theory

Given that the Virasoro algebra encodes the symmetries of the physical systems we seek to understand,

the study of representations of the Virasoro algebra is fundamental to conformal field theory. We begin

by introducing the so-called Verma modules. The Verma modules are highest-weight representations

of the algebra.

The standard construction of the Verma modules, labelled by Vh,c for h,c ∈ C, begins by observing

that the algebra has a triangular decomposition

Vir=Vir−⊕Vir0⊕Vir+, (1.2)

where Vir+ = {Ln | n > 0}, Vir− = {Ln | n < 0} and Vir0 = {L0, c}, are the positive-, negative-, and

zero-mode subalgebras respectively.

We begin with a one-dimensional representation Ch,c of the Borel subalgebra b=Vir+⊕Vir0, labelled

by h,c ∈ C, the conformal weight and central charge respectively.

The representation Ch,c is spanned by a vector |v〉 such that

L0 |v〉= h |v〉 and c |v〉= c |v〉 , Ln |v〉= 0, n > 0. (1.3)

We mention that the nomenclature “central charge” does not distinguish between the element of the

algebra, and the value that the element takes on the highest-weight vector, however the distinction

should be clear from context.

One can then induce from this one dimensional representation to a representation of the full Virasoro

algebra by free left action, that is

Vh,c =U(Vir)⊗U(b)Ch,c, (1.4)

where U(·) denotes the corresponding universal enveloping algebra. Thus, the Verma modules of the

Virasoro algebra are highest-weight modules, with highest-weight vector |v〉. The Verma module has a
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basis given by

{|v〉}∪{L−n j . . .L−n1 |v〉 | 1≤ n1 ≤ . . .≤ n j ∈ Z}. (1.5)

The Verma modules are graded vector spaces, where the grading is with respect to eigenspaces of the

operator L0. The Verma module Vh,c decomposes into weight spaces

Vh,c =
∞⊕

n=0

Mh+n,c, (1.6)

where Mh+n,c is the weight space with L0 eigenvalue h+n, and c eigenvalue c. The action of L0 on an

element of the basis is given by

L0L−n j . . .L−n1 |v〉=

(
h+

j

∑
i=1

ni

)
L−n1 . . .L−n j |v〉 . (1.7)

Each space Mh+n,c is given by the span of states such that their mode indices add to −n. This leads

to the observation that the states in a given weight space are in correspondence with partitions of the

integer n, where the mode indices of the generators are the negative of the parts of n. The value of n is

commonly referred to as the “level”, so that a vector |w〉 ∈Mh+n,c is a vector at level n.

We can associate a generating function, known as the character, to a Verma module. The character of a

Verma module χh,c(q) is a formal series in the variable q, defined by

χh,c(q) = TrVh,c

(
qL0− c

24

)
=

∞

∑
n=0

dim(Mh+n)qn+h−c/24. (1.8)

The trace is performed over all states in the module Vh,c. The inclusion of the overall factor q−c/24 is

related to the action of the modular group on the character functions. We will not discuss this here,

but there is a thorough description in [5]. As we have already observed, the dimensions of the weight

spaces are given by partitions of n, and as such there is a natural link between the function χh,c(q) and

the generating function for partitions

1
φ(q)

=
∞

∏
n=1

1
1−qn =

∞

∑
n=0

p(n)qn, (1.9)

where p(n) is the number of partitions of n. We can write the Virasoro Verma module character

function as

χh,c(q) =
qh−c/24

φ(q)
= qh−c/24

∞

∏
n=1

1
1−qn . (1.10)

1.3 The state-field correspondence and the operator product ex-

pansion

So far, we have focused on the description of modules over the Virasoro algebra, ignoring the field

content of conformal field theories. Here we will introduce the fields of our theories, but we will

require some preliminaries.
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It is customary to work with complex co-ordinates z, z̄, which are Wick rotations of the usual spacetime

co-ordinates in two dimensions (t,x), that is, z = x+ it, z̄ = x− it. We remark that generally the full

symmetry algebra of a given two dimensional quantum system with conformal symmetry is given

by two copies of the Virasoro algebra. We will proceed only considering the case when these two

copies decouple, giving separate sectors. In the so-called holomorphic sector, the Virasoro algebra

acts as holomorphic transformations with respect to z, similarly in anti-holomorphic sector, the second

copy of the algebra acts as anti-holomorphic transformations with respect to z̄. Focusing on a single

sector of the decoupled picture is known as chiral conformal field theory. The two algebras need not

decouple, however it greatly simplifies the exposition, allowing us to focus only on the holomorphic

sector. A useful text for understanding CFTs when these two sectors do not decouple is [11].

In these rotated co-ordinates we think of positions x as lying on concentric circles centred at the origin,

where time t determines the radius of the circle. As such, the co-ordinate z = 0 corresponds to t→−∞,

and time-ordering of events becomes radial ordering.

A quantised field φ(z) is an operator valued function in the co-ordinate z. We will consider it from the

perspective of its series expansion

φ(z) = ∑
n∈Z−h

φnz−n−h, (1.11)

where the expansion modes are operators φn ∈ End(V ), and where V is a vector space often referred to

as the vacuum module. The quantity h is referred to as the conformal dimension or conformal weight

of a field, and is related to the conformal transformation properties of the field. The operators in the

formal series are referred to as the modes of the field, and they form the modes of the underlying Lie

algebra of symmetries.

For the Virasoro algebra, there is a generating field T (z), often referred to as the stress-energy tensor

due to its applications in physics, the mode expansion for which is given by

T (z) = ∑
n∈Z

Lnz−n−2, (1.12)

where the Ln are the modes of the Virasoro algebra. For the Virasoro field, we require that the vacuum

vector |0〉 ∈V (the lowest energy state in the vacuum module) satisfies Ln |0〉= 0 for n≥−1. This

ensures that the series expansion of the field is well behaved as z→ 0, as is demonstrated below.

We can verify the action of the field on the vacuum state

T (z) |0〉= ∑
n∈Z

z−n−2Ln |0〉 , (1.13)

and see that if we take the limit z→ 0, that is we consider the asymptotic in-state, we have

lim
z→0

T (z) |0〉= lim
z→0

∑
n∈Z

z−n−2Ln |0〉= lim
z→0

∑
n≥−2

z−n−2Ln |0〉 . (1.14)
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With the exception of n = −2 the remaining terms diverge in the limit z→ 0. The field being well

defined at all times motivates the symmetries of the vacuum state. We have that for the above to be

well defined, we set Ln |0〉= 0 for n≥−1. Then the previous limit calculation becomes

lim
z→0

T (z) |0〉= L−2 |0〉 . (1.15)

The physical constraints on the vacuum are well motivated from the perspective of representation

theory, which will be demonstrated in Section 1.4. Moreover, this technique of applying the limit as

z→ 0 gives a way of associating a field to a vector in the vacuum module. We will develop this notion

further later in this section.

There is an identity field I(z) with mode expansion

I(z) = ∑
n∈Z

δn,0z−n, (1.16)

where δ0,0 = 1V , the identity endomorphism on V .

We can take derivatives of the fields with respect to the co-ordinate, giving

∂zφ(z) = ∂z ∑
n∈Z−h

φnz−n−h = ∑
n∈Z−h

φn(−n−h)z−n−h−1. (1.17)

There is a product on the fields of a theory, known as the operator product expansion (OPE). Generally

in a quantum field theory, we have the notion of a product of fields φ i(z)φ j(w), whereby we can

expand them as an asymptotic series in the distance of their arguments, as in

φ
i(z)φ j(w)∼∑

k
Ci j

k (z−w)φ k(w), (1.18)

where the Ci j
k (z−w) are structure constants and singular functions of the difference of co-ordinates,

and the φ k(w) are a set of local operators on the vacuum. In the case of conformal field theory, this

expansion converges (see [7, 10] for a discussion of this property), and indeed we are able to write

φ
i(z)φ j(w) =

n

∑
k=−∞

Ci j
k

φ k(w)
(z−w)k , (1.19)

for a finite integer n, and where Ci j
k ∈ C are the structure constants of the algebra.

There is a distinguished field appearing in this expansion, namely φ k=0(w) =
(
φ iφ j)(w), the normally-

ordered product of φ i(z) and φ j(w).

The notion of normally-ordered product can be elevated to a bilinear operation on fields, taking in two

fields, and returning a field as its output. The corresponding mode expansion is given by

(
φ

i
φ

j)(z) = ∑
m∈Z

∑
n∈Z−hi−h j

: φ
i
mφ

j
n−m : z−n−hi−h j , (1.20)
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where hi, h j, are the conformal dimensions of φ i, and φ j respectively, and

: φ
i
mφ

j
n−m :=

φ i
mφ

j
n−m, n−m >−h j,

φ
j

n−mφ i
m, otherwise.

(1.21)

One may recognise : · · · : as the usual mode normal ordering prescription from quantum field theory.

We remark that the cut-off point (in this case −h j) for the normal ordering of modes may be any finite

value. Any choice of cut-off only differs from any other choice by a finite number of terms.

The normally-ordered product
(
φ iφ j) only generally commutes when j = i, and normally-ordered

products are not associative. As such, we use the convention that the normally-ordered product of

three or more fields is given by right nested, pairwise operations, that is,(
φ

i . . .φ j
φ

k)(z) = (φ i( . . .(φ j
φ

k)))(z). (1.22)

Returning to the Virasoro algebra, the operator product expansion between the field T (z) and T (w) is

given by

T (z)T (w)∼ c
2

I(w)
(z−w)4 +

2T (w)
(z−w)2 +

∂wT (w)
(z−w)

, (1.23)

where c ∈ C is the central charge, I(w) is the identity field, and we have dropped the non-singular

terms which is signified by the use of∼ rather than equality. It is common to only consider the singular

terms in the OPE as they contain all structural information about the resulting algebra of fields.

The space of fields forms a unital algebra (there is always an identity field) under the operator product

expansion. A field theory is said to be generated by a set of fields {φ i} under the OPE if the full space

of fields is given by the generating fields, their derivatives, and normally ordered products of the fields

and their derivatives. The Virasoro algebra as an algebra of fields is generated by the field T (z).

To determine the OPE between derivatives of fields, we have that

φ
i(z)∂wφ

j(w)∼ ∂w

[
n

∑
k=1

Ci j
k

φ k(w)
(z−w)k

]
, (1.24)

and similarly for ∂zφ
i(z)φ j(w), that is, one simply takes the derivative of the fields appearing on the

right-hand side of the OPE.

We can also exchange the order of fields in the OPE. By definition, we have that

φ
j(w)φ i(z)∼

n

∑
k=1

C ji
k

φ k(z)
(w− z)k . (1.25)

We remark that this assumes the fields obey bosonic statistics. In general, fermionic fields are also

allowed, whereby exchange of fields introduces a minus sign.

To compute the same OPE with a change of co-ordinates, i.e. φ j(z)φ i(w), we consider that we can

expand a field φ(z) about a point, as in

φ(z) =
∞

∑
n=0

∂
n
φ(w)(z−w)n . (1.26)
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To determine the OPE between a field and a normally-ordered product, we make use of the so-called

point splitting technique, whereby we split the normally-ordered product of two fields as

φ
i(z)
(
φ

j
φ

k)(w) = ∮
w

dx
2πi

1
x−w

[
φ

i(z)φ j(x)φ k(w)+φ
j(x)φ i(z)φ k(w)

]
, (1.27)

where the over-lined contractions denote the OPE of the involved fields. This technique will be

demonstrated explicitly when considering the so-called Sugawara construction in Section 1.6.

The conformal transformation properties of fields in a conformal field theory appear via the OPE. A

field φ(z) is called a scaling field if its OPE with the Virasoro field T (z) is given by

T (z)φ(w)∼ . . .+
hφ φ(w)
(z−w)2 +

∂φ(w)
z−w

, (1.28)

where hφ is the conformal dimension of the field φ(z). The ellipsis represents possible terms appearing

at poles of order three or greater.

Such a scaling field is called quasi-primary if the third-order pole of the OPE is zero. The definition of

quasi-primary does not place any restrictions on the poles of order greater than three. As an example,

we can see from

T (z)T (w)∼ c
2

I(w)
(z−w)4 +

2T (w)
(z−w)2 +

∂wT (w)
z−w

, (1.29)

that the Virasoro field is itself a quasi-primary field.

Finally, we say that a field φ(w) is primary if it is a scaling field, and all poles of order three or greater

vanish, that is, we have exactly

T (z)φ(w)∼
hφ φ(w)
(z−w)2 +

∂φ(w)
z−w

. (1.30)

We remark that when c = 0 the Virasoro field is a primary field.

We return to the discussion of associating fields to particular states in the vacuum module. Earlier we

showed that by taking the z→ 0 limit of the action of the Virasoro state on the vacuum vector, we can

associate the state L−2 |0〉 to the field T (z). We can repeat this calculation for a general field φ i(z),

where the associated state is

lim
z→0

φ
i(z) |0〉= lim

z→0
∑

n∈Z−hi

φ
i
nz−n−hi |0〉= ∑

n≤−hi

φ
i
nz−n−hi |0〉= φ

i
−hi
|0〉 . (1.31)

In this case, to have a well defined in state at our equivalent of time t = 0, we require the modes φ i
n for

n >−hi annihilate the vacuum vector |0〉.

For derivatives of fields, we can continue in a similar fashion. We give the case where φ(z) = T (z),

the Virasoro field, as an explicit example. The state associated to the nth derivative of T (z) is given by

lim
z→0

∂
nT (z) |0〉= lim

z→0
∑

m∈Z
∂

nz−m−2Lm |0〉= n!L−2−n |0〉 . (1.32)
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Furthermore, we can also perform the procedure for normally ordered products. Consider the action of

the field (T T )(z), we have

lim
z→0

(T T )(z) |0〉= lim
z→0

∑
m∈Z

∑
n∈Z

z−n−4 : LmLn−m : |0〉= L−2L−2 |0〉 . (1.33)

Combining these results we determine the general formula for any field in the Virasoro field algebra,

which is

lim
z→0

1
(n1−2)! . . .(nk−2)!

(
∂

nk−2T . . .∂ n1−2)(z) |0〉= L−nk . . .L−n1 |0〉 , nk ≥ . . .≥ n1 ≥ 2. (1.34)

We also have that for the identity field

lim
z→0

I(z) |0〉= lim
z→0

∑
n∈Z

δn,0z−n |0〉= δ0,0 |0〉= 1V |0〉= |0〉 , (1.35)

that is, the identity field is the field associated to the vacuum state itself. As such, we can identify any

state in the basis for the vacuum module with a corresponding field, and this extends by linearity to all

fields and states. This relation is known as the state-field correspondence.

It is then natural to ask what is the state associated to a primary field φ(z)? We had earlier that for a

general field of conformal dimension h, the corresponding vector was given by

lim
z→0

φ(z) |0〉= φ−h |0〉 . (1.36)

In fact, for φ(z) a primary field, the state |v〉 = φ−h |0〉 defines a Virasoro highest-weight vector, of

conformal (L0) weight h. The vanishing of poles of order 2 or higher in the OPE for a primary field

implies that the action of the Virasoro elements Ln vanish on the corresponding state for n≥ 1, which

is exactly the highest-weight condition.

The fields associated to the states in such a module are then normally ordered products of the Virasoro

field T (z) with a single φ(z) field, and derivatives thereof. These fields are called the descendant fields

of φ(z). The collection of φ(z) and its descendant fields generate the so-called conformal family of

φ(z), denoted [φ ].

From the calculational standpoint of quantum field theory, one is primarily interested in evaluating

correlation functions, which are often understood as “overlap” functions, or transition probabilities

from one state to another, written in the form

〈φ 1(z1) . . .φ
n(zn)〉 (1.37)

for some set of fields φ i(z) where the fields are ordered radially outwards, |z1| ≥ . . . ≥ |zn| (the

equivalent of time ordering in rotated co-ordinates), and 〈. . .〉 indicates that this is an evaluation of a

vacuum module inner product. We will describe this inner product in Section 1.4.

A correlation function is often referred to by its “point” number, describing the number of fields which

have been inserted. For example, a general two-point function for two quasi-primary fields φ i(z) is

〈φ 1(z)φ 2(w)〉= f (z,w), (1.38)
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where f (z,w) is an as yet undetermined meromorphic function with possible poles at z = w. This

expression is quite general, however, it is constrained by the action of the sl(2) subalgebra spanned by

{L−1,L0,L1} ∈Vir, which generate global conformal symmetries of the physical system.

Indeed, for such a two-point function, one can show that global conformal symmetry restricts the form

of f (z,w) to

〈φ 1(z)φ 2(w)〉= f (z−w) =
f 12δh1,h2

(z−w)h1+h2
, (1.39)

where f 12 is a structure constant, and δh1,h2 is the usual Kronecker delta, implying that the two-point

function is only non-zero if the fields have the same conformal weight.

As an example, consider T (z) which is a quasi-primary field, we have that

〈T (z)T (w)〉=
〈

c
2

1
(z−w)4 +

2T (w)
(z−w)2 +

∂T (w)
z−w

〉
=

c
2

1
(z−w)4 . (1.40)

The terms with single fields go to zero. This is a consequence of weight space orthogonality of the

inner product discussed in Section 1.4.

Furthermore, for three-point functions of quasi-primary fields, conformal symmetry restricts the

allowed functions to

〈φ 1(z1)φ
2(z2)φ

3(z3)〉=
C123

(z1− z2)h1+h2−h3(z2− z3)h2+h3−h1(z1− z3)h1+h3−h2
. (1.41)

where the Ci jk are the structure constants of the three-point functions. In fact, structure constants Ci j
k

appearing in the OPE between quasi-primary fields φ i(z)φ j(w), are given by Ci j
k = ∑`Ci j` f`k, where

f`k is the inverse form of f `k. Hence, the structure constants of the two- and three-point functions

describe which fields φ k appear in the OPE.

The important fact about these relations is that the two- and three-point functions between primary

fields can be used with the knowledge that we have developed thus far, to determine the two- and

three- point functions for any of the fields in the conformal family [φ ]. Higher-order correlation

functions, such as four-point functions, can be re-expressed in terms of the three-point functions using

the associativity condition of the OPE. This leads to an infinite hierarchy of constraint equations for

the structure constants Ci jk.

In principle, this allows us to understand a conformal field theory, at a particular value of the central

charge, as a collection of primary fields (highest-weight representations of Vir), and solving a

conformal field theory is equivalent to determining the structure constants of the three-point functions.

However, this is difficult in practise, as one may require very many (sometimes infinitely many)

primary fields to describe a particular conformal field theory. Attempting to solve a theory in this way

is known as the conformal bootstrap, whereby one uses only the conformal symmetry constraints to

completely determine the theory.

A more complete description of these techniques can be found in any of the texts [5, 7, 8].
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1.4 Unitarity and the Kac determinant

On the Verma modules of the Virasoro algebra Vh,c, with highest-weight vector |v〉, we can introduce a

unique symmetric bilinear form called the Shapovalov form [12]

( · , · ) : Vh,c×Vh,c→ C, (1.42)

such that the highest-weight vector is normalised (|v〉 , |v〉) = 1, and the form is contravariant with

respect to the adjoint, so that for x ∈Vir, and |u〉 , |w〉 ∈Vh,c,

(x† |u〉 , |w〉) = (|u〉 ,x |w〉). (1.43)

The adjoint on the Virasoro algebra is given by

L†
−n = Ln, c† = c. (1.44)

We will make use of the so-called “bra-ket” notation, where we will identify (|u〉 , |w〉) := 〈u|w〉, such

that the highest-weight vector satisfies 〈v|v〉= 1, and that for Ln ∈Vir we have(
L−n |v〉 ,L−n |v〉

)
=
(
|v〉 ,LnL−n |v〉

)
= 〈v|LnL−n|v〉 . (1.45)

As the Verma modules are by definition cyclic, they are indecomposable. However, Verma modules

over the Virasoro algebra are often reducible. A vector |w〉 ∈Vh,c which satisfies the highest-weight

condition

Ln |w〉= 0, ∀n > 0, (1.46)

is called a singular vector. We will label vectors which are singular but do not generate the module as

proper singular vectors. A singular vector of a Verma module generates a Verma submodule Uh′,c⊆Vh,c,

and a proper singular vector generates a proper submodule Uh′,c ⊂Vh,c. A proper submodule is null

with respect to the form introduced in (1.42). This is straightforward to demonstrate.

Suppose |w〉 ∈Vh,c is a proper singular vector, and consider a general basis vector L−mn . . .L−m1 |v〉 ∈
Vh,c. Taking the inner product, we have

〈v|Lm1 . . .Lmn |w〉= 〈v|0 = 0. (1.47)

Hence, a proper singular vector generates a null submodule with respect to the Shapovalov form. A

Verma module has a unique maximal submodule, labelled Jh,c such that the quotient Lh,c =Vh,c/Jh,c

is the unique irreducible quotient of Vh,c. Indeed, all highest-weight representations are formed by

quotients of Verma modules [13].

As an example of proper singular vectors, we consider the one-parameter family of Verma modules

V0,c. We denote the highest-weight vectors of these modules by |0〉, such that c |0〉= c |0〉 for |0〉 ∈V0,c.
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We claim that in all modules V0,c in the one-parameter family, the vector L−1 |0〉 is singular. To

demonstrate, we apply the raising generator L1

L1L−1 |0〉= L−1L1 |0〉+[L1,L−1] |0〉= 2L0 |0〉= 0. (1.48)

We note that it is sufficient to check that the action of L1 and L2 on a singular vector gives zero, as these

modes generate the positive mode algebra under the Lie bracket. In the above case, the action of L2 on

the singular vector is simply zero by weight-space considerations. The modules V0,c are graded by L0

eigenvalue, and L2 (L−1 |0〉) maps into a trivial weight space. Thus, all Verma modules with h = 0 have

a proper submodule generated by the vector L−1 |0〉. We remark that the state-field interpretation of

this result is that the derivative of the identity field is zero. Moreover, this demonstrates the requirement

that L−1 |0〉= 0 on the vacuum module from the perspective of the representation theory.

An important tool in classifying the representations of the Virasoro algebra is the Kac determinant

formula [14, 15]. Let us denote the Gram matrix of inner products at level n of the Verma module Vh,c

by Gn
h,c. The Kac determinant formula states that the determinant of the Gram matrix is given by the

formula

det(Gn
h,c) = K ∏

r,s≥1,
rs≤n

(h−hr,s(c))
p(n−rs) , (1.49)

where K is an overall constant, p(n) is the number of partitions of n, and we have the formula

hr,s(t) =
t
4
(
r2−1

)
+

1
4t
(s2−1)− 1

2
(rs−1), (1.50)

where t ∈ C× parametrises the value of the central charge as

c = 13−6
(

t +
1
t

)
. (1.51)

As we have already shown, the Shapovalov form vanishes on the proper submodules of Vh,c. This

implies that the Kac determinant at level n vanishes if there is a proper singular vector at level n in

Vh,c. As such, if det(Gn
h,c) 6= 0 for all n, then the representation Vh,c is irreducible. We say that a

representation is unitary if the Shapovalov form is positive-definite on that representation, equivalently

that we have det(Gn
h,c)> 0 for all n.

The unitary representations are of particular interest as they are of highest importance to physical

applications. The unitary representations contain no non-zero states with zero norm, and moreover, no

states with negative norm. From a traditional physical perspective, this ensures that inner products of

states have a meaningful probabilistic interpretation. However, there has been significant research into

non-unitary conformal field theories, and we will return to this point later in the thesis.

Given their importance, it is natural to ask, for what values of h,c does one obtain unitary representa-

tions? We can gain some insight by considering the inner product at level one. In the Verma module

Vh,c, the level one weight space is spanned by the vector L−1 |v〉. The norm of this state is given by

〈v|L1L−1 |v〉= 〈v| [L1,L−1] |v〉= 〈v|2L0 |v〉= 2h, (1.52)
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hence we require h≥ 0 for unitarity. We allow h = 0, as we are free to quotient by the singular vector

L−1 |0〉, in which case, the resulting module may be unitary.

More generally, we can consider the following inner product at level n

〈v|LnL−n |v〉= 〈v| [Ln,L−n] |v〉= 〈v|2nL0 +
c

12
n(n2−1) |v〉 . (1.53)

Here we require c≥ 0 for unitarity, otherwise the second term causes the inner product to be negative

when we take n sufficiently large.

One can show the following fact through analysis of the determinant formula [13]. The Verma module

Vh,c is irreducible, i.e. Vh,c = Lh,c, for c > 1, h > 0. Furthermore, the irreducible representation Lh,c

is unitary for c ≥ 1 and h ≥ 0. We also have that Vh,1 = Lh,1 if and only if h 6= m2

4 for m ∈ Z, and

Vh,0 = Lh,0 if and only if h 6= m2−1
24 for m ∈ Z.

The irreducible module L0,0 is the trivial module, and is also unitary. Using the above two calculations,

we see that in V0,0, we would have to quotient out the submodules generated by L−1 |0〉 and L−2 |0〉.
As L−1 and L−2 generate Vir−, we arrive at the trivial module.

This leaves the question of unitarity in the region 0≤ c< 1, h> 0. In this region, the authors of [16,17]

showed that it is possible to have unitary representations, but only at a discrete set of points in the

parameter space. The allowed values of the central charge are

c(m) = 1− 6
m(m+1)

, m≥ 2. (1.54)

For this parametrisation of c(m), the formula for corresponding highest weights becomes

hr,s(m) =
((m+1)r−ms)2−1

4m(m+1)
, 1≤ r ≤ m−1, 1≤ s≤ m. (1.55)

The key point is that the Verma modules parametrised by the above are reducible (when h = hr,s the

determinant vanishes), implying that although these constraints are necessary, one must quotient out

the null submodules to obtain the unitary representations. The Verma modules Vh,c with c(m) given by

(1.54), and highest weight given by (1.55), are labelled by the pair r,s, and have a singular vector at

level rs, the product of the labels. We remark that this may not be the only singular vector in such a

module. The corresponding irreducible modules, where one has quotiented by the maximal proper

submodule, are the unitary representations.

It was proven in [18], that the modules parametrised above indeed all lead to unitary representations in

the region 0≤ c < 1, h > 0. Their proof involved the so-called coset construction discussed in Section

1.7.

1.5 The unitary Virasoro minimal models and fusion

A classic example which demonstrates how these unitary representations are obtained is the con-

struction of the level two singular vector Verma modules Vh,c for 0 < c < 1. Consider the vector
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(L−2 +αL−1L−1) |v〉 , (1.56)

where |v〉 is the highest-weight vector. Supposing the vector is singular, we want to determine the

corresponding constraints on the values of h,c,α .

We compute

L1 (L−2 +αL−1L−1) |v〉= 3L−1 |v〉+α(2L0L−1 +2L−1L0) |v〉= (3+2α(2h+1))L−1 |v〉= 0,

(1.57)

which implies that α = −3
2(2h+1) . Continuing for L2, we have

L2 (L−2 +αL−1L−1) |v〉=
(

4L0 +
c
2

)
|v〉+3αL1L−1 |v〉=

(
h(4+6α)+

c
2

)
|v〉= 0, (1.58)

which implies that c = 2h(5−8h)
2h+1 . So for all such values of c, there is a singular vector at level two,

given by (1.56) with the particular value of α(h). One can then verify that these formulas match (1.54)

and (1.55) for r = 2, s = 1.

Under the state field correspondence, a vector of the form (1.56) corresponds to a descendant field in

the conformal family [φ2,1]. When that vector is singular, it implies that the corresponding field is null.

Correlation functions involving null fields are zero, in direct correspondence with the fact that proper

singular vectors generate null submodules with respect to the form. This then leads to constraints

on the two- and three-point functions of the theory. The null field condition implies that an n-point

function satisfies[
n

∑
i=1

(
hi

(zi− z)2 −
∂

zi− z

)
− 3∂ 2

2(2h+1)

]
〈φ(z)φ 1(z1) . . .φ

n(zn)〉= 0. (1.59)

This constraint is trivially satisfied for the two-point functions. However, for the three-point functions

〈φ 1(z)φ 2(z)φ 3(z)〉, the differential equation leads to a constraint on the conformal weights of the

fields, given by

2(2h1 +1)(h1 +2h3−h2) = 3(h1−h2 +h3)(h1−h2 +h3 +1). (1.60)

Recalling that the two- and three-point functions determine the structure constants of the OPE, this

equation constrains the conformal weight of the allowed primary fields which can appear on the right

hand side of products between primary fields. Moreover, since the conformal family of a primary

field [φ ] is equivalent to a Virasoro highest-weight module, the OPE leads to a notion of multiplying

Virasoro modules together, with correlation functions describing how that product decomposes into

Virasoro modules. This is known as the fusion product of modules.

For a field [φ2,1] in a unitary minimal model we consider fusing with another general field [φr,s] of

weight hr,s in the same minimal model. The above constraints imply that the fusion product can only

possibly produce the following fields

[φ2,1]× [φr,s] =C(r+1,s)
(2,1),(r,s)[φr+1,s]+C(r−1,s)

(2,1),(r,s)[φr−1,s]. (1.61)
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We note that the corresponding structure constants Ck
i j may still be zero, however, all others can be

ruled out using the null field constraints.

For two general unitary representations parametrised by (1.54) and (1.55), we have the following

multiplication rules

[φr1,s1]× [φr2,s2 ] =
r1+r2−1

∑
k=1+|r1−r2|
k+p1+p2 odd

s1+s2−1

∑
`=1+|s1−s2|
`+s1+s2 odd

C(k,`)
(r1,s1),(r2,s2)

[φk,`], (1.62)

commonly referred to as fusion rules. The fusion rules describe the multiplication properties of

modules within a theory. We remark that usually when one considers “multiplication” of modules over

an algebra, the natural choice is the tensor product. However, the tensor product of modules does not

preserve the value of the central charge. Rather, for the resulting module, the central charge is the sum

of the central charges of the factors. As the value of the central charge effectively characterises the

theory, it should be preserved under the product operation.

Generally speaking, the fusion product gives rise to a unital, commutative, associative algebra, called a

fusion algebra, which is an algebra of modules over a conformal symmetry algebra for a given value of

the central charge. The product on the algebra, referred to as the fusion rules, is written more abstractly

as

[φi]× [φ j] = ∑
k

Nk
i j[φk], (1.63)

where Nk
i j ∈ Z≥0 are the module multiplicities. We have that Nk

i j = 0 if and only if the three-point

structure constants Ci jk = 0, and for the Virasoro unitary minimal models, Nk
i j ∈ {0,1}. We note that

there is ambiguity in the literature as to whether the Nk
i j are the fusion rules, or whether the equations

(1.63) are the fusion rules. We will use the convention that products of the form (1.63) are referred to

as the fusion rules.

The identity in the fusion ring is given by the module of the identity field. Commutativity implies the

Nk
i j = Nk

ji. Associativity gives that

∑
k

Nk
i jN

m
k` = ∑

k
Nk

j`N
m
ki . (1.64)

We say that a fusion algebra is rational if it is finite-dimensional. The corresponding conformal field

theory is rational if its fusion algebra is rational, that is, the conformal field theory is made up of a

finite number of conformal families. We then say that the minimal model with central charge c given

by (1.54) is the set of fields on which the fusion algebra closes. In the case of the unitary Virasoro

minimal models, the fusion algebras are rational. However, the non-unitary N = 2 superconformal

minimal models, and admissible level ŝl(2) minimal models we will encounter in Chapter 5 will not

be rational.

One can associate a Grothendieck ring of power series in a finite number of variables to a fusion

algebra by associating the irreducible modules with their character functions. For indecomposable
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modules, we associate them to the sums of characters of each of their composition factors. In this ring,

we write the product as
χ i(q)×χ j(q) = ∑

k
Nk

i jχk(q). (1.65)

We remark that computing the product on the Grothendieck ring, sometimes referred to as Grothendieck

fusion or character fusion, is generally significantly easier than computing fusion of modules. A

celebrated algorithm for computing fusion products of modules is the Nahm-Gaberdiel-Kausch

algorithm (NGK) [19–21] (see [22, 23] for an introduction and overview). This algorithm, while

extremely powerful, is also computationally difficult. However, one can use character fusion as a guide

to understand how to interpret the output of the NGK algorithm.

1.6 Conformal field theories with affine Lie algebra symmetries

A particularly relevant example of a conformal field theory is the conformal field theory associated

to an affine Lie algebra. These theories, known as Wess-Zumino-Witten (WZW) models, arise

from considering non-linear sigma models where the target space is a Lie group [24–26]. Their

corresponding symmetry algebras are affine Lie algebras, which we will explain in detail shortly

(see [5] for a thorough introduction to affine Lie algebras, and WZW models). There is a well-

developed geometric understanding of the WZW models, however, here we will only be interested in

their related symmetry algebras.

One process for constructing an affine Lie algebra is to begin with a semisimple Lie algebra g, and

form the loop algebra g⊗C[t, t−1]. The affine Lie algebra is given as the central extension of the loop

algebra by the level k, and inclusion of a derivation d. As a vector space the affine Lie algebra ĝ is

given by

ĝ= g⊗C[t, t−1]⊕Ck⊕Cd. (1.66)

A basis for the loop algebra g⊗C[t, t−1] is given by the modes { ja
n = ja⊗tn | a= 1, . . . ,dim(g), n∈Z},

where { ja} is a basis for the underlying semisimple Lie algebra g. The Lie bracket on the algebra is

given by [
ja
m, jb

n
]
= ∑

c
f ab

c jc
m+n +κ

abkmδm+n,0,
[
d, ja

n
]
= n ja

n, (1.67)

where f ab
c are the structure constants on g, and κab is the Killing form on g. The corresponding fields

are the so-called currents

Ja(z) = ∑
n∈Z

ja
n z−n−1, (1.68)

which are conformal weight 1 fields. The corresponding OPE relations for this algebra are given by

Ja(z)Jb(w)∼ κabk
(z−w)2 +∑

c

f ab
cJc(z)

z−w
. (1.69)

It is not obvious that an affine Lie algebra encodes conformal symmetry. Demonstrating this fact

involves a construction known as the Sugawara construction [27]. Here, for completeness, we give a
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standard presentation of the construction for affine Lie algebras. We remark though, that the algebra

need not be an affine Lie algebra to admit a Sugawara construction, rather one can still perform a well

defined Sugawara construction in the absence of an invertible Killing form. One of the most famous

examples of such a non-semisimple construction occurs when considering the conformal operator

of the free boson theory, corresponding to the algebra ĝl(1)≡ Ĥ. The algebra Ĥ has a well defined

Sugawara construction, despite the underlying algebra being abelian. We will consider non-semisimple

Sugawara constructions in more detail in Chapter 4.

