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Abstract

The aim of this thesis is to present a reasonable accounté 6 the applications that func-
tional analysis, or more specifically operator theory, imathe theory of quantum scattering.
We begin by introducing the physical scattering experinganivell as establishing the standard
framework for discussing quantum theory, that of a Hilopdace. This leads to a discussion
of the properties of operators acting in a Hilbert space haddle played by unbounded self-
adjoint operators in quantum physics. We also spend soneedistussing the position, mo-
mentum and energy operators which are of most relevance henes in turn leads logically
to the problem of formulating the scattering problem mathgeally using these operators.
The stationaryequations of scattering theory are also rigorously deraedl their suitability
for two-body scattering problems is proven. We show that #nalysis does not extend to
three-body scattering problems, and introduceRd@deevformulation for three-body systems
to supplement the theory. This thesis concludes with a lorefview of how our scattering
equations can be modified to take into account effects suglartisle spin and identical par-
ticles, before discussing an example of a three-body stajteroblem (incorporating these
features) and deriving a mathematically satisfactory $&tgoations which are amenable to
numerical solution.
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Chapter 1

Introduction

“The beginner should not be discouraged if he finds that hes ¢t have the
prerequisites for reading the prerequisites.”
P R Halmos

1.1 Quantum Scattering - an Outline

1.1.1 Quantum Theory

Quantum theory was developed early in the twentieth cerituan attempt to explain phys-
ical phenomena which could not be explained using the famillassical theory. Examples
include black-body radiation, the photo-electric effentiavhy electrons did not spiral into
the nucleus. Contributors to the early theory include sachdus names as Planck, Einstein,
Bohr, Sommerfield and de Broglie. However, it was Heisenlbérg first proposed what was
to become quantum theory and his formulation was based gurithaple that in any physical
theory, one should distinguish between quantities thabbservable and those which are not.
Since we can only test theories by observation, he demamhd¢e satisfactory theory should
be founded on observables, and that non-observables ingbg/tmay be modified or removed
without affecting any theoretical predictions.

Heisenberg then proceeded to construct such a theory ofdhe aA partially successful
model at the time due to Bohr relied upon the concept of th& oftan electron around the
nucleus. Heisenberg argued that this was unsatisfactoog $i was known that the radius
of the orbit could not be accurately measured. Instead, telalged a theory based on the
frequencies of radiation emitted by atoms. These are amtyrabservable. The theory be-
came known asatrix mechanicafter mathematicians realised that his theory relied upen t
multiplication of matrices [47].

At about the same time, Schrédinger formulatedadss’e mechanicsThis was based upon
the ideas of de Broglie - namely that matter could have a Viaeaature just as waves were
being shown to have particulate natures. Schrodinger ladstuthat matter waves could be
represented by wavefunctiort¥ (t) which obeyed the dynamical law of motion

0¥

'ﬁﬁ =HWY (1.1)
whereh'is Planck’s constant divided byr2andH is an operator called thdamiltonianrepre-
senting the energy of the system. This s, of course, the roelefbratecschrodinger Equation
We shall return to this equation later. For now, we shall noenthat in simple case$] can
be decomposed into the sum okiaetic energy operator fland apotential energy operator
V which are such thatly = p?/2mandV =V (x) wherep is themomentum operatpmis the
mass of the system (not an operator) &nc) is a function of theposition operator x



1.1.2 The Scattering Concept

Scattering experiments are most important in quantum plyabt only as a means of provid-
ing experimental data to test theories upon but also as asr@gmroducing the particles of
interest themselves. Indeed, the development of quantaortiwas in a sense, catalysed by
scattering experiments. For instance, the existence afidbkeus was proven by Rutherford
using a-particle scattering off gold atoms, and the existence sfrdite atomic energy levels
was shown by Franck and Hertz using the scattering of elestoff mercury atoms [45]. Even
the familiar chemical reactions taking place in industrg &aboratories all over the world are
just glorified (that is, extremely complicated) scatteraxgperiments.

The simplest example of scattering is where an elementaticlga“collides with” or is
scattered by a fixed target. The experimental quantity efrést will be the probability that
the particle will be scattered into a particular region d@p (ie into a particular range of solid
angles). This can be measured in the laboratory by takingge lsumber of these collisions
(for instance by using a collimated beam of the incidentiglad) and measuring the intensity
of the resulting particles at different points in space. w&iral diagram is shown below in
figure 1.1.

Incident Beam
—_— \

——- =
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Scattered Wave

Figure 1.1: Astationaryor time independent view of a scattering experiment.

From a theoretical point of view, the aim is to be able to dalieuwhat these probabilities
will be. The simple approach is to start with the incident afawiction (we are implicitly
working in Schroédinger’s representation), write down thantiltonian of the systerfl, substi-
tute into the Schrédinger equation and then solve to find tta Wavefunction. Sounds easy,
doesn't it?

Unfortunately, it isn't. The Schrodinger equation is ertady difficult to solve in gen-
eral as the appropriate boundary conditions are not easyrtaufate. Even the satisfactory
mathematical formulation of an arbitrary scattering peoblmust rank as one of the hardest
problems in mathematical physics, and indeed, it has ndigen solved in generality. Recent
progress is documented in [23]. It is also well known that $vhrédinger equation can be
transformed into other equations which give the pertinefarmation, but these equations too
generally aver solutions.

The theory needed to adequately describe the scatteringpptemon is of mathematical
interest, not only for its difficulty but because it encomgesssuch a variety of mathematical
disciplines ranging from the pure to the very applied andchgu®babilistic. In the course of
this thesis, some of the mathematical theory appropriatéhie® description will be described.
This will then be applied to the simplest scenario, that & ontwo particle scattering, to derive
mathematically the equations of scattering theory and &onexe the conditions necessary for a



rigorous formulation. The remainder of the thesis will dedh the more complicated problem
of three-body scattering and the far greater difficultieg this problem poses mathematically.
We then discuss the method by which satisfactory three-Isodytering equations were first
derived (theFaddeevformulation) before examining a specific (simple) threelpscattering
problem using this approach.

1.2 Some Mathematical Preliminaries

1.2.1 Hilbert Space

Let us begin by defining an inner-product which we shall dertyt(-,-). We require an inner-
product over a vector spateto be a complex-valued function with the following propesti
forany f,g,h €V and any scalan:

) > 0 and (f,f)=0 iff f=0,
(f.g+h) = (f.g9)+(f,h),

) a(f,g),

) = (gf).

We note that we use the convention common in physics thantier-product is linear in the
second argument and conjugate-linear in the first. Thisda®fiposite of the convention used
in mathematics.

A vector space equipped with an inner-product space is alturalled aninner-product
space(also termed &uclidean spacer apre-Hilbert spacg Any inner-product space has a

norm|| - || defined by
Il = v (f, f).

The distance between two vectdrandg (in norm) is given by||f —g||. If the inner-product
space also has the property that any sequence whose terradierily close in norm do
actually converge to some vector (tbempletenesproperty) then it is called Hlilbert space
We shall often denote an arbitrary Hilbert spaceAsy

It is well established that the mathematical formulatiomoantum theory uses an abstract
Hilbert space to represent the system in question, the reabsually termedstate vectors,
then represent the set of allowed wavefunctions (zero ikidgd for probabilistic reasons).
It is also common in elementary textbooks to demand tha¢ stattors must have norm 1
Although this has the advantage of simplifying some catouta, it is not necessary and we
shall not impose this demand in this thesis.

Why we use a Hilbert space is not physically clear and son@tefhave been made to
clarify this issue. Most are based on the idea Htce of propositionsvherein the elements
of the lattice are yes/no answerable experiments and thlpairdering is implication (ie a
yes answer for this experiment implies a yes answer for anpthThis is hoped to produce
a Hilbert space structure and an introductory treatmenivisngin [24]. Another demand
generally made is that the underlying Hilbert space shoelsdparable. However, this demand
seems to be employed because no urgent need for non-sepiditilart spaces has yet surfaced
in non-relativistic quantum theory.

A separableHilbert space, 77, is one which has a countable subSahat is dense i?’
(that is, the closure o6 is 77 itself). The importance of this concept is that a separable
Hilbert space possesses a countartbonormal basigalso known as a total orthonormal set)
{e1,&,...} which have the properties thef € .7,

8

(&, f)=0 vk = f=0 ; =3 (&, f)ex. (1.2)
k=1

That is, the only vector orthogonal to the orthonormal bastbe zero vector and any vector
can be expanded in a countably infinite sum with respect tottm®normal basis.

3



1.2.2 Measure Theory

The theory of measures can be thought of for our purposes lsoaytof integration. A
measureu is a real-valued function defined on a cld®f subsets (actually a-algebra called
the u-measurablesets) of any seB, which is non-negative, countably sub-additive and is zero
on the empty set. A measureu on Sgives rise to the notion of the integral of a functidn,
over any measurable subget M which we shall denote by, fdu or by [, f (x)du (x). In

this thesisS= R". For now, we shall be content to mention two examples of a nmeasThe
Lebesgue measugeneralises the familiar Riemann concept of integratidhan the Lebesgue
integral is defined on a larger class of functions and is efgudle Riemann integral when the
latter is defined. We shall usually denote integration wétspeect to the Lebesgue measure by
dx. Thecounting measures defined orR by

He (A) = [ANZ .

That is, the number of positive integers in the Aett is not hard to show that

[ 1 00dkc (9 = P

so that summations and integrations can be treated usirgathe general theory. The proofs
of these statements and further theory are to be found indi[34].

We can now adequately describe two of the most importantetikpaces in quantum the-
ory. We denote by? (R", u) the vector space of atlomplex-valuequ-measurable) functions
f such that/g. | f |2du < oo, equipped with the inner-product:

(f,9) =/ fgdu.
Rn

It turns out that with a measuge, such an inner-product space is complete. This would not
be the case if we were to use the Riemann integral. If in amdifi is o-finite (R" can be
covered by a countable number of sets of finite measure)lthéR", 1) is separable [38].

Of particular interest in quantum theory are the corresjand? spaces with the Lebesgue
measure, denoted dy’ (R"), and with the counting measure, denoted/By(the set of all
square-summable complex-valued sequences). Both artyateéinite, so both are separable
Hilbert spaces. The importance of these spaces in quanteonytiderives from the fact that
Heisenberg’s matrix mechanics was seen to be abstractuquaheory realised in the Hilbert
spacef?, and Schrédinger's wave mechanics was seen to be abstratuquéheory realised
in L?(R") [31]. Itis not hard to show that these two spaces are isonimrgh are all infinite
dimensional separable Hilbert spaces. Since all the phlysitormation is given by inner-
products in both formulations (see section 1.2.6), the twmtilations are equivalent.

Other technically useful results in mathematical physicdude the solution of the prob-
lems of when limits and integrals can be interchanged andhwie order of integration of a
multiple integral can be reversed. The solutions to thesblpms involving integration are
naturally found using measure theory. Proofs of the follmyiheorems may be found in any
text on the subject (eg [19], [34]). We note first that a fumetf is said to bantegrablewith
respect to a measuye if ||f||; = [|f|du < . The set of integrable functions ov&" is
denoted byt (R"). L1(R") is not a Hilbert space but is complete with the ndfriy. Also,
if a condition is said to holdlmost everywheréae) we mean that it holds everywhere with the
exception of a set of measure zero. A set of measure zeralmaes nothing to an integral
so the phrase “almost everywhere” is ubiquitous wheneversome theory and integration are
involved.

Theorem 1 (Dominated Convergence)Suppose thatyxfconverges pointwise ae and there ex-
ists g€ L1 (R") such that for all k] fx (X)| < g(x) ae. Then,

klmo/fkduzflm fedp.



Theorem 2 (Fubini) Suppose that € L*(R"). Then,

// (x,y) dug (X) dit (y // (xy) dpiz (y) dpta (X) -

1.2.3 Operators on Hilbert Spaces

We shall define amperatoron a Hilbert space’” as alinear transformationfrom a linear
subspace o7 to 7. In quantum theory, it is generally assumed that any actus¢mible
quantity of the system is mathematically represented bypamador of a specific kind. For
instance, associated with the observable quantity “msitithere is a corresponding position
operator. A brief introduction to how these operators atated to the physically observed
guantities is given in section 1.2.6.

We define a norm on the space of operators over a given Hilpaces IfAis an operator
then the norm oA is given by

Af
I = supll = sup ]
o Ifll =2

where the norms under the suprema are the Hilbert space Ifthrentsvo definitions are easily
shown to be equivalent). An operator with finite norm iscaundedoperator and the set of all
bounded operators ovef’ is denoted by (.#”) . From this definition, we immediately obtain
|Af]] < ||All|l f|| foranyAe B(s¢) andf € 7.

As a specific example of how operators may be defined, let isdmrthe set of continuous
linear functionals ons”. A functional ¢(f) is a map froms# to a scalar field, for usC,
the set of complex numbers. The continuity requiremenest#itat if f, — f in J7, then
@(fn) — @(f) in C. The set of continuous linear functionals o#f is called thedual of
2, denoted#”’. We have the following important theorems proven in any textumctional
analysis (eg [27][38], [42])

Theorem 3 (Riesz) For everyg € 7#”, there is a unique k& .7 such that
@(9) = (h,g) vge 7.
Theorem 4 (Riesz Representation)f ¢ € (7 x .¢)" is sesquilinear, so that

p(af+Bgh) = @e(f.h)+PBe(gh)
and o(f,ag+pBh) = ae(f,g9)+Be(f,h)

forany f,g,h e # anda, € C theng defines an operator & B(7¢) by

(f,Ag)=o(f,0).

The second is derived from the first by noting that for figeg( f,g) is a continuous linear
functional inf so there exists a uniguec .7# such that

o(f,g=(f) = o(f,g)=(fh.

Of course h actually depends upam So we define an operatérby h = Ag, hence the result.

