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Abstract

This thesis presents the computation of singular vectors of the Wn algebras and the
BRST cohomology of modules of the simple vertex operator algebra Lk(sl(2))
associated to the affine Lie algebra ŝl(2) in category Rσ, which is the category of
relaxed highest-weight modules, their spectral flows and non-split extensions.

We will first recall some general theory on vertex operator algebras. We will then
introduce the module categories that are relevant for conformal field theory. They are
the category O of highest-weight modules and Rσ, where Rσ contains O as well as the
relaxed highest-weight modules with the relaxed spectral flow and non-split extensions.
We will then introduce the Wn algebras as well as the simple vertex operator algebra.
Properties of the Heisenberg algebra, the bosonic and the fermionic ghosts will be
discussed as they are required in the free field realisations of Wn and Lk(sl(2)) as well
as the construction of the BRST complex.

We will then compute explicitly the singular vectors of Wn algebras in their Fock
representations. In particular, singular vectors can be realised as the image of
screening operators of the Wn algebras. One can then realise screening operators in
terms of Jack functions when acting on a highest-weight state, thereby obtaining
explicit formulae of the singular vectors in terms of symmetric functions.

We will then discuss the BRST construction and the BRST cohomology for modules
in category O. Lastly we compute the BRST cohomology for Lk(sl(2)) modules in
category Rσ. In particular, we compute the BRST cohomology for the highest-weight
modules with positive spectral flow for all degrees and the BRST cohomology for the
highest-weight modules with negative spectral flow for one degree. We also compute
the BRST cohomology for relaxed highest-weight Lk(sl(2)) modules.
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Chapter 0

Introduction

0.1 Background

The ingredients of a two-dimensional conformal field theory include a vertex operator
algebra and a module category of the vertex operator algebra that satisfies a number
of constraints. The constraints are that the module category has to be closed under
conjugation, fusion and that there exists a partition function is invariant under the
action of SL(2,Z) (modular invariance).

A large class of vertex operator algebras are the simple affine vertex operators
algebras Lk(g) constructed from affine Kac-Moody algebras at non-critical levels k.
These include the Wess-Zumino-Witten models [77–79] corresponding to k being integral.
Another class of vertex operator algebras called the W-algebras are constructed from the
affine vertex operator algebras via quantum hamiltonian reduction [34, 35, 39] which
is the zeroth cohomology of the so-called BRST complex. W-algebras are parametrised
by a finite-dimensional simple Lie algebra g, a level k and a nilpotent element f ∈ g

and we shall denote them by Wk(g, f). Examples of W-algebras include the Virasoro
algebra Wk(sl(2), f) [81] and the W3-algebras, Wk(sl(3), f) [33] where f corresponds
to a principal nilpotent element of sl(2) and sl(3).

Given a conformal field theory, one question to ask is whether it is rational, that
is, whether the (appropriate) module category of the corresponding vertex operator
algebra is completely reducible (this will also imply that the module category has
finitely many irreducible modules [21]). The Wess-Zumino-Witten models, the Virasoro
minimal models M(p, q) = Wk(sl(2), f), f ̸= 0 [74] are rational, where k, p, q are related
by k + 2 = p

q
for p, q ≥ 2, where p, q are coprime. More generally, Wk(g, fθ) is rational

[4] where fθ is a principal nilpotent element of g with k defined in the paper.
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Introduction

The approach used to prove rationality of Virasoro minimal models M(p, q) in
[74] involves deriving a projection formula of singular vectors in the Virasoro algebra
Vir. Singular vectors are in general very hard to compute explicitly. It was shown in
[57] that explicit formulae for singular vectors in Fock representations of Vir can be
expressed in terms of the Jack symmetric functions. This approach of representing
singular vectors using symmetric functions was used in [61] to prove the rationality
of M(p, q) and classify its modules, thereby recovering the result in [74]. The same
approach has been used to determine the spectrum of the simple affine vertex operator
algebra Lk(sl(2)) [62].

The approach used in [57] for computing singular vectors has been generalised to
the Wn-algebra [7], where Wn = Wk(sl(n), fθ), fθ being a principal nilpotent element.
The first result of this thesis is to extend the results in [57, 7] to give explicit formulae of
singular vectors of the Wn-algebra in its Fock representations. This work was published
in [60].

The approach used to prove that the simple quotient of Wk(g, f), f principal
nilpotent is rational uses BRST cohomology [4]. Specifically, it was shown that all
irreducible modules of Wk(g, f) in category O can be obtained from simple modules
in category O of the simple vertex operator algebra Lk(g) via BRST cohomology.
Moreover, the so-obtained Wk(g, f) irreducible modules satisfy the constraints of a
conformal field theory.

However, for fractional admissible level k, the modules in category O of Lk(g) do
not satsify any of the constraints of a conformal field theory. Therefore a larger category
than O is needed. It is conjectured that the right category to consider is the relaxed
category with spectral flow Rσ. This category includes O as well as relaxed highest-
weight modules and their twisted versions under the spectral flow automorphisms. We
also remark that Rσ is not semisimple and thus the theory is a logarithmic conformal
field theory. A logarithmic conformal field theory is one where the module category
(of the chiral vertex operator algebra) is not semisimple[64, 24]. Similarly, there are
W-algebras that are believed to be logarithmic. For example, let f =

( 0 0 0
1 0 0
0 0 0

)
be a

minimal nilpotent element of sl(3). Then Wk(sl(3), f) is the Bershadsky-Polyakov
algebra. For k = −3 + p

2 where p is an odd integrer greater than 3, the simple quotient
of this algebra has been proved to be rational [3]. However, for other levels it is believed
that the algebra is logarithmic. Therefore, relaxed modules of the Bershadsky-Polyakov
algebra must be considered.

It is natural then to ask whether the BRST cohomology takes relaxed modules in
category Rσ of Lk(g) to relaxed modules in Rσ of simple quotient of the Bershadsky-
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0.2 Outline

Highest-weight
modules

Relaxed highest-weight
modules with spectral flow
and non-split extensions

Highest-weight
modules

Lk(sl(2))

M(p, q)

BRST

BRST

Fig. 1 In the second part of this thesis we will compute the BRST cohomology of some
irreducible relaxed highest-weight modules of the simple affine vertex operator algebra
Lk(sl(2)). It turns out that their cohomologies are either zero or a simple highest
weight module of the Virasoro minimal model M(p, q).

Polyakov algebra. Of course we would also like to ask the same for all other W-algebras.
The simplest case of this question is the case of Lk(sl(2)) which is what the second
part of the thesis is about. In particular, we will compute the BRST cohomology of
some relaxed modules in Rσ of Lk(sl(2)), as shown in Figure 1.

In the future we would like to extend the question of finding the BRST cohomology
of relaxed modules to higher ranks, see Figure 2 for example.

0.2 Outline

This thesis is organised as follows:

In Chapter 1 we start with a brief summary of the theory of vertex algebras. We also
introduce the vertex algebras and their module categories that are relevant to us.

In Chapter 2, based on the work of [7], we apply the machinery of symmetric functions
to compute singuar vectors of the WN algebra in the Fock representations of WN .
This work was published in [60].

In Chapter 3 we give a detailed proof of certain fundamental results about BRST
cohomology, outlined in [16], that takes irreducible highest-weight modules of the

3
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Highest-weight
modules

Relaxed highest-weight
modules with spectral flow
and non-split extensions

Relaxed highest-weight
modules with spectral flow
and non-split extensions

Highest-weight
modules

Lk(sl(3)) simple BP

BRST

BRST?

Fig. 2 For most admissible levels k, the simple Bershadsky-Polyakov algebra coresponds
to a logarithmic conformal field theory. Moreover, we need to consider relaxed highest-
weight modules. An obvious future research direction is to investigate whether the
BRST cohomology takes irreducible relaxed modules of the simple affine sl(3) vertex
operator algebra Lk(sl(3)) to irreducible relaxed modules of the simple Bershadsky-
Polyakov vertex operator algebra.

simple affine vertex operator algebra Lk(sl(2)) at admissible level k to the irreducible
highest-weight modules of the Virasoro minimal model M(p, q) where k = −2 + p

q
,

p, q ≥ 2, (p, q) = 1. The module category that we work with in this chapter is the
category O.

In Chapter 4 we attempt to generalise [16] where we consider the BRST cohomology
of Lk(sl(2)) modules in the category Rσ. This non-semisimple category contains the
relaxed Lk(sl(2)) modules, the twisted relaxed modules under spectral flow as well as
non-split extensions of such modules. We present partial answers for this problem.
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Chapter 1

Vertex Algebras

1.1 Vertex Algebras

In this section we recall some basic definitions and properties of vertex operator
algebras.

1.1.1 Definitions

Let V be a vector space over C. We assume that V is graded

V =
⊕
n∈Z

Vn. (1.1)

Given a countable set {An ∈ EndV | n ∈ Z} of homogenous linear operators An of
degree −n with respect to the grading on V , we define the formal power series

A(z) =
∑
n∈Z

Anz
−n−1 (1.2)

which is called a field if for any v ∈ V we have Anv = 0 for n large enough.

Definition 1.1.1. Two fields A(z), B(w) are local if there exists N ∈ N such that

(z − w)N [A(z), B(w)] = 0 (1.3)

Definition 1.1.2. A vertex algebra is a collection of data

• A vector space V

• A vacuum vector |0⟩ ∈ V

5
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• A linear operator T : V → V

• A linear operation

Y (·, z) : V −→ EndV Jz±K (1.4)

satisfying

• Y (|0⟩, z) = id

• For any A ∈ V we have Y (A, z)|0⟩ ∈ V JzK and limz→0 Y (A, z)|0⟩ = A

• [T,A(z)] = ∂A(z) and T |0⟩ = 0

• All fields Y (A, z) are local to each other.

If two fields A(z), B(w) are local, then we can write the product A(z)B(w) as a power
series in z − w, assuming |z| > |w|

A(z)B(w) =
∑
n≥0

Y (An ·B,w)
(z − w)n+1 + :A(z)B(w): (1.5)

which is called the operator product expansion of A(z), B(w).

Definition 1.1.3. The regular terms :A(z)B(w): in the series expansion in
Equation (1.5) is called the normally ordered product of A(z), B(w). Explicitly,

:A(z)B(w): =
∑
n≤−1

Anz
−n−1B(w) +B(w)

∑
n≥0

Anz
−n−1 (1.6)

From now on we will only include the singular terms when we write the operator
product expansions of A(z), B(w). That is we write

A(z)B(w) ∼
∑
n≥0

Y (An ·B,w)
(z − w)n+1 (1.7)

Since An ·B = 0 for n large enough we see that the series in Equation (1.5) always has
finite-order pole at z = w.

Definition 1.1.4. A vertex operator algebra is a vertex algebra (V, |0⟩, T, Y ) with the
existence of a conformal vector ω. The field corresponding to ω is an energy

6
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momentum tensor

Y (ω, z) =
∑
n∈Z

Lnz
−n−2 (1.8)

such that the modes Ln satisfy the commutation relations of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + c

12(m− 1)m(m+ 1)δm+n,0 (1.9)

where c is central. Furthermore, the translation operator T coincides with L−1.
The action of L0 acts diagonalisably on the vector space of the vertex operator algebra
and the grading of the vector space V = ⊕

n∈Z Vn is the grading given by the
L0-eigenvalues. Any elements in Vn are said to have conformal weight n.

For any element A ∈ V with conformal weight hA, we will rewrite the field
corresponding to A as

Y (A, z) =
∑
n∈Z

Anz
−n−hA (1.10)

Since the conformal vector uniquely determined the translation operator T which is
L−1, the data for a vertex operator algebra is (V, |0⟩, ω, Y ).
From now on we will only consider vertex operator algebras. Given one, we can define
subalgebras, ideals and quotients. In particular,

Definition 1.1.5. A vertex operator algebra ideal I ⊆ V is a T -invariant subspace
that satisfies Y (A, z)B ∈ I((z)) for all A ∈ V,B ∈ I.

A special property that a vertex operator algebra has is skew-symmetry

Proposition 1.1.6. [38, Proposition 3.2.5] The identity

Y (A, z)B = ezTY (B,−z)A (1.11)

holds in V ((z)).

The point of Proposition 1.1.6 is that if Y (A, z)B ∈ I((z)), then Y (B, z)A ∈ I((z)).
Therefore for vertex algebras, any left-sided ideal is automatically a two-sided ideal
and thus the quotient V/I has a natural vertex algebra structure. In particular, if V
has the structure of a vertex operator algebra, so does V/I.
Now that we have defined vertex operator algebras, we will turn to how we can
construct them. The theorem below allows us to construct a vertex operator algebra
from a set of generators and relations.

7
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Theorem 1.1.7. [38, Theorem 2.3.11] Suppose that V is a vector space, |0⟩ a
non-zero vector, and T an endomorphism of V . Let S be a countable ordered set and
{aα}α∈S a collection of vectors in V . Suppose we are also given fields

aα(z) =
∑
n∈Z

aαnz
−n−ha (1.12)

such that the following conditions hold

• For all α, aα(z)|0⟩ = aα + z(. . .)

• T |0⟩ = 0 and [T, aα(z)] = ∂za
α(z) for all α.

• All fields aα(z) are mutually local

• V is spanned by the vectors

aα1
j1 · · · a

αm
jm |0⟩ (1.13)

Then the assignment

Y
(
aα1
j1 · · · a

αm
jm |0⟩, z

)
= 1

(−j1 − 1)! · · · (−jm − 1)! :∂
−j1−1
z aα1(z) · · · ∂−jm−1

z aαm(z):

(1.14)

defines a vertex algebra structure on V . Moreover, if V is a Z-graded vector space, |0⟩
has degree 0, the vectors aα are homogeneous, T has degree 1, and the fields aα(z) have
degree deg aα, then V is a Z-graded vertex algebra. Moreover, this is the unique vertex
algebra structure on V satisfying the above conditions such that Y (aα, z) = aα(z).

Therefore throughout this thesis, we will simply define various vertex operator algebras
by stating the underlying vector space, the generating fields, the energy-momentum
tensor T (z) as well as the operator product expansion between these fields.
Theorem 1.1.7 ensures that it will be a well-defined vertex operator algebra.
Lastly we will state a general result on vertex operator algebras that will be important
in Chapter 3.

Lemma 1.1.8. [38, Corollary 3.3.8] For any A ∈ V , the mode
A−hA+1 =

∫
0
Y (A, z) dz of Y (A, z) satisfies

[A−hA+1, Y (B,w)] = Y (A−hA+1 ·B,w) (1.15)

8



1.1 Vertex Algebras

1.1.2 Modules of vertex operator algebras

Definition 1.1.9. Let (V, |0⟩, T, Y ) be a vertex algebra. A vector space M is called a
V -module if it is equipped with an operation YM : V −→ EndMJz±K which assigns to
each A ∈ V a field

YM(A, z) =
∑
n∈Z

Anz
−n−1 (1.16)

on M subject to the following axioms:

• YM(|0⟩, z) = idM

• for all A,B ∈ V,C ∈M the three expressions

YM(A, z)YM(B,w)C ∈M((z))((w)) (1.17)
YM(B,w)YM(A, z)C ∈M((w))((z)) (1.18)

YM(Y (A, z − w)B,w)C ∈M((w))((z − w)) (1.19)

are the same expansions, in their respective domains, of the same element of

MJz, wK
[
z−1, w−1, (z − w)−1

]
(1.20)

To construct modules of a vertex operator algebra, we want to relate them to modules
of Lie algebras. For any vertex algebra V , we can attached to it an associative algebra
U(V ), see [38, Definition 4.3.1]. In particular, if the modes of all fields A(z) of the
generators are elements of some Lie algebra g, then U(V ) is a completion of U(g)/I,
where U(g) is the universal enveloping algebra and I is the ideal generated by the
expressions (S − s1) for any central element S ∈ g and for some fixed s ∈ C. We call a
U(V ) module smooth if for all v ∈M and A ∈ V , there is an N such that An · v = 0
for all n ≥ N . Then we have

Theorem 1.1.10. [38, Theorem 5.1.6] There is an equivalence between the category
of V -modules and the category of smooth U(V )-modules.

For our applications, U(V )-modules are all g modules so it’s enough to consider
modules of g. The Lie algebras g that we consider have triangular decompositions

g = n− ⊕ h⊕ n+ (1.21)

9
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as well as a grading g = ⊕n∈Zgn (which will be made explicit when necessary) where
g0 contains h. The relaxed decomposition is defined as

g = n< ⊕ g0 ⊕ n> (1.22)

where n< = ⊕n<0gn, n> = ⊕n>0gn. We note that g0 ⊕ n> contains the borel
subalgebra h⊕ g+. Given a module M of g, for any λ ∈ h∗ let

Mλ = {v ∈M | ∀h ∈ h, hv = λ(h)v} (1.23)

Ultimately, we are interested in vertex algebras and their modules from the conformal
field theory point of view. Recall that a conformal field theory includes a vertex
operator algebra V and a module category of V that satisfies certain constraints:

• closed under conjugation

• closed under fusion

• there exists a partition function that is modular invariant

The category that we need to consider in order to satisfy these assumptions depends
on the vertex operator algebra V . As V -modules are modules of the Lie algebra U(V )
which are modules of g, we will introduce some Lie algebra module category that
(conjecturally) satisfies the axioms. The first such category is the category O.

Definition 1.1.11. [58] The category O contains objects M that satisfy

• M is finitely generated

• M =
⊕
λ∈h∗
Mλ, where each Mλ is finite-dimensional

• M is locally n+-finite, for each v ∈M the n+-module generated by v is finite
dimensional

and the morphisms are g-module homomorphisms.

For example all modules of the Virasoro minimal models M(p, q) [74] and the WN

algebras [4], which we will define in the next section, belong to category O.

Definition 1.1.12. [62] The relaxed category R contains objects M that satisfy

• M is finitely generated

10



1.2 The Heisenberg vertex algebra

• M =
⊕
λ∈h∗
Mλ, where each Mλ is finite-dimensional

• M is locally n>-finite, for each v ∈M the n>-module generated by v is finite
dimensional.

Given a module M of the associative algebra U(V ) associated to a vertex (operator)
algebra V , suppose that σ : U(V )→ U(V ) is an automorphism of the Lie algebra
U(V ).

Definition 1.1.13. The twisted module σ(M) is defined, for any element v ∈M and
for any modes An ∈ U(V ), by

An · σ(v) = σ(σ−1(An · v)), σ(v) ∈ σ(M). (1.24)

Equivalently, σ(M) corresponds to the representation σ−1 ◦ ρ : U(V )→ EndM where
ρ : U(V )→ EndM is the representation map of M.

Suppose that C is a module category of V and let σ be an automorphism of g. We
define σ(C) as the set containing the twisted modules σ(M) for each M ∈ C.

Definition 1.1.14. The relaxed category with spectral flow Rσ is the full subcategory
of smooth weight modules of g generated by objects M , σ(M), M ∈ R as well as all
non-split extensions between these objects.

1.2 The Heisenberg vertex algebra

The Heisenberg Lie algebra H is the vector space

H = C{an, 1 | n ∈ Z} (1.25)

The algebra structure of H is defined by the Lie bracket

[am, an] = mδm+n,01 (1.26)

with 1 central. The Heisenberg algebra has the triangular decomposition

H = H−
⊕
H0

⊕
H+ (1.27)

11
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where

H+ = C{an | n ∈ Z≥1} (1.28)
H0 = C{a0, 1} (1.29)
H− = C{an | n ∈ Z≤−1} (1.30)

With this triangular decomposition we can define Verma modules, commonly called
Fock spaces. These modules are constructed from the one dimensional module
generated by |λ⟩, λ ∈ C

Fλ = U(H−)
⊗

U(H0⊕H+)
C|λ⟩ (1.31)

so that

a0|λ⟩ = λ|λ⟩ (1.32)
an|λ⟩ = 0, n ≥ 1 (1.33)

As a vector space, the Fock spaces are spanned by the vectors and the highest-weight
vector of Fλ is thus |λ⟩.

1.2.1 The Heisenberg vertex operator algebra

The module F0 has the structure of a vertex algebra H with the data (F0, |0⟩, T, Y )
where the translation operator is defined as

T = 1
2
∑
n∈Z

: ana−n−1 : (1.34)

H is generated by a single field of conformal weight 1

a(z) =
∑
n∈Z

anz
−n−1 (1.35)

where the field a(z) satisfies the operator product expansion

a(z)a(w) ∼ 1
(z − w)2 (1.36)

12



1.2 The Heisenberg vertex algebra

with the state-field correspondence defined as

Y (a−nk
· · · a−n1|0⟩, z) = 1

(nk − 1)! · · · (n1 − 1)! :∂
nk−1a(z) · · · ∂n1−1a(z): (1.37)

where nk ≥ · · ·n1 ≥ 1. There is a one parameter family of conformal structures on H,
each member of which makes H a vertex operator algebra,

T (z) = 1
2:a(z)a(z): + α0

2 ∂a(z), α0 ∈ C (1.38)

where c = 1− 3α2
0.

1.2.2 Modules of the Heisenberg vertex operator algebra

For all λ ∈ C, the Fock spaces Fλ of the Heisenberg Lie algebra H are modules for the
Heisenberg vertex algebra H. Moreover, as modules of H, these modules are simple.
To conclude this section we introduce the spectral flow automorphism of the
Heisenberg algebra. For s ∈ C, let σsH be the map

σsH(an) = an − sδn,01, σsH(1) = 1. (1.39)

It is routine to check that σsH is an automorphism. Since σsH leaves every element but
a0 in H invariant, we see that σsH(|λ⟩) is a highest-weight vector and thus σsH(Fλ) is a
highest weight module. The action of a0 acting on the highest weight vector of σsH(Fλ)
is

a0σ
s
H(|λ⟩) = σsH

(
σ−s

H (a0)|λ⟩
)

= σsH((a0 + s)|λ⟩) = (λ+ s)σsH(|λ⟩) (1.40)

Thus we see that

σsH(Fλ) = Fλ+s (1.41)

That is, twisting Fλ with σsH changes it to another Fock space with a different highest
weight.

1.2.3 The rank r Heisenberg algebra

In this subsection we use different notations to the ones used for defining H, so we fix
r ≥ 2. The rank r Heisenberg algebra is constructed from an r-dimensional complex
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vector space hr together with a non-degenerate symmetric bilinear form (−,−). For
the application to follow, we pick a basis {a1, . . . , ar} of hr such that the Gram matrix
of (−,−) is the Cartan matrix of sl(r + 1):

(
ai, aj

)
= 2δi,j − δi+1,j − δi,j+1, i, j = 1, . . . , r. (1.42)

Since (−,−) is non-degenerate, it defines a vector space isomorphism ι : hr → h∗
r by

a 7→ (a,−). The induced non-degenerate symmetric bilinear form will also be denoted
by (−,−). We denote the images of the basis vectors ai by αi = ι(ai) and the
elements of the basis of h∗

r dual to {ai} by ωi. Thus, ωi(aj) = δji . The αi and ωi may
therefore be identified as simple roots and fundamental weights, respectively, of
sl(r + 1). In this picture, the basis vectors ai ∈ hr are the simple coroots of sl(r + 1).
To any vector a ∈ hr, one assigns a field a(z) whose defining operator product
expansions are

a(z)b(w) ∼ (a, b)1
(z − w)2 , a, b ∈ hr. (1.43)

These fields admit Fourier expansions of the form

a(z) =
∑
n∈Z

anz
−n−1, a ∈ hr, (1.44)

whose modes satisfy the following commutation relations:
[
am, bn

]
= m(a, b)δm,−n1. (1.45)

The Heisenberg Lie algebra Hr is the infinite-dimensional Lie algebra spanned by the
central element 1 and the generators am, for all a ∈ hr and m ∈ Z. We have chosen to
denote the central element by 1, since we assume that it will act as the identity on any
Hr-module. A basis of Hr is then given by 1 and the aim, with i = 1, . . . , r and m ∈ Z.
The Heisenberg Lie algebra admits a triangular decomposition

Hr = (Hr)− ⊕ (Hr)0 ⊕ (Hr)+, (Hr)0 =
r⊕
i=1

Cai0 ⊕ C1, (Hr)± =
r⊕
i=1

⊕
m≥1

Cai±m.

(1.46)

Verma modules over Hr are commonly referred to as Fock spaces. These are induced
from the one-dimensional modules C|ζ⟩, ζ ∈ h∗

r, over (Hr)≥0 = (H)0 ⊕ (H)+ that are

14



1.2 The Heisenberg vertex algebra

defined by

1|ζ⟩ = |ζ⟩, an|ζ⟩ = δn,0ζ(a)|ζ⟩, a ∈ hr, n ≥ 0. (1.47)

The Fock spaces

Fζ = U(Hr)⊗U((Hr)≥0) C|ζ⟩ (1.48)

are well known to be simple Hr-modules, for all ζ ∈ h∗
r.

As a module over itself, the Heisenberg vertex algebra Hr is identified with the Fock
space F0 and the state-field correspondence is given by

|0⟩ ←→ 1, b1
−n1−1 · · · bk−nk−1|0⟩ ←→ :∂

n1

n1!
b1(z) · · · ∂

nk

nk!
bk(z):, (1.49)

where b1, . . . , bk ∈ hr and normal ordering is defined in the usual way.
The Heisenberg vertex algebra Hr can be endowed with the structure of a vertex
operator algebra by choosing an energy-momentum tensor. This choice is not unique.
For the purposes of this note, we shall restrict our attention to the following
one-parameter family of energy-momentum tensors:

T (z) =
r∑
i=1

[1
2:ai(z)a∗i(z): + α0∂a

∗i(z)
]
, α0 ∈ C. (1.50)

Here, the a∗i ∈ hr are dual to the coroots ai in the sense that ι(a∗i) = ωi. We note
that while the quadratic summand in the above energy-momentum tensor is basis
independent, the linear summand is not. The central charge corresponding to this
choice of energy-momentum tensor depends on the parameter α0:

c = r − r(r + 1)(r + 2)α2
0. (1.51)

By definition, the coefficients of the Fourier expansion of the energy-momentum tensor
satisfy the commutation relations of the Virasoro algebra as defined in
Equation (1.60). Thus, formula (1.50) realises the Virasoro generators Ln, n ∈ Z, as
infinite sums of products of Heisenberg generators:

T (z) =
∑
n∈Z

Lnz
−n−2, Ln =

r∑
i=1

1
2
∑
m∈Z

:aima∗i
n−m:− α0(n+ 1)a∗i

n

. (1.52)

15
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This identification yields an action of the Virasoro algebra on the Fock spaces Fζ ,
ζ ∈ h∗

r. In this way, any highest-weight vector |ζ⟩ ∈ Fζ is also a Virasoro
highest-weight vector:

Ln|ζ⟩ = hζδn,0|ζ⟩, n ≥ 0, hζ = 1
2(ζ, ζ − 2α0ϱ). (1.53)

Here, ϱ = ∑
i ωi is the Weyl vector of sl(r + 1). We note that while the Fock spaces

are simple as Heisenberg modules, they need not be as Virasoro modules.
The primary fields of the free boson theory are called vertex operators (not to be
confused with elements of the Heisenberg vertex operator algebra). To define them, we
first need to extend Hr by C[h∗

r], the group algebra of h∗
r, treating h∗

r as an abelian
group under vector addition and C[h∗

r] as an abelian Lie algebra. We denote the group
algebra basis element corresponding to η ∈ h∗

r by eη and define the commutation
relations between the generators am and eη by

[am, eη] = δm,0η(a)eη, a ∈ hr, η ∈ h∗
r, m ∈ Z. (1.54)

It is easy to check that this extension of Hr by C[h∗
r] is a semidirect sum of Lie

algebras.
A standard computation now shows that eη maps the highest-weight vector |ζ⟩ ∈ Fζ
to a highest-weight vector of a0-eigenvalue ζ(a) + η(a) = (ζ + η)(a). Following usual
practice, we shall identify eη|ζ⟩ with |ζ + η⟩. The vertex operator corresponding to
|ζ⟩ = eζ |0⟩ is

Vζ(z) = eζza0
∏
m≥1

exp
(
a−m

m
zm
)

exp
(
−am
m
z−m

)
, ζ = ι(a) ∈ h∗

r. (1.55)

These primary fields therefore define linear maps between Fock spaces:

Vζ(z) : Fη → z(ζ,η)Fζ+ηJz, z−1K. (1.56)

It is easy to check from the Hr-primary operator product expansion

a(z)Vζ(w) ∼ ζ(a)Vζ(w)
z − w

(1.57)

that a(z) and Vζ(w) are mutually local for all a ∈ hr and ζ ∈ h∗
r. The same is therefore

true for an arbitrary field of Hr and any vertex operator, by Dong’s lemma [50].
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1.3 The Virasoro vertex operator algebra

Finally, suppose that ζi = ι(ai) ∈ h∗
r, for i = 1, . . . , k. Then, a standard computation

allows one to write the composition of the k vertex operators Vζi
(zi) as

Vζ1(z1) · · ·Vζk
(zk) =

k∏
i=1

eζi ·
∏

1≤i<j≤k
(zi − zj)(ζi,ζj) ·

k∏
i=1

z
ai

0
i (1.58)

·
∏
m≥1

exp
(

1
m

k∑
i=1

ai−mz
m
i

)
exp

(
− 1
m

k∑
i=1

aimz
−m
i

)
. (1.59)

This explicit formula will be used repeatedly in Chapter 2.

1.3 The Virasoro vertex operator algebra

We define the Virasoro algebra as the vector space

V = C{Ln | n ∈ Z} ⊕ CC (1.60)

with the Lie bracket

[Lm, Ln] = (m− n)Lm+n + C

12(m+ 1)m(m− 1)δm+n,0, (1.61)

[Lm, C] = 0 (1.62)

for all m,n ∈ Z. The Virasoro algebra has the triangular decomposition

V = V− ⊕ V0 ⊕ V+ (1.63)

where

V+ = C{Ln | n ∈ Z≥1} (1.64)
V0 = C{L0, C} (1.65)
V− = C{Ln | n ∈ Z≤−1} (1.66)

With this triangular decomposition we define Verma modules which are constructed
from a one dimensional representation C|∆⟩ of the Virasoro subalgebra V+

⊕
V0,
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where the module structure is defined as

L0|∆⟩ = ∆|∆⟩, (1.67)
C|∆⟩ = c|∆⟩, (1.68)
Ln|∆⟩ = 0, n ≥ 1 (1.69)

for some c ∈ C called the central charge. We then define a Verma module as the
induced module

V∆ = U(V−)
⊗

U(V0⊕V+)
C|∆⟩. (1.70)

Every Verma module V∆ contains a unique maximal submodule I. We denote the
irreducible quotient V∆/I by L∆.