The goal is to construct an action of the Virasoro algebra from the currents of the affine Lie algebra.

That is, we attempt to construct a field T (z) of conformal weight 2, from an algebra of conformal

weight 1 fields. As such, the field T (z) should be a linear combination of normally-ordered products

of currents, or derivatives of currents.

We begin with an ansatz for the Virasoro field of the form

T (z) = λ ∑
a,b

κab
(
JaJb)(z), (1.70)

for some λ ∈ C. Such an ansatz is further motivated by the form of the classical stress energy tensor,

which is a product of classical fields in a Poisson algebra, here we naturally begin by considering its

quantised counterpart.

Our goal is to determine the value of λ by enforcing that the fields Ja(z) should be conformal weight 1

primary fields under the action of T (z), and that the operator T (z) should generate a Virasoro algebra.

We begin by computing the OPE Ja(z)
(
JbJc)(w) using the point-splitting technique

Ja(z)
(
JbJc)(w)∼ ∮

w

dx
2πi

1
x−w

[(
κabk

(z− x)2 + f ab
d

Jd(x)
z− x

)
Jc(w)+ Jb(x)

(
κack

(z−w)2 + f ac
d

Jd(x)
z−w

)]
∼
∮

w

dx
2πi

1
x−w

[
κabkJc(w)
(z− x)2 + f ab

d
1

z− x

(
κdck

(x−w)2 + f dc
e
Je(w)
z−w

+
(
JdJc)(w))

+

(
κackJb(x)
(z−w)2 + f ac

d
Jb(x)Jd(w)

z−w

)]
∼
∮

w

dx
2πi

1
x−w

[
κabkJc(w)
(z− x)2 + f ab

d
1

z− x

(
κdck

(x−w)2 + f dc
e
Je(w)
z−w

+
(
JdJc)(w))]

+
κackJb(w)
(z−w)2 + f ac

d

(
JbJd)(w)

z−w
. (1.71)

Note, we have made use of the summation convention to reduce the notation. Multiplying through by

κbc, as in the ansatz for T (z), we simplify the resulting expressions using the identities

κbc f ab
dκ

dc = f ab
b = 0, κbc f ab

d f dc
e = 2h∨δ

a
e , f ab

d
(
JdJc)+ f ac

d
(
JbJd)= 0, (1.72)

and the standard relation κbcκab = δ a
c , where h∨ is the dual Coxeter number of the underlying

semisimple Lie algebra. Integrating leaves us with

κbcJa(z)
(
JbJc)(w)∼ 2(k+h∨)

Ja(w)
(z−w)2 . (1.73)



1.7. THE COSET CONSTRUCTION 17

We can exchange the order and the variables of the OPE, using operator exchange and Taylor series

expansion, which gives

κbc
(
JbJc)(z)Ja(w)∼ 2(k+h∨)

[
Ja(w)
(z−w)2 +

∂Ja(w)
z−w

]
, (1.74)

implying that λ = 1
2(k+h∨) .

As such, we have determined that

T (z) =
1

2(k+h∨)∑
a,b

κab
(
JaJb), (1.75)

or equivalently at the level of modes

Ln =
1

2(k+h∨)∑
a,b

κab ∑
m∈Z

: ja
m jb

n−m : . (1.76)

We note that the commutation relations equivalent to the OPE T (z)Ja(w) are

[Ln, ja
m] =−m ja

n+m, (1.77)

and because of this we identify L0 =−d, the derivation on the algebra. Computing the OPE T (z)T (w)

proceeds in much the same way, by using point-splitting on
(
JbJc)(w), and then using the known OPE

between
(
JbJc)(z)Ja(w). Computing the OPE and comparing to the Virasoro algebra defining OPE,

we see that the Sugawara construction gives rise to a Virasoro algebra with

c =
k dim(g)

k+h∨
, (1.78)

where dim(g) is the dimension of the underlying Lie algebra.

The Sugawara construction of a Virasoro operator from a conformal symmetry algebra of currents is

of great importance in understanding which algebras give rise to symmetries of conformal quantum

field theories. We remarked at the beginning of the Sugawara construction that conformal weight

considerations allow for T (z) to contain derivatives of the form ∂Ja(z). Sugawara constructions

involving derivatives of the currents are also possible. In the literature, these are known as “improved”

Sugawara operators [28–30], and are used in the Hamiltonian reduction procedure discussed in Section

1.8. One also encounters similar “twisted” Virasoro operators in free-field realisations of conformal

algebras [31]. We will discuss free-field realisations further in Chapter 7.

1.7 The coset construction

There are many ways of constructing a conformal field theory from a particular algebra. In the last

section, we saw that we could construct an action of the Virasoro algebra on an affine Lie algebra. In

this section, we consider a generalisation of this procedure, motivated by using the conformal structure



18 CHAPTER 1. INTRODUCTION

of the affine Lie algebras to expand the possible conformal field theories that we can describe in this

way.

The Wess-Zumino-Witten models which give rise to affine Lie symmetries only have well-defined

action functionals for positive integer values of the level k. The equation (1.78) then implies that the

corresponding Virasoro central charge is bounded by rank(g)≤ c≤ dim(g), where g is the semisimple

Lie algebra underlying the affine Lie algebra. Hence, we seek a construction of conformal field theories

for a wider range of c values (such as those for the unitary Virasoro minimal models), arising from the

affine Lie algebras. One such construction arises from cosets of affine Lie algebras, and is known as

the Goddard-Kent-Olive (GKO) construction [18, 32].

We begin by considering an affine Lie algebra ĝ at level k, and an affine Lie subalgebra ĥ⊂ ĝ at level

nek, where ne is the embedding index of ĥ. The commutation relations for these algebras are given by

(1.67), where the superscript a runs over an index set of appropriate size. We can express the modes of

ĥ, denoted j̄a
n, as linear combinations of the generators of ĝ, denoted jb

n, that is

j̄a
n = ∑

b
Ma

bJb
n , (1.79)

for some M ∈C. The coset algebra ĝ/ĥ is given by the algebra of elements in ĝ that commute with the

subalgebra ĥ. We now work towards describing the coset algebra.

Using the Sugawara construction, we can construct Virasoro generators Lĝ
n and Lĥ

n, acting on ĝ and

ĥ respectively. We can form another Virasoro operator, which we will refer to as the coset Virasoro

operator, given by the difference of Virasoro operators

Lĝ/ĥ
n = Lĝ

n−Lĥ
n. (1.80)

We can verify that this commutes with the subalgebra ĥ, since

[Lĝ/ĥ
n , j̄a

m] = [Lĝ
n−Lĥ

n, j̄a
m] = [Lĝ

n, j̄a
m]− [Lĥ

n, j̄a
m] = m j̄a

m−m j̄a
m = 0. (1.81)

Moreover, since Lĥ
n is composed of normally ordered modes of the form j̄a

m, this result also implies

that

[Lĝ/ĥ
n ,Lĥ

m] = 0. (1.82)

We can check that we have not accidentally constructed a trivial operator by verifying

[Lĝ/ĥ
n ,Lĝ/ĥ

m ] = [Lĝ
n,L

ĝ
m]− [Lĥ

n,L
ĥ
m] 6= 0. (1.83)

By linearity, we have that the modes Lĝ/ĥ
n do indeed span the Virasoro algebra, with central charge

given by

cĝ/ĥ = cĝ− cĥ. (1.84)

Applying (1.78), we have that

cĝ/ĥ =
k dim(g)

k+h∨g
− nek dim(h)

nek+h∨h
. (1.85)
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As such, we have identified the subalgebra inside ĝ that commutes with ĥ. Using the coset, we can

construct Virasoro algebras with a larger range of c values than the original WZW models.

One of the most celebrated examples is the coset construction of the unitary minimal models of the

Virasoro algebra. We begin by considering the coset

ŝl(2)k⊕ ŝl(2)`
ŝl(2)k+`

, (1.86)

where ŝl(2)k+` is the algebra formed by the sum of elements in ĝ. This is the so-called diagonal

embedding, for which we have that ne = 1.

Using the general results presented above, we know that the central charge of the resulting Virasoro

algebra is given by

cg/h =
3k

k+2
+

3`
`+2

− 3(k+ `)

k+ `+2
. (1.87)

Rearranging gives

cg/h = 1− 6`
(k+2)(k+ `+2)

+2
`−1
`+2

. (1.88)

We observe that if ` = 1, this formula reduces exactly to (1.54), the central charge of the unitary

minimal models with c < 1, where k+2 = m.

However, this observation regarding central charge values still lacks an understanding of its implications

for the representation theory. Generally speaking, representations of the algebra ĝ should decompose

into representations of the subalgebra ĥ via a branching rule. In particular for the coset, we have

V ĝ(λ ) =
⊕

i

V ĝ/ĥ(ηi)⊗V ĥ(µi), (1.89)

where V ĝ/ĥ(ηi) are representations of the coset algebra, the part in ĝ that commutes with ĥ; and

λ ,ηi,µi are the corresponding weights of the representations.

The representations of ŝl(2) which give rise to the unitary Virasoro minimal models via the coset are

the irreducible highest-weight representations. These representations are characterised by the value of

the level k, and of the eigenvalue of the element h0 on the highest-weight vector, denoted λ k, where h0

is the zero mode corresponding to the generator of the Cartan subalgebra h ∈ sl(2).

The irreducible highest-weight representations of ŝl(2) at level k ∈ Z are denoted Ik
r for 1≤ r ≤ k+1,

and have highest weight λ k
r = r−1. As an example, if we look at k = 1, the irreducible highest-weight

representations are I1
1 , with highest weight 0, and I1

2 with highest weight 1. The top spaces of these

modules are the familiar finite dimensional highest-weight representations of sl(2), with highest weight

λr. The corresponding module for the affine Lie algebra then descends downward from the sl(2) states

forming the representation of ŝl(2).
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The branching rule resulting from the coset construction is then given by

Ik
r ⊗ I1

r′ =
⊕

1≤s≤k+2
r−s even if r′=1
r−s odd if r′=2

Lhr,s,c⊗ Ik+1
s . (1.90)

Here the r,s weights for the representations of the subalgebra are also the labels that determine the

highest weight hr,s of the resulting irreducible Virasoro module Lhr,s,c over the coset algebra.

One way this claim can be verified is by using the corresponding statements for character functions of

the modules involved. In the general case, for some ĝ and ĥ, one has that the character functions of

modules for ĝ decompose as

χk
ĝ(λ ;q,z) = ∑

i

χc
ĝ/ĥ

(ηi;q)×χnek
ĥ

(µi;q,z), (1.91)

where the sum ranges over the allowed weights λ j. We have introduced the character function for a

generic affine Lie algebra module as χk
ĝ
(λ ;q,z). As the weights of vectors in a module over the affine

Lie algebra ŝl(2) are specified by an L0 eigenvalue and also a charge corresponding to the action of

the Cartan subalgebra h0, one needs to introduce another variable. A q-series alone is insufficient

to describe the weight-space decomposition. The character functions of the coset modules are the

branching functions of the characters for the algebras involved in the coset.

Finally, we remark that the coset construction of a given algebra is not unique. One is generally free to

use whichever best suits the resulting analysis of the constructed coset. We will return to cosets in

Chapter 5 where we introduce a different type of coset known as the Kazama-Suzuki coset. We will

not give a discussion of the proof for the coset construction of the unitary Virasoro minimal models,

see [5, 18].

1.8 Extended symmetry conformal field theories and W-algebras

Here we introduce extended symmetry algebras of conformal field theories, known as W -algebras. We

begin by giving a historical picture of their discovery. In the paper [33], Zamolodchikov considered

the problem of introducing an additional primary field φ(z) of conformal dimension h as a generating

field to the Virasoro algebra. The question then was, for what values of h is the resulting algebra well

defined? Well defined in the sense that the resulting field algebra closes on the space of all fields,

and satisfies the OPE associativity condition. The initial investigation considered allowing fields with

h = {1
2 ,1,

3
2 ,2,

5
2 ,3}.

Recalling that the OPE of a primary field with the Virasoro field is given by

T (z)φ(w)∼ hφ(w)
(z−w)2 +

∂φ(w)
z−w

, (1.92)

and the Virasoro OPE itself is fixed to be

T (z)T (w)∼ c
2

I(w)
(z−w)4 +

2T (w)
(z−w)2 +

∂T (w)
z−w

, (1.93)
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the freedom which is restricted by implementing associativity is in the OPE φ(z)φ(w).

As an example, the affine Lie algebras in addition to their Sugawara Virasoro field form an extended

symmetry algebra, where the primary fields, the affine currents Ja(z), are additional generating fields

of conformal weight 1.

The case of most interest in the analysis introduces an additional primary field of conformal weight 3.

In the paper [33], this field was referred to as W (z). The resulting operator product expansion for the

field W (z) with itself, such that the algebra generated by W (z) and T (z) is associative, is given by

W (z)W (w)∼c
3

I(w)
(z−w)6 +

2T (w)
(z−w)4 +

∂T (w)
(z−w)3

+
1

(z−w)2

[
32

22+5c
Λ(w)+

3
10

∂
2T (w)

]
+

1
z−w

[
16

22+5c
∂Λ+

1
15

∂
3T (w)

]
, (1.94)

where

Λ(z) = (T T )(z)− 3
10

∂
2T (z). (1.95)

The field Λ(z) is a quasi-primary field of conformal weight 4. The OPE W (z)W (w) has two important

features. First, the singular part of the OPE involves the field Λ(z), which contains a normally-ordered

product of fields. This implies that the corresponding Lie algebra of modes is technically not a

Lie algebra as the Lie bracket does not close on the algebra itself. One can show that it closes

on a completion of the universal enveloping algebra. Secondly, the structure constants, other than

that appearing with the identity field, depend on the central charge of the algebra. Moreover, this

dependence is singular as c→−22
5 .

This algebra would become the first (non-trivial) example of a W -algebra, named after the notation

used by Zamolodchikov to describe the additional generator of conformal weight 3. We say non-trivial

as the Virasoro algebra itself, with no additional generators is often taken to be the trivial example of a

W -algebra.

There have been many definitions of W -algebras, as the research space has exploded with interest

since their inception. A great deal of that interest has come from outside what can be considered

“traditional” conformal field theory. Early working definitions took the approach of Zamolodchikov,

simply supplementing the Virasoro algebra with additional primary generating fields of conformal

weight ≥ 2. Using the notation W (2, i, j, . . . ,k) to denote the W -algebra with additional primary fields

of weights i, j, . . . ,k, many new examples were found this way, including a series WN =W (2, . . . ,N)

where we include one of each generator with weight ≤ N, and its infinite limit W∞ [34–37]. Another

particularly interesting example is that of the triplet algebra W (2,3,3,3) where one introduces three

W fields, which amongst themselves have an additional sl(2) type relation [34, 38]. W -algebras were

also being realised as cosets of affine Lie algebras, see [39] for an introduction both W -algebras and

their coset constructions.
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However, the method that has become a standard way of constructing W -algebras is that of the

Drinfeld-Sokolov reduction [40, 41], or alternatively quantum Hamiltonian reduction [39, 42, 43]. The

reduction begins with an affine Lie algebra ĝ, and considers an embedding of ŝl(2) ↪→ ĝ. One then

imposes a constraint on the algebra, related to the nilpotent element f (z) ∈ ŝl(2). This constraint is

imposed as a so-called Becchi-Rouet-Stora-Tyutin (BRST) operator [30, 44–46], denoted Q(z). The

operator Q(z) acts as a derivation on an appropriately chosen vector space to form a cochain complex,

and the corresponding W -algebra is defined as the zeroth cohomology of this chain complex.

Although this construction is more complicated than that of Zamolodchikov’s initial study, the un-

derstanding of a W -algebras as quantum Hamiltonian reductions of affine Lie algebras by a nilpotent

element has lead to many new and interesting examples. A review of the field in the language of vertex

operator algebras is given in [47]. Moreover, it provides a powerful framework for the analysis of

W -algebras, and their representation theory. One particular upside is the geometric understanding of

W -algebras afforded by this picture, which has brought many new perspectives to W -algebras and

conformal field theory more generally.

As an example, if we take ĝ= ŝl(n) and consider the principal embedding of ŝl(2), we obtain exactly

the W -algebra WN for n = N. This motivates the choice of the Virasoro algebra as the trivial W -algebra,

as it arises when one takes ĝ = ŝl(2), and one constrains ŝl(2) by its nilpotent element f (z), and

then performing the Hamiltonian reduction. As such, the Virasoro algebra is in essence the simplest

W -algebra arising through quantum Hamiltonian reduction.



1.8. EXTENDED SYMMETRY CONFORMAL FIELD THEORIES AND W-ALGEBRAS 23



The following publications have been incorporated as Chapter 2.

[2] J. Rasmussen, C. Raymond, Higher-order Galilean contractions,

Nuclear Physics B 945, 114680, (2019).

arXiv:1901.06069 [hep-th].

[1] J. Rasmussen, C. Raymond, Galilean contractions of W-algebras,

Nuclear Physics B 922, 435–479, (2017).

arXiv:1701.04437 [hep-th].

The material is presented with references. We note that some of the contents of [1] been used before for

an RHD submission to The University of Queensland. We present that material here for completeness

of this presentation, as it provides a framework that many of the following new results rely upon. We

do not present any of the overlapping material as new or novel findings in this thesis.



Chapter 2

Higher-order Galilean algebras

2.1 Introduction to the Galilean contraction procedure

The first chapters of this thesis detail generalisations made to the process of Galilean contractions of

symmetry algebras. The study we present is essentially an algebraic study of the possible structures

that arise from generalised Galilean contraction procedures. However, the concrete examples of such

algebras we choose to look at are motivated by finding new symmetry algebras for particular physical

systems.

The relevant physical models are toy gravity models on a three-dimensional anti-de Sitter space

time [48–50]. It was shown that the infinitesimal symmetries at null-infinity in the asymptotic limit as

the spacetime becomes flat are described by an algebra known as the Bondi-Metzner-Sachs algebra

bms3 [51–53]. It was realised that this algebra generates conformal symmetry in these systems, and

is in fact isomorphic to a non-trivial extension of the Virasoro algebra. This extended algebra is

the symmetry algebra for a corresponding boundary conformal field theory, through a holographic

correspondence [54, 55].

Concurrently with the above results, it was realised that the boundary symmetry algebra could be

alternatively constructed through a contraction procedure, similar to an Inönü-Wigner contraction

of a Lie algebras [56, 57]. The procedure, known as the Galilean contraction, involves a parameter

dependent change of basis of two input algebras [49, 50, 54, 55]. As an example, for the case of two

copies of Virasoro, namely Vir and V̄ir, we would introduce new generators

L0
n,ε = Ln + L̄n, L1

n,ε = ε (Ln− L̄n) , ∀n ∈ Z. (2.1)

This change of basis is singular in the limit ε → 0, yet the resulting algebra is well defined, and is

known as the Galilean Virasoro algebra (of Galilean conformal algebra). In the general case, the

resulting algebra is known as the Galilean algebra corresponding to the input algebras.

A great deal of physical understanding of Galilean algebras had been developed (see [58] for a
25
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comprehensive review of physical systems with bms3 symmetries) in relation to toy quantum gravity

models. However, quantum gravity is not the only area where Galilean structures arise. There

are applications of Galilean conformal algebras in a number of fields, such as traditional quantum

mechanics, and even hydrodynamics [59–64].

The study of Galilean algebras, particularly from the perspective of conformal field theory, had been

taken case-by-case. That is, the Galilean contraction has been applied only to particular algebras

with relevant physical properties of interest. There is a significant amount of research on the Galilean

Virasoro algebra, as well as its extension by a affine current [65], some work on the superconformal

algebras and their relevance to Galilean string theory [50, 66–68], and some analysis of the Galilean

W -algebras, in particular W3 and the so-called Bershadsky-Polyakov algebra [29, 69].

The Galilean W3 algebra, and Galilean W -algebras more generally, are of particular interest, as they are

linked via quantum gravity correspondences to Vasiliev higher-spin theories [71–75] (a comprehensive

review of higher-spin theories is given in [76]). In such theories, one introduces a (possibly infinite)

hierarchy of particles with increasing spins to the quantum gravity model, as a way of stabilising the

theory. As such, the W3 algebra is essentially the simplest non-trivial example that one can work with,

and in [69, 77] the authors showed that the Galilean contraction of the algebra W3 contains several

interesting features that had not been seen in the other examples.

In [1, 4], we began a program of understanding the Galilean contraction from a more abstract point of

view, attempting to understand what conformal symmetry algebras admitted a well-defined Galilean

contraction, as well as attempting to understand their resulting structure. It was found that a key

differentiator in the process of contraction was whether or not the algebra was linear in the following

sense: did the operator product expansion of the generating fields contain only other generating fields

and their derivatives, or did associativity require the introduction of normally-ordered products of

fields (in the singular terms of the expansion).

The Galilean contraction was always well defined in the linear case, which corresponds to conformal

symmetry algebras based on infinite dimensional Lie algebras. In the non-linear case however, of which

the prime example are the many infinite families of W -algebras, a general proof of well definedness

of the contraction procedure was not possible precisely because of the subtleties introduced by the

non-linearity. We remark that for the corresponding infinite-dimensional Lie algebra, the Lie bracket

on W -algebras generically closes in a completion of the universal enveloping algebra.

This chapter begins our program of investigating generalisations of the Galilean contraction procedure.

Originally, the Galilean contraction procedure provided a framework for generating new (conformal)

symmetry algebras from two copies of a known symmetry algebra. This construction had been of

particular use in the physics literature, as it is relevant to the study of particular Chern-Simons theories

on AdS-spacetime, and the corresponding boundary conformal field theories. As such, in [1, 4] we

attempted to provide a rigorous mathematical understanding of the contraction procedure and its
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limitations.

Following that work, we considered natural generalisations of the contraction procedure, whereby one

loosens the constraints on the input algebras. In this chapter we present an extension of the framework

to allow for any number of input symmetry algebras. We denote the resulting algebras higher-order

Galilean algebras.

We examine the applications of these new techniques to a number of examples including the Sugawara

construction, and the W -algebra W3. We again consider the link between these Galilean algebras and

the related structures of Takiff algebras. Finally, we introduce a discussion of the graded structure on

these algebras. The resulting higher-order Galilean algebras exhibit a truncated ZN graded structure,

from which we can make some simplifying remarks about their general structure.

2.2 Operator product algebras and the Galilean contraction

In our analysis of Galilean algebras, we choose to work with the field algebras of symmetries of a

system, in the operator product algebra A (OPA) formalism. In the following, we restate some key

ideas from the basics introduced in Chapter 1, in the language of OPAs. A complete discussion of the

OPA formalism is given in [70].

An OPA is a Z2-graded vector space of fields A(z) ∈A, with mode expansions

A(z) = ∑
n∈−∆A+Z

An z−n−∆A . (2.2)

The vector space A=V0⊕V1, where elements of V0 (respectively V1) are referred to as even (respec-

tively odd).

We define a bilinear product on the fields of A by

[··]n : A×A→A, (A,B) 7→ [AB]n , A,B ∈A, n ∈ Z. (2.3)

The algebra A has a distinguished element I, the identity field, and an even linear map ∂ : A→A. The

fields A,B,C,I ∈A and operator ∂ are required to satisfy

• [IA]n = δn,0A.

• [AB]n = 0 for n sufficiently large, A(z),B(w) ∈A.

• ∂ [AB]n = [∂AB]n +[A∂B]n, that is, ∂ is a derivation. When considered in the expression ∂AB,

the operator ∂ is taken to be acting on its nearest partner only, i.e. ∂AB = (∂A)B.

• Commutation of fields is determined by

[BA]n = (−1)|A||B|∑
`≥n

(−1)`

(`−n)!
∂
`−n[AB]`, ∀n ∈ Z, (2.4)



28 CHAPTER 2. HIGHER-ORDER GALILEAN ALGEBRAS

where |A| is a parity operation, which gives 0 if A is even, and 1 if odd.

• Triple products of fields must satisfy the relations

[A[BC]m]n = (−1)|A||B|[B[AC]n]m + ∑
`≥0

(
n−1
`−1

)
[[AB]`C]m+n−`, ∀m,n ∈ Z. (2.5)

The algebra A may depend on a set of complex indeterminates known as central parameters. This

concludes the definition of an OPA. In the following, we will continue by introducing some of the

terminology of an OPA. It is also useful to re-frame the definition of an OPA in the light of its

application in conformal field theory.

In this formalism, the OPE complete between two fields (including regular terms) is written

A(z)B(w) =
∆A,B

∑
n=−∞

f AB
[AB]n

[AB]n(w)
(z−w)n , (2.6)

where, [AB]n is a placeholder for a field of conformal weight ∆A +∆B−n given by the product on A,

and ∆A,B = ∆A +∆B. The f AB
[AB]n are the corresponding structure constants which are in C.

As discussed in the introduction, the non-trivial information in the OPE is contained in the singular

terms. As such, it is conventional to ignore the non-singular terms. Hence we can rewrite the above as

A(z)B(w)∼
∆A,B

∑
n=1

f AB
[AB]n

[AB]n(w)
(z−w)n , (2.7)

where the use of ∼ rather than equality explicitly denotes the suppression of all non-singular terms.

We make the assumption that the identity field I is the only field of conformal weight ∆ = 0. As such,

the placeholder field [AB]
∆A+∆B

can be uniquely identified with I, and we can write

A(z)B(w)∼ f AB
II(w)

(z−w)∆A+∆B
+

∆A,B−1

∑
n=1

f AB
[AB]n

[AB]n(w)
(z−w)n , (2.8)

The normally ordered product of two fields, denoted (AB) for A, B∈A is identified with (AB) = [AB]0.

A normally ordered product of fields is itself a field, and such a field is referred to as composite.

We say that a set of fields generates a given OPA if all fields in the OPA appear by taking OPEs,

normally-ordered products, and derivatives of generating fields.

We say that an OPA A is conformal if it contains a distinct field T (z) which generates a Virasoro

operator product subalgebra of central charge c. The OPE of the subalgebra is

T (z)T (w)∼ c
2

I(w)
(z−w)4 +

2T (w)
(z−w)2 +

∂wT (w)
z−w

. (2.9)

In the introduction, we introduced scaling, and (quasi-)primary fields A ∈A. In this notation, a scaling

field if its OPE with the Virasoro field satisfies

[TA]2 = ∆AA, [TA]1 = ∂A. (2.10)
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Moreover, a quasi-primary field is a scaling field for which the term [TA]3 = 0, and a primary field has

[TA]n = 0 for all n≥ 3.

The space of fields for a conformal OPA has a basis given by the quasi-primary fields and their

derivatives. This is a well-known fact in conformal field theory arising from sl(2) representation

theory, and a proof is given in [1]. We denote the quasi-primary basis for the space of fields BA. In

this basis, the OPE between any two fields (2.7) takes the explicit form

A(z)B(w)∼ ∑
Q∈BA

f AB
Q

∆A+∆B−∆Q

∑
n=0

β
∆Q;n
∆A,∆B

∂ nQ(w)

(z−w)∆A+∆B−∆Q−n

 , (2.11)

where f AB
Q are the structure constants, and

β
∆Q;n
∆A,∆B

=
(∆A−∆B +∆Q)n

n!(2∆Q)n
, (x)n =

n−1

∏
j=0

(x+ j). (2.12)

We make the observation that global conformal symmetry constrains every term in the OPE which is

not the leading order quasi-primary field. As such, we are able to rewrite the OPE more compactly.

Indeed, the OPE A(z)B(w) may be written as follows,

A×B' ∑
Q∈BA

f AB
Q{Q}, (2.13)

where the notation {Q} suppresses the corresponding conformal chain of derivatives appearing in the

OPE poles, which is determined by the equations above. In the above relation, the summation is taken

over all quasi-primary fields of conformal weight less than ∆A +∆B. We also suppress the explicit

dependence on the co-ordinates of the fields. We use the notation ' to avoid any confusion with the

use of ∼ in the usual OPE convention.

As an example, in this notation, we are able to rewrite the OPE for the Virasoro algebra as

T ×T ' c
2
{I}+2{T}. (2.14)

We would like to expand upon the fact that the quasi-primary basis of fields realises representation

theory of sl(2). A quasi-primary field is one for which the corresponding state vanishes under the

action of L1. Moreover, the derivatives of a quasi-primary field correspond to the action of L−1 on the

corresponding state. All such states are eigenvalues of L0. The corresponding family of fields forms

a representation of the sl(2) subalgebra within the Virasoro algebra, spanned by {L−1,L0,L1}. This

subalgebra generates the global conformal symmetry in the corresponding physical theory.

2.2.1 Galilean algebras and the contraction procedure

In this section, we introduce the Galilean contraction procedure. We begin by considering the algebra

formed by two copies of an OPA A, labelled A=A(0)⊗A(1), assumed to be equivalent up to the value

of their central parameter. The fields are labelled to indicate which copy of the underlying algebra
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they belong to, that is, A(i) ∈A(i). Their OPEs are of the form (2.7), and their corresponding structure

constants are the f AB
C(i)’s.

We perform a parameter dependent change of basis, whereby we create the new fields

A0,ε = A(0)+A(1), A1,ε = ε
(
A(0)−A(1)

)
, ∀A ∈A/{I}. (2.15)

In this basis, fields Ai,ε become generating fields for the algebra denoted Aε . We use subscript ε to

signify that the new basis is dependent on the parameter ε . First we determine the OPE structure on

the algebra Aε , which is given by

Ai,ε ×B j,ε = ε
i (A(0)+(−1)iA(1)

)
× ε

j (B(0)+(−1) jB(1)
)

= ε
i+ j (A(0)×B(0)+(−1)i+ jA(1)×B(1)

)
= ε

i+ j
(

f AB
II+ f AB

C{C(0)}+(−1)i+ j
(

f AB
II+ f AB

C{C(i)}
))

. (2.16)

At this point, we reform into fields Ci,ε , depending on powers of ε . Moreover, as the identity field

remains unique in this process, we form new structure constants to accompany the identity field

fi,ε = ε i( f(0)+(−1)i f(1)).

Following this, we take the limit ε → 0. In this limit, any OPEs with unabsorbed factors of ε are sent

to 0, and for the surviving fields and structure constants, we have that Ai,ε 7→ Ai, and fi,ε 7→ fi. This

new set of fields generates the corresponding Galilean algebra AG.

We will use terminology that if the underlying algebra of symmetries is a Lie (super)algebra, the

corresponding OPA is of Lie-type. The Galilean contraction is well defined on all OPAs of Lie type.

For OPAs of Lie type, the structure constants accompanying the identity field FAB
I are fixed to be

either constants in C or degree 1 polynomials in the central indeterminate c, with coefficients in C. In

the case when we have linear functions of c, the corresponding Galilean algebra has a set of central

indeterminates which are determined by applying the change of basis to the central indeterminates of

A.

As an example, we present the case when we take A=Vir(0)⊗Vir(1), that is, we Galilean contract

two copies of the Virasoro algebra, with central charges c(0) and c(1) respectively. Performing the

change of basis on the generating fields, we have

T0,ε = T(0)+T(1), T1,ε = ε
(
T(0)−T(1)

)
. (2.17)

The product is then given by

Ti,ε ×Tj,ε ' ε
i+ j
(c(0)

2
{I}+2{T(0)}+(−1)i+ j

[c(i)
2
{I}+2{T(i)}

])
' ε

i+ j

(
c(0)+(−1)i+ jc(1)

2
{I}+2

(
{T(0)}+(−1)i+ j{T(1)}

))
. (2.18)
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Recombining generators into the Aε , and taking the contraction limit we have

Ti×Tj '


ci+ j

2 {I}+2{Ti+ j}, if i+ j ≤ 1,

0, otherwise,
(2.19)

where ci = ε i (c(0)+(−1)ic(1)
)
.

The resulting algebra is known as the Galilean Conformal algebra [54]. This algebra is a subalgebra

of all Galilean algebras coming from a conformal operator product algebra. In fact, any the Galilean

contraction of any conformal OPA will itself be conformal, with T0 generating a Virasoro subalgebra

of conformal charge c0.

As a second example, we consider the Galilean contraction of the W -algebra W3 [33]. As introduced

in Section 1.8, the W3 algebra introduces an additional primary field of conformal weight 3 to the

Virasoro algebra, and constrains the OPE by imposing associativity.

The algebra W3 is not of Lie type, as the structure constants accompanying fields other than the identity

in the OPE are dependant on the central charge, and the OPE contains normally-ordered fields in the

singular terms. We will refer to algebras with these properties as W -algebras, however, we remark

that using the definition of W -algebra coming from [47] outlined in the introduction, some W -algebras

arising from Hamiltonian reduction are of Lie type.

Explicitly, the OPE relations for the algebra W3 in the notation introduced in this section are given by

T ×T ' c
2
{I}+2{T}, T ×W ' 3{W},

W ×W ' c
3
{I}+2{T}+ 32

22+5c
{Λ}, (2.20)

where

Λ(z) = (T T )− 3
10

∂
2T (2.21)

is a quasi-primary field of conformal weight 4. Not only do we see that the OPE contains a normally

ordered product of fields in a singular term, we also have structure constants which are rational

functions of the central charge. These properties are generic for W -algebras.

Using the framework developed above, it is not guaranteed that a corresponding Galilean algebra is

well defined. However, it is possible to perform the contraction. A full description of the techniques

required is given in [1]. One takes a series expansion of the structure constants in ε small, and uses in

the inverse basis maps to the contraction basis on the normally-ordered fields. The resulting expressions

are then combined, and the limit ε → 0 is taken. The corresponding algebra is well defined, and is

called the Galilean W3 algebra of order-two, (W3)
2
G.