1.2.4 Fourier Transforms and Distributions

The Fourier transform is an essential part of any study ohtjua mechanics. A reference for
many aspects of Fourier analysis relevant to mathematioaigs is [40]. There are however,
different definitions of the Fourier transform in common .us@/e shall follow the physical
literature and take as our definition of thelimensional Fourier transform the following:

f(k)= [ f(r) e (r)dr (1.3)



and for the inverse Fourier transform:

fr=/ f (k)@ (r)dk (1.4)

wherer = (xg,...,%n), K= (Kg,...,ky) andg (r) = (271)*”/2(9”” is a function known to physi-
cists as dree plane wave We shall restrictf to the spac&(R"), the set of rapidly decreasing
functions. This are defined as the set of infinitely diffelaie complex-valued functions over
R" for which sugp(r)Df (r)| < c wherep(r) is any polynomial inx,...,X, andD is any
differential operator of the forrd?/ (9x&"...dxé&). Itshould be noted that this is a subspace of
the Hilbert spac&? (R) but is by no means the largest such subspace for which the atadiv
nitions make sense. We shall also defineRberier operator Fby F f = f for anyf € S(R").
This definition will be extended in chapter 3.

We will also need to discuss tHairac delta functiond (r). It is well known that this
is not a function is the usual sense of the word but insteagssribed as distribution (or
generalised function The class of distributions is defined as the dual space @afriicplar
space of functiond’, called test functions. Common choices for the test funetiare the
spacesS(R") [39] or C7 (R"), the space of infinitely differentiable functions which akenn
zero only on some bounded subsetfSf[14]. The (n-dimensional) Dirac delta function is
defined as a functional by

5(¢)=¢(0) VvéeT

which is often written in the form

[ B(Ng(rdr=¢(0).
One of the important properties of the space of distribtimnthat the Fourier transform can
be extended to distributions. In particular, it can be shtwvet in this distributional setting,

% (K') =& (k—K'), (1.5)

so the Fourier transform of a free plane wave with momenkuris a Dirac delta function
with a spike ak. This corresponds to the intuitive idea that an ideal planeaweas an exact
momentum (rather than a small range of momenta) so its tsemsfvill only be non-zero at
one point.

1.2.5 A Touch of Topology

We should also like to briefly mention the subject of topologppology deals with the ques-
tion of convergence in a very general sense. Without wogrginout exactly what this means,
we shall discuss briefly three topologies that can be definedeooperator spad®(.7#’) . What
will be important to us is the question of convergence of afges in each of these topologies.
This is of importance as results that may hold under one ¢ggyoiay be quite wrong in an-
other. An excellent discussion of the properties of thepeltmies and some of the pitfalls
encountered with naive algebraic manipulations of opesasao be found in [20].

We shall define convergence in theiform topology(also known as thaorm or operator
topology), thestrong topologyand theweak topologyrespectively:

A — Auniformly iff ||[Ac—A]| —0 (A:uk—limAk)
Ac — Astrongly iff |[(Ak—A) f|| =0 VfeZ (A=s—IlimA)

k— o0

A — AweaKlyiff (g, (A—A)f)| 0 Vigex (A=w-IlimAy).

k—soo

Technically, we should be defining convergence in termsaif or generalised sequences.
We shall not let this bother us however. It is immediatelyiobs that since|(Ax— A) f|| <



IlA«—All || f|l, uniform convergence implies strong convergence. Alsagusihe Cauchy-
Schwarz inequality, we havég, (Ax— A) )| < ||g]| || (Ax — A) f|| so strong convergence implies
weak convergence.

In chapter 4 we will be working with the strong topology toigercertain results. However,
it will be convenient to use the weak topology on occasion. 3hall then appeal to the
following simple lemma which will allow us to “return” to th&trong topology [20].

Lemma5 If Ay — A weakly and|Acf|| < ||Af|| forall f € .# and k> 0, then A — A strongly.

1.2.6 Linking Mathematics and Reality

It is generally accepted by most practising physicists thatabstract mathematics and the
actual quantities measured in experiment and linked by wehedlled theBorn (or Copen-
hagen interpretation In this interpretation, any physically observable qugray position
of a system) is associated with an operator (cal).it If the system is in quantum state at
some time, experiments to determine the position of theeaystill in general yield different
results but the mean result (called tizepected valleis given by (x) = ||W|| "2 (W,xW) (the
normalising factor of|W|| =2 is usually absent in most quantum texts because it is intiglici
assumed that all the quantum states are normalised sucj¥hat 1). We shall see shortly
that for physical consistency, the operators that cormrespo observable quantities must be of
a particular class called tlself-adjointoperators because these are guaranteed to give only real
expectation values (remember that we work over a complebeltilspace). The probability
that a measurement lies within a 8€ R is given by||W| 2 (¥,E*(B) W) whereE*(B) is an
operator related t& which depends oB, called thespectral measure of. XThis operator be-
longs to the class of operators known as projectors whichalgib be discussed in more detalil
shortly. Projectors are also self-adjoint operators sone&@gain guaranteed real probabilities.

In essence, it is this idea that a system only has a prohabfligiving a particular result
that really differentiates the quantum and classical vgorld

1.3 Dirac Notation

This thesis willnot employ Dirac notation. Nevertheless, we shall for compless, indicate
here briefly how this Dirac notation is related to our morelmeatatical notation. This nota-
tion for abstract Hilbert spaces is extremely common amdngipists and is also extremely
convenient. However, its use does have a tendency to obsouare of the mathematics in-
volved and some of the formal manipulations which it allo@ad are commonly used) are
mathematically suspect to say the least.

In Dirac notation, the vectors of a Hilbert space are den¢teatorresponding to ouf,
and are callet¢tetvectors. In addition, there are vectors dendfgiccalledbra vectors. These
are multiplied together to givelara-ket(bracket): (g| f). The bra-ket is of course analogous
to our inner-productg, f). To establish what the bra vectors correspond to, we rdeadirem
3. Since anyp € .7 satisfiesp(f) = (g, f) for someg € .77, we have thapp () = (9| (| f)) =
(g| f) = (g, f) so(g| corresponds to the continuous linear functionab4fi generated byg.



Chapter 2

Operator Theory

“Mathematicians are like Frenchmen: Whatever you say tarthibey trans-
late into their own language and forthwith it is somethingimety different”
Goethe

2.1 Properties and Classes of Operators

Many of the classes of operators which commonly occur in twammechanics also occur
frequently in other areas of analysis and as such, are welvkrto mathematicians. The
theory involved is thus well known. Therefore in this seatiore shall state many simple facts
regarding these classes of operators. Proofs may be fouhd standard texts (eg [17], [21],
[27], [42]).

2.1.1 Bounded Operators

We shall begin our study of operators with the important ephof continuity. We shall say
that an operatorA, is continuousif f, — f = Af, — Af. We immediately note that if is
bounded thefAf, — Af|| < ||Al| || fn— f|| — 0 soAis continuous. The converse is also true.

We shall however, be often discussing unbounded operatés.an example of an un-
bounded operator, we give the position operatacting inL? (R), defined by(x f) (x) = xf (x).
That is, multiplication byx. Define f, = x|nn11), the characteristic function gh,n+1}; so
IIfn]l = 1. Then,

n+1
Ixfll?= [ x> 0 = o
n

so|[x|| > n ¥nandxis unbounded.

2.1.2 Adjoints

In quantum theory the unboundedness of the position opesatmfortunately not an excep-
tion. Most operators we shall study in relation to quantueotly will be unbounded. This
means that we do not always have continuity at our dispodait lloes mean the theory is
richer if much more difficult. In fact, the study of unboundegkerators was catalysed by the
development of quantum theory. A chief difficulty lies witretdomain of an unbounded oper-
ator. We may define a bounded operatgracting on any vectof € s without encountering
problems sincé\ can only magnify the norm of by ||A|| which is finite. ThusAf has finite
norm and is thus iZ”. However, an unbounded operator has (loosely speakingjtenfiorm
and soAf may not be ins#. Mathematically, we do not allowA to act on such arf and
hence we must restrict the domain of an unbounded operatarexample, the domain of the
position operatok is the set

Dy = {f (x) € L2(R) ; /Rx2|f (x)[2dx < oo}

8



which is a proper subset &f (R) (The functiong(x) = x* when|x| > 1 andg(x) = 1 else-
where is inL? (R) but not%).

We note that whew is a bounded operatodensely defined ig7, it is easy to show using
the continuity ofA that we carextend Aso that it is defined on all”. Hence, when we speak
of a (densely defined) bounded operator, we shall impliegiigume that it is defined on all of
2. Generally, we shall calV anextensiorof Aif 2y D Zp andA'f = Af VI € 95, and
write A’ D A.

We shall now define the adjoirit™ of an operatoA (bounded or unbounded) as follows.
The domain ofA' is the set

I ={g€ Vg, Zhe ., unique, such thath, f) = (g,Af) Ve Za}

and we definé\Tg = h on this set. With such a definition, the question of existemaemati-
cally arises and it turns out thaf exists (in thatZ, # @) iff 2 is dense inZ.

Note that ifA C B whereA is densely defined theB™ C AT. It is not hard to show that
if A€ B(J2) thenA' € B(2) with || Al = ||AT||. We also have that if € Za, andg € Zr
(dense inx7), (g,Af) = (Alg, f) = (g, AT"f) so f € Zarr andATTf = Af. Thatis, AT D A
and soA™T is an extension of. If in addition, A € B(#), thenZa = 7 soATT = A

A related concept (but much more important) is the idea gél&adjoint operatar This
is, naturally, an operator satisfyirg= AT (that is,Za = Zxr andAf = AT f for all f € Zp). A
similar but weaker concept is that ofgmmetric operatowhich is required to satisfyg, Af) =
(Ag f) Vf,g€ Za. Anunboundedsymmetric operator need not be self-adjoint siAcnd
AT need only agree ofa. Thatis,AC Af. We shall discuss some symmetric operators which
are not self-adjoint in chapter 3. As mentioned in Chapteogderators that correspond to
observable quantities in quantum theory must be self-atjor his is because the expectation
values have the formyf, Af) which are real numbers sin¢é, Af) = (Af, f) = (f,Af). This
however, holds for symmetric operators too. The requirdrtieat the observables must be
self-adjoint appears to be made because the spectral th€tireorem 17) cannot be modified
to include all symmetric operators [42]. This theorem liesha heart of any Hilbert space
formulation of quantum theory.

We shall finish this section with a very important result whicses the uniform bounded-
ness principle. We also introduce the common phrasingZalt= s thenA is said to be
definedon # and otherwiseA is said to be defineth /7.

Lemma 6 (Uniform Boundedness Principle) Suppos€ @,) C " is a sequence of continu-
ous linear functionals o# for which |g ()| < c(f) for all n where ¢ f) are constants.
Then,3C > 0 such thatg, ()| < C|| .

Theorem 7 (Hellinger and Toeplitz) Any symmetric operator defined o#f is bounded.

Proof. Let A be symmetric and defined o so A' is also defined oZ. If Al is
unbounded thefi (g,) € # such that|gy|| = 1 and||ATgn|| — . We may definep, (f) =
(on,Af) VT €7 and for any givem, so these functionals are bounded thus continuous. For
fixed f then,|@, ()| < |lanl||||Af|| = ||Af]| =c(f). Therefore, by the uniform boundedness
principle,3C > 0 such thatg, ()| <C||f|| Vf e 2. Inparticular,|g (Alg,) | = HA“gnH2 <
C||A'gy||. Hence||ATgy| is uniformly bounded b, contradicting unboundednessAft. Af
is thus bounded and sinéeis symmetricA = AT on.# soAis also boundedm

Thus we have proven that there are no unbounded self-adjpirators defined og? .
Therefore in quantum theory, where unbounded operatorgnab(as it were), domain prob-
lems will be a common nuisance.

2.1.3 Projections

Let us consider a closed subspadeof 7. Since# = M @ M+ (the direct sumof M and
M+, its orthogonal complement) we can write= f’ + f” for any f € .# wheref’ € M and
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f” € M+. We define theorojection operator(projector) onto Mby Ey f = f/. An equivalent
definition is that an operatde € B(¢) is a projector ifE is self-adjoint and idempotent
(E?=E). E then projects onto the stl = {f ¢ # :Ef = f}. We see immediately that
providedM # {0}, ||[Em|| = 1. There are a number of other algebraic properties of prajecto
of interest which we list below.

Theorem 8 Let By and By be projectors onto closed subspaces M and N#frespectively.
Then:

M_LN iff EyEN
EuvEnN is a pI’OjECtOI’, BannN, iff [EM,EN] =
Em +Enisa pl’OjECtOI’, BioN. iff EMEN =

ZlEM‘ is a projector, B, iff EmEm, =
i=

o oo o

Vi, j.
where[A, B] = AB— BA,.

We shall also find it convenient to introducepartial ordering on projectors. We shall
defineEy < Ey whenM C N.

2.1.4 Isometric and Unitary Operators

An isometric operatofor isometry, U, satisfiegU f,Ug) = (f,g) Vf,ge 2. Ifinaddition
the range olJ (denotedZy) is s thenU is aunitary operator Equivalently, it is easy to
show thatJ is isometric iff|U f|| = || f|| Vf e .. It obviously follows thatjjU| =1. We
shall also define thieft-inverse U1, of an operatot) by U~1U = | (the identity operator)
whereZ,-1 = %,. U1 exists iff the equatiot f = 0 has the unique solutioh= 0. We then
have the important characterisation tbiat B (2#) is unitary iff UT =U 1.

There is a useful link between unitary and self-adjoint afms - this is theCayley trans-
form. The Cayley transform of a symmetric operafors defined by = (A—i) (A+ i)*l.
This may also be inverted giving = i (1+V)(1-V) ! and Zp = #1_v. We note that
(A+i)! exists (as a left-inverse) since

[(A%i) |2 = [|AF|2 i (AF, ) Ti (F,Af) + || £]|> = |Af]2+ || ]2 (2.2)

o (A+i)f =0= f = 0. Furthermore, we havg(A—i)f|| = ||(A+i) f|| so taking f =
(A+i)"tg, for someg € Za.i, givesH(A— i) (A+i)_1gH = |lg|l. Thus,V is isometric from
Zn.i 10 Zp_i. Of importance is the fact that we can do slightly better thas f38].