1.3.1 Virasoro Vertex Operator Algebra

We can put a vertex operator algebra structure on V0
⟨L−1|0⟩⟩ with the data(

V0
⟨L−1|0⟩⟩ , |0⟩, L−2|0⟩, Y

)
. The Virasoro vertex algebra Vir is generated by a single field

T (z) =
∑
n∈Z

Lnz
−n−2 (1.71)

that satisfies the operator product expansion

T (z)T (w) ∼ c/2
(z − w)4 + 2T (z)

(z − w)2 + ∂T (z)
z − w

(1.72)

The structure of the Virasoro Verma module V0 at different values of the central charge
c is shown in Figure 1.1. From this figure we see that V0 always has a singular vector
L−1|0⟩, which is an eigenvector v of L0 such that Lnv = 0 for all n ≥ 1. We define the
universal Virasoro vertex operator algebra Vir as the data

(
V0

⟨L−1|0⟩⟩ , |0⟩, L−2|0⟩, Y
)

where the state-field correspondence Y : V0
⟨L−1|0⟩⟩ −→ End V0

⟨L−1|0⟩⟩Jz, z
−1K is defined by

Y (L−nk
· · ·L−n1|0⟩) = : 1

(n1 − 2)! · · ·
1

(nk − 2)!∂
n1−2T (z) · · · ∂nk−2T (z): (1.73)

For generic central charges, the maximal submodule is generated by L−1|0⟩ and the
vacuum module of Vir is irreducible, implying that Vir is a simple vertex operator
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1.3 The Virasoro vertex operator algebra

c = cp,q

|0⟩

L−1|0⟩ vp,q

• •

• •

... ...

c = c1,q, cp,1

|0⟩

L−1|0⟩

•

•

...

generic c ≤ 1

|0⟩

L−1|0⟩

Fig. 1.1 The structure of Virasoro Verma modules of highest-weight 0 at different
central charges c ≤ 1 where cp,q is defined in Equation (1.74). Bullets are additional
singular vectors. Arrows means one can apply Virasoro modes to go from one singular
vector to another.

algebra. For p, q ∈ Z≥2, (p, q) = 1, let

cp,q = 1− 6(p− q)2

pq
(1.74)

Then in this case the maximal submodule is generated by two singular vectors L−1|0⟩
and vp,q. We remark that singular vectors such as vp,q are very hard to compute in
general. Several works [7, 57, 61, 62] have computed explicit formulae of singular
vectors for different vertex operators algebras including the next chapter of this thesis,
where we compute singular vectors of the Wn algebra.

1.3.2 Minimal models

As we have seen in the previous section, the Virasoro vertex operator algebra is
reducible when the central charge is that of Equation (1.74). Quotienting out the
maximal ideal we obtain the simple Virasoro vertex operator algebra, denoted by
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M(p, q). These VOAs are called the Virasoro minimal models which was introduced in
[14] and were proved to be rational [74]. The irreducible modules LM(p,q)

r,s of M(p, q) are
all irreducible highest-weight Virasoro modules. They are parametrised by
1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1 and the conformal weights of the corresponding
highest-weight states are given by

hr,s = (qr − ps)2 − (p− q)2

4pq (1.75)

We remark that hr,s = hp−r,q−s.

1.4 Free field realisation of the Virasoro vertex
operator algebra

The Virasoro vertex operator algebra Vir of arbitrary central charge can be realised as
a vertex operator subalgebra of the Heisenberg algebra. We remark that this is not
obvious for the minimal model central charges cp,q as defined in Equation (1.74) as the
extra singular vector could be mapped to zero. The explicit embedding is given by

T (z) = 1
2:a(z)a(z): + αV

2 ∂a(z) (1.76)

where

c = 1− 3α2
V (1.77)

Fock spaces are now highest-weight modules of the Virasoro algebra with highest
weight

L0|λ⟩ = 1
2λ(λ− αV ) (1.78)

and we refer to Fock spaces as Feigin-Fuchs modules when considered as Virasoro
modules. Although Fock spaces are simple as modules over the Heisenberg algebra,
they need not be over the Virasoro algebra. The structures of Feigin-Fuchs modules,
as shown in Figure 1.2, were determined in [36] . To describe this, let α+, α− be the
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1.4 Free field realisation of the Virasoro vertex operator algebra

roots of the polynomial 1
2λ(λ− αV ) = 1, so that

α+ + α− = αV , α+α− = −2. (1.79)

Then we have

Theorem 1.4.1. [36] For r, s ∈ Z, let

αr,s = 1− r
2 α− + 1− s

2 α+ (1.80)

Then

• For α2
+ ∈ C∗ (or equivalently for α2

− ∈ C∗), the Fock module Fλ is reducible as a
Virasoro representation if λ = αr,s for some r, s ∈ Z, rs > 0

• If α2
+ is non-rational (or equivalently if α2

− is non-rational), then the Fock
module Fλ is reducible as a Virasoro representation if and only if λ = αr,s for
some r, s ∈ Z, rs > 0

• If α2
+ is positive rational (or equivalently if α2

− is positive rational), then the
Fock module Fλ is reducible as a Virasoro representation if and only if λ = αr,s

for some r, s ∈ Z

1.4.1 Vertex operators

We will now construct vertex operators Vλ(z) which can be thought of as fields
corresponding the highest weight state |λ⟩ in the Fock space Fλ. We remark that this
is a special case of Equation (1.55). We first extend the Heisenberg Lie algebra H with
an element â. It has commutation relations

[â, an] = δn,01 (1.81)

for n ∈ Z. We then define

Definition 1.4.2. For λ ∈ C, we define a Virasoro vertex operator Vλ(z)

Vλ(z) = eλâzλa0
∏
m≥1

exp
(
λ
a−m

m
zm
) ∏
m≥1

exp
(
−λam

m
z−m

)
(1.82)
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... ...

Fig. 1.2 Structure of Feigin-Fuchs modules in Theorem 1.4.1. White dots denote
the singular vectors, while the gray and black dots denote the sub-singular vectors.
The white dots (singular vectors) generate the maximal semisimple submodule. After
quotienting this submodule the grey dots (sub-singular vectors) generate the maximal
semisimple submodule in the quotient. Further quotienting the submodule results in a
semisimple module, generated by the black dots (sub-singular vectors).
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1.4 Free field realisation of the Virasoro vertex operator algebra

The action of vertex operators on the highest-weight vector of a Fock module Fµ is

Vλ(z)|µ⟩ = zλµ exp
(
λ

∞∑
n=1

a−n

n
zn
)
|λ+ µ⟩ (1.83)

Therefore vertex operators are maps

Vλ(z) : Fµ → zλµFλ+µJz, z−1K (1.84)

Vertex operators associated to certain values of λ are important because they can be
used to construct Virasoro algebra homomorphisms. To begin, from Equation (1.76)
we have a free field realisation of the Virasoro vertex operator algebra Vir inside the
Heisenberg vertex operator algebra H, so that the Heisenberg vertex operator algebra
has an energy momentum tensor T (z) with central charge as in Equation (1.77). The
operator product expansion of a vertex operator with T (z) is

T (z)Vλ(w) =
1
2λ(λ− αV )Vλ(w)

(z − w)2 + ∂Vλ(w)
z − w

(1.85)

Therefore, vertex operators are fields with conformal weight 1
2λ(λ−αV ). Now consider

α+, α− as defined in Equation (1.79). Then the vertex operators Vα±(z) are fields of
conformal weight 1 and their operator product expansions with T (z) can be written as
a total derivative

T (z)Vα±(w) ∼ Vα±(w)
(z − w)2 + ∂Vα±(w)

z − w
= ∂w

(
Vα±(w)
(z − w)2

)
(1.86)

We call Vα±(z) the screening fields. Therefore, we define

Definition 1.4.3. The Virasoro screening operator is defined to be the residue

SV =
∮

0
Vα−(z) dz (1.87)

Here, the residue is indicated using a simple anticlockwise contour that encircles 0
once (we absorb the usual factor of 2πi into the definition of the contour integral).
Notice that the same definition can be made for α+, though we will not require it in
this thesis. It can be checked that SV commutes with the energy momentum tensor,

[T (z),SV ] =
∫

0
∂w

(
Vα±(w)
(z − w)2

)
dw = 0. (1.88)
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The action of SV on a Fock space Fµ is

∮
0
Vα−(z) dz|µ⟩ =

∮
0
zα−µ exp

(
α−

∞∑
n=1

a−n

n
zn
)

dz|µ+ α−⟩ (1.89)

Therefore SV is a well-defined map whenever the contour in Equation (1.89) closes,
that is, when α−µ ∈ Z. For such µ, SV defines a Virasoro module homomorphism

SV : Fµ 7→ Fµ+α− (1.90)

An important feature of SV is that the image SV |µ⟩ ∈ Fµ+α− will be a singular vector,
due to Equation (1.88). With a single screening operator the target Fock space at
which singular vectors are constructed are rather limited. It turns out that we can
compose multiple screening fields so that we can construct singular vectors in other
Fock spaces. To do this we first compose multiple screening fields together. The
composition Vα−(z1) · · ·Vα−(zn), has the following form

Vα−(z1) · · ·Vα−(zr) = eâ
∑r

i=1 α−
∏

1≤i<j≤r
(zi − zj)α

2
−

r∏
i=1

z
α−a0
i (1.91)

∏
m≥1

exp
(
a−m

m

r∑
i=1

α−z
m
i

)
exp

(
−am
m

r∑
i=1

α−z
m
i

)
(1.92)

We now want to determine the Fock spaces Fµ such that we can integrate
Vα−(z1) · · ·Vα−(zr)|µ⟩. To see this, notice that up to a phase factor, we have

Vα−(z1) · · ·Vα−(zr)|µ⟩ =
∏

1≤i ̸=j≤r
(zi − zj)

α2
−
2

r∏
i=1

z
α−µ
i (1.93)

∏
m≥1

exp
(
a−m

m

r∑
i=1

α−z
m
i

)
exp

(
−am
m

r∑
i=1

α−z
m
i

)
|µ+ rα−⟩

(1.94)

=
∏

1≤i ̸=j≤r

(
1− zj

zi

)α2
−
2

r∏
i=1

z
α−µ+(r−1)

α2
−
2

i (1.95)

∏
m≥1

exp
(
a−m

m

r∑
i=1

α−z
m
i

)
|µ+ rα−⟩ (1.96)
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Therefore we see that we require α−µ+ (r − 1)α
2
−
2 to be an integer. Concretely, let

s ∈ Z, then we require µ, recalling that α+α− = −2, to be

α−µ+ (r − 1)α
2
−
2 = s− 1 (1.97)

µ = 1− r
2 α− + 1− s

2 α+ (1.98)

We therefore let αr,s be as defined as in Equation (1.80). We remark that for any
k ∈ Z,

αr+kp,s+kq = αr,s (1.99)

Then we have

Theorem 1.4.4. [67] If d(d+ 1)α
2
−
2 ̸∈ Z and d(r − d)α

2
−
2 ̸∈ Z, for all integers d

satisfying 1 ≤ d ≤ r − 1, then for each Heisenberg weight αr,s, s ∈ Z, there exists a
cycle Γ(r) such that

[SV ]r =
∫

Γ(r)
Vα−(z1) · · ·Vα−(zr)dz1 · · · dzr (1.100)

defines a non-trivial homomorphism

[SV ]r : Fr,s −→ F−r,s (1.101)

1.4.2 Felder complexes

In this section we discuss Felder complexes [37] which are in essence complexes of Fock
spaces with the screening operators as the differential maps. The main result is that
one can realise the irreducible modules of the Virasoro minimal models as the zeroth
cohomology of certain Felder complexes. Concretely, recall that the irreducible
modules of the Virasoro minimal modules can be displayed in the form of a Kac table.
For any central charge with

cp,q = 1− 6(p− q)2

pq
= 1− 3α2

V (1.102)

we see that

αV =
√

2(p− q)
pq

(1.103)
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Let

α+ =
√

2p
q
, α− = −

√
2q
p

(1.104)

so that α = α+ + α− =
√

2(p−q)
pq

. Now we define

Definition 1.4.5. For r, s ∈ Z, let Fr,s be the Fock space with highest-weight state
|αr,s⟩, where

αr,s = 1− r
2 α− + 1− s

2 α+ (1.105)

The L0 eigenvalue of the highest-weight state |αr,s⟩ of Fr,s is

L0|αr,s⟩ = (qr − ps)2 − (p− q)2

4pq |αr,s⟩. (1.106)

We then construct a complex which is referred to in the literature as a Felder complex.

Theorem 1.4.6. [37] For 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q− 1, let C = (Cn, dn) be a complex
such that, for n = 2k, 2k + 1,

C2k = F−2kp+r,s, d2k = [SV ]r (1.107)
C2k+1 = F−2kp−r,s, d2k+1 = [SV ]p−r (1.108)

Then the cohomology of C is

Hn(C) = δn,0LM(p,q)
r,s (1.109)

In order words, a Felder complex is exact except at Fr,s, at which the cohomology is
isomorphic to an irreducible module of the Virasoro minimal model Lr,s. The
Feigin-Fuchs modules appearing in a Felder complex, as dipicted in Figure 1.3 contain
singular, subsingular and subsubsingular vectors. After quotienting the Feigin-Fuchs
modules by its maximal semisimple submodule which are generated by the singular
vectors, the subsingular vectors become singular. Further quotienting the maximal
submodule in the quotient results in the subsubsingular vectors being singular.
Diagrammatically one can "read" off the cohomology of this complex by examining the
singular vectors, subsingular vectors and the subsubsingular vectors structure of the
Feigin-Fuchs module.
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... ... ... ...

· · ·

· · ·

... ...

· · ·

· · ·

[SV ]r [SV ]p−r[SV ]p−r[SV ]r

Fig. 1.3 Diagrammatic representations of the Felder complexes. Fr,2q−s,Fr,s,Fr,−s,
from left to right

1.5 The Vk(sl(2)) Vertex Operator Algebra

Recall that sl(2) has the commutation relations

[h, e] = 2e, [e, f ] = h, [h, f ] = −2f (1.110)

We then construct the affine sl(2) algebra ŝl(2)k defined as the vector space

ŝl(2)k = sl(2)⊗ C
[
z, z−1

]
⊕ Ck (1.111)

Suppose that Ja is a basis of sl(2). Let Jam = Ja ⊗ zm for m ∈ Z and define the Lie
brackets of ŝl(2)k by

[Jam, J bn] = [Ja, J b]m+n +mκ(Ja, J b)δm+nk (1.112)
[Jam, k] = 0, for all Ja (1.113)
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where κ(·, ·) is the normalised Killing form of sl(2) such that κ(h, h) = 2. Thus we see
that ŝl(2)k has the following commutation relations:

[hm, en] = 2em+n, [hm, hn] = 2mδm+n,0k, [em, en] = 0 (1.114)
[hm, fn] = −2fm+n, [em, fn] = hm+n +mδm+n,0k, [fm, fn] = 0 (1.115)

The algebra ŝl(2)k has a triangular decomposition ŝl(2)k = g− ⊕ h⊕ g+ given by

g+ = {en, hn+1, fn+1 | n ≥ 0}, (1.116)
h = {h0, k}, (1.117)

g− = {e−n−1, h−n−1, f−n | n ≥ 0}. (1.118)

Now consider a one dimensional representation C|λ⟩, λ ∈ C of h⊕ g+ where
h0|λ⟩ = λ|λ⟩, g+ act trivially on C|λ⟩ and k acts as multiplication by the scalar k ∈ C.
The Verma module V0 of ŝl(2)k induced from C|0⟩ contains a singular vector f0|0⟩.
The quotient V0

⟨f0|0⟩⟩ has the structure of a vertex algebra Vk(sl(2)) which we call the
universal affine sl(2) vertex algebra at level k, k ̸= −2. It is generated by the fields
e(z), h(z), f(z)

e(z) =
∑
n∈Z

enz
−n−1 (1.119)

h(z) =
∑
n∈Z

hnz
−n−1 (1.120)

f(z) =
∑
n∈Z

fnz
−n−1 (1.121)

with the following operator product expansions:

h(z)e(w) ∼ 2e(w)
z − w

, h(z)h(w) ∼ 2k
(z − w)2 , e(z)e(w) ∼ 0 (1.122)

h(z)f(w) ∼ −2f(w)
z − w

, e(z)f(w) ∼ k

(z − w)2 + h(w)
z − w

, f(z)f(w) ∼ 0 (1.123)

The conformal structure of Vk(sl(2)) is given by the Sugawara energy momentum
tensor

T (z) = 1
4t(:h(z)h(z): + 2:e(z)f(z): + 2:f(z)e(z):) (1.124)
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where t = k + 2 and the central charge is

c = 3k
k + 2 (1.125)

Let p, q ∈ Z≥2 with (p, q) = 1. We define k to be an admissible level if

t = k + 2 = p

q
(1.126)

Note that we exclude the case when q = 1. The vertex operator algebra Vk(sl(2)) at
admissible level k is reducible [45] and we denote its simple quotient by Lk(sl(2)).
Ultimately we are interested in the representation theory of Lk(sl(2)) where the
modules of Lk(sl(2)) are weight modules of ŝl(2)k, in which h0 act diagonalisably.
Therefore we will first describe some of the weight modules of ŝl(2)k.

1.5.1 Weight modules of ŝl(2)
Similar to the fact that highest-weight modules of the Virasoro algebra are modules of
Vir, highest weight modules of ŝl(2)k are modules of Vk(sl(2)). However in contrast to
Vir, the category of highest-weight representations of Lk(sl(2)) is not closed under
conjugation as required for a conformal field theory. We therefore need to extend our
module category to the relaxed category Rσ. This category Rσ contains the relaxed
highest-weight modules (which we will define later in the section), the twisted relaxed
highest-weight modules under the spectral flow automorphisms defined in
Equations (1.138) and (1.139) as well as non-split extensions of such modules. We
remark that the subcategory of Lk(sl(2)) modules in Rσ is not a semi-simple category.
Every relaxed highest-weight module in the relaxed category can be induced from a
weight module of sl(2), which is either a highest weight, a lowest weight or a dense
module. We will therefore first describe these weight modules of sl(2). Firstly we
denote the conjugation automorphism of sl(2) by ω, where

ω(h) = −h, ω(e) = f, ω(f) = e. (1.127)

• For λ ∈ N the highest-weight module Lλ of dimension λ+ 1 has a basis of
vectors vµ where µ ∈ {−λ,−λ+ 2, . . . , λ− 2, λ}. Each vµ is an eigenvector of h0

with hvµ = µvµ. These modules are self-conjugate.
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• For λ ∈ C\N the infinite dimensional highest-weight module Lλ has a basis of
vectors vµ where µ ∈ {λ, λ− 2, λ− 4, . . .}. Each vµ is an eigenvector of h0 with
hvµ = µvµ.

• For λ ∈ C\N the infinite dimensional lowest-weight module ω
(
Lλ
)

has a basis of
vectors vµ where µ ∈ {−λ,−λ+ 2,−λ+ 4, . . .}. Each vµ is an eigenvector of h0

with hvµ = µvµ.

• For λ ∈ C/2Z,∆ ∈ C the dense module Rλ,∆[55] with basis vµ, µ ∈ λ+ 2Z, is
neither highest nor lowest-weight. The action of sl(2) on Rλ,∆ is given by

fvµ = vµ−2 (1.128)
hvµ = µvµ (1.129)

evµ = 1
4(4t∆− µ(µ+ 2))vµ+2 (1.130)

It turns out that Rλ,∆ is irreducible precisely when the set λ+ 2Z does not
contain any roots of the equation 4t∆− µ(µ+ 2) = 0.

The simple weight modules of sl(2) are then exhausted by the following:

• The λ+ 1 dimensional modules Lλ, λ ∈ N

• The highest-weight modules Lλ, [λ] ∈ C\N

• The lowest-weight modules ω
(
Lλ
)
, [λ] ∈ C\N

• The dense modules Rλ,∆, [λ] ∈ C/2Z,∆ ∈ C with 4t∆ ̸= µ(µ+ 2) for any
µ ∈ λ+ 2Z.

Now, let g = ŝl(2)k and

g>0 = span{en, hn, fn | n > 0} (1.131)
g0 = span{e0, h0, f0, k} (1.132)

g<0 = span{en, hn, fn | n < 0} (1.133)

Relaxed highest-weight modules of ŝl(2)k are constructed by taking a weight module
M of sl(2) as a module of g0 with k acting on M as a constant k ∈ C. We then
extend M to a module over g0 ⊕ g>0 by demanding that all elements in M are
annihilated by g>0. One can then induce this module to ŝl(2)k modules in the usual
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way, M = U(g)⊗U(g≥0)M. Highest-weight modules, a weight module which is
generated by a single weight vector v that is annhilated by g+ of ŝl(2)k, are therefore
special cases of relaxed highest-weight modules. Now, let ω be the conjugation
automorphism of ŝl(2)k, sending

ω(en) = fn, ω(hn) = −hn (1.134)
ω(fn) = en, ω(k) = k (1.135)

For λ ∈ C, let Vλ be the ŝl(2) Verma module of highest weight λ. The simple relaxed
highest-weight modules are therefore obtained as follows:

• Inducing Lλ with λ ∈ N. This induced module is highest-weight and is
isomorphic to Vλ/V−λ−2, where v−λ−2 = fλ+1

0 vλ. We denote the simple quotient
by Lλ.

• Inducing Lλ, the infinite dimensional highest weight module, λ ∈ C\N. This
results in the Verma module Vλ. We again denote its simple quotient by Lλ.

• Inducing ω
(
Lλ
)

with λ ∈ C\N. This results in the conjugate Verma module
ω(Vλ) which is neither highest nor lowest-weight. We denote the simple quotient
by ω(Lλ).

• Inducing the irreducible dense module Rλ,∆, with 4t∆ ̸= µ(µ+ 2) for all
µ ∈ λ+ 2Z, results in a relaxed Verma module that we denote by Rλ,∆. We
denote its simple quotient by Eλ,∆.

For r = 1, ..., p− 1 and s = 1, ..., q, we let

λr,s = r − 1− (s− 1)p
q

(1.136)

∆r,s = (qr − p(s− 1))2 − q2

4pq (1.137)

Then the highest-weight states of the modules Lλr,s have conformal weight ∆r,s. From
now on we denote Lr,s = Lλr,s . The irreducible relaxed highest-weight modules of
Lk(sl(2)) were classified in [1]:

Theorem 1.5.1. The irreducible relaxed highest-weight modules of Lk(sl(2)) are
precisely Lr,s, ω(Lr,s) for r = 1, ..., p− 1, s = 1, ..., q and Eλ,∆r,s for
λ ∈ R\2Z, λ ̸= λr,s, λp−r,q+2−s mod 2 for r = 1, ..., p− 1, s = 2, ..., q.
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•

Lr,1
• •

Lr,s, s ̸= 1ω(Lr,s), s ̸= 1
•

Eλ,∆r,s

Fig. 1.4 The relaxed highest-weight modules of Lk(sl(2)). The h0-eigenvalues increase
from right to left and the L0-eigenvalues increase from top to bottom.

Figure 1.4 shows the structure of the relaxed highest-weight modules of Lk(sl(2)),
where the conformal weight increases from top to bottom and the sl(2)-weight, the h0

eigenvalue, increases from right to left. In addition to these relaxed modules, we need
to consider twisted relaxed modules under the spectral flow automorphism.

1.5.2 Spectral flow automorphisms of ŝl(2)
For each l ∈ Z, we define the spectral flow automorphism σlsl(2) on ŝl(2) by

σlsl(2)(en) = en−l, σlsl(2)(hn) = hn − δn,0lk, (1.138)
σlsl(2)(fn) = fn+l, σlsl(2)(k) = k (1.139)

Figure 1.5 depicts the structure of the twisted relaxed highest-weight modules under
the spectral flow automorphism. We remark that the spectral flow automorphism
changes the conformal weights of states,

σlsl(2)(L0) = L0 −
1
2 lh0 + 1

4 l
2k (1.140)

and in particular the twisted relaxed highest-weight modules in general are no longer
conformally bounded below, as opposed to the relaxed highest-weight modules.
Furthermore, by noting that ω(Lr,1) = Lr,1 for r = 1, ..., p− 1, the following modules

32



1.5 The Vk(sl(2)) Vertex Operator Algebra

• • • • •

• • • •

• • • • •

σ σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ σ

Fig. 1.5 The simple modules of Lk(sl(2)). σ denotes the spectral flow automorphism.
Again, the h0-eigenvalues increase from right to left and the L0-eigenvalues increase
from top to bottom.

are related by spectral flow,

σ−1
sl(2)(Lr,s) = ω(Lp−r,q+1−s) (1.141)

σsl(2)(Lr,1) = Lp−r,q (1.142)

for r = 1, ..., p− 1, s = 1, ..., q. Figure 1.5 indicates precisely the simple objects in the
relaxed category Rσ, however as we remarked earlier Rσ is not a semi-simple category.
We will end this section with the introduction of some of the reducible but
indecomposable modules in Rσ. These are characterised by the non-split exact
sequences

0 −→ Lr,s −→ E+
r,s −→ ω(Lr,s) −→ 0 (1.143)

0 −→ ω(Lr,s) −→ E−
r,s −→ Lr,s −→ 0 (1.144)

for r = 1, · · · , p− 1 and s = 2, · · · , q. We must also include σlsl(2)

(
E±
r,s

)
for l ∈ Z in

Rσ
sl(2). Potentially there could be other indecomposable modules that are relevant, see

[22, 23, 59, 42].
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1.6 The bosonic ghost algebra

The bosonic ghost algebra G is a vertex operator algebra generated by two fields β(z)
and γ(z) with the defining operator product expansions

β(z)β(w) ∼ 0, β(z)γ(w) ∼ 1
z − w

, γ(z)γ(w) ∼ 0. (1.145)

It has a one parameter family of conformal structures given by

T (z) = −(1− λ):∂β(z)γ(z): + λ:β(z)∂γ(z): (1.146)

at which the central charge is

c = 12λ2 − 12λ+ 2 (1.147)

For our application, we will only focus on the conformal structures at c = 2, where
λ = 1 for the free-field realisation of Vk(sl(2)) and λ = 0 for constructing the BRST
complex. Thus, depending on λ, the mode expansions of the fields β(z), γ(z) are
respectively

β(z) =
∑
n∈Z

βnz
−n−λ, (1.148)

γ(z) =
∑
n∈Z

γnz
−n−(1−λ) (1.149)

The structure of the operator expansions imply that the modes of the fields are
elements of the bosonic ghost Lie algebra G. It has a basis {βn, γn | n ∈ Z} satisfying
the following commutation relations:

[βm, βn] = 0, [βm, γn] = δm+n,01, [γm, γn] = 0. (1.150)

G has a triangular decomposition G = g− ⊕ h⊕ g+

g+ = span{βn, γn+1 | n ≥ 0}, (1.151)
h = span{1}, (1.152)

g− = span{β−n−1, γ−n | n ≥ 0} (1.153)
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Consider a one dimensional representation C|0⟩ of g+ ⊕ h where g+ acts trivially on
C|0⟩ and {1} acts as a scalar 1. The Verma module induced from C|0⟩ is the vacuum
module of the bosonic ghost algebra.
We define the ghost degree of any state in a G module as its eigenvalue of JG

0 , where

JG(z) = :β(z)γ(z): (1.154)

and in particular,

JG(z)β(z) ∼ − 1
z − w

, JG(z)γ(z) ∼ 1
z − w

(1.155)

1.6.1 Representation Theory of the bosonic ghost algebra

Since the Cartan subalgebra of G is spanned by 1 which is assumed to act as the
identity, the highest weight module of G is unique: it is the vacuum module of G. The
representations of G include modules that are not highest-weight. We therefore need
to extend our category from the highest weight category to the relaxed category. To
introduce the modules in this category, let

g>0 = span{βn, γn | n ≥ 1} (1.156)
g0 = span{β0, γ0, 1} (1.157)

g<0 = span{β−n, γ−n | n ≥ 1} (1.158)

Relaxed modules are constructed by inducing modules over g0. To describe the
relaxed modules, we first introduce the conjugation automorphism τ of G, by

τ(βn) = −γn τ(γn) = βn τ(1) = 1 (1.159)

The simple weight modules of g0 are the following

• The Verma module V0 generated by a vector |0⟩ which is annihilated by β0 and
generated freely by γ0. A basis of this module is {γn0 |0⟩} where n ∈ N.

• The module τ
(
V0
)

which can be obtained by applying conjugation to V0. It is
generated by a vector τ(|0⟩) which is annihilated by γ0 and generated freely by
β0. A basis of this module is {βn0 τ(|0⟩)}, n ∈ N.
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• A one parameter family of modules W[λ] parameterised by [λ] ∈ C/Z, [λ] ̸= [0],
these modules have a basis {uµ} for µ ∈ λ+ Z. Each uµ is an eigenvalue of J0

satisfying JG
0 uµ = µuµ.

We can then induce these modules of g0 to obtain modules of G. In particular, by
inducing V0 we obtain the vacuum module V0 of G, while inducing τ

(
V0
)

gives us the
twisted vacuum module τ(V0) under the conjugation automorphism. Finally, inducing
the Wλ, λ ̸= [0] results in the new relaxed highest-weight modules Wλ, λ ̸= [0]. The
modules Wλ, λ ≠ [0], are simple. We also need to consider the modules W±

0 which can
be characterised by the following exact sequences

0 −→ V0 −→W+
0 −→ τ(V0) −→ 0, 0 −→ τ(V0) −→W−

0 −→ V0 −→ 0 (1.160)

In addition to these modules, the module category of G also contains modules
obtained by twisting the above modules with the spectral flow automorphism σl of G,
for l ∈ Z, defined by

σlG(βn) = βn−l, σlG(γn) = γn+l, σlG(1) = 1 (1.161)

These modules are objects in the module category Rσ
G. Twisting the module V0 with

spectral flow, as defined in Equation (1.24), will change both the JG
0 and L0

eigenvalues of the states in the module. In particular,

τ(JG
n ) = −Jn − 2λδn,01, σlG

(
JG
n

)
= JG

n − lδn,01, (1.162)

τ(Lλn) = Lλn + 2λnJG
n , σlG

(
Lλn
)

= Lλn + (1− 2λ)lJG
n −

l(l + 1− 2λ)
2 δn,01 (1.163)

For example, Figure 1.6 depicts the new JG
0 and L0 eigenvalues of states in σlG(V0)

under the spectral flow automorphisms.
For the rest of the thesis, we will denote the vacuum module of G by G itself.
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• • • •

V0τ(V0)

σ σ σ σ σ

Fig. 1.6 The conformal weights of states in V0 under spectral flow. The ghost degree
increases from left to right and the conformal weight increases from top to bottom.

1.7 Free field realisation of Vk(sl(2))
Let k+ 2 = p

q
and let α+ =

√
2t =

√
2p
q

and α− = −
√

2q
p

. We can realise Vk(sl(2)) as a
vertex subalgebra of H ⊗ G. Concretely, there is an (non-trivial) injective map [71]

e(z) = β(z) (1.164)
h(z) = −2:β(z)γ(z): + α+a(z) (1.165)

f(z) = −:β(z)γ(z)γ(z): + α+:a(z)γ(z): +
(
α2

+
2 − 2

)
∂γ(z) (1.166)

Under this map, the energy momentum tensor becomes

T (z) = 1
2:a(z)a(z):− 1

α+
∂a(z)− :β(z)∂γ(z): (1.167)

c = 1− 12
α2

+
+ 2 = 3− 6

t
(1.168)

Given this free field realisation the tensor product of any module of the Heisenberg
algebra and the bosonic ghost algebra can be restricted to modules of Vk(sl(2)). Such
modules are called Wakimoto modules. In summary, we have the following list of
Wakimoto modules

• The highest weight Wakimoto module Fλ ⊗ G

• The conjugate highest weight Wakimoto Fλ ⊗ τ(G)

• The relaxed highest weight Wakimoto module Fλ ⊗Wµ
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The conformal weight and h0 eigenvalue of the highest weight vector of a Wakimoto
module Fλ ⊗ G can be computed from the free field realisation of h(z) and T (z)

hλ = α+λ, ∆λ = 1
2λ
(
λ+ 2

α+

)
(1.169)

Similarly, the h0 and L0 weights of states with lowest conformal weights of Fλ ⊗Wµ

are

hλ;µ = α+λ+ 2µ, ∆λ = 1
2λ
(
λ+ 2

α+

)
(1.170)

where µ ∈ λ+ 2Z.