The Galilean (W3)
2
G algebra is generated by fields T0,T1,W0,W1, has central charges c0,c1, and is
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defined by the OPEs

Ti×Tj '


ci+ j

2 {I}+2{Ti+ j}, if i+ j ≤ 1,

0, otherwise,

Ti×Wj '

3{Wi+ j}, if i+ j ≤ 1,

0, otherwise,

W0×W0 '
c0

3
{I}+2{T0}+

64
5c1
{Λ0,1}−

32(44+5c0)

25c2
1

{Λ1,1},

W0×W1 '
c1

3
{I}+2{T1}+

32
5c1
{Λ1,1}, (2.22)

where

Λ0,1 = (T0T1)−
3

10
∂

2T1, Λ1,1 = (T1T1) . (2.23)

The fields Λ0,1 and Λ1,1 are both quasi-primary with respect to the action of the Virasoro subalgebra

generated by T0. This algebra has been well studied in the literature, as it is the most accessible algebra

not of Lie-type [1, 77–79].

2.3 Higher-order Galilean contractions

In this section, we introduce the first generalisation of the Galilean algebra, which will result in

so-called higher-order Galilean algebras. Here we will show that the procedure can be generalised to

allow input of any number of OPAs, equivalent up to the value of their central parameters.

2.3.1 Contraction prescription

For N ∈ Z>0, we begin by considering the N-fold tensor product

A⊗N =
N−1⊗
i=0

A(i). (2.24)

Taking ε to be a parameter taking values in C×, we make the following change of basis for the fields,

and corresponding re-parameterisation of the central indeterminates

Ai,ε = ε
i
N−1

∑
j=0

ω
i jA( j), ci,ε = ε

i
N−1

∑
j=0

ω
i jc( j), i = 0, . . . ,N−1, (2.25)

where, as in the previous case, A( j) (respectively c( j)) denotes the field A ∈ A( j) (respectively the

central parameter c( j)) in the ( j+1)th copy of the algebra A, in the product A⊗N . We also introduce

ω , the principal Nth root of unity,

ω = e2πi/N . (2.26)

Although not introduced in the previous section, for ε 6= 0, the map

A⊗N →A⊗N , (A(0), . . . ,A(N−1)) 7→ (A0,ε , . . . ,AN−1,ε), (2.27)
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(and similarly for the central parameters) is invertible, with

A(i) =
1
N

N−1

∑
j=0

ω
−i j

ε
− jA j,ε , i = 0, . . . ,N−1. (2.28)

It is useful here to point out that when N = 2, we have ω =−1 and

A0,ε = A(0)+A(1), A1,ε = ε
(
A(0)−A(1)

)
, (2.29)

with inverse maps

A(0) =
1
2

(
A0,ε +

1
ε
A1,ε

)
, A(1) =

1
2

(
A0,ε − 1

ε
A1,ε

)
. (2.30)

These expressions are exactly those for the traditional Galilean contraction.

As in the traditional case, in the limit ε → 0, the map (2.27) is singular for all N > 1. This behaviour

results in a new algebraic structure, where we map fields and parameters as

Ai,ε 7→ Ai, ci,ε 7→ ci, (2.31)

to distinguish between algebras.

If the resulting algebra is a well-defined OPA, we refer to it as the Nth-order Galilean OPA and denote

it AN
G. In particular, if A is an OPA of Lie-type (that is, the underlying algebra of modes is a Lie

algebra), then all the corresponding higher-order Galilean contractions are indeed well defined.

For Lie-type algebras, it is straightforward to see that the corresponding OPE structure for a general

Nth-order Galilean OPA will be given by

Ai×B j '

 f AB
I(ci+ j){I}+ f AB

C{Ci+ j}, if i+ j < N,

0, otherwise.
(2.32)

Here we make use of the summation convention in the structure constants. We have explicitly separated

the structure constant for the identity, and make the possible dependence on a central parameter c

explicit (we choose c purely for the sake of similarity, it is not necessarily the Virasoro central charge).

2.3.2 Examples: Galilean Virasoro and affine algebras

Here we present the two most common examples of Lie-type algebras in conformal field theory, and

their Nth-order Galilean contracted counterparts, as concrete examples. As they are both of Lie-type,

the resulting OPEs for the contracted algebras are determined by equation (2.32).

Recall the Virasoro OPA Vir of central charge c is generated by T , with OPE relation

T ×T ' c
2{I}+2{T}. (2.33)
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The Galilean Virasoro algebra of order N, VirN
G, is generated by the fields T0, . . . ,TN−1, with central

parameters c0, . . . ,cN−1 and OPE relations

Ti×Tj '


ci+ j

2 {I}+2{Ti+ j}, i+ j < N,

0, i+ j ≥ N.
(2.34)

This yields an infinite family of extended Virasoro algebras, {VirN
G |N ∈ N}. We identify Vir1

G 'Vir,

and Vir2
G is the familiar Galilean Virasoro algebra from Section 2.1.

Our second example is that of an affine Lie algebra at level k. Affine Lie algebras as OPAs have a set of

generating fields given by the currents Ja, a ∈ Is, where Is is an index set of size dim(g), the dimension

of the underlying semisimple Lie algebra. The OPE between currents can then be written in the form,

Ja× Jb ' κ
abk{I}+ f ab

c{Jc}, (2.35)

where f ab
c are structure constants coming from g, and κ the Killing form on g. Again, in this

expression, we make use of the summation convention over the label c. Furthermore, the currents are

fields of conformal dimension 1. This implies that at most, the terms on the right-hand side of the

OPE have conformal dimension 1. We make note of this as the above expression need not feature

braces appearing around the fields on the right hand side, as these are the only terms with appropriate

conformal weight to appear in the singular part of the OPE.

As the corresponding OPA is of Lie type, its (higher-order) Galilean contractions are readily constructed.

Applying the contraction procedure, we find that the corresponding Galilean affine Lie algebra of order

N, ĝN
G , is generated by currents {Ja

i |a = 1, . . . ,dimg; i = 0, . . . ,N−1}, with nontrivial OPEs given by

Ja
i × Jb

j '

κabki+ j{I}+ f ab
c{Jc

i+ j}, i+ j < N,

0 i+ j ≥ N.
(2.36)

2.4 General properties of higher-order Galilean contractions

2.4.1 Truncated graded structure of AN
G

We can introduce a linear operator gr : AN
G→ ZN such that

Ai 7→ i, ci 7→ i, (AiB j) 7→ i+ j. (2.37)

The action of gr is extended by linearity to Laurent polynomials of the central parameters. In particular,

we have that gr(∂ ) = 0 and gr(I) = 0, so that

gr
(

c0∂A3 +(A2B1)+
c3 + c1c2

c2
0

I
)
= 3. (2.38)

The algebra is then graded if the grading, as defined above, is compatible with the OPE structure of the

algebra, in the sense that

gr
(
Ai×B j

)
= i+ j, ∀Ai,B j ∈AG. (2.39)
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It is clear from the following calculation that algebras of Lie-type are graded. Consider the general

OPE in A a Lie-type algebra,

A×B = f AB
I(c){I}+∑

C
f AB

C{C}, (2.40)

where again we have made explicit the possible linear dependence on c (any central parameter) in

the structure constant accompanying the identity. Moreover, the grading on a Galilean algebra (not

necessarily of Lie type) is truncated at N, the number of input algebras.

We have already demonstrated that in the corresponding Galilean algebra, the OPE is generally of the

form

Ai×B j = f AB
I(ci+ j){I}+∑

C
f AB

C{Ci+ j}, (2.41)

and as such, obeys the grading requirement.

However, a priori it is not clear that Galilean W -algebras should be graded. The structure constants of

W -algebras are generically algebraic functions of c, the central charge, and they do not accompany

only the identity field. What can be said is that in all examples we have thus far calculated, the

resulting algebra is indeed graded using the above definition. The graded structure of the contracted

algebra implies constraints on the possible functions of c that can appear as structure constants of the

uncontracted algebra. We are unable to make this more rigorous at this time, however, we will return

to this idea in the discussion.

A useful implication of the graded structure for Lie-type OPAs is that OPE relations need only be

calculated between the underlying A0 ⊂ AN
G subalgebra (the zero-grade algebra), and the Galilean

generating fields. Explicitly, the graded structure for a Lie-type OPA implies that

gr(A0×Bm) = gr
(
Ai×B j

)
⇐⇒ m = i+ j, ∀0≤ m < N. (2.42)

As such, by determining the action of the underlying A0 subalgebra on the generating fields of AN
G, we

can deduce the full OPE structure of the algebra.

2.4.2 Relation to Takiff algebras

In this subsection, we present an alternative description of Galilean algebras, not from the perspective

of arising from a contraction. The truncated graded structure on the Galilean algebra, along with the

underlying subalgebra of grade 0 implies that we can develop an alternative realisation of the algebra

in the following way. Consider the Virasoro OPA Vir, and take the tensor product with a polynomial

ring in one variable,

Vir∞ =Vir⊗C[x]. (2.43)

where the generating field T ∈Vir is mapped to Tn := T ⊗ xn ∈Vir∞, and similarly for the central

parameters cn. These polynomial extensions of Lie algebras were first introduced by Takiff in [80], and
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their applications to conformal symmetry algebras have been of interest in the mathematical physics

literature [81–85].

The OPE on the algebra Vir∞ is the same as that for the higher order Galilean Virasoro algebra, but

without the truncation condition. That is, we can understand this as the higher order contraction when

we take the limit N → ∞, which is also made clear by the choice of notation. That is, we have the

identification Vir∞
G
∼=Vir∞.

The corresponding Takiff algebra of order N is then given by considering the following quotient

VirN
G
∼=VirN =Vir⊗C[x]/〈xN〉. (2.44)

This quotient establishes the truncation condition on the product. As such, there is a clear isomorphism

for Lie-type OPAs between their Takiff algebra of order N, and their corresponding Nth-order Galilean

contracted algebra.

As a further example, these results carry clearly to the affine Lie algebras, ĝ, where

ĝ∞ ∼= ĝ⊗C[x], (2.45)

and

ĝN ∼= ĝ⊗C[x]/〈xN〉. (2.46)

2.5 Higher-order Galilean Sugawara constructions

As mentioned in Section 1.6, the Sugawara construction describes a process for forming a Virasoro

operator out of elements in the universal enveloping algebra for an affine Lie algebra, showing that

field theories built on affine Lie symmetries exhibit conformal symmetry. We would like to show

that this construction is also possible if the starting point is a Galilean affine Lie algebra, and that

if the construction is well defined, it is compatible with the Galilean contraction procedure in the

following sense. We would like that the diagram below be commutative, thus implying that performing

a Sugawara construction on each of the N component algebras before taking the contraction, leads to

the same algebra as if one had performed a Sugawara construction on the Galilean affine algebra.

ĝ⊗N Vir⊗N

ĝN
G VirN

G

Sug⊗N

Gal Gal

Gal Sug

Figure 2.1: A diagram showing the two possible operations giving rise to a Galilean ĝN
G with a

Sugawara constructed Galilean Virasoro subalgebra.

In [1], we constructed a Sugawara operator for Galilean affine Lie algebras (of order two), and showed

that the process commuted with the contraction procedure. Performing the Sugawara constructions
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before performing the contraction gave equivalent operators to performing the reverse operation.

Indeed, we find that a similar result holds for the higher-order Galilean affine Lie algebras. To verify,

we analyse each branch of the above diagram separately in the subsections that follow. The lower

branch is considered in Section 2.5.1; the upper one in Section 2.5.2.

2.5.1 Galilean Sugawara construction

We begin by considering the branch where we have already performed the contraction. That is, we

start with the algebra ĝN
G, generated by the fields {Ja

i | i = 0, . . . ,N−1; a ∈ Is}, and with OPE given by

(2.36). Using the knowledge that for affine Lie algebras, the Sugawara operator is a sum over normally

ordered products of the fields (with appropriately constrained constants), we make the following ansatz

for the generators Ti of the resulting VirN
G algebra,

Ti =
N−1

∑
r,s=0

λ
r,s
i κab(Ja

r Jb
s ), i = 0, . . . ,N−1, (2.47)

where κab are elements of the inverse Killing form on g. The coefficients λ
r,s
i are then constrained by

requiring that the currents be conformal weight 1 primary fields under the action of T0, and that the

grading on the algebra be respected. Explicitly, we require

Ti× Ja
j '

{J
a
i+ j}, i+ j ∈ {0, . . . ,N−1},

0, i+ j ≥ N,
(2.48)

for all Ja
j ∈ ĝN

G.

We begin by computing the OPE

Ja
j (z)Ti(w)∼

N−1

∑
r,s=0

λ
r,s
i

(z−w)2

[
k j+rJa

s (w)+ k j+sJa
r (w)+2h∨Ja

j+r+s(w)
]

+
N−1

∑
r,s=0

λ
r,s
i κbc

z−w

[
f ab

d(J
d
j+rJ

c
s )(w)+ f ac

d(J
b
r Jd

j+s)(w)
]
, (2.49)

where h∨ is the dual Coxeter number of g. The constant h∨ arises from the relation κbc f ab
d f dc

e =

2h∨δ a
e . We present the calculation here in the form of traditional OPEs as it is important to keep track of

all terms in the OPE. To satisfy the constraints from (2.48), the first sum must equal Ja
i+ j(w)/(z−w)2.

Furthermore, the second sum over normally-ordered products must vanish. The vanishing constraint

implies that

λ
r,s
i =

λ
`,N−1
i , r+ s = N−1+ ` (`= 0, . . . ,N−1),

0, r+ s < N−1.
(2.50)

This leaves N independent coefficients undetermined, namely λ
0,N−1
i , . . . ,λ N−1,N−1

i , for each i ∈
{0, . . . ,N−1}.
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The first-sum constraint requires then that

2
N−1

∑
n= j

n− j

∑
`=0

λ
`,N−1
i kN−1−n+ j+`Ja

n +2Nh∨λ
0,N−1
i δ j,0Ja

N−1 =

Ja
i+ j, i+ j ≤ N−1,

0, i+ j ≥ N.
(2.51)

This can be rewritten as a lower-triangular system of linear equations for each i,

2



kN−1

kN−2 kN−1

...
. . .

. . .

k1
. . . kN−1

k′0 k1 · · · kN−2 kN−1





λ
0,N−1
i
...

...

λ
N−1,N−1
i


=



0
...

1
...

0


, (2.52)

where we use the shorthand k′0 = k0 +Nh∨, and where the only non-zero component on the right-hand

side is a 1 in position i+1.

Assuming that kN−1 6= 0, we can reduce the problem to finding the inverse of a lower-triangular

Toeplitz matrix of general form

A =



1

a1 1

a2
. . .

. . .

...
. . .

. . . 1

aN−1 · · · a2 a1 1


, (2.53)

where

am =
kN−1−m +Nh∨δm,N−1

kN−1
, m = 1, . . . ,N−1. (2.54)

The inverse matrix is itself a lower-triangular Toeplitz matrix with 1’s on the diagonal,

A−1 =



b0

b1 b0

b2
. . .

. . .

...
. . .

. . . b0

bN−1 · · · b2 b1 b0


, b0 = 1, (2.55)

We find that the nontrivial matrix elements are given by the following formula

bn = ∑
p∈(N0)n

(−1)|p|
δ||p||,n|p|!
p1! · · · pn!

ap1
1 · · ·a

pn
n , (2.56)

where

|p|=
n

∑
i=1

pi, ||p||=
n

∑
i=1

ipi, p = (p1, . . . , pn). (2.57)
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We use N0 to denote the non-negative integers. The sum over tuples is the same as one would expect

coming from a multinomial expansion.

This then determines the remaining coefficients, for which we have

λ
`,N−1
i =


0, `= 0, . . . , i−1,

b`−i

2kN−1
, `= i, . . . ,N−1.

(2.58)

The resulting unique expression for Ti (2.47) is given by

Ti =
N−1−i

∑
n=0

bn

2kN−1

N−1−i−n

∑
t=0

κab(Ja
i+n+tJ

b
N−1−t). (2.59)

When N = 2, we recover the Galilean Sugawara construction obtained in [1],

T0 =
κab

2k1

[
(Ja

0 Jb
1)+(Ja

1 Jb
0)
]
− k0 +2h∨

2(k1)2 κab(Ja
1 Jb

1), T1 =
κab

2k1
(Ja

1 Jb
1). (2.60)

For N = 3, we find the new expressions

T0 =
κab

2k2

[
(Ja

0 Jb
2)+(Ja

1 Jb
1)+(Ja

2 Jb
0)
]
− k1κab

2(k2)2

[
(Ja

1 Jb
2)+(Ja

2 Jb
1)
]
+

(k1)
2− (k0 +3h∨)k2

2(k2)3 κab(Ja
2 Jb

2),

T1 =
κab

2k2

[
(Ja

1 Jb
2)+(Ja

2 Jb
1)
]
− k1κab

2(k2)2 (J
a
2 Jb

2), T2 =
κab

2k2
(Ja

2 Jb
2). (2.61)

The fields Ti are quasi-primary under the action of T0. Furthermore, for each i = 0, . . . ,N− 1, the

coefficient of the identity field OPE T0×Ti determines the value of the central parameter ci, since for

i < N

T0×Ti '
ci

2
{I}+2{Ti}. (2.62)

Using (2.59), we find that the term accompanying the identity is given by

T0×Ti '
N−1−i

∑
n=0

bn

2kN−1

N−1−i−n

∑
t=0

κabκ
abkN−1+i+n{I}+ · · · , (2.63)

where we have suppressed the remaining terms. Since ka = 0 for a≥ N, the expression above is zero

unless n+ i = 0. Since both are non-negative, that is unless n = i = 0. In the case that i = 0, we have

from κabκab = dimg that

c0 = N dim(g), ci = 0, for 0 < i < N. (2.64)

2.5.2 Sugawara before Galilean contraction

In this section we consider the alternate branch of the diagram in Figure 2.5, where we consider the

contraction of an N-fold tensor product of affine Lie algebras, where on each individual factor, there is

a T field coming from the Sugawara construction.
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On each tensor factor of ĝN , the field T given by the Sugawara construction is

T(i) =
κab

2(k(i)+h∨)
(Ja

(i)J
b
(i)), (2.65)

and it generates a Virasoro algebra of central charge

c(i) =
k(i) dimg

k(i)+h∨
, i = 0, . . . ,N−1, (2.66)

where k(i) is the level of the algebra ĝ(i).

Applying the Galilean change of basis as in (2.25), we introduce new fields

Ti,ε = ε
i
N−1

∑
j=0

ω
i jT( j) = ε

i
N−1

∑
j=0

ω
i j ∑

N−1
`,`′=0 ω− j(`+`′)ε−`−`

′
κab(Ja

`,εJb
`′,ε)

2N
(

∑
N−1
m=0 ω− jmε−mkm,ε +Nh∨

)
=

1
2NkN−1,ε

N−1

∑
j,`,`′=0

(ω j
ε)N−1+i−`−`′ κab(Ja

`,εJb
`′,ε)

1+∑
N−1
m=1 am,ε(ω jε)m

, (2.67)

where

am,ε =
kN−1−m,ε +Nh∨δm,N−1

kN−1,ε
, m = 1, . . . ,N−1. (2.68)

Here we will again make use of lower-triangular Toeplitz matrices. Such a matrix, as in (2.53), has a

decomposition given by

A = I +a1η + · · ·+aN−1η
N−1, (2.69)

where I is the N×N identity matrix, and η is the N×N matrix

η =



0

1 0

0
. . .

. . .
...

. . .
. . . 0

0 · · · 0 1 0


. (2.70)

We can expand the currents appearing in the normally-ordered products on the right hand side of (2.67)

using the inverse maps (2.28). Similarly, the coefficient 1
2(k(i)+h∨) has a power series expansion given

by the inverse matrix A−1, which was outlined in (2.55)-(2.56). Combining these two expressions, we

have that the Sugawara field Ti,ε can be expanded into the form

Ti,ε =
1

2NkN−1,ε

N−1

∑
j,`,`′=0

(ω j
ε)N−1+i−`−`′

κab(Ja
`,εJb

`′,ε)
(N−1

∑
n=0

bn,ε(ω
j
ε)b +O(εN)

)

=
1

2NkN−1,ε

N−1

∑
`,`′,n=0

bn,εκab(Ja
`,εJb

`′,ε)
N−1

∑
j=0

(ω j
ε)N−1+i−`−`′+n +O(ε i+1), (2.71)

where

b0,ε = 1, bn,ε = ∑
p∈(N0)n

(−1)|p|
δ||p||,n|p|!
p1! · · · pn!

ap1
1,ε · · ·a

pn
n,ε , n = 1, . . . ,N−1. (2.72)
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We are left to check that the resulting expression is well defined in the contraction limit. Evaluating

the summation over j yields a factor of the form

N−1

∑
j=0

ω
j(N−1+i−`−`′+n) =

N, N−1+ i− `− `′+n≡ 0 (mod N),

0, N−1+ i− `− `′+n 6≡ 0 (mod N),
(2.73)

since the sum is over a complete set of roots of unity. Moreover, we have that

N−1+ i− `− `′+n >−N, (2.74)

so it follows that coefficients in Ti,ε containing εm for m negative are 0. The limit ε → 0 is therefore

well defined, and furthermore truncates the expansion, resulting in

Ti =
1

2kN−1

N−1

∑
`,`′,n=0

bnκab(Ja
` Jb

`′)δN−1+i−`−`′+n,0, (2.75)

which then matches exactly the expressions given in (2.59).

Similarly, for the central parameters, we evaluate

ci,ε = ε
i
N−1

∑
j=0

ω
i jc( j) = ε

i
N−1

∑
j=0

ω
i j ∑

N−1
`=0 ω− j`ε−`k`,ε dimg

∑
N−1
`′=0 ω− j`′ε−`′k`′,ε +Nh∨

=
dimg

kN−1,ε

N−1

∑
`,n=0

bn,εk`,ε
N−1

∑
j=0

(ω j
ε)N−1+i−`+n +O(ε i+1), (2.76)

where we see that

ci =
dimg

kN−1

N−1

∑
`,n=0

bnk`δN−1+i−`+n,0 = N dimgδi,0, (2.77)

which also matches the results for the central charge from the previous section. These calculations

then demonstrate that not only is a Sugawara construction possible for Galilean affine Lie algebras, but

it is compatible with the contraction procedure in the sense of Figure 2.5.

2.6 Higher-order Galilean W3 algebras

Here we present the higher-order Galilean contraction of the W -algebra W3.

2.6.1 The W3 algebra

For reference, we restate the OPE relations of the W3 algebra here. The W3 algebra [33] of central

charge c is generated by two fields, T,W where T generates a Virasoro subalgebra, and W is a primary

field of conformal weight 3 under the action of T . The defining OPE relations are given by

T ×T ' c
2{I}+2{T}, T ×W ' 3{W}, W ×W ' c

3{I}+2{T}+ 32
22+5c{Λ

2,2}, (2.78)

where

Λ = (T T )− 3
10∂

2T (2.79)
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is quasi-primary.

The order-two Galilean W3 algebra was given in (2.22).

2.6.2 Higher-order W3 algebras

Using the higher-order Galilean contraction procedure, we obtain an infinite family of Galilean algebras

with W3 symmetry. For any N ∈ Z>0, the higher-order Galilean algebra (W3)
N
G is generated by the

fields {Ti,Wi | i = 0, . . . ,N−1}, and has central parameters {ci | i = 0, . . . ,N−1}. This algebra is well

defined for all N, which we will show in the following, using techniques similar to those employed in

the Sugawara construction for Galilean algebras.

First, it is straightforward to show that the Lie-type OPE relations of W3 lead to the non-zero relations

Ti×Tj '
ci+ j

2 {I}+2{Ti+ j}, Ti×Wj ' 3{Wi+ j}, i+ j ∈ {0, . . . ,N−1}, (2.80)

while

Ti×Tj ' Ti×Wj 'Wi×Wj ' 0, i+ j ≥ N. (2.81)

It is left to show that the OPE Wi×Wj is well defined for general N ∈ Z>0, such that i+ j < N. To

determine Wi×Wj we begin by considering the corresponding OPE relation Wi,ε×Wj,ε in W⊗N
3 , which

leads to

Wi,ε ×Wj,ε = ε
i+ j

N−1

∑
r,s=0

ω
ir+ jsW(r)×W(s)

' ε
i+ j

N−1

∑
r=0

ω
(i+ j)r

[c(r)
3
{I}+2{T(r)}+

32
22+5c(r)

{Λ(r)}
]

=
ci+ j,ε

3
{I}+2{Ti+ j,ε}+ ε

i+ j
N−1

∑
r=0

32
22+5c(r)

ω
(i+ j)r{Λ(r)}. (2.82)

Here we apply the same technique of power series expansion of the co-efficient, along with applying

the inverse basis maps to the fields T(r) in the normally ordered product Λ(r). These are the same

techniques from the Sugawara construction in Section 2.5. Performing the expansion and combining

the resulting terms gives

N−1

∑
r=0

32
22+5c(r)

(ωr
ε)i+ j

Λ(r) =
32

5NcN−1,ε

N−1

∑
n,`,`′=0

bn,ε

N−1

∑
r=0

(ωr
ε)N−1+i+ j−`−`′+n(T`,εT`′,ε)

− 48
25cN−1,ε

N−1

∑
n,`=0

bn,ε

N−1

∑
r=0

(ωr
ε)N−1+i+ j−`+n

∂
2T`,ε +O(ε i+ j+1), (2.83)

where bn,ε (and bn appearing in (2.85) below) are given as in (2.72), (respectively (2.56)), coming

from the inverse Toeplitz matrix, however the coefficients used in the formula are now

am,ε =
cN−1−m,ε +

22N
5 δm,N−1

cN−1,ε
, am =

cN−1−m + 22N
5 δm,N−1

cN−1
, m = 1, . . . ,N−1. (2.84)
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In the limit ε → 0, this yields

N−1

∑
r=0

32
22+5c(r)

(ωr
ε)i+ j

Λ(r)→
N−1−i− j

∑
n=0

32bn

5cN−1

N−1−i− j−n

∑
t=0

(Ti+ j+n+tTN−1−t)−
48N

25cN−1
∂

2TN−1δi,0δ j,0.

(2.85)

Observing that, for every pair r,s ∈ {0, . . . ,N−1} such that r+ s ∈ {N−1, . . . ,2N−2},

Λr,s = (TrTs)−
3

10
∂

2TN−1δr+s,N−1 (2.86)

is a quasi-primary field with respect to T0, we then conclude that, for i+ j ∈ {0, . . . ,N−1},

Wi×Wj '
ci+ j

3
{I}+2{Ti+ j}+

N−1−i− j

∑
n=0

32bn

5cN−1

N−1−i− j−n

∑
t=0

{Λi+ j+n+t,N−1−t}. (2.87)

Using that Λr,s = Λs,r, which can be easily shown using the basis transformation maps, this can be

written as

Wi×Wj '
ci+ j

3
{I}+2{Ti+ j}

+
N−1−i− j

∑
n=0

32bn

5cN−1

bN−2−i− j−n
2 c

∑
t=0

2{Λi+ j+n+t,N−1−t}+{Λ N−1+i+ j+n
2 ,N−1+i+ j+n

2
}

 , (2.88)

where the last term is present only if N−1+i+ j+n
2 is integer.

Using these relations, we can say that in general, the higher-order Galilean W3 algebra will be a graded

algebra. The reasoning follows from understanding the grading on bn. We have the formula

bn = ∑
p∈(N0)n

(−1)|p|
δ||p||,n|p|!
p1! · · · pn!

ap1
1 · · ·a

pn
n , (2.89)

where

am =
cN−1−m + 22N

5 δm,N−1

cN−1
, m = 0, . . . ,N−1. (2.90)

It is clear to read off that

gr(am) =−m, m = 1, . . . ,N−1. (2.91)

The am are the only terms contributing to the grading of bn. For any given p ∈ (N0)
n, we have that

gr(ap1
1 · · ·a

pn
n ) =−(1p1 +2p2 + . . .+npn) =−||p||, (2.92)

and from the Kronecker delta, we have ||p||= n, so

gr(bn) =−n, n = 0, . . . ,N−1. (2.93)

It is then easy to verify that all terms appearing in the OPE (2.88) indeed have grade i+ j. Hence, the

higher-order Galilean W3 algebra of order-N is a truncated graded algebra for all N.
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As an example, we provide the OPE relations for the third-order Galilean W3 algebra. The algebra

(W3)
3
G is generated by the fields T0,T1,T2,W0,W1,W2, which satisfy (2.80)-(2.81) with N = 3, along

with the OPEs as well as

W0×W0 ' c0
3 {I}+2{T0}+ 64

5c2
{Λ0,2}+ 32

5c2
{Λ1,1}− 64c1

5(c2)2{Λ1,2}− 32[(66+5c0)c2−5(c1)
2]

25(c2)3 {Λ2,2},

(2.94)

W0×W1 ' c1
3 {I}+2{T1}+ 64

5c2
{Λ1,2}− 32c1

5(c2)2{Λ2,2}, (2.95)

W0×W2 'W1×W1 ' c2
3 {I}+2{T2}+ 32

5c2
{Λ2,2}, (2.96)

where

Λ0,2 = (T0T2)− 3
10∂

2T2, Λ1,1 = (T1T1)− 3
10∂

2T2, Λ1,2 = (T1T2), Λ2,2 = (T2T2), (2.97)

are quasi-primary.

2.6.3 Renormalisation

In this section, we would like to make an observation about the structure constants appearing in higher

order Galilean algebras. In particular, we would like to remark that for algebras which are not of

Lie-type, and as such arise from the expansion technique, have “renormalisable” structure constants in

the following sense. Consider the algebra (W3)
N
G, with central parameters c0 left free, and

ci = (c)i, i = 1, . . . ,N−1, (2.98)

for some c ∈C×, leaving only two independent central parameters: the central charge c0 and c. That is,

other than c0 all remaining central charges are powers of some element of c ∈ C×. The am coefficients

in the expansion (2.84) then simplify to

am = c−m(1+ [c0 +
22N

5 −1
]
δm,N−1

)
, m = 1, . . . ,N−1. (2.99)

This then simplifies the inverse of the matrix A in (2.69) to the expression

A−1 = I− c−1
η +

[
1− c0− 22N

5

]
(c−1

η)N−1, (2.100)

so when we have N > 2, the bn coefficients become

b0 = 1, b1 =−c−1, bn = 0 (1 < n < N−1), bN−1 =
[
1− c0− 22N

5

]
c−(N−1). (2.101)

We can introduce renormalised generating fields, defined by

T̂i = c−iTi, Ŵi = c−iWi, i = 0, . . . ,N−1, (2.102)

and correspondingly, the renormalised quasi-primary fields

Λ̂
2,2
r,s = c−r−s

Λ
2,2
r,s . (2.103)
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Renormalising in this way leads to the new OPE relations for (i+ j ∈ {0, . . . ,N−1}) given by

T̂i× T̂j '
c

δi+ j,0
0
2
{I}+2{T̂i+ j}, T̂i×Ŵj ' 3{Ŵi+ j}, (2.104)

and

Ŵi×Ŵj '
c

δi+ j,0
0
3
{I}+2{T̂i+ j}

+ 32
5 ∑

n=0,1

N−1−i− j−n

∑
t=0

(−1)n{Λ̂2,2
i+ j+n+t,N−1−t}+

32
5

[
1− c0− 22N

5

]
{Λ̂2,2

N−1,N−1}δi+ j,0.

(2.105)

The central parameter c has thus been absorbed by a renormalisation of the algebra generators.

Naturally, because of the analogous construction, we can perform a similar renormalisation on the

Galilean Sugawara construction given in Section 2.5. The currents are renormalised as

Ĵa
i = k−iJa

i , T̂i = k−iTi, i = 0, . . . ,N−1, (2.106)

where ki = ki, i= 1, . . . ,N−1, for some k ∈C×. This then leads to the following renormalised Galilean

Virasoro fields

T̂i =
1
2 ∑

n=0,1

N−1−i−n

∑
t=0

κab(Ĵa
i+n+t Ĵ

b
N−1−t)+

1
2 [1− k0−Nh∨]κab(Ĵa

N−1Ĵb
N−1)δi,0, (2.107)

The non-zero OPE relations are given by (for i+ j ∈ {0, . . . ,N−1})

Ĵa
i × Ĵb

j ' κ
abk

δi+ j,0
0 {I}+ f ab

c{Ĵc
i+ j}, T̂i× Ĵa

j ' {Ĵa
i+ j}, T̂i× T̂j ' N dimg

2 {I}δi+ j,0 +2{T̂i+ j}.
(2.108)

This concludes the discussion of higher-order Galilean algebras. In the next chapter, we will generalise

this procedure, by changing the possible ε dependent basis transformations that we can make. In

particular, we will consider the case of when the basis transformation is made up of a tensor product of

smaller transformations, affecting only a part of the full algebra A⊗N .
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Chapter 3

Multi-graded Galilean algebras

3.1 Introduction

In this chapter, we extend the previous notion of higher-order Galilean algebras by relaxing the form

of the basis change matrix. One can understand the basis change in (2.25) as acting on the ordered

basis of generating fields A(i) ∈A⊗N with a Vandermonde matrix
A0,ε

A1,ε

...

AN−1,ε

=


ω0 ω0 · · · ω0

εω0 εω1 · · · εωN−1

...
...

. . .
...

εN−1ω0 εN−1ωN−1 · · · εN−1ω(N−1)2




A(0)

A(1)

...

A(N−1)

 , (3.1)

and similarly for the central parameters. In this section, we show that the Vandermonde matrix which

determines the change of basis can be replaced by a tensor product of Vandermonde matrices. The

resulting algebra, called a multi-graded Galilean algebra, is still defined in the contraction limit ε → 0.