Theorem 9 Suppose A is symmetric and densely defined. Then A is seifftaiffjits Cayley
transform is unitary.

It should be realised that even thoughmay be unbounded and hence not everywhere
defined, its Cayley transform is defined everywhere. Thdtisnot just unitary on its domain
of definition. We shall demonstrate this explicitly in secti3.2.1 with the position operator.

2.1.5 Closed Operators

We know that unbounded operators are not continuous. Hawawseaker version of con-
tinuity is available. An operatoA in 7 is closedif given a sequencéf,) C Za sat-
isfying f, — f and Af, — g for somef,g € 7, we also have that € ¥, andg = Af.
Clearly A is closed ifA is continuous. We also note that the adjoint of any operator i
closed. We see this by taking — f andA™f, — g ((f,) C Zar) and noting that ih € P,
(9,h) = liMp_e (ATfn, h) = limp_o (fn, Ah) = (f,Ah) so f € Z,r andg = ATf. We thus get
the nice result that every self-adjoint unbounded opelatolosed.
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Let us now define thelosureof an operatoA (when it exists) to be the closed operator
A which is such thafA C C whereC is any closed extension & A exists wheneveA has a
closed extension. IAis symmetric,AJr D A, soA exists. In fact, the relationship between
such an operator and its closure is simple [38]

Theorem 10 If A is densely defined and symmetric tifea AT,

In the next chapter we will construct self-adjoint operatioy closing symmetric operators.

2.2 Spectral Theory

The spectral theory of operators is the natural generalisaf the eigenvalue theory of matri-
ces and is fundamental to quantum theory. It is not an easyythessentially because we shall
be working with infinitely many dimensions, but it does féatie much algebraic manipulation
and gives insight into the behaviour of particular clasdesperators. The ends will justify the
means. Our primary concern here is the spectral decommosifian unbounded self-adjoint
operator as these are the most important in quantum meehariic do this, we shall follow
the original method of Von Neumann.

2.2.1 Introduction - Finite Dimensions

We shall begin with a short preview of spectral theory by asag that dim7Z’ = n < .
We shall decompose an operafousing the familiar process of finding eigenvectors of a cor-
responding matrix. We define aigenvalueof A to be a complex scalax which satisfies
Af = Af for somef # 0. The vectorf is aneigenvectoiof A corresponding td. The eigen-
vectors for a particular eigenvalue span a subspace (eigenspacgeof .77 which we shall
denote byM,, the set of eigenvalues we shall denotedby

Now, suppose tha is self-adjoint. Therefore the eigenspace&agpansz’ [29]. That is,
J = D®)egMy. We can thus decompose ahy 7 uniquely asf = 5, ., f) wheref, € M,.
In fact, using the projection operators oty , which we shall denote by, , we can write

Af = AY f1=F AR =TS Al = AEy,f

Aec Aeo Aeo Aec
= A= z )\EM,\'
Aec

We can be more transparent with respect to what will followdoglering the eigenvalues,
A1, < ... <,An and lettingE,, = ¥ <) Em,. TheE,, are projectors by theorem 8 as thig
are all orthogonal [27]. Then we can rewrite the decompmsiith the form

n

A= Z Ak (E)\k - E)\k—l)
k=1

whereE,, = 0. This looks suspiciously similar to a Riemann approximatoithe (symbolic)
integral

A / AdE, .
That this integral representation can be shown to hold (ierese) in infinite dimensional
Hilbert spaces is the important result that we shall deriaeiction 2.2.4 as the spectral theorem
for self-adjoint operators.

2.2.2 Spectral Measures

It is apparent that if we were to try to write the decompositid a self-adjoint operator over
a finite dimensional Hilbert space as an integral then thelyaof projections{E, } must be
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in some sense stationary except whies Ai, an eigenvalue, whel, ‘increases’ in a discon-
tinuous fashion. This is most readily seen in the fornteja=  ,<) Em, from the previous
section where it is easy to see thgt < E, (partial ordering on projectors) fi < A. The
same idea will form the starting point for the general trezibrof infinite dimensional spaces.
This type of generalisation is necessary because we shauater the added complication
that eigenvalues are not the only points at wHighcan increase.

We shall define abstractlyspectral functionspectral family to be a functiorg, defined
for all A € R which takes projection operators as its values and satisfies

Eyx < E, wheneveu <A,

i,l*)/\Jr
E.»« = s—-IlimE, =0andE, =s—IlimE, =1
U U
H——o0 H—00

where 0 is the zero operator ahd the identity operator.
Similarly, we shall define apectral measuréo be a projector-valued function defined on
a collection of subsets @ satisfying

E(R) = |
andE(OBk> = %E(Bk)zs_"m C E (By)
k=1 k=1 =

for any countable sequen¢By) of disjoint subsets oR. For any spectral measure then, we
haveE (0) = 0 andE (B1) E(By) = E(B1NBy) [17]. Furthermore it can be shown that any
spectral measurk (B) generates a unique spectral functiéf and conversely, through the
correspondence [38]

Ex = E((—%,A]).

All of these results may be generalised predictably frontfioms overR to functions oveiR".

2.2.3 Spectral Theorem for Unitary Operators

Although we are primarily concerned with the decompositidran unbounded self-adjoint
operator, we shall derive this from the decomposition of iamn operator which is bounded
and hence more tractable. Other derivations may be fourtiriieind [42].

We begin with a topological lemma, proved in [20]. We shaflcaheed to define the
important concept of positivity as it applies to symmetngemtors. A symmetric operatér
is positiveif (f,Af) > 0 for everyf € Za. This concept induces a partial ordering on the set
of bounded self-adjoint operators: we wrke> B if A— B s positive.

Lemma 11 Suppose we have a monotonically decreasing sequence afidmbpositive self-
adjoint operators (A> A, > Az > ...). Then A converges strongly to a bounded self-adjoint
operator A

LetU be a unitary operator. SindgJ || = 1, we shall associate it with the functi@?
which has modulus one. This may be conveniently achievedbgtoucting a transformation
taking the trigonometric polynomials in(.7#’) . Specifically, we map (€°) = 5¢__, ce*®
to S UK = p(U). Itis easy to see that the mapping is linear, th4e®)q(e?) is
mapped top(U)q(U), and thatp(€?) is mapped tqp(U)]T. Our mapping is therefore a
type of x-homomorphism The mapping also preserves positivity since (iaie) > 0 then by

Fejers lemma [48]p (€°) = |q(€?) \2 for some trigonometric polynomial. Thusp(U) =
[qU)]Tq(U) and (f,p(U) ) = (q(U) f,q(U) f) > 0, sop(U) is positive. We now invoke
lemma 11 to extend this mapping to the Sedf all functions which are the pointwise limits of
sequences of monotonically decreasing positive trigotioongolynomials.
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Lemma 12 Suppose thatp,) is a sequence of monotonically decreasing positive trigoete
ric polynomials so that (8) = limp_.. Pn (e'e) € . Then there exists a positive symmetric
operator Ac B(s¢) such that p(U) — A strongly and A is independent of the choice of se-

quence(py) -

Proof. Since(p,) is monotonically decreasing and bounded below biefhma 11 guar-
antees existence #f Also (f,Af) =w—Iim (f,py(U) f) > 0, soAis positive. Furthermore,
Nn—oo

if iMoo P (€€) = limp_c P (€9) everywhere then given am 3k such thatp” (€°9) <

p? (¢9) +1/n, since both sequences are monotonically decreasing. ﬂ‘kHL(SJ) <p? U)+

1/n,sos—Ilim pﬁl) (U)<s—lim pﬁz) (U). The opposite inequality is obtained similarly. Hence
n—oo n—oo

Ais independent ofpn). m

This lemma is extremely important as it allows us to work vtftl limits of trigonometric
polynomials. In particular, we should like to apply the désoi functionsy which would give
a projector under our mapping. Since projectors are ideempotve require our function to
satisfy x (8) = [x (8)]* everywhere. Thug is a characteristic function. This also requires
X to be real-valued, so the mapping will give a self-adjoinémgpor, just what we want of a
projector. These projectors will be used to construct atspleftinction forU.

Since we are taking pointwise limits ofperiodic trigonometric functions, the character-
istic functions we employ must also be-periodic. Also, we have seen that spectral functions
and spectral measures are relate@®diy E) = E ((—o,A]) whereE_,, = 0 andE. =|. Thus,
on [0,2m], we shall use characteristic functions of the interf@lA]. More concretely, we
shall define a family of &-periodic function2, by

Q,(6) = OwhenA <0,
Q,(6) = 1lwhenA >2m
andQ, (6) = X () for0<A <2m, 0< 6 < 2.

We now show tha®), € ¥ by taking a strictly decreasing sequence of continuousrmifftiable
functions(g,) which converge t®, pointwise and satisfg,.1(8) < gn(8) — &, everywhere
(whered, > 0). Thatis, there is a non-vanishing ‘gap’ between any twbef,. Each of these
can then be approximated uniformly by a sequence of trigatgenpolynomialsp, m () [38]
and because of the ‘gap’ between thewe can choose for eacha pyx, such that the,, (6)
are also strictly decreasing everywhere. Clearly this eegel of trigonometric polynomials
must converge pointwise @, soQ, <€ ¥.

The projectors corresponding @, shall of course be denoted I&4. It remains then to
prove that these projectors do in fact constitute a spefctnation and to show how this spectral
function is related to our original unitary operatdr

Theorem 13 (Spectral Theorem for a Unitary Operator) The E, defined above constitute a
spectral function with which U may be written
2n

U= [ é€AdE,.
0

Proof. The last requirement (see definition) is apparent from thestraction. The first
is seen by noting that ift <A, Q,(0)Q, (6) = Q,(6) which maps to EE, = E,, hence

E; < Ej). We thus need only show thaj E s—limE,,. Consider a monotonically decreasing
H—AT

sequence of trigonometric polynomiglpn) which converge td, pointwise but for which
P (€9) = Q) 11/n () for all n. Thus p(U) > Ej;q/n. However, since E< Ejq/n,

E)\ <S— |imE)\+1/n <S— lim Pn (U) = E)\,
N—oo Nn—oo

so we have f=s—IlimE, /5. Since for any sequence convergindtmom above, there is a
Nn—oo
subsequence @¢1/n) which converges faster, the second requirement is mej, $o &spectral
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function.

Now, since k = 0 whenA < 0and E, =1 whenA > 2m, E, is only increasing orj0, 21 .
Let us partition this interval int@® = Ag < A1 < ... < Ap_1 < Ay = 2rmand choose\; such that
A1 <A< Acfork=1,....n. Ifweletg e [A_1,A, thenQ,, (@) —Q,, , (@) = o« (1if
k = ¢ and 0 otherwise) so it = max(Ax — A1),

<lo—Ad<e

v ; & [0y, (9)— D, , (9)]
=1

< |dv -

by the mean value theorem. Since this holds for any k we haeay® < [0, 271,

n

ei9 - Z el)\ii [Q)\k (9) - Q)\k—l (9)]

k=1

2
2
< €5

Writing this as a function multiplied by its conjugate anénhapplying our familiar mapping
gives

no
VIV < g2l whereV=U - 5 é%[E, —E,, ,].
k=1
That is,

IV E]12 = (f,VTV ) < 2| f|[*so|V| = <e.

noo
U - Z e [E)\k - E)\k—l]
k=1

If we now insist that = max(Ax — Ak-1) — 0, then n must necessarily go 4ogiving

n 2m
U=u—ImYS &&[E, —E ;/ drdE, .
£0 kZl [ Ak /\k—l] 0 A

We have essentially defined thpectral integralappearing in the previous theorem by the
uniform limit of a Riemann sum of operators. Although the r@persE, induce a spectral
measureE (B) onR, this is clearly not a measure in the usual sense (being aperaued). It
is therefore not obvious that the usual results applyingitegration are valid. However, it is
easy to construct a bona-fide measure from a spectral meastirge shall do so shortly.

Let us first define @omplex measuren R to be a finite linear combination of finite mea-
sures orR, a finite measure oR being a measure satisfyingv (R) < . Itis easy to see that
since integration is linear, results holding for integratiwith respect to a measure will also
hold with respect to a complex measure.

We choosef,g € 7 and take a spectral measuE¢B). Let us g (B) = (f,E(B)g). Itis
easy to see that any function of the forniB) = (f,E (B) f) is a finite measure oR since pro-
jections are positive. However, one can usegaiallelogram identityf27] to write (f, E (B) g)
as the sum of measures of the fou(B). Therefore,(f,E (B)g) is a complex measure.

Now, since uniform convergence implies weak convergeneecan restate the last result
in terms of the weak topology as follows:

NI, 2T A iA
<f’Ug>:yLn0kZlel (1, [Ex —Ex] 9>E/0 e d(f,EA9>=/Re' dusg((0,A]).

The spectral integral may now be recognised in the weak ¢ggohs an ordinarRiemann-
Stieltjesintegral and as such, general measure theory results suble &minated Conver-
gence theorem can be applied. We shall use this to prove ltheriiag.

Theorem 14 The spectral function of a unitary operator is unique.
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Proof. Suppose thaE, andF, are both spectral families fdy, unitary. It is easy to
check using the decompositith=u— Iiom zﬂzle'"ﬁ [FAk — FAH] and the orthogonality of the
E—

projections|F,, —Fy, | (k=1,...,n) that

pW) = [ p(d)aR and (Low)g= [ p(¢})ditRg

hold for any trigonometric polynomiap (¢*). Now, Qy (A) as defined previously is the
pointwise limit of a monotonically decreasing sequenceasitive trigonometric functions so
by dominated convergence,

2n ) 2n i\ )
[Ty M)d(1.Fag) = im [ pn () d(f.Fag) = lim (F.pn(U) ) = (1. Eyg)

:><f,Ewg>:/Owd<f,FAg>:<f,ng>—(f,Fog>:<f,F4,g>.