1.7.1 Vertex operators

Similar to the Virasoro case, we can construct homomorphisms between ŝl(2)k
modules, thereby constructing singular vectors. Firstly, if we write e(z), h(z), f(z) in
terms of their free field realisations as in Equations (1.164) to (1.166), then they have
the following operator product expansions with the Heisenberg vertex operators Vp(z)
from Definition 1.4.2,

e(z)Vp(w) ∼ 0, h(z)Vp(w) ∼ αpVp(w)
z − w

, f(z)Vp(w) ∼ αpVp(w)γ(w)
z − w

. (1.171)

If we define

D(z) = :β(z)Vα−(z): (1.172)

then D(z) has operator product expansions

e(z)D(w) ∼ 0, h(z)D(w) ∼ 0, f(z)D(w) ∼ −t∂w
Vα−(z)
z − w

(1.173)

Therefore the zero mode of D(z)

Ssl(2) =
∮

0
D(z) dz (1.174)

is a ŝl(2)k module homomorphism whenever the action of D(z) on a highest weight
module is well-defined, similar to Equation (1.89). We can compose sl(2) screening
operators to obtain more module homomorphisms of ŝl(2).
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Theorem 1.7.1. [62] Let r ∈ Z≥1, s ∈ Z, t ∈ C∗ and suppose that d(d+ 1)/t ̸∈ Z and
d(r − d)/t ̸∈ Z, for all integers d satisfying 1 ≤ d ≤ r − 1, then for each Heisenberg
weight αr,s, s ∈ Z, there exists a cycle Γ(r) such that

[
Ssl(2)

]r
=
∫

Γ(r)
D(z1) · · ·D(zr)dz1 · · · dzr (1.175)

defines a non-trivial homomorphism
[
Ssl(2)

]r
: Fr,s ⊗ G −→ F−r,s ⊗ G (1.176)

1.7.2 Bernard-Felder complexes

Similar to the Virasoro case, any highest-weight module of Lk(sl(2)) can be realised as
a sub-quotient of a Wakimoto module. Concretely, we can construct a complex [15] of
Wakimoto modules such that the cohomology is non-trivial except at one degree,
which is a highest-weight module of Lk(sl(2)). We first start with the free field
realisation of Vk(sl(2)) at admissible level, so that α2

+ = 2t = 2p
q

=⇒ α+ =
√

2p
q

. We
consider Fr,s ⊗ G where the Fock space was defined in Definition 1.4.5, then the
highest-weight states of such Wakimoto modules have h0 and L0 eigenvalues

h0|αr,s⟩ ⊗ |0⟩G = r − 1− (s− 1)p
q

(1.177)

L0|αr,s⟩ ⊗ |0⟩G = [qr − p(s− 1)]2 − q2

4pq (1.178)

and we have

Theorem 1.7.2. [15] Let k + 2 = p
q
. For 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1, let

C = (Cn, dn) be a complex, for n = 2k, 2k + 1, such that

C2k = F−2kp+r,s ⊗ G, d2k =
[
Ssl(2)

]r
(1.179)

C2k+1 = F−2kp−r,s ⊗ G, d2k+1 =
[
Ssl(2)

]p−r
(1.180)

Then the cohomology of C is

Hn(C) = δn,0Lr,s. (1.181)

Similar to Theorem 1.4.6, the Bernard-Felder complexes are exact except at zero
degree, at which it is a highest-weight module of Lk(sl(2)).
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1.8 The fermionic ghost algebra B
In this section we will introduce the fermionic ghost algebra which will be used later
on when we define the BRST complex. The fermionic ghost algebra is a vertex
operator super-algebra generated by two fields b(z) and c(z) that satisfy the following
operator product expansions

b(z)b(w) ∼ 0, b(z)c(w) ∼ 1
(z − w)2 , c(z)c(w) ∼ 0 (1.182)

This algebra admits a one parameter family of conformal structures,

TB(z) = (1− λ):∂b(z)c(z):− λ:b(z)∂c(z): (1.183)

at which the central charge is

c = −12λ2 + 12λ− 2 (1.184)

Under this energy momentum tensor, the conformal weights of b(z) and c(z) are λ and
1− λ respectively. For our purpose, which is constructing the BRST complex, we will
specialise to λ = 0 and therefore consider the fermionic algebra at c = −2 only. That
is, we have the energy momentum tensor

TB(z) = :∂b(z)c(z): (1.185)

where the central charge is c = −2 with b(z) and c(z) having conformal weights 0 and
1 respectively. Thus the fields have the form

b(z) =
∑
n∈Z

bnz
−n, c(z) =

∑
n∈Z

cnz
−n−1 (1.186)

The structure of the operator product expansion implies that the modes of the fields
satisfy the antibracket relations of the fermionic Lie super-algebra B

{bm, bn} = 0 {bm, cn} = δm+n,01 {cm, cn} = 0 (1.187)

and 1 is central. In addition to the energy momentum tensor, we introduce the ghost
field

JB(z) = −:b(z)c(z): = :c(z)b(z): (1.188)
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|0⟩b0|0⟩

b−1b0|0⟩ b−1|0⟩ c−1b0|0⟩ c−1|0⟩

b−2b0|0⟩ b−2|0⟩ c−1b−1|0⟩ c−2|0⟩

b−2b−1b0|0⟩ c−2c−1|0⟩

σ

σ

σ

σ

σ

Fig. 1.7 The vacuum module of the fermionic ghost vertex operator super-algebra B.
The ghost degree increases from left to right while the conformal weight increases
from top to bottom. Blue arrows denote the images of states under the spectral flow
automorphism.

so that the operator product expansion of JB(z) with the generating fields are

JB(z)b(w) ∼ − 1
z − w

, JB(z)c(w) ∼ 1
z − w

(1.189)

The vacuum module B of the fermionic ghost algebra at c = −2 is a highest weight
module of B generated by |0⟩ where

bn|0⟩ = 0, n ≥ 1 (1.190)
cn|0⟩ = 0, n ≥ 0 (1.191)

We define the ghost degree on any state in the vacuum module as simply the
eigenvalue of JB

0 , the zero mode of JB(z). This ghost number will play an important
role when we construct modules of the Virasoro algebra by realising them as the
cohomology of a certain complex called the BRST complex. In summary, we have
introduced the conformal weight and the ghost degree on the fermionic ghost vacuum,
see Figure 1.7.
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The fermionic ghost algebra B also admits spectral flow algebra automorphisms
defined as

σlB(bn) = bn−l, σlB(cn) = cn+l, σlB(1) = 1 (1.192)

for all l ∈ Z. This implies that

σlB
(
JB

0

)
= JB

0 + l (1.193)

σlB
(
LB

0

)
= LB

0 + lJB
0 + l(l + 1)

2 (1.194)

Lemma 1.8.1. The twisted vacuum module σlB(B) under spectral flow is isomorphic
to the vacuum module B itself for all l as a B module.

Proof. From the action of B on the twisted module σlB(B) defined in Equation (1.24),
we see that for each v ∈ B, there are only finitely many positive modes bn, cn, n ≥ 0
that do not annihilate v. Moreover, the nilpotency of the modes bn, cn implies that the
conformal weights of the states in σlB(B) are bounded below. The nilpotency of the
modes bn, cn also implies that the space of states with the highest conformal weight is
finite dimensional and thus there exists a highest-weight vector. But the only
highest-weight module is the vacuum module B as the Cartan subalgebra of B is just
{1} and so we must have σlB(B) ≡ B

We remark that the states in the vacuum module are permuted around under the
spectral flow action, as shown in Figure 1.7.

1.9 The Wn Algebras

1.9.1 The W3 Algebra

We will first restrict ourselves to the rank 2 Heisenberg vertex algebra H2 and, in the
vein of [33], define a family of subalgebras called the W3 vertex operator algebras, or
W3 algebras for short. These algebras are parametrised by α0 ∈ C and are generated,
in the sense of Theorem 1.1.7, by the energy-momentum tensor defined in
Equation (1.50) and an additional primary field W (z) of conformal weight 3.
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1.9 The Wn Algebras

In the basis {a1, a2} defined in Section 1.2.3, for which the Gram matrix of the inner
product (−,−) is the Cartan matrix of sl(3), the energy-momentum tensor T (z) is

T (z) = 1
3:a1(z)a1(z): + 1

3:a1(z)a2(z): + 1
3:a2(z)a2(z): + α0∂za

1(z) + α0∂za
2(z)

(1.195a)

and the central charge is c = 2− 24α2
0. The conformal primary of weight 3 is then

W (z) =
√
β

18
√

3

[
2:
(
a2(z)− a1(z)

)(
a1(z) + 2a2(z)

)(
2a1(z) + a2(z)

)
:

+9α0
(
:∂a2(z)

(
a1(z) + 2a2(z)

)
:− :∂a1(z)

(
2a1(z) + a2(z)

)
:
)

(1.195b)

+ 9α2
0

(
∂2a2(z)− ∂2a1(z)

)]
, (1.195c)

where
β = 16

22 + 5c = 2
4− 15α2

0
(1.196)

in the conventional normalisation, appropriate for c ̸= −22
5

(
α0 ̸= ± 2√

15

)
. A somewhat

involved computation now determines the operator product expansion of W (z) with
itself to be

W (z)W (w) ∼ c/3
(z − w)6 + 2T (w)

(z − w)4 + ∂T (w)
(z − w)3 (1.197)

+
3
10∂

2T (w) + 2βΛ(w)
(z − w)2 +

1
15∂

3T (w) + β∂Λ(w)
z − w

, (1.198)

where Λ(z) = :T (z)T (z):− 3
10∂

2T (z). This, along with the primary nature of W (z),
implies the commutation relations

[
Lm,Wn

]
= (2m− n)Wm+n, (1.199)[

Wm,Wn

]
= (m− n)

[ 1
15(m+ n+ 3)(m+ n+ 2)− 1

6(m+ 2)(n+ 2)
]
Lm+n

+ β(m− n)Λm+n + c

360m(m2 − 1)(m2 − 4)δm+n,0, (1.200)

where W (z) = ∑
n∈ZWnz

−n−3.
Since Fock spaces are modules over the Heisenberg vertex operator algebra H2 and we
have defined the generators of the W3 algebra as fields of H2, each Fock space is a
W3-module, by restriction. In particular, the highest-weight vector |ζ⟩ ∈ Fζ , ζ ∈ h∗

2, is
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also a highest-weight vector for W3:

Ln|ζ⟩ = δn,0hζ |ζ⟩, Wn|ζ⟩ = δn,0wζ |ζ⟩, n ≥ 0. (1.201)

Here, hζ was given in Equation (1.53) and the W0-eigenvalue is given by

wζ =
√

3β(ζ, ω2 − ω1)
(
(ζ, ω1)− α0

)(
(ζ, ω2)− α0

)
. (1.202)

Our main reason for introducing vertex operators in Equation (1.55) is to construct
linear maps between Fock spaces that commute with the action of an appropriate
subalgebra of the Heisenberg vertex algebra, similar to the case in Section 1.4. Here,
we wish to construct maps that commute with W3, that is, W3-module
homomorphisms. Such module homomorphisms are called screening operators and
they are constructed from screening fields, these being vertex operators whose
operator product expansions with the fields of W3 are total derivatives. For this, it
clearly suffices to find fields whose operator product expansions with the generating
fields T (z) and W (z) are total derivatives.
As the vertex operator Vζ(w) is a conformal primary of weight hζ , its operator product
expansion with T (z) will be a total derivative if and only if hζ = 1. Unsurprisingly,
the analogous computation for W (z) is more involved (we used Thielemans’
OPEdefs package for Mathematica), noting that a necessary condition for the
operator product expansion W (z)Vζ(w) to be a total derivative is that the coefficient
of (z − w)−1 in this expansion is a total derivative. Analysing this explicitly, for
general ζ ∈ h∗

2, and recalling that hζ = 1, we conclude that this coefficient will be a
total derivative if ζ1 = 0 or ζ2 = 0 or if ζ1 = ζ2 and α0 = 0 (where the ζi denote
Dynkin labels: ζ = ∑

i ζiωi). As we are only interested in screening operators that
exist for all values of α0, it follows that there are exactly four possible weights ζ that
can be used to construct screening operators: ζ = α±α

1, α±α
2. Here, similar to

Equation (1.79), we define

α+ = 1
2

(
α0 +

√
α2

0 + 4
)
, α− = 1

2

(
α0 −

√
α2

0 + 4
)

(1.203)

to be the solutions of the quadratic equations hζiαi = 1, for i = 1, 2. It only remains to
confirm that the full operator product expansion W (z)Vζ(w), when ζ is one of the
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above weights, is indeed a total derivative:

W (z)Vα±αi(w) ∼ −(−1)i
√

6
4− 15α2

0
∂w

(
α0Vα±αi(w)
2(z − w)2 −

:a∗1(w)Vα±αi(w):
z − w

)
, i = 1, 2.

(1.204)

Having identified screening fields for W3, we construct screening operators by taking
residues:

S±i =
∮

0
Vα±αi(w) dw. (1.205)

Taking the residue of a screening field Vα±αi(z) is of course only well-defined when it is
acting on a H2-module for which the exponents of z in the Fourier expansion of
Vα±αi(z) are all integers. In case the H2-module is the Fock space Fη, this is satisfied
if and only if α±(αi, η) ∈ Z. These screening operators define W3-module
homomorphisms since
[
T (z),S±i

]
= −

∮
z
T (z)Vα±αi(w) dw = 0,

[
W (z),S±i

]
= −

∮
z
W (z)Vα±αi(w) dw = 0.

(1.206)

These identities follow from the mutual locality of Heisenberg fields and vertex
operators, see Equation (1.57) as well as the fact that the operator produict
expansions are total derivatives.
Fortunately, similar to the construction of screening operators in Section 1.4, one can
also construct screening operators by integrating compositions Equation (1.58) of
multiple screening fields. In particular, composing r2 copies of Vα±α2(w) with r1 copies
of Vα±α1(z) and then acting on Fη gives

Vα±α1(z1) · · ·Vα±α1(zr1)Vα±α2(w1) · · ·Vα±α2(wr2)
∣∣∣∣
Fη

(1.207)

=
∏

1≤i<j≤r1

(zi − zj)2α2
± ·

∏
1≤i<j≤r2

(wi − wj)2α2
± ·

r1∏
i=1

r2∏
j=1

(zi − wj)−α±2

·
r1∏
i=1

z
α±(α1,η)
i ·

r2∏
j=1

w
α±(α2,η)
j · er1α±α1+r2α±α2

·
∏
m≥1

exp
[
α±

(
a1

−m

r1∑
i=1

zmi
m

+ a2
−m

r2∑
i=1

wmi
m

)]
exp

[
−α±

(
a1
m

r1∑
i=1

z−m
i

m
+ a2

m

r2∑
i=1

w−m
i

m

)]
.

(1.208)
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Up to a complex phase, which we suppress, the first five multivalued factors in this
expression can be rewritten in the form

∏
1≤i ̸=j≤r1

(
1− zi

zj

)α2
±

·
∏

1≤i ̸=j≤r2

(
1− wi

wj

)α2
±

·
r1∏
i=1

r2∏
j=1

(
1− wj

zi

)−α2
±

·
r1∏
i=1

z
α±(α1,η)+α2

±(r1−r2−1)
i ·

r2∏
j=1

w
α±(α2,η)+α2

±(r2−1)
j , (1.209)

thereby isolating the non-integer exponents of the zi and wj in the last two factors.
Finding closed (multivariable) contours over which multivalued functions such as
Equation (1.209) can be integrated (to obtain W3-module homomorphisms) is a highly
non-trivial problem. Fortunately, as shown in Theorem 1.4.4, Tsuchiya and Kanie
solved this problem for the rank 1 Heisenberg vertex algebra [67] by constructing
cycles with non-trivial homology classes over which screening operators can be
integrated. These cycles, which we shall denote by Γ(m; t) for m ∈ Z≥0 and
t ∈ C \Q≤0,1 allow one to integrate expressions of the form

∫
Γ(m;t)

∏
1≤i ̸=j≤m

(
1− zi

zj

)1/t

· f(z) dz1 · · · dzm, (1.210)

where f(z) is a Laurent polynomial in z1, . . . , zm which is invariant with respect to
permuting the indices of its variables. We shall not describe the construction of these
cycles in any detail. It will, however, be convenient to normalise them by requiring
that ∫

Γ(m;t)

∏
1≤i ̸=j≤m

(
1− zi

zj

)1/t dz1 · · · dzm
z1 · · · zm

= 1. (1.211)

The cycles Γ(m; t) can be used to construct screening operators from the compositions
Equation (1.207) whenever the exponents of the zi and wj are integers. If this is the
case, then the screening operators are defined as

S [r1,r2]
± =

∫
Γ(r1;1/α2

±)

∫
Γ(r2;1/α2

±)
Vα±α1(z1) · · ·Vα±α1(zr1)Vα±α2(w1) · · ·Vα±α2(wr2)

dz1 · · · dzr1 dw1 · · · dwr2 . (1.212)
1 The range of the parameter t could in principle be extended to C \ {0}. However, to avoid

singularities in certain coefficients, this would require one to use a different normalisation of the Jack
symmetric function basis presented in Appendix C. Moreover, some linear independence arguments
would become more complicated. For simplicity, we therefore avoid non-positive rational values of the
parameter t.
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1.9 The Wn Algebras

By construction, these screening operators are W3-module homomorphisms when
acting on appropriate Fock spaces.
We parametrise the Fock space weights for which the screening operators
Equation (1.212) are defined as follows:

ζu1,v1;u2,v2 =
(
(1−u1)α++(1−v1)α−

)
ω1+

(
(1−u2)α++(1−v2)α−

)
ω2, u1, u2, v1, v2 ∈ Z.

(1.213)
Considering the exponents of the last two factors of Equation (1.209), we conclude
that the screening operators define W3-module homomorphisms between the following
Fock spaces:

S [r1,r2]
+ : Fζr1−r2,s1;r2,s2

→ Fζ−r1,s1;r1−r2,s2
, r1, r2 ∈ Z≥0, s1, s2 ∈ Z,

S [s1,s2]
− : Fζr1,s1−s2;r2,s2

→ Fζr1,−s1;r2,s1−s2
, r1, r2 ∈ Z, s1, s2 ∈ Z≥0.

(1.214)

Evaluating the action of these screening operators initially appears rather daunting.
However, we know from Equation (1.207) that compositions of screening fields factorise
into a product of a multivalued function and certain power series in the zi and wj that
are symmetric with respect to permuting the zi among themselves and, separately, the
wj among themselves. The theory of symmetric functions provides the tools that allow
us to evaluate the action of these screening operators on certain Fock spaces. We refer
to Appendix C for a brief review of the theory of symmetric functions.

1.9.2 The Wn Algebra

Continuing the pattern of ranks 1 and 2, the rank n− 1 Heisenberg vertex operator
algebra, with choice of energy-momentum tensor Equation (1.50), has 2(n− 1)
screening operators, Vζ(w) for ζ = α±α

i, where α± was defined in Equation (1.203)
and the αi are the simple roots of sl(n).
The Wn vertex operator algebra Wn is usually described as being generated by the
Virasoro field T (z) and n− 2 Virasoro primary fields W 3(z), . . . ,W n(z) of conformal
weights 3, . . . , n, respectively. Unfortunately, explicit formulae for these primaries, for
example in terms of Heisenberg fields, rapidly increase in complexity as n increases
and there are no known closed formulae for general n. Fortunately our computations
do not require explicit expressions for the W k(z), only the fact that they commute
with the screening operators.
We therefore turn to the definition of the Wn vertex operator algebra [51] in terms of a
generating function called the quantum Miura transform. This constructs a different
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set of generators of Wn that are not conformal primaries in general, but which are
easily verified to commute with screening operators. We denote these new generating
fields by U2(z) = T (z), U3(z), . . . , Un(z) and their generating function by

Rn(z) = −
n∑
k=0

Uk(z)(α0∂)n−k = :(α0∂z − ϵ1(z)) · · · (α0∂z − ϵn(z)):, (1.215)

where the ϵi are the weights of the defining representation of sl(n) so that
ϵ1 + · · ·+ ϵn = 0 and αi = ϵi − ϵi+1, for i = 1, . . . , n− 1.
With the Wn algebra now defined explicitly as the algebra generated by the U i(z),
i = 2, . . . n, we construct screening fields in a manner similar to W3. As mentioned
above, the vertex operators Vζ(w) with Heisenberg weights ζ = α±α1, . . . , α±αn−1 are
screening fields, because their operator product expansions with RN(z) are total
derivatives:

Rn(z)Vα±αi
(w) ∼ ∂w

(
:Ri

n(w)Vα±αi
(w):

z − w

)
. (1.216)

Here, Ri
n(z) is defined as the product in Equation (1.215), but without the factors

involving ϵi and ϵi+1.
As in the rank 2 case, the residues of the screening fields, when defined, commute with
the Wn algebra, because their operator product expansions with the generating U i

fields are total derivatives, and therefore define module homomorphisms. Also as in
the rank 2 case, one can compose screening fields and integrate them over suitable
contours to construct yet more module homomorphisms. Note that it is sufficient to
only compose screening fields whose weights are all rescalings of simple sl(n) roots by
either α+ or α−. This is because the two screening operators corresponding to the
residues of Vα+αi(w) and Vα−αj (w) commute and can thus be considered
independently. We shall therefore only present calculations involving the Vα+αi(w);
those involving the Vα−αj (w) work in exactly the same way.
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1.9 The Wn Algebras

We therefore compose r1 copies of Vα+α1(z1) with r2 copies of Vα+α2(z2) and so on,
evaluating this composition on a Fock space of weight η, to obtain

r1∏
i=1

Vα+α1

(
z1
i

)
· · ·

rn−1∏
i=1

Vα+αn−1

(
zn−1
i

)∣∣∣∣
Fη

=
n−1∏
k=1

∏
1≤i<j≤rk

(zki − zkj )2α2
+ ·

n−2∏
k=1

rk∏
i=1

rk+1∏
j=1

(zki − zk+1
j )−α2

+ ·
n−1∏
k=1

rk∏
i=1

(zki )α+(αk,η)

·
n−1∏
k=1

erkα+αk ·
n−1∏
k=1

∏
m≥1

exp
(
α+a

k
−m

m

rk∑
i=1

(zki )m
)

exp
(
−α+a

k
m

m

rk∑
i=1

(zki )−m
)

=
n−1∏
k=1

∏
1≤i ̸=j≤rk

(
1− zki

zkj

)α2
+
·
n−1∏
k=2

rk∏
i=1

rk+1∏
j=1

(
1−

zkj
zk−1
i

)−α2
+
·
n−1∏
k=1

rk∏
i=1

(zki )α2
+(rk−rk+1−1)+α+(αk,η)

·
n−1∏
k=1

erkα+αk ·
n−1∏
k=1

∏
m≥1

exp
(
α+a

k
−m

m

rk∑
i=1

(zki )m
)

exp
(
−α+a

k
m

m

rk∑
i=1

(zki )−m
)
, (1.217)

where we define rn = 0. In analogy to the reasoning presented for the W3 algebra in
Section 1.9.1, one can construct a Wn-module homomorphism by choosing an
appropriate contour. Integrating over the contours of Tsuchiya and Kanie [67] is well
defined whenever

α2
+(rk − rk+1 − 1) + α+

(
αk, η

)
∈ Z, for all k = 1, . . . , n− 1. (1.218)

To parametrise the weights satisfying these constraints, we define

ζu,v =
n−1∑
i=1

((1− ui)α+ + (1− vi)α−)ωi, u = (u1, . . . , un−1), v = (v1, . . . , vn−1) ∈ Zn−1,

(1.219)

and define screening operators

S [r]
+ =

∫
Γ(r1;1/α2

+)
· · ·

∫
Γ(rn−1;1/α2

+)

r1∏
i=1

Vα+α1

(
z1
i

)
· · ·

rn−1∏
i=1

Vα+αn−1

(
zn−1
i

)
·
n−1∏
k=1

rk∏
i=1

dzki ,

(1.220)

where r ∈ Zn−1
≥0 . These, in turn, induce Wn-module homomorphisms

S [r]
+ : Fη+

r,s
→ Fθ+

r,s
, r ∈ Zn−1

≥0 , s ∈ Zn−1, (1.221)
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where η+
r,s = ζ(r1−r2,...,rn−2−rn−1,rn−1),s and θ+

r,s = ζ(−r1,r1−r2,...,rn−2−rn−1),s. Similar
screening operators S [s]

− are obtained by swapping the roles of α+ and α−, as well as r
and s, in this development.
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Chapter 2

Wn singular vectors

In the case of the universal Virasoro vertex operator algebra, the singular vector
generating the maximal ideal of the vertex operator algebra is important because it
can be used to determine the irreducible representations of the Virasoro minimal
models [74]. In [61], symmetric functions are used to compute the corresponding
singular vectors, thereby obtaining the same results in [74]. This approach of using
symmetric functions to compute singular vectors was used for other vertex operator
algebras and classification of the spectrum (in suitable module categories) of the
corresponding minimal models [17, 62]. In this chapter we generalise the result in [61]
and obtain explicit formulae for singular vectors of the WN algebra in certain Fock
representations. This work was published in [60].

2.1 W3 singular vectors

We now turn to the computation of singular vectors in Fock spaces, the idea being to
realise them as images of highest-weight vectors under a W3-module homomorphism
(screening operator). For definiteness, we shall choose the screening operator S [r1,r2]

+

from Equation (1.212) that was constructed from r1 copies of Vα+α1 and r2 copies of
Vα+α2 . The computation for S [r1,r2]

− is exactly the same and will be omitted. S [r1,r2]
+

has a well defined action on the Fock space Fη of H2, where η = ζr1−r2,s1;r2,s2 , sending
it into Fθ, where θ = ζ−r1,s1;r1−r2,s2 , see Equation (1.214).
We can now explicitly evaluate the action of the screening operator S [r1,r2]

+ on the
highest-weight vector |η⟩ ∈ Fη. Using Equation (1.207) and Equation (1.209), this
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action is

S [r1,r2]
+ |η⟩ =

∫
∆

Vα+α1

(
z1

1

)
· · ·Vα+α1

(
z1
r1

)
Vα+α2

(
z2

1

)
· · ·Vα+α2

(
z2
r2

)
|η⟩

2∏
k=1

rk∏
i=1

dzki

=
∫

∆

2∏
k=1

∏
1≤i ̸=j≤rk

(
1− zki

zkj

)α2
+
·
r1∏
i=1

r2∏
j=1

(
1−

z2
j

z1
i

)−α2
+
·

2∏
k=1

rk∏
i=1

(
zki
)α+(αk,η)+α2

+(rk−1)+1

·
r1∏
i=1

(
z1
i

)−α2
+r2 ·

2∏
k=1

∏
m≥1

exp
(
α+a

k
−m

m

rk∑
i=1

(
zki
)m)

· |θ⟩
2∏

k=1

rk∏
i=1

dzki
zki

=
∫

∆

2∏
k=1

∏
1≤i ̸=j≤rk

(
1− zki

zkj

)α2
+
·
r1∏
i=1

r2∏
j=1

(
1−

z2
j

z1
i

)−α2
+

·
2∏

k=1

rk∏
i=1

(
zki
)sk ·

2∏
k=1

∏
m≥1

exp
α+a

k
−mpm

(
zk
)

m

 · |θ⟩ 2∏
k=1

rk∏
i=1

dzki
zki

. (2.1)

Here, the integrals are over the product cycle ∆ = Γ(r1;α−2
+ )× Γ(r2;α−2

+ ), see
Section 1.9.1.
To proceed, we note that the tensor product Λ⊗C Λ is isomorphic to
U
(
(H2)−

)
= C[ak−m | k = 1, 2, m ∈ Z>0] as an algebra, by Equation (C.9). Concretely,

let y1
i and y2

i denote the variables for the two factors of Λ⊗C Λ and consider the
isomorphism

ρ+ : Λ⊗C Λ −→ U
(
(H2)−

)
, pm(yk) 7−→ 1

α+
ak−m, k = 1, 2, m ∈ Z>0. (2.2)

where pm(yk) is a power sum defined in Equation (C.1). Then, we may write

∏
m≥1

exp
α+a

k
−mpm

(
zk
)

m

 = ρ+

∏
m≥1

exp
(
α2

+
pm(yk)pm(zk)

m

)
= ρ+

∏
i≥1

rk∏
j=1

(1− yki zkj )−α2
+

, (2.3)

recognising the Cauchy kernel Equation (C.19) with parameter t = α−2
+ .

For k = 1, we expand this Cauchy kernel in terms of Jack polynomials Ptλ
(
y1
)

and
their duals Qt

λ

(
z1
)

as in Equation (C.19):

∏
m≥1

exp
α+a

1
−mpm

(
z1
)

m

 = ρ+

(∑
λ

Ptλ
(
y1
)
Qt
λ

(
z1
))
. (2.4)
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For k = 2, we first combine the Cauchy kernel with that appearing in the second
factor of the integrand of Equation (2.1):

ρ+

∏
i≥1

r2∏
j=1

(1− y2
i z

2
j )−α2

+

 r1∏
i=1

r2∏
j=1

(
1− (z1

i )−1z2
j

)−α2
+ = ρ+

(∑
µ

Ptµ
(
y2 ∪ (z1)−1

)
Qt
µ

(
z2
))
.

(2.5)

Here, we have noted that the product is a Cauchy kernel in the alphabets
{y2

i } ∪ {(z1
ℓ )−1} and {z2

j }. This may be further simplified using skew-Jacks as in
Equation (C.22):

Ptµ
(
y2 ∪ (z1)−1

)
=
∑
ν

Ptν
(
z1
)
Ptµ/ν

(
y2
)
. (2.6)

where Ptν
(
z1
)

= Ptν
(
z1
)
. We recall that the skew-Jack Ptµ/ν is 0 unless ν ⊆ µ. By

considering from Equation (C.24) the definition of Gt
n(x), we also have the integrating

kernels
2∏

k=1

∏
1≤i ̸=j≤rk

(
1− zki

zkj

)α2
+

= Gt
r1(z1)Gt

r2(z2) (2.7)

of the symmetric polynomial inner product Equation (C.23). Finally, the product∏2
k=1

∏rk
i=1

(
zki
)sk is a product of rectangular Jack polynomials. However, here we have

to be careful with the signs of the sk. Indeed, Equation (1.53) and Equation (1.213)
show that the conformal weights of the highest-weight vectors |η⟩ and |θ⟩ differ by

hη − hθ = −r1s1 − r2s2. (2.8)

This must be non-negative if the screening operator S [r1,r2]
+ is to map |η⟩ to a singular

descendant of |θ⟩. We shall therefore assume from here on that s1, s2 ∈ Z≤0. Thus,

2∏
k=1

rk∏
i=1

(
zki
)sk = Pt[−sr1

1 ]

(
z1
)

Pt[−sr2
2 ]

(
z2
)
, (2.9)

using Equation (C.15).
Putting all this back in Equation (2.1), the integrand factorises and we get

S [r1,r2]
+ |η⟩ =

∑
λ,µ,ν

ρ+
(
Ptλ
(
y1
)) ∫

Γ(r1;t)
Gt
r1(z1)Pt[−sr1

1 ]

(
z1
)

Ptν
(
z1
)
Qt
λ

(
z1
) r1∏
i=1

dz1
i

z1
i

· ρ+
(
Ptµ/ν

(
y2
)) ∫

Γ(r2;t)
Gt
r2(z2)Pt[−sr2

2 ]

(
z2
)
Qt
µ

(
z2
) r2∏
i=1

dz2
i

z2
i

· |θ⟩
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using Equation (C.23),

=
∑
λ,µ,ν

〈
Qt
λ,Ptν+[−sr1

1 ]

〉t
r1

〈
Qt
µ,Pt[−sr2

2 ]

〉t
r2
ρ+
(
Ptλ
(
y1
)
Ptµ/ν

(
y2
))
|θ⟩

by Equations (C.16) and (C.25),

=
∑

ν⊆[−sr2
2 ]

ℓ(ν)≤r1

btν+[−sr1
1 ](r1)bt[−sr2

2 ](r2)ρ+
(
Ptν+[−sr1

1 ]

(
y1
)
Pt[−sr2

2 ]/ν

(
y2
))
|θ⟩, (2.10)

where l(ν) is the length of ν. As bt[−sr2
2 ](r2) is independent of ν (and non-zero), it may

be absorbed into the normalisation of the singular vector. Our final result for the
singular vector is therefore

S [r1,r2]
+ |η⟩ =

∑
ν⊆[−sr2

2 ]
ℓ(ν)≤r1

btν+[−sr1
1 ](r1)ρ+

(
Ptν+[−sr1

1 ]

(
y1
)
Pt[−sr2

2 ]/ν

(
y2
))
|θ⟩. (2.11)

This form is now easily implemented in computer algebra packages.
The right hand side of Equation (2.11) is easily seen to be manifestly non-zero by
noting that the total degree, with respect to the a2

−m, of the summand corresponding
to the empty partition ν = [ ] is maximal and that all other summands have strictly
lesser degrees. Since bt[−sr1

1 ](r1), Pt[−sr1
1 ]

(
y1
)

and Pt[−sr2
2 ]

(
y2
)

are all non-zero, this
summand is therefore linearly independent of all others. The conclusion is that
Equation (2.11) defines a singular vector for every r1, r2 ∈ Z≥0, s1, s2 ∈ Z≤0 and
t ∈ C \Q≤0.