In fact, in this construction, one is able to assign a different contraction parameter to each tensor factor

of the basis change matrix. As such, the multi-graded algebras can also be used to understand “partial”

contractions, as well as exchanging the order of contractions on separate factors.

The resulting multi-graded algebras have a basis labelled by sequences related to a particular factorisa-

tion of N = N1 . . .Nk, the number of underlying copies of the input algebra. The previously studied

higher-order Galilean algebras relate to the factorisation N = N× 1 in this framework. As well as

introducing new infinite families of symmetry algebras, this new framework also describes the process

of multiple contractions, that is, the Galilean contraction of Galilean algebras.

We investigate the so-called multi-graded structure of these algebras and their OPE relations, showing

that the structure is graded by integer sequences, which are also truncated by the Galilean structure.

We also discuss their relation to a a generalised family of polynomial Takiff algebras.

Furthermore, we consider a number of explicit examples relevant to conformal field theory. We present
47
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a Sugawara construction on multi-graded Galilean affine Lie algebras, and show that again it commutes

with the contraction procedure. Finally, we demonstrate the multi-graded contraction for the W -algebra

W3.

3.2 Multi-graded Galilean algebras

3.2.1 Preliminary theory

In this section, we again begin by considering the tensor product of a number N ∈ Z>0 of operator

product algebras A, that is

A⊗N =
N−1⊗
i=0

A(i). (3.2)

As before, A(i) are copies of the same OPA A up to the value of their central parameters. We introduce

the following notation

A∗ =


A(0)
...

A(N−1)

 , c∗ =


c(0)
...

c(N−1)

 , (3.3)

where A(i) (respectively c(i)) denotes the field A ∈A(i) (respectively the central parameter of A(i)). We

also introduce the following matrices, for ε ∈ C×.

UN(ε,ω) = DN(ε)UN(ω), DN(ε) = diag(ε0,ε1, . . . ,εN−1), (3.4)

where the matrix UN(ω), i.e. explicitly without ε dependence, is given by

UN(ω) =
(

ω i j
)

0≤i, j≤N−1
=


ω0 ω0 · · · ω0

ω0 ω1 · · · ωN−1

...
...

. . .
...

ω0 ωN−1 · · · ω(N−1)2

 , (3.5)

where, as before, we have taken ω = e2πi/N to be a principal Nth root of unity. This is simply a small

change of notation from that given in the previous section, which will better allow us to express the

algebraic structure. Continuing, for ε 6= 0, the inverse matrices are given by

D−1
N (ε) = DN(ε

−1), U−1
N (ω) = 1

NUN(ω
−1). (3.6)

Using this, we can express the precontraction change of basis by

Aε =


A0,ε
...

AN−1,ε

=UN(ε,ω)A∗, cε =


c0,ε
...

cN−1,ε

=UN(ε,ω)c∗, (3.7)

which gives us the map

A⊗N →A⊗N , A∗ 7→ Aε , c∗ 7→ cε . (3.8)
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As before, this map is invertible for ε 6= 0 and singular in the limit ε → 0 (unless we are in the trivial

case of N = 1). If, in the limit ε → 0 the resulting algebra is well defined, we call that algebra the

Galilean algebra, denoted AN
G.

3.2.2 Introduction of grading sequences

We begin by fixing some σ ∈ Z>0. We then denote a sequence of C-numbers of length σ by

S = S1, . . . ,Sσ , where for example 0 = 0, . . . ,0 is the zero sequence. We can form linear combinations

of sequences straightforwardly, by

α i+β j = αi1 +β j1, . . . ,αiσ +β jσ , α,β ∈ C. (3.9)

We can introduce multiplicative inverses. When every element of S is non-zero, we let S−1 denote the

sequence of inverses S−1
1 , . . . ,S−1

σ .

We can compare two sequences according to the rules

i≤ j if i1 ≤ j1, . . . , iσ ≤ jσ ; i < j if i1 < j1, . . . , iσ < jσ . (3.10)

A central object of our study will be the sequence N = N1, . . . ,Nk, where N is the number of input

algebras, and N1 . . .Nk is a factorisation of N.

We define the set of integer sequences IN as

IN = {i ∈ Z⊗σ |0≤ i < N}. (3.11)

We note that the set of integer sequences is not closed under the operation of inverse sequence, nor is

that operation well defined on all elements of IN .

The set IN admits a canonical ordering where i appears before j, or i≺ j if and only if, for each m such

that im > jm, there exists ` < m such that i` < j`. That is, we order the sequences by comparing entries

left-to-right. We remark that the output of this ordering is the same as the ordering of basis vectors

when one considers the tensor product space V =V1⊗ . . .⊗Vσ under the Kronecker product. We make

this the canonical choice of ordering for exactly this reason. Each factor V` is an N`-dimensional vector

space with ordered basis {e`1, . . . ,e`N`
}.

Explicitly, for an N-vector v ∈V =V1⊗ . . .⊗Vσ , the components {vi | 0� i≺ N} in any given linear

combination

v = ∑
0�i≺N

viei ∈V, (3.12)

are ordered according to the canonical ordering on IN . The final sequence in any such ordering is given

by N−1 = N1−1, . . . ,Nk−1.

As an example, we have for for the sequence N = 2,3 the ordered components

v0,0, v0,1, v0,2, v1,0, v1,1, v1,2. (3.13)
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We form the N-dimensional vectors

A∗ =
(

A(i)

)
0�i≺N

, c∗ =
(

c(i)
)

0�i≺N
, (3.14)

whose entries are ordered by the canonical ordering on IN . As per previous notation, A(i) refers to

the field A ∈A(i), and likewise, c(i) is the central parameter of A(i). Furthermore, we introduce the

sequences

ω = ω1, . . . ,ωσ , ω` = e2πi/N`, `= 1, . . . ,σ , (3.15)

and

ε = ε1, . . . ,εσ , ε` ∈ C, `= 1, . . . ,σ . (3.16)

We can then use this notation to define

UN(ε,ω) =UN1(ε1,ω1)⊗ . . .⊗UNσ
(εσ ,ωσ ) = DN(ε)UN(ω), (3.17)

where

DN(ε) = DN1(ε1)⊗ . . .⊗DNσ
(εσ ), UN(ω) =UN1(ω1)⊗ . . .⊗UNσ

(ωσ ), (3.18)

which simply generalises the previously introduced notions of DN and UN to the case where they are

composed of a product of smaller matrices.

Now the contraction basis change map A⊗N →A⊗N
ε , which is given by

A∗ 7→ Aε =
(

Ai,ε

)
0�i≺N

=UN(ε,ω)A∗, c∗ 7→ cε =
(

ci,ε

)
0�i≺N

=UN(ε,ω)c∗, (3.19)

is invertible when ε1, . . . ,εσ 6= 0, where it is given explicitly by

U−1
N (ε,ω) = 1

NUN(ω
−1)DN(ε

−1). (3.20)

In particular, we have the following identity for UN(ε,ω) invertible, namely

∑
0�k≺N

UN(ε,ω)ikUN(ε,ω)jkUN(ε
−1,ω−1)km = Nδm,i+j, (3.21)

for 0� i, j,m≺N. This follows straightforwardly from the following result on sums of roots of unity,
N`−1

∑
n=0

ω
nk
` = N`δk,0 mod N`

, `= 1, . . . ,σ . (3.22)

If in the limit ε → 0, the resulting algebra is well defined, and the resulting algebra structure is that of

a Galilean OPA (that is, we rule out trivial cases), we denote the resulting algebra by AN
G.

As before, the OPE relations for Lie-type algebras are straightforwardly determined in general. For a

Lie type algebra with product

A×B' f AB
I(c){I}+ f AB

C{C}, (3.23)

where we assume a summation over fields C, the corresponding multi-graded OPA has product relations

Ai×Bj '

 f AB
I(ci+j){I}+ f AB)C{Ci+j}, if i+ j < N,

0, otherwise.
(3.24)

We continue by presenting the examples of multi-graded Galilean Virasoro and affine Lie algebras.
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3.2.3 Example: Multi-graded Galilean Virasoro algebras

The multi-graded Galilean Virasoro algebra VirN
G for N ∈ N is generated by fields Ti, labelled by the

sequences i of length σ , for a given factorisation of N = N1 . . .Nσ . The sequence i is bounded, in the

sense of the canonical ordering on IN , by 0 � i ≺ N. Similarly, the algebra has central parameters

{ci | 0� i≺ N}. The OPE relations are given by

Ti×Tj '


ci+j

2 {I}+2{Ti+j}, if i+ j < N,

0, otherwise.
(3.25)

As in the previous constructions, the field T0 generates a Virasoro subalgebra of central charge c0, and

all other generating fields of the algebra are quasi-primary fields with respect to the Virasoro generator.

3.2.4 Example: Multi-graded Galilean affine Lie algebras

It is also straightforward to define the multi-graded affine Lie algebras. These algebras are generated

by currents {Ja
i | 0� i≺N,a = 1, . . . ,dim(g)}. The OPE on a multi-graded affine Lie algebra is given

by

Ja
i × Jb

j '

κabki+j{I}+ f ab
c{Jc

i+j}, if i+ j < N,

0, otherwise.
(3.26)

Similarly to the previous cases, the fields Ja
0 generate a subalgebra isomorphic to ĝ at level k0.

3.3 General properties of multi-graded Galilean algebras

3.3.1 The grading on multi-graded Galilean algebras

We can extend our previous notion of a grading on a Galilean algebra to the multi-graded algebras in

the following way. We extend the action of the grading operator to sequences gr : AN
G→ IN , such that

Ai 7→ i, ci 7→ i,
(
AiBj

)
7→ i+ j. (3.27)

With the action defined on the generating fields and central parameters, we can extend linearly and to

Laurent polynomials of the central parameters as before.

As an example, an algebra based on the sequence N = 4,5 contains the following combination of fields

with the stated action of gr,

gr
(

c0,0∂B3,1−35
c1,1c2,1 +4c3,2

c1,4
(A0,1B1,2)

)
= 3,1. (3.28)

We then say that a given algebra is multi-graded if the grading is compatible with the OPE, in the sense

that

gr
(
Ai×Bj

)
= i+ j. (3.29)
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Similarly to the case of higher-order Galilean algebras, multi-graded algebras coming from tensor

products of Lie-type algebras are indeed multi-graded in the sense outlined above. This follows directly

from linearity of the OPE. Moreover, the grading on the algebra is truncated at N by the Galilean

structure.

Also analogous to the higher order case, we cannot guarantee that the contraction of a non-linear OPA,

such as algebras arising from products of copies of W3 will necessarily be multi-graded in general.

This is due to the contraction procedure, and thus the produced Galilean algebras, being sensitive to

the structure constant functions of the central parameters. However, as will be seen in Section 3.5, the

W3 algebra will admit a grading by truncated sequences.

3.3.2 Permutation invariance

In all examples of multi-graded algebras that we have calculated, we see that the following holds for

the OPE relations

Ai×Bj ' Ai′×Bj′ if i+ j = i′+ j′. (3.30)

For Lie type algebras, this follows form linearity, however it is not necessarily clear that such relations

need to hold for the W -algebras. Together with the property of being multi-graded, this congruence

implies that we need only determine the OPE relations between the underlying grade-0 subalgebra,

and the generators of the Galilean algebra to completely determine the structure of the algebra.

Moreover, it also implies that equivalent factorisations of N lead to isomorphic multi-graded Galilean

algebras. Explicitly, given a particular factorisation of N = N1 . . .Nσ , which defines the sequence

N = N1, . . . ,Nσ , and its corresponding multi-graded Galilean algebra AN
G, and given a permutation π =

π1, . . . ,πσ , a permutation of a length σ sequence which naturally defines an equivalent factorisation,

then we have

AN
G
∼=A

π(N)
G , for π(N) = Nπ1, . . . ,Nπσ

. (3.31)

Furthermore, this leads to the interesting property that the algebra is also equivalent under exchange

of order of contractions, that is, we can understand a multi-graded contraction to be equivalent to

higher-order contractions of chunks of the algebra A⊗N , where the size of each chunk is given by a

factor of N in a particular factorisation. Explicitly, we have

A
N1,N2
G

∼= (AN1
G )N2

G , (3.32)

and more generally,

(. . .((AN1
G )N2

G ) . . .)Nσ

G
∼=A

N1,...,Nσ

G
∼=A

Nπ1 ,...,Nπσ

G
∼= (. . .((A

Nπ1
G )

Nπ2
G ) . . .)

Nπσ

G . (3.33)

This gives a systematic way of describing Galilean contractions of (higher-order) Galilean algebras.
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3.3.3 Relation to multi-variable Takiff algebras

We consider taking the limit N→ ∞, where ∞ denotes the infinity sequence in the sense that we let

N`→ ∞, ∀ N` such that
N`

N`′
→ R`

`′, R`
`′ ∈ R, `, `′ = 1, . . . ,σ . (3.34)

Taking ĝN
G as an example, in the limit N→ ∞, the algebra becomes ĝ∞

G, which is generated by the

currents {Ja
i | i≥ 0, a = 1, . . . ,dim(g)}, with non-zero OPEs

Ja
i × Jb

j ' κ
abki+j{I}+ f ab

c{Jc
i+j}. (3.35)

This algebra is isomorphic to the tensor product

ĝ∞
G
∼= ĝ⊗C[x1, . . . ,xσ ], (3.36)

where C[x1, . . . ,xσ ] is the polynomial ring in σ variables. As before, we realise the truncated structure

of ĝN
G by considering a quotient of this ring corresponding to the chosen factorisation of N = N1 . . .Nσ .

That is, we have the isomorphism

ĝN
G
∼= ĝ⊗C[x1, . . . ,xσ ]/〈xN1

1 , . . . ,xNσ

σ 〉. (3.37)

[82, 83, 85] Similarly, we have for the Virasoro algebra

Vir∞
G
∼=Vir⊗C[x1, . . . ,xσ ], VirN

G
∼=Vir⊗C[x1, . . . ,xσ ]/〈xN1

1 , . . . ,xNσ

σ 〉. (3.38)

One need not truncate the sequence completely, that is, we may allow some positions of a sequence to

be truncated, and others to run to infinity. Consider a subset of {1, . . . ,σ} denoted s = {s1, . . . ,sρ},
and take the limit N→ ∞s in the sense that

Ns1, . . . ,Nsρ
→ ∞, such that

Nsi

Ns j

→ Rsi
s j
, Rsi

s j
∈ R, si,s j ∈ s. (3.39)

Such a construction gives rise to the semi-truncated algebras

ĝ∞s
G
∼= ĝ⊗C[x1, . . . ,xσ ]/〈x

Ns1
s1 , . . . ,x

Nsρ

sρ
〉, Vir∞s

G
∼=Vir⊗C[x1, . . . ,xσ ]/〈x

Ns1
s1 , . . . ,x

Nsρ

sρ
〉. (3.40)

We remark that the notion of a canonical ordering on the space of sequences breaks down in the case

of semi-truncated algebras. However, their constructions as Takiff algebras are quite natural.

3.4 Multi-graded Galilean Sugawara construction

As in the case of the higher-order Galilean algebras, we want to demonstrate that multi-graded affine

Lie algebras admit a Sugawara construction, and moreover, that the construction is compatible with

the contraction procedure. As before, compatibility with the contraction procedure is understood to

mean that the following diagram commutes.
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ĝ⊗N Vir⊗N

ĝN
G VirN

G

Sug⊗N

Gal Gal

Gal Sug

We will analyse the two branches separately, and show that the resulting algebras are equivalent.

We begin with the construction of a Galilean Virasoro action on the algebra ĝN
G. We make the following

ansatz for the generators,

Ti = ∑
0�r,s≺N

λ
r,s
i κab

(
Ja

r Jb
s
)
, (3.41)

where κab is the inverse Killing form on the semisimple Lie algebra g underlying ĝ. As in the previous

case, the introduced unknowns λ
r,s
i are determined by requiring that the currents Ja

i are primary fields

of conformal weight 1 with respect to the operator T0, and that the Ti fields form a Galilean Virasoro

algebra. This amounts to requiring that

Ti× Ja
j '

{J
a
i+j}, i+ j < N,

0, otherwise.
(3.42)

As before, we compute

Ja
j (z)Ti(w)∼

1
(z−w)2 ∑

0�r,s≺N
λ

r;s
i
[
kj+rJa

s (w)+ kj+sJa
r (w)+2h∨Ja

j+r+s(w)
]

+
1

z−w ∑
0�r,s≺N

λ
r;s
i κbc

[
f ab

d(J
d
j+rJc

s )(w)+ f ac
d(J

b
r Jd

j+s)(w)
]
, (3.43)

where again, the dual Coxeter number of g arises through the identity

κbc f ab
d f dc

e = 2h∨δ
a
e . (3.44)

The OPE relations (3.42) imply that the poles involving normally-ordered products of fields must

vanish. Moreover, they constrain the constants appearing with second-order poles. The first order pole

constraint gives

λ
r;s
i =

λ
n;N−1
i , r+ s = N−1+n, for (0� n≺ N),

0, otherwise,
(3.45)

where 1 = 1, . . . ,1, the sequence of ones. For each value of i where 0� i≺ N, this equation fixes all

but the N coefficients λ
n;N−1
i . The constraints coming from the second order pole then gives

2 ∑
j�m≺N

∑
0�n�m−j

λ
n;N−1
i kN−1−m+j+nJa

m +2Nh∨λ
0;N−1
i δj,0Ja

N−1 =

Ja
i+j, i+ j < N,

0, otherwise.
(3.46)

As in the higher-order case, we notice that for each i, the conditions (3.46) are nested so that we need

only solve the system for j = 0, which leads to

2 ∑
0�m≺N

∑
0�n�m

λ
n;N−1
i

(
kN−1−m+n +Nh∨δn,0δm,N−1

)
Ja

m = Ja
i . (3.47)
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Since the generating currents of the Galilean algebra are linearly independent, (3.47) gives rise to a

lower-triangular system of linear equations in {λ n,N−1
i | 0� n�N−1}. As in the case of higher-order

contractions, we realise the system as a matrix of the coefficients

Mm,n =

2k′N−1−m+n, 0�m−n≺ N,

0, otherwise,
(3.48)

where

k′m = km +Nh∨δm,0, 0�m≺ N. (3.49)

As before, all of the diagonal entries of this matrix are given by 2kN−1, however, the internal structure

is now quite different. The matrix M is block lower triangular, given by

M =



M1

...
. . .

Mi1 · · · M1
...

. . .
...

. . .

MN1 · · · Mi1 · · · M1


, (3.50)

where each Mi1 ∈ {M1, . . . ,MN1} is a lower-triangular matrix of size N
N1
× N

N1
, with N1 being the first

factor in the decomposition of N = N1 . . .Nσ . The matrix Mi1 has the form

Mi1 =



Mi1,1

...
. . .

Mi1,i2 · · · Mi1,1
...

. . .
...

. . .

Mi1,N2 · · · Mi1,i2 · · · Mi1,1


, (3.51)

where again each Mi1,i2 ∈ {Mi1,1, . . . ,Mi1,N2} appearing is itself an N
N1N2
× N

N1N2
lower-triangular matrix,

and so on. Thus, the innermost lower-triangular matrices appearing in this nested description of M are

Nσ ×Nσ Toeplitz matrices of the form

Mi1,...,iσ−1 =



2ki1,...,iσ−1,Nσ−1

...
. . .

2ki1,...,iσ−1,Nσ−iσ
...

. . .
. . .

2k′i1,...,iσ−1,0 · · · · · · 2ki1,...,iσ−1,Nσ−1


. (3.52)
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For the sequence N = 3,2,3, for example, we thus have

M = 2



k212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

k211 k212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

k210 k211 k212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

k202 0 0 k212 0 0 0 0 0 0 0 0 0 0 0 0 0 0

k201 k202 0 k211 k212 0 0 0 0 0 0 0 0 0 0 0 0 0

k200 k201 k202 k210 k211 k212 0 0 0 0 0 0 0 0 0 0 0 0

k112 0 0 0 0 0 k212 0 0 0 0 0 0 0 0 0 0 0

k111 k112 0 0 0 0 k211 k212 0 0 0 0 0 0 0 0 0 0

k110 k111 k112 0 0 0 k210 k211 k212 0 0 0 0 0 0 0 0 0

k102 0 0 k112 0 0 k202 0 0 k212 0 0 0 0 0 0 0 0

k101 k102 0 k111 k112 0 k201 k202 0 k211 k212 0 0 0 0 0 0 0

k100 k101 k102 k110 k111 k112 k200 k201 k202 k210 k211 k212 0 0 0 0 0 0

k012 0 0 0 0 0 k112 0 0 0 0 0 k212 0 0 0 0 0

k011 k012 0 0 0 0 k111 k112 0 0 0 0 k211 k212 0 0 0 0

k010 k011 k012 0 0 0 k110 k111 k112 0 0 0 k210 k211 k212 0 0 0

k002 0 0 k012 0 0 k102 0 0 k112 0 0 k202 0 0 k212 0 0

k001 k002 0 k011 k012 0 k101 k102 0 k111 k112 0 k201 k202 0 k211 k212 0

k′000 k001 k002 k010 k011 k012 k100 k101 k102 k110 k111 k112 k200 k201 k202 k210 k211 k212



,

(3.53)

written using the simplified notation ki1i2i3 = ki1,i2,i3 .

We remark that although the general description somewhat obfuscates the structure of the resulting

matrix, we observe here that the resulting matrix has entries involving ki in the ordered basis going

from MN,1 to MN,N and M1,1, and then the remaining entries are determined using the truncated Z⊗σ

grading, simply by performing addition of the corresponding sequences. This fact follows from the

grading on the algebra, and the use of the ordered basis.

The constants are then determined by finding the inverse matrix M−1. The inverse matrix has a similar

nested Toeplitz structure to M, and we again use the notation

M−1 =
(

bm,n

)
0�m,n≺N

. (3.54)

We note that all diagonal entries of this matrix will be 1/(2kN−1), and we have the equality

λ
n;N−1
i = bn,i. (3.55)

This completely determines the form of the Galilean Virasoro operators Ti, which are given by

Ti = ∑
i�n≺N

bn,i ∑
0�t≺N−n

κab
(
Ja

n+tJ
b
N−1−t

)
. (3.56)

It still remains to determine the values of the central parameters, which follow from computing the

OPEs T0×Ti. These are calculated straight forwardly, and are given by

T0(z)Ti(w)∼ ∑
i�n≺N

bn,i ∑
0�t≺N−n

κabκabkN−1+n
(z−w)4 +

2Ti(w)
(z−w)2 +

∂Ti(w)
z−w

. (3.57)

We see here that the fourth-order pole is zero unless n = 0. That is, we only have a non-zero central

parameter for i = 0. The central parameters are

c0 = N dim(g), ci = 0, for i 6= 0. (3.58)
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This matches closely the result in the case of higher-order algebras.

We are still left to show that the above construction is equivalent to beginning with N copies of an affine

Lie algebra with a constructed Sugawara operator, and then performing a multi-graded contraction.

As such, we begin by stating the Sugawara operators for the factors A(i). They each have a Virasoro

field T(i), with central charge c(i) given by

T(i) =
κab

2(k(i)+h∨)

(
Ja
(i)J

b
(i)
)
, c(i) =

k(i) dimg

k(i)+h∨
, 0� i≺ N. (3.59)

We then form the vectors T∗ and c∗ as in (3.14), and perform the change of basis to the algebra AN
ε

following (3.19), which gives

Tε =
(

Ti,ε

)
0�i≺N

=UN(ε,ω)T∗, cε =
(

ci,ε

)
0�i≺N

=UN(ε,ω)c∗. (3.60)

Expanding the form of the transformation matrices UN(ε,ω), as well as using the inverse Galilean

basis change on the coefficients of T(i) involving k(i) we have

Ti,ε =

∑
0�j,n,n′≺N

( σ

∏
`=1

(ε`ω
j`
` )N`−1+i`−n`−n′`

)
κab
(
Ja

n,εJb
n′,ε
)

2NkN−1,ε ∑
0�m≺N

am
σ

∏
`=1

(ε`ω
j`
` )m`

, (3.61)

where we have made use of the shorthand

am =
kN−1−m,ε +Nh∨δm,N−1

kN−1,ε
, 0�m≺ N. (3.62)

Similarly to the higher-order case, we perform a power series expansion(
∑

0�m≺N
am

σ

∏
`=1

(ε`ω
j`
` )m`

)−1
= ∑

0�m≺N
âm

σ

∏
`=1

(ε`ω
j`
` )m` +O(εN1

1 , . . . ,εNσ

σ ), (3.63)

which gives a multinomial expansion similar to the higher-order case, but here the labelling of the

factors requires tuples of sequences. This greatly complicates finding an explicit expression, however,

we can still analyse the result without having an explicit form. Continuing, since a0 = 1 in the above

equation, we have that the âm, 0�m≺ N are well defined, and â0 = 1. Combining the power series

for the coefficient with the expanded expression for the field, we have

Ti,ε =
1

2NkN−1,ε
∑

0�j,n,n′,m≺N
âm

( σ

∏
`=1

(ε`ω
j`
` )N`−1+i`−n`−n′`+m`

)
κab
(
Ja

n,εJb
n′,ε
)
+O(εN1

1 , . . . ,εNσ

σ ).

(3.64)

We notice that for each ` ∈ {1, . . . ,σ}, we can simplify the summation over sets of roots of unity in

the following way

N`−1

∑
j`=0

ω
j`(N`−1+i`−n`−n′`+m`)
` =

N`, N`−1+ i`−n`−n′`+m` ≡ 0 (mod N`),

0, N`−1+ i`−n`−n′`+m` 6≡ 0 (mod N`).
(3.65)
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This lifts to the expressions involving sequences as

∑
0�j≺N

σ

∏
`=1

ω
j`(N`−1+i`−n`−n′`+m`)
` =

N, N−1+ i−n−n′+m≡ 0 (mod N),

0, N−1+ i−n−n′+m 6≡ 0 (mod N).
(3.66)

Then, analogously to the higher-order case, since N−1+ i−n−n′+m >−N, we are not left with

any negative powers of any of the ε` variables. This implies that the limit as ε`→ 0 for all ` is well

defined, and we do not have any divergences.

Performing the limit, we can give the form of the resulting Virasoro fields

Ti,ε → Ti =
1

2kN−1
∑

0�n,n′,m≺N
âmκab

(
Ja

nJb
n′
)
δN−1+i−n−n′+m,0

= ∑
i�n≺N

ân−i
2kN−1

∑
0�t≺N−n

κab
(
Ja

n+tJ
b
N−1−t

)
. (3.67)

This matches the expressions for the alternative branch of the diagram when

bn,i =
ân−i

2kN−1
, (3.68)

or equivalently, when we have

λ
n;N−1
i =

ân−i
2kN−1

. (3.69)

It remains to determine the central parameters, which follow from essentially the same calculation,

without the normally-ordered products of fields. In the precontraction basis, the central parameters are

given by

ci,ε =

∑
0�j,n≺N

( σ

∏
`=1

(ε`ω
j`
` )N`−1+i`−n`

)
kn,ε dimg

kN−1,ε ∑
0�m≺N

am
σ

∏
`=1

(ε`ω
j`
` )m`

=
dimg

kN−1,ε
∑

0�j,n,m≺N
âmkn,ε

σ

∏
`=1

(ε`ω
j`
` )N`−1+i`−n`+m` +O(εN1

1 , . . . ,εNσ

σ ). (3.70)

Then, taking the limit ε → 0, we find

ci,ε → ci =
N dimg

kN−1
∑

0�n,m≺N
âmknδN−1+i−n+m,0 = N dimgδi,0, (3.71)

which matches the previous result.

Indeed, the relations in (3.69) follow from the similarity in structures of Mm,n in (3.48) and am in

(3.62), again in essentially the same way that was outlined in the higher-order case. However, this

here shows the commutativity of the two procedures in a slightly more general setting, that is, without
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an explicit description of the coefficients bn or âm. The coefficients are terms in the multinomial

expansion of the sum (
∑

0�m≺N
am

σ

∏
`=1

(ε`ω
j`
` )m`

)−1
, (3.72)

and as such are particularly difficult to express in general, however, they are straightforward to calculate

in specific cases.

Here we provide a specific examples of the operators that arise. We consider the multi-graded affine

Lie algebra ĝ2,3
G , that is, we have N = 6. The set of sequences 0� i≺ 2,3 is given in canonical order

by

I2,3 = {0,0; 0,1; 0,2; 1,0; 1,1; 1,2}. (3.73)

The matrix M of coefficients in the expansion is given by

M = 2


k12 0 0 0 0 0

k11 k12 0 0 0 0

k10 k11 k12 0 0 0

k02 0 0 k12 0 0

k01 k02 0 k11 k12 0

k′00 k01 k02 k10 k11 k12

. (3.74)

Taking the inverse, and multiplying through the expansion, the resulting Virasoro fields are given by

T0,0 =
κab

2k1,2

[
(Ja

0,0Jb
1,2)+(Ja

0,1Jb
1,1)+(Ja

0,2Jb
1,0)+(Ja

1,0Jb
0,2)+(Ja

1,1Jb
0,1)+(Ja

1,2Jb
0,0)

− k1,1
k1,2

(
(Ja

0,1Jb
1,2)+(Ja

0,2Jb
1,1)+(Ja

1,1Jb
0,2)+(Ja

1,2Jb
0,1)
)
+

(k1,1)
2−k1,0k1,2
(k1,2)2

(
(Ja

0,2Jb
1,2)+(Ja

1,2Jb
0,2)
)

− k0,2
k1,2

(
(Ja

1,0Jb
1,2)+(Ja

1,1Jb
1,1)+(Ja

1,2Jb
1,0)+

2k0,2k1,1−k0,1k1,2
(k1,2)2

(
(Ja

1,1Jb
1,2)+(Ja

1,2Jb
1,1)
)

− 3k0,2(k1,1)
2−2(k0,2k1,0+k0,1k1,1)k1,2+k′0,0(k1,2)

2

(k1,2)3 (Ja
1,2Jb

1,2)
]
, (3.75)

T0,1 =
κab

2k1,2

[
(Ja

0,1Jb
1,2)+(Ja

0,2Jb
1,1)+(Ja

1,1Jb
0,2)+(Ja

1,2Jb
0,1)−

k1,1
k1,2

(
(Ja

0,2Jb
1,2)+(Ja

1,2Jb
0,2)
)

− k0,2
k1,2

(
(Ja

1,1Jb
1,2)+(Ja

1,2Jb
1,1)
)
+

2k0,2k1,1−k0,1k1,2
(k1,2)2 (Ja

1,2Jb
1,2)
]
, (3.76)

T0,2 =
κab

2k1,2

[
(Ja

0,2Jb
1,2)+(Ja

1,2Jb
0,2)−

k0,2
k1,2

(Ja
1,2Jb

1,2)
]
, (3.77)

T1,0 =
κab

2k1,2

[
(Ja

1,0Jb
1,2)+(Ja

1,1Jb
1,1)+(Ja

1,2Jb
1,0)−

k1,1
k1,2

(
(Ja

1,1Jb
1,2)+(Ja

1,2Jb
1,1)
)
+

(k1,1)
2−k1,0k1,2
(k1,2)2 (Ja

1,2Jb
1,2)
]
,

(3.78)

T1,1 =
κab

2k1,2

[
(Ja

1,1Jb
1,2)+(Ja

1,2Jb
1,1)−

k1,1
k1,2

(Ja
1,2Jb

1,2)
]
, (3.79)

T1,2 =
κab

2k1,2
(Ja

1,2Jb
1,2), (3.80)

and the only non-zero central parameter is

c0,0 = 6dim(g). (3.81)
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3.5 Multi-graded W3 algebras

The final example we would like to consider is the multi-graded algebras coming from N copies of

W3. For a chosen factorisation N = N1 . . .Nσ , and hence sequence N = N1, . . . ,Nσ , the corresponding

multi-graded Galilean W3 algebra (W3)
N
G is generated by the fields {Ti,Wi | 0� i≺N}, and has central

parameters {ci | 0� i≺ N}, with the linear OPEs between generators given by

Ti×Tj '


ci+j

2
{I}+2{Ti+j}, i+ j < N,

0, otherwise,
Ti×Wj '

3{Wi+j}, i+ j < N,

0, otherwise.
(3.82)

As in the higher-order case, it is highly non-trivial to compute the OPE Wi×Wj. However, its well

definedness follows from the same analysis that shows that the Sugawara operator is well defined in

the contraction limit. When expanding the coefficients accompanying the normally-ordered fields as a

power series, and combining this with the resulting expressions for the normally-ordered fields under

the inverse basis map, we see that it is not possible to introduce any inverse powers of ε`. As such,

we know that the resulting contraction limit is well defined, however, the terms arising as coefficients

for the Galilean quasi-primary fields appearing in the OPE are again coefficients in a multinomial

expansion. As such, we do not give a concrete formula for these coefficients in this case, however, the

matrix M whose inverse encodes these coefficients is completely analogous to the case of Sugawara,

along with the identification

c′0 = c0 +
22N

5 . (3.83)

Following the prescription of the multi-graded Sugawara construction, it is then straightforward, albeit

tedious, to determine the OPE structure between the Wi fields.