Since this holds for any,g € o7, Ey = Fy, for all  so the spectral function is uniqua

2.2.4 Spectral Theorem for Self-Adjoint Operators

We have shown that a unitary operatdron R can be decomposed using the unique spectral
function E, associated wittJ. We shall now show that a similar result holds for arbitrary
(possibly unbounded) self-adjoint operators. This wilkohieved by relating the self-adjoint
operator to a unitary one by means of the Cayley transforeofdm 9). We shall need the
following lemmas. The firstis proven in [34].

Lemma 15 Letu be a measure oR and letv (S) = [gdu for some fixed measurable function
g and any measurable subset $henv is also a measure ovék and [; fdv = [; fgdu for
any measurable function f and measurable subset B

Lemma 16 If Fy is the spectral function associated with a unitary operaidhen U R, = FyU
for all @.

Proof. Chooseg. For eachn > 0, let us choose a partition ¢, 271 as in the proof of
theorem 13 such that m#bré”) A | < 1/n. We define

no. (nyr
=3 (R )

K=1 -t
so by theorem 13), — U uniformly. Since ther, ») commute withF,, we havelnF, = FgUn

for all n. But, the separate multiplication of opkerators is contirmiouthe uniform topology
[20] soUnFy — UF, andF,U, — FpU. Therefore, by uniqueness of limitdF, = F,U. m

Theorem 17 (Spectral Theorem for a Self-Adjoint Operator) If A is a self-adjoint operator
in 27 then there is a spectral functiom,EA € R such that

(1.9 = [ Ad(f.Exg)
forall f € 77 and ge Za.

Proof. SinceA is self-adjoint, its Cayley transfori is unitary. LetF, be the unique
spectral function associated with and F (B) the corresponding spectral measure\se-
J2"é?dF,. Now, if g€ Za, Ag=i(1+V)hwhereh= (1—V) 'g. We have then,

. . o rem _2m 0
(f,Ag — |(f,h>+|(f,Vh>:|/0 d<f,Fq,h>+|/O d9d (f,F,h)
_ i/ozn(lJré“’)d(f,F(ph}:/Ozn<—cotg> (1—€9)d(f,Fsh)
_ /0‘2”<_cotg>dvf,h((o,cp]) 2.2)
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where we have used lemma 15 in letting

ven(B) = [ (1-€°)d(f.F((0.a)N).
However, we derive from lemma 16 agd= (1—V)h that
(f,F(B)gy = (f,F(B)h)—(f,F(B)Vh) = (f,F(B)h)—(f,VF(B)h)
2m 2
- /0 d(f,Fq,F(B)h}—/o d9d (f,F,F (B)h)
_ /Ozn(l—ei“’)d<f,F(pF(B)h>

and since,F (B) =F ((0,¢])F (B) = F ((0, 9] N B) [17], this becomes

(1.F (B)g) = [ (1-€*)d(F,Fgh) = vin(B).

Substituting this into equation 2.2 then gives

tag = [7(~cod)dvin(o.0) = [ (~cord ) a(r.F (.00
_ /02n<—cotg>d<f,F¢g>:/R)\d<f,EAg>

where we make the substitutidn= — cot(¢/2) SOE) =F_5.or1) =Fp.

This is the spectral decomposition of an arbitrary selbedjoperator. The spectral func-
tion E, is clearly unique sinc&, is unique and may be increasing on the entire real axis. It
is also apparent that this theorem only guarantees thatdbentposition holds in the weak
topology. We cannot expect the corresponding decompaoditidiold for an unbounded self-
adjoint operator in the uniform topology since any partiainsmust necessarily have finite
operator norm (being a linear combination of projectors)nifafm convergence is however
achieved for bounded self-adjoint operators [42].

2.3 Functional Calculus

When proving the spectral theorem for unitary operators gfendd polynomial functions of
operators and extended this idea to the set of functiomfich are pointwise limits of mono-
tonically decreasing sequences of trigopnometric polyadsni One immediate advantage of
having a spectral decomposition at hand is that it enablés estend this idea again and dis-
cuss a much larger range of functions of operators. In faetshall also find it necessary
to discuss functions of several operators. When these mpdtactions exist and have the
desired properties is discussed below.

2.3.1 Compatible Operators

Let us suppose that we have two self-adjoint operafgrand A, with spectral measures
E”(B1) andE”2 (B,) respectively. We say th#; andA, arecompatibleif the observables
that they correspond to may be simultaneously measurefitoealy accuracy. The Heisenberg
Uncertainty Principle and its generalisations ([4] or [4&hte that this simultaneous measure-
ment of observables is only possible if the operators cpomding to the observables com-
mute. That isA; and A, arecompatible iff A andA, commute. Therefore, Heisenberg's
Uncertainty Principle states that the position and monrardperators (section 3.2) are incom-
patible. However, we must be careful when defining the coraniudf unbounded self-adjoint
operators as the operatdfA, — AoA; may only be defined ofi0}. An alternative definition
which reduces to the usual one for bounded operators [38his\; and A, commute if their
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spectral measures commute. Eft (B;) andE*2 (B,) commute therE”: (By) E”2 (B,) is also

a projector-valued function dR? and it is not hard to see that this also meets the requirements
of a spectral measure. JustE&: (B,) is associated with the operatai, it is natural to as-
sociate the spectral measuEé: (B;) E”? (B,) with functions ofA; andA,. The point is that

the theory we shall outline below only allows us to define fioms of compatible operators.
We cannot define a spectral measure for functions of incabipaiperators as we have done
above because thdif' (B;) E”? (B,) may not be projector-valued.

2.3.2 Functions of Compatible Operators

Let us suppose that we have two compatible self-adjointaipesA; and A, with spectral
measure€” (B;) andE”? (B,) respectively. We shall denote I8/(B) the spectral measure
onR? E(By x By) = EA(B;) E®?(By). If p(A1,A2) is a measurable function d&? which is
bounded byM say, then we can form the functional

0(1.9) = [ P(h1.)2)d(f.Ey,0)

whereE, ), is the spectral function associated with the spectral meds(B). This func-
tional is defined for anyf,g € .7# since

/Rzp()\l,/\z)d<f7E)\l,)\29> </RZMd<f>E/\1,A29> =M(f,9)

so@is bounded. Itis easily verified thatis a sesquilinear functional off” x #. Hence we
can use the Riesz representation theorem to infer that theses a bounded operator which
we shall denote by (A1, A) satisfying

P(1.9) = (F.p(ALADG) = [ P(11.12)d(1.Es,0).

Theorem 18 (The Functional Calculus)Let p(A1,A2) and g(A1,A2) be bounded measurable
functions orR? and let A and A be self-adjoint operators. Then, for anycC,

(cp)(A1,A2) = cp(A,Az),

(P+0a)(A1,A2) = p(ALA) +0(ALA),
P(ALA) = [p(ALA)]
and (pa) (A1,A2) = P(A1LA2)d(AL,AL).

That s, this mapping from the set of bounded measurableifunscto B(7#) is ax-homomorphism.

The proof of this theorem is based on theorem 17 and the usopégties of integration
[42]. This theorem also proves that any two functions of tbhepatible operatorgy; and
A, must commute since the ordinary functions obviously conemult is also clear that any
function of the operators must also commute with the splecteasure.

It is also possible to extend the functional calculus furtileencompass unbounded func-
tions [42]. The only complication here is that because thetions themselves are unbounded,
the operator functions will be unbounded in operator norment¢, domain gquestions are a
nuisance.

Theorem 19 Let p(A1,A2) and g(A1,A2) be measurable functions @? and let A and A be
self-adjoint operators. Then, for any=C,
(€p) (A, A2) = cp(Ar,Az),
(P+0) (ALA2) 2 p(ALA2) +q(ALA),
P(ALAY) = [p(ALA)]" if p(AL,Az) is densely defined,
(pA) (A1, A2) 2 p(A1,A2)q(Ag,A2)
and (p") (A, A [p(A1,A2)]" for all integers n

~— ~— ~— ~—
U

Furthermore, sincé € Zpa, a,) iff [|P(A1,A2) f|| < o0, we can write the domain qf (Ag, Az)
as the set of € 2 such thatfgz |p(A1,A2)|°d (f,Ex 0, f) < o.
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2.4 The Spectrum and the Resolvent

We shall now define thepectrumof a (possibly unbounded) self-adjoint operatoto be the
set ofA € R such thatA— A has no bounded inverse. This definition is also valid forteaby
operators. The spectrum Afshall be denoted by (A). We say that an operatéris bounded
belowif there is ane > 0 such thatf|Af|| > || f|| for every f € Za. Therefore,A € o (A)
whenA — A is not bounded below. In fact, for self-adjoint operatohss ts the only way that
A— A can have no bounded inverse [17].

So, givem € g (A), A— A is not bounded below so there exists a sequence of vediors
such that A—A) f, — O but f, - 0. We shall distinguish two cases. First, if there actually
exists anf # 0 such thatA— A) f =0 then we say that is in thepoint spectrunof A, denoted
by o, (A). In this case is aneigenvalueof A and sinceA— A is not 1 : 1 its inverse does
not exist. Second, if there does not exist such anenA— A is 1: 1 so(A—A)~* does exist
(as aleft inverse). However, then there exists a sequaneg(A— A) f, such thag, — 0 but
(A—A)"*gh = fn - 0. Thus,(A—A)is an unbounded operator aids said to be in the
continuous spectruraf A, denoted byo. (A).

There is an equivalent definition for a self-adjoint operaavith spectral measurg (B)
[38] which is that the spectrum is the set:

O(A)={A€R:E((A—8,A+€))£0 Vd,&>0}.

That is, the set of all value3d for which E, is increasing on any open interval containing
A. The spectrum is then the support of the spectral measure. pdiné spectrum and the
continuous spectrum are then defined as the sets

0p(A) = {A €R:E({A}) £0} ando (A) = 0 (A)\ 0p (A).

This definition, whilst not so elegant as the first (which isoamore general), does facilitate
the physical interpretation of the spectrum of a self-adjoperator.

The spectrum of a self-adjoint operators physically repmesall the possible values that
one could get for the corresponding observable when makimgasurement of the system.
To see this, recall that the probability that a measuremighiecobservable correspondingAo
lies within a seB is given by|W| 2 (¥,E (B) W) whereW is the quantum state of the system
(section 1.2.6). Therefore, BN o (A) = @ then by the second definition, the probability that
the measurement is Biis zero.
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Chapter 3

The Operators of Quantum Theory

“A mathematician may say anything he pleases but a physiosthe at least
partially sane’”.
J W Gibbs

3.1 The Fourier Transform Revisited

Let us now discuss the Fourier transform in more detail. Ftational simplicity, we shall
work with just one dimension - the generalisationsiimensions are immediate. Recall that
in section 1.2.4 we defined the Fourier transform of a rapildigreasing functiori € S(R) by

the inverse Fourier transform éfe S(R) by

/ f (x) & **dx (3.1)
R

f(x) = %T /R f (k) d*dk (3.2)

and the Fourier operatét on S(R) by F f = f. We shall now extend this definition. It should
also be noted that for complete generality, we should define

f (k) = (2nh) Y2 /R  (x) & /gy

whereh is Planck’s constant divided byr2 However, it is common practice in theoretical
physics to work with units in whiclh = 1, thus simplifying the equations. This implicit as-
sumption of course validates our definition and brings  limte with the familiar mathematical
one.

Since anyf € S(R) is bounded and decays rapidfymust be square-integrable also. That
is, S(R) C L2(R). Furthermore, it is easy to see that all functions of the fprtx) e <, o >
0, are of rapid decrease. Since these includdthemite functionsvhich form an orthonormal
basis ofL? (R) [27], we can conclude th&(R) must be dense ib? (R).

It is also well known that for any € S(R), Parseval’'s equalityolds:

/R]f(x)\zdx:/ﬂg‘?(k)‘zdk

In terms of theL?-norm, this is||f| = HfAH = ||Ff||, so the Fourier operatdf is isometric

on S(R). In fact, since the Fourier transform and the inverse Fourarsform are indeed
inverses on the spa&R) [40], F mapsS(R) ontoS(R). ThereforeF is unitary. Thus- is
bounded and densely defined and so may be uniquely extenelettb(s2.1.2) to an operator
defined on all oL.? (R) which by continuity, must be isometric. This operator wellstenote
by Ug. That this extension is in fact a unitary operator followsiirthe next lemma.
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Lemma 20 If W is dense in a Hilbert spaceZ” and its imagéV' = A(W) under an isometric
operator A is also dense ¥, then A is unitary.

Proof. Choosef € . so3(f,) C W such thatf, — f. Now, sinceA is isometric, it is
1:1 so for everyf,, there is a uniqug, € W such thatf, = Ag,. Also sinceA is isometric,g,
must also be convergent to some .72 and sinceA is continuous,f = Ag. HenceA is onto.

[ ]

Thus, since® is unitary on the dense subspa&R), Ur is a unitary operator ob? (R). It
also follows that the inverse Fourier transform can be alddrtoL? (R) and that its extension
ISUE L. We note that for an arbitrary? function, the integral definition of the Fourier transform
may not be correct as the integral need not exist.

3.2 Coordinate Operators

3.2.1 The Position Operator

We have also already introduced the one-dimensional pagiferatox and have claimed that
it represents the observable quantity of position of a glattand must therefore be self-adjoint.
We will now justify this assertion. Recall that we definetb be the multiplication operator
onL?(R):

(xF) () = xF (X), _@X:{fe,%”:/lé|xf(x)|2dx<oo}

(see section 2.1.1). We immediately derive that
(1.xg) = [ TOxa(ax= | xTR)g(x)dx= (xf.g
R R

sox is symmetric. Thus, the Cayley transform»fV = (x—i) (X+1)~ Lis isometric from
Pxsi 10 Hx_i. However, givenf € L2(R), the functionsg. (x) = f (x) /(x+i) are square-

integrable:
e

since|x+i| > 1forxc R. Clearly(x4i)gs = f sof € Zyi. Thatis, % = L?(R) soV is
a unitary operator oh? (R). Thereforex must be self-adjoint by theorem 9.