2.1.1 Examples

We now illustrate the W3 singular vector formula Equation (2.11) with three examples.

Example 1

For our first example, we compute a singular vector for the case when t = 4
5 , so that

α+ =
√

5
2 , α− = − 2√

5
, α0 = 1

2
√

5
, c = 4

5 . (2.12)

This central charge corresponds to that of the 3-state Potts model, described by the
W3 minimal model W3(4, 5) (the parameters here are the numerator and denominator
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of t in reduced form). Take r1 = r2 = −s1 = −s2 = 1 for simplicity. Then, the map
S [1,1]

+ sends Fη, where η = ζ0,−1;1,−1, into Fθ, where θ = ζ−1,−1;0,−1. We note that

hη = 13
6 , hθ = 1

6 , wη = 187
9
√

390
, wθ = − 7

9
√

390
, (2.13)

by Equation (1.53) and Equation (1.202). The conformal weight hθ is not one of those
associated with the 3-state Potts model. Nevertheless, the Fock space Fθ has a
singular vector at grade 2 in accordance with Equation (2.8). Equation (2.11) writes it
in the form

S [1,1]
+ |η⟩ =

∑
ν⊆[1]

b
4/5
ν+[1](1)ρ+

(
P4/5
ν+[1]

(
y1
)
P4/5

[1]/ν

(
y2
))
|θ⟩. (2.14)

There are only two partitions ν to consider. Using Equation (C.25), Equation (2.2)
and SageMath to write Jacks and skew-Jacks in terms of power sums, we have

ν = [0] : b
4/5
[0]+[1](1) = 5

4 , ρ+
(
P4/5

[0]+[1]

(
y1
))

= ρ+
(
p[1]
(
y1
))

= 2√
5
a1

−1,

ρ+
(
P4/5

[1]/[0]

(
y2
))

= ρ+
(
p[1]
(
y2
))

= 2√
5
a2

−1.

ν = [1] : b
4/5
[1]+[1](1) = 5

4
9
8 , ρ+

(
P4/5

[1]+[1]

(
y1
))

= ρ+

(5
9p[1,1]

(
y1
)

+ 4
9p[2]

(
y1
))

= 4
5

5
9a

1
−1a

1
−1 + 2√

5
4
9a

1
−2,

ρ+
(
P4/5

[1]/[1]

(
y1
))

= ρ+
(
p[0]
(
y1
))

= 1.

(2.15)

The singular vector is therefore explicitly identified as

S [1,1]
+ |η⟩ =

(
a1

−1a
2
−1 + 5

8a
1
−1a

1
−1 +

√
5

4 a1
−2

)
|θ⟩. (2.16)

Consider the W3 Verma module Vϑ whose highest-weight vector |ϑ⟩ has L0- and
W0-eigenvalue hθ and wθ, as given in Equation (2.13). By direct calculation, Vϑ has a
singular vector |χ⟩, unique up to normalisation, at grade 2:

|χ⟩ =
(

390
119W−1W−1 −

√
390
17 W−2 + 10

√
390

119 L−1W−1 + L−1L−1

)
|ϑ⟩. (2.17)
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The free field realisation f : W3 ↪→ H2 defined by Equation (1.195) induces a
W3-module homomorphism

fϑ : Vϑ −→ Fθ, fϑ(U |ϑ⟩) = f(U)|θ⟩. (2.18)

Here, U is an arbitrary element of the W3 mode algebra, this being the (unital)
associative algebra generated by the Lm and Wn subject to Equation (1.199). Explicit
calculation now verifies that the image of the singular vector |χ⟩ under fϑ is, of course,
that constructed in Equation (2.16):

fϑ(|χ⟩) =
(

5
4a

1
−1a

2
−1 + 25

32a
1
−1a

1
−1 + 5

√
5

16 a1
−2

)
|θ⟩ = 5

4S
[1,1]
+ |η⟩. (2.19)

Example 2

For our second example, we compute a grade three singular vector for general central
charges. Let r1 = 2 and r2 = −s1 = −s2 = 1, so that η = ζ1,−1;1,−1 and θ = ζ−2,−1;1,−1.
In order to evaluate the singular vector formula Equation (2.11), we need to compute

bt[1,1](2) = 2
t+ 1

1
t
, bt[2,1](2) = 2

t+ 1
1
t

t+ 2
2t+ 1 ,

Pt[1,1] = 1
2p[1,1] −

1
2p[2], Pt[1]/[0] = p[1],

Pt[2,1] = 1
t+ 2p[1,1,1] + t− 1

t+ 2p[2,1] −
t

t+ 2p[3], Pt[1]/[1] = 1,

(2.20)

again using Equation (C.25), Equation (2.2) and SageMath. The singular vector is
thus

S [2,1]
+ |η⟩ =

[
bt[1,1](2)ρ+

(
Pt[1,1]

(
y1
)
Pt[1]/[0]

(
y2
))

+ bt[2,1](2)ρ+
(
Pt[2,1]

(
y1
)
Pt[1]/[1]

(
y2
))]
|θ⟩

=
[

1
t(t+ 1)

(
1
α2

+
a1

−1a
1
−1 −

1
α+

a1
−2

)
1
α+

a2
−1

+ 2
t(t+ 1)(2t+ 1)

(
1
α3

+
a1

−1a
1
−1a

1
−1 + t− 1

α2
+
a1

−2a
1
−1 −

t

α+
a1

−3

)]
|θ⟩

=
[

2/α+

(t+ 1)(2t+ 1)a
1
−1a

1
−1a

1
−1 + 1/α+

t+ 1 a
1
−1a

1
−1a

2
−1

+ 2(t− 1)
(t+ 1)(2t+ 1)a

1
−2a

1
−1 −

1
t+ 1a

1
−2a

2
−1 −

1/α+

(t+ 1)(2t+ 1)a
1
−3

]
|θ⟩. (2.21)
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2.1 W3 singular vectors

We note that the result is manifestly well defined and non-zero for all α+ such that
t = α−2

+ ∈ C \Q≤0, as expected. This region includes all central charges less than 98.

Example 3

Our final example concerns singular vectors for quite arbitrary central charges
(including all c < 98). This time, we fix θ = 0 and use Equation (2.11) to construct
singular vectors in the Fock space F0.
First, we note that θ = ζ−r1,s1;r1−r2,s2 = 0 may be solved for r1 and s1:

r1 = −1 + (−s1 + 1)t, r2 = −2 + (−s1 − s2 + 2)t. (2.22)

Since r1, r2, s1, s2 ∈ Z, we will only find singular vectors when t ∈ Q>0. Writing t = u
v
,

where u and v are coprime integers, it follows that

r1 = mu− 1, −s1 = mv − 1, r2 = nu− 2, −s2 = (n−m)v − 1, (2.23)

for some m,n ∈ Z. Given that r1, r2 ∈ Z≥0 and s1, s2 ∈ Z<0, we conclude that m, n
and n−m must be positive integers. We thereby obtain, for each fixed t ∈ Q>0, an
infinite sequence of singular vectors, generically indexed by integers n > m > 0, of the
form S [mu−1,nu−2]

+ |ζ(m−n)u+1,−mv+1;nu−2,−(n−m)v+1⟩. Among these, the singular vector of
lowest grade corresponds, assuming that u > 1, to (m,n) = (1, 2). Moreover, the
grade of S [u−1,2(u−1)]

+ |ζ−(u−1),−(v−1);2(u−1),−(v−1)⟩ is 3(u− 1)(v − 1), by Equation (2.8).
It is not clear if these singular vectors of the Fock space F0 correspond, in the sense of
Example 1 to singular vectors in the W3 vacuum Verma module V0 or not. However,
there are five other Fock spaces Fζ whose highest-weight vectors |ζ⟩ have hζ = wζ = 0.
This follows from the easily verified fact that both hζ and wζ are left invariant by the
following shifted action of the Weyl group S3:

σ · ζ = σ(ζ − α0ϱ) + α0ϱ, σ ∈ S3. (2.24)

Each of these five other Fock spaces has an infinite sequence of singular vectors given
by Equation (2.11) and it is interesting to ask whether these also correspond to
singualr vectors in V0 or not. We shall not investigate this question here. We only
note the following observation: F2α0ϱ has such a singular vector at grade 3 and it
corresponds to just one of the two linearly independent grade 3 singular vectors of V0.
Which one is obtained depends on the branch of the square root of β chosen in
Equation (1.195).
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We conclude by remarking that the question of whether the Fock space singualr
vectors constructed here exhaust the singular vectors of V0 is much easier to answer.
They do not. We cannot obtain the two linearly independent singular vectors at grade
1 using Equation (2.11) (for c ̸= 2; when c = 2, W0 acts non-diagonalisably). Nor can
we obtain, when t = u

v
∈ Q>0, the grade (u− 2)(v − 2) singular vector whose image is

non-zero in the universal W3 vacuum module. This singular vector can be constructed
formally using screening operators, but we do not know how to actually evaluate the
integral in this case. What is needed is a certain sl(3) analogue of the theory of Jack
functions, something which does not appear to have yet been developed (see
[65, 75, 76] for work in this direction).

2.2 Wn singular vectors

In this section we generalise the results of Section 2.1.1 and derive explicit formulae
for Wn singular vectors in Fock spaces. We remark that this technique does not work
for all Fock spaces, only some of them. Recall the conventions and notations from
Section 1.9. If we apply the screening operator S [r]

+ to the Hn−1 highest-weight vector
|η+

r,s⟩, we get

S [r]
+ |η+

r,s⟩ =
∫

Γ(r1;1/α2
+)
· · ·

∫
Γ(rn−1;1/α2

+)

r1∏
i=1

Vα+α1

(
z1
i

)
· · ·

rn−1∏
i=1

Vα+αn−1

(
zn−1
i

)
· |η+

r,s⟩
n−1∏
k=1

rk∏
i=1

dzki

=
∫

Γ(r1;1/α2
+)
· · ·

∫
Γ(rn−1;1/α2

+)

n−1∏
k=1

∏
1≤i ̸=j≤rk

(
1− zki

zkj

)α2
+
·
n−1∏
k=2

rk−1∏
i=1

rk∏
j=1

(
1−

zkj
zk−1
i

)−α2
+

·
n−1∏
k=1

rk∏
i=1

(
zki
)α+(αk,η+

r,s)+α2
+(rk−1)+1

·
n−1∏
k=2

rk∏
i=1

(
z1
i

)−α2
+rk

·
n−1∏
k=1

∏
m≥1

exp
(
α+a

k
−m

m

rk∑
i=1

(
zki
)m)

· |θ+
r,s⟩

n−1∏
k=1

rk∏
i=1

dzki
zki

=
∫

Γ(r1;1/α2
+)
· · ·

∫
Γ(rn−1;1/α2

+)

n−1∏
k=1

∏
1≤i ̸=j≤rk

(
1− zki

zkj

)α2
+
·
n−2∏
k=1

rk−1∏
i=1

rk∏
j=1

(
1−

zkj
zk−1
i

)−α2
+

·
n−1∏
k=1

rk∏
i=1

(
zki
)sk ·

n−1∏
k=1

∏
m≥1

exp
α+a

k
−mpm

(
zk
)

m

 · |θ+
r,s⟩

n−1∏
k=1

rk∏
i=1

dzki
zki

. (2.25)

As in the W3 case, we can evaluate these integral formulae for singular vectors in
terms of symmetric functions. Recall that the tensor product of N − 1 copies of the
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ring of symmetric functions Λ⊗n−1 is isomorphic to

U
(
(Hn−1)−

)
= C[ak−m | k = 1, . . . , n− 1, m ∈ Z>0] (2.26)

as an algebra, by Equation (C.9). Distinguishing the alphabets of the tensor factors by
superscripts, so that the alphabet in the i-th tensor factor is denoted by yi, we define
the following algebra isomorphism generalising that of Equation (2.2):

ρ+ : Λ⊗(n−1) → U
(
(Hn−1)−

)
, pn

(
yk
)
7→ 1

α+
ak−n. (2.27)

This isomorphism allows us to write

∏
m≥1

exp
α+a

k
−mpm

(
zk
)

m

 = ρ+

∏
m≥1

exp
(
α2

+
pm(yk)pm(zk)

m

)
= ρ+

∏
i≥1

rk∏
j=1

(1− yki zkj )−α2
+

, (2.28)

for k = 1, . . . , n− 1. We now identify, with t = α−2
+ ,

n−1∏
k=1

∏
1≤i ̸=j≤rk

(
1− zki

zkj

)α2
+

=
n−1∏
k=1

Gt
rk

(zk) (2.29)

as the product of the integrating kernels for the variables zk. For k = 1, as in
Equation (2.4), we write

∏
m≥1

exp
α+a

1
−mpm

(
z1
)

m

 = ρ+

(∑
µ1

Ptµ1

(
y1
)
Qt
µ1

(
z1
))
. (2.30)

For k = 2, . . . , n− 1, similar to Equation (2.5), we have instead

∏
m≥1

exp
α+a

k
−mpm

(
zk
)

m

 · rk−1∏
i=1

rk∏
j=1

(
1−

zkj
zk−1
i

)−α2
+

= ρ+

(∑
µk

Ptµk

(
yk ∪ (zk−1)−1

)
Qt
µk

(
zk
))

= ρ+

(∑
µk,νk

Ptνk

(
zk−1

)
Ptµk/νk

(
yk
)
Qt
µk

(
zk
))
.

(2.31)
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Putting everything together, we have

S [r]
+ |η+

r,s⟩ =
∑

µ1,µ2,...,µn−1
ν2,...,νn−1

ρ+
(
Ptµ1

(
y1
)) ∫

Γ(r1;t)
Gt
r1(z1)Pt[−sr1

1 ]

(
z1
)

Ptν2

(
z1
)
Qt
µ1

(
z1
) r1∏
i=1

dz1
i

z1
i

· ρ+
(
Ptµ2/ν2

(
y2
)) ∫

Γ(r2;t)
Gt
r2(z2)Pt[−sr2

2 ]

(
z2
)

Ptν3

(
z2
)
Qt
µ2

(
z2
) r2∏
i=1

dz2
i

z2
i

...
· ρ+

(
Ptµn−2/νn−2

(
yn−2

))
·
∫

Γ(rn−2;t)
Gt
rn−2(zn−2)Pt[−srn−2

n−2 ]

(
zn−2

)
Ptνn−1

(
zn−2

)
Qt
µn−2

(
zn−2

) rn−2∏
i=1

dzn−2
i

zn−2
i

· ρ+
(
Ptµn−1/νN−1

(
yn−1

))
·
∫

Γ(rn−1;t)
Gt
rn−1(zn−1)Pt[−srn−1

n−1 ]

(
zn−1

)
Qt
µn−1

(
zn−1

) rn−1∏
i=1

dzn−1
i

zn−1
i

· |θ+
r,s⟩

=
∑

µ1,µ2,...,µn−1
ν2,...,νn−1

n−2∏
k=1

〈
Qt
µk
,Pt

νk+1+[−srk
k

]

〉t
rk

·
〈

Qt
µn−1 ,P

t
[−srn−1

n−1 ]

〉t
rn−1

· ρ+
(
Ptµ1

(
y1
)) n−1∏

k=2
ρ+
(
Ptµk/νk

(
yk
))
· |θ+

r,s⟩

=
∑

ν2,...,νn−1

(
n−2∏
k=1

bt
νk+1+[−srk

k
](rk) · b

t
[−srn−1

n−1 ](rn−1)
)

· ρ+
(
Ptν2+[−sr1

1 ]

(
y1
)) n−2∏

k=2
ρ+

(
Pt(νk+1+[−srk

k
])/νk

(
yk
))
· ρ+

(
Pt[−srn−1

n−1 ]/νn−1

(
yN−1

))
|θ+

r,s⟩.

(2.32)

As before, the factor bt[−srn−1
n−1 ](rn−1) does not depend on the summation indices

ν2, . . . , νn−1, appears in every summand, and is non-zero, so it can be absorbed into
the normalisation of the singular vector. Moreover, the skew-Jack polynomials vanish
unless the summation indices ν2, . . . , νn−1 satisfy the relations

νk ⊆ νk+1 + [−srk
k ], k = 2, . . . , n− 2, νn−1 ⊆ [−srn−1

n−1 ]. (2.33)
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Thus, the singular vector S [r]
+ |η+

r,s⟩ ∈ Fθ+
r,s

is proportional to

∑
ν2,...,νn−1

(
n−2∏
k=1

bt
νk+1+[−srk

k
](rk)

)
ρ+
(
Ptν2+[−sr1

1 ]

(
y1
))

·
n−2∏
k=2

ρ+

(
Pt(νk+1+[−srk

k
])/νk

(
yk
))
· ρ+

(
Pt[−srn−1

n−1 ]/νn−1

(
yn−1

))
|θ+

r,s⟩. (2.34)

This is our final formula for Wn singular vectors generalising the n = 3 case given in
Equation (2.11). As before, considering the summand with ν2 = · · · = νn−1 = [ ] shows
that the right hand side is non-zero for every r ∈ Zn−1

≥0 , s ∈ Zn−1
≤0 and t ∈ C \Q≤0.

This singular vector formula also has the nice property of being comparatively easy to
evaluate using computer algebra packages such as SageMath.
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Chapter 3

BRST cohomology for Lk(sl(2))
modules in category O

In this chapter we will present the proof of the BRST cohmology of Lk(sl(2)) highest
weight modules presented in [16].

3.1 The BRST complex

Throughout this chapter we fix an admissible level k and set k + 2 = p
q

= t for coprime
integers p, q ≥ 2. Recall that the energy momentum tensor of the simple affine sl(2)
vertex operator algebra Lk(sl(2)) at level k and the fermionic ghost vertex operator
super-algebra B are

TLk(sl(2))(z) = 1
4t(:h(z)h(z): + 2:e(z)f(z): + 2:f(z)e(z):) (3.1)

TB(z) = :∂b(z)c(z): (3.2)

where

cLk(sl(2)) = 3k
k + 2 , cB = −2 (3.3)

The conformal weights of e(z), h(z), f(z) are all 1 and the conformal weights of b(z)
and c(z) are 0 and 1 respectively. We introduce the BRST field [10–12, 69] which first
appeared in the context of gauge theory

Q(z) = :e(z)c(z): + c(z) (3.4)
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Clearly, from the operator product expansions in Equations (1.122) and (1.182), and
noting that for the cross term we have e(z)c(w) ∼ 0,

Q(z)Q(w) ∼ 0 (3.5)

and we define the BRST operator dBRST as the zero mode of Q(z)

dBRST =
∫

0
Q(z)dz (3.6)

From Equation (3.5) it is clear that d2
BRST = 1

2{dBRST, dBRST} = 0. Now,
Lk(sl(2))⊗ B has the structure of a vertex operator super algebra with respect to the
energy momentum tensor TLk(sl(2)) + TB. The fermionic ghost vertex operator algebra
can be graded by the ghost field −:b(z)c(z): so that b(z) and c(z) have ghost degrees
−1 and 1 respectively. Let Bn be the subspace of B consisting of states with ghost
degree n, then for any highest weight module M of Lk(sl(2)), dBRST is a degree one
operator acting on M⊗ B. We define the BRST complex, associated to M, by

· · · dBRST−−−→M⊗ Bn−1
dBRST−−−→M⊗ Bn

dBRST−−−→M⊗ Bn+1
dBRST−−−→ · · · (3.7)

It turns out that whenM = Lk(sl(2)), the zeroth cohomology group has the structure
of a vertex operator algebra, see Lemma 3.1.1 below. However the conformal structure
does not come from TLk(sl(2)) + TB. This is because, with respect to the energy
momentum tensor above, the operator dBRST is not a homogeneous operator of
conformal weight zero. That is,

[
TLk(sl(2))(z) + TB(z), dBRST

]
̸= 0. (3.8)

This is due to the fact that both e(z) and c(z) have conformal weight one. To fix this,
we introduce a new energy momentum tensor of Lk(sl(2))

T
Lk(sl(2))(z) = TLk(sl(2))(z) + 1

2∂h(z) (3.9)

under which the conformal weights of e(z), h(z), f(z) are 0, 1, 2 respectively. One can
show that with respect to this new energy momentum tensor, dBRST commutes with
this energy momentum tensor,[

T
Lk(sl(2))(z) + TB(z), dBRST

]
= 0 (3.10)
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We then have

Lemma 3.1.1. The cohomology H0(Lk(sl(2))⊗ B, dBRST) has the structure of a
vertex operator algebra, where the energy momentum tensor is given by the modified
energy momentum tensor TLk(sl(2)) + TB.

Proof. Let T = T
Lk(sl(2)) + TB and d = dBRST. Since

[
d, T

Lk(sl(2)) + TB
]

= 0, it is easy
to check that both ker d and im d are invariant under the action of T . To show that
ker d is a vertex subalgebra, let A,B ∈ ker d. Now from Lemma 1.1.8 we have

[d, Y (A, z)] = Y (dA, z) = 0 (3.11)

and therefore

dY (A, z)B = Y (A, z)dB = 0 (3.12)

so Y (A, z)B ∈ ker dJz±K. To show that im d is an ideal of ker d, suppose that
B ∈ ker d and A ∈ V . Now,

Y (dA, z)B = [d, Y (A, z)]B = dY (A, z)B (3.13)

implying that Y (dA, z)B ∈ im dJz±K. Therefore the quotient ker d/ im d is a
well-defined vertex operator algebra, where the conformal structure is given by T .

For admissible level k + 2 = p
q

with coprime integers p, q ≥ 2, the irreducible highest
weight modules of Lk(sl(2)), LLk(sl(2))

r,s are parameterised by 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q

and the irreducible highest-weight modules LM(p,q)
r,s of the Virasoro minimal model

M(p, q) are parameterized by 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1. Now,

Theorem 3.1.2. [2, 16] For 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1 we have

Hn(Lr,s ⊗ B, dBRST) = δn,0LM(p,q)
r,s (3.14)

and

Hn(Lr,q ⊗ B, dBRST) = 0 (3.15)

for all n.

In summary, the BRST complex is non-trivial at degree zero for all s except at the
column s = q,
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Lk(sl(2))
Kac table

p− 1

1

1 q − 1. . .

...

M(p, q)
Kac table

1

p− 1

1 q − 1. . .

...

Quantum Hamiltonian Reduction

s

r

s

r

In this chapter we will present a full proof of Theorem 3.1.2 for s = 1, ..., q − 1
following the outline presented in [16], with some modifications which will allow us to
generalise more easily to the case of relaxed highest-weight modules. The case s = q

will be dealt with in the next chapter, along with our results for the relaxed
highest-weight modules. The proof utilises the free-field realisations of Vk(sl(2)) and
Vir in Sections 1.4 and 1.7 so we will first set up the parameters needed for this.
Firstly, let T FF = TH + TG be the energy momentum tensor of H ⊗ G and let α2 = 2t.
Then we have

T FF = 1
2:a(z)a(z):− 1

α
∂a(z) + :β(z)∂γ(z): (3.16)
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In particular, β(z) and γ(z) now have conformal weights 1 and 0 respectively. We can
realise Vk(sl(2)) as a subalgebra of H ⊗ G where the explicit embedding of Vk(sl(2))
into H ⊗ G was given in Equations (1.164) to (1.166). Recall that our modified energy
momentum tensor for the BRST reduction takes the form T

Lk(sl(2)) + TB. Now we
want to represent this modified energy momentum tensor using a(z), β(z), γ(z) using
the free-field realisation defined in Equations (1.164) to (1.166),

T
FF = 1

2:a(z)a(z): +
(
α+ −

2
α+

)
∂a(z)− :∂β(z)γ(z): (3.17)

In particular, β(z), γ(z) now has conformal weights 0 and 1 respectively. From now on
we will exclusively be working with T

FF . Also, since k + 2 = p
q
, we have

α+ =
√

2t =
√

2p
q

and

T
FF = 1

2:a(z)a(z): + (α+ + α−)∂a(z)− :∂β(z)γ(z): (3.18)

Thus we see that the Heisenberg part of T FF is precisely the free-field realisation of
the Virasoro algebra at minimal model central charge in Equation (1.74). Already this
suggests a relationship between Lk(sl(2)) and M(p, q) with k + 2 = p

q
. As the free-field

realisation of e(z) is β(z), the BRST operator now takes the form

dBRST =
∫

0
:β(z)c(z): + c(z)dz (3.19)

We have the following commutation relations

[dBRST, βn] = 0 [dBRST, γn] = cn (3.20)
{dBRST, bn} = βn + δn,01 {dBRST, cn} = 0 (3.21)

Now that we have introduced all the parameters for the proof, we will move on and
show that the Virasoro and Vk(sl(2)) screening operators are BRST exact.

Lemma 3.1.3. Theorems 1.4.4 and 1.7.1. For n ≥ 1, let α− = −
√

2q
p

so that[
Ssl(2)

]n
, [SV ]n are screening operators for the Virasoro and Vk(sl(2)) vertex operators

algebras respectively. Then there existsa field Ψn(z1, ..., zi) such that

{d,Ψn} =
[
Ssl(2)

]n
+ (−1)n+1[SV ]n (3.22)
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Proof. The proof is done by induction. In the case when n = 1, we have

{d, b(z)Vα−(z)} = β(z)Vα−(z) + Vα−(z) (3.23)

We now assume that there exists ψn(z1, ..., zn) such that

{d, ψn(z1, ..., zn)} =
n∏
i=1

β(zi)Vα−(zi) + (−1)n+1
n∏
i=1

Vα−(zi) (3.24)

Then we see that{
d, β(z1) · · · β(zn)b(zn+1)

n+1∏
i=1

Vα−(zn)− ψn(z1, ..., zn)Vα−(zn+1)
}

(3.25)

=
n+1∏
i=1

β(zi)Vα−(zi) +
n∏
i=1

β(zi)Vα−(zi) · Vα−(zn+1) (3.26)

−
n∏
i=1

β(zi)Vα−(zi) · Vα−(zn+1)− (−1)n+1
n+1∏
i=1

Vα−(zi) (3.27)

=
n+1∏
i=1

β(zi)Vα−(zi) + (−1)n+2
n+1∏
i=1

Vα−(zi) (3.28)

It is obvious to see that ψn(z1, ..., zn) has ∏n
i=1 Vα−(zi) as a factor and therefore we

can integrate
{
d,
∫

Γ
ψn
}

=
∫

Γ

n∏
i=1

β(zi)Vα−(zi) + (−1)n+1
∫

Γ

n∏
i=1

Vα−(zi) (3.29)

such that the operator
∫

Γ ψ
n will be a well-defined map whenever the screening

operators are well-defined. Taking Ψn =
∫

Γ ψ
n we have

{d,Ψn} =
[
Ssl(2)

]n
+ (−1)n+1[SV ]n (3.30)

for all n ≥ 1 and we are done.

In other words, the two operators [SV ]n and
[
Ssl(2)

]n
are equivalent when acting on a

BRST-cohomology.
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3.2 BRST cohomology of Lk(sl(2)) highest-weight
modules

We will first outline the strategy of proving Theorem 3.1.2. First we take an
irreducible highest-weight module of Lk(sl(2)) corresponding to r = 1, ..., p− 1,
s = 1, ..., q − 1 and form the BRST complex

...

Lr,s ⊗ B1

Lr,s ⊗ B0

Lr,s ⊗ B−1

...

dBRST

dBRST

dBRST

dBRST

We then realise Lr,s as the degree zero cohomology of the Bernard-Felder complex as
per Theorem 1.7.2,

· · · F2p−r,s ⊗ G
[Ssl(2)]p−r

−−−−−−→ Fr,s ⊗ G
[Ssl(2)]r

−−−−→ F−r,s ⊗ G
[Ssl(2)]p−r

−−−−−−→ · · · (3.31)

thereby turning the BRST complex into a double complex (the fact that the
differentials commute is obvious since they only contain βn modes)

. . .

. . .

. . .

...

F2p−r,s ⊗ G⊗ B1

F2p−r,s ⊗ G⊗ B0

F2p−r,s ⊗ G⊗ B−1

...

...

Fr,s ⊗ G⊗ B1

Fr,s ⊗ G⊗ B0

Fr,s ⊗ G⊗ B−1

...

...

F−r,s ⊗ G⊗ B1

F−r,s ⊗ G⊗ B0

F−r,s ⊗ G⊗ B−1

...

. . .

. . .

. . .

dBRST

dBRST

dBRST

dBRST

dBRST

dBRST

dBRST

dBRST

dBRST

dBRST

dBRST

dBRST

[
Ssl(2)

]r [
Ssl(2)

]p−r [
Ssl(2)

]r [
Ssl(2)

]p−r

[
Ssl(2)

]r [
Ssl(2)

]p−r [
Ssl(2)

]r [
Ssl(2)

]p−r

[
Ssl(2)

]r [
Ssl(2)

]p−r [
Ssl(2)

]r [
Ssl(2)

]p−r
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It turns out that taking
[
Ssl(2)

]n
, n = r, p− r and dBRST cohomologies commute by

Proposition 3.4.2. This means that we can determine the BRST cohomology of Lr,s by
first determining the BRST cohomology of the corresponding Wakimoto modules
instead. Proposition 3.3.1 tells us that the BRST cohomology of a Wakimoto module
is

Hn(Fλ ⊗ G⊗ B, dBRST) = δn,0Fλ (3.32)

Therefore if we first take dBRST cohomology, all rows will be zero except at the zeroth
row, at which it will consist of a sequence of Fock spaces. Moreover, since the Virasoro
and the sl(2) screening operators are BRST-exact from Lemma 3.1.3, we see that up
to a sign,

[
Ssl(2)

]n
, [SV ]n are two equivalent maps when acting on a BRST cohomology,

that is,
[
Ssl(2)

]n
[v] = [SV ]n[v] (3.33)

where [v] is some non-trivial cohomology class. Therefore, we can replace
[
Ssl(2)

]n
by

[SV ]n after taking the BRST cohomology of the Wakimoto modules. It turns out this
procedure results in a Felder complex at the zeroth row, recall Theorem 1.4.6,

. . . F2p−r,s Fr,s F−r,s . . .
[SV ]r [SV ]p−r [SV ]r [SV ]p−r

The Felder complex is exact except at degree zero, at which we get the irreducible
M(p, q) highest weight module LM(p,q)

r,s .