As an example, we present the OPEs for the algebra (W3)
2,3
G . As in the Sugawara example, the

canonically ordered basis of sequences is given by

I2,3 = {0,0; 0,1; 0,2; 1,0; 1,1; 1,2}. (3.84)

We have generating fields {Ti,Wi | ∀i ∈ I2,3}. The non-trivial OPEs are then given by

W0,0×W0,0 '
c0,0
3 {1}+2{T0,0}+ 64

5c1,2
{Λ0,0;1,2 +Λ0,1;1,1 +Λ0,2;1,0}−

64c1,1
5(c1,2)2{Λ0,1;1,2 +Λ0,2;1,1}

+
64[(c1,1)

2−c1,0c1,2]

5(c1,2)3 {Λ0,2;1,2}−
32c0,2

5(c1,2)2{2Λ1,0;1,2 +Λ1,1;1,1}+
64[2c0,2c1,1−c0,1c1,2]

5(c1,2)3 {Λ1,1;1,2}

− 32[3c0,2(c1,1)
2−2(c0,1c1,1+c0,2c1,0)c1,2+c′0,0(c1,2)

2]

5(c1,2)4 {Λ1,2;1,2}, (3.85)
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W0,0×W0,1 '
c0,1
3 {1}+2{T0,1}+ 64

5c1,2
{Λ0,1;1,2 +Λ0,2;1,1}−

64c1,1
5(c1,2)2{Λ0,2;1,2}−

64c0,2
5(c1,2)2{Λ1,1;1,2}

+
32[2c0,2c1,1−c0,1c1,2]

5(c1,2)3 {Λ1,2;1,2}, (3.86)

W0,0×W0,2 '
c0,2
3 {1}+2{T0,2}+ 64

5c1,2
{Λ0,2;1,2}−

32c0,2
5(c1,2)2{Λ1,2;1,2}, (3.87)

W0,0×W1,0 '
c1,0
3 {1}+2{T1,0}+ 32

5c1,2
{2Λ1,0;1,2 +Λ1,1;1,1}−

64c1,1
5(c1,2)2{Λ1,1;1,2}

+
32[(c1,1)

2−c1,0c1,2]

5(c1,2)3 {Λ1,2;1,2}, (3.88)

W0,0×W1,1 '
c1,1
3 {1}+2{T1,1}+ 64

5c1,2
{Λ1,1;1,2}−

32c1,1
5(c1,2)2{Λ1,2;1,2}, (3.89)

W0,0×W1,2 '
c1,2
3 {1}+2{T1,2}+ 32

5c1,2
{Λ1,2;1,2}. (3.90)

We have introduced the notation

Λi; j = (Ti Tj)− 3
10∂

2TN−1δi+j,N−1 (3.91)

for the quasi-primary fields (with respect to T0) appearing in the OPEs. The resulting algebra is

indeed multi-graded, and as such the above set of OPEs along with the Lie-type relations, completely

determine the structure. We do not have a proof for the multi-graded structure of (W3)
N
G for general N,

as any such proof requires the concrete form of the multinomial expansion over sequences.

This concludes the discussion of multi-graded Galilean algebras. In the following section we continue

our discussion of Galilean algebras by relaxing the condition that all input algebras need be the same,

up to the value of their central parameters.



The following Chapter is based on work currently in preparation to appear as
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Chapter 4

Asymmetric Galilean algebras

4.1 Introduction

Here we continue the program of generalising the possible structures that can arise from a Galilean

contraction of symmetry algebras for a conformal field theory. In this chapter, we will consider

relaxing the condition that the algebras involved in the Galilean contraction need to be the same (up to

value of their central charge). For conformal algebras, one would still need to contract together the

Virasoro generators of each component algebra in order to have a sensible Galilean Virasoro action in

the resulting algebra. This observation motivates our choice to consider the contraction of an algebra

g with an additional copy of a subalgebra h ⊂ g. The remaining generators which are not in the

subalgebra can then be rescaled by the contraction parameter. In the following, we will investigate the

freedom of choice of subalgebra, as well as possible rescalings of the remaining generators.

4.2 Asymmetric contraction theory

We begin with g an operator product algebra of Lie type (given the change in notation, we remark

that g is not necessarily an affine Lie algebra), and h⊆ g a subalgebra of Lie type. We remark that

if we take h = g, we have that ḡ = 0, and the resulting contraction is the usual order-two Galilean

contraction. The space generating fields of g decomposes as vector spaces into g= h⊕ ḡ. We want to

consider the possible structures which can arise when performing a Galilean contraction on g with a

copy of h, that is, a contraction of the algebra

A= g(0)⊗h(1). (4.1)

We begin the contraction by performing the ε-dependent change of basis A→Aε . The fields in the

new basis are

A j = ε
j (A(0)+(−1) jA(1)

)
, Xm = ε

mX(0), ∀ A(0) ∈ h(0), A(1) ∈ h(1), X(0) ∈ ḡ(0), (4.2)

63
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where m ∈ R, and similarly, the general central elements (not necessarily the central charge) are given

by c j = ε j (c(0)+(−1) jc(1)
)
. The inverse basis maps are

A(0) =
1
2
(
A0 + ε

−1A1
)
, A(1) =

1
2
(
A0− ε

−1A1
)
, X(0) = ε

−mXm. (4.3)

As in the previous Galilean contractions, we are interested in the algebra arising in the limit ε → 0.

When the resulting algebra is well defined, we will refer to it as the asymmetric Galilean contracted

algebra of g with subalgebra h. We label this algebra as
(
g,h
)

G.

In the following we use notation where Ai, Bi, Ci ∈ h, and Xm, Ym ∈ ḡ. The product structure on Aε is

determined using the product on A as follows. First, the product between fields in hε is given by

Ai,ε ×B j,ε '

 f AB
I(ci+ j,ε){I}+ f AB

C {Ci+ j,ε}, if i+ j ≤ 1,

ε2 ( f AB
I(c0,ε){I}+ f AB

C {C0,ε}
)
, if i = j = 1.

(4.4)

These relations follow directly from g and h being algebras of Lie-type.

We are primarily interested in how the value of m in (4.2) changes the product structure of the resulting

algebra. For A j ∈ hε and Xm ∈ ḡε we have that

A j,ε ×Xm,ε = ε
m+ j (A(0)+(−1) jA(1)

)
×X(0)

= ε
m+ jA(0)×X(0)

' ε
m+ j

(
f AX

I(c(0)){I}+ f AX
B {B(0)}+ f AX

Y {Y(0)}
)

' 1
2

ε
m+ j

(
f AX

I(c0,ε)+ ε
−1 f AX

I(c1,ε)
)
{I}+ 1

2
ε

m+ j f AX
B
(
{B0,ε}+ ε

−1{B1,ε}
)

+ ε
j f A,X

Y {Ym,ε}, (4.5)

where in the final step, we have applied the inverse transformations (4.3). Note that there are no

remaining negative powers of ε , so this product is well defined in the contraction limit.

Finally, we calculate the product between fields in ḡ

Xm,ε ×Ym,ε = ε
2m (X(0)×Y(0)

)
' ε

2m ( f XY
B {B(0)}+ f XY

Z {Z(0)}
)

' ε
2m ( f XY

I(c(0)){I}+ f XY
B {B(0)}+ f XY

Z {Z(0)}
)

' 1
2

ε
2m ( f XY

I(c0,ε){I}+ f XY
B {B0,ε}

)
+

1
2

ε
2m−1 ( f XY

I(c1,ε){I}+ f XY
B {B1,ε}

)
+ ε

m f XY
Z {Zm,ε}, (4.6)

where Z(0) ∈ ḡ. From these relations, we can determine the general form of products on an asymmetric

Galilean algebra of Lie type.

The resulting Galilean algebras, given by taking the limit ε → 0 fall into one of four types, depending

on the value of m. The possible product structures are categorised below.
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1. If m > 1, then the resulting asymmetric Galilean algebra is well defined, and the products are:

Ai×B j '

 f AB
I(ci+ j){I}+ f AB

C {Ci+ j}, if i+ j ≤ 1,

0, otherwise,

Ai×Xm '

 f AX
Y {Ym}, if i = 0,

0, otherwise,

Xm×Ym ' 0. (4.7)

Moreover, for 0 < m < 1 and m 6= 1
2 , we separate our analysis into two situations. If 0 < m < 1

2 ,

then we must have ḡ× ḡ= 0 or the product (4.6) is not defined in the contraction limit. If that

product is zero, then the resulting structure is the same as that for m > 1. If 1
2 < m < 1, then any

product (4.6) will vanish in the contraction limit, and we again have the same structure as when

m > 1.

2. If m = 1, there are two possible cases. The first case is an asymmetric Galilean algebra with the

same structure as the case m > 1. However, we may also have that (h× ḡ)∩h 6= {0}, for which

the products are given by

Ai×B j '

 f AB
I(ci+ j){I}+ f AB

C {Ci+ j}, if i+ j ≤ 1,

0, otherwise,

Ai×X1 '

1
2

(
f AX

I(c1){I}+ f AX
B {B1}

)
+ f AX

Y {Y1}, if i = 0,

0, otherwise,

X1×Y1 ' 0. (4.8)

3. If m = 1
2 , the algebra is only well defined if the product h× ḡ ⊆ ḡ, i.e. the product does not

produce fields in h. In that case, the algebra is the same as in 1, unless f XY
A 6= 0, in which case

Ai×B j '

 f AB
I(ci+ j){I}+ f AB

C {Ci+ j}, if i+ j ≤ 1,

0, otherwise,

Ai×X1/2 '

 f AX
Y {Y1/2}, if i = 0,

0, otherwise,

X1/2×Y1/2 '
1
2

f X ,Y
A {A1}. (4.9)

4. If m = 0, the algebra is well defined only if f XY
A = 0, and f AX

I = f AX
B = 0, otherwise there is

a divergence in the products by equations (4.5) and (4.6). This is equivalent to requiring that ḡ
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forms an ideal. The OPEs on the resulting algebra are given by

Ai×B j '

 f AB
I(ci+ j){I}+ f AB

C {Ci+ j}, if i+ j ≤ 1,

0, otherwise,

Ai×X0 '

 f AX
Y {Y0}, if i = 0 and f AX

Y 6= 0,

0, otherwise,

X0×Y0 ' f X ,Y
Z{Z0}, Z0 ∈ ḡ0. (4.10)

We remark that it is straightforward to verify that under the exchange of input algebras, explicitly given

by A= h(0)⊕g(1), the resulting contracted algebra is isomorphic to the above.

The case m = 1
2 is in a sense the natural case. Indeed, it has been considered before in [86], when

considering WZW models on non-compact Lie groups. It is the only rescaling of the subspace ḡ

such that products of generators in that space can map back into the subalgebra h1. The resulting

product structure is equivalent to that of a Z2-graded Lie algebra, where the even space is given by

hG = h(0)⊕h(1), and the odd space is ḡ1/2. That is,

hG×hG ⊆ hG, hG× ḡm ⊆ ḡm, ḡm× ḡm ⊆ hG. (4.11)

Relevant examples of Lie-type algebras with such a product structure are the Lie superalgebras, and the

Cartan decomposition (with respect to the involution) of the real Lie algebra arising from symmetric

spaces.

We remark that it is possible, when scaling generators in ḡ individually, to map back into the order-2

Galilean subalgebra. That is, we no longer require a uniform scaling of the subspace. Suppose that the

space of generating fields of ḡ is two dimensional and the product behaves as ḡ× ḡ⊆ h. In that case,

one is free to scale the generators individually by any value, say m1, m2 ∈ R, such that m1 +m2 = 1,

and still arrive at the same product structure. Examples where this inhomogeneous scaling is possible

are given by the affine Lie algebra ŝl(2), and the N = 2 superconformal algebras, both considered in

Section 4.3.

The exposition above covers the general theory of allowed structures. In the next sections we provide

detailed examples relevant to the above description, and relevant to the literature.

4.3 Examples

In this section we present a range of examples. Some have been chosen to demonstrate the asymmetric

Galilean contraction procedure, and others for their relevance to structures appearing in the literature.
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4.3.1 The Galilean Lie algebra
(
ŝl(2), Ĥ

)
G

As a first example, consider the operator product algebra ŝl(2) at level k, generated by fields {e, h, f}.
For brevity we have dropped the explicit dependence on the co-ordinate z. The operator product

expansions between generating fields are given by

e× f ' k{I}+{h}, h× e' 2{e}, h× f '−2{ f}, h×h' 2k{I}. (4.12)

We identify that this algebra contains a Heisenberg subalgebra Ĥ ⊂ ŝl(2) generated by the field h. We

perform the contraction procedure on the algebra A= ŝl(2)(0)⊕ Ĥ(1). The change of basis gives Aε ,

generated by the fields,

h j,ε = ε
j (h(0)+(−1) jh(1)

)
, em,ε = ε

me(0), fm,ε = ε
m f(0), j ∈ {0,1}, (4.13)

and similarly, we have for the level k j = ε j (k(0)+(−1) jk(1)
)
. Following the general description, the

following product structures can arise in the limit ε → 0,

hi×h j '

ki+ j{I}, if i+ j ≤ 1,

0, otherwise,

hi× em '

2{em}, if i = 0,

0, otherwise,

hi× fm '

−2{ fm}, if i = 0,

0, otherwise,

em× fm '

1
2 (k1{I}+{h1}) , if m = 1

2 ,

0, for m > 0, m 6= 1
2 .

(4.14)

Note that because ŝl(2) is semisimple, we cannot choose any subspace ḡ such that it forms an ideal.

Thus, the algebra is not well defined when m = 0. We remark that this algebra is an example of when

the subspace ḡ need not be uniformly scaled. Rather, one can scale em1 = εm1e(0) and fm2 = εm2 f(0)
by any real numbers such that m1 +m2 = 1. It is natural to ask whether this property generalises to the

root space decompositions of other simple Lie algebras. We have not analysed this in detail, however,

we can remark that care needs to be taken when rescaling generators related to neighbouring roots

say in the Chevalley basis. Non-trivial adjoint action between sl(2) triples will constrain the allowed

structures. The case of
(
ŝl(2), Ĥ

)
G is free of these complications.

4.3.2 The Galilean Lie algebra
(
ŝl(2), b̂

)
G

Continuing from the above example, we can also consider the contraction of ŝl(2) at level k with the

Borel subalgebra, generated by the fields e,h. In this case, we form the fields

e j = ε
j (e(0)+(−1) je(1)

)
, h j,ε = ε

j (h(0)+(−1) jh(1)
)
, fm = ε

m f(0), j ∈ {0,1}. (4.15)
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The non-trivial products on the contracted algebra are given by

hi×h j '

ki+ j{I}, if i+ j ≤ 1,

0, otherwise,

hi× e j '

2{ei+ j}, if i+ j ≤ 1,

0, otherwise,

hi× fm '

−{ f1}, if i+m = 1,

0, if i+m > 1,

ei× fm '

1
2 (k1{I}+{h1}) , if i+m = 1,

0, if i+m > 1.
(4.16)

Again, as ŝl(2) is semisimple, we do not have a well defined contracted algebra for m = 0. However,

we have well defined contracted algebras for m = 1, and m > 1.

4.3.3 The asymmetric Galilean Virasoro algebra
(
(Vir)2

G,Vir
)

G

To elucidate the case of m = 0, we consider contracting a Galilean Virasoro algebra (Vir)2
G with a

Virasoro algebra Vir. The Galilean Virasoro algebra is generated by the fields {T0, T1}, and has OPEs

given by

Ti×Tj '

 c
2{I}+2{Ti+ j}, if i+ j ≤ 1,

0, otherwise.
(4.17)

From these relations we see that the Galilean Virasoro algebra has a Virasoro subalgebra generated by

T0, and the field T1 generates an abelian ideal.

The algebra (Vir)2
G⊗Vir is generated by the fields {T (0)

0 ,T (0)
1 ,T (1)}, where we have instead used the

superscript indices to indicate which algebra the fields are from. We use (0) to denote the Galilean

Virasoro, and (1) to denote the additional Virasoro algebra. We form the new linear combinations

T0,ε = T (0)
0 +T (1), T1,ε = ε

(
T (0)

0 −T (1)
)
, T̄m,ε = ε

mT (0)
1 . (4.18)

Along with the redefined fields, we also define new central parameters

c0,ε = c(0)0 + c(1), c1,ε = ε

(
c(0)0 − c(1)

)
, cm,ε = ε

mc(0)1 . (4.19)

The products between these fields become

Ti,ε ×Tj,ε '


ci+ j,ε

2 {I}+2{Ti+ j,ε}, if i+ j ≤ 1,

0, otherwise,

T0,ε × T̄m,ε '
c̄m

2
{I}+2{T̄m},

T1,ε × T̄m,ε ' ε
1
(

c̄m

2
{I}+2{T̄m}

)
. (4.20)
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In the contraction limit, the resulting contracted algebra is generated by the fields T0, T1, T̄m, with

non-zero products,

Ti×Tj '


ci+ j

2 {I}+2{Ti+ j}, if i+ j ≤ 1,

0, otherwise,

T0× T̄m '
c̄m

2
{I}+2{T̄m}. (4.21)

This result matches the general form from the classification in Section 4.1. Unlike the previous

examples, the contracted algebra in this example is also defined if m = 0. However, we remark that

because the product T (0)
1 ×T (0)

1 ' 0, the product T̄m× T̄m is trivial when m = 0.

The resulting algebra has a Virasoro subalgebra, as expected for any conformal Galilean algebra.

However, it also features two commuting quasi-primary Galilean partner fields T1 and T̄m, both of

grade 1 with respect to the Galilean algebra grading. Grading in this sense follows exactly from that

introduced in Section 2.4.

4.3.4 The asymmetric N = 2 superconformal algebra
(
SCA2,Vir1

)
G

Here we consider the N = 2 superconformal operator product algebra. This algebra is generated by

four fields {T, J, G+, G−}, where the fields T, J, are bosonic and G± are fermionic. The defining

OPE relations are

T ×T ' c
2
{I}+2{T}, T × J ' {J}, J× J ' c

3
{I},

T ×G± ' 3
2
{G±}, J×G± '±{G±},

G±×G∓ ' 2
c
3
{I}±2{J}+2{T}. (4.22)

We see that the bosonic fields of the algebra form a subalgebra, denoted Vir1, as it is the Virasoro

algebra extended by a conformal weight one current. We contract the full N = 2 superconformal

algebra with an additional copy of the bosonic subalgebra Vir1, whereby the pre-contraction basis

becomes

T0,ε = T(0)+T(1), T1,ε = ε
(
T(0)−T(1)

)
,

J0,ε = J(0)+ J(1), J1,ε = ε
(
J(0)− J(1)

)
,

G+
m,ε = ε

mG+
(0), G−m,ε = ε

mG−(0). (4.23)



70 CHAPTER 4. ASYMMETRIC GALILEAN ALGEBRAS

The products on the resulting contracted algebra then become

Ti×Tj '


ci+ j

2 {I}+2{Ti+ j}, if i+ j ≤ 1,

0, otherwise,

Ti× J j '

{Ji+ j}, if i+ j ≤ 1,

0, otherwise,

Ti×G±m '

3
2{Gm}, if i = 0,

0, otherwise,

Ji×G±m '

±{Gm}, if i = 0,

0, otherwise.
(4.24)

Particularly interesting behaviour occurs in the product

G+
m,ε ×G−m,ε = ε

2mG+
(0)×G−(0)

' ε
2m
(

2
c(0)
3
{I}±2{J(0)}+2{T(0)}

)
' ε

2m
(c1

3
{I}±{J0}+{T0}

)
+ ε

2m−1
(c1

3
{I}±{J1}+{T1}

)
, (4.25)

where we see that if m = 0, the product is not defined. This is clear since the fermionic generators do

not form an ideal. If m = 1
2 , we have that the product in the contraction limit is given by

G±1/2×G∓1/2 '
c1

3
{I}±{J1}+{T1}. (4.26)

Finally, if m > 1
2 then we have that the product G+×G− is trivial.

We remark that this algebra forms another example of when the generators of the ḡ fermionic subspace

can be individually rescaled. This fact has already been noticed in the string theory literature [67,

68], where two particular choices of m1,m2 have been studied. The individual rescaling for the

superconformal algebra is a result of the underlying Z2 grading. It would be interesting to investigate

similar generalisations for more general superalgebras, such as the N = 4 superconformal algebras,

where one has significantly more possibilities in the products between fermions.

4.3.5 The asymmetric
(
W3,Vir

)
G algebra

As a final example, we give the possible cases for contracting the W3 algebra, with its Vir subalgebra.

This is an algebra we had considered previously in [2]. The algebra W3 is generated by fields {T, W}
with relations

T ×T ' c
2
{I}+2{T}, T ×W ' 3{W},

W ×W ' c
3
{I}+2{T}+ 32

22+5c
{Λ}, (4.27)
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where we have introduced the quasi-primary field

Λ = (T T )− 3
10

∂
2T. (4.28)

To asymmetrically contract, we form the combinations

T0,ε = T(0)+T(1), T1,ε = ε
(
T(0)−T(1)

)
, Wm,ε = ε

mW(0). (4.29)

Evaluating the new product structure, the Lie-type relations are straightforwardly determined, giving

Ti×Tj '


ci+ j

2 {I}+2{Ti+ j}, if i+ j ≤ 1,

0, otherwise,

Ti×Wm '

{3Wm}, if i = 0,

0, otherwise.
(4.30)

For the final product we have

Wm,ε ×Wm,ε = ε
2mW(0)×W(0)

' ε
2m

(
c(0)
3
{I}+2{T(0)}+

32
22+5c(0)

{Λ(0)}

)

' ε
2m

(
1
6
(c0 +

1
ε

c1){I}+{T0}+
1
ε
{T1}+

32
22+5c(0)

{Λ(0)}

)
. (4.31)

Expanding the coefficient as

32
22+5c(0)

=
64
5c1

ε− (44+5c0)

25c1
ε

2 +O(ε3), (4.32)

and the field as

Λ(0) =
1
4

(
(T0T0)+

2
ε
(T0T1)+

1
ε2 (T1T1)

)
− 3

10
∂

2 1
2
(T0 +T1) . (4.33)

Combining the expansions, and taking the limit, we find that the products of the resulting contracted

algebra are

Ti×Tj '


ci+ j

2 {I}+2{Ti+ j}, if i+ j ≤ 1,

0, otherwise,

T0×Wm ' 3{Wm},

Wm×Wm '


c1
6 {I}+{T1}+ 16

5c1
{Λ1,1}, if m = 1/2,

0 for m > 1
2 ,

(4.34)

where we have introduced the field

Λ1,1 = (T1T1). (4.35)

The algebra is not defined in the contraction limit for m < 1
2 .
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4.4 The asymmetric Sugawara construction

Motivated by constructing conformal field theories from Galilean algebras, we want to determine

whether it is possible to construct a Virasoro operator on an asymmetrically contracted Galilean

affine Lie algebra. Furthermore, we want to determine whether this process is consistent with first

constructing Virasoro operators for the affine Lie algebra and its corresponding subalgebra, and then

performing the contraction.

We begin by considering the semisimple affine Lie algebra ĝ and ĥ⊆ ĝ a subalgebra. We note, that

although ĥ needs to be a subalgebra, it need not be semisimple.

It was shown through the series of papers [87–90] that Sugawara constructions for non-semisimple

Lie algebras are possible. One requires a non-degenerate invariant symmetric bilinear form, which

we denote Ωab. As the algebra is no longer semisimple, Ω is not given by the Killing form. Such a

form Ω can be found for the large class of non-semisimple Lie algebras given by the so-called double

extension construction of [89]. The classic example of such a non-semisimple Sugawara construction

is the construction of the free boson Virasoro operator with c = 1 (see [5] for a discussion).

The Sugawara operator for each simple part of ĝ is given by

T ĝ =
1

2(k(0)+h∨g )

[
κab
(
Ja
(0)J

b
(0)
)
+καβ

(
Jα

(0)J
β

(0)

)]
, (4.36)

where we have used Latin indices to label currents in the subalgebra h, and Greek indices to label

currents in ḡ, κ with lower indices is the inverse Killing form on g, and we make use of the summation

convention. The Sugawara operator on a semisimple ĝ is simply the linear combination of each simple

operator, and as such we will treat the simple case only to improve readability.

We then consider this operator under the inverse basis change maps in (4.3), along with the series

expansion of the leading coefficient.

The series expansion gives

1
2(k(0)+h∨g )

7→ 1
k1

ε−
k0 +2h∨g

k2
1

ε
2 +O(ε3), (4.37)

and the fields become

κab
(
Ja
(0)J

b
(0)
)
7→ κab

4

((
Ja

0 + ε
−1Ja

1
)(

Jb
0 + ε

−1Jb
1
))

, καβ

(
Jα

(0)J
β

(0)

)
7→ καβ ε

−2m(Jα
mJβ

m
)
. (4.38)

It is clear from combining the above expressions that when m > 1
2 , a contraction is not possible, as the

ε−2m term will diverge in the contraction limit.

We focus on the case when m = 1
2 , as the above form for the Sugawara operator only holds for when

ĝ is semisimple, and this is incompatible with the asymmetric contraction conditions at m = 0. The

Sugawara operator on the copy of the subalgebra h(1) is given in its general form [88, 89] by

T h = Ωab
(
JaJb), (4.39)
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where Ωab is the inverse of the form on h. If we suppose that h is itself simple, then Ωab =
1

2(k(1)+h∨h)
κab.

In this case, the resulting operators become

T0 =
2
k1

κab

[(
Ja

0 Jb
1
)
+
(
Ja

1 Jb
0
)]

+
1
k1

καβ

(
Jα

mJβ
m
)
−

2(k0 +h∨g +h∨h )

k2
1

κab
(
Ja

1 Jb
1
)
,

T1 =
2
k1

κab
(
Ja

1 Jb
1
)
, (4.40)

with central parameters c0 = dim(g)+dim(h) and c1 = 0. In the case that h is semisimple, we have a

sum of Sugawara operators, and the computation proceeds similarly.

In the case that the subalgebra h is not semisimple, then the Sugawara operator is still given by (4.39),

however, the form of Ωab is different. We still have that the individual Sugawara constructions are well

defined. As such, we can form Virasoro operators on the two algebras, T(0) and T(1), and subsequently

contract by forming the combinations

T0,ε = T(0)+T(1), T1,ε = ε
(
T(0)−T(1)

)
. (4.41)

In the contraction limit, these fields generate a Galilean Virasoro algebra action on the contracted

algebra. Moreover, the resulting Galilean Virasoro algebra will have

c0 = dim(g)+dim(h), c1 = 0, (4.42)

which follows directly from

c(0) =
k(0) dim(g)

k(0)+h∨g
, c(1) = dim(h), (4.43)

where we can series expand k(0) as a function of ε . For h non-semisimple, c(1) = dim(h) is known

from [89].

We return to the case m = 0. In this case, a Sugawara construction on ĝ is only possible if the subspace

ḡ forms an ideal. This implies the algebra ĝ is not semisimple. Sugawara constructions are still possible

for non-semisimple Lie algebras. However, there is so much freedom in the form Ω for non-semisimple

algebras that we are unable to give a general form of the resulting Sugawara operator, in the case that

the Sugawara construction is performed before contraction. However, we can say that when there is a

well defined Sugawara construction on the algebras g and h, then Virasoro operators constructed as

in (4.41) will indeed generate a Galilean Virasoro action on the asymmetrically contracted algebra(
g,h
)

G. Furthermore, using the results of [89], we know that the central parameters of that Galilean

Virasoro algebra will be given by c0 = dim(g)+ dim(h), and c1 = 0. Due to the freedom in Ω, we

cannot verify the commutativity of the Sugawara construction and the Galilean contraction, as that

requires an explicit form of the Sugawara operator. We return to discuss this point further in the

conclusion.
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4.4.1 The Sugawara construction for
(
ŝl(2), Ĥ

)
G

Here we provide the example of contracting the affine Lie algebra ŝl(2,C) with a Ĥ subalgebra, the

example coming from Section 4.3. For m = 1
2 , the resulting asymmetric algebra is generated by the

fields {e1/2, f1/2,h0,h1}. The non-trivial OPE relations are

hi×h j ' 2ki+ j{I}, i+ j ≤ 1,

h0× e1/2 ' 2{e1/2}, h0× f1/2 '−2{ f1/2},

e1/2× f1/2 '
k1

2
{I}+ 1

2
{h1}. (4.44)

The Sugawara operators are given by constructing the Sugawara operators in the pre-contraction

algebras, and then performing the expansion procedure, are given by

T0 =
1

2k1

[(
h0h1

)
+2
(
e1/2 f1/2

)]
− 2+ k0

4k2
1

(
h1h1

)
,

T1 =
1
k1

(
h1h1

)
, (4.45)

which form a Galilean Virasoro algebra of order two, with central charge c0 = 4 and c1 = 0.

Constructing the Sugawara operator for m = 1
2 in the contracted algebra (that is, performing Sugawara

after contraction), is a known result, given in [86], and as such we will not restate the result here

beyond saying that the two processes are commutative in the usual sense. We will however remark

again to reiterate, that despite the asymmetric contraction being well defined for m ≥ 0, subject to

conditions, only in the case that m = 1
2 , do we have an interesting, general Sugawara construction.

This concludes the results of the research into extended Galilean algebras. A thorough discussion

of the results of our work on the Galilean contraction, and possible avenues for further research, are

discussed in Chapter 7.
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Chapter 5

Introduction to N = 2 superconformal cosets

5.1 Introduction

In the second half of this thesis, we investigate modules known as staggered modules for the N = 2

superconformal algebras. Staggered modules are reducible yet indecomposable modules, characterised

by the non-diagonalisability of one of the zero mode generators of the algebra. In the case of the

staggered modules investigated here, the Virasoro zero mode L0 is no longer diagonalisable on the

module.

The N = 2 superconformal algebras are a family of infinite dimensional Lie superalgebras. First

introduced in [91], they describe the infinitesimal symmetries of a fermionic string on the world sheet

in string theory. The N = 2 superalgebras were introduced as an extension of the Neveu-Schwarz

N = 1 superconformal algebra, as a possible gauge theory description of the quark colour confinement

problem.

Here we are most interested in understanding their algebraic construction as a coset (commutant)

algebra. In the papers [92, 93], Kazama and Suzuki introduced a coset construction similar to that of

GKO (see Section 1.7) to describe supersymmetric string theories. Similar to the GKO setting, the

Kazama-Suzuki coset describing the N = 2 superconformal algebras is not unique in the following

sense. A Hermitian symmetric space is given by a coset of Lie groups (with some additional geometric

data). One can construct the generators of the N = 2 superconformal algebra from the currents of

the affine algebras corresponding to the coset Lie groups. The central charge of the resulting N = 2

superconformal algebra is a function of the levels of the affine Lie algebras in the coset.

The original work of Kazama-Suzuki was a construction of N = 1 superconformal models as a

coset. However, under particular conditions, the symmetries of the coset expanded, and the resulting

superalgebra possessed N = 2 superconformal symmetry. A complete understanding of this additional

symmetry mechanism, along with a classification result, was given in [94].
77



78 CHAPTER 5. INTRODUCTION TO N = 2 SUPERCONFORMAL COSETS

A great deal of work has gone into the study of N = 2 Kazama-Suzuki cosets, and in particular, the

Heisenberg coset

SCA2 =
ŝl(2)⊕bc

Ĥ
, (5.1)

where the N = 2 superconformal algebras are constructed from a coset of the affine Lie algebra

ŝl(2) with respect to a Heisenberg algebra Ĥ (equivalently, the algebra of the free bosonic field). The

additional algebra is the so-called bc-ghost system, or the fermionic ghost superalgebra [5]. Specifics of

these algebras are discussed later in this chapter, however, we would like to remark that this particular

construction was instrumental in classifying the highest-weight modules of the N = 2 superconformal

algebras [95–98].

More recently, there has been instrumental results on the general properties of Heisenberg algebra

cosets [99]. Using these results, the authors of [100] were able to provide a concrete map between the

minimal models of ŝl(2) at admissible level, and the minimal models of N = 2 superconformal algebras.

In this work, they describe in detail the action of the coset on the so-called relaxed highest-weight

modules (see [101] for a discussion of relaxed highest-weight modules) of ŝl(2), and discuss the

resulting families of N = 2 modules.

In this work we are primarily interested in so-called staggered modules. These are reducible yet

indecomposable modules characterised by a non-diagonalisable action of a generator of the zero-mode

subalgebra, most often the zero mode of the Virasoro algebra L0. The terminology “staggered module”

was first introduced in [102], studying reducible but indecomposable modules for the Virasoro algebra.

Staggered modules have been widely studied in the setting of conformal field theory, for example,

for the Virasoro algebra [103] (a classification was given in [104]), the triplet algebra [20, 105], the

affine Lie algebras ŝl(2) [106–108] and ôsp(1|2) [109], the Heisenberg algebra [110], and N = 1

superconformal algebras [111, 112]. Moreover, staggered modules and have also been shown to arise

in systems in statistical physics [113, 114].

Staggered modules are intimately tied to the study of logarithmic conformal field theory [115–117]

(see [105, 118] for overviews of the field), named after the appearance of logarithmic divergences in

the OPEs of fields in the theories. Such CFTs are fundamentally non-unitary theories. Early examples

of physical systems exhibiting logarithmic behaviour comes from the c = 0 conformal field theory

related to lattice models of percolation [119, 120], and the c =−2 systems related to so-called critical

dense polymers [121, 122].

More concrete mathematical understanding of the mechanisms behind the divergences came from the

series of papers [20, 123, 124], where the authors investigated how staggered modules arise through

fusion. Logarithmic conformal field theory has been extensively studied, leading to the so called

logarithmic minimal models [113, 125, 126] which are logarithmic extensions of the Virasoro minimal

models related to the triplet algebras of [127], as well as the Wess-Zumino-Witten models at fractional

values of the level k [107, 118, 128]. However, the field of logarithmic conformal field theory is still
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at the leading edge of research in conformal field theory, and representation theory in mathematical

physics.

The Verlinde formula [129], which provides a formula for the structure coefficients of a given

Grothendieck (character) ring, returns strange results in the logarithmic setting. As discussed in

Section 1.5, the fusion co-efficients are interpreted as multiplicities of the modules that appear,

however in the logarithmic case for example, applying the Verlinde formula can lead to negative

co-efficients. A detailed description of how the Verlinde formula is to be understood in the logarithmic

setting is given in [118]. Moreover, character fusion is generically not equivalent to module fusion,

rather it provides a guide. One method for calculating module fusion is an algorithm known as the

Nahm-Gaberdiel-Kausch (NGK) algorithm [19–21] (see [23] for an introduction), and while extremely

powerful, it is still difficult to calculate with concretely. We also briefly mention here that there is

a well developed theory of tensor categories [130–132] which runs parallel to the understanding of

fusion through the NGK algorithm (see [133] for a review). A good description of the relation between

these two approaches is given in [23].