Let us now investigate the spectrum of the position operaltie position operator has no
eigenvalues since

f(x)|?
X£i

dx</ I (%) dx < o0
R

xf = Af = [[x=A)f|=0 = /|(x—)\)f(x)|2dx:0
R
=  |[x=APf(x)=0ae = f(x)=0ae.

Hence the point spectrumy, (X) is empty.
However, in an extremely loose sense, Bieac delta functionsd (x— A ) can be thought
of as ‘eigenfunctions’ corresponding to the real eigerwalisince

/xc‘i(x—)\)dx:)\ ://\5(x—)\)dx

R R

in a distributional sense [25A(must be real so that it falls within the range of integration)
That is,x0 (x—A) =Ad(x—A). Following this intuitive idea then, we take for eaghe R

the sequence @f functionsg,, (x) = NX(a x+1/n (X) (Xa is the characteristic function of the set
A) which ‘approximate’ the delta functiod(x—A). Then,

A+1/n
|](x—)\)¢n|]2:nz/ (x—)\)zdx:g—ln—>0asn—>oo.
A
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Therefore,(x—A) ¢, — O but ¢, — 0 so the inverse operatéx— A )~ cannot be continuous
and is thus unbounded. By the discussion of section 2.4 theng; (X) .

Therefore, the spectrum of the position operator is whatigtimuous and consists of the
entire real axis. This corresponds to the intuitive idea tiwa position of a free particle in one
dimension may be anywhere and that the position is not disetkas say, the energy levels of
an atom are known to be.

We shall conclude our discussion of the position operatondiyng that if we use the
spectral theorem (theorem 17) to write

(fxg = [ Ad(1.Erg

whereE, is the spectral function associated withand use the functional calculus also, we
can derive that

- [dtEg = [ oM d(LEg = (faeg. (3
B R

That is, the projector-valued spectral measure associgitbdx, E (B), is just multiplication
by the characteristic functiogg (X) .

3.2.2 The Momentum Operator

Let us now define the one-dimensional momentum opegaby p = UgleF whereUr is the
Fourier operator acting dr? (R). That is, whereas is a multiplication operator in coordinate
spacepis the corresponding multiplication operator in the Foutdiemain, or what is generally
known in physics as momentum space. The domaipisftherefore

D= {f :/sz‘fA(k)‘zdk<oo}.

This is justified by noting that given anyc %,

~

(pF) =Ur Us XU f) =xf = (pf) (k) =kF (K).
The symmetry o follows immediately from that ok and the unitarity oftJg :

(f,pg) = (f,Ur XUrg) = (Ur f,xUrg) = (XUr f,Urg) = (Ug XUk f,g) = (pf,g),

and it is easy to see thatis densely defined sp' exists.

The representation of the momentum operator in coordinadeesis also easily derived.
However, since the integral form for the Fourier operatoesinot hold for allL? functions,
we must also restrict the momentum operator to achieve areesentation. Let € S(R).
Then,

(pHH(x) = \/_n/ kF (K) *dk = \/—_n/ 9 = (Flod™) dk

e'"xdk} 9 (x) (3.4)

dx [\/_n/f ox

where the interchange of integration and differentiati®qustified by Leibniz’s rule and the
properties ofS(R) [36].

We can now easily show thatis an unbounded operator. Let us deffnéx) = /ne" e /2
for each positive integar. Then,||¢y|| = 1 for everyn and¢, € S(R). However,

2 2
Il = [164]° = [ 1080 [ dx=rPr® [ e mee= T

Thus||p¢n|| — o« asn — o and sop is unbounded.
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We have already shown thptC p'. To see the converse, we use the relations [27]
(AB'OBfAT '  ACB = UACUB,AUCBU

whereA, B and AB, are densely defined and is unitary. Now,x = UgpUs* sox" = x =

(Ue pUF‘l)T D Urp'Ug?t. Since the Fourier operator and its inverse are unitary, we ha
Ug XUk D p' which is justp D p'. Thuspis self-adjoint.

To summarise then, we have now also shown that kathd p are unbounded self-adjoint
operators inL?(R). With regards to the spectrum @f we recall from section 2.4 thakt ¢
o (p) iff p—A has abounded inverse. Thisis clearly equivalent to reggthatUg (p—A) UF‘1
has a bounded inverse which will be the cas#ifipUz* — A = x— A has a bounded inverse.
Thuso (p) = 0 (x) =R, the real line. In fact, the point spectrum is empty by a siméa
gument where the word bounded is removed, so the spectrymisoivholly continuous also.
As in the case of the position operator, we associate thistr@#h the intuitive idea that mo-
menta are not discretised. Furthermoref}f and EAp are the spectral functions afand p
respectively, then we also have the relation:

(f,pg) :(U,:f,xU,:g>:/R)\d<U|:f,E§U,:g>:/R/\d<f,UF*1E§U|:9>

SOEP = Uz 'EXUE.

3.3 Energy Operators

3.3.1 The Kinetic Energy Operator

The kinetic energy of a non-relativistic particle of masss classically related to the momen-
tum p of the particle byK = p?/2m. If we use units in which the mass of the particle 21
(just as we choose units in whi¢h= 1) then this is juskK = p?. Analogously, the kinetic en-
ergy of a quantum system (with= 1/2) is represented by the operakty = p?, called thefree
Hamiltonianof the system. Sinck is a real-valued (unbounded) function of the self-adjoint
operatorp, Hp is also self-adjoint (and unbounded) by theorem 19. (thds densely defined
is clear and shown below). We also note that in momentum sphds just multiplication by
k2 :

Hof (k) = ppf (k) = kpT (k) = k2T (k).
The spectrum oflg must lie on the real axis and it is easy to see tgt= p?> = UF‘lx2UF.
Therefore by the discussion of the previous section, thetspefHy andx? are identical. It

is also easy to check that has no eigenvalues, s (Ho) is empty.
Suppose thak < 0. If we choose any € L?(R), then

2 f 32 2 200 2
16€=2)0]" = [ 6¢=2)%10 001Pax= 27 [ |6 (9 dx=A2 4]

since (}X2—A) > |A|. Thereforex2 — A is bounded below s¢x2—A) " is bounded above.
That is,x’ — A has a bounded inverse aAd? o (Ho).
However, ifA > 0, we can take the sequengg(x) = \/ﬁx[ﬁ VA1) (x), sothat||¢n|| =1
for all n but
VA+in o, _ 20Ar? +15V/An+ 3

H(xz—)\)tanz:n/\/X (@ —2)?dx 57 —0asn—

S0 (X —A) ¢ — 0 but¢, - 0. Therefore(x? — )\)_1 is not continuous and sb € a; (Ho) .

We have thus shown that the spectrum of the free Hamiltorsgruiely continuous and
runs from 0 toco. Physically, this allows the free (unbound) particle to takey positive
energy, which is exactly what one expects.
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Now, recall that in coordinate spage has the differential form-id/dx on the functions
of rapid decreas&(R). However, we have no guarantee that this restrictiorp a$ self-
adjoint. But, we can conclude thely = p? has the form-32/dx? on S(R) and in fact, this
is the representation which is usually first encounteredémentary quantum theory. This
restricted operator is also not self-adjoint (althouglsieasy to check that it is symmetric).
What we now show is that is actually an extension of the operafoe= —92/9x? defined on

S(R), just aspis an extension of the operateiid /dx defined orS(R).

Let f € S(R) = %7 be of rapid decrease. The f (k) = k2f (k) is also of rapid decrease
sof € Z4,. ThusHg is densely defined so self-adjoint as claimed above. Furitve, using
the properties 0§(R), we have

_ 2 - . _j ,\ .
(THX) = \/—in%/ f (k) d*dx = \/—ZL]T%/RM (k) dix
_ ﬁ/ k2T (k) € dx = (Hof) (x)

soT C Hy.
Furthermore, we can also show th&iis the closure of.

Lemma 21 The sefl + T)S(R) = {f : f =g+ Tg for some gt S(R)} is dense in E(R).
Proof. Supposéh is orthogonal tql + T) S(R) so

/Rﬁ(k) (1+K2) § (k) dk =0

foranyge S(R). Then,h(k) (1+ k?) must be orthogonal t8(R) , so by denseness(k) (1+ k?) =
0 ae, sch(k) = 0 ae, sch=0. Therefore,(I +T)S(R) must also be dense If (R). m

2
Theorem 22 Hy is the closure of the differential operator= —% defined on &R).

Proof. Let f € Zy,. Then, sincgl +T)S(R) is dense irL?(R), we can find &y, € S(R)
such thaf|(I +Ho) f — (I +T)gn|| < 1/n. SinceT g, = Hogn, this is equivalent tdf (I +Ho) (f —gn)|| <
1/n. Now, becausg1-+k?) > 1,

-l = [ [T -6 00| dk< [ (1+10)%| T~ (k| ak

=1+ Ho) ( ~gn)I < .

We also have
~ 2
IHof —Tan|* = [Ho(f —an[* = | K*|F (k) — 609 ak

< [ @R[ - 6a 00 dk= 11+ Ho) (1 - gl <

Thereforeg, — f andT g, — Hof. But, T is symmetric and thus has a closdreBy definition
then,f € 2+ andTg, =Tg, — T f. By uniqueness of limits thefl, f = Hof for all f € 24,
soHgo C T. Finally howeverHg is a self-adjoint, hence closed, extensiorTofoHy O T by
definition. ThatisHy=T. m

It will be more convenient to work in three dimensions fronréhen withr = (x,y,2),
andk = (ky,ky,kz). This is because the results obtained in the following secire nownot
entirely independent of the dimension of the underlyingdfi@") and three dimensions are
what we really want to study. With this assumption, we neeedlposition operators, y and
z, and three momentum operatqug, py and p, corresponding to the three orthogonal spatial
directions. The kinetic energy operator is therefore deffioebeHo = pZ + pZ + pZ and is an
extension of the negative Laplacian operator:

Hoo 2= 99 (3.5)



3.3.2 The Potential Energy Operator

The potential energy between two particles usually depapda the relative distance between
them. Consequently, we shall consider potential energyadmes of the formiV =V (r). That

is, functions of the position operator= |r| = (x2+y2+22)1/2. The functional calculus then
ensures tha¥ is self-adjoint wherV (r) is real. However, the real interest lies with the total
energy - the sum of the kinetic and potential energies. Thblem is that we cannot use the
functional calculus to conclude thiep+V is self-adjoint onzZy, N %y becauséd is a function

of px, py andp, whereas/ is a function ofx, y andz, but p, andx are incompatible operators
(section 2.3.1) (as arp, andy, and p, andz). One way around this problem is to traéatas

a perturbationof the self-adjoint operatdty. A reasonably simple method of arriving at the
desired conclusion utilises the conceptrelfative boundsvhich we shall discuss below. We
will use this to show thaHy +V is self-adjoint in the next section. Other more sophiséidat
methods and more general perturbations are discussedy#t lerf2], [26] and [40].

Consider an operat@. The operatoK is bounded relative to Ar A-boundedf Zx C %k
and there exista,b > 0 such thaf|K f|| < a|/Af||+b]|| f|| for every f € Za. The infimum of
all a such that there is l satisfying this inequality is called th&-boundof K. We can easily
see that in the case whekeis bounded,Zx C Zx (which is the whole Hilbert space) and
IIKT|| < O||Af||+ ||K] || f||. HenceK is A-bounded withA-bound O Not all potential energy
operators are bounded however (eg the Coulomb potentiahwias the fornv (r) ~r=1).

Lemma 23 For every a> 0, there is a b> 0 such that|| f||,, < a||[Hof| +b]| f| for every
f € S(R3?), where||f||,, = inf{C: |f (r)| < C ae}.

Proof. Letg(k) = 1+ k2 =1+ K2+ K2+ K2, f € S(R®) andh(k) = n*f (nk) wheren > 0
is arbitrary. Recalling thaf:||, is theL-norm (section 1.2.2), we have that

{7 =l -
ot [, ()], <1 ] < 1 [+ 5]

Therefore, sinceg|| =,

|71, = L i i U R G 1

Using the isometry of the Fourier transform operator and-étegtion

P o

|
1

1 [ e ke 1 1
< ——55 =" an S Tan
OIS 2 JMECEES o = 1la< |7
we finally get
1
fllo < —== [ Y2 Hof || +n%2| f||].
1Fllo < —2= [0 Y2 [IHof [ +0%)I ]

Thus for anya = 1/v/8nm > 0, there is ab = n¥2//8m = 1/ (64r?a®) > 0 satisfying the
statement of the lemmam

Theorem 24 (Kato) Suppose that \&=V (r) has the form Y(r) + V> (r) where \{(r) is a
square-integrable function an@¥f ) is a bounded function. Then, V hag-Bound of0.

Proof. If f € S(R®) then
IV A< IV FI -+ V2 F I < IV (0T (V2 () [l £ (3.6)

where||Vy (r)|| and||V2 (r)||,, refer to the appropriate norms of the functidAgr) andVa (r).
By lemma 23 however, for every > 0 there is & > 0 such that| f||,, < a||Hof|| +b]| f]|.
Substitution into 3.6 then gives
IV A< Ve () [alHof | + b [T+ V2 () 1]
= {alVe (D[} [IHo [+ {b+ V2 (1)l } | ]

o
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Thus||V f|| is finite (and sof € %), andV hasHo-bound 0 orS(RR3).