Proof of Theorem 3.1.2. Consider the double complex D =
(
Di,j, di1, d

j
2

)
, for

i = 2k, 2k + 1, where

D2k,j = F−2kp+r,s ⊗ G⊗ Bj, d2k
1 =

[
Ssl(2)

]r
(3.34)

D2k+1,j = F−2kp−r,s ⊗ G⊗ Bj, d2k+1
1 =

[
Ssl(2)

]p−r
(3.35)

dj2 = dBRST (3.36)

Then by Theorem 1.7.2,

Hn(Lr,s, dBRST) = Hn
(
H0(D, d1), d2

)
(3.37)
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from Proposition 3.4.2,

= H0(Hn(D, d2), d1) (3.38)

by Lemma 3.1.3 and Proposition 3.3.1,

= H0(δn,0C, d) (3.39)

where C = (Ci, di) is the Felder complex from Theorem 1.4.6, this implies

= δn,0LM(p,q)
r,s (3.40)

Therefore to complete the proof of Theorem 3.1.2 we need to show Proposition 3.3.1
and Proposition 3.4.2 which we will do next.

3.3 BRST Cohomology of Wakimoto modules

In this section we will show the following proposition, this is a result in [16], but here
we will give a different proof.

Proposition 3.3.1.

Hn(Fλ ⊗ G⊗ B, dBRST) = δn,0Fλ (3.41)

Proof. Firstly notice dBRST contains no elements of H and so Fλ factors through the
cohomology

Hn(Fλ ⊗ G⊗ B, dBRST) = Fλ ⊗Hn(G⊗ B, dBRST) (3.42)

That is, it is enough to determine the cohomology of the complex C = (G⊗ B, dBRST).
For simplicity let |0⟩ = |0⟩G ⊗ |0⟩B and d = dBRST. We can decompose this complex as
a tensor product of two complexes

C =
⊗
i≥0

span{βpi
−ib

ri
−i|0⟩ | pi ≥ 0, ri ∈ {0, 1}} (3.43)

⊗
i≥1

span{γqi
−ic

si
−i|0⟩ | qi ≥ 0, si ∈ {0, 1}} (3.44)
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since the vacuum vector lies in the kernel of d and both tensor factors are invariant
subspaces under d by Equations (3.20) and (3.21).
Now consider one of the factor IB = ⊗

i≥0 span{βpi
−ib

ri
−i|0⟩ | pi ≥ 0, ri ∈ {0, 1}}. The

commutation relations of d with the modes βi, bi shows that the differential d leaves
invariant the space of states generated by the same mode indices. That is, we can
further decompose IB as an infinite tensor product of complexes IB = ⊗

i≥0 I
B
i , where

IBi = span{βpi
−ib

ri
−i|0⟩ | pi ≥ 0, ri ∈ {0, 1}} (3.45)

We can then directly compute the cohomology of each tensor factor IBi

0 d−2−→ span{βpi
−ib−i|0⟩}

d−1−→ span{βpi
−i|0⟩}

d0−→ 0 (3.46)

where

ker d−1 = 0, ker d0 = span{βpi
−i|0⟩ | pm ≥ 0} (3.47)

im d−2 = 0, im d−1 ∼= span{βpi
−i|0⟩ | pm ≥ 1} (3.48)

Hence, we see that

Hn(IBi ) = δn,0C|0⟩, i ≥ 0 (3.49)

By Lemma A.2.9 we see that

Hn(IB) = δn,0C|0⟩ (3.50)

We will now compute the cohomology of
IC = span{γqi

−ic
si
−i|0⟩ | i ≥ 1, qi ≥ 1, si ∈ {0, 1}}. Again, d is invariant on subspaces

with the same mode indices. Therefore similar to IB, we can decompose IC as
IC = ⊗

i≥1 I
C
i , where

ICi = span{γqi
−ic

si
−i|0⟩ | qi ≥ 0, si ∈ {0, 1}} (3.51)

Again we will now compute the cohomology for each tensor factor ICn . The complex is

0 d−1−→ span{γqi
−i|0⟩}

d0−→ span{γqi
−ic−i|0⟩}

d1−→ 0 (3.52)
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where

ker d0 = C|0⟩, ker d1 = span{γqi
−ic−i|0⟩ | qi ≥ 0} (3.53)

im d−1 = 0, im d0 = span{−liγqi−1
−i c−i|0⟩ | qi ≥ 1} (3.54)

We therefore conclude that

Hn(ICi ) = δn,0C|0⟩, i ≥ 1 (3.55)

Applying Lemma A.2.9 again we see that

Hn(IC) = δn,0C|0⟩ (3.56)

Thus, applying Kunneth’s Theorem we finally arrive at

Hn(Fλ ⊗ G⊗ B, dBRST) = δn,0Fλ (3.57)

as required.

3.4 Commutivity of the double complex

In this section we will show that taking cohomologies of the double complex in the
proof of Theorem 3.1.2 commute. Recall that the double complex in the proof of
Theorem 3.1.2 is D =

(
Di,j, di1, d

j
2

)
, for i = 2k, 2k + 1, where

D2k,j = F−2kp+r,s ⊗ G⊗ Bj, d2k
1 =

[
Ssl(2)

]r
(3.58)

D2k+1,j = F−2kp−r,s ⊗ G⊗ Bj, d2k+1
1 =

[
Ssl(2)

]p−r
(3.59)

dj2 = dBRST (3.60)

Firstly, let T = T
FF + TB = TH + TG + TB be the modified energy momentum tensor

of the vertex operator algebra H⊗G⊗B, with L0 = LH
0 +LG

0 +LB
0 being its zero mode.

We note the the minimal conformal weight of any Fock spaces appearing in the double
complex D is the highest-weight state of Fr,s, say ∆. That is, LH

0 |αr,s⟩ = ∆|αr,s⟩.
Then each Di,j in the double complex D can be written as a direct sum of eigenspaces
of L0, that is Di,j =

∞⊕
k=0

Di,j
∆+k. We note that some of the Di,j

∆+k’s could be zero.

Furthermore, since
[
L0,

[
Ssl(2)

]n]
= [L0, dBRST] = 0, we can decompose D as a direct
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sum of subcomplexes D =
∞⊕
k=0

Ak, where Ak =
(
Ai,jk , d

i
1, d

j
2

)
, Ai,jk = Di,j

∆+k. In other

words, each Ai,jk in the double complex Ak is just the L0-eigenspace Di,j
∆+k of weight

∆ + k in the original double complex Di,j. We then have

Remark 3.4.1. For each k ∈ N, the double complex Ak =
(
Ai,jk , d

i
1, d

j
2

)
is bounded

above and below with respect to the ghost degree. Concretely, Ai,jk = 0 for j > k or
j < −k − 1.

Proof. We prove this by considering the original double complex D = (Di,j, di1, d
j
2).

The minimal conformal weight of any state with ghost degree j is ∆ + j(j+1)
2 , which is

any state containing the modes c−j · · · c−1. Similarly, the minimal conformal weight of
any state with ghost degree −j − 1 is ∆ + j(j+1)

2 , which is any state containing the
modes b−j · · · b0. Therefore, Ai,jk = 0 if k < j and if k > −j − 1.

We then arrive at

Proposition 3.4.2. For the double complex D =
(
Di,j, di1, d

j
2

)
, taking cohomologies

commute. That is,

Hj
(
H i(D, d1), d2

)
= H i

(
Hj(D, d2), d1

)
(3.61)

Proof. As we saw before, we first write D as a direct sum of subcomplexes

D =
∞⊕
k=0

Ak (3.62)

Then each Ak is a bounded double complex from Remark 3.4.1. From Theorem 1.7.2
and Proposition 3.3.1, since the Bernard-Felder complex as well as the BRST
cohomology of Wakimoto module are exact except at one degree, we see that the
spectral sequence associated to the total complex of Dk degenerate at most at page
two. Therefore by Theorem A.1.9 we see that for each k,

Hj
(
H i(Ak, d1), d2

)
= H i

(
Hj(Ak, d2), d1

)
(3.63)
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Now since the cohomology functor is additive we see that

Hj
(
H i(D, d1), d2

)
= Hj

(
H i

( ∞⊕
k=0

Ak, d1

)
, d2

)
(3.64)

=
∞⊕
k=0

Hj
(
H i(Ak, d1), d2

)
(3.65)

=
∞⊕
k=0

H i
(
Hj(Ak, d2), d1

)
(3.66)

= H i
(
Hj(D, d2), d1

)
(3.67)
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Chapter 4

BRST cohomology for Lk(sl(2))
modules in category Rσ

The chapter contains our results on the BRST cohomology for the relaxed
highest-weight modules as well as the twisted ones under spectral flow. We will first
discuss Bernard-Felder complexes in category Rσ in Section 4.1. Section 4.2 contains
our main results for this chapter, which are Theorem 4.2.1 and Propositions 4.2.2
and 4.2.3. In Section 4.3 we compute the BRST cohomology of a spectrally flowed
Wakimoto module. In Section 4.4 we will discuss the commutativity of the double
complexes that we obtain for the BRST cohomology for the (spectrally flowed) relaxed
highest-weight modules.

4.1 Bernard-Felder complexes in category Rσ

In this section we take λ = 1 for the energy momentum tensor of the bosonic ghost as
shown in Equation (1.146). The proof of quantum hamiltonian reduction[16] presented
in Theorem 3.1.2 relies on the construction of a double complex involving the
Bernard-Felder complex of Theorem 1.7.2 for the irreducible highest weight modules of
Lk(sl(2)). In order to follow the same strategy for the case of relaxed modules and
their spectral flows we need to construct analogs of the Bernard-Felder complexes for
the irreducible modules in category Rσ. We will therefore devote this section to
proving Propositions 4.1.3 and 4.1.10 which do exactly that.
To begin, we will first determine how to apply spectral flow to a Wakimoto module.
As Wakimoto modules are modules of H⊗ G we want to determine an automorphism
of H⊗ G that is compatible with the spectral flow automorphism of ŝl(2). First, the
free-field realisation of Vk(sl(2)) into H ⊗ G, given by Equations (1.164) and (1.165),
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induces a map,

ι : U(Vk(sl(2))) −→ U(H ⊗ G) (4.1)

Recall from Equations (1.39), (1.138), (1.139) and (1.161) that the spectral flow
automorphisms of ŝl(2), H and G, for l ∈ Z, s ∈ R, t ∈ Z are given by

σlsl(2)(en) = en−l, σlsl(2)(hn) = hn − lδn,0k, σlsl(2)(fn) = fn+l, (4.2)
σsH(an) = an − sδn,0 σtG(βn) = βn−t σtG(γn) = γn+t (4.3)

Basically, we want to find s, t such that σsH ⊗ σtG is compatible with σlsl(2). Concretely,
we have

Lemma 4.1.1. Let k + 2 = p
q

be admissible, α+ =
√

2p
q

and

σlH⊗G = σ
α+l

2
H ⊗ σlG (4.4)

Then we have the following commutative diagram

U(Vk(sl(2))) U(H ⊗ G)

U(Vk(sl(2))) U(H ⊗ G)

ι

σlsl(2) σlH⊗G

ι

Proof. We need to find s, t as functions of l such that the following simultaneous
equations hold:

ι
(
σlsl(2)(en)

)
=
[
σsH ⊗ σtG

]
(ι(en)) (4.5)

ι
(
σlsl(2)(hn)

)
=
[
σsH ⊗ σtG

]
(ι(hn)) (4.6)

ι
(
σlsl(2)(fn)

)
=
[
σsH ⊗ σtG

]
(ι(fn)) (4.7)

We remark that this is an over-determined system of equations. Now, from
Equation (4.5) we have

ι
(
σlsl(2)(en)

)
= ι(en−l) = βn−l (4.8)[

σsH ⊗ σtG
]
(ι(en)) = σsH ⊗ σtG(βn) = βn−t (4.9)
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This forces t = l. Moving to Equation (4.6),

ι
(
σlsl(2)(hn)

)
= ι(hn − lδn,0k) = −2:βγ:n + α+an − lδn,0k (4.10)[

σsH ⊗ σlG
]
(ι(hn)) =

[
σsH ⊗ σlG

]
(−2:βγ:n + α+an) (4.11)

= −2(:βγ:n − lδn,0) + α+(an − sδn,0) (4.12)

We see that

−lk = 2l − α+s =⇒ s = (k + 2)l
α+

(4.13)

and we conclude that

ι ◦ σlsl(2) =
[
σ

(k+2)l
α+

H ⊗ σlG

]
◦ ι =

[
σ

α+l

2
H ⊗ σlG

]
◦ ι (4.14)

by noting that k + 2 = α2
+
2 . For a consistency check we now want to see if

Equation (4.7) holds with s = α+l
2 and t = l So let σlH⊗G = σ

α+l

2
H ⊗ σlG and recall that

ι(fn) = −:β(z)γ(z)γ(z):n + α+:a(z)γ(z):n +
(
α2

+
2 − 2

)
∂γn. (4.15)

First we remark that since [γm, γn] = 0 for all m,n ∈ Z, we have

σlG(:γ(z)γ(z):n) = :γ(z)γ(z):n+2l, (4.16)

Then

:β(z)γ(z)γ(z):n =
∑
m≤−1

βm:γ(z)γ(z):n−m +
∑
m≥0

:γ(z)γ(z):n−mβm (4.17)

σlH⊗G(:β(z)γ(z)γ(z):n) =
∑
m≤−1

βm−l:γ(z)γ(z):n−m+2l +
∑
m≥0

:γ(z)γ(z):n−m+2lβm−l

(4.18)

=
∑

m≤−l−1
βm:γ(z)γ(z):n−m+l +

∑
m≥−l

:γ(z)γ(z):n−m+lβm (4.19)

=
∑

m≤−l−1
βm:γ(z)γ(z):n−m+l +

∑
m≥0

:γ(z)γ(z):n−m+lβm (4.20)

+ :γ(z)γ(z):n+l+lβ−l + · · ·+ :γ(z)γ(z):n+1+lβ−1 (4.21)
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Now, :γ(z)γ(z):n+k+lβ−k = β−k:γ(z)γ(z):n+k+l − 2γn+l so

σlH⊗G(:β(z)γ(z)γ(z):n) = :β(z)γ(z)γ(z):n+l − 2lγn+l (4.22)

Next, we have

σlH⊗G(:a(z)γ(z):n) = σl

 ∑
m≤−1

amγn−m +
∑
m≥0

γn−mam

 (4.23)

=
∑
m≤−1

amγn−m+l +
∑
m≥0

γn−m+lam −
α+

2 lγn+l (4.24)

= :a(z)γ(z):n+l −
α+

2 lγn+l (4.25)

σlH⊗G(∂γ(z)n) = −nγn+l (4.26)

Therefore, putting everything together,

σlH⊗G(ι(fn)) = −:β(z)γ(z)γ(z):n+l + 2lγn+l + α+(:a(z)γ(z):n+l)−
α2

+
2 lγn+l (4.27)

+
(
α2

+
2 − 2

)
(−n)γn+l (4.28)

= −:β(z)γ(z)γ(z):n+l + α(:a(z)γ(z):n+l) (4.29)

−
(
α2

+
2 − 2

)
(n+ l)γn+l (4.30)

and

ι(σlsl(2)(fn)) = −:β(z)γ(z)γ(z):n+l + α+(:a(z)γ(z):n+l) (4.31)

−
(
α2

+
2 − 2

)
(n+ l)γn+l (4.32)

so we see that Equation (4.7) does indeed hold and we are done.

We will now call σlH⊗G, the automorphism of H⊗ G that is compatible with the
normal ŝl(2) spectral flow σlsl(2), the free-field spectral flow. Recall from Theorem 1.7.2
that the Bernard-Felder complex C = (Cn, dn) for an irreducible highest-weight
module Lr,s for 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1 is a complex of Wakimoto modules such
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that for n = 2k, 2k + 1,

C2k = F−2kp+r,s ⊗ G, d2k =
[
Ssl(2)

]r
(4.33)

C2k+1 = F−2kp−r,s ⊗ G, d2k+1 =
[
Ssl(2)

]p−r
(4.34)

where cohomology of C is

Hn(C) = δn,0Lr,s (4.35)

Since spectral flow defines an exact functor between the relaxed category Rσ to itself,
it commutes with cohomology functors in the relaxed category by Lemma A.2.5.
Therefore, spectrally flowing the above Bernard-Felder complex using the free field
spectral flow in Lemma 4.1.1, we see that the complex C = (Cn, dn), for
n = 2k, 2k + 1, where

C2k = σlH⊗G(F−2kp+r,s ⊗ G), d2k = σlH⊗G

([
Ssl(2)

]r)
(4.36)

C2k+1 = σlH⊗G(F−2kp−r,s ⊗ G), d2k+1 = σlH⊗G

([
Ssl(2)

]p−r
)

(4.37)

has cohomology

Hn(C) = δn,0σ
l
sl(2)(Lr,s) (4.38)

With some simplifications we see that the above complex becomes

C2k = F−2kp+r,s−l ⊗ σlG(G), d2k = σlH⊗G

([
Ssl(2)

]r)
(4.39)

C2k+1 = F−2kp−r,s−l ⊗ σlG(G), d2k+1 = σlH⊗G

([
Ssl(2)

]p−r
)

(4.40)

Therefore it remains to determine the image of the sl(2) screening operators under the
free field spectral flow.

Lemma 4.1.2. The free-field spectral flow σlH⊗G preserves the sl2 screening operator[
Ssl(2)

]n
homomorphism. That is,

σlH⊗G

([
Ssl(2)

]n)
=
[
Ssl(2)

]n
(4.41)

for all l ∈ Z, n ≥ 1, where the maps are defined as in Theorem 1.7.2.
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Proof. Recall from Equation (1.172) the screening field is

β(z)Vα−(z) = β(z)eα−âzα−a0
∏
m≥1

exp
(
α−

a−m

m
zm
) ∏
m≥1

exp
(
−α−

am
m
z−m

)
(4.42)

We let

Ω(z) = eα−â
∏
m≥1

exp
(
α−

a−m

m
zm
) ∏
m≥1

exp
(
−α−

am
m
z−m

)
(4.43)

so that we can write

Vα−(z) = Ω(z)zα−a0 (4.44)

We first remark that

[σl(a0), eα−â] =
[
a0 −

α+l

2 , eα−â

]
= [a0, e

α−â] (4.45)

so the Heisenberg automorphism does not affect eα−â. Now notice that

σlG(β(z)) =
∑
n∈Z

βn−lz
−n = z−l ∑

n∈Z
βn−lz

−n+l = z−lβ(z) (4.46)

σ
α+l

2
H

(
Vα−(z)

)
= σl(zα−a0Ω(z)) = z

α−

(
a0−
(

− 1
α−

)
l

)
Ω(z) = zlVα−(z) (4.47)

Therefore

σlH⊗G

(
β(z)Vα−(z)

)
= σlG(β(z))σ

α+l

2
H

(
Vα−(z)

)
(4.48)

= z−lβ(z)zlVα−(z) (4.49)
= β(z)Vα−(z) (4.50)

Now,

σlH⊗G

([
Ssl(2)

]n)
=
∫

Γ(n)

n∏
i=1

σlH⊗G

(
β(zi)Vα−(zi)

)
dz1 · · · dzr (4.51)

=
∫

Γ(n)

n∏
i=1

β(zi)Vα−(zi)dz1 · · · dzr (4.52)

=
[
Ssl(2)

]n
(4.53)
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We have therefore obtained the Bernard-Felder complexes for the twisted irreducible
highest weight modules under spectral flow. To state our result more precisely,
Theorem 1.7.2 and Lemma 4.1.2 imply that

Proposition 4.1.3. Fix an admissible level k + 2 = p
q

and let
r = 1, ..., p− 1, s = 1, ..., q − 1. Let C = (Cn, dn) be a complex such that, for
n = 2k, 2k + 1,

C2k = F−2kp+r,s−l ⊗ σlG(G), d2k =
[
Ssl(2)

]r
(4.54)

C2k+1 = F−2kp−r,s−l ⊗ σlG(G), d2k+1 =
[
Ssl(2)

]p−r
(4.55)

Then the cohomology of C is

Hn(C) = δn,0σ
l
sl(2)(Lr,s) (4.56)

To summarise Proposition 4.1.3, since spectral flow σlsl(2) is an algebra automorphism
and thus lifts to an exact functor from Rσ to itself, it commutes with the cohomology
functors of any complexes. All we needed to determine was the image of the
morphisms

[
S−
sl(2)

]n
under spectral flow.

We now want to construct Bernard-Felder complexes for the irreducible modules
Eλ,∆r,s where r = 1, ..., p− 1, s = 2, ...q. We want to follow a similar strategy to
Proposition 4.1.3, but where we shall realise each Eλ,∆r,s as the image of an exact
functor applied to ω(Lr,s), the conjugate highest-weight module. This functor is called
twisted localisation and was introduced in [54].
Firstly, let U

(
ŝl(2)

)
e

be the localisation of U
(
ŝl(2)

)
with respect to the set

{en0 | n ≥ 0} as defined in Corollary B.2.2. Then for each µ ∈ C we define a functor

E µ : U
(
ŝl(2)

)
-Mod −→ U

(
ŝl(2)

)
-Mod (4.57)

M 7−→ Res
U(ŝl(2))

e

U(ŝl(2)) ◦(Ω
µ
e )∗ ◦ Ind

U(ŝl(2))
e

U(ŝl(2)) (M), (4.58)

where

Ind
U(ŝl(2))

e

U(ŝl(2)) (M) = U
(
ŝl(2)

)
e
⊗U(ŝl(2))M, (4.59)

Ωµ
e (−) =

∑
i≥0

(
µ

i

)
ad(e0)i(−)e−i

0 , (4.60)
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Res
U(ŝl(2))

e

U(ŝl(2)) is the restriction functor and (Ωµ
e )∗ is the twisted action induced by Ωµ

e .

We remark that Ωµ
e ∈ Aut

(
U
(
ŝl(2)

)
e

)
. To see that E µ is exact, notice that it is

composed of three functors:

Ind
U(ŝl(2))

e

U(ŝl(2)) (M) : U
(
ŝl(2)

)
-Mod −→ U

(
ŝl(2)

)
e
-Mod (4.61)

(Ωµ
e )∗ : U

(
ŝl(2)

)
e
-Mod −→ U

(
ŝl(2)

)
e
-Mod (4.62)

Res
U(ŝl(2))

e

U(ŝl(2)) : U
(
ŝl(2)

)
e
-Mod −→ U

(
ŝl(2)

)
-Mod (4.63)

Therefore it is enough to show each of these functors is exact. From Lemma B.1.10 we
see that Ind

U(ŝl(2))
e

U(ŝl(2)) (M) is exact. The proofs for the exactness of (Ωµ
e )∗,Res

U(ŝl(2))
e

U(ŝl(2))
are easy so we omit them. We now want to apply E µ to ω(Lr,s) for
r = 1, ...p− 1, s = 2, ..., q and determine µ so that E µ(ω(Lr,s)) is precisely Eλ,∆r,s .
Recall that ω(Lr,s) is a relaxed highest-weight module generated by a relaxed
highest-weight state |−λr,s⟩ that is annililated by f0, where −λr,s denotes the h0

eigenvalue. Next recall that L0 acts on grounds states as
L0|gs = 1

4t(h
2
0 + 2e0f0 + 2f0e0) which coinsides with the quadratic Casimir of the

horizontal subalgebra sl(2) and so ad(e0)n(L0|gs) = 0 for n ≥ 1. Thus,

Ωµ
e (L0|gs) = L0|gs (4.64)

We also have

Ωµ
e (e0) = e0 (4.65)

Ωµ
e (h0) = h0 − 2µ (4.66)

Ωµ
e (f0) = f0 + µh0e

−1
0 − µ(µ− 1)e−1

0 (4.67)

We first let

ϕ(q) =
∞∏
i=1

(
1− qi

)
η(q) = q 1

24

∞∏
i=1

(
1− qi

)
(4.68)

Now, we have
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Proposition 4.1.4. Let λ ∈ C such that λ ̸= λr,s, λp−r,q+2−s mod 2 and r′ = r

mod 2. Then

ch E − 1
2 (λr,s+λ)(ω(Vr′,s)) = zλq∆r′,s− cLk(sl(2))

24

η(q)2

∑
n∈Z

z2n (4.69)

where Vr′,s is a ŝl(2) Verma module of highest weight λr′,s.

Proof. Recall that E − 1
2 (λr,s+λ) = ResUe

U ◦
(

Ω− 1
2 (λr,s+λ)

e

)∗
◦ IndUe

U . A PBW basis for the
induced module IndUe

U (ω(Vr′,s)) is

{eα0
0 Jα1

−n1 · · · J
αk
−nk
|−λr′,s⟩ | J ∈ {e, f, h}, α0 ∈ Z, 1 ≤ α1, ..., αk, 1 ≤ n1 ≤ · · · ≤ nk}

(4.70)

From Remark B.2.3 we see that, for n ≥ 1,

h0e
−n|−λr′,s⟩ = (−λr′,s − 2n)e−n|−λr′,s⟩ (4.71)

L0e
−n|−λr′,s⟩ = ∆r′,s|−λr′,s⟩ (4.72)

Therefore,

ch IndUe
U (ω(Vr′,s)) = z−λr′,sq∆r′,s− cLk(sl(2))

24

ϕ(q)2

∑
n∈Z

z2n (4.73)

The twisted actions Ω− 1
2 (λr,s+λ)

e of e0, h0, f0, L0 acting on the relaxed highest weight
vector |−λr′,s,∆r′,s⟩, as we saw from Equations (4.65) to (4.67), are

Ω− 1
2 (λr,s+λ)

e (e0)|−λr′,s⟩ = e0|−λr′,s⟩ (4.74)

Ω− 1
2 (λr,s+λ)

e (h0)|−λr′,s⟩ = (λ+ (λr,s − λr′,s))|−λr′,s⟩ (4.75)

Ω− 1
2 (λr,s+λ)

e (f0)|−λr′,s⟩ = −1
4(λr,s + λ)(−2λr′,s + λr,s + λ+ 2)e−1

0 |−λr′,s⟩ (4.76)

Ω− 1
2 (λr,s+λ)

e (L0|gs)|−λr′,s⟩ = ∆r′,s|−λr′,s⟩ (4.77)

Since λr,s − λr′,s = 0 mod 2, we see that

ch Ad(e− 1
2 (λr,s+λ))∗ ◦ IndUe

U (ω(Vr′,s)) = zλq∆r′,s− cLk(sl(2))
24

ϕ(q)2

∑
n∈Z

z2n (4.78)
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Notice that the expression 1
2(−λr,s − λ)(−2λr′,s + λr,s + λ+ 2) in Equation (4.76) is

only zero if λ = −λr,s = λp−r,q+2−s + 2 or λ = λr,s mod 2. Since we demand that
λ ̸= λr,s, λp−r,q+2−s mod 2, we see that Ω− 1

2 (λr,s+λ)
e (f0)|−λr′,s⟩ will never be 0. This

implies that the states involving e−1
0 in the PBW basis will not be annihilated after

applying the restriction functor ResUe
U . Thus,

ch E − 1
2 (λr,s+λ)(ω(Vr′,s)) = ch ResUe

U ◦
(

Ω− 1
2 (λr,s+λ)

e

)∗
◦ IndUe

U (ω(Vr′,s)) (4.79)

= zλq∆r′,s− cLk(sl(2))
24

ϕ(q)2

∑
n∈Z

z2n (4.80)

We can now compute

Proposition 4.1.5. For 1 ≤ r ≤ p− 1, 2 ≤ s ≤ q,

E
1
2 (−λr,s−λ)(ω(Lr,s)) = Eλ,∆r,s . (4.81)

Proof. We first start with the BGG resolution of Lr,s [53],

· · · −→M2 −→M1 −→ Vr,s −→ Lr,s −→ 0 (4.82)

where for k ≥ 1,

M2k−1 = V2kp−r,s
⊕
V−2(k−1)p−r,s (4.83)

M2k = V2kp+r,s
⊕
V−2kp+r,s (4.84)

Since both the conjugate automorphism and twisted localisation are exact functors,
applying both to Equation (4.82) we get

· · · −→E
1
2 (−λr,s−λ)(ω(M2)) −→ E

1
2 (−λr,s−λ)(ω(M1)) −→ · · · (4.85)

· · ·E
1
2 (−λr,s−λ)(ω(Vr,s)) −→ E

1
2 (−λr,s−λ)(ω(Lr,s)) −→ 0 (4.86)

Now, let

N2k−1 = E
1
2 (−λr,s−λ)(ω(V2kp−r,s))

⊕
E

1
2 (−λr,s−λ)

(
ω
(
V−2(k−1)p−r,s

))
(4.87)

N2k = E
1
2 (−λr,s−λ)(ω(V2kp+r,s))

⊕
E

1
2 (−λr,s−λ)(ω(V−2kp+r,s)) (4.88)
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Then the above exact sequence becomes

· · · −→ N2 −→ N1 −→ E
1
2 (−λr,s−λ)(ω(Vr,s)) −→ E

1
2 (−λr,s−λ)(ω(Lr,s)) −→ 0 (4.89)

The above exact sequence now allows us to compute the character of
E

1
2 (−λr,s−λ)(ω(Lr,s)). From Proposition 4.1.4 we have

ch E
1
2 (−λr,s−λ)(ω(Vr,s)) = zλq

(qr−p(s−1))2−q2
4pq

− cLk(sl(2))
24

ϕ(q)2

∑
n∈Z

z2n (4.90)

and

chN2k−1 =
zλ
(

q
(q(2kp−r)−p(s−1))2−q2

4pq
− cLk(sl(2))

24 + q
(q(−2(k−1)p−r)−p(s−1))2−q2

4pq
− cLk(sl(2))

24

)
ϕ(q)2

∑
n∈Z

z2n

(4.91)

chN2k =
zλ
(

q
(q(2kp+r)−p(s−1))2−q2

4pq
− cLk(sl(2))

24 + q
(q(−2kp+r)−p(s−1))2−q2

4pq
− cLk(sl(2))

24

)
ϕ(q)2

∑
n∈Z

z2n

(4.92)

Thus, we have

ch E
1
2 (−λr,s−λ)(ω(Lr,s)) =

∑
k∈Z

(−1)k chNk = zλq− q2
4pq

− cLk(sl(2))
24

ϕ(q)3

∑
k∈Z

(
q

(qr−p(s−1)+2kpq)2
4pq − q

(qr+p(s−1)−2kpq)2
4pq

)∑
n∈Z

z2n

(4.93)

= zλq− q2
4pq

− cLk(sl(2))
24 + 1

24

ϕ(q)2
q− 1

24

ϕ(q)
∑
k∈Z

(
q

(qr−p(s−1)+2kpq)2
4pq − q

(qr+p(s−1)−2kpq)2
4pq

)∑
n∈Z

z2n

(4.94)

=
zλχ

M(p,q)
r,s−1

η(q)2

∑
n∈Z

z2n (4.95)

Equation (4.95) follows from

− q2

4pq −
cLk(sl(2))

24 + 1
24 = − q

4p −
1
24

(
3− 6q

p

)
+ 1

24 = − 1
12 (4.96)

Therefore we see that the character of ch E
1
2 (−λr,s−λ)(ω(Lr,s)) is precisely the character

of the irreducible module Eλ,∆r,s [48]. This completes the proof.
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In summary, we start from a conjugate highest-weight module ω(Lr,s), where |−λr,s⟩
is a relaxed highest-weight vector with h0 and L0 eigenvalues −λr,s,∆r,s respectively,

• • •

•

|−λr,s⟩e0|−λr,s⟩e2
0|−λr,s⟩

f−1|−λr,s⟩

and we induced ω(Lr,s) from a module over U
(
ŝl(2)k

)
to a module over U

(
ŝl(2)k

)
e
.