In this chapter, we introduce the theory required to present the results of our exploratory investigation

into staggered modules over the N = 2 superconformal algebras. Recent results on the coset construc-

tion of the N = 2 superconformal algebras have opened the possibility of investigating N = 2 staggered

modules, using the corresponding staggered modules over the affine Lie algebra ŝl(2). The presence

of staggered modules in the non-unitary minimal models of ŝl(2) has been demonstrated explicitly for

specific values of the level k, namely k =−1
2 and k =−4

3 , and moreover is conjectured to occur in

general [107, 109]. Here we demonstrate via the coset given in (5.1) that staggered modules also arise

in the non-unitary minimal models of the N = 2 superconformal algebras.

We start by introducing the notion of a vertex operator superalgebra (VOSA), and its modules. Although

this formalism is not heavily used in our results, it provides a unifying mathematical framework for

understanding conformal field theory, and many of the results that are key to our work here rely upon

it.

Following this, we introduce the algebras involved in the coset. Our presentation here generally

follows the notation and structure of [100], where the authors introduced this coset for studying

the (non-)unitary minimal models of the N = 2 superconformal algebras. We introduce the N = 2

superconformal algebras, their highest-weight representation theory, and their conjugation and spectral

flow morphisms. We continue by introducing other algebras required in the construction, namely the

affine Lie algebra ŝl(2), the Heisenberg algebra Ĥ, and the bc-ghost system. We discuss the modules

and automorphisms of these algebras relevant to the coset construction, and to our results which follow

in Chapter 6. Finally, we introduce to the coset itself, the related branching rules for the representations,

and the action of the algebra automorphisms on the branching rules. In this introduction, we focus

on key points relevant to the presentation of our results. A comprehensive description of the coset
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construction for both unitary and non-unitary N = 2 minimal models as is given in [100].

5.1.1 A brief introduction to vertex operator superalgebras

In this chapter, it is convenient to briefly introduce the notion of a vertex operator (super)algebra.

Vertex operator superalgebras provide a rigorous mathematical framework that unifies the symmetry

algebra and the space of fields. The link between vertex operator superalgebras and the previously

used operator product algebras will be clear from the way the definitions are presented.

We begin by stating the definition of both a vertex operator superalgebra, and a module thereof,

following [134]. The data of a vertex operator superalgebra is a Z2-graded vector space V =V 0⊕V 1,

where

V 0 =
⊕

n∈Z≥0

Vn, V 1 =
⊕

n∈Z≥0+
1
2

Vn, (5.2)

that is V is also 1
2Z≥0-graded; two distinguished elements 1 ∈V0 and ω ∈V2; and a map

Y : V → End(V )[[z,z−1]], a 7→ ∑
n∈Z

anz−n−1, ∀a ∈V, (5.3)

called the field map, which associates each element of V to an operator-valued formal series in the

variable z. The data (V,Y,1,ω) satisfy the following axioms:

• Y (a,z) = 0 iff a = 0.

• Vacuum: Y (1,z) = idV where idV is the identity endomorphism.

• Virasoro: The field corresponding to the vector ω is given by

Y (ω,z) = ∑
n∈Z

ωnz−n−1 = ∑
n∈Z

L−nz−n−2, (5.4)

where the modes Ln satisfy

[Ln,Lm] = (n−m)Ln+m +
1

12
n(n2−1)δn+m,0c1, c ∈ C, (5.5)

where c is the central charge (often called the rank of V in the mathematics literature).

• Derivative: The mode L−1 acts as

Y (L−1a,z) =
d
dz

Y (a,z), ∀a ∈V. (5.6)

• Grading: The action of L0 grades the vector space V

L0|Vn = n id |Vn. (5.7)
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• Jacobi/Borcherds: The following associativity condition holds for any m,n ∈ Z,

Resz−w
(
Y (Y (a,z−w)b,w)ιw,z−w((z−w)mzn)

)
= Resz

(
Y (a,z)Y (b,w)ιz,w(z−w)mzn)− (−1)|a||b|Resz

(
Y (b,w)Y (a,z)ιw,z(z−w)mzn),

(5.8)

where Resz is the usual z−1 co-efficient extraction operator; for a rational function with possible

poles at z = w, z = 0, w = 0, the expression ιz,w f (z,w) denotes the power series expansion of

f (z,w) in the domain |z|> |w|; and |a|= i if a ∈V i.

We say that an element a ∈V is homogeneous of degree n = deg(a) ∈ 1
2Z≥0 if a ∈Vn. The definition

for a vertex operator algebra (VOA) is taken exactly as above, except V 1 is trivial. The notion of vertex

operator subalgebra is defined in the obvious way. A vertex oeprator superalgebra ideal is a subspace

U ⊆V such that

Y (a,z)U ⊆U [[z,z−1]] ∀a ∈V. (5.9)

A vertex operator superalgebra is simple if its only ideals are V and the trivial ideal. If U is an ideal

such that 1 /∈U , and ω /∈U , then the quotient V/U admits a natural VOSA structure.

One can see from the definition that a vertex operator (super)algebra merges the underlying algebra of

symmetries, its action on the vacuum representation, and the state-field correspondence into a single

framework. Moreover, as we now identify what were the generators of the Lie algebra, specifically

with endomorphisms on the vacuum module, the central charge is no longer an element of the algebra,

rather a parameter which determines the vertex operator (super)algebra. In the commutation relations,

this parameter accompanies the identity endomorphism, which is related to the vacuum vector under

the field map. In this way, we have eliminated the overlap in notation.

As an example, the Virasoro vertex operator algebra takes the vacuum representation of highest weight

zero and central charge c ∈ C, and L−1 |0〉= 0, as the vector space V . The highest-weight vector |0〉
is the vacuum vector of the theory, and L−2 |0〉 is the conformal vector. The vertex operator algebra

arising from this vector space is known as the universal vertex operator algebra. is It is well known

that for particular values of the central charge, the vacuum module is reducible, implying that the

corresponding vertex operator algebra for those values of c is not simple. As such, the corresponding

simple VOA is exactly the one formed by taking the corresponding simple quotient of the vacuum

module as the vector space V .

Correspondingly, a module over a vertex operator superalgebra (V,Y,1,ω) is a vector space M =⊕
n∈ 1

2Z≥0
Mn, and a linear map

YM(·,z) : V → End(M)[[z,z−1]], a 7→ YM(a,z) = ∑
n∈Z

anz−n−1, (5.10)

satisfying
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• For every homogeneous a ∈V , anMm ⊂Mm+deg(a)−n−1.

• Vacuum: YM(1,z) = 1M

• Virasoro: Ym(ω,z) = Lnz−n−2 where the Ln satisfy the Virasoro commutation relations with

central charge c.

• Derivative: YM(L−1a,z) = d
dzYM(a,z) for all a ∈V .

• Jacobi/Borcherds: We require that the identity

Resz−w
(
Ym(Y (a,z−w)b,w)ιw,z−w((z−w)mzn)

)
= Resz

(
YM(a,z)YM(b,w)ιz,w(z−w)mzn)

− (−1)|a||b|Resz
(
YM(b,w)YM(a,z)ιw,z(z−w)mzn), (5.11)

holds for all m,n ∈ Z.

In essence, this definition is exactly what one would expect for the definition of a module. We have

defined an action of the (super)algebra on a vector space, and it is compatible with the product relations.

Moreover, the action of the Virasoro (sub)algebra is preserved.

Although we will not be making use of the relations presented in the definition of vertex operator

algebra directly, it is particularly useful to understand the framework. Moreover, it underpins many of

the fundamental results which we use in this chapter. The ideas of unitarity of representations and

rationality of minimal models introduced in Chapter 1 all carry into this framework.

5.2 Introduction to the N = 2 superconformal algebras

We start by introducing the N = 2 superconformal algebras. These are a family of infinite-dimensional

Lie superalgebras, generated by the modes of two bosons and two fermions. We will focus on two

superalgebras within the family, namely the Neveu-Schwarz algebra NS= 〈Ln,Jm,G+
r ,G

−
s ,c | n, m ∈

Z, r, s ∈ Z+ 1
2〉, and the Ramond algebra R= 〈Ln,Jm,G+

r ,G
−
s ,c | n, m ∈ Z, r, s ∈ Z〉. Both superal-

gebras have defining commutation relations given by

[Lm,Ln] = (m−n)Ln+m +
c

12
n(n2−1)δn+m,01,

{G±r ,G∓s }= 2Lr+s± (r− s)Jr+s +
c

12
(4r2−1)δr+s,01

[Lm,Jn] =−nJn+m, [Jm,Jn] =
c
3

mδn+m,01[
Lm,G±r

]
=
(m

2
− r
)

G±m+r,
[
Jm,G±r

]
=±G±m+r. (5.12)

Correspondingly, the N = 2 superconformal algebras are vertex operator superalgebras, generated by

two bosonic fields, namely J(z), T (z) of conformal weight 1 and 2 respectively, and two fermionic

fields G±(z) each of conformal weight 3
2 . The field T (z) generates a Virasoro subalgebra, and the other
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generating fields are primary. The defining non-trivial operator product expansions for the universal

N = 2 superconformal algebra are given by

J(z)J(w)∼ (c/3)1
(z−w)2 , T (z)T (w)∼ (c/2)1

(z−w)4 +
2T (w)
(z−w)2 +

∂T (w)
z−w

,

T (z)J(w)∼ J(w)
(z−w)2 +

∂J(w)
z−w

, T (z)G±(w)∼ (3/2)G±

(z−w)
+

∂G±(w)
z−w

,

G±(z)G∓(w)∼ (2/3)c1
(z−w)3 ±

2J(w)
(z−w)2 +

2T (w)±∂J(w)
z−w

. (5.13)

We will focus on the minimal model N = 2 algebras M(u,v), labelled by u,v, which occur when

c = 3
(

1−2
v
u

)
, u ∈ Z≥2, v ∈ Z≥1, gcd(u,v) = 1. (5.14)

For these values of c, the universal vertex operator superalgebra is not simple, and M(u,v) denotes the

corresponding unique irreducible quotient. Our aim is to investigate the representation theory of the

algebras M(u,v). The minimal models are unitary when v = 1. Our results will focus on the case when

v≥ 2, as we are interested in non-unitary theories. Unitary theories do not contain staggered modules.

5.2.1 Representation theory of the N = 2 superconformal algebras

We begin by introducing the highest-weight modules of the N = 2 superconformal algebras. Both the

Neveu-Schwarz and Ramond algebras admit a triangular decomposition

SCA2 = g−⊕g0⊕g+, (5.15)

where, for the Neveu-Schwarz algebra we have

g− = span{G−n ,G+
n ,Ln,Jn | n < 0},

g+ = span{G−n ,G+
n ,Ln,Jn | n > 0},

g0 = span{L0, J0, 1}; (5.16)

and for the Ramond algebra, we have

g− = span{G−m,G+
n ,Ln,Jn | m≤ 0,n < 0}

g+ = span{G+
m,G

−
n ,Ln,Jn | m≥ 0,n > 0},

g0 = span{L0, J0, 1}. (5.17)

We then develop the Neveu-Schwarz Verma modules in the standard way. Consider the 1-dimensional

module CNS,±
j,∆ , j,∆ ∈ C, of the subalgebra g+⊕g0 where L0,J0,1 act as ∆, j,1 respectively, and all

other actions are trivial. One can induce from CNS,±
j,∆ to a module over the full N = 2 superconformal

algebra, which we denote V NS,±
j,∆ . This is the Verma module of weight ( j,∆). The Verma module has a

unique maximal submodule. We let LNS,±
j,∆ denote the irreducible quotient of V NS,+

j,∆ by its maximal

submodule. The Verma modules decompose into weight spaces labelled by (J0,L0) eigenvalues.



84 CHAPTER 5. INTRODUCTION TO N = 2 SUPERCONFORMAL COSETS

A Neveu-Schwarz highest-weight vector is one which is annihilated by the action of g+, and is a

simultaneous eigenvector of L0,J0,1. Any vector which generates a highest-weight submodule (not

necessarily maximal) must necessarily vanish under the action of g+, and must be a simultaneous

eigenvector of L0,J0,1. That is, it satisfies the highest-weight condition (without necessarily being the

vector with highest weight). Any such vector which satisfies the highest-weight conditions, is called a

singular vector. As in the case of Virasoro, the proper singular vectors generate proper submodules,

and moreover, proper submodules are again null with respect to the Shapovalov form on Vj,∆.

As modules over a superalgebra, the Verma modules are Z2 graded, that is they decompose into an

even and an odd subspace V = V0⊕V1. The parity of such a module is determined by whether the

highest-weight vector lies in the space V0 or V1. If it is an even vector, then the module has even parity

denoted by superscript +, otherwise the module has odd parity, and is denoted by superscript −. The

fermionic generators map between these subspaces, and the bosonic generators preserve them. There

is a parity reversal functor Π : V →V , such that Π(Vi) 7→V1−i.

Construction of Verma modules for the Ramond algebra proceeds similarly, however we now have

G+
0 ∈ g+ and G−0 ∈ g−. Continuing, we take the 1-dimensional representation CR,±

j,∆ over the subalgebra

g0⊕g+, where J0, L0, 1 act as j, ∆, 1 respectively, and all other actions are trivial. We then induce

from this to a module over the full Ramond algebra, denoted V R,±
j,∆ , the Verma module of weight ( j,∆).

Similarly to the Neveu-Schwarz modules, we denote the irreducible quotient of the Verma module

by its unique maximal submodule by LR,±
j,∆ . A Ramond highest-weight vector is a vector v which is

annihilated by all positive modes and G+
0 , and is a simultaneous eigenvector of L0,J0,1.

The Verma modules over both superalgebras have a bilinear form given by the Shapovalov form [12]

(see Section 2.3.2 for an introduction), whereby the highest-weight vector |v〉 is normalised to 〈v|v〉= 1,

and the adjoints of the modes are

L†
n = L−n, J†

n = J−n,
(
G±r
)†

= G∓−r, 1
† = 1. (5.18)

In the paper [135] the authors give formulas for the determinant of the Gram matrix of inner products

on Verma modules for the Neveu-Schwarz algebra. We have that the determinant to level n in the

module is given by

det(Vj,∆,c) = ∏
1≤rs≤2n

( fr,s)
PNS(n−rs/2,m)× ∏

k∈Z+ 1
2

(gk)
P̃NS(n−|k|,m−sgn(k);k) , (5.19)

where PNS(n,m) and P̃NS(n,m;k) are partition functions which we will not require when determining

zeroes (their explicit form is given in [135]), and the functions fr,s and gk are defined as

fr,s( j,∆, t) =
(st−2r)2

4t2 − j2− 4∆

t
− 1

t2 , (5.20)

and

gk( j,∆, t) = 2∆−2k j− 2
t

(
k2− 1

4

)
. (5.21)
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When fr,s = 0, there is an uncharged singular vector at level rs
2 in the Verma module. Similarly,

when gk = 0 there is a charged singular vector at level |k|, with J0-weight sign(k) relative to the

highest-weight vector.

A surprising result is that all singular vectors of Verma modules appear with relative charge (J0-

eigenvalue) (−2),−1,0,1. The singular vectors with relative charge −2 only occur in Ramond sector

modules. We remark that the corresponding formulas for the Ramond sector follow directly from the

spectral flow identifications introduced at the end of this section.

•NS R• •

Figure 5.1: The figure shows the extremal diagram (the shape of the outer-most states) for a generic
Verma module over the Neveu-Schwarz (NS) and Ramond (R) module. The vertical dotted lines indicate
the values for the charge where singular vectors can appear. The fermionic generators squaring to
zero implies the modules have a parabola-like shape in weight space.

We note that unlike many other common examples in representation theory, the submodules of

SCA2 Verma modules are not necessarily Verma modules. To be a Verma module, one must allow

for free left action of the universal enveloping algebra of the lowering generators U(g−), however,

fermionic generators square to zero, implying that charged singular vectors cannot generate Verma

submodules [135].

Moreover, the Verma modules of the N = 2 superconformal algebras admit subsingular vectors.

Suppose a vector x ∈ V is singular, and generates a submodule U ⊂ V . Then a subsingular vector

w ∈V is a singular vector in the quotient V/U , which is not singular in the module V . Subsingular

vectors appear generically in the representation theory of the N = 2 superconformal algebras.

Finally, we remark that it is also possible to have more than one linearly independent singular vector in

the same weight space. This phenomenon was outlined clearly in [95], where the authors describe the

requirements for unitarity of the N = 2 minimal models. Although this will not affect our results, as

we will deal with modules composed from irreducible representations, we make this remark to outline

the significant differences between N = 2 superconformal and Virasoro representation theory.

Highest-weight modules over the Neveu-Schwarz algebra have a 1-dimensional space of L0-eigenvectors

with minimal eigenvalue (we refer to these states as ground states). For the Ramond algebra, generically

this space is 2-dimensional, and given by span{v, G−0 v}. However, since

G+
0 G−0 v =

(
2L0−

c
12

)
v, (5.22)



86 CHAPTER 5. INTRODUCTION TO N = 2 SUPERCONFORMAL COSETS

if ∆ = c
24 , then the vector G−0 v is a singular vector. This implies the corresponding irreducible module

LR,±
j, c

24
will have a 1-dimensional space of ground states.

5.2.2 Automorphisms of N = 2 superconformal algebras

The N = 2 superconformal algebras admit a number of well studied automorphisms [136]. Here we

will be interested in two in particular, namely the conjugation automorphism γ and the spectral flow

family of automorphisms labelled by σ ` for ` ∈ Z.

The conjugation automorphism acts on the generators as

γ(Ln) = Ln, γ(Jn) =−Jn, γ(G±r ) = G∓r . (5.23)

The effect of conjugation is to reverse the charge of the fermionic generators.

The spectral flow automorphisms act on the generators as

σ
`(Ln) = Ln− `Jn +

1
6
`2

δn,0c1, σ
`(Jn) = Jn +

`

3
δn,0c1, σ

`(G±r ) = G±r∓`. (5.24)

Both automorphisms leave the identity element unchanged.

We note that the spectral flow for ` ∈ C defines an isomorphism between superalgebras in the family

of N = 2 superconformal algebras. However, it is only an automorphism if ` ∈ Z [136, 137].

Also of interest is when ` ∈ Z+ 1
2 , where it provides a map between the Neveu-Schwarz and Ramond

algebras. We note also that the spectral flow is not an automorphism of the corresponding vertex

operator superalgebra, only the algebra considered as an infinite dimensional Lie superalgebra (or

equivalently, as a vertex superalgebra). This is because the map does not preserve the conformal vector

L−2 |0〉 in the vertex operator superalgebra setting. However, for the simplicity of our presentation, we

will use the term automorphism also when ` ∈ 1
2Z.

The automorphisms σ ` and γ allow for identifications of modules in the following way. The action

of an automorphism on the modules of an algebra is referred to as twisting, and the corresponding

modules are referred to as twisted modules. Twisted modules are related to their untwisted counterparts

in the following way. Suppose we have a some vector space isomorphism ξ from a given module M to

a twisted module ξ (M). The twisted module is endowed with the action of g such that

xξ (|v〉) = ξ (ω−1(x) |v〉), for x ∈ g, v ∈M, (5.25)

where ω is an automorphism of g. In the remainder of the text, we will not distinguish between the

vector space isomorphism ξ and the algebra automorphism ω . Rather, as an example, to show the

action of the spectral flow, we have

xσ
`(|v〉) = σ

`
(
σ
−`(x) |v〉

)
, x ∈ g. (5.26)
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Using these equations, it is possible to derive relations between irreducible highest-weight modules.

For conjugation,

γ(LNS,±
j,∆ )∼= LNS,±

− j;∆ , γ

(
LR,±

j;∆

)
∼=

LR,±
− j;∆, if ∆ = c

24 ,

LR,∓
− j+1,∆, otherwise,

(5.27)

and for the spectral flow

σ
1/2
(

LNS,±
j,∆

)
∼= LR,±

j+c/6,∆+ j/2+c/24,

σ
1/2
(

LR,±
j,∆

)
∼=

LNS,±
j+c/6, j/2+c/12, if ∆ = c

24 ,

LNS,∓
j−1+c/6,∆+( j−1)/2+c/24, otherwise.

(5.28)

5.3 The coset construction of N = 2 minimal models

In this section we outline the elements required to understand the coset construction of the N = 2

superconformal minimal models M(u,v). We introduce the remaining algebras required for the coset,

the coset construction itself, the resulting branching rules, and the corresponding module dictionary

which interprets the output. We generally follow the presentation and notation of [100].

5.3.1 The affine Lie algebra ŝl(2)

Here we introduce the vertex operator algebra corresponding to the affine Lie algebra ŝl(2). These

algebras, and their related families of minimal models are key in understanding the construction of the

N = 2 superconformal minimal models at admissible level. Moreover, the representation theory of

these algebras dictates the possible families of representations arising for the superconformal algebras

through the coset construction.

The family of vertex operator algebras based on the affine Lie algebra ŝl(2) at level k are generated by

three fields, e(z), f (z), h(z), with operator product expansions

h(z)e(w)∼ 2e(w)
z−w

, h(z)h(w)∼ 2k1
(z−w)2 , h(z) f (w)∼ −2 f (w)

z−w
, e(z) f (w)∼ k1

(z−w)2 +
h(w)
z−w

,

(5.29)

where the level k ∈ C\{−2}, and e(z)e(w)∼ 0, f (z) f (w)∼ 0. We omit the case k =−2, known as

the critical level, because at that level we no longer have a Sugawara construction. The underlying Lie

algebra of modes has non-zero commutation relations

[hm,en] = 2em+n, [hm, fn] =−2 fm+n,

[hm,hn] = 2mkδn+m,01, [em, fn] = hm+n +mkδn+m,01. (5.30)
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The algebra ŝl(2) also admits conjugation and spectral flow automorphisms, denoted γaff and σ `
aff,

which have the following action on the generators

γaff(en) = fn, γaff( fn) = en, γaff(hn) =−hn, γaff(Laff
0 ) = Laff

0 ,

σ
`
aff(en) = en−`, σ

`
aff( fn) = fn+`, σ

`
aff(hn) = hn + `δn,0k1, σ

`
aff(L

aff
0 ) = Laff

0 +
1
2
`h0 +

1
4
`2k1.

(5.31)

We will make use of the notation “aff” to distinguish objects which relate to ŝl(2) from those which

relate to the N = 2 superconformal algebras, whenever there is any ambiguity.

We can naturally construct a Virasoro field via the Sugawara construction, as discussed in Section 1.6

(recalling that h∨ = 2 for sl(2)), which is given by

T aff(z) =
1

2(k+2)

[
1
2
(hh)(z)+(e f )(z)+( f e)(z)

]
. (5.32)

The modes of the field T aff(z) generate a Virasoro algebra with central charge

c =
3k

k+2
, (5.33)

as we have seen in the introduction. We can introduce the following convenient reparameterisation, in

terms of t = k+2, so we have that the central charge becomes

c = 3
(

1− 2
t

)
. (5.34)

By definition, the fields e(z),h(z), f (z) are conformal weight 1 primary fields with respect to the action

of T aff(z). As in the case of N = 2, we will introduce u,v∈Z such that u≥ 2, v≥ 1 , and gcd(u,v) = 1;

and we set t = u
v .

The values of t satisfying the parametrisation in terms of u, v, are referred to as admissible levels.

For exactly these values, the universal vertex operator algebra based on ŝl(2) (the conformal vector is

given by the corresponding mode of the Sugawara operator) is not simple. The representations of the

corresponding simple quotients of these algebras are the minimal models. Following notation in [100],

we denote the minimal model A1(u,v). Explicitly, the admissible levels and central charges are

k =−2+
u
v
, c = 3

(
1−2

v
u

)
, u ∈ Z≥2,v ∈ Z≥1,gcd(u,v) = 1. (5.35)

When v = 1, the level is “integral”. For these values of the level, one obtains the Wess-Zumino-Witten

models. When v ≥ 2, the resulting level is fractional, and the corresponding models are no longer

unitary. There is a classification of the irreducible representations for these values of the level [101,140].

In this discussion, we will draw on two particular types of modules for the A1(u,v) minimal models,

which we will denote L-type, and D±-type.

In order to discuss these modules, it is convenient to introduce the following parameters

λr,s = r−1− st, ∆
aff
r,s =

(r− st)2−1
4t

, (5.36)
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which describe the h0-eigenvalue and Laff
0 -eigenvalue of the highest-weight vectors of the A1(u,v)

modules respectively. The module families of interest to our discussion here are then the following.

• L-type: The L-type modules are irreducible highest-weight modules labelled by Lr,0, where

1 ≤ r ≤ u− 1. The highest-weight vector of these modules have (Laff
0 ,h0) eigenvalues given

by (∆aff
r,0,λr,0). These can be conceptualised by understanding that the space of vectors with

maximal L0-eigenvalue form a finite dimensional representation of the algebra sl(2) of weight

λr,0.

• D+-type: The D+-type modules, labelled D+
r,s are again irreducible highest-weight modules,

with highest weight (∆aff
r,s ,λr,s) for 1 ≤ r ≤ u− 1, 1 ≤ s ≤ v− 1. Again the space of vectors

with minimal Laff
0 weight forms a representation of sl(2), however, as the highest weight of this

representation λr,s is no longer integer, this representation is now infinite dimensional.

• D−-type: The D−-type modules, labelled D−r,s are irreducible modules, however they are no

longer highest weight. Rather, they are conjugate modules to the D+-type modules, that is

γaff(D±r,s)∼= D∓r,s. As such, the space of states with minimal Laff
0 eigenvalue forms a lowest weight

representation of sl(2) with lowest weight −λr,s, where 1≤ r ≤ u−1, 1≤ s≤ v−1. It is clear

by the action of conjugation that the maximal L0 eigenvalue of such modules is ∆aff
r,s .

We remark that there are several other families of modules, which are necessary to completely describe

the representation theory of the A1(u,v) minimal models, however, we will not require these modules

for this work. A thorough description of such modules can be found in [101].

5.3.2 The coset construction of the N = 2 algebras

The key tool of our investigation is the Kazama-Suzuki coset (commutant) construction of the N = 2

superconformal algebra. The particular coset of interest is

A1(u,v)⊗bc

Ĥ
= M(u,v), (5.37)

where A1(u,v) and M(u,v) are the minimal models of ŝl(2) and the N = 2 superconformal algebras

respectively, Ĥ is a simple Heisenberg vertex operator algebra, and bc is a simple vertex operator

superalgebra known as the bc-ghost system. We introduce these additional algebras and their relevant

representations briefly below for completeness.

We also remark that in the vertex operator algebra setting, the notion of coset has been made rigorous

through the commutant of vertex operator algebras [139]. Given a vertex operator algebra V , and a

vertex operator subalgebra U ⊂V , the commutant of U in V , denoted Com(U,V ) is the subalgebra of V

which commutes with the subalgebra U . The above coset is equivalently given by Com(Ĥ,A1(u,v)⊗
bc).
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We continue by briefly introducing the other algebras relevant to the coset construction. The Heisenberg

algebra is the infinite dimensional Lie algebra related to the abelian algebra gl(1). It is also commonly

referred to as the free boson algebra, as its corresponding field theory is that of a free bosonic field. It

is generated by the modes {an | n ∈ Z}, and has commutation relations

[am,an] = mδm+n,01. (5.38)

As a field theory, it is generated by a single field a(z) with OPE given by

a(z)a(w)∼ 1

(z−w)2 . (5.39)

The algebra becomes a vertex operator algebra once we introduce the Virasoro operator coming from

the Sugawara construction

T Ĥ(z) =
1
2
(aa)(z), (5.40)

which generates a Virasoro algebra of central charge c = 1.

The Verma modules of the Heisenberg algebra are the Fock spaces (or Fock modules) Fp, for p ∈ C,

which are generated by a highest-weight vector of weight p. It is a well known fact that the Heisenberg

algebra Fock spaces are irreducible.

The bc-ghost system is an infinite dimensional Lie superalgebra generated by the modes {bn,cn | n ∈
Z+ 1

2} in the Neveu-Schwarz sector, and {bn,cn | n ∈ Z} in the Ramond sector, with non-zero

commutation relations

{bn,cn}= δm+n,01. (5.41)

Correspondingly the superalgebra is generated by the fields b(z),c(z) with non-zero OPE relations

b(z)c(w)∼ c(z)b(w)∼ 1

z−w
. (5.42)

This algebra becomes a vertex operator superalgebra with Virasoro operator given by

T bc(z) =
1
2
[(∂bc)− (b∂c)] , (5.43)

with central charge c = 1.

The highest-weight representations of the bc-ghost system are Z2-graded modules (as they are

fermionic), and fall into four isomorphism classes. The representations are labelled Ni for i ∈ 0,1,2,3,

where N0 and N2 = Π(N0) are Neveu-Schwarz modules (Π is the parity reversal functor, exchanging

the even and odd subspaces); and N1 and N3 = Π(N1) are Ramond modules. All Ni modules are

irreducible.

Each of these algebras have both spectral flow and conjugation automorphisms. For the Heisenberg

algebra, conjugation is denoted γĤ , and has the action

γĤ(an) =−an, γĤ(L
Ĥ
n ) = LĤ

n . (5.44)
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Spectral flow is denoted σm
Ĥ

, for m ∈ C, and has the action

σ
m
Ĥ
(an) = an−mδn,01, σ

m
Ĥ
(LĤ

n ) = LĤ
n −man +

1
2

m2
δn,01. (5.45)

For the bc-ghost system, we denote the automorphisms γbc and σ `
bc for ` ∈ 1

2Z, with the action

γbc(bn) = cn, γbc(cn) = bn, γbc(Lbc
n ) = Lbc

n , (5.46)

and

σ
`
bc(bn) = bn−`, σ

`
bc(cn) = cn+`, σ

`
bc(L

bc
n ) = Lbc

n − `Qn +
1
2
`2

δn,01, (5.47)

where

Q(z) =
(
bc
)
(z) = ∑

n∈Z
Qnz−n−1. (5.48)

For both algebras, the automorphisms have trivial action on the element 1.

A complete discussion of the coset construction and related embedding is given in [100]. Here we are

primarily interested in the corresponding statement for representations. The coset implies a branching

rule of representations, namely that

(Mλ ⊗Ni)↓ ∼=
⊕

p∈λ+i+2Z
Fp⊗ [i]CM

p , (5.49)

which states that for Mλ a representation of A1(u,v), and Ni a representation of bc, their restriction

decomposes as a tensor product of Fock space representations Fp of the Heisenberg algebra, and

representations [i]CM
p of the N = 2 superconformal minimal model M(u,v), where (u,v) are the same

as those labelling the model A1(u,v).

There are a number of symmetries between [i]CM
p modules which can be deduced from the branching

rules. We begin by noting that all algebras involved in the coset have conjugation and spectral flow

automorphisms. As such, there is a corresponding notion of conjugation and spectral flow of their

modules, as well as for the branching rule.

It is an important result from [99] that the automorphisms act on the representations appearing in the

branching rules as

γaff⊗ γbc = γĤ⊗ γN=2, σ
`
aff⊗σ

m
bc = σ

`k+2m
Ĥ

⊗σ
`
N=2, ` ∈ Z, m ∈ 1

2
Z. (5.50)

Using these relations, the authors of [100] derive the following useful identifications between modules

appearing in the branching rules

[i]Cσ `(M)
p ∼= [i+2]CM

p−`t , σ
`
N=2(

[i]CM
p )∼= [i−2]CM

p−2`,
[i]Cγ(M)

p ∼= γN=2(
[−i]CM

−p), (5.51)

where we recall that t = u
v .
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5.3.3 Module dictionary

In [100] the authors established a dictionary for translating highest-weight M(u,v) modules appearing

in the branching rules, namely [i]CM
p , into modules of the form L•,±

∆; j introduced in Section 5.2. Here

we will restate some of those results for the completeness of our discussion. We focus on the case

when the parameters u, v are such that gcd(u,v) = 1 and u,v≥ 2, that is, we focus only on admissible

values of the central charge c leading to non-unitary minimal models. The branching rules for the L-

and D±-type A1(u,v) modules are as follows,

(Lr,0⊗Ni)↓ ∼=
⊕

i+λr,0+2Z
Fp⊗ [i]CL

p;r,0, (5.52)

(D+
r,s⊗Ni)↓ ∼=

⊕
i+λr,s+2Z

Fp⊗ [i]CD
p;r,s. (5.53)

We reiterate that the D−-type A1(u,v) modules are conjugate to D+-type, and the action of conjugation

on the branching rules was given in (5.50).

With the branching rules made explicit, we can now state the dictionary. We remark that dictionaries

are only presented for i = 0,1, where i labels the bc-ghost system module, as the cases when i = 2,3

are obtained from these respectively by applying the parity reversal operator. At the level of N = 2

superconformal modules L•,±j;h , this amounts to changing the superscript sign. We remark that the

notation for L-type A1(u,v) modules is distinguished from M(u,v) modules by the superscripts on

M(u,v) modules indicating their algebra and parity.

The dictionary for L-type A1(u,v) modules is

[0]CL
p;r,0
∼= LNS,•

j,∆ , p ∈ λr,0 +2Z,


•=−, j = p

t +1, ∆ = ∆N=2
p;r,0 −

p+r
2 , p≤−r−1,

•=+, j = p
t , ∆ = ∆N=2

p;r,0 , 1− r ≤ p≤ r−1,

•=−, j = p
t −1, ∆ = ∆N=2

p;r,0 +
p−r

2 , p≥ r+1,

[1]CL
p;r,0
∼= LR,•

j,∆ , p ∈ 1+λr,0 +2Z,


•=+, j = p

t +
3
2 , ∆ = ∆N=2

p;r,0 −
p+r

2 + 1
8 , p≤−r−2,

•=−, j = p
t +

1
2 , ∆ = ∆N=2

p;r,0 +
1
8 , −r ≤ p≤ r−2,

•=+, j = p
t −

1
2 , ∆ = ∆N=2

p;r,0 +
p−r

2 + 1
8 , p≥ r,

and for D-type modules

[0]CD
p;r,s
∼= LNS,•

j,∆ , p ∈ λr,s +2Z,

•=+, j = p
t , ∆ = ∆N=2

p;r,0 , p≤ λr,s,

•=−, j = p
t −1, ∆ = ∆N=2

p;r,0 +−
p−λr,s−1

2 , p≥ λr,s +2,

[1]CD
p;r,s
∼= LR,•

j,∆ , p ∈ 1+λr,s +2Z,

•=−, j = p
t +

1
2 , ∆ = ∆N=2

p;r,0 +
1
8 , −r ≤ p≤ r−2,

•=+, j = p
t −

1
2 , ∆ = ∆N=2

p;r,0 +
p−r

2 + 1
8 , p≥ r,
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where we have made use of the formula

∆
N=2
p;r,s =

(r− st)2−1
4t

− p2

4t
, (5.54)

which gives the L0-eigenvalue of the highest-weight vector for the N = 2 module, coming from the

branching rule.