We now extend this result frorﬁ(R3) to Zn,. Letg e Zy,. By a similar argument to lemma
21, the seto [S(R?)] is also dense ih? (R*) so we can take a sequen@) C S(R®) such
thatg, — g and (using the fact thadg is closed)Hogn — Hog. Now, for everya > 0 there is
af > 0 such that

IV (9h—9m) |l < af[Ho(gn — 9m) |l + B /(Gn — Gm) ||

soV g, is also convergent. BuY, is self-adjoint hence closed. Henge %, andVg, — Vg
Therefore, %4, C % . Finally, we also have

IVl < [Vl + IV (9= gn)ll < a[[Honll + B [Gnl + IV (9 — an) |
S0 asn — oo, we get that for an arbitrarg € 2, and everya > 0 there is g3 > 0 such that

Vgl < a[Hogl| + Bllgll-

[ ]
There is also an extension of this theorem [26] which esthbl a similar result whanhis
the sum ofn potentials of the type discussed above. ThehasHo-bound 0 orS(R3") .

3.3.3 The Hamiltonian Operator

We are now in a position to define rigorously the total enemgyamiltonian operator of a
quantum system. This is the operatbe= Hy +V, and is of course generally unbounded. To
prove that it is self-adjoint so that we may legitimatelyasate the observable quantity of
energy with it, we need the following lemma [20].

Lemma 25 (Spectral Radius) For any bounded operator A
o(A) C{AeC: A <A},

Theorem 26 (Kato-Rellich) Suppose V hasd-bound0. Then, H=Hg+V is self-adjoint on
D = Dhy-

Proof. Let us choose a real # 0. Then, sinceHy is self-adjoint, +Ai ¢ o (Hp) so
(Ho=£Ai) " exists and is defined everywher@,.»; = L2 (R3)). Itis clear tha(Ho £ Ai) " f €
Dr, € D forany f € L2 (R3), so for arbitrarily small > 0, there is & > 0 such that

HV(HOi)\i)’l f” < aHHo(Hoi)\i)’lfH +bH(Hoi)\i)’1 f” (3.7)
sinceV hasHgp-bound 0 Using equation 2.1, we derive that
2 2
HszzHHo(Hoi)\i)’lfH +)\2H(Hoi)\i)’1fH
and hence that

1] > HHO(Hoi)\i)’lfH and | f| > ])\]H(Hoi)\i)’lfH

forany f € L2(R3). Substituting into equation 3.7, we have

HV(HOi)\i)_lfH < <a+ %) I1f].

By choosinga < 1, we obtainHV (Hoi/\i)‘lfH < || f]| for |A| sufficiently large. It follows

that for such a\, V(Hoi)\i)_lu < 1 so by lemma 251 ¢ a(V(Hoi)\i)‘l) . Hence
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V (Ho+Ai)"" +1 has a bounded inverse $8,,, . ;1,3 = L?(R®) = Zuzri. It follows
then that

2 (13
%(V(Hoi)\i)’l+1)(Hoi/\i) =R Heeri = L (IR ) .

Now we know that ~1 (Ho +V) is symmetric onZy, so its Cayley transform,
U=[A"(Ho+V)—i] [/\-1(H0+V)+i]*1: (V4 Ho—Ai) (V+Ho+Ai)™?

is isometric. But, we have just shown tHatis actually unitary for|A| sufficiently large
(Ry +1peri = L2 (R?)) so A~ (Ho+V), and thereforeH = Ho+V, must be self-adjoint on
-@H = .@HO. |

To illustrate this result, we shall take the Coulomb potdnin three-dimensions which
takes the form (ignoring a few constantg)r) = r—1. This potential may be written

V(=20 1oX0

where x (r) is the characteristic function of the sgt:r <1}. Clearly, the second term is
bounded by 1 whereas the first term is square-integrable:

2 pmopl 1
X gy :/ / / }rzsinedrdedcp:4n/ rdr < oo
RS T o Jo Jor 0

Therefore by theorems 24 and 26 = Hp+V is a self-adjoint operator of#,.

The concept of relative bounds is also very useful in stuglgither properties of the Hamil-
tonian operator. As an example, this can be used to provehtbapectrum oH is bounded
below (asHg is), showing that the theory demands the concept of a grotate snergy. This
and other properties including the problem important inttecag theory of when the con-
tinuous spectrum ol is the whole positive real axis (as it is fély) are treated in [40] and
[26].

For a typical potential that we will be studying, the spegtrof H is continuous from 0 to
oo and the point spectrum consists of negative eigenvalueshwhay have only 0 as a limit
point. We associate the bound states of the potential wittptiint spectrum (the energies of
the bound states being the eigenvalues) and we associateltbend states with the continuous
spectrum. Itis these unbound states which are importaraittesing theory.
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Chapter 4

Two-Body Scattering Theory

“Rigorous proofs of dispersion relations are like breastsaoman, neither
useful nor ornamental.
M L Goldberger

4.1 Revisiting the Schrédinger Equation

Recall the discussion of section 1.1.2. There we brieflyudised solving scattering problems
using the Schrddinger equation 1.1 (Witk= 1)

oW
|W_HLIJ

and also mentioned why this is generally not entirely satisfry. We can now also see that
becaused is unbounded and thus not defined on the whole Hilbert sphissequation cannot
be correct for all possibl&. In fact, this equation is essentially postulating that theratorH
acts on some domain like the differential operaffdt. However, it is possible to reformulate
this dynamical law of motioso that it is applicable to al¥. This therefore must be done with
the aid of dboundedoperator.

4.1.1 The Time-Evolution Operator

If we were to formally solve the Schrdodinger equation (pndiegH is just a constant - we shall
assume throughout thet does not depend on time explicitly), we would arrive at thietsan
W(t) = e MW (0). We shall therefore refer te ™! as atime-evolution operator Because
e Me M — 1, we havee Mt (e7Ht)" = (e-Ht)Te-iHt — | by the functional calculus. Thus
e Mt is unitary hence bounded for eachFurthermore, iH has spectral functiok, then we
have

(f,eHtg) =/Re‘i“d<f,EAg> (f,g€ Zn)

from which it follows thate "t = | whent = 0 ande Htze~Htz — g=iH(1+12) by 3 simple appli-
cation of the extension principle for bounded operatordlerton will show that this additivity
is what we expect of a time-evolution operator. We will nowstihatW (t) = e ™HtW(0) is a
generalisation of the Schrddinger equation by showingth@y satisfies equation 1.1 when-
ever¥(0) € Zy.

Suppose tha¥ (0) € Z. We know thate ™t is unitary and commutes with, so

[H e w©)|" = [ A%d]E [ WO]| = [ A%IE WO = [HY (O <<

and thus¥ (t) = e ™MW (0) € 2. Therefore, we can write

0 i e g H(t+h) _ o-iHt e eHh |
|E[e W(O)]_lrlllm) n W(O)_lrI]lﬂjoTe W (0). (4.1)
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Now, the identity lim,_oh~1 (7" — 1) = —iA is easily established and we also have

. i 2
e-iHh _ | 2 leAh 1
H( . +|H>f :/R ——+iA d|[Ea fII?
forany f € 24. Since
e 1, e isnOn2) 2 flsinny2) cnl] <ar?
n = h/2 h h/2 h

is integrable with respect to the measijEg fH2 (because € ), we get

efiHh_l
iH | f
( h *')

using dominated convergence. Therefdnel (e*‘Hh— I) — —iH strongly ash — 0, and
substituting back into 4.1 gives

2
=0

lim
h—0

—iHh I
h

T
|E[e LI—'(O)]_|}I1|Ln0

e Mw(0)=H[e™Mw(0)].
As claimed thent¥ (t) = e MW (0) satisfies the Schrédinger equation whenéléd) € 7.

4.1.2 The Green’s Operators

Consider now the eigenvalue problem for the energy of theesys This requires us to solve
thetime independent Schrédinger equation

HY=(Ho+V)W=E¥Y = (E—Ho)¥=VW¥

whereE is the energy eigenvalue. In scattering, we generally kri@wenergy of the system
but not the statél. However, from this we might conclude that a knowledge of tihaise
operator(E — HO)*l may be useful for studying’. To this end then, we introduce tliee
Green’s operatar

Go(E) = (E—Hg) .

We note immediately that the free Green’s operator does xist ésection 2.4) where <
0p(Ho) , and is unbounded (hence not everywhere defined) ihero; (Ho). Therefore, we
shall only defineGg (E) for ImE # 0, ensuring boundedness.

Now, Go (E) operates in momentum space as a multiplication operator:

(Go(E)W) (K) = ((E—Ho) W) (k) = (E-K) '8

Yk).

where we make that simplifying assumption that 1/2. We can therefore Fourier transform
(E— kz)*l@(k) to determine the action dBo (E) in coordinate space. M (k) € S(R3)
then so is(E —k2) @ (k) since (E — k2) " is bounded for I # 0. Therefore, the integral

representation of the inverse Fourier transform is applecéequation 3.2). The transform is
achieved using contour integration giving the result [88]f

(Go(E)W)(1) = [ Co(r.r'iE)w(r')or 42)
R3
_1ei\/E\rfr’|
WhereGO(r,r’; E) = EW and ||'T\\/E > 0.

28



ThusGo (E) becomes aintegral operatoron S(R3) . Thekernelof the operatorGo (r,r'; E),
is called the free Green'’s function. A quick calculationwkdhatGy (r,r’; E) is square inte-
grable in either (but not both)orr’:

dr

1 e 2ImVE[r—r'|
G LE)Pdr = /

/]R3| O(ryr )| r 1612 R3 |r_r/|2

B 1 / e 2ImVE[y|
16m2 Jrs  |uf?

1 [ e—2|m\@u
—/ - du=———.
4t Jo u? 8rnimvE

du
(4.3)

We shall also introduce tHall Green’s operator GE) = (E — H)*l. This is also an integral
operator in the coordinate representation:

(G(E)lP)(r):/IésG(r,r’;E)lP(r’)dr’

with a kernelG(r,r’;E) called thefull Green’s function although we shall not prove this
until the next chapter. The full and free Green’s operatoeshawever related by the second
resolvent identity which has the form [3]

G(E) = Go(E) + Go(E)VG(E). (4.4)

4.2 Time Dependent Scattering Theory

4.2.1 The Asymptotic Condition

We are now in a position to formulate the two-body scattegraplem. It is well known that
we can work in the centre of mass system where the two pasiyskem can be described by the
relative motion vector. For convenience we will set tireduced mass m mymp/ (my + my)

to be /2. On a Hilbert space level, the two-particle system shoulddseidbed by théensor
product (see [4] or [29] for a discussion of tensor products) 6{R3) andL? (R3), denoted
by L2 (R®) ® L? (R®). Factoring out the centre of mass leaves the spa¢&?) .

In the time-dependent model, we visualise a system whichdrdistant past and future is
free of any potentials (the particles are well separatedd@on-interacting). We therefore
postulate that the real state of the systéift), must asymptotically approach free staté,(t)
andWo (t). Thatis,

W(t) — W (t) ast — —0  and W(t) — Wou (t) ast — 4o

This is referred to as thesymptotic condition That these asymptotic states are free suggests
that a time-evolution of such states be defined by

l'pas(t) == eﬁiHothas(O) .

whereas refers toin or out. The real state is of course not free so it evolves under the ful
Hamiltonian. With these assumptions, the asymptotic camdbecomes

JW(t) — Was(t)|| = || W (0) — e MW g (0)|| = | W (0) — eMteHotw(0)|| — 0. (4.5)

The quantum states which are relevant to scattering arejtiserthose state = W (0) for
which the asymptotic condition holds. Physically, we ayénty to identify states of the system
for which the interaction between the particles is negl@ih the distant past and future. This
requires the potential energy to decrease quickly as thticlearseparate. The key here is
decrease quickly - it turns out that for many potentialslidg unfortunately the important
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Coulomb potential), the decrease is not fast enough and #igthdsymptotic condition must
be introduced [3]. We shall discuss this briefly in sectidn 4.

Nevertheless, assuming we have a quickly decreasing padtem can define the scattering
states by introducing the sets

My = {W:tlim ethe‘Hothexists}
*):FCO

R, = {wi = lim dhte Moty w ¢ Mi}.
—>I00

The reason for labelling/l. as the limit as — —o and vice-versa is partly historical (and

rather annoying) and will become clearer later. It is easligcked thaR, NR_ represent

all the actual states of the system which approach freessitathe pastndin the future (the

scattering states), and thdt. represent all the possible asymptotic states.

4.2.2 The Scattering Operators

In scattering theory, we generally know the incoming asytiptwavefunctionW, (t) and
what we measure is related to the outgoing asymptotic waetin W (t). Therefore, we
are now going to define th®lgller wave operatorsvhich map the asymptotic states to the
actual ones (see figure 4.1).
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Figure 4.1: A time dependent view of a scattering experiment

These are defined to be
Q. =s—lime"te Hotgy,
t—Foo

whereEy,, are the projection operators orith. and ensures that the wave operators are defined
everywhere on the Hilbert space. The projection operatigt because th&l. are closed
(as are thaR,) [38]. Althoughée™t ande Mot are unitary operators, tH2 are in general not
unitary. However, it is easy to see that mapsM.. isometrically ontoR. andM to {0} .
Such an operator is termegatrtial isometry(these include as special cases, unitary, isometric
and projection operators, see [20] for a discusssion). ribtshard to show that becau€e.
is partially isometric fromM.. ontoR.. (just as a unitary operator is isometric from the Hilbert

+
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space onto itself)Ql is a partial isometry froni. ontoM.. which behaves somewhat like an
inverse. Specifically, we have that. Q1 = Er, andQ! Q. = Ey,.
Another important property of the wave operators is thay sagisfy theintertwining rela-
tions[3]:
Q.E"B)=E"(B)Q. so QiHW=HQ.W VYWc g (4.6)

whereE™ (B) andE" (B) are the spectral measurestyf andH respectively.

We will now define thescattering operator S QJLQJF. To see why, we first establish
that S commutes with the free Hamiltonian. From the intertwinimgations, Q.E™ (B) =
E" (B)Q. soE (B)Ql = QLEH (B) so

EfoB)s=E"(B)Q'Q, =Q"E" (B)Q, = Q' Q,E™ (B) = SE™ (B).