• • • • •
e2

0|−λr,s⟩ e0|−λr,s⟩ |−λr,s⟩ e−1
0 |−λr,s⟩ e−2

0 |−λr,s⟩

We then apply a twist to the module under the automorphism Ω−λr,s−λ
e . This will

change the h0 eigenvalue of the highest-weight state and f0 will act like e−1
0 up to a

constant. Restricting the module back to a module of ŝl(2)k we get precisely Eλ,∆r,s .
Again, |λ⟩ has h0 and L0 eigenvalues λ,∆r,s respectively.

• • • • •
e2

0|λ⟩ e0|λ⟩ |λ⟩ f0|λ⟩ f 2
0 |λ⟩

Now we want to apply the twisted localisation to the Bernard-Felder complex
associated to ω(Lr,s). In order to do this we need to figure out the twisted localisation
for a Wakimoto module that is compatible with the ŝl(2)k twisted localisation. Since
the free field realisation sends e0 to β0 from Equation (1.164), we let U(H⊗ G)β be
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the localisation of U(H⊗ G) with respect to the set {βn0 | n ∈ N}. Then let

Bµ : U(H⊗ G)-Mod −→ U(H⊗ G)-Mod (4.97)

M 7→ ResU(H⊗G)β

U(H⊗G) ◦
(
Ωµ
β

)∗
◦ IndU(H⊗G)β

U(H⊗G) (M) (4.98)

where

Ωµ
β(−) =

∑
i≥0

(
µ

i

)
ad(β0)i(−)β−i

0 (4.99)

Let ι be the inclusion map that realises U(Vk(sl(2))) as a subalgebra of U(H ⊗ G)
through the free-field realisation defined in Equations (1.164) to (1.166). Let
ResU(H⊗G)

U(ŝl(2)) be the restriction functor from a U(H⊗ G) module to a U
(
ŝl(2)

)
module.

Specifically, if M is a U(H⊗ G) module then it becomes a U
(
ŝl(2)

)
module with the

action defined as x · v = ι(x) · v for any x ∈ U
(
ŝl(2)

)
. We remark that although ι(x)

is in general an infinite sum of elements in U(H⊗ G), x · v is always a finite sum of
states in M as M is smooth. Then we have

Lemma 4.1.6. The following diagram commutes

U(H⊗ G)-Rσ
H⊗G U

(
ŝl(2)k

)
-Rσ

ŝl(2)k

U(H⊗ G)-Rσ
H⊗G U

(
ŝl(2)k

)
-Rσ

ŝl(2)k

ResU(H⊗G)
U(ŝl(2)k)

Bµ E µ

ResU(H⊗G)
U(ŝl(2)k)

The proof of Lemma 4.1.6 is obvious since ι(e0) = β0 ∈ U(H ⊗ G). In other words,
Bµ = E µ when we regard a H⊗ G module as an ŝl(2) module. Now we want to apply
B− 1

2 (λr,s+λ) to a Bernard-Felder complex. Since [β0, βn] = 0 for all n ∈ Z, we have

Lemma 4.1.7. The sl(2) screening operators in Theorem 1.7.2, which we refer to as
dsl(2), are invariant under the twisted localisation B

1
2 (−λr,s−λ).

Recall that σ−1
sl(2)(Lp−r,q+1−s) = ω(Lr,s) for 1 ≤ r ≤ p− 1, 2 ≤ s ≤ q and

σlH(Fr,s) = Fr,s−l by Equation (1.41). By letting l = −1 in Proposition 4.1.3, we
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therefore see that the Bernard-Felder complex C =
⊕
n∈Z

Cn, dn

 with

C2k = F−2kp+p−r,q+2−s ⊗ σ−1
G (G), d2k =

[
S−
sl(2)

]r
(4.100)

C2k+1 = F−2kp−(p−r),q+2−s ⊗ σ−1
G (G), d2k+1 =

[
S−
sl(2)

]p−r
(4.101)

has cohomology

Hn(C) = δn,0σ
−1
sl(2)(Lp−r,q+1−s), (4.102)

= δn,0ω(Lr,s) (4.103)

Therefore, we now want to localise each Wakimoto module appearing in the Felder
complex in Equations (4.100) and (4.101). Since the localisation functor B− 1

2 (λr,s+λ)

only acts on the bosonic ghost modules, we will first determine B− 1
2 (λr,s+λ)

(
σ−1

G (G)
)
.

Let J0, L0 act as J0|gs, L0|gs on ground states, so that J0|gs = β0γ0, L0|gs = 0. From
the definition of localisation we now compute

Ωµ
β(β0) = β0 (4.104)

Ωµ
β(γ0) = γ0 + µβ−1

0 (4.105)
Ωµ
β(J0|gs) = J0|gs + µ (4.106)

Ωµ
β(L0|gs) = L0|gs (4.107)

Specifically,

Proposition 4.1.8. We have

B− 1
2 (λr,s+λ)

(
σ−1

G (G)
)

=W[
− λr,s+λ

2

] (4.108)

Proof. This proof is very similar to Proposition 4.1.4, firstly we recall that

B− 1
2 (λr,s+λ) = ResU(H⊗G)β

U(H⊗G) ◦
(

Ω− 1
2 (λr,s+λ)

β

)∗
◦ IndU(H⊗G)β

U(H⊗G) (4.109)

A PBW basis for the induced module is

{γqn
−ni
· · · γq1

−n1β
pm
−mi
· · · βp1

−m1β
p0
0 |0⟩ | i ≥ 1, p0 ∈ Z, pi, qi ≥ 0, 1 ≤ m1, ...,≤ mi, 1 ≤ n1 ≤ · · · ≤ nj}

(4.110)
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From Remark B.2.3 we see that, for n ≥ 1,

J0β
−n
0 σ−1

G (|0⟩) = nβ−n
0 σ−1

G (|0⟩) (4.111)
L0β

−n
0 σ−1

G (|0⟩) = 0 (4.112)

Therefore,

ch IndUβ

U

(
σ−1

G (G)
)

= q− cG
24

ϕ(q)2

∑
n∈Z

wn (4.113)

The twisted actions of Ω− 1
2 (λr,s+λ)

β of β0, γ0, J0, L0 acting on the relaxed highest-weight
state σ−1

G (|0⟩) are

Ω− 1
2 (λr,s+λ)

β (β0)σ−1
G (|0⟩) = β0σ

−1
G (|0⟩) (4.114)

Ω− 1
2 (λr,s+λ)

β (γ0)σ−1
G (|0⟩) = −1

2(λr,s + λ)β−1
0 σ−1

G (|0⟩) (4.115)

Ω− 1
2 (λr,s+λ)

β (J0|gs)σ−1
G (|0⟩) =

(
−1− 1

2(λr,s + λ)
)
σ−1

G (|0⟩) (4.116)

Ω− 1
2 (λr,s+λ)

β (L0|gs)σ−1
G (|0⟩) = 0 (4.117)

Therefore,

ch B− 1
2 (λr,s+λ)

(
σ−1

G (G)
)

= w−1− 1
2 (λr,s+λ)q− cG

24

ϕ(q)2

∑
n∈Z

wn (4.118)

= w− 1
2 (λr,s+λ)q− cG

24

ϕ(q)2

∑
n∈Z

wn (4.119)

As λ ̸= −λr,s mod 2, we see that the expression in Equation (4.115) will never be
zero. Therefore, states involving β−1

0 in the PBW basis will never be annihilated after
applying the restriction functor ResUβ

U . Therefore,

ch B− 1
2 (λr,s+λ)

(
σ−1

G (G)
)

= ch ResUβ

U ◦
(

Ω− 1
2 (λr,s+λ)

β

)∗
◦ IndUβ

U

(
σ−1

G (G)
)

(4.120)

= w− 1
2 (λr,s+λ)q− cG

24

ϕ(q)2

∑
n∈Z

wn (4.121)
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Since irreducible modules of the bosonic ghost algebra G are completely characterised
by their characters, we see that

B− 1
2 (λr,s+λ)

(
σ−1

G (G)
)

=W[− 1
2 (λr,s+λ)] (4.122)

Thus, applying the localisation functors E − 1
2 (λr,s+λ),B− 1

2 (λr,s+λ) to the complex in
Equations (4.100) and (4.101) we get that the complex C = (⊕n∈ZCn, dn) given by

C2k = B− 1
2 (λr,s+λ)

(
F−2kp+p−r,q+2−s ⊗ σ−1

G (G)
)
, d2k = B− 1

2 (λr,s+λ)
([
S−
sl(2)

]r)
(4.123)

C2k+1 = B− 1
2 (λr,s+λ)

(
F−2kp+p−r,q+2−s ⊗ σ−1

G (G)
)
, d2k+1 = B− 1

2 (λr,s+λ)
([
S−
sl(2)

]p−r
)

(4.124)

has cohomology

Hn(C) = δn,0E
− 1

2 (λr,s+λ)(ω(Lr,s)) (4.125)

Applying Proposition 4.1.5 and Lemma 4.1.7 to the complex above we get

Proposition 4.1.9. Let r = 1, ..., p− 1, s = 2, ..., q and C =
⊕
n∈Z

Cn, dn

 be the

complex with

C2k = F−2kp+p−r,q+2−s ⊗W[λr,s+λ

2

], d2k =
[
S−
sl(2)

]r
(4.126)

C2k+1 = F−2kp−p+r,q+2−s ⊗W[λr,s+λ

2

], d2k+1 =
[
S−
sl(2)

]p−r
(4.127)

Then the cohomology of C is

Hn(C) = δn,0Eλ,∆r,s (4.128)

We can do a consistency check for Proposition 4.1.9 by computing the Euler
characteristic of the complex. Recall from Equations (1.165) and (1.167) we can write
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h0 = hH
0 + hG

0 , L0 = LH
0 + LG

0 in terms of modes of H,G. We then have

hH
0 |α−2kp+p−r,q+2−s⟩ = −2kp− λr,s (4.129)
hH

0 |α−2kp−p+r,q+2−s⟩ = −2kp− λr,s − 2(p− r) (4.130)

LH
0 |α−2kp+p−r,q+2−s⟩ = (qr − p(s− 1) + 2kpq)2 − q2

4pq (4.131)

LH
0 |α−2kp−p+r,q+2−s⟩ = (qr + p(s− 1)− 2(k + 1)pq)2 − q2

4pq (4.132)

hG
0

∣∣∣∣−1
2(λr,s + λ)

〉
= (λr,s − λ)

∣∣∣∣−1
2(λr,s + λ)

〉
(4.133)

LG
0

∣∣∣∣−1
2(λr,s + λ)

〉
= 0 (4.134)

Then we have

chF−2kp+p−r,q+2−s = z−2kp−λr,sq
(qr−p(s−1)+2kpq)2−q2

4pq
− cH

24

ϕ(q) (4.135)

chF−2kp−p+r,q+2−s = z2kp−λr,s−2(p−r)q
(qr+p(s−1)−2(k+1)pq)2−q2

4pq
− cH

24

ϕ(q) (4.136)

chW[λr,s+λ

2

] = zλr,s+λq− cG
24

ϕ(q)2

∑
n∈Z

z2n (4.137)

where cH , cG are central charges corresponding to LH
0 , L

G
0 respectively. Therefore

chF−2kp+p−r,q+2−s ⊗W[λr,s+λ

2

] = zλr,s+λ−2kp−λr,sq
(qr−p(s−1)+2kpq)2−q2

4pq
− cH

24 − cG
24

ϕ(q)3

∑
n∈Z

z2n

(4.138)

= zλq
(qr−p(s−1)+2kpq)2−q2

4pq
− cH

24 − cG
24

ϕ(q)3

∑
n∈Z

z2n (4.139)

chF−2kp−p+r,q+2−s ⊗W[λr,s+λ

2

] = zλr,s+λ−2kp−λr,s−2(p−r)q
(qr+p(s−1)−2(k+1)pq)2−q2

4pq
− cH

24 − cG
24

ϕ(q)3

∑
n∈Z

z2n

(4.140)

= zλq
(qr+p(s−1)−2(k+1)pq)2−q2

4pq
− cH

24 − cG
24

ϕ(q)3

∑
n∈Z

z2n (4.141)
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Computing the Euler characteristic we get

∑
k∈Z

chF−2kp+p−r,q+2−s ⊗W[λr,s+λ

2

] − chF−2kp−p+r,q+2−s ⊗W[λr,s+λ

2

] (4.142)

= zλq− q2
4pq

− cH
24 − cG

24

ϕ(q)3

∑
n∈Z

z2n∑
k∈Z

(
q

(qr−p(s−1)+2kpq)2
4pq − q

(qr+p(s−1)−2(k+1)pq)2
4pq

)
(4.143)

= zλq− q2
4pq

− cH
24 − cG

24 + 1
24

ϕ(q)2

∑
n∈Z

z2nq− 1
24

ϕ(q)
∑
k∈Z

(
q

(qr−p(s−1)+2kpq)2
4pq − q

(qr+p(s−1)−2(k+1)pq)2
4pq

)
(4.144)

=
zλq− q2

4pq
− cH

24 − cG
24 + 1

24χVir
r,s

ϕ(q)2

∑
n∈Z

z2n (4.145)

=
zλχ

M(p,q)
r,s−1

η(q)2

∑
n∈Z

z2n (4.146)

= ch Eλ,∆r,s−1 (4.147)

Equation (4.146) follows from

− q2

4pq −
cH

24 −
cG

24 + 1
24 = − q

4p −
1
24

(
1− 12

α2
+

)
− 2

24 + 1
24 (4.148)

= − q

4p −
1
24

(
1− 6q

p

)
− 2

24 + 1
24 (4.149)

= − 1
12 (4.150)

Spectrally flowing the complex in Proposition 4.1.9, noting Equation (1.99), we arrive
at

Proposition 4.1.10. For r = 1, ..., p− 1, s = 2, ..., q, let C = (Cn, dn) be a complex
such that for n = 2k, 2k + 1,

C2k = F−2kp+p−r,q−s+2−l ⊗ σlG

W[λr,s+λ

2

], d2k =
[
S−
sl(2)

]r
(4.151)

C2k+1 = F−2kp−(p−r),q−s+2−l ⊗ σlG

W[λr,s+λ

2

], d2k+1 =
[
S−
sl(2)

]p−r
(4.152)

Then the cohomology of C is

Hn(C) = δn,0σ
l
sl(2)

(
Eλ,∆r,s

)
(4.153)
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We have therefore obtained the Bernard-Felder complexes for all irreducible modules
in category Rσ.

4.2 BRST cohomology for Lk(sl(2)) modules in
category Rσ

For the rest of the chapter we take λ = 0 for the energy momentum tensor of the
bosonic ghosts given in Equation (1.146). In this section we will state and prove our
(partial) results for the BRST cohomology of the irreducible Lk(sl(2)) modules in
category Rσ. The more technical propositions that are used will be proved in later
sections.

Theorem 4.2.1. For 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 1 and l ≥ 1,

Hn
(
σlsl(2)(Lr,s)⊗ B, dBRST

)
= 0, for all n (4.154)

Proof. From Proposition 4.1.3 we see that the double complex that we should consider
is (notice the shift in ghost degree) σl(D) =

(
σl(D)i,j, di1, d

j
2

)
, for i = 2k, 2k + 1, where

σl(D)2k,j = F−2kp+r,s−l ⊗ σlG(G)⊗ Bj−l, d2k
1 =

[
Ssl(2)

]r
(4.155)

σl(D)2k+1,j = F−2kp−r,s−l ⊗ σlG(G)⊗ Bj−l, d2k+1
1 =

[
Ssl(2)

]p−r
(4.156)

dj2 = dBRST (4.157)

Propositions 4.3.1 and 4.4.3 tell us that

0 = H i
(
Hj
(
σl(D), d2

)
, d1

)
= Hj

(
H i
(
σl(D), d1

)
, d2

)
= Hj−l

(
σlsl(2)(Lr,s)⊗ B, dBRST

)
(4.158)

for all j and we are done.

Since σ(Lr,1) = Lp−r,q, Theorem 4.2.1 explains the result from Theorem 3.1.2, that

Hn(Lr,q ⊗ B, dBRST) = 0, n ∈ Z (4.159)

see Figure 4.1. Next we will state our result for negative spectral flow
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p− 1

1

1 q − 1. . .

...

σ

Fig. 4.1 Spectrally flowing modules from column s = 1 gives us modules in column
s = q. In particular, σsl(2)(Lr,1) = Lp−r,q.

Proposition 4.2.2. For 1 ≤ r ≤ p− 1, 1 ≤ s ≤ q − 2 and 1 ≤ l ≤ q − 1− s,

H l
(
σ−l
sl(2)(Lr,s)⊗ B, dBRST

)
= LM(p,q)

r,s+l (4.160)

Proof. From Proposition 4.1.3, the double complex that we should consider is (notice
the shift in ghost degree) σ−l(D) =

(
σ−l(D)i,j, di1, d

j
2

)
, for i = 2k, 2k + 1, where

σ−l(D)2k,j = F−2kp+r,s+l ⊗ σ−l
G (G)⊗ Bj+l, d2k

1 =
[
Ssl(2)

]r
(4.161)

σ−l(D)2k+1,j = F−2kp−r,s+l ⊗ σ−l
G (G)⊗ Bj+l, d2k+1

1 =
[
Ssl(2)

]p−r
(4.162)

dj2 = dBRST (4.163)

Proposition 4.3.2 tells us that if we compute the cohomology with respect to d2, the
double complex reduces to a Felder complex concentrated at ghost degree l which is
when j = 0. Since we can also replace the sl(2) screening operators with Virasoro
screening operators as they are BRST-exact from Lemma 3.1.3. Therefore we get a
complex C = (Ci, di), where i = 2k, 2k + 1, along at j = 0,

C2k = F−2kp+r,s+l, d2k = [SV ]r (4.164)
C2k+1 = F−2kp−r,s+l, d2k+1 = [SV ]p−r (4.165)
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Next from Corollary 4.4.8 we know that

H0
(
H0
(
σ−l(D), d1

)
, d2

)
= H0

(
H0
(
σ−l(D), d2

)
, d1

)
(4.166)

and therefore,

H l
(
σ−l
sl(2)(Lr,s), dBRST

)
= H0

(
H0(D, d1), d1

)
(4.167)

= H0
(
H0(D, d2), d1

)
(4.168)

= H0(C, d) (4.169)
= LM(p,q)

r,s+l (4.170)

We remark that we must impose the condition 1 ≤ l ≤ q − 1− s, otherwise the
cohomology functors will not commute for the double complex σ−l(D).

Proposition 4.2.3. For 1 ≤ r ≤ p− 1, 2 ≤ s ≤ q, we have

Hn
(
σsl(2)

(
Eλ,∆r,s

)
, dBRST

)
= δn,0

∞⊕
k=0
LM(p,q)
r,s−1 . (4.171)

That is, the zeroth cohomology is an infinite direct sum of copies of LM(p,q)
r,s−1 .

Proof. From Proposition 4.1.10, the double complex that we should consider is
σ(D) =

(
σ(D)i,j, di1, d

j
2

)
, for i = 2k, 2k + 1, where

σ(D)2k,j = F−2kp+p−r,q−s+1 ⊗ σG

W[λr,s+λ

2

]⊗ Bj, d2k
1 =

[
Ssl(2)

]r
(4.172)

σ(D)2k+1,j = F−2ip+p−r,q−s+1 ⊗ σG

W[λr,s+λ

2

]⊗ Bj, d2k+1
1 =

[
Ssl(2)

]p−r
(4.173)

dj2 = dBRST (4.174)

Note that σG

W[λr,s+λ

2

] is conformally bounded and so the double complex satisfies

Remark 3.4.1. Thus the cohomology functors d1, d2 commute by Proposition 3.4.2.
Now, Proposition 4.3.3 tells us that if we compute the cohomology with respect to d2,
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we get a complex C = (Ci, di), at ghost degree j = 0,

C2k =
∞⊕
q0=0
F−2ip+p−r,q−s+1 ⊗ γq0

0 |ψ⟩, d2k = [SV ]r (4.175)

C2k+1 =
∞⊕
q0=0
F−2ip+p−r,q−s+1 ⊗ γq0

0 |ψ⟩, d2k+1 = [SV ]p−r (4.176)

Therefore,

Hn
(
σsl(2)(Er,s), dBRST

)
= Hn

(
H0(σ(D), d1), d2

)
(4.177)

= H0(Hn(σ(D), d2), d1) (4.178)
= H0(δn,0C, d) (4.179)

= δn,0
∞⊕
k=0
LM(p,q)
p−r,q−s+1 (4.180)

= δn,0
∞⊕
k=0
LM(p,q)
r,s−1 (4.181)

4.3 BRST cohomology for σlH⊗G(Fλ ⊗ G)
In this section we fix λ ∈ C. Here we will discuss the BRST cohomology for spectrally
flowed Wakimoto modules, where we will prove Propositions 4.3.1 and 4.3.2. We first
remark that the main reason we have these two different results is because
β0σ

l
G(|0⟩G) = 0 for l ≥ 1 whereas β0σ

−l
G (|0⟩G) ̸= 0 for l ≥ 1.

4.3.1 Case for σl
H⊗G(Fλ ⊗ G) with l ≥ 1

Proposition 4.3.1. For l ∈ Z≥1 and λ ∈ C, we have

Hn
(
σlH⊗G(Fλ ⊗ G)⊗ B, dBRST

)
= 0, for all n (4.182)

Proof. This proof is similar to the proof for Proposition 3.3.1. We first let

|ψ⟩ = σlH⊗G(|λ⟩ ⊗ |0⟩G)⊗ |0⟩B (4.183)
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Then we can decompose the complex as a tensor product of complexes

C =
⊗
m≥l

span
{
βpm

−mb
rm
−m|ψ⟩ | pm ≥ 0, rm ∈ {0, 1}

}
(4.184)

⊗
n≥−l+1n̸=0

span{γqn
−nc

sn
−n|0⟩ | qn ≥ 0, sn ∈ {0, 1}} (4.185)

⊗ span{γq0
0 |ψ⟩ | q0 ≥ 0} ⊗ span{bp0

0 |ψ⟩ | p0 ∈ {0, 1}} (4.186)

Now, let

C0 =
⊗
m≥l

span
{
βpm

−mb
rm
−m|ψ⟩ | pm ≥ 0, rm ∈ {0, 1}

}
(4.187)

⊗
n≥−l+1n̸=0

span{γqn
−nc

sn
−n|0⟩ | qn ≥ 0, sn ∈ {0, 1}} (4.188)

span{γq0
0 |ψ⟩ | q0 ≥ 0} (4.189)

IB0 = span{bp0
0 |ψ⟩ | p0 ∈ {0, 1}} (4.190)

so that C = C0 ⊗ IB0 . Now consider the cohomology of IB0

0 d−2
−→ span{b0|ψ⟩}

d−1
−→ span{|ψ⟩} d0

−→ 0 (4.191)

Then we have

ker d−1 = 0, ker d0 = span{|ψ⟩} (4.192)
im d−2 = 0, im d−1 = span{|ψ⟩} (4.193)

Therefore we see that

Hn
(
IB0
)

= 0 (4.194)

for all n. By the Künneth theorem we see that

Hn(C, dBRST) =
⊕
i+j=n

H i(C0)⊗Hj
(
IB0
)

= 0 (4.195)

for all n.
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4.3.2 Case for σ−l
H⊗G(Fλ ⊗ G) with l ≥ 1

We now move onto the BRST cohmology for negatively spectral flowed Wakimoto
modules. The proof for this is a generalisation of the proof for Proposition 3.3.1.

Proposition 4.3.2. For l ∈ Z≥1 and λ ∈ C, we have

Hn
(
σ−l

H⊗B(Fλ ⊗ G)⊗ B, dBRST
)

= δn,lσ
−l
H (Fλ), ∀l ≥ 1 (4.196)

Proof. Firstly from Lemma 1.8.1 we see that the complex(
σlH⊗G(Fλ ⊗ G)⊗ B•, dBRST

)
is equivalent to

(
σlH⊗G⊗B(Fλ ⊗ G⊗ B•), dBRST

)
, where

σlH⊗G⊗B = σlH ⊗ σlG ⊗ σlB. As B is irreducible, any vector in the vacuum generates B.
Again, let |0⟩ = |0⟩G ⊗ |0⟩B and we define the vector

|ψ⟩ = σ−l(|0⟩) = σ−l(|0⟩G)⊗ c−l · · · c−1|0⟩B (4.197)

Notice that |ψ⟩ has ghost degree l but we would like it to have ghost degree zero
instead. We therefore introduce a complex C where Cn = σ−l

FF (Fλ ⊗ G)⊗ Bn+l. A
PBW basis for |ψ⟩ as well as the decomposition for the complex C is

C = span{βpi
−ib

ri
−i|ψ⟩ | i ≥ −l, pi ≥ 0, ri ∈ {0, 1}} (4.198)⊗

span{γqi
−ic

si
−i|ψ⟩ | i ≥ l + 1, qi ≥ 0, si ∈ {0, 1}} (4.199)

Again we can decompose IB = ⊗
i≥−l I

B
i , IC = ⊗

i≥l+1 I
C
i , where IBi , ICi were defined

in Equations (3.45) and (3.51). We can then directly compute the cohomology of each
tensor factor IBi

0 d−2−→ span{βpi
−ib−i|ψ⟩}

d−1−→ span{βpi
−i|ψ⟩}

d0−→ 0 (4.200)

where

ker d−1 = 0, ker d0 = span{βpi
−i|ψ⟩ | pi ≥ 0} (4.201)

im d−2 = 0, im d−1 ∼= span{βpi+1
−i |ψ⟩ | pi ≥ 0} (4.202)

Hence, we see that

Hn(IBi ) = δn,0C|ψ⟩, i ≥ −l (4.203)
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Using Künneth’s Theorem we see that

Hn(IB) = δn,0C|0⟩ (4.204)

We will now compute the cohomology for each tensor factor ICn . The complex is

0 d−1−→ span{γqi
−i|ψ⟩}

d0−→ span{γqi
−ic−i|ψ⟩}

d1−→ 0 (4.205)

where

ker d0 = C|ψ⟩, ker d1 = span{γqi
−ic−i|ψ⟩ | qi ≥ 0} (4.206)

im d−1 = 0, im d0 = span{(qi + 1)γqi
−ic−i|ψ⟩ | qi ≥ 0} (4.207)

We therefore conclude that

Hn(ICi ) = δn,0C|ψ⟩ (4.208)

Using Künneth’s Theorem again we have

Hn(IC) = δn,0C|ψ⟩ (4.209)

Thus, applying Künneth’s Theorem one last time we finally arrive at

Hn(C) = δn,0σ
−l
H (Fλ) (4.210)

Since we had Cn = σ−l
FF (Fλ ⊗ G)⊗ Bn+l, we conclude that

Hn(σ−l
FF (Fλ ⊗ G), dBRST) = δn,lσ

−l
H (Fλ) (4.211)

Summarising our results, for l ∈ Z≥1 and λ ∈ C, the BRST cohomology of a spectrally
flowed Wakimoto module is given by,

Hn
(
σlH⊗G(Fλ ⊗ G)⊗ B, dBRST

)
= 0, for all n, (4.212)

Hn
(
σ−l

H⊗G(Fλ ⊗ G)⊗ B, dBRST
)

= δn,lσ
−l
H (Fλ). (4.213)
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4.3.3 Case for σH⊗G
(
Fλ ⊗W[ζ]

)
Proposition 4.3.3. Let λ ∈ C, [ζ] ̸= [0] ∈ C/Z, then

Hn
(
σH⊗G

(
Fλ ⊗W[ζ]

)
⊗ B, dBRST

)
= δn,0

∞⊕
k=0

σH(Fλ) (4.214)

Proof. Let C =
(
σG

(
W[ζ]

)
⊗ B, dBRST

)
, and let |ψ⟩ = σG(|0⟩)⊗ |0⟩, then C can be

decomposed into the tensor product of complexes

C =
⊗
m≥0

span{βpm
−mb

rm
−m|ψ⟩ | pm ≥ 0, rm ∈ {0, 1}} (4.215)

⊗
n≥1

span{γqn
−nc

sn
−n|ψ⟩ | qn ≥ 0, sn ∈ {0, 1}} (4.216)

⊗
span{γq0

0 |ψ⟩ | q0 ≥ 0} (4.217)

With an analysis similar to Proposition 4.3.2, we see that

Hn
(
σH⊗G

(
Fλ ⊗W[ζ]

)
⊗ B, dBRST

)
= δn,0

∞⊕
q0=0

σH(Fλ)⊗ γq0
0 |ψ⟩ (4.218)

= δn,0
∞⊕
k=0

σH(Fλ) (4.219)

4.4 Commutativity of the double complexes

4.4.1 Case for positive l, l ≥ 1
Let σ(D) =

(
σ(D)i,j, di1, d

j
2

)
, for i = 2k, 2k + 1, where

σ(D)2k,j = σH⊗G(F−2kp+r,s ⊗ G)⊗ Bj−1, d2k
1 =

[
Ssl(2)

]r
(4.220)

σ(D)2k+1,j = σH⊗G(F−2kp−r,s ⊗ G)⊗ Bj−1, d2k+1
1 =

[
Ssl(2)

]p−r
(4.221)

dj2 = dBRST (4.222)

Then we have

Lemma 4.4.1. σ(D) is a direct sum of bounded complexes
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Proof. Since σG(G) is conformally bounded, the argument is the same as
Remark 3.4.1.

Next, we have

Proposition 4.4.2. The cohomology functors d1, d2 commute when applied to the
double complex σ(D), that is,

Hj
(
H i(σ(D), d1), d2

)
= H i

(
Hj(σ(D), d2), d1

)
(4.223)

Proof. This can be proven with the same argument used in Proposition 3.4.2 along
with Lemma 4.4.1.

Now, let Let σl(D) =
(
σl(D)i,j, di1, d

j
2

)
, for i = 2k, 2k + 1, where

σl(D)2k,j = σlH⊗G(F−2kp+r,s ⊗ G)⊗ Bj−l, d2k
1 =

[
Ssl(2)

]r
(4.224)

σl(D)2k+1,j = σlH⊗G(F−2kp−r,s ⊗ G)⊗ Bj−l, d2k+1
1 =

[
Ssl(2)

]p−r
(4.225)

dj2 = dBRST (4.226)

We now have

Proposition 4.4.3. For l ≥ 2, the two double complexes σ(D), σl(D) are isomorphic
as double complexes of vector spaces.