This concludes our introduction to the coset construction. In the following Chapter, we introduce

staggered modules over the N = 2 superconformal algebras arising via the coset, and present the results

of our investigation into these modules.



The work in this chapter is being prepared for print in the paper

C. Raymond, D. Ridout, J. Rasmussen, Staggered modules of the N = 2 superconformal algebras, in

preparation.



Chapter 6

Staggered modules over the N = 2

superconformal algebras

In this chapter, we begin our discussion of the reducible yet indecomposable modules known as

staggered modules, and present the results of our investigation into such modules for the N = 2

superconformal minimal models M(u,v). We begin by introducing staggered modules, discussing

their structure, we give their branching rules under the coset, and we describe the action of the algebra

automorphisms on these modules using the results of [99]. Following this, we begin our presentation

of the results.

First, we give formulas which describe the weight space action of the spectral flow on the irreducible

component modules of the staggered modules. This gives insight into the action of the spectral flow, as

well as the generic structure of the staggered modules for the M(u,v) minimal models. We follow this

with explicit examples, whereby we determine the structure for two staggered modules in the minimal

model M(2,3), one for the Neveu-Schwarz algebra, and one for the Ramond.

Using observations made from the action of the spectral flow on the weights of the component

modules, as well as the explicit examples, we derive some general symmetries of the staggered module

families appearing in the branching rule. We show that these families have related structures under

the spectral flow, and as such, it is sufficient to determine the structure for a representative of each

family. We describe how to calculate the action of spectral flow on the parameters which characterise

the structure of a staggered module, and hence, determine the structure for the full branching rule

family. Furthermore, we derive a Kac table symmetry in the module labels allowing for identifications

between modules, and demonstrate explicitly that with these general symmetries, we have determined

the full spectrum of staggered modules arising from A1(2,3) staggered modules via the coset.

Finally, we investigate the so-called vacuum staggered module, for all admissible values of the central

charge leading to non-unitary models. We determine the values of the structure parameters for this

95
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module for all admissible c. Moreover, we investigate the modules that arise from spectral flow by 1
2 in

either direction, giving an explicit realisation of the spectral flow preserving the structure parameters.

6.1 Introduction to staggered modules

We are primarily interested in the staggered modules over the N = 2 superconformal algebras M(u,v).

We can use the coset construction to realise M(u,v) staggered modules from ŝl(2) staggered modules.

These modules are reducible yet indecomposable, and are characterised by a non-diagonalisable action

of L0 (the operator contains a Jordan block). Moreover, these representations are non-unitary. Staggered

modules for the corresponding ŝl(2) minimal models A1(u,v) have been explicitly constructed for

(u,v) = (2,3) and (3,2) [107]. Moreover, they are conjectured to exist generically for all admissible

levels k through character fusion [109].

The A1(u,v) staggered modules relevant to the work in this thesis have a generic form given by the

Loewy diagram given in Figure 6.1. The arrows on the diagram indicate the action of the universal

enveloping algebra, and we will refer to the action of the algebra as “gluing” the component modules

together. The modules in a Loewy diagram are irreducible modules. The component modules are

naturally submodules of the staggered module.

S±r,s

σ
±1
aff

(
D±r,s+1

)
D±r,s

σ
∓1
aff

(
D±r,s−1

)

D±r,s

Figure 6.1: The figure shows the Loewy diagram for the staggered modules S±r,s of the A1(u,v) minimal
models, where 1≤ r ≤ u−1 and 0≤ s≤ v−1. The individual component modules are the D±-type
irreducible modules, and their spectral flows. For these modules we have D±r,0 ≡ Lr,0. The label s±1
may fall outside the allowed domain, in which case we make use of the identifications D±r,−1 = D∓r,1
and D±r,v = σ±1(D±u−r,1

)
.

A staggered module can also be understood in terms of a socle series. The socle of a module M, is

the maximal completely reducible submodule of M. The we use this notion to define an ascending

series of submodules Soci(M) for i > 0, known as the socle series of M, where Soci(M) is the unique

submodule of M such that Soci(M)/Soci−1(M) is the socle of M/Soci−1(M). When Soci(M) is

completely reducible, we refer to that module as the head of the series.
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The component modules of a Loewy diagram are irreducible modules. For the diagram in Figure 6.1,

we have Soc0(S±r,s) = D±r,s. With the socle series of a general staggered module in mind, we will use

the terms “head” and “socle” to differentiate between the two equivalent component modules D±r,s, and

the equivalent irreducible components in N = 2 staggered modules. Furthermore, the other modules

will be referred to as the left- and right modules, depending on their weights. We take the convention

that the conformal weight ∆ increases down the page, and the charge, j (N = 2) or λ (ŝl(2)), increases

left-to-right across the page.

We apply results from recent work in [99], which establishing a Schur-Weyl duality for cosets of

Heisenberg algebras to determine the branching rules for the A1(u,v) staggered modules. One such

result is that if the input A1(u,v) representation Mλ is an irreducible representation, then the resulting

family of M(u,v) modules [i]CM
p appearing in the branching rule (5.53) will be irreducible. Moreover,

this holds for indecomposable modules and their irreducible components, such as staggered modules.

This result implies that the four-component staggered modules S±r,s in A1(u,v) given in the figure

above, give rise to an infinite family of four-component staggered M(u,v) modules. Moreover, the

individual component modules of the M(u,v) staggered modules will be irreducible highest-weight

representations of the N = 2 superconformal algebras. We label the corresponding M(u,v) staggered

modules [i]Pp;,r,s, and their branching rules are then given by

(Sr,s⊗Ni)↓ ∼=
⊕

p∈λr,s+i+2Z
Fp⊗ [i]Pp;,r,s (6.1)

for 1≤ r ≤ u−1 and 0≤ s≤ v−1. The corresponding Loewy diagram of the module [i]Pp;,r,s is given

in general in the Figure 6.2.

[i]Pp;r,s

[i−2]CD
p−t;r,s+1

[i]CD
p;r,s

[i+2]CD
p+t;r,s−1

[i]CD
p;r,s

Figure 6.2: The Loewy diagram for a general staggered module [i]Pp;r,s, displaying the component
modules in branching rule notation. These are exactly the modules which arise by applying the
branching rules component-wise to S±r,s.

We require the following identifications, calculated in [100], to ensure the branching rules are compati-

ble with the module dictionary,

[i]CD
p;r,−1 =

[i+2]CD
p+t;u−r,v−2,

[i]CD
p;r,0 =

[i]CL
p;r,0,

[i]CD
p;r,v =

[i]CD
p−1;u−r,1. (6.2)
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Following insight from the study of staggered modules over the Virasoro algebra [104] and affine

Lie algebras [107], we introduce the notion of β -parameters. The Loewy diagram of a staggered

module is insufficient to completely describe the structure of the module. Staggered modules of

the previously mentioned algebras have associated invariants, known (particularly for Virasoro) as

β -parameters, which, in addition to the Loewy diagram, characterise the module structure. The

β -parameters are defined by gluing action of the algebra on the component modules. We will use

notation |H〉 , |L〉 , |R〉 , |S〉 for the highest-weight vectors of the head, left, right, and socle component

modules respectively, when considered part of the staggered module. We remark that these vectors

are not all highest-weight vectors in the staggered module. We will use notation | j;∆〉 when referring

to the true highest-weight vector of the corresponding irreducible component modules, considered

separately from the staggered module.

The non-diagonal action of L0 is given by

L0 |H〉= ∆H |H〉+ |S〉 , (6.3)

where ∆H is the conformal weight of the head module. However, this action does not define |H〉
uniquely in the staggered module. We are free to add some multiple of |S〉 to |H〉 without changing the

above property. One can think of this as a gauge freedom. This gauge freedom implies that we cannot

normalise the vector |H〉 with respect to a form on the staggered module. To determine the structure

on the module, we need to characterise the action of the algebra which glues the components together.

The work of [104, 107, 138] motivates the following definitions to describe the structure.

We begin with the left and right component highest-weight vectors |L〉 and |R〉. We are able to

normalise the Shapovalov form on the left and right states, such that 〈R|R〉= 1 = 〈L|L〉. This choice

fixes the form on the indecomposable submodules generated by |L〉 and |R〉. We remark that the

intersection of these submodules is the socle, and the form agrees on the socle submodule.

We define the socle vector |S〉 relative to the left and right vectors by setting

UR |R〉= |S〉 , UL |L〉= |S〉 , (6.4)

where UL and UR are elements of the universal enveloping algebra of the N = 2 superconformal algebra.

We choose UL and UR such that UR | jR;∆R〉= 0 and UL | jL;∆L〉= 0 in the corresponding irreducible

component modules, that is, such that they are quotiented singular vectors. There is a freedom of

choice in normalisation of these vectors.

The β -parameters are then defined by the equations

U†
R |H〉= βR |R〉 , U†

L |H〉= βL |L〉 , (6.5)

where U†
R and U†

L are elements of the enveloping algebra adjoint to UR and UL. Similarly to the left-

and right-module cases, the action of these elements in the corresponding irreducible highest-weight

module of the head is U†
R | jH ;∆H〉= 0 and U†

L | jH ;∆H〉= 0.
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Equivalently, in terms of the introduced form, we have

〈R|U†
R |H〉= βR, 〈L|U†

L |H〉= βL. (6.6)

It is straightforward to check that the β -parameters are independent of a choice of gauge. This arises

from the socle module being null with respect to the form on the submodules generated by |R〉 and

|L〉, i.e. since UR and UL must be singular. However, the explicit value of β will depend on the chosen

normalisations of the logarithmic partner vectors, that is, a choice of UR, UL and the action of L0 on

|H〉.

One has not determined the structure of the staggered module until one has also determined its β -

parameters. The β -parameters are fixed by relations coming from quotiented singular vectors of

the head module, which lift to relations on the staggered module, and the action of the algebra on

the module. From a physical perspective, the β ’s are coupling parameters between modules. As an

example, for staggered modules over the Virasoro algebra (and in several other examples), they arise

in the correlation functions of corresponding physical models [115, 117, 119, 120, 138], however, no

such physical theories are currently known for the N = 2 algebras.

We remark that at this stage we have followed the prescription set out by others for determining the

structure of staggered modules, and applied it to the N = 2 superconformal algebras. We have not

proven that the isomorphism classes of N = 2 staggered modules are completely determined by the

values of their β -invariants. An equivalent result exists for Virasoro staggered modules in [104]. We

will return to this point in the Conclusion Chapter 7.

6.1.1 The action of automorphisms on staggered modules

Using the results of [99], the action of automorphisms on the staggered module structure maintains

the Loewy diagrams, and simply affects each of the component modules. It will of course affect the

elements of the universal enveloping algebra (previously introduced as UL, UR) which glue the module

together, however, the component submodules must be preserved. Here we consider the action of the

spectral flow on the staggered module [i]Pp;r,s, that is, we wish to determine σ `
(
[i]Pp;r,s

)
, for ` ∈ 1

2Z.

The result is given in Figure 6.3.

We can deduce several things from the diagram above. We know that the weight support of the family

of modules [i]Pp;r,s is p ∈ λr,s+ i+2Z. Recalling that the value of i is taken modulo 4, we can conclude

that the family of staggered modules produced in the branching rule is preserved by the spectral flow,

up to parity. Furthermore, if we take ` even then parity is also preserved. We note however, that

the parity of the modules does not affect the staggered module structure. As such, we have that the

spectral flow does indeed preserve the family of produced staggered modules. Moreover, if we allow

for ` ∈ 1
2Z we map between Ramond- and Neveu-Schwarz sector modules.

We can apply the module dictionary to the modules appearing in the branching rules to understand the
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σ `
(
[i]Pp;r,s

)

σ `
(
[i−2]CD

p−t;r,s+1

)
σ `
(
[i]CD

p;r,s

)

σ `
(
[i+2]CD

p+t;r,s−1

)

σ `
(
[i]CD

p;r,s

)

[i−2`]Pp−2`;r,s

[i−2−2`]CD
p−t−2`;r,s+1

[i−2`]CD
p−2`;r,s

[i+2−2`]CD
p+t−2`;r,s−1

[i−2`]CD
p−2`;r,s

Figure 6.3: The left Loewy diagram gives the explicit action of the spectral flow on the staggered module
σ `
(
[i]Pp;r,s

)
. The result is the Loewy diagram where each component module has been spectrally flowed.

The right figure is the result of applying the equation (5.51) and determining the related modules in a
form compatible with the module dictionary.

action of the spectral flow in weight space. The action is visualised in the following diagram.

◦•

••

◦•

•

•

◦•

•

•

σ1 σ1σ1 σ1
· · · · · ·

Figure 6.4: The figure shows the action of spectral flow on the relative weights of the component
modules. The highest-weight vectors are represented by •, with the exception of the socle, which is
represented by ◦. The arrows demonstrate the action of the algebra gluing the component modules.

If we ignore any overall change in weights ( j,h), we can see that the net effect of the spectral flow is

to shift the left and right modules either up or down in opposite directions to each other.

We can deduce formulas for the action of the spectral flow on the weights of the component modules,

and in particular, relations describing the distances between their weights under flow. We introduce the

notation jHL, jHR,∆HL,∆HR to denote the difference in charge and conformal weight between the head

and left/right component modules, i.e. jHL = jH− jL. As an example, the module [0]Pλ1,0;1,0 analysed

in Section 6.2 has distances

jHL =−1, jHR = 1, ∆HL =−1
2
, ∆HR =

1
2
. (6.7)

Given that this is a concrete example, the distances are fixed values. However, we expect the resulting

distances to be functions of the flow parameter ` when we consider spectral flows of modules.

Recalling the general structure of the module [i]Pp;r,s, and the action of the spectral flow on the

component modules, we can apply the module dictionary to the resulting modules for which p depends
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on `. The relations (6.2) imply that we need to consider three separate cases. If s 6= 0,v−1 then no

simplifying relations are required. However in the other cases, either the left or the right module is

adjusted by (6.2) to apply the module dictionary. Finally, if s = 1, then three of the N = 2 component

modules come from D-type A1(u,v) modules, and one comes from an L-type A1(u,v) module, so we

distinguish this case also.

In the general case s 6= 0,1,v−1, the distance functions are

jHL =−1, jHR = 1, ∆HL =−1
2
− `, ∆HR =

1
2
+ `, (6.8)

which demonstrates exactly the behaviour in Figure 6.4.

In the cases s ∈ {0,1,v−1} the analysis proceeds similarly, however one needs to take care to identify

the left/right modules appearing according to the relations (6.2), and to take care with the bounds on

the formulas for the weights in the module dictionary, when applying spectral flow. A full table of the

possible outcomes is as follows.

• For s = 0,

jHL =−1, ∆HL =−1
2
− `+ r, jHR = 2, ∆HR = 1+2`− r, r ≤ `,

jHL =−1, ∆HL =−1
2
− `+ r, jHR = 1, ∆HR =

1
2
+ `, 0≤ `≤ r,

jHL =−2, ∆HL =−1−2`+ r, jHR = 1, ∆HR =
1
2
+ `, ` < 0. (6.9)

• For s = 1,

jHL =−1, ∆HL =−1
2
− `, jHR = 1, ∆HR =

1
2
+ `, ` < 0,

jHL =−1, ∆HL =−1
2
− `, jHR = 1, ∆HR =

1
2
+ `, 0≤ `≤ r−1,

jHL =−2, ∆HL =−1−2`+ r, jHR = 1, ∆HR =
1
2
+ `, r−1 < `. (6.10)

• For s = v−1,

jHL =−1, ∆HL =−1
2
− `, jHR = 2, ∆HR = 1−2`+2(u− r), ` < r−u,

jHL =−1, ∆HL =−1
2
− `, jHR = 1, ∆HR =

1
2
+ `+u− r, r−u≤ `≤ 0,

jHL =−1, ∆HL =−1
2
− `, jHR = 2, ∆HR = 1+2`+u− r, ` > 0. (6.11)

In the special case when s = 1 and v = 2, we have that distances jHL, ∆HL are given by the formulae

for s = 1, and the distances jHR, ∆HR are given by the formulae for s = v−1.

We see that the charge distances jHL or jHR are fixed to either±1 or±2, and that the conformal weight

distances ∆HL and ∆HL become functionf of `. What is particularly interesting is that the relative
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charge becomes ±2 for sufficiently large flow parameter `, when s = 0,1, v− 1. The determinant

formula (5.21) states clearly that in Neveu-Schwarz modules, charged singular vectors only occur for

relative charge ±1. As such, we should not expect values of ±2 for Neveu-Schwarz modules.

This peculiarity suggests that rather than the highest-weight vectors of the component modules

being identified with singular vectors, they are instead identified with subsingular vectors. Since the

component modules are irreducible, the subsingular vectors have also been quotiented, implying that

this subsingular embedding does not pose any problems. However it is remarkable that this behaviour

is so common in the N = 2 staggered modules.

6.2 Staggered modules of the minimal model M(2,3)

We begin our presentation of explicit examples of staggered modules for the N = 2 superconformal

algebras with those in the minimal model M(2,3). For these values of the parameters, the superconfor-

mal algebras have c =−6. The corresponding minimal model A1(2,3) has representations labelled by

r = 1, and s = 0,1,2. It has two distinct staggered module families, represented by S±1,0 and S±1,1. The

corresponding A1(u,v) staggered module family is the spectral flow orbit of the representative. There

is a third staggered module family represented by S±1,2, however, this family is equivalent to S±1,0 under

spectral flow. The resulting M(2,3) staggered module families are [i]Pp;1,0, [i]Pp;1,1, and [i]Pp;1,2, where

p ∈ λr,s + i+2Z and λr,s = r−1− st.

6.2.1 The module [0]Pλ1,0;1,0 in M(2,3)

Thus we are left to describe the module families [i]Pp;1,0 and [i]Pp;1,1. We will begin by taking particular

examples, the first of which will be the module [0]P0;1,0, which has its Loewy diagram presented in

Figure 6.2.1, along with a visualisation of the highest-weight vectors in weight space and the gluing

action of the algebra. The weights of the vectors are listed in parentheses, and we use the notation |H〉
for the highest-weight vector of the head module, and so on, for all of left, right, and socle.

[0]Pλ1,0;1,0

LNS,−
−1,−1

2

LNS,+
0,0

LNS,+

1,−1
2

LNS,+
0,0

|H〉

|S〉

|R〉|L〉
(−1,−1

2) (1,−1
2)

(0,0)

L0

G+
1/2G−1/2

G+
−1/2 G−−1/2

Figure 6.5: The Loewy diagram and weight space embedding structure for the module [0]Pλ1,0;1,0. It
will be our convention when displaying Loewy diagrams that the component modules align with Figure
6.2. The weight space diagrams display the correct relative positions of vectors.
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Applying the determinant formula for the Verma modules of weights ( j,∆) = (0,0),(−1,−1
2),(1,

1
2),

we have the following expressions for the charged singular vectors,

G±−1/2 |0;0〉 , G+
−1/2 |−1,−1

2〉 , G−−1/2 |1,−
1
2〉 . (6.12)

We then make the following choices for the algebra action gluing the modules

L0 |H〉= |S〉 , G+
1/2 |H〉= βR |R〉 , G−1/2 |H〉= βL |L〉 , G+

−1/2 |L〉= |S〉 , G−−1/2 |R〉= |S〉 ,
(6.13)

where β• are the constants which define the structure of the module.

The values of the β -parameters are then determined by using constraints on the module, arising from

additional quotiented singular vectors and other symmetries. These relations must be compatible with

the staggered structure, in the sense that a quotiented singular vector relation in the head component

module must lift to be a quotiented relation in the full staggered module.

For the module [0]Pλ1,0;1,0, the head component module is the irreducible module LNS,+
0,0 . The quotiented

singular vectors of the irreducible module imply G±−1/2 |0;0〉= 0. Thus, we must have relations of the

form

G+
−1/2 |H〉= (αRL−1 + γRJ−1) |R〉 , G−−1/2 |H〉= (αLL−1 + γLJ−1) |L〉 , (6.14)

in the staggered module, where α•, γ• ∈ C are additional unknowns which are determined by the

action of the raising generators. The expressions on the right-hand side are general linear combinations

of vectors in [0]Pλ1,0;1,0 with appropriate weight.

We proceed by determining the action of the generators of the raising subalgebra on these relations. A

detailed example of one of the calculations follows. Applying L1 to G+
−1/2 |H〉, we have

L1G+
−1/2 |H〉= L1 (αRL−1 + γRJ−1) |R〉 ,[

L1,G+
−1/2

]
|H〉= (αR [L1,L−1]+ γR [L1,J−1]) |R〉 ,

G+
1/2 |H〉= (2αRL0 + γRJ0) |R〉 ,

βR |R〉= (−αR + γR) |R〉 . (6.15)

Similarly, the vectors J1G+
−1/2 |H〉 , J1G−−1/2 |H〉, and L1G−−1/2 |H〉, lead to the relations

βR = αR−2γR, βL = αL +2γL, βL =−αL− γL, (6.16)

respectively. Our final set of relations comes from considering the action of {G+
−1/2,G

−
1/2}= 2L0− J0

and {G−−1/2,G
+
1/2}= 2L0 + J0 on |H〉. As an example, we consider

{G+
−1/2,G

−
1/2}|H〉= (2L0− J0) |H〉=

(
G+
−1/2G−1/2 +G−1/2G+

−1/2

)
|H〉 ,

2 |S〉= G+
−1/2βL |L〉+G−1/2 (αRL−1 + γRJ−1) |R〉 ,

2 |S〉= βL |S〉+αR
[
G−1/2,L−1

]
|R〉+ γR

[
G−−1/2,J−1

]
|R〉 ,

=⇒ 2 = βL +αR + γR. (6.17)
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Similarly, for the remaining relation, we have

2 = βR +αL− γL. (6.18)

Combining these results, we arrive at a determined set of linear equations with solution

αR = αL =
3
2
, βR = βL =−1

2
, γR = 1, γL =−1. (6.19)

The values of βL/R, along with the Loewy diagram, then determine the structure of the module.

6.2.2 The module [1]Pλ1,1+1;1,1 in M(2,3)

For the family [i]Pp;1,1, we choose to explore the Ramond sector module [1]Pλ1,1+1;1,1, so as to give

a concrete example of a Ramond sector staggered module. The Loewy diagram for this module is

presented in Figure 6.2.2, alongside the weight space diagram. This module is particularly curious,

as all the component modules have ∆ = c/24, implying that they are all single ground state Ramond

sector modules.

[1]Pλ1,1;1,1

LR,−
1,−1

4

LR,+

0,−1
4

LR,−
−1,−1

4

LR,+

0,−1
4

|H〉

|S〉

|R〉|L〉

(−1,−1
4) (1,−1

4)

(0,−1
4)

L0

G+
0G−0

G+
0 G−0

Figure 6.6: The Loewy diagram and weight space embedding structure for the module [1]Pλ1,1;1,1.

In this module, the we choose the defining relations to be

L0 |H〉=−
1
4
|H〉+ |S〉 , G+

0 |H〉= βR |R〉 , G−0 |H〉= βL |L〉 , G+
0 |L〉= |S〉 , G−0 |R〉= |S〉 .

(6.20)

As ∆ = c
24 for all component modules, the relevant singular vectors for this staggered module are the

G−0 | j,∆〉. The uncharged singular vectors appear deep in the module (beginning at level 6), and as

such, simply determining these vectors is computationally challenging.

We are able to determine one relation between the β -parameters using the charged singular vector

relations at top level. We consider the following relation

(
G+

0 G−0 +G−0 G+
0
)
|H〉=

(
2L0 +

1
2

)
|H〉 , (6.21)
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where we continue

(
G+

0 G−0 +G−0 G+
0
)
|H〉= G+

0 G−0 |H〉+G−0 G+
0 |H〉 ,

= G+
0 βL |L〉+G−0 βR |R〉 ,

= (βL +βR) |S〉 , (6.22)

and (
2L0 +

1
2

)
|H〉= 2

(
−1

4
|H〉+ |S〉

)
+

1
2
|H〉= 2 |S〉 , (6.23)

arriving at

βL +βR = 2. (6.24)

The remaining constraint on the β -parameters comes from the observation that γN=2
(
[1]Pλ1,1;1,1

)
=

[1]Pλ1,1;1,1, that is, this staggered module is conjugation invariant. This implies that βL = βR, since

under the action of conjugation, the definitions of these two parameters are simply exchanged. Solving

this then gives

βR = βL = 1. (6.25)

We remark that the staggered modules considered above have the property that the socle submodule is

a null submodule. The norm of |S〉= G−0 |R〉 is given by

〈S|S〉= 〈R|G+
0 G−0 |R〉= 〈R|2L0−

c
12
|R〉= 0. (6.26)

In the previous example of a Neveu-Schwarz module the socle was also a null submodule. It is straight

forward to show that for G−−1/2 |R〉= |S〉, then

〈S|S〉= 〈R|G+
1/2G−−1/2 |R〉=−〈R|{G

+
1/2,G

−
−1/2}|R〉= 0, (6.27)

since {G+
1/2G−−1/2}= 2L0 + J0, and we have that L0 |R〉=−1/2 |R〉 and J0 |R〉= |R〉 in the previous

example. This feature occurs generically in staggered modules, not just for staggered modules over the

N = 2 algebras. It is expected, as the socle is defined in relation to the right module as UR |R〉= |S〉,
where the vector UR |R〉 is singular in the right module. As such, applying any raising generator gives

0. We include this remark to explicitly elucidate staggered module structure.

With this result, we have determined the structure of a Ramond and a Neveu-Schwarz staggered

module in the minimal model M(2,3). Moreover, these modules are not related by spectral flow.

However, there remains an infinite number of staggered modules in each of the spectral flow orbits

of these examples, for which we require a similar analysis in order to fully understand the staggered

module content of the minimal model M(2,3). This motivates us to look for general symmetries of the

staggered module families that allow us to simplify the analysis.
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6.3 General symmetries of M(u,v) staggered modules

Motivated by the previous examples, in this section we derive some general symmetries of the staggered

modules. In particular, we focus on understanding the action of spectral flow on the module structure,

and we attempt to identify Kac table symmetries which reduces the number of independent branching

rule families one needs to consider.

6.3.1 Spectral flow symmetries of the M(u,v) staggered modules

In Section 6.1, we introduced the action of the spectral flow on staggered modules, and showed that it

reduces to understanding the spectral flow of the component modules, and then modifying the gluing

relations accordingly. Moreover, we showed that the families of staggered modules produced in the

branching rule were all related by spectral flow.

In order to fully understand the complete family of staggered modules, we need to understand the

action of spectral flow on the β -parameters. We know the corresponding minimal model A1(2,3) has

two independent (with respect to the action of spectral flow) staggered modules, as such, it seems

natural to expect a relation between staggered module families appearing in the branching rules of

these two A1(2,3) modules.

As introduced earlier, the β -parameters are defined by the relations

U†
R |H〉= βR |R〉 , U†

L |H〉= βL |L〉 , (6.28)

where UR,UL are expressions in the universal enveloping algebra U(g) of either the Neveu-Schwarz or

Ramond algebra, and βL,βR ∈ C.

If we consider these relations under the action of the spectral flow (without loss of generality, we

consider the right module), we see that

σ
` (UR |H〉) = σ

` (βR |R〉) = βRσ
` (|R〉) . (6.29)

We see that the value of the β -parameter is preserved, however, it is no longer guaranteed (in fact it can

only occur incredibly rarely) that σ ` (|H〉) is the highest-weight vector of the corresponding flowed

head module. Nor that the expression σ ` (UR |H〉) describes the gluing of highest-weight vectors of the

head and right modules. What is true however is that the vectors in a given component module must

be preserved under the spectral flow, implying that the same parameter βR describes gluing between

non-highest-weight vectors in the flowed module.

Making the comparison

URσ
`(|H〉) = σ

`(σ−`(UR) |H〉), (6.30)

we can determine concrete expressions for the vectors which are glued with parameter βR in the flowed

module. We can then apply the appropriate raising generators to these vectors in order to raise the
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relation to a relation between highest-weight vectors. This results in a new parameter β ′R ∝ βr, where

the constant of proportionality is determined by the action of the algebra on the irreducible component

module.

One property of the spectral flow is that it will preserve the extremal vectors of a given module, that is,

the vectors that form the boundary of the module in weight space. Precisely, the extremal states of an

N = 2 superconformal Verma module are the highest-weight vector, and the states

|x−n 〉=
n

∏
k=0

G−−k−1/2 |v〉 , |x+n 〉=
n

∏
k=0

G+
−k−1/2 |v〉 , n≥ 0, (6.31)

in the Neveu-Schwarz sector, and

|x−n 〉=
n

∏
k=0

G−−k |v〉 , |x+n 〉=
n

∏
k=0

G+
−k−1 |v〉 , n≥ 0, (6.32)

in the Ramond sector. The product produces strings of generators with increasing mode index to

the right. It is clear from the equations above that the weight spaces of the extremal vectors are

one-dimensional. As the highest-weight vector is an extremal vector, under the action of the spectral

flow a highest-weight vector is always mapped to an extremal vector under flow [137]. It may occur

that an extremal vector is (sub)singular in the Verma module, in which case, there is no corresponding

vector in the irreducible module. In that case, we simply adjust the bounds of the products, as all

singular vectors occur with relative charge {(−2),−1,0,1}, as discussed in Section 5.2.

Consider the spectral flow of an irreducible module highest-weight vector σ `(|v〉) under the action of

a set of raising generators. Given the action of spectral flow on extremal vectors, we can consider the

following without loss of generality:
n

∏
k=1

G+
k−1/2σ

` (|v〉) = σ
`

(
n

∏
k=1

G+
k−`−1/2 |v〉

)
. (6.33)

If `≥ n, the action of the raising operators is non-zero, and is simply the image of ∏
n
k=0 G+

k−`+1/2 |v〉.
If n > `, then the resulting vector must be zero. When `= n, we act on an extremal vector with the

largest possible raising operator, such that the action is non-zero and the resulting vector is extremal.

The resulting vector must be the highest weight vector of the flowed module. Moreover, this is

determines exactly the combination one needs to act by to calculate the constant of proportionality for

the β -parameters. When one flows with ` < 0, we have the same argument involving G−r modes, and

this carries to the Ramond sector in the obvious way. Moreover, the adjustment for the case involving

a quotiented extremal vector, whereby one removes a generator from the product, carries over as well.

The implication of these results is that it is sufficient to determine the β -parameters for a single module

in a branching rule family.

6.3.2 Kac table symmetries of the M(u,v) models

We also want to understand the symmetries of the r,s labels for the [i]Pp;r,s modules. These are referred

to as Kac table symmetries, as they can be used to label axes on a grid called a Kac table which encodes
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the highest weights of the modules for those values of r,s. In the minimal model M(2,3) we already

see some indicative behaviour, whereby [i]Pp;1,0 and [i]Pp;1,2 are equivalent up to spectral flow. That

is, for a specific value of p, the corresponding staggered module [i]Pp;1,0 is equal (up to parity) to the

staggered module [i]Pp′;1,2, for an appropriate p′. We will use notation that [i1]Pp1;r1,s1 ≡ [i2]Pp2;r2,s2 to

denote this equivalence.

In the minimal model M(3,2), there are 4 possible staggered modules, namely [i]Pp;r,s for r = 1,2 and

s = 0,1. We see further evidence of general Kac table symmetries in M(3,2), since [i]Pp;1,0 ≡ [i]Pp;2,1

and [i]Pp;2,0 ≡ [i]Pp;1,1. All of these taken together is suggestive of the general result

[i]Pp;r,0 ≡ [i]Pp;u−r,v−1. (6.34)

What is clear is that two different modules [i1]Cp1;r1,s1 and [i2]Cp2;r2,s2 can label the same L j,∆ module.

We also know that because of the action of the spectral flow, we may take one module in the family

produced by [i]Pp;r,0, that is, choose a particular value for p, i, and then see if it is possible for that

module to arise for certain values of parameters in [i]Pp;u−r,v−1.

We choose the case [0]Pλr,0;r,0, noting that λr,0 = r−1, for which the Loewy diagram is given in Figure

6.7.

[0]Pr−1;r,0

[2]Cr−1−t;r,1

[0]Cr−1;r,0

[0]Cr−1+2t;u−r,v−2

[0]Cr−1;r,0

Figure 6.7: We have used the symmetry [2]Cr−1+t;r,−1 =
[0]Cr−1+2t;u−r,v−2 to simplify the component

modules.

Then we search for values of p′, i such that [i]Pp′;u−r,v−1 produces the same staggered module, up to

parity, in the sense that the weights of the component modules are the same. We begin with the head

module [0]Cr−1;r,0. This module has p≤ r−1, applying the module dictionary gives L j;∆ with j = r−1
t

and ∆ = r−1
2t .

Correspondingly, the Loewy diagram for [i]Pp′;u−r,v−1 is given in Figure 6.8.