Now, for any¥ € R, NR_ (so both incoming and outgoing asymptotic statés,(t) and
Wout (1) exist), we haved , Wi, (0) = W (0) = Q_Wou (0). Multiplying on the left byQ' then
givesSWin (0) = QT Q. Wi, (0) = QT Q Wou (0) = Em_Wout (0) = Wour (0) s0

SWin (t) = S Wy, (0) = e MW, (0) = €M W (0) = Woue (t) -

Thus,Stakes an incoming state and maps it to the outgoing statece $fre incoming state is
usually known and the outgoing state is what we measure, weea just how fundamental
the scattering operator is!

4.2.3 Asymptotic Completeness

There is also another condition that we would like a scaitgtineory to possess. A scattering
theory is calledasymptotically completié the quantum states with incoming asymptotes are
precisely those with outgoing asymptotes, and that thedesstogether with the bound states
(which obviously do not satisfy the asymptotic conditiopas the entire Hilbert space. That
is, Ry = R_ =RandR& B (whereB is the subspace spanned by the bound states) is the whole
Hilbert space. In physical terms, this means that the quarstiates of the system have to be
either bound states or scattering states (or a superposiithe two). Asymptotic complete-
ness iextremelyhard to verify mathematically. For results concerning stssof potentials for
which asymptotic completeness holds in the above sensf8]sgElL] and [37]. [37] also gives
an example of a potential for which the Mgller wave opera&xist (as defined above) but do
not give rise to an asymptotically complete theoR/ (2 R_). However, there are general
results proving that for any potential decaying faster thah there exists an asymptotically
complete (two-body) scattering theory (though not neadgdhe one we are discussing, see
section 4.5) [23]. We shall therefore assume completeneresafier.

An immediate consequence of asymptotic completeness tisithee Q. mapsM, to R
isometrically and’ mapsR to M_ isometrically,S= QfQ+ mapsM_. to M_ isometrically.
Inthe case wher®l, =M_ = M (so any state which represents an incoming asymptote aan als
represent an outgoing asymptote and vice-versa - this senadle if the system is symmetric
under time-reversal), we see that the restrictiorBdd M is unitary. Therefore, for every
incoming state, there is an outgoing state with the same .nofihis means that the system
conserves probability - any particle going into the systeastncome out again somewhere. It
can be shown for instance, thatMf(r) is a square-integrable function th&h, = M_ is the
entire Hilbert space, and $bis unitary and probability is conserved [3].

We can also now see that the fact tBatommutes wittHg has the physical interpretation
that the scattering experiment conserves energy. Thissiyesseen by comparing the expec-
tation values (section 1.2.6) of the energies of the incgmaind outgoing states. Since these
states are free, the relevant energy operator is the freedltdaran so we have:

<Eout> = <quut> HOquut> = <Squn (O) 5 |'|OSWin (O)>
= (S¥in(0),SHWin (0)) = (Win (0),Ho%Win (0)) = (Ein)

using the unitarity o5,
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4.3 Time Independent Scattering Theory

The time dependent theory discussed above does not concepthe way that scattering the-
ory was originally formulated. Historically, the scattagi states were treated as stationary
states just as bound states usually are, even though iistbiat in scattering the initial wave-
function and the final wavefunction are different. This is time independent approach and
while it gives the correct answers, it was not clear why sutteament worked. In a sense
then, the time dependent theory was developed in order tibyjtise time independent theory.
The time dependent theory however has the disadvantagi ihabt obvious how to actually
calculate theS operator. The time independent theory on the other handishis several
equations which are useful for calculation purposes. Tldtexing experiment depicted in
figure 1.1 is a time-independent model.

4.3.1 The Mgller Wave Operators Again
We begin by defining operatof3..; (¢ > 0) which are independent of timg(

(f,Q c0) = ¢ /0 e ¥t (£, eMt e Holg) dit,
-0 . .
(£,.0..0) — ¢ / et (f, eMteHotg) di.

It is easy to show that the integrals on the right are contisumear functionals so the
operatord) .. are well-defined with Q.|| < 1.
As the symbol we have given them suggests, these operatorslaied to the Mgller wave
operators. In fact we have [38] th&. = W—(I)LingEMi. Since||Q.¢|| < 1 however, we
E—

can appeal to lemma 5 to conclude that convergence is stisog @hat is,

Qi =s— |iin5EMi. (47)

£—0t

This is the time independent definition of the Mgller waverapars. Heres is just a
parameter with no physical meaning. We shall see its impoetdater.

We will also needQTi in the next section. However, adjointing is not strongly towmous
[20] so we cannot immediately take the adjoint into the girlimit. But, adjointing is weakly
continuous [20] so we can write

QT :W—IimEMiQTﬂ = QLERi:W—"mEMiQTigERi
-0t -0t
since multiplication is separately weakly continuous. Bfinition, Q| Ex, = Q! sinceQ!
is a partial isometry fronR,. to My and we haveH Em,. Q' Eg, f ‘ <||Er.f]| = HQLERif ’
Thus, lemma 5 implies that
Ql =QlEr, =s—limEy, Q! ,Eg,. (4.8)

e—0t

4.3.2 The Hilbert Space Lippmann-Schwinger Equations

To continue we will need to consideector integrals. These generalise the usual functional
integration by allowing vector-valued integrands. Coasithe definition o, :

-0 . .
(f,Q..0) = s/ﬁwe“ (f,eMte Holg) dt.

We can think of this as the limit of a sequence of integral fiomals which converge in the
weak topology. However, lemma 5 can again be used to inféctrazergence is also strong.
To this end, we write
0 . .
Q+£g: E/ eetelHteleotgdt

[ee]
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where the vector integral is defined in a Riemann sense agntiteof partial sums. It can
be shown that many of the simple rules of integration cargr ¢ this more general case. A
useful result concerning vector integrals is the followj8j

Lemma 27 Let A be self-adjoint and Im# 0. Then,
(z—A) ' = —i/ é?e A fdt when Imz> 0,
0
0
and (z—A)'f = i/ ¢?e A fdt  when Imz 0.

Now, choose & > 0 and partitiof—3, ] according to-0 =Ap < A] <A1 <...<Ap1 <
AL < An =9, lettingv = max|A, — An_1|. Following [3], we approximat€ . .gon[—J,d] by

0 n
t JHt —iAt H H
Jg— g/_mef iy e (Efo—EfP ) gat

where we have used a partial sum approximation of the speepasentation foe ot :

. n
At Ho —iA/t Ho  =Ho
‘/Rse dE)\ ~ kZle ‘ (E)\k E/\k—1>.
We therefore have (sin@t is unitary)

HQ+£EH0 ([-6,0])g— ngH

0
< s/ et dt.

. n . 1
g HotgHo ([-5,8))g— Z e Nt (E)llo _ E)l\—:(o,l) g
k=1

Now, the integrand is converging to 0 as— 0" and is dominated bye?' ||g|| since

n it H H 2 n
—iAy b _ Ho —
Z € (E)\k E)\k—l) 9 = Z
k=1 k=1

Thus by dominated convergencd, — Q. .E™ ([-5,d]) strongly asv — 0. But, using
lemma 27, we can rewritd, as:

nooo,
£ Z/ d (—Ac—ie)t ght <E)T<O_EX:<O 1) gdt
k=1/—%® -
n [+
_ i(Al+ig)t oiHt (=Ho _ =H
_ skzlfo dNeie)igit (Efo gl ) gt

n
— ey (M+ie—H) (B -E* )g
k=1

(e - )| = IE™ (-5.5) gl < Il

g

n
= iey G(Ai+ie) (EfP—Ef° )g
K=1
sincee > 0. This looks suspiciously like a partial sum approximationato integral over

[— 9, 6] with an operator-valued integrand. Such an integral imaiéemed a spectral integral
and some of its properties are established in [3] and [38].wite therefore

5
Jy — is/ G(A +ig)dE}" strongly asv — 0*.
-5
From this then, we have by uniqueness of limits:
5
Q.e = s—limQ EH([5,5]) =s— Iimie/ G(A +ig)dE®
d—00 d—00 )

_ is/ G(A +ig)dE®
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where the improper integral is defined as the strong limitroppr ones.
A similar derivation give)_, = —ie [* G(A —ig) dEAHO. Using equation 4. Ave get the
characterisation:

Qi:s—limiis[/sG(A iis)dE)'\*o} En.. 4.9)
R

e—0t

We can now derive a most fundamental equatiorfIorwith the help of the following lemma
[38].

Lemma 28 If A is self-adjoint with spectral function/(Eand if H(A) is a uniformly bounded
operator valued function of then

/ H(A) (A—A)dEA = 0.
R3

We write
LieG(A Lig) = Hie(ALie—H) 1o Tf
N  A+ie—H
(ALie—H)£(H-A) . H-A
N Atie—H - Atie—H

which holds rigorously (no domain questions) since the aiperfunctions are in each case
bounded £ > 0). Therefore, we have using lemma 28,

Q, = s—Iim{ 3I+G()\ii£)(H—)\)dE/'\"O]EMi
R

£—0t

= Em.+s—Ilim {/36()\ +ie)(H —Ho)dEr"} Em.
R

£—0t

= Q. =Em, +s—Ilim U G(A iis)VdEﬁO] Em. . (4.10)
e—0t R3
Applying this to an asymptotic statec M. we finally then get theolution-type Lippmann

Schwinger equations in Hilbert space

e—0t

fo=f+s—Im { G iis)VdE)'\*o] f. (4.11)
R

We see that this equation gives the actual states of thawyste- Q. f in terms of the asymp-
totic statef, the potentiaV, the spectral function dfip, and the full Green’s operat@ (A +i¢)
which is unknown. Recalling tha® (E) = (E —H) ' whereE represents the energy of the
system, we also see that the role of ¢hie that of animaginaryenergy in the Green’s operator.
Taking the limit as the energy becomes real from above wiistgive f, which corresponds
to treatingf as an incoming state. Taking the limit as the energy becoessnom below
corresponds to treatinfas an outgoing state.

Reflecting on this derivation, however, we can see that whenducing partitions and
defining the approximating operatdy, we could very well have chosen to approximate the

functionett ]
Mt y=H iVt ([=H  eH
/Rsé d&; ”kZ_lé “(EN-EN.):

Instead of deriving, s = i€ | [rpsG(A + is)dEro] , then, we would find (respecting the non-
commutativity of operator multiplication):

Que = :Fis/Rs [dEY] {Go(A Fig)}
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where the Green’s operator is still being integrated buhendpproximating partial sums, the
spectral functions are pre-multiplied. We can howevengg38] that

o, = iis/SGo(/\iis)dEj\*:I—/SGO()\iis)()\—Ho)dE)'\*
R R

= |—/ Go(A +ig)VdEY
R3

= Ql= E s—lmQlEg,
e—0tMm,

— Em.Er, —Em.S—lim [/ Go(A £ is)VdEAH] Er, . (4.12)
£—0t R3

Therefore, assuming thd.. is the whole Hilbert space and applying thisfto= Q. f € Ry,

so thatQl f. = f, we have

f— f, —s—lim [/ Go(A iis)VdEﬂ o
R3

e—0t

= fi=f+s—Iim [/ Go(A iis)VdEﬁ] i (4.13)
e—0t R3

which are theLippmann-Schwinger equations in Hilbert spad#&/ith these equations, it is the

spectral function oH which is not generally known.

4.3.3 Eigenfunction Expansions

We are again going to discuss the (three dimensional) Fougrsform and specifically the
function

1 ik-r
(2")3/2

which we introduced as the free plane wave in section 1.2¢.(r) can be thought of as
an eigenfunctionof the free HamiltoniarHg in that Hy O —0? (in three dimensions) and
—0?q (r) = K2 (r). Becausex (r) is not square-integrable, it is of course not an eigen-
vector. In fact, we know thatly has no point spectrum and hence no eigenvectors (section
3.3.1). However, it is reasonable to associgtér) with the pointk? of the continuous spec-
trum of Hg (which is non-negative) because we can construct a sequéscgiare-integrable
functions which ‘approximatef (r) in some sense and which sh&to be in the continuous
spectrum (much as we did in section 3.2.1 for the positiorraipg).

The inverse Fourier transform (B(R3) can be written as

@ (r) =

)

f(r):/}égf(k)qq((r)dr

For comparison we recall (section 1.2.1) that given anyomithmal basige,} of L? (R3) ,we
can expand any as in equation 1.2:

8

F(r) =S (en f)en(r).
n=1

We now see that the inverse Fourier transform can be thodgistan expansion of the function
f (r) interms of thep (r) and with weightingsf (k). This is a simple example of what is called
aneigenfunction expansion

A fundamental problem in scattering theory is showing thateigenfunctions of the full
HamiltonianH D> —02+V (r), which may be associated with the continuous spectrum, have
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a similar eigenfunction expansion property. Namely, theigenfunctions, calledistorted
plane wavesind denoted by (r), satisfy

fo(r)=(Q:f)(r)= [ (k)@ (r)dk (4.14)

f
R3
for every f € M. NS(R3). We shall not justify this expansion. Proofs under condiion
V (r) may be found in [3], [38] or [41].

We will use these particular eigenfunction expansions wite the time independent op-
erator equations in terms of the eigenfunctigrsr) andg” (r). These will not only be more
amenable to solution than their Hilbert space countergartst turns out that the quantities
of interest are more directly related to the eigenfunctitva the actual quantum states. We
shall elaborate on this later.

There is one more property of the free plane waves that we needalling thatly = p? =
P + Pg + pZ wherepy, py andp, are the three momentum operators, and equation 3.3 we have
for any setB C R3,

[E™(B) ] (k)

Xe (Ho) 11 (k) = [xe (%) 1] (k)

= Xy f] () =xy5k) f(k)

wherey are characteristic functions an®B = {(A1,A2,A3) : (A2,A2,A2) € B}. Inverting the
Fourier transform, we get

E°® 0= [ xs f(k)(n((r)dk:/ﬁ F (k) @ (r) dk. (4.15)

We can show something similar for distorted plane wavesguiie intertwining relations
(equation 4.6):

[ET(B) fi] (r) = [ET (B)QLf] (r) = [QLE™ (B) f] (r) = [E™(B) f]  (r).