Proof. Firstly for any i, j we denote the highest-weight vector in the Fock space
appearing in σ(D)i,j, σl(D)i,j to be σ(|αi⟩), σl(|αi⟩) respectively. We then redefine the
reference vectors in σH⊗G(Fλ ⊗ G)⊗ B, σlH⊗G(Fλ ⊗ G)⊗ B for λ ∈ C as
c0σH⊗G⊗B(|λ⟩ ⊗ |0⟩ ⊗ |0⟩), c0σ

l
H⊗G⊗B(|λ⟩ ⊗ |0⟩ ⊗ |0⟩) respectively. Now, for each

i, j ∈ Z, consider the map
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ϕl : Xc0σH⊗G⊗B(|αi⟩ ⊗ |0⟩ ⊗ |0⟩) 7→ τ l(X)c0σ
l
H⊗G⊗B(|αi⟩ ⊗ |0⟩ ⊗ |0⟩) where

τ l : U(H⊗ G ⊗ B) −→ U(H⊗ G ⊗ B) (4.227)
an 7→ an (4.228)
βn 7→ βn−l+1 (4.229)
b0 7→ b0 (4.230)
bn 7→ bn−l+1 if n ̸= 0 (4.231)
γ0 7→ γ0 (4.232)

γ−l+1 7→ γl−1 (4.233)
γn 7→ γn+l−1 if n ̸= 0,−l + 1 (4.234)

c−l+1 7→ cl−1 (4.235)
cn 7→ cn+l−1 if n ̸= 0,−l + 1 (4.236)

To show that this is an isomorphism of double complexes, it is enough to show that
the following diagrams are commutative

σ(D)i,j σ(D)i,j

σl(D)i,j σl(D)i,j

d1

ϕl ϕl

d1

σ(D)i,j σ(D)i,j

σl(D)i,j σl(D)i,j

d2

ϕl ϕl

d2

To show the commutativity of the first diagram, notice that we have the following
commutative diagram
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σ(D)i,j σ(D)i,j

σl(D)i,j σl(D)i,j

d1

ϕl ϕl

ϕl ◦ d1 ◦ (ϕl)−1

Now, since ϕl(βn) = σl(βn) for all n and that d1 only contains β modes and not γ, see
Equation (1.172), we see that ϕl ◦ d1 ◦ (ϕl)−1 = σl ◦ d1 ◦ (σl)−1 = d1 and so the first
diagram is commutative.
For the second diagram, if we decompose each vertical complexes⊕

j∈Z σ(D),⊕j∈Z σ
l(D) for each i ∈ Z as in ??, we get

⊕
j∈Z

σ(D) = σH(Fαi
)⊗

⊗
m≥1

span{βpm
−mb

rm
−m|ψ⟩ | pm ≥ 0, rm ∈ {0, 1}} (4.237)

⊗
⊗
n≥1

span{γqn
−nc

sn
−n|ψ⟩ | qn ≥ 0, sn ∈ {0, 1}} (4.238)

⊗ span{br0
0 |ψ⟩ | r0 ∈ {0, 1}} ⊗ span{γq0

0 |ψ⟩ | q0 ≥ 0} (4.239)⊕
j∈Z

σl(D) = σlH(F•)⊗
⊗
m≥l

span{βpm
−mb

rm
−m|ψ⟩ | pm ≥ 0, rm ∈ {0, 1}} (4.240)

⊗
⊗

n≥−l+1̸=0
span{γqn

−nc
sn
−n|ψ⟩ | qn ≥ 0, sn ∈ {0, 1}} (4.241)

⊗ span{br0
0 |ψ⟩ | r0 ∈ {0, 1}} ⊗ span{γq0

0 |ψ⟩ | q0 ≥ 0} (4.242)

Then we see that ϕl maps each tensor factor to another. The crucial property is that

d2ϕ
l(c0σ(|0⟩)) = ϕld2(c0σ

l(|0⟩)) (4.243)

It is clear that ϕl, d2 commute for each tensorand and therefore we conclude that these
two double complexes are isomorphic as vector spaces.

We remark that ϕl does not preserve the module structures of the double complexes.
It is only a vector space isomorphism. The reason for this is that σ(C) is an exact
complex so to show that σl(C) is an exact complex is is enough to show that σl(C)
and σ(C) are isomorphic double complexes of vector spaces. We finally have

Corollary 4.4.4. The cohomology functors d1, d2 commute when taking cohomologies
of the double complex σl(D).
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Fig. 4.2 Regions of the double complex in which Lemma 4.4.5 holds

4.4.2 Case for −l, l ≥ 1
We will first give the proof for l = 0 (This is the proof presented in Bershadsky and
Ooguri’s paper)

Lemma 4.4.5. Let
⊕

i,j

Di,j, d1, d2

 be a double complex and d1, d2 be the horizontal

and vertical differentials respectively. Suppose that

• the horizontal sequences are exact except at D0,j and the vertical sequences are
exact except at Di,0

• the vertical sequences are bounded, that is for a sufficiently large J we have
Di,j = {0} and Di,−j = {0} for any j > J .

Then

ker(d1d2) = ker(d1) + ker(d2) (4.244)

for Di,−j where i ≥ 0, j > 0 or D−i,j i > 0, j ≥ 0.

The double complex F• ⊗ G⊗ B• satisfies the first assumption due to
Propositions 4.1.3 and 4.3.2. The second assumption is satisfied due to the fact that
the conformal operator L0 commutes with both d1, d2. Therefore we can restrict the
double complex by L0 eigenspaces. We proceed to the proof.

Proof. We will use mathematical induction for the proof. Suppose that
Equation (4.244) holds at Di+1,−(j+1), we show that it also holds for Di,−j.
(⊇) If v ∈ ker

(
d1

∣∣∣
Di,−j

)
or v ∈ ker

(
d2

∣∣∣
Di,−j

)
then v ∈ ker

(
d1d2

∣∣∣
Di,−j

)
since d1, d2

commute so ker
(
d1

∣∣∣
Di,−j

)
+ ker

(
d2

∣∣∣
Di,−j

)
⊆ ker

(
d1d2

∣∣∣
Di,−j

)
.
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d2

d1

•

•

D−i,J

Di,−J

Fig. 4.3 Diagram for Lemma 4.4.5

(⊆) We now want to show ker
(
d1d2

∣∣∣
Di,−j

)
⊆ ker

(
d1

∣∣∣
Di,−j

)
+ ker

(
d2

∣∣∣
Di,−j

)
. For

vi,−j ∈ ker
(
d1d2

∣∣∣
Di,−j

)
, since d2d1vi,−j = 0, d1vi,−j belongs to ker

(
d2

∣∣∣
Di+1,−j

)
. Because

of exactness at Di+1,−j with respect to d2, there is some vi+1,−j−1 ∈ Di+1,−j−1 such
that d1vi,−j = d2vi+1,−j−1. This implies that 0 = d2

1vi,−j = d1d2vi+1,−j−1 so
vi+1,−j−1 ∈ ker

(
d1d2

∣∣∣
Di+1,−j−1

)
. According to our induction assumption, we have

vi+1,−j−1 ∈ ker
(
d1

∣∣∣
Di+1,−j−1

)
+ ker

(
d2

∣∣∣
Di+1,−j−1

)
and so

vi+1,−j−1 = d1vi,−j−1 + d2vi+1,−j−2 where
d1vi,−j−1 ∈ ker

(
d1

∣∣∣
Di+1,−j−1

)
, d2vi+1,−j−2 ∈ ker

(
d2

∣∣∣
i+1,−j−1

)
by exactness. Substituting

this into d1vi,−j = d2vi+1,−j−1 we have d1vi,−j = d2d1vi,−j−1 ⇒ d1(vi,−j − d2vi,−j−1) = 0
so vi,−j − d2vi,−j−1 ∈ ker

(
d1

∣∣∣
Dj,−i

)
and therefore vj,−i ∈ ker

(
d1

∣∣∣
Dj,−i

)
+ ker

(
d2

∣∣∣
Dj,−i

)
.

By interchanging d1, d2 we can prove the case for D−i,j for i > 0, j ≥ 0.
Since the double complex is bounded, this result can be easily verified for the modules
on the boundaries of the double complex as it is bounded, see Figure 4.3.
For the top edge, we have the sequence

· · · d2−→ D−i,J
d2−→ 0 (4.245)
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Obviously D−i,J = ker
(
d2

∣∣∣
D−i,J

)
. Thus we obtain

ker
(
d1d2

∣∣∣
D−i,J

)
⊆ D−i,J = ker

(
d2

∣∣∣
D−i,J

)
⊆ ker

(
d1

∣∣∣
D−i,J

)
⊕ ker

(
d2

∣∣∣
D−i,J

)
(4.246)

For the bottom edge, we have

0 d2−→ Di,−J
d2−→ · · · , (4.247)

and the induction assumption is trivially satisfied for Di+1,−J−1 = 0. This completes
the proof.

Proposition 4.4.6. [16] Under the assumptions of Lemma 4.4.5, we have

H0
(
H0(D, d2), d1

)
=

ker
(
d1

∣∣∣
D0,0

)⋂ ker
(
d2

∣∣∣
D0,0

)
ker
(
d2

∣∣∣
D0,0

)⋂ im
(
d1

∣∣∣
D−1,0

)
+ ker

(
d1

∣∣∣
D0,0

)⋂ im
(
d2

∣∣∣
D0,−1

)
(4.248)

and by symmetry this implies that

H0
(
H0(D, d2), d1

)
= H0

(
H0(D, d1), d2

)
(4.249)

Proof. Firstly consider the complex D, showing degrees −1, 0, 1 respectively

· · · d1−→
ker d2|D−1,0

im d2|D−1,−1

d1−→
ker d2|D0,0

im d2|D0,−1

d1−→
ker d2|D1,0

im d2|D1,−1

d1−→ · · · (4.250)

Since the induced map d1 sends [v] 7→ [d1v], we see that

H0
(
H0(D, d2), d1

)
= {w0,0 + d2(D0,−1) | d2(v0,0) = 0, d1(v0,0) ∈ d2(D1,−1)}

{d1(v−1,0) + d2(D0,−1) | d2(v−1,0) = 0} (4.251)

From the first assumption we have d1v0,0 = d2v1,−1 where v1,−1 ∈ D1,−1. Since
d1d2v1,−1 = 0 implies v1,−1 = d1v0,−1 + d2v1,−2. Therefore
d1v0,0 = d2(d1v0,−1 + d2v1,−2) = d2d1v0,−1 so d1(v0,0 − d2v0,−1) = 0. Because we are
considering the coset w0,0 + d2(D0,−1), without loss of generality we can choose a
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representative v0,0 such that d1v0,0 = 0. Let

M = ker
(
d1

∣∣∣
D0,0

)⋂
ker
(
d2

∣∣∣
D0,0

)
(4.252)

I = d1

(
ker
(
d2

∣∣∣
D−1,0

))
(4.253)

J = im
(
d2

∣∣∣
D0,−1

)
(4.254)

Then we see that

H0
(
H0(D, d2), d1

)
= M + J

I + J
, (4.255)

= M + I + J

I + J
, since I ⊆M (4.256)

= M

M ∩ (I + J) , by second isomorphism theorem (4.257)

= M

I +M ∩ J
(4.258)

=
ker
(
d1

∣∣∣
D0,0

)⋂ ker
(
d2

∣∣∣
D0,0

)
d1

(
ker
(
d2

∣∣∣
D−1,0

))
+ ker

(
d1

∣∣∣
D0,0

)⋂ im
(
d2

∣∣∣
D0,−1

) . (4.259)

Next we want to show that

d1

(
ker
(
d2

∣∣∣
D−1,0

))
= ker

(
d2

∣∣∣
D0,0

)⋂
im
(
d1

∣∣∣
D−1,0

)
(4.260)

(⊆) is obvious since d1

(
ker
(
d2

∣∣∣
D−1,0

))
⊆ im

(
d1

∣∣∣
D−1,0

)
and if

d1(v−1,0) ∈ d1

(
ker
(
d2

∣∣∣
D−1,0

))
then d2d1(v−1,0) = d1d2(v−1,0) = 0 so

d1(v−1,0) ∈ ker
(
d2

∣∣∣
D0,0

)
(⊇) For the other direction, let d1(v−1,0) be an element in ker

(
d2

∣∣∣
D0,0

)⋂ im
(
d1

∣∣∣
D−1,0

)
.

Then d2d1(v−1,0) = 0 so by Lemma 4.4.5 we can write v−1,0 = w1 + w2 where
w1 ∈ ker

(
d1

∣∣∣
D−1,0

)
, w2 ∈ ker

(
d2

∣∣∣
D−1,0

)
so
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d1v−1,0 = d1(w1 + w2) = d1(w2) ∈ d1

(
ker
(
d2

∣∣∣
D−1,0

))
. Thus we see that

H0
(
H0(D, d2), d1

)
=

ker
(
d1

∣∣∣
D0,0

)⋂ ker
(
d2

∣∣∣
D0,0

)
ker
(
d2

∣∣∣
D0,0

)⋂ im
(
d1

∣∣∣
D−1,0

)
+ ker

(
d1

∣∣∣
D0,0

)⋂ im
(
d2

∣∣∣
D0,−1

)
(4.261)

and we are done.

Now, for l ≥ 1, let σ−l(D) =
(
σ−l(D)i,j, di1, d

j
2

)
, for i = 2k, 2k + 1, where

σ−l(D)2k,j = F−2kp+r,s+l ⊗ σ−l
G (G)⊗ Bj+l, d2k

1 =
[
Ssl(2)

]r
(4.262)

σ−l(D)2k+1,j = F−2kp−r,s+l ⊗ σ−l
G (G)⊗ Bj+l, d2k+1

1 =
[
Ssl(2)

]p−r
(4.263)

dj2 = dBRST (4.264)

as in the proof of Proposition 4.2.2. Then we see that the double complex σ−l(D)
satisfies the assumptions of Lemma 4.4.5 and therefore Proposition 4.4.6 holds for this
double complex. We will now show that this also satisfies Lemma 4.4.5. More
precisely, we have

Proposition 4.4.7. The double complex σ−l(D) satisfies

ker
(
dBRSTdsl(2)

)
= ker dBRST + ker dsl(2) (4.265)

for σ−l(D)i,−j where i ≥ 0, j > 0 or σ−l(D)−i,j i > 0, j ≥ 0.

Proof. Let D be the double complex defined in the proof of Theorem 3.1.2 and let

σ−l = σ−l
H⊗G⊗B (4.266)

We first want to show the following equalities for all i, j ∈ Z,

• ker
(
d1

∣∣∣
σ−l(D)i,j

)
= σ−l

(
ker
(
d1

∣∣∣
Di,j

))
• ker

(
d2

∣∣∣
σ−l(D)i,j

)
= σ−l

(
ker
(
d2

∣∣∣
Di,j

))
For the first equality, since d1 is invariant under the free-field spectral flow by
Lemma 4.1.2, we see that for any i, j ∈ Z and v ∈ Di,j, σ−l(d1v) = d1σ

−l(v). Thus

110



4.4 Commutativity of the double complexes

v ∈ ker
(
d1

∣∣∣
Di,j

)
if and only if σ−l(v) ∈ ker

(
d1

∣∣∣
σ−l(D)i,j

)
and so we get

ker
(
d1

∣∣∣
σ−l(D)i,j

)
= σ−l

(
ker
(
d1

∣∣∣
Di,j

))
(4.267)

For the second equality, by comparing the proofs of Proposition 3.3.1 and
Proposition 4.3.2, in particular Equations (3.47) and (3.53), Equations (4.201)
and (4.206), we see that v ∈ ker

(
d2

∣∣∣
Di,j

)
if and only if σ−l(v) ∈ ker

(
d2

∣∣∣
σ−l(D)i,j

)
. In

order words, we have

ker
(
d2

∣∣∣
σ−l(D)i,j

)
= σ−l

(
ker
(
d2

∣∣∣
Di,j

))
(4.268)

Now suppose that v ∈ ker
(
d1d2

∣∣∣
Di,j

)
. Then

v ∈ ker
(
d1d2

∣∣∣
Di,j

)
⇐⇒ d1d2v = 0, (4.269)

⇐⇒ d2d1v = 0, since the differentials commute, (4.270)
⇐⇒ σ−l(d1v) ∈ σ−l

(
ker
(
d2

∣∣∣
Di+1,j

))
(4.271)

⇐⇒ σ−l(d1v) ∈ ker
(
d2

∣∣∣
σ−l(D)i+1,j

)
(4.272)

⇐⇒ d2σ
−l(d1v) = 0 (4.273)

⇐⇒ d2d1σ
−l(v) = 0, since σ−l(d1) = d1, (4.274)

⇐⇒ σ−l(v) ∈ ker
(
d1d2

∣∣∣
σ−l(D)i,j

)
(4.275)

and we see that

ker d1d2

∣∣∣∣
σ−l(D)i,j

= σ−l
(

ker d1d2

∣∣∣∣
Di,j

)
(4.276)

Finally we have for σ−l(D)i,j where i ≥ 0, j < 0 or i < 0, j ≥ 0,

ker
(
d1d2

∣∣∣
σ−l(D)i,j

)
= σ−l

(
ker
(
d1d2

∣∣∣
Di,j

))
(4.277)

= σ−l
(
ker
(
d1

∣∣∣
Di,j

)
+ ker

(
d2

∣∣∣
Di,j

))
(4.278)

= σ−l
(
ker
(
d1

∣∣∣
Di,j

))
+ σ−l

(
ker
(
d2

∣∣∣
Di,j

))
(4.279)

= ker
(
d1

∣∣∣
σ−l(D)i,j

)
+ ker

(
d2

∣∣∣
σ−l(D)i,j

)
(4.280)
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Corollary 4.4.8. Let l ≥ 1, let σ−l(D) =
(
σ−l(D)i,j, di1, d

j
2

)
, for i = 2k, 2k + 1, where

σ−l(D)2k,j = F−2kp+r,s+l ⊗ σ−l
G (G)⊗ Bj+l, d2k

1 =
[
Ssl(2)

]r
(4.281)

σ−l(D)2k+1,j = F−2kp−r,s+l ⊗ σ−l
G (G)⊗ Bj+l, d2k+1

1 =
[
Ssl(2)

]p−r
(4.282)

dj2 = dBRST (4.283)

Then we have

H0
(
H0
(
σ−l(D), d1

)
, d2

)
= H0

(
H0
(
σ−l(D), d2

)
, d1

)
(4.284)

Proof. This follows immediately from Propositions 4.4.6 and 4.4.7
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Chapter 5

Conclusion

In the first part of this thesis we have computed singular vectors of Wn-algebras in
terms of Jack symmetric functions in certain Fock representations. We saw that this
was possible only if the monodromy in the integral inner product for Jack functions is
trivial, which in turns restricts the possibility of Fock spaces that allow such
computation. An obvious future research direction is to compute singular vectors in
the other Fock spaces of the Wn-algebras. We believe that in the case of W3-algebras,
the integral of composition of screening operators gives us a complex sl(3) Selberg
integral. Therefore the problem of computing singular vectors of the W3-algebras in
other Fock spaces is in some way equivalent to deriving a closed formula for the
complex sl(3) Selberg integral. Some work has been done for the real sl(3) Selberg
integral, see [65, 76]. In particular, an explicit formula for the real sl(3) Selberg
integral was derived in terms of Gamma functions.
In the second part of this thesis we computed the BRST cohomology of some simple
modules of Lk(sl(2)). We found that the BRST cohomology of a positively spectrally
flowed irreducible highest-weight module is trivial. On the other hand, the BRST
cohomology of a negatively spectrally flowed irreducible highest-weight module is
non-exact. In particular, the cohomology is an irreducible highest-weight module of a
Virasoro minimal model at a degree other than zero and we expect that all other
degrees are zero. We also computed the BRST cohomology of a simple relaxed
highest-weight module σsl(2)(Er,s) and found that its cohomology is exact except at
degree zero, where it is a direct sum of a countably-infinite number of irreducible
highest-weight modules of a Virasoro minimal model. In general, the main difficulty in
computing the BRST cohomology of modules in Rσ is that these modules are not
conformally bounded in general, as opposed to highest-weight modules in O.
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Highest-weight
modules

Relaxed highest-weight
modules with spectral flow
and non-split extensions

Relaxed highest-weight
modules with spectral flow
and non-split extensions

Highest-weight
modules

Lk(sl(3)) simple BP

BRST

BRST

Fig. 5.1

An obvious future research direction is to compute the BRST cohomology of the
irreducible relaxed highest-weight modules of the simple affine sl(3) vertex operator
algebra Lk(sl(3)). We believe that the BRST cohomology of some of these irreducible
relaxed highest-weight modules should be the relaxed highest-weight modules of the
simple Bershadsky-Polyakov vertex operator algebra, see Figure 5.1.
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Appendix A

Homological algebra

The claim we want to establish in this appendix is that infinite tensor product of
cochain complexes commutes with cohomology. Let R be a ring and we refer left
R-modules as simply R-modules. Here we consider cochain complexes over R-modules.

A.1 Cochain complexes

Definition A.1.1. A cochain complex C = (Cn, dn) is a sequence of R-modules
Cn, n ∈ Z with R-module homomorphisms dn

· · · d
n−2
−→ Cn−1 dn−1

−→ Cn dn

−→ Cn+1 dn+1
−→ · · · (A.1)

such that dn+1 · dn = 0.

Definition A.1.2. A cochain map f between two cochain complexes
C1 = (Cn

1 , d
n
1 ), C2 = (Cn

2 , d
n
2 ) is a sequence of R-module homomorphisms

fn : Cn
1 −→ Cn

2 such that fn+1 ◦ dn1 = dn2 ◦ fn for all n ∈ Z. In particular, the
following diagram commutes

· · · Cn−1
1 Cn

1 Cn+1
1 · · ·

· · · Cn−1
2 Cn

2 Cn+1
2 · · ·

dn−2
1 dn−1

1 dn1 dn+1
1

dn−2
2 dn−1

2 dn2 dn+1
2

fn−1 fn fn+1
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Definition A.1.3. The tensor product C1 ⊗ C2 = (Cn, dn) of two cochain complexes
(Cn

1 , d
n
1 ), (Cn

2 , d
n
2 ) is defined as

(C1 ⊗ C2)n =
⊕
i+j=n

(
Ci

1 ⊗ C
j
2

)
(A.2)

with differential defined as

dn(x1 ⊗ x2) =
∑
i+j=n

di1(x1)⊗ x2 + (−1)jx1 ⊗ dj2(x2) (A.3)

for x1 ∈ Ci
1, x2 ∈ Cj

2.

We have a useful theorem that relates the cohomology of the tensor product of two
cochain complexes with the cohomologies of it’s tensorands

Theorem A.1.4 (Künneth formula).

Hn(C) =
⊕
i+j=n

(
H i(C1)⊗Hj(C2)

)
(A.4)

A.1.1 Double complexes

Definition A.1.5. A double complex
(
Di,j, di1, d

j
2

)
is a collection of R-modules

{Di,j | i, j ∈ Z} together with differentials di1, d
j
2

di1 : Di,j −→ Di+1,j (A.5)
dj2 : Di,j −→ Di,j+1 (A.6)

such that di+1
1 ◦ di1 = dj+1

2 ◦ dj2 = 0 and di1d
j
2 + dj2d

i
1 = 0.

A cochain map f :
(
Di,j, di1, d

j
2

)
−→

(
∆i,j, δi1, δ

j
2

)
between two double complexes is a

collection of maps f : Di,j −→ ∆i,j such that the following diagrams commute

Di,j Di+1,j

∆i,j ∆i+1,j
δi1

di1

f f

Di,j Di,j+1

∆i,j ∆i,j+1
δj2

dj2

f f
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A.1 Cochain complexes

A.1.2 Spectral sequences

Definition A.1.6. A filtered complex (Cn, dn, F ) is a cochain complex of R-modules
with a filtration at each degree, that is, for each n ∈ Z there are submodules
F pCn ∈ Cn such that

· · · ⊆ F p+1Cn ⊆ F pCn ⊆ F p−1Cn ⊆ · · · (A.7)

with the property that

dnF pCn ⊆ F pCn+1 (A.8)

for all n ∈ Z.

The filtration F on the cochain complex induces a filtration on the cohomology,

F pHn(C) = ι(Hn(F pC)) (A.9)

where the map ι is defined as

ι : Hn(F pC) ↪→ Hn(C) (A.10)
x+ im dn−1(F pCn−1) 7→ x+ im dn−1(Cn−1) (A.11)

Definition A.1.7. A spectral sequence is a sequence of bigraded objects
(Ep,q

r , dp,qr ), p, q ∈ Z, r ≥ 0, each at page r, where

dp,qr : Ep,q
r −→ Ep+r,q−r+1

r (A.12)

are differential maps of degree (r,−r + 1) and for all p, q, r,

Ep,q
r = Hp,q(Er, dr) (A.13)

A spectral sequence is said to degenerate (or collapse) at page r if

Ep,q
r = Ep,q

r+1 = · · · = Ep,q
∞ (A.14)

for all p, q ∈ Z. We have
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Theorem A.1.8. [56] Each filtered complex (C, d, F ) determines a spectral sequence,
{E∗,∗, dr}, r = 1, 2, ... with dr of bidegree (r, 1− r) and

Ep,q
1 = Hp+q

(
F pC

F p+1C

)
(A.15)

Suppose further that the filtration is bounded, that is for each n there exists s(n), t(n)
such that

0 ⊆ F s(n)Cn ⊆ F s−1Cn ⊆ · · · ⊆ F t+1Cn ⊆ F t(n)Cn = Cn (A.16)

Then the spectral sequence converges to H(C, d), that is,

Ep,q
∞ ≡

F pHp+q(C, d)
F p+1Hp+q(C, d) (A.17)

Given a double complex (Di,j, di1, d
j
2), often we want to know whether taking

cohomologies commutes, that is whether

Hj(H i(C, d1), d2) = H i(Hj(C, d2), d1) (A.18)

To answer this question we will first introduce the total complex (Tot(D)n, dn) of a
double complex, defined as

Tot(D)n =
⊕
i+j=n

Di,j, dn
∑
i,j∈Z
i+j=n

xi,j =
∑
i,j∈Z
i+j=n

di1xi,j + dj2xi,j (A.19)

The total complex has two natural filtrations, they are

IF
pTot(D)n =

⊕
i≥p

Di,n−i (A.20)

IIF
pTot(D)n =

⊕
i≥p

Dn−i,i (A.21)

Theorem A.1.9. [56] Given a double complex
(
Di,j, di1, d

j
2

)
, each filtration defined in

Equations (A.20) and (A.21) on the double complex give rise to a spectral sequence
with second pages equal to

IE
p,q
2 = Hp(Hq(D, d2), d1) (A.22)

IIE
p,q
2 = Hq(Hp(D, d1), d2) (A.23)
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A.2 The category of directed systems DSI(R-Mod)

Furthermore, if the double complex is bounded, that is there is an s, t such that
Di,j = 0 for j > t and j < s (or similarly for i > t and i < s). Then both spectral
sequences converge to the filtered quotients of the total complex

Hn(Tot(D), d1 + d2) (A.24)

In particular, if both spectral sequences degenerate on the second page, then taking
cohomologies commute,

H i
(
Hj(D, d2), d1

)
= Hj

(
H i(D, d1), d2

)
(A.25)

A.2 The category of directed systems DSI(R-Mod)
Let ⟨I,≤⟩ be the set of natural numbers N equipped with the natural ordering. In
general ⟨I,≤⟩ can be any directed set. Let {Ai | i ∈ I} be a sequence of R-modules
and fij : Ai −→ Aj be a homomorphism for all i ≤ j such that

• fii is the identity on Ai

• fik = fjk ◦ fij for all i ≤ j ≤ k

Then the pair ⟨Ai, fij⟩ is called a directed system over I. We then define
DSI(R-Mod) to be the category of directed systems whose objects are directed
systems of R-modules ⟨Ai, fij⟩ over I. The morphisms between two objects
⟨Ai, fij⟩, ⟨Bi, gij⟩ in this category are collection of R-homomorphisms {ϕi | i ∈ I} such
that the following diagram commutes

Ai

Aj

Bi

Bj

fij gij

ϕi

ϕj

whenever i ≤ j. To see that this defines a proper morphism on this category, notice
that the identity morphism is just {1R | i ∈ I} so it remains to show the composition
property. We define composition of two morphisms {ϕi | i ∈ I}, {ψi | i ∈ I} to be
{ψi ◦ ϕi | i ∈ I}. Suppose that we have three directed systems
A = ⟨Ai, fij⟩, B = ⟨Bi, gij⟩, C = ⟨Ci, hij⟩ with morphisms A {ϕi}−→ B

{ψi}−→ C then it
suffices to show the following diagram commutes
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Ai

Aj

Ci

Cj

fij hij

ψi ◦ ϕi

ψj ◦ ϕj

Now

ψj ◦ ϕj ◦ fij = ψj ◦ gij ◦ ϕi (A.26)
= hij ◦ ψi ◦ ϕi (A.27)

We conclude that DSI(R-Mod) is a category. We then have [63]

Lemma A.2.1. Let ⟨Ai, fij⟩ be a direct system of R-modules over a directed set I,
and let ιi : Ai →

⊕
Ai be the ith injection. Let S be the submodule generated by

ιj ◦ fij(xi) = ιi(xi) for xi ∈ Ai. Then

(i) Each element of lim−→Ai has a representative of the form ιi(xi) + S for some i.

(ii) ιi(xi) + S = 0 if and only if fij(xi) = 0 for some j ≥ i.

Proof. (i) An arbitrary element in lim−→Ai is of the form

x =
∑
i

ιixi + S (A.28)

Since I is a directed set there exists a j ≥ i for all i appearing in the sum. Now
let yi = fijxi ∈ Aj and

y =
∑
i

yi ∈ Aj (A.29)

Then we see that

∑
i

(ιi(xi)− ιj(y)) =
∑
i

(ιi(xi)− ιj(fij(xi))) ∈ S (A.30)

Thus x+ S = y + S which is what we wanted

(ii) if fij(xi) = 0 for some j ≥ i then

ιi(xi) + S = ιi(xi) + (ιj(fij(xi))− ιi(xi)) + S = S (A.31)
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Conversely, if ιi(xi) + S = 0 then we have an expression

ιi(xi) =
∑
j

rj(ιk(fjk(xj))− ιj(xj)) ∈ S (A.32)

for some rj ∈ R. We define

r(j, k, xj) = ιk(fjk(xj))− ιj(xj) (A.33)

Clearly rjr(j, k, xj) = r(j, k, rjxj) so we can assume

ιi(xi) =
∑
j

(ιk(fjk(xj))− ιj(xj)) ∈ S (A.34)

Now, choose m such that m ≥ j, k for all j, k in the above expression. Then

ιm(fim(xi)) = ιm(fim(xi))− ιi(xi) + ιi(xi) (A.35)
= r(i,m, xi) +

∑
j

r(j, k, xj) (A.36)

Now, recall that r(j, k, xj) = ιk(fjk(xj))− ιjxj and that
ιmfjm(xj) = ιmfkmfjk(xj) so we can write

r(j, k, xj) = ιmfjm(xj)− ιj(xj) + ιmfkm(−fjk(xj))− ιk(−fjk(xj)) (A.37)
= r(j,m, xj) + r(k,m,−fjk(xj)) (A.38)

so that ιmfim(xi) = ∑
l r(l,m, xl). Now it is easy to check that

r(l,m, xl) + r(l,m, x′
l) = r(l,m, xi + x′

i) so we can assume that each l appearing
in the summand ∑l r(l,m, xl) are all different. Therefore we have

ιmfim(xi) =
∑
l

r(l,m, xl) (A.39)

=
∑
l

(ιmflm(xl)− ιl(xl)) = ιm

(∑
l

flm(xl)
)
−
∑
l

ιl(xl). (A.40)

Now, since ιmfim(xi) ∈ Am, we see that ιl(xl) = 0 if l ̸= m. Since ιl is injective
for all l, we must have xl = 0. Therefore the above expression reduces to

ιmfim(xi) = ιmfmm(xm)− ιm(xm) (A.41)
= 0 (A.42)
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since fmm is the identity map. This means that fim(xi) = 0 since ιm is injective.