We require that for suitable choice of p′, i the module [i]Cp′;u−r,v−1 is the same as [0]Cr−1;r,0. We know

p′ ∈ λu−r,v−1 + i+ 2Z, where λu−r,v−1 = u− r− 1− (v− 1)t = −r− 1+ t. We begin by checking

the parameter space for p′ ≥ λu−r,v−1 + 2. Applying the module dictionary, this implies that the
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[i]Pp′;u−r,v−1

[i]Cp′−2t;r,1

[i]Cp′;u−r,v−1

[i+2]Cp′+t;u−r,v−2

[i]Cp′;u−r,v−1

Figure 6.8: We have used the symmetry [i+2]Cp′+t;u−r,v =
[i]Cp′−2t;r,1 to simplify the component modules.

corresponding module has charge j = p′
t −1, and conformal dimension

∆ =
((u− r)− (v−1)t)2−1

4t
+

p′2

4t
+

p′−λu−r,v−1−1
2

. (6.35)

Setting the charges equal, we find that p′
t −1 = r−1

t =⇒ p′ = r−1+ t, which satisfies the inequality

for p′ stated in the module dictionary. Substituting this value of p′ into the equation for ∆ we find

∆ =
r−1

2t
. (6.36)

Hence, if we take p′ = r−1+ t, then the module [i]Cr−1+t;u−r,v−1 =
[0]Cr−1;r,0, up to parity. Checking

the module dictionary, we see that taking i = 2 sets the parities equal, and does not affect the weight

support of p′. It remains to show that fixing p′ = r−1+ t is in the weight support for p′. The weight

support is given by

p′ ∈ λu−r,v−1 +2Z=−r−1+ t +2Z. (6.37)

We check that

r−1+ t ∈ −r−1+ t +2Z, or 2r−1+ t ∈ −1+ t +2Z, (6.38)

and since r ∈ Z, this is satisfied. Hence, it is possible to find the head module of [0]Pr−1;r,0 in the family
[i]Pr−1+t;u−r,v−1.

We are left to check that the left and right modules also match for these values of the parameters. To

demonstrate, we give the Loewy diagram for the module [0]Pr−1;r,0 alongside the Loewy diagram for
[2]Pr−1+t;u−r,v−1 in Figure 6.9.

We see clearly in the diagram above that taking p′ = r−1+ t sets the remaining modules equal to

each other. This shows that for a given module in the family [i]Pp;,r,0, we can find the same module

in [i]Pp′,u−r,v−1. As spectral flow is independent of the values of r,s, these two families must then be

equivalent under the action of spectral flow.

This demonstrates explicitly a Kac table symmetry for the minimal models M(u,v). So far this is the

only such symmetry we have derived concretely. We will show in an explicit example that two of the

three possible families of modules in the minimal model M(2,3) are equivalent.
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[0]Pr−1;r,0

[2]Cr−1−t;r,1

[0]Cr−1;r,0

[0]Cr−1+2t;u−r,v−2

[0]Cr−1;r,0

[2]Pr−1+t;u−r,v−1

[2]Cr−1−t;r,1

[2]Cr−1+t;u−r,v−1

[0]Cr−1+2t;u−r,v−2

[2]Cr−1;r,0

Figure 6.9: A comparison of the two modules when p′ = p+ t = r−1+ t.

6.3.3 Symmetries of staggered modules in M(2,3)

The first explicit examples of staggered modules we considered were the modules [0]Pλ1,0;1,0 and
[1]Pλ1,1+1;1,1 in M(2,3). There is an additional family of staggered modules [i]Pp;1,2 for p∈ λ1,2+ i+2Z.

With the tools developed in this section, we can show that the module families [i]Pp;1,0 and [i]Pp;1,2 are

related by spectral flow, and are thus equivalent. The modules [0]Pλ1,0;1,0 and [0]Pλ1,2;1,2 have Loewy

diagrams given in Figure 6.10.

[0]Pλ1,0;1,0

LNS,−
−1,−1

2

LNS,+
0,0

LNS,−
1,−1

2

LNS,+
0,0

[0]Pλ1,2;1,2

LNS,+
−4,−3

LNS,+
−2,−1

LNS,−
−1,−1

2

LNS,+
−2,−1

Figure 6.10: Comparison of the Loewy diagrams showing the component modules and their embeddings
for [0]Pλ1,0;1,0 and [0]Pλ1,2;1,2. We have applied the module dictionary to the [i]Cp;r,s modules to determine
the corresponding irreducible components.

We can then determine through direct calculation, and verify numerically using a Mathematica

program that implements both the spectral flow and the module dictionary, that indeed σ1([0]Pλ1,0;1,0) =
[0]Pλ1,2;1,2. As these two modules lie in the same spectral flow orbit, and the flow is independent of r,s

labels, we may conclude that the two families of staggered modules are equivalent.

This mirrors the staggered modules of A1(2,3), whereby the modules S1,0 and S1,2 have been shown to

be equivalent up to spectral flow. The effect of spectral flow on the coset implies that the corresponding

M(2,3) families related to those modules should also be related by spectral flow.
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6.4 The module [0]Pλ1,0;1,0 in M(u,v)

In Section 6.2, we looked at the specific example of the module [0]Pλ1,0;1,0 ∈M(2,3). In this section

we will consider the staggered modules which have the same component module conformal weights,

however, we allow the value of the central charge to be any admissible value. That is, we consider the

module [0]Pλ1,0;1,0 ∈M(u,v). For this particular staggered module, the head module is the irreducible

module L+,NS
0;0 . For all admissible values of the central charge the left and right modules are L−,NS

±1,−1/2,

i.e. the weights of the component modules are fixed for all values of the central charge.

This can be seen directly by looking at the determinant formula, where for ( j,∆) = (0,0), the charged

singular vectors appear at charge ±1, and conformal weight 1
2 . Moreover, the left and right modules

exhibit the same behaviour, the charged singular vector where gluing occurs in the staggered module

is unchanged for all admissible c.

This implies that the irreducible components of the module [0]Pλ1,0;1,0 have the same weights for all

admissible values of c. This reinforces the notion that the Loewy diagram by itself is not enough to

characterise the structure of a staggered module. We naturally expect that the β -parameters will be c,

or equivalently t, dependent. As a way of shortening notation, and because of the weights of the head

module, we will refer to this module as the vacuum staggered module.

Proceeding as in the earlier analysis, we define the gluing relations on the module to be

G+
1/2 |H〉= βR |R〉 , G−1/2 |H〉= βL |L〉 , L0 |H〉= |S〉 , G+

−1/2 |L〉= |S〉 , G−−1/2 |R〉= |S〉 ,
(6.39)

noting that these have not changed from the first example.

We also have that the uncharged singular vectors in the left/right modules appear in the same weight

spaces as the initial example, so again we introduce

G+
−1/2 |H〉= (αRL−1 + γRJ−1) |R〉 , G−−1/2 |H〉= (αLL−1 + γLJ−1) |L〉 , (6.40)

however, in this treatment, we expect all of the introduced parameters to be functions of t. Our goal is

to determine the action of the raising generators on these relations, so as before, we check the action of

L1,J1 on the above constraints. As an example, we have

J1G+
−1/2 |H〉= J1 (αRL−1 + γRJ−1) |R〉 ,[

J1,G+
−1/2

]
|H〉= αR [J1,L−1] |R〉+ γR [J1,J−1] |R〉 ,

G+
1/2 |H〉= αRJ0 |R〉+ γR

c
3
|R〉 ,

βR |R〉= αR |R〉+ γR
c
3
|R〉 . (6.41)

Recalling that c = 3
(
1− 2

t

)
, this is an example of how t dependence is introduced into the parameter

values. We also derive constraints coming from the action of {G±−1/2,G
∓
1/2}= 2L0∓ J0 as in the first

example.
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The resulting set of equations has a solution given by

αR = αL =
1
t
, βR = βL =

t−1
t

, γR = 1, γL =−1. (6.42)

As expected, we see that the β -parameters are indeed functions of t. Combining this result with our

previous results, we have in principle determined the structure of the staggered module family [i]Pp,1,0

(and equivalently [i]Pp+t,u−1,v−1) in all possible minimal models, in particular, we have also determined

the structure for the corresponding family in M(3,2). In order to better understand this module, as

well as provide explicit examples for some of our previous results, we will continue by looking at the

spectral flows of this module.

6.4.1 Spectral flow on [0]Pλ1,0;1,0

We begin by looking at the module σ1/2([0]P0;1,0
)
, where we have used that λ1,0 = 0. The resulting

module is a Ramond sector module, where the Loewy diagram and weight space diagram are given

below. Note that since we are treating the central charge as general and the spectral flow is dependant

on c, the labels on the Loewy diagram feature general values of c.

σ1/2([0]P0;1,0
)

LR,−
−1+ c

6 ,−1+ c
24

LR,+
c
6 ,

c
24

LR,+
1− c

6 ,
c

24

LR,+
c
6 ,

c
24

|H〉

|S〉

|R〉

|L〉
( c

6 −1, c
24 −1)

( c
6 +1, c

24)

( c
6 ,

c
24)

L0

G+
0

G−1

G+
−1

G−0

In this module, the gluing and definition of the β -parameters is given by

G+
0 |H〉= βR |R〉 , G−1 |H〉= βL |L〉 , G−0 |R〉= |S〉 , G+

−1 |L〉= |S〉 , L0 |H〉=
c

24
|H〉+ |S〉 .

(6.43)

Note that the right, head, and socle modules all have ∆ = c
24 . It is important here to remark that this

module has a particularly nice feature, in that it is one of the few times where the spectral flow of

highest-weight vectors are again the highest-weight vectors. We noted earlier in Section 6.3 that the

spectral flow needed only to preserve the property of being extremal, but it can occur, (for sufficiently

small values of `) that indeed highest-weight vectors are mapped to highest-weight vectors. The next

example will demonstrate when this is no longer the case.

As in the vacuum staggered modules, the left and right component modules here also feature uncharged
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singular vectors which have been quotiented. These singular vectors lead to the constraint equations

G+
−1 |H〉= (αRL−1 + γRJ−1) |R〉 ,

G−0 |H〉= (αLL−1 + γLJ−1) |L〉 , (6.44)

where again the relevant relations are obtained by acting as before with {G+
0 , G−1 , J1, L1} on these

states.

Moreover, we again consider the combinations of two fermionic generators when one acts in a gluing

direction, and the other acts in a singular direction. For this particular module, we have the relations

{G+
0 ,G

−
0 }= 2L0−

c
12

, & {G+
−1,G

−
1 }= 2L0−2J0 +

c
4
. (6.45)

As an example, we compute(
2L0−2J0 +

c
4

)
|H〉= G+

−1G−1 |H〉+G−1 G+
−1 |H〉 ,( c

12
− c

3
+

c
4

)
|H〉+2 |S〉= G+

−1βL |L〉+G−1 (αRL−1 + γRJ−1) |R〉 ,

2 |S〉= βL |S〉+αR |S〉+ γR |S〉 . (6.46)

The resulting set of equations again has a solution for all admissible c(t) given by

αR = αL =
1
t
, βR = βL =

t−1
t

, γR = 1− 1
2t
, γL =−1− 1

2t
. (6.47)

We see that βL/R are unchanged under the action of σ1/2. From the perspective of our general results

of the flow, this is expected, as there is no modifying factor arising from the spectral flow.

To investigate the action of spectral flow further, we can also consider the module σ−1/2([0]P0;1,0
)
.

The Loewy diagram and weight space diagram are given below. Here, it is the right module which no

σ−1/2([0]P0;1,0
)

LR,−
−1− c

6 ,
c

24

LR,+
− c

6 ,
c

24

LR,+
2− c

6 ,−1+ c
24

LR,+
− c

6 ,
c

24

|H〉

|S〉

G−0 |R〉 |R〉

|L〉

(−1− c
6 ,

c
24)

(2− c
6 ,

c
24 −1)

(− c
6 ,

c
24)

L0

G+
1G−0

G+
0

G−1 G−0

longer has ∆ = c
24 . The gluing of the staggered module is given by

G−0 |H〉= βL |L〉 , G+
0 |L〉= |S〉 , G+

1 |H〉= β̃RG−0 |R〉 , G−−1G−0 |R〉= |S〉 , L0 |H〉=
c

24
|H〉+|S〉 .

(6.48)
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Note, for this module, we choose to define β̃R by G+
1 |H〉= β̃RG−0 |R〉, rather than G+

0 G+
1 |H〉= βR |R〉.

The redefinition takes into account exactly the expression that one needs to go from the glued vector to

the highest-weight vector (action by G+
0 ). Defining in this way, we expect that the β -parameters will

be exactly the same functions as in the previous example. For completeness, the redefinition introduces

a scaling factor in the following way,

G+
0 G−0 |−

c
6 +2; c

24 −1〉=
(

2L0−
c

12

)
|− c

6 +2; c
24 −1〉=−2 |− c

6 +2; c
24 −1〉 . (6.49)

Following the definition of βR, the function t we find here and for the previous examples will have an

overall factor of −2.

As before, the β -values for the module are fixed using relations from the uncharged singular vectors

G+
0 |H〉=

(
αRL−1G−0 + γRJ−1G−0

)
|R〉 , G−−1 |H〉= (αLL−1 + γLJ−1) |L〉 . (6.50)

Note that the vector G−−1 |−
c
6 ; c

24〉 is not singular in the Verma module generated by |− c
6 ; c

24〉. It

is straight forward to verify that G+
0 G−−1 |−

c
6 ; c

24〉 = (2L−1 + J−1) |− c
6 ; c

24〉. However, the vector

(2L−1 + J−1) |− c
6 ; c

24〉 becomes singular in the quotient V−c/6;c/24 / G−0 |−
c
6 ; c

24〉. In this quotient,

G−−1 |−
c
6 ; c

24〉 is then a descendant of (2L−1 + J−1) |− c
6 ; c

24〉.

The uncharged singular vector relations are solved in exactly the same way as the previous example.

We have constraints on the parameters arising from applying the relations

{G+
0 ,G

−
0 }= 2L0−

c
12

, & {G+
1 ,G

−
−1}= 2L0 +2J0 +

c
4
. (6.51)

The solutions for the parameter functions are

αL = αR =
1
t
, βL = β̃R =

t−1
t

, γL =−1+
1
2t
, γR = 1+

1
2t
. (6.52)

We remark again that we only see the same function for β̃R because we have scaled out the shift

introduced by the spectral flow.

This concludes the explicit examples we have to show, and with it, the results of this introductory

exploration of staggered modules for the N = 2 superconformal algebras. In the conclusions chapter,

we will discuss natural directions for further work, as well as offering perspective with some of the

long term goals of this program of research.



Chapter 7

Conclusion

7.1 Generalised Galilean algebras

We finalise this thesis with concluding thoughts and future ideas regarding the work presented within,

beginning with our work on Galilean algebras. In Chapters 2-4, we continued a program of research

which introduced a consistent mathematical framework for performing Galilean contractions of

(conformal) symmetry algebras. Originally, the Galilean contraction procedure took as input two

(equivalent up to choice of central extension value) symmetry algebras, and produced a new symmetry

algebra. Our first result was to generalise the procedure to allow for input of any number of symmetry

algebras, equivalent up to value of their central extensions. This generalisation gives rise to the so-

called higher-order Galilean algebras. The higher-order Galilean algebra have a truncated ZN-graded

structure.

We continued by observing that the change of basis matrix which implements the contraction procedure

was of Vandermonde type. We generalise the higher-order Galilean contraction by considering basis

changes implemented by tensor products of Vandermonde matrices related to the higher order Galilean

contraction. This generalisation resulted in Galilean algebras with truncated Zσ
N-graded structure, for a

given sequence N which encodes a factorisation of N, the number of input algebras. The analysis of

these so-called multi-graded algebras also developed a framework for understanding multiple iterated

contractions, that is, understanding the process of Galilean contractions of Galilean algebras. For

example, these results describe the Galilean contraction of higher-order Galilean algebras.

Finally, we looked at the case of contracting an algebra asymmetrically with one of its subalgebras.

This choice relaxes the condition that the input algebras of the Galilean contraction need be the same.

Although some of these algebras had been studied previously, see [86], the systematic description

presented here is new. We see however, that the previously studied case, coming from studies of

Wess-Zumino-Witten models based on (non)-compact Lie groups in [86], is still the most natural

choice.
115



116 CHAPTER 7. CONCLUSION

Our construction begins with a symmetry algebra g, and a subalgebra h⊂ g, and consider the Galilean

contraction of g with a copy of the subalgebra h. The remaining subspace ḡ, which is not contracted

with the copy of h, can then be rescaled by the contraction parameter ε in a number of ways. Rescaling

the subspace ḡ by εm for m = 1
2 , provides the richest possible family of examples of physical interest.

Our construction of asymmetric contractions considered in a sense the simplest asymmetric algebras

with a notion of Galilean contraction. A natural extension of our work is to consider two algebras g(0)
and g(1), which share a subalgebra h. One can then consider the Galilean contraction of the equivalent

subalgebras h(0) and h(1), where the remaining subspaces ḡ(0) and ḡ(1) can be individually rescaled by

the contraction parameter.

Along with each of the generalisations to the Galilean contraction procedure, we provided a number of

examples. These examples are focused on algebras relevant to conformal field theory and the wider

mathematical physics literature. We would like to remark here that there are alternative procedures

similar to that of the order-two Galilean contraction, yielding similar algebras, see [62, 64, 152].

Several of these results are for the case where the underlying symmetry algebra is a finite dimensional

Lie algebra. We have chosen to focus on infinite dimensional symmetry algebras, in the form of

operator product algebras, as we are specifically interested in the applications to conformal field theory.

However, the results that we have presented are almost universally applicable to finite dimensional

algebras with minimal modification, as the OPE on an operator product algebra is equivalent to the Lie

bracket.

In the rest of this chapter, we would like to outline some of the open questions which remain, and

the ideas which were not not covered in the main text. Our analysis has been almost entirely focused

on the product structures of the resulting Galilean algebras within the framework of the various

generalisations. In doing so, we have developed many new infinite families of such algebras. However,

we have not provided any analysis of the representation theory of these algebras. We note that there is

existing work, both in the mathematics and physics literature [141–143], on the representation theory

of the Galilean Virasoro algebra of order two. Indeed, some of these results should carry over to many

of the new algebras developed here, as they are results which hold for the underlying Galilean Virasoro

algebra; a subalgebra of all conformal Galilean algebras. As the representation theory of the algebras

ŝl(2) and Vir is relatively well understood (compared to their Galilean counterparts), their Galilean

contracted algebras are natural choices for future study.

A particularly fruitful method of understanding conformal field theories has been that of free-field

realisations. This is a procedure whereby one constructs a particular conformal symmetry algebra using

normally-ordered products fields of “simpler” algebras, namely those based on free-field theories [31].

This is similar in spirit to the Sugawara construction of the Virasoro algebra, whereby one constructs

an action of the Virasoro algebra on a current algebra. There are several advantages to using free-field

realisations. Algebras of free fields allow for easier computation with the OPE. Moreover, generically
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speaking the free-field algebras have relatively well-understood and well-behaved representation

theory, leading to lifting of results from the free-field theory to the constructed theory. However, one

must generally take care as the constructed representations are not always faithful. Some results for

free-field realisations of Galilean algebras exist [143, 144], however a more complete understanding

of the free-field realisations for general Galilean algebras would be of great use in developing the

corresponding representation theory.

Throughout this thesis, we have posed the question of whether a given procedure or construction is

compatible (in a commutative sense) with the Galilean contraction procedure. It is not clear to what

extent free-field realisations are compatible with the Galilean contraction. As an example, a crucial

component of many free-field realisations is the bosonic βγ-ghost system. The system is generated by

two bosonic fields, β (z), γ(z), with conformal weight λ ∈ R and 1−λ respectively. The non-trivial

OPE relations are

β (z)γ(w)∼ I
z−w

. (7.1)

The resulting order-two Galilean contracted algebra is generated by fields βi(z), γi(z) for i = 0,1. The

products between these fields are given by

βi(z)γ j(w)∼

 2I
z−w , if i = j = 0,

0, otherwise.
(7.2)

The grade-0 part of the contracted algebra has a shifted structure constant (which can be scaled away),

and any products with the grade-1 part are trivial. Hence, the resulting algebra is simply a trivial

extension of the original algebra. As such, it is not clear to what extent (if any) a notion of compatibility

with the contraction is beneficial to our understanding of Galilean free-field contractions. Further

evidence in this direction is that in the papers [143, 144], the authors used uncontracted free-field

algebras in their constructions.

Throughout this thesis, we have ensured that Galilean affine Lie algebras admit a Sugawara construction,

and moreover, we have ensured compatibility between the Sugawara construction and the contraction

procedure. The importance of a Sugawara operator in the theory is that it demonstrates an action of the

Virasoro algebra, and hence, conformal symmetry. This is particularly relevant from the perspective

of physical applications. For all the generalised Galilean contractions considered in this thesis, we

found that the central charge of the resulting Galilean Virasoro algebra was given by the dimension

of the underlying (semi)simple Lie algebra. This fits precisely with the results of [89] for Sugawara

constructions for non-semisimple algebras. The authors provide a framework, known as a double-

extension construction, and show that all algebras which can be realised as a double extension have a

well defined Sugawara construction, and moreover, the central charge is given by the dimension of the

underlying algebras.

It is a natural next step to verify that Galilean affine Lie algebras arise as double extensions of

appropriately chosen Lie algebras. Demonstrating this was unfortunately outside the scope of this
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work. A description in terms of double extensions may make possible the determination of closed form

expressions for the Sugawara operators in the asymmetric Sugawara construction at m = 0. Such a

description restricts the general form of the invariant metric Ω, and these restrictions may be sufficient

to give closed form expressions for the Sugawara operators.

We would like to develop a general theory of Galilean W -algebras (in the sense of algebras not of

Lie-type). We recall that difficulties arise in the contraction procedure for algebras with functions

of the central charge as structure constants. The chosen method of series expanding the functions in

ε-small requires a case-by-case analysis, as one requires knowledge of the structure constants. The

structure constants of the W -algebras are not known in general. As such, our results are limited in

scope, considering only the most accessible example of W3 for the higher-order, multi-graded, and

asymmetric Galilean contractions.

The general theory of W -algebras has been rapidly developed, with many new techniques being used to

better understand their structure (see [47] for an overview). Quantum Hamiltonian reduction, which we

discussed in Section 1.8, is of particular interest. For a given affine Lie algebra ĝ, quantum Hamiltonian

reduction associates a W -algebra to each embedding of ŝl(2) ↪→ ĝ. As such, if we can show that the

Galilean contraction procedure is compatible with the quantum Hamiltonian reduction procedure, we

will have a general description of Galilean W -algebras which avoids the difficulties related to the

structure constants.

Despite the shortfalls of our current understanding of contracting W -algebras, it does raise an interesting

question: is it possible to use the structure of the Galilean W -algebra to determine the structure

constants of the original algebra? This of course assumes that the corresponding Galilean W -algebra

exists, which is still an open problem. However, the graded structure of the resulting Galilean algebra

places strong constraints on the structure constant functions. If we assume that a particular Galilean

contraction is well defined, and that the resulting algebra is graded, then we can use that information

to deduce certain properties of the structure constants for the original (uncontracted) W -algebras.

Such a result is of interest, since despite having unified frameworks for constructing W -algebras,

such as quantum Hamiltonian reduction, and the Casimir W -algebra constructions (see [39] for

an introduction), determining the structure constants, and thus the OPEs of a given W -algebra is

still a highly non-trivial exercise. Traditionally, this was done following Zamolodchikov’s original

prescription, where one enforces associativity to constrain the OPE (and thus the structure constants).

Deducing the structure constants from the graded Galilean algebras may provide a fruitful way of

obtaining concrete descriptions of uncontracted W -algebras (this idea was somewhat explored in [1]).

Finally, we would like to address the idea of cosets of Galilean algebras. We are naturally interested

in seeing if a coset construction can also be used to study Galilean algebras. Some work has already

been done in this direction [86], where the author considers non-compact Lie groups that lead to

asymmetric Galilean algebras at m = 1
2 . In that paper, the author manages to show that it is indeed
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possible to construct a Virasoro operator in the resulting coset theory, and that it follows from a

Sugawara construction for non-semisimple algebras [89]. Moreover, the author remarks that a coset

construction of a modified Virasoro operator is also possible. However, we were able to show in a

number of examples that one cannot construct a Galilean Virasoro algebra Vir2
G in the coset theory.

That is, we could not construct an accompanying T1 field. An interpretation of these results is still

lacking.

What is of particular interest in a coset construction is the central charge of the resulting Virasoro

algebra. As we have consistently seen, the Galilean Virasoro algebras coming from the Sugawara

construction have integer central charges (in particular, a multiple of the dimension of the underlying

semisimple g). In [86] the author demonstrates that the resulting Virasoro algebra appearing in the

coset can have rational central charge, implying that such a coset theory does give rise to a wider range

of Virasoro models.

7.2 The study of N = 2 staggered modules

In Chapters 5 and 6 we have investigated the first examples of particular indecomposable yet reducible

modules over the N = 2 superconformal algebras, known as staggered modules. These modules have

been constructed using recent results [99, 100] on the coset construction (commutant construction)

which relates ŝl(2) and N = 2 minimal models at admissible levels (and correspondingly admissible

central charges).

Staggered modules arise in non-unitary N = 2 minimal models M(u,v), which are exactly those models

corresponding to ŝl(2) minimal models A1(u,v) for v 6= 1. The minimal models A1(3,2) and A1(2,3)

are known to contain staggered modules, and such modules conjectured to exist in the models A1(u,v)

for all admissible u,v. The work of [100] determined branching rules for A1(u,v) staggered modules,

and we investigated the resulting families of M(u,v) staggered modules which arose.

We began by presenting a general discussion of staggered modules, outlining the required general

theory. Following this, we demonstrated explicitly the effect of the automorphisms of the N = 2

algebra on the staggered modules. This led to the key observation that the families of staggered

modules appearing in the branching rules are related by the spectral flow automorphism.

Following this, we constructed explicit examples of N = 2 staggered modules for both the Neveu-

Schwarz and Ramond algebras in the minimal model M(2,3). We gave their Loewy diagrams,

described the gluing of component modules, and explicitly determined their structure by calculating

the values of their associated β -parameters.

Observations from these first examples motivated the search for more general symmetries of the

minimal models. We used these observations to demonstrate two key general facts. First, there is a Kac

table symmetry, for fixed u,v, giving an equivalence of staggered module families appearing in the
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branching rule. Modules with r,s label r,0 are equivalent to those with label u− r,v−1. In particular,

in the minimal model M(2,3) this demonstrated that the families [i]Pp;1,0 and [i]Pp;1,2 are equivalent

families of staggered modules, a fact which is also true for their related A1(2,3) counterparts.

Furthermore, we showed that the value of the β -parameters for a given staggered module family are

related under the action of the spectral flow. We demonstrated that the spectral flow only affects the

β -values by a constant term which is directly calculable given the value of ` of the spectral flow. Since

all the modules in a given branching rule family are related by spectral flow, we conclude that all the

modules in a given family are structurally related. These results imply that in order to understand

the structure of a particular staggered module family, one need only determine the structure of a

representative of that family.

We continued by demonstrating that all component modules of the vacuum staggered module (with

head module highest weight (0,0)) have the same highest weights for all admissible levels of the

central charge. Moreover, as these modules are labelled by r = 1,s = 0, such a vacuum staggered

module should appear as a member of all non-unitary minimal models. We use the language that such

a module should appear, as we have not explicitly proven existence of these modules in general. We

determine the value of the β -parameters for this vacuum staggered module for all admissible levels of

the central charge. This determines the corresponding module family appearing in the minimal model

M(3,2), as well as its Kac symmetric counterpart.

Finally, we gave an analysis of the Ramond sector modules that arise from the action of σ ` for `=±1
2

on the vacuum staggered modules for admissible c. We see that these Ramond modules have the same

values of the β -parameters, up to a constant factor, which exactly matches the prediction provided by

the general results of the preceding discussion on spectral flow.

We would like to reiterate that our description of the structure of modules in terms of their β -parameters

was motivated by the work of [104, 107, 138]. We follow the standard prescription in the literature.

However, we have not provided a proof that the parameters characterise the isomorphism classes

of modules. In [104], the authors defined linear functionals on the space of isomorphism classes

of staggered modules over the Virasoro algebra, and determined that the β ’s parametrise that space.

This then rigorously proves the fact that the structure of a staggered module is characterised (up to

isomorphism) by its β -parameters and structural diagram. We hope to demonstrate a similar result for

the rank-two N = 2 superconformal staggered modules in the future.

As this is the first investigation of staggered modules for the N = 2 algebras, there are many questions

that remain. Our results here have determined the structure of the staggered module families in the

minimal model M(2,3) which arise via the branching rule from the staggered modules in A1(2,3).

However, we cannot yet conclude that these families exhaust all possible staggered modules in M(2,3).

That result has been conjectured by [100, 109]. However, we are in a position to begin calculating

fusion of staggered modules in M(2,3), to attempt to prove the conjectured fusion rules coming from
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the Grothendieck rings.

We would like to have a similar description of the minimal model M(3,2). Its counterpart minimal

model A1(3,2) is the only other ŝl(2) minimal model for which staggered modules have been explicitly

constructed. We have already determined the structure of the module families [i]Pp;1,0 and [i]Pp;2,1

using our general results on the vacuum staggered module, and the Kac table symmetries. Moreover,

we know that [i]Pp;1,1 and [i]Pp;2,0 are also related by Kac table symmetries. Hence, we need only

determine the structure of one representative module from either of these families.

The difficulty in doing this comes with finding a suitable representative module. In the examples

we have presented here, the singular vector relations which fix the value of the β -parameters are

close enough to the highest-weight vectors that the corresponding calculations are feasible. An early

investigation of the modules appearing in the families [i]Pp;1,1 and [i]Pp;2,0 has only yielded cases

where these relations are too deep in the module to be useful for calculation, even with the aid of a

computational package like Mathematica.

There are two main long-term goals of this project. First is the classification of rank-two staggered

modules for the N = 2 superconformal algebras. Ideally, this would be a result similar to that of [104]

where the authors classified the rank-two staggered modules for the Virasoro algebra up to isomorphism.

Logarithmic modules have been shown to be fundamental to a complete understanding of conformal

field theories [118]. Moreover, conformal field theories with N = 2 supersymmetry (albeit in four

dimensions) have lead to new discoveries, whereby those models have fundamental algebraic invariants

given by certain vertex operator algebras [145–147]. There may be useful understanding to be gained

in the two-dimensional superconformal setting, which can then be applied to these so-called 4D-2D

correspondences.

The second long term goal is related to the search for an appropriate categorical understanding of

modules in conformal field theory. Much research [148–151] has focused on understanding the modular

tensor categories formed by the representations of vertex operator (super)algebras. It has become clear

that the understanding of module fusion coming from rational conformal field theory (where the fusion

ring is finite dimensional) needs to be expanded. However, verifying fusion rules calculationally is

a notoriously difficult problem. The corresponding categorical framework for studying fusion has

proven to be very powerful.

It has been conjectured [109] that for the A1(u,v) minimal models, the staggered modules are projective

modules in an appropriately enlarged module category, equipped with a fusion product. Enlarged in the

sense that we do not consider only highest-weight modules, but also relaxed highest-weight modules,

where the definition of highest-weight vector is relaxed so that e0 ∈ ŝl(2) is not an annihilator; as well

as modules arising from spectral flows of the aforementioned types. Such a category is in essence a

fusion category of all weight modules with finite dimensional weight spaces. The conditions on the

category come from the Grothendieck fusion rules for A1(u,v) [100].
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It is then conjectured that the S±r,s modules form the projective covers of the L- and D±-type modules, as

well as an additional family of modules referred to as E±-type, which are reducible but indecomposable

modules whose quotients are D±-type. The N = 2 superconformal algebras have an upside in that the

fermionic generators square to zero. This implies that under spectral flow, highest-weight modules map

to highest-weight modules, unlike in ŝl(2). This property still holds if one relaxes the highest-weight

annihilation conditions, for example letting G+
0 act without annihilating in the Ramond sector. With

the improved understanding of the coset construction, and its implications for the representation theory,

it could be a more straightforward task to answer the problem of projectivity of staggered modules for

N = 2 superconformal minimal models. One can then attempt to use the “reverse” Kazama-Suzuki

coset construction to translate that result back to A1(u,v) minimal models, using the work of [98, 153]

There is also the question of physical descriptions of these modules. Similar results showed that

staggered modules appear in certain Virasoro models, for example percolation at c = 0 [115, 120]

and so-called critical dense polymers at c =−2 [121]. It is natural to ask if there are similar systems

coming from statistical physics or string theory which demonstrate staggered N = 2 modules “in

the wild”? One particular downside of these modules from a physical perspective is that they are

non-unitary. While research into non-unitary quantum systems has flourished in the mathematics

community, these ideas have naturally been slower to catch on in the physics community, as unitarity

is a key component of our understanding of quantum theory.

Finally, we can also attempt to consider more general staggered structures. Thus far, we have looked at

only those staggered modules in the M(u,v) minimal models which arise through the coset construction

from A1(u,v) minimal models. Such modules are made of four component modules, glued such that

L0 has a rank two Jordan block. While the coset construction provides a valuable calculational

framework for determining our results, we could also consider staggered modules of both the N = 2

superconformal and ŝl(2) algebras more generally. For example, there are alternative constructions

of staggered modules over ŝl(2) [108], related to so-called Kac modules. Similarly, we can consider

N = 2 staggered modules more generally, not restricting to modules arising via the coset. Rather one

could consider what possible gluings of highest-weight representations lead to indecomposable yet

reducible modules, with a non-diagonal action of a zero-mode generator. This allows one to ask several

new questions. Is it possible to have non-diagonalisability in the generator J0? Are Jordan blocks of

rank greater than 2 possible? Logarithmic modules with higher-rank Jordan blocks have been seen to

appear for the Virasoro algebra [122, 154]. The downside of a more general approach is that it is very

difficult to prove existence of modules. A key benefit of the coset construction of M(u,v) minimal

models is the known existence of the related A1(u,v) staggered modules for (u,v) = (3,2),(2,3).

Many interesting open questions remain for both the construction of Galilean conformal field theories

and their representations, as well as the logarithmic representations of the N = 2 superconformal

algebras. We hope to answer some of these in the future.
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