A.2.1 The direct limit functor lim−→
Definition A.2.2. For each i, let ιi be the inclusion of Ai into the direct sum ⊕

iAi.
We define the direct limit lim−→Ai of a direct system ⟨Ai, fij⟩ by

lim−→Ai =
⊕

Ai

/
S (A.43)

where ιi : Ai →
⊕

iAi is the embedding map and S is the submodule generated by
ιj ◦ fij(xi) = ιi(xi) for xi ∈ Ai

We now let

ai : Ai −→ lim−→Ai (A.44)
xi 7→ ι(xi) + S (A.45)

then we claim the direct limit satisfies the following universal property

Lemma A.2.3. Suppose that we have maps ϕi : Ai −→M . Then there exists a map
ϕ such that the following diagram commutes

Ai Aj

lim−→Ai

M

fij

ai aj

ϕ

ϕi ϕj

Proof. let

ϕ : lim−→Ai −→M (A.46)
ai(xi) + S 7→ ϕi(xi) (A.47)

We only need to show that this is map is well defined. Suppose that ajfij(xi) is in the
same coset, and therefore ϕ(ajfij(xi) + S) = ϕj(fij(xi)) = ϕi(xi)
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We now want to show that the direct limit is actually a functor from the category of
directed systems of R-modules over I to R-modules

lim−→ : DSI(R-Mod) −→ R-Mod (A.48)

It remains to show the image of morphisms under this functor. That is, given a
morphism between two directed systems {ϕi} : ⟨Ai, fij⟩ −→ ⟨Bi, gij⟩ we would like to
define a morphism ϕ : lim−→Ai −→ lim−→Bi. To do this we employ the universal property
of direct limits

Ai Aj

lim−→Ai

lim−→Bi

fij

ai aj

ϕ

bi ◦ ϕi bj ◦ ϕj

which guaranteeds the existence of a map ϕ : lim−→Ai −→ lim−→Bi. We therefore let
lim−→ϕi = ϕ.
We now show that the direct limit functor is exact

Proposition A.2.4. Let A = ⟨Ai, fij⟩, B = ⟨Bi, gij⟩, C = ⟨Ci, hij⟩ ∈ DSI(R-Mod)
and suppose that we have a short exact sequence

0 −→ A
{ϕi}−→ B

{ψi}−→ C −→ 0 (A.49)

then the sequence

0 −→ lim−→Ai
lim−→ϕi

−→ lim−→Bi

lim−→ψi

−→ lim−→Ci −→ 0 (A.50)

is exact.

Proof. Let ϕ = lim−→ϕi and suppose that ϕ(x) = 0 for some x ∈ lim−→Ai. We can then
write x = ιixi + S and therefore

ϕ(ιAi xi + SA) = ιBi ϕi(xi) + SB = 0 (A.51)
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by the definition of ϕ. Therefore there exists a j such that gijϕi(xi) = 0 and since ϕ is
a morphism we see that

gijϕi(xi) = ϕjfij(xi) = 0 (A.52)

since ϕi is injective we have fij(xi) = 0 and so x = ιAi + S = 0, therefore ϕ is injective.
Now, suppose that z ∈ lim−→Ci so we can write z = ιCi (zi) + SC . Therefore there exists
yi ∈ Bi such that ψi(yi) = zi and so

z = ιCi ψi(yi) + SC (A.53)

but by the definition of ψ we see that

ψ(ιBi (yi) + SB) = ιCi ψi(yi) + SC = z (A.54)

and so we see that ψ is surjective.

One of the nice things about an exact functor is that it commutes with cohomology
functors.

Lemma A.2.5. Suppose that we have a cochain complex of R-Mod

· · · −→ Cn−1 ∂n−1−→ Cn ∂n−→ Cn+1 −→ · · · (A.55)

and an exact functor F : C −→ D. That is for every exact sequence in C

0 −→M −→ N −→ P −→ 0 (A.56)

we have an exact sequence

0 −→ FM −→ FN −→ FP −→ 0 (A.57)

in D. Then, F commutes with cohomology, that is

FHn(C) = Hn(FC) (A.58)

Proof. By the definition of a functor we see that

im(F∂n−1) = F(∂n−1)F(Cn−1) = F(∂n−1C
n−1) = F(im(∂n−1)) (A.59)
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We now let Bn = im ∂n−1 and Zn = ker ∂n, so that Bn ⊆ Zn ⊆ Cn. Then by applying
F to the exact sequence

0 −→ Zn
ι−→ Cn ∂n−→ Bn+1 −→ 0 (A.60)

we get the exact sequence

0 −→ F(Zn) F(ι)−→ F(Cn) F(∂n)−→ F(Bn+1) −→ 0 (A.61)

We therefore see that

ker(F(∂n)) = F(Zn) = F(ker ∂n) (A.62)

Now, applying F to the exact sequence

0 −→ Bn −→ Zn −→ Hn(C) −→ 0 (A.63)

we get the exact sequence

0 −→ F(Bn) −→ F(Zn) −→ F(Hn(C)) −→ 0 (A.64)

Therefore we see that

Hn(FC) = kerF(∂n)
imF(∂n−1)

= F(ker(∂n))
F(im(∂n−1))

= FHn(C) (A.65)

We will now work in the category of cochain complexes of R-Mod,which we call
ch(R-Mod),

Definition A.2.6. A directed system in DSI(ch(R-Mod)) is a sequence of cochain
complexes ⟨(Ci, di), fi,j⟩ where each (Ci, di) is a complex

· · ·
dn−2

i−→ Cn−1
i

dn−1
i−→ Cn

i

dn
i−→ Cn+1

i

dn+1
i−→ · · · (A.66)

such that dn+1
i ◦ dni = 0. Each fij = {fnij} is a cochain map fnij : Cn

i −→ Cn
j . Moreover,

the cohomology of each complex forms a directed system

Hn(C) =
〈

ker dni
im dn−1

i

, fnij

〉
(A.67)
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To see that the maps

fnij : Hn(Ci, di) −→ Hn(Cj, dj) (A.68)

is well-defined, observe that

fnij(x+ dn−1
i a) = fnijx+ fnijd

n−1
i a (A.69)

= fnijx+ dn−1
j fn−1

ij a (A.70)
(A.71)

so fnij’s are well-defined.

Definition A.2.7. We can also define lim−→C as the cochain complex of R-modules

· · ·
lim−→ dn−2

i−→ lim−→Cn−1
i

lim−→ dn−1
i−→ lim−→Cn

i

lim−→ dn
i−→ lim−→Cn+1

i

lim−→ dn+1
i−→ · · · (A.72)

Clearly lim−→ dn ◦ lim−→ dn−1 = lim−→(dn ◦ dn−1) = 0 by the commutative diagram below

Cn−1
i

lim−→Cn−1
i

Cn−1
j

Cn
i

lim−→Cn
i

Cn
j

Cn+1
i

lim−→Cn+1
i

Cn+1
j

dn−1
i dni

lim−→ dn−1
i lim−→ dni

dn−1
j dnj

αn−1
i

αn−1
j

αni

αnj

αn+1
i

αn+1
j

lim−→(dn ◦ dn−1)

and therefore this complex is well-defined.

Proposition A.2.4 and Lemma A.2.5 then imply the following

Lemma A.2.8. Let C be a cochain complex in DSI(R-Mod). Since exact functors
preserve cohomology, we see that the direct limit commutes with taking cohomology,
that is

Hn
(
lim−→C

)
= lim−→Hn(C) (A.73)
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A.2.2 Infinite tensor product of cochain complexes

This section discusses the cohomology of infinite tensor products of cochain complexes
in detail. While we can apply the Künneth Theorem for the cohomology of a finite
tensor product of complexes, the Theorem may not hold for infinite tensor products.
First we will define an infinite tensor product of complexes. Suppose that we have a
countable set of complexes {Ck | k ≥ 1}. Di = ⊗i

k=1 Ck, the tensor product of the first
k complexes. Let fi,j : ⊗Di −→ Dj be the inclusion map onto the first i tensorand of
complexes. Then ⟨Di, fi,j⟩ is a directed system in the category of cochain complexes.
By construction, the direct limit lim−→Di is

lim−→Di =
⊗
k≥1

Ck (A.74)

and that

lim−→Hn(Di) =
⊗
k≥1

Hn(Ck) (A.75)

Using the Künneth formula, we see that

Hn(Di) =
⊕

n1+···+ni=n
Hn1(Ck1)⊗ · · · ⊗Hni(Cki

) (A.76)

Since direct limit commutes with cohomology functors by Lemma A.2.8, we finally
arrive at

Lemma A.2.9.

Hn

⊗
k≥1

Ck

 =
⊗
k≥1

Hn(Ck) (A.77)
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Appendix B

Localisation

B.1 Definitions

Let R be a non-commutative domain and let S be a multiplicatively closed set, 0 ̸∈ S
satisfying the (left) Ore condition

∀r ∈ R, s ∈ S, Sr ∩Rs ̸= ∅ (B.1)

Definition B.1.1. Define an equivalence relation ∼ on S ×R by (s1, r1) ∼ (s2, r2) if
there exists a1, a2 ∈ R such that

a1s1 = a2s2 ∈ S (B.2)
a1r1 = a2r2 ∈ R (B.3)

and we write S−1R = S ×R
/
∼.

Given two equivalence classes (s1, r1), (s2, r2), the Ore condition in Equation (B.1)
says that there are a ∈ R, x ∈ S such that xs1 = as2. Since (s1, r1) ∼ (xs1, xr1) and
(s2, r2) ∼ (as2, ar2), it follows that we can choose representatives (s1, r1) and (s2, r2) of
any two classes so that s1 = s2. This allows us to define addition on S−1R.

Definition B.1.2. Given two representatives (s1, r1), (s2, r2) ∈ S−1R, the Ore
condition in Equation (B.1) says that there are a ∈ R, x ∈ S such that xs1 = as2.
Define addition on S−1R by

(s1, r1) + (s2, r2) = (t, xr1 + ar2), t = xs1 = as2 (B.4)
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Definition B.1.3. Given two representatives (s1, r1), (s2, r2), by Equation (B.1) we
have Rs2 ∩ Sr1 ̸= ∅ which implies that as2 = xr1. Define multiplication on S−1R by

(s1, r1)× (s2, r2) = (xs1, ar2). (B.5)

We then have

Definition B.1.4. The localisation of R is the ring (S−1R,+,×). Lemmas B.1.5
to B.1.7 shows that (S−1R,+,×) is well-defined.

We will now proceed to proving Lemmas B.1.5 to B.1.7.

Lemma B.1.5. The equivalence relation ∼ in Definition B.1.1 is well-defined.

Proof. The relation is obviously reflexive and symmetric and we only show transitivity.
Suppose that (s1, r1) ∼ (s2, r2) and (s2, r2) ∼ (s3, r3). Then there exists
a1, a2, b2, b3 ∈ R such that

a1r1 = a2r2 b2r2 = b3r3 (B.6)
a1s1 = a2s2 b2s2 = b3s3 (B.7)

By Ore’s condition we have S(a2s2) ∩R(b2s2) ̸= ∅ so there exists c ∈ R, x ∈ S such
that xa2s2 = cb2s2. As R is a domain and 0 ̸∈ S this implies that xa2 = cb2. Then we
have

xa1r1 = xa2r2 = cb2r2 = cb3r3 (B.8)
xa1s1 = xa2s2 = cb2s2 = cb3s3 (B.9)

so we see that (s1, r1) ∼ (s3, r3) and we are done.

Lemma B.1.6. Addition appearing in Definition B.1.2 is well-defined.

Proof. We need to show that the operation is independent on the choice of a, x, r1, s1

and r2, s2. Suppose that there are a′ ∈ R, x′ ∈ S such that x′s1 = a′s2. Since
S(xs1) ∩R(x′s1) ̸= ∅, we have yxs1 = bx′s1 for some b ∈ R, y ∈ S. Since
xs1 = as2, x

′s1 = a′s2 we also have yas2 = ba′s2. This implies that yx = bx′, ya = ba′.
Thus

(xs1, xr1 + ar2) ∼ (yxs1, yxr1 + yar2)) = (bx′s1, bx
′r1 + ba′r2) ∼ (x′s1, x

′r1 + a′r2)
(B.10)
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and so the sum is independent of the choice and a or x.
To see that it does not depend on (s1, r1), we will first show that if we replace (s1, r1)
with (bs1, br1) such that bs1 ∈ S, then multiplcation is still well-defined. To see this,
as S(bs1) ∩Rs2 ̸= ∅ we have x′bs1 = a′s2. So we have

(s1, r1) + (s2, r2) = (t, xr1 + ar2), t = xs1 = as2 (B.11)
(bs1, br1) + (s2, r2) = (t′, x′br1 + a′r2), t′ = x′bs1 = a′s2 (B.12)

Now, S(xs1) ∩R(x′bs1) ̸= ∅ so yxs1 = cx′bs1 =⇒ yx = cx′b. Now,
yas2 = yxs1 = cx′bs1 = ca′s2 so ya = ca′. Thus we see that
(yt, yxr1 + yar2) = (ct′, cx′br1 + ca′r2), implying that

(t, xr1 + ar2) = (yt, yxr1 + yar2) = (ct′, cx′br1 + ca′r2) = (t′, x′br1 + a′r2) (B.13)

So we see that multiplication is well-defined after replacing (s1, r1) with (bs1, br1).
Now, in general suppose that (s1, r1) ∼ (s′

1, r
′
1). By definition there exists b, b′ such

that br1 = b′r′
1, bs1 = b′s′

1 so (bs1, br1) = (b′s′
1, b

′r′
1). The above argument shows that

multiplcation is well-defined if we replace (s1, r1) with (bs1, br1) and (s′
1, r

′
1) with

(b′s′
1, b

′r′
1). But (bs1, br1) = (b′s′

1, b
′r′

1) so we see that multiplication is still well-defined
after placing (s1, r1) with (s′

1, r
′
1). The case for (s2, r2) is exactly the same so we are

done.

Lemma B.1.7. Multiplication appearing in Definition B.1.3 is well-defined.

Proof. Suppose that a′s2 = x′r1, so that (s1, r1)× (s2, r2) = (x′s1, a
′r2). Since

R(xs1) ∩ S(x′s1) ̸= ∅ we have yxs1 = y′x′s1 =⇒ yx = y′x′. Therefore

(xs1, ar2) ∼ (yxs1, yar2) = (y′x′s1, y
′a′r2) ∼ (x′s1, a

′r2) (B.14)

Now we want to check multiplication is independent of (s1, r1). As we have mentioned
before we can just consider elements of the form (bs1, br1) such that bs1 ∈ S. Now,
originally we have as2 = xr1. As Rs ∩ Sb ̸= ∅ we have cx = yb. Therefore
cas2 = cxr1 = ybr1. So we have (bs1, br1)× (s2, r2) = (ybs1, car2). But then
(xs1, ar2) ∼ (cxs1, car2) ∼ (ybs1, car2).
Lastly we need to check multiplication is independent of (s2, r2). Again we can just
check for (bs2, br2). From Ore’s condition we have a′bs2 = x′r1 so we have
(s1, r1)× (s2, r2) = (x′s1, a

′br2). Again we can assume x′ = x so
a′bs2 = x′r1 = xr1 = as2 =⇒ a′b = a and so (x′s1, a

′br2) ∼ (xs1, ar2).
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Now that we have shown S−1R is a well-defined ring, let ϕ be the map
ϕ : R −→ S−1R where ϕ(r) = (1, r). Then kerϕ = {r ∈ R | ∃s ∈ S, sr = 0}. Since R
is a domain we see that ϕ is injective and therefore we can realise R as a subring of
S−1R. Furthermore, any element (s, r) ∈ S−1R can be written as a product
(s, 1)(1, r). Noting this, we have

Definition B.1.8. Suppose that M is an R-module. The localisation RS ⊗RM of M
with respect to S is the tensor product S−1R⊗RM .

Elements in S−1R⊗RM can be written in the form

(s, r)⊗m = (s, 1)(1, r)⊗m = (s, 1)⊗ rm = (s, 1)⊗m′, m′ ∈M. (B.15)

We will write the element (s, 1)⊗m′ as (s,m′). It is easy to check, using the definition
in Definition B.1.1 that if s ∈ S,m ∈M , (s1,m1) ∼ (s2,m2) if and only if there exists
a1, a2 ∈ R such that

a1s1 = a2s2 ∈ S (B.16)
a1m1 = a2m2 ∈M (B.17)

Lemma B.1.9. A homomorphism ϕ : U −→ V between R-modules can be lifted to a
homomorphism ϕ : RS ⊗R U −→ RS ⊗R V between RS-modules by
ϕ((s, u)) = (s, ϕ(u)).

Proof. We want to show that phi is indeed a module homomorphism. Suppose that
(s1, u1), (s2, u2) ∈ RS ⊗R U . Then as per Definition B.1.2,

ϕ((s1, u1) + (s2, u2)) = ϕ(t, xu1 + au2) (B.18)
= (t, ϕ(xu1 + au2)) (B.19)
= (t, xϕ(u1)) + (t, aϕ(u2)) (B.20)
= (s1, ϕ(u1)) + (s2, ϕ(u2)) (B.21)

Now, suppose that (s1, r) ∈ S−1R, (s2, u) ∈ S−1U . Then

(s1, r)ϕ((s2, u)) = (s1, r)(s2, ϕ(u)) (B.22)
= (s1, r)(s2, 1)⊗ ϕ(u) (B.23)
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as per Definition B.1.3, we have (s1, r)(s2, 1) = (x, s1a) for some a ∈ R, x ∈ S,

= (x, s1a)⊗ ϕ(u) (B.24)
= (x, ϕ(s1au)) (B.25)
= ϕ((x, s1au)) (B.26)
= ϕ((s1, r)(s2, u)) (B.27)

and we are done.

Lemma B.1.10. The functor

IndS−1R
S (−) : R-Mod −→ S−1R-Mod (B.28)

M 7→ S−1R⊗RM (B.29)

is exact.

Proof. Given a exact sequence of R-modules

0 −→ U
ϕ−→ V −→ W −→ 0, (B.30)

we want to show that

0 −→ S−1R⊗R U
ϕ−→ S−1R⊗R V −→ S−1R⊗RW −→ 0 (B.31)

is exact. Since the tensor product functor is always right-exact, it suffices to show
left-exactness. Suppose that ϕ((s, u)) = 0 hence that (s, ϕ(u)) = (1, 0). This implies
that there exists a ∈ S such that aϕ(u) = 0 =⇒ ϕ(au) = 0 =⇒ au = 0 since ϕ is
injective. Now (s, u) ∼ (as, au) ∼ (as, 0) ∼ (1, 0) so ϕ is injective.

B.2 The localisation of universal enveloping
algebras

Lemma B.2.1. [54, Lemma 4.2] Let R be an associative algebra and let S be a
multiplicatively closed subset generated by locally ad-nilpotent elements of R. Then S

satisfies the Ore condition.

In particular, we have
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Corollary B.2.2. Let g be a Lie algebra and let e ∈ g be a locally ad-nilpotent
element of g. Then RS is a well-defined ring where

R = U(g), S = {en | n ∈ N}. (B.32)

Lastly, with the above notations, we have

Remark B.2.3. Suppose that X ∈ R and [X, e] = ce ∈ R for some c ∈ C. Then
[X, e−1] = −ce−1 in RS.
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Appendix C

The ring of symmetric functions

The purpose of this section is to review various results from the theory of symmetric
functions that will be used to evaluate the action of screening operators on certain
Fock spaces. The standard reference for symmetric functions and their myriad
properties is Macdonald’s book [52] to which we refer the reader for more details.
Let Λn denote the ring of symmetric polynomials in the n variables z1, . . . , zn. This is
the subring of C[z1, ..., zn] that consists of the polynomials that are invariant with
respect to permuting the indices of the zi. It admits numerous interesting generators
such as the power sums

pk =
n∑
i=1

zki , k ≥ 1. (C.1)

For 1 ≤ k ≤ n, the pk are algebraically independent and freely generate Λn, that is,

Λn = C[p1, · · · , pn]. (C.2)

We can therefore use partitions λ = [λ1, λ2, . . .], whose parts λi are bounded by n, to
define

pλ = pλ1 · · · pλk
. (C.3)

These power sums, labelled by partitions whose parts do not exceed n, thus form a
basis of Λn:

Λn =
⊕

λ,λ1≤n
Cpλ. (C.4)
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Another family of symmetric polynomials is given by the monomial symmetric
polynomials

mλ =
∑
σ

z
λσ(1)
1 · · · zλσ(n)

n , (C.5)

where σ runs over all distinct permutations of the partition λ. In this case, λ is not
constrained by a bound on its individual parts, but by their number ℓ(λ) (the length
of λ) which is at most n. Note that each monomial summand of mλ has coefficient 1.
For example,

m[2,2]
(
z1, z2

)
= z2

1z
2
2 , m[2,2]

(
z1, z2, z3

)
= z2

1z
2
2 + z2

1z
2
3 + z2

2z
2
3 . (C.6)

The monomial symmetric polynomials also form a basis of Λn:

Λn =
⊕

λ,ℓ(λ)≤n
Cmλ. (C.7)

The respective restrictions on parts and lengths of partitions in the definitions of these
symmetric polynomials can be avoided by taking a formal limit to infinitely many
variables. The resulting ring Λ is called the ring of symmetric functions and,
unsurprisingly, its elements are called symmetric functions. The ring Λn of symmetric
polynomials in n variables can then be easily recovered from Λ by setting all but the
first n variables to 0. This amounts to a projection

πn : Λ→ Λn, f(x1, x2, . . . ) 7→ f(x1, . . . , xn, 0, 0, . . . ). (C.8)

In Λ, the power sums pk are algebraically independent for all k ≥ 1 and they freely
generate Λ, that is,

Λ = C[p1, p2, . . . ]. (C.9)

Similarly, the restrictions on the sizes of the parts and the lengths of the partitions
labelling power sums and monomial symmetric functions, respectively, no longer apply.
Both classes of symmetric functions give bases of Λ:

Λ =
⊕
λ

Cpλ =
⊕
λ

Cmλ. (C.10)

We note that πn(mλ) = 0 if and only if ℓ(λ) > n, but that no such truncations exist
for the power sums pk: their images under πn are all non-zero.
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C.1 The Jack functions

There exists another family of bases of Λ and Λn labelled by partitions, called the Jack
symmetric functions and Jack symmetric polynomials (or just Jack functions or
polynomials for short), respectively. These are defined using the dominance partial
ordering of partitions: if λ and µ are both partitions of the same non-negative integer,
then we write λ ≥ µ (and say that λ dominates µ) if

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi, (C.11)

for all i ≥ 1.
For each t ∈ C \Q≤0 (the non-positive rationals are excluded to avoid certain
normalisation problems), the Jack functions Ptλ are uniquely defined by the following
two properties:

1. For any partition λ, Ptλ admits an upper triangular decomposition of the form

Ptλ = mλ +
∑
λ>µ

vλ,µ(t)mµ, vλ,µ(t) ∈ C. (C.12)

2. The Jack functions form an orthogonal basis of Λ with respect to the inner
product defined by

⟨pλ, pµ⟩t = tℓ(λ)δλµ
∏
i≥1

imimi!, (C.13)

where mi denotes of number of parts of λ equal to i.

For each n ≥ 1, the Jack polynomials in Λn may be defined as the images of the
corresponding Jack functions in Λ under the projection πn. As with monomial
symmetric polynomials, we have πn(Ptλ) = 0 if and only if ℓ(λ) > n. For ℓ(λ) ≤ n, the
Jack polynomials

Ptλ
(
z1, . . . , zn

)
= πn(Ptλ) (C.14)

are linearly independent and form a basis of Λn. For the application to follow, we
mention the following important examples in Λn called the rectangular Jack
polynomials. In these, the partition has the form λ = [mn] in which all n parts are
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equal to m. Rectangular Jack polynomials have a very simple form:

Pt[mn]

(
z1, . . . , zn

)
= m[mn]

(
z1, . . . , zn

)
=

n∏
i=1

zmi . (C.15)

This follows because all partitions of mn that are strictly dominated by [mn] have
length greater than n. They also have extremely simple products with other Jacks.
For ℓ(λ) ≤ n, denote by λ+ [mn] the partition with parts λi +m. Then,

Pt[mn]

(
z1, . . . , zn

)
Ptλ
(
z1, . . . , zn

)
= Ptλ+[mn]

(
z1, . . . , zn

)
. (C.16)

We emphasise that rectangular Jack polynomials are independent of the parameter t.

C.2 Inner product for Jack functions

The Jack functions and polynomials satisfy many properties that shall be essential for
what follows. We list some of them here for convenience.

1. We denote by Qt
λ the elements of the basis dual to the Ptλ with respect to the

inner product Equation (C.13). Since the Jack functions form an orthogonal
basis, Ptλ is proportional to Qt

λ:

Qt
λ = btλPtλ, btλ = 1

⟨Ptλ,Ptλ⟩
t . (C.17)

The proportionality constant btλ is given explicitly by

btλ =
∏
s∈λ

a(s)t+ l(s) + 1
(a(s) + 1)t+ l(s) , (C.18)

where a(s) and l(s) denote the arm and leg lengths, respectively, of the box s in
the Young diagram of λ.

2. The Jack functions and their duals admit a kind of generating function called
the Cauchy kernel:

∏
i,j

(1− yizj)−1/t =
∏
m≥1

exp
1
t

pm
(
y
)
pm
(
z
)

m

 =
∑
λ

Ptλ
(
y
)
Qt
λ

(
z
)
. (C.19)

In this identity, the two alphabets {yi} and {zj} may be finite or infinite. The
sum is across all partitions λ.
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3. Given partitions λ and µ, the skew Jack functions Ptλ/µ and Qt
λ/µ are defined to

be the unique symmetric functions satisfying
〈
Ptλ/µ,Qt

ν

〉t
=
〈
Ptλ,Qt

µQt
ν

〉t
and

〈
Qt
λ/µ,Ptν

〉t
=
〈
Qt
λ,PtµPtν

〉t
(C.20)

for all partitions ν. Let us write µ ⊆ λ if the Young diagram of µ is contained in
that of λ. Then, Ptλ/µ = Qt

λ/µ = 0 unless µ ⊆ λ. Finally, the ordinary and dual
skew Jack functions are proportional:

Qt
λ/µ = btλ

btµ
Ptλ/µ. (C.21)

4. Consider an alphabet z = (z1, z2, . . . ), partitioned into two subsets
x = (x1, x2, . . . ) and y = (y1, y2, . . . ). Any symmetric function in z may
obviously be decomposed into symmetric functions in x and y. For Jack
functions, this decomposition is

Ptλ
(
z
)

= Ptλ
(
x ∪ y

)
=
∑
ν

Ptν
(
x
)
Ptλ/ν

(
y
)
,

Qt
λ

(
z
)

= Qt
λ

(
x ∪ y

)
=
∑
ν

Qt
ν

(
x
)
Qt
λ/ν

(
y
)
. (C.22)

Both sums may clearly be restricted to partitions satisfying ν ⊆ λ.

5. The Jack polynomials Ptλ
(
z1, . . . , zn

)
are orthogonal with respect to the inner

product

⟨f, g⟩tn =
∫

Γ(n;t)
Gt
n(x)f(x)g(x) dx1 · · · dxn

x1 · · · xn
, (C.23)

where Γ(n; t) is the cycle normalised in Equation (1.211),
g(x1, x2, . . . ) = g(x−1

1 , x−1
2 , . . . ) and

Gt
n(x) =

∏
1≤i ̸=j≤n

(
1− xi

xj

)1/t

(C.24)
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is called the integrating kernel. With respect to this integral inner product, the
Jack polynomials satisfy

〈
Ptλ
(
x
)
,Qt

µ

(
x
)〉t
n

= δλ,µb
t
λ(n),

btλ(n) =
∏
s∈λ

n+ a′(s)t− l′(s)
n+ (a′(s) + 1)t− l′(s)− 1 , (C.25)

where a′(s) and l′(s) denote the arm and leg colengths, respectively, of the box s
in the Young diagram of λ.
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fractional level ŝl(2) models. Nucl. Phys., B894:621–664, 2015. arXiv:1501.07318
[hep-th].

[63] J Rotman. An Introduction to Homological Algebra. Springer, 2009.

[64] D Ridout T Creutzig. Modular Data and Verlinde Formulae for Fractional Level
WZW Models I. Nucl. Phys., B865:83–114, 2012.

144



References

[65] V Tarasov and A Varchenko. Selberg type integrals associated with sl3. Lett.
Math. Phys., 65:173–185, 2003. arXiv:math/0302148 [math.QA].

[66] K Thielemans. A mathematica Package for Computing Operator Product
Expansions. Int. J. Mod. Phys., C2:787–798, 1991.

[67] A Tsuchiya and Y Kanie. Fock space representations of Virasoro algebra and
intertwining operators. Publ. Res. Inst. Math. Sci., 22:259–327, 1986.

[68] A Tsuchiya and S Wood. On the Extended W -Algebra of Type sl2 at Positive
Rational Level. Int. Math. Res. Not., 2015:5357–5435, 2015. arXiv:1302.6435
[math.QA].

[69] I V Tyutin. Gauge Invariance in Field Theory and Statistical Physics in Operator
Formalism. 1975. arXiv:hep-th/0812.0580.

[70] M Vasiliev. Higher-Spin Gauge Theories in Four, Three and Two Dimensions. Int.
J. Mod. Phys., D05:763–797, 1996. arXiv:hep-th/9611024.

[71] M Wakimoto. Fock representation of the algebra A(1)
1 . Comm. Math. Phys.,

104:605–609, 1986.

[72] M Wakimoto and H Yamada. Irreducible decompositions of Fock representations
of the Virasoro algebra. Lett. Math. Phys., 7:513–516, 1983.

[73] M Wakimoto and Y Yamada. The Fock representations of the Virasoro algebra
and the Hirota equations of the modified KP hierarchies. Hiroshima Math. J.,
16:427–441, 1986.

[74] W Wang. Rationality of Virasoro vertex operator algebras. Int. Math. Res. Not.,
1993:197–211.

[75] S Warnaar. A Selberg integral for the Lie algebra An. Acta Math., 203:269–304,
2009. arXiv:0708.1193 [math.CA].

[76] S Warnaar. The sl3 Selberg integral. Adv. Math., 224:499–524, 2010.
arXiv:0901.4176.

[77] J Wess and B Zumino. Consequences of anomalous ward identities. Phys. Lett.,
37:95–97, 1971.

[78] E Witten. Global aspects of current algebra. Nucl. Phys., B223:422–432, 1983.

[79] E Witten. Nonabelian bosonization in two dimensions. Comm. Math. Phys.,
92(4):455–472, 1984.

[80] S Yanagida. Singular vectors of N = 1 super Virasoro algebra via Uglov
symmetric functions. arXiv:1508.06036 [math.QA].

[81] A Zamolodchikov. Infinite Additional Symmetries in Two-Dimensional Conformal
Quantum Field Theory. Theoret. and Math. Phys., 65:1205–1213, 1985.

145




	Table of contents
	0 Introduction
	0.1 Background
	0.2 Outline

	1 Vertex Algebras
	1.1 Vertex Algebras
	1.2 The Heisenberg vertex algebra
	1.3 The Virasoro vertex operator algebra
	1.4 Free field realisation of the Virasoro vertex operator algebra
	1.5 The Vk*sl*2 Vertex Operator Algebra
	1.6 The bosonic ghost algebra
	1.7 Free field realisation of Vk*sl*2
	1.8 The fermionic ghost algebra B
	1.9 The Wn Algebras

	2 Wn singular vectors
	2.1 W3 singular vectors
	2.2 Wn singular vectors

	3 BRST cohomology for Lk*sl*2 modules in category O
	3.1 The BRST complex
	3.2 BRST cohomology of Lk*sl*2 highest-weight modules
	3.3 BRST Cohomology of Wakimoto modules
	3.4 Commutivity of the double complex

	4 BRST cohomology for Lk*sl*2 modules in category R
	4.1 Bernard-Felder complexes in category R
	4.2 BRST cohomology for Lk*sl*2 modules in category R
	4.3 BRST cohomology for lHG*FG
	4.4 Commutativity of the double complexes

	5 Conclusion
	Appendix A Homological algebra
	A.1 Cochain complexes
	A.2 The category of directed systems DSI(R-Mod)

	Appendix B Localisation
	B.1 Definitions
	B.2 The localisation of universal enveloping algebras

	Appendix C The ring of symmetric functions
	C.1 The Jack functions
	C.2 Inner product for Jack functions

	References