Thus, the eigenfunction expansion for distorted plane waies

Ef(B)f.](r) = /RS [EMo(B) f] (k) ¢ (r) dk (4.16)

=[x ?(k)qqf(r)dk:/ﬁ F(K) g (r) dk.

4.3.4 The Lippmann-Schwinger Equations

We will illustrate the technigue of eigenfunction expamsidoy decomposing the Hilbert space
Lippmann-Schwinger equations (4.13)

fo = f+s—lim [/ Go(A iis)VdEﬂ o
R3

£—0t

into equations for the distorted plane wawgs(r). Let f € S(R®). Expandingf, — f gives

(te=0)0) = [ T00 [ ()~ @(r)] k.

To tackle the spectral integral on the right, we introduceadi@ sum approximation and
restrict the integration range to a finite three dimensioni@rval which we shall denote by

7 = [ay,by] x.[ap, by] x [as, bs] . Letus partition eackay, by into am =A™ <A™ <A™ <
o SN <M < AR™ = by, (M= 1,2,3) with v = maxu M AL If we let A =
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, then

()\j(l)7A'(2)7Aj(3)> for J = 17,..n and)\j = V\j

[/:Go(/\ +ig)VdE! fi} ()

= Jim 3 [GO (Al £ig)V (E,\Hj —EAHH) fi] (r)

n .
~ lim le/RsGo(r,r/;,\j’iig) V(ER—EN) T () ar

v—0t

v—0t

n .
— lim J;/Rs Go(r.r'iA] ie)V (') [(ER —ER ) £:] () o

= lim JZ]_,/R3GO (r7r’;Aj/:|:iS)V (r’) |;/\/§f(k) (H(i (r/) dk:| dr’

v—0t

v—0t

~ lim le/ﬁf(k) VRSGO (r A £ig)V (1) g (r/)dr’} dk
b

= lim f(k) |:/1%3G0(r7r’;)\j/:|:i5)V(r’) (ﬂ(i (r’)dr’:| dk

v—0t Ja
_ /: f k) [/RSGO (r.ri R £ie)V (') g () dr’] dk

where /B is the set{k : Aj_; < k? <Aj} and we have used equation 4.16. We have also
applied Fubini's theorem and dominated convergence andattiehat as the partition size
vanishesA;_1 < k? < AjandAj_1 <Al <Ajimply thatA! — k2.

Now, it should be clear that these steps can only be justibeddrtain potentials. To
invoke Fubini’s theorem, the integrand must be integrattleqrem 2). The integration is
no trouble asﬂk) is of rapid decrease and tigg (r’) are uniformly bounded. The integra-
tion is also finitefor square-integrable potentiakince ther,qf (r’) are uniformly bounded and
GV |1 < [|Go (r)|[|IV ()|l < e. Therefore, to justify this derivation, we do require condi-
tions on the potential. Square-integrability will do. A gian argument shows that the same
condition on the potential also guarantees that we can ajgphinated convergence.

Taking limits asa — —o andb — o then gives

[/RSGO()\ Lig)VdE! fi] () :/Ra f(k) [/RBGO (r.rR£ie)V (') g (r’)dr’} dk
so substituting into the Hilbert space Lippmann-Schwirgpgrations gives
f(k) [ (r) — @ (r)] dk

= lim f\(k) |:/RSGO (ryr’;kziiE)V (r’) (ﬂ(i (r/) dl’/:| dk.

e—0T RS

R3

Sincef is arbitrary in a dense subspacel8f{R?) , it follows that the functional relation
g () = (r)+ lim, ‘3Go(r,r’;k2iis)v(r’) @ (r')dr’ (4.17)
E— R
holds almost everywhere [38]. These areltiigomann-Schwinger equatiomsr the distorted
plane waves, and whilst they do not give tdné(r) explicitly, they do provide a means of

calculating g (r) from the known functions (r), Go (r,r';k?+ig) andV (r'). This last
process is sometimes callegtracting the kernel equation
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4.3.5 Another Approach

Consider now the solution type Hilbert space Lippmann-Sager equations (4.11):

e—0t

fo=f+s—Ilim { G(A Lig)VAE®| f.
RS

By making an eigenfunction expansion, and extracting thraede, we arrive at theolution
type Lippmann-Schwinger equations

@ (r) = @ (r) + lim | G(r,r;K£ig)V (r') @ (r')dr’. (4.18)

e—0t JR3

These equations give the distorted plane wzq;éer) explicitly unlike the original Lippmann-
Schwinger equations. However, they do involve the full (EiseéunctionG(r,r’;kziis)
which is in general unknown. We do however have a relatignbletween the full and free
Green’s operators, namely the second resolvent equatién (4

G(E) = Go(E)+ Go(E)VG(E).

We can expand this equation by applying it to a functfonS(IR®) and then extract the kernels
just as we did in the previous section. We will not howeverehevmake any eigenfunction
expansions this time. We have

{[G(E) = Go(E)| f} (r) = /R (G (r.r';E) — Go (r.r’;E)] £ (r')dr’
and

[Go(E)VG(E) f](r) = /ﬂ‘{s Go (r.":E) VG(E) ] (") dr”
- /ﬂ%s Go (r.I";E)V (") [G(E) f] (") dr”
- [t e u]a
- /ﬂ‘{3 t(r) M@GO (r,r”;E)V(r”)G(r”,r’;E)dr”] dr’.

Extraction of this equation gives
/. _ /. . " "ol "
G(r,r';E) =Go(r,r ,E)+/RSGo(r,r E)V (r")G(r",r";E)dr (4.19)

to solve forG(r,r’;E). Again, in the derivation we interchanged the order of iraéign. To
justify this, (Fubini’s theorem), we must suppose that titegrand was integrable. However,
the integrand involves the unknov@\(r”,r’; E), so it is therefore necessary to assume that this
step is justified and later make sure tlEr”,r’;E) does have the property we require of it.

4.3.6 The Transition Operator and the On-Shell T-Matrix

Let us now backtrack into Hilbert space again. Recallingdiseussion that led to the Hilbert
space Lippmann-Schwinger equations, we derived equatich 4

e—0*

Q! = Em.Eg, —Em,s—lim [/3@0 (A iis)VdE;'] Er..
R

This yields a time independent expression for the scageanperatolS= QJ[Q+ by noting that
Q' Q. =1 assumingWl. = L2 (R3). Assuming asymptotic completeness alRg & R_), we
have:

s-1 = (a'-al)o,

<s— lim [/Rs{Go()\ +ig)— Go(A — is)}VdEﬂ ER+> Q..

£—0t
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SinceQ. mapsM.. = L?(R®) to R,, we have the relatiog, Q. = Q.. Using this and the
intertwining relations then (equation 4.6) gives

1 1
S—I = s—li : - VdET | Q
Sg—»(I)‘I;n|:/]R3{)\—|—IE—H0 )\—IE—HQ} /\:| *
. —2i
= s—Ilim —IEVQME;'O
e—0" JR3 (A —Hp)“ + €2
. 2ie H
= S=1|-s—Ilim ————VQ,dE". (4.20)

£—0t JRS ()\ — H0)2—|— 52

Remembering the important relati®V;, = Wou: (section 4.2.2), this equation asserts that the
scattering phenomenon may be decomposed into two partsirt a/perein nothing changes
(modelled by the identity operator) and a part wherein theplwated scattering process oc-
curs (modelled by the spectral integral in the above egotidn physical terms, the action
of the scattering operator on an incoming asymptote givesotfginal incoming waveun-
scatteredby the potential, superposed with a complicated wave whigheasents the actual
scattering phenomenon. Since we are actually interestdukiscattered wave, we separate
this term out by introducing thgansition operatordefined by

e

T=——
27

(the factor of 21 is just for convenience).

The transition operator therefore corresponds to the pmowdherein the incoming and
outgoing states are quite different - that is, the systenuhdsrgone a transition. We have the
following characterisation:

.1 2ie
T=s-lm-= | —————VQ,dE". (4.21)
g0+ 27 JR3 (A — Hg)~ + €2
Let us now apply the method of eigenfunction expansionsitdfuation in the momentum
representation. Let € S(R3) . Approximating the spectral integral as before (section4.3
and making eigenfunction expansions result in the follgaiglation:

2ie H
———VQ.,dE,°f| (k
[/R?'()\—Ho)z—l-sz o ]()
2ig

e G L UL

where we have assum¥dr) € L* (R®) , so we may apply Fubini's theorem. For convenience,
we define thé-matrix by

t(k,k') = /Rsmv(r)(qj(r)dr. (4.22)

Then the transition operator has the following action in reatam space:

TH (k)= | £
(T1) () = lim. < e

t (k,k') T (k') dk'.

The name T-matrix refers to the fact that in the Dirac notatidk,k’) is written (k| T |k’)
which would give the entries of th€ operator in matrix form if we treatetk’) and (k| as
orthonormal bases.

Now, it is well known that the functionge/m) (x2+52)_1 ‘approximate’ a Dirac delta
function ase — 0. In fact, this can be rigorously justified [37], [14] so we halae result
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(TH) (k) = /RS 5 (K2~ k)t (k,K') T (K') dK'. (4.23)

Thus we have the result that the transition operator is (sfjxan integral operator in mo-
mentum space. Its kernel however, contains a delta funcfidre effect of this delta function
is to restrict the values the T-mattixk,k’) take in the integration to those for whi&f = k2.
Becausek? is just the energy of the system, this means that the eneagiethe same so the
only contribution to the integral comes from T-matrix elantsewhich conserve energy! For
this reason, these T-matrix elements are referred twnahe energy shebr as theon-shell
T-matrix

4.3.7 Thet Operators and the Off-Shell T-Matrix

There is a third equivalent formulation which can be useddwesthe scattering problem.
Using a similar method to that used to derive the Hilbert sgappmann-Schwinger equations
in section 4.3.2, the following equation for the transtitimperator may be derived [3]:
T — s—lim s—lim £ V+VGA +in)V]dER.  (4.24)
£-07 -0 JR® n[(/\ - Ho)2+s2}

Comparing this with the form of the transition operator ded in the last section, we note that

-1
this contains the same operat@r/ ) [(/\ —Ho)? + 52} which produced the delta function

in the eigenfunction expansion. However, the operdtarV G(A +in)V, might by the same
reasoning give rise to something like the T-matrix but withthe delta function. We will see
in the next chapter that it is very convenient to have integp&rators with ‘smooth’ kernels
(that is, without delta functions). Therefore we define tperators

T(E)=V+VG(E)V (4.25)

whenever Ink # 0 and assume that tlreoperators are integral operators in momentum space:
_ /. i !
(7 (E) f] (k)_/Rsr(k,k,E)f(k)dk.

This assertion can be proven similarly to the case of theGullen’s operatoG (E), which
will be proven in section 5.2.2.

Now, if we proceed as usual with the eigenfunction expanefagguation 4.24 with these
assumptions, we get

(TH (k) = lim lim £

‘ L2 | s i ’
SHOWHO*/H@ n[(kfz_k2)2+gz} (kK5 i) (k) K

Comparing with the result of the last section then, and asgyithatt (k,k’;k?+in) is such
that then-limit may be brought into the integral, we see that

t(k,k') = lim T (k,K;K2+in). (4.26)
n—0+

The functionst (k,k’;k?+in) are sometimes referred to as tsfé-shell T-matrixfor not only
do they not conserve energy but they are also defined for eonaplergies through the param-
eterk?+in. These functions may be calculated by performing an eigetifamexpansion on
equation 4.25 if the full Green’s function is known. Genlrélowever, we can proceed as
follows.

Using the second resolvent equation, we have

G(E)V = Go(E)V+Go(E)VG(E)V =Go(E)V+VG(E)V]=GCo(E)T(E)
= T(E)=V+VG(E)T(E). (4.27)
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An eigenfunction expansion of this equation gives

V(k—K")

T(k,k/,E) :\//\(k—k/)+ RSW

T (k”, k'; E) dk” (4.28)
whereV (k —k’) = frs @ (N)V () @ (r) dr is the Fourier transform of the potentialr) . This
is again an integral equation which must be solved to giveothishell T-matrix.

4.4 Summary and Goal

We now finally make the important link back to experiment. &g the discussion of
section 1.1.2, we suppose that in our scattering experimeritave a beam of particles being
fired at a target. Specifically, we assume that the beam haspaioxadmately uniform density
of particles. Letp be the cross-sectional density of particles in the beant gh&he number
of particles per unit area in the plane perpendicular to geer). If we have a small detector
far from the target which counts the number of particleshat emerge within a small solid
angleAQ then the interesting quantity measured by the detector is

n
pAQ’
In the limit asAQ vanishes, this defines what is called thifferential cross-section

49 _ im
dQ aa—o0 pAQ’
It should be clear that for very small detectors which areafaay from the scattering target,

the detector’'s measurement should be a very good approgmiatdo /dQ. The quantityo,
defined by integrating over all solid angles:

do
= [ —dQ
o 0 dQ
is known as thecross-section Generally the cross-section and the differential cressicn
are dependent on the momentum of the incoming beam of pticl
What needs to be calculated in a theoretical analysis of tesicey problem then, is the
differential cross-section. Itis well known and shown iry é&xt on scattering theory (eg [46],
[45]) thatdo /dQ is directly related to then-shellT-matrix by
do 2
qq =4t KT (k=K) (4.29)
although [41] claim that the argument is partially heucisti
Recalling that we have defined the T-matrix by (4.22)

t(k.K) :/]és@—(r)V(r)(gj(r)dr,

we can calculate(k, k') and hencelo /dQ by calculatingg,” (r) using the Lippmann-Schwinger
equation (4.17):

% (1) = @ (r)+ lim Go(r,r'; ke +ig)V (r') g (r') dr’
£—0*t JR3

which is an integral equation. Alternatively, we can usesbeond resolvent equation (4.19):

/. _ /. ‘ . " "ol i
G(r,r';E) =Go(r,r ,E)+/RsGo(r,r E)V(r")G(r",r";E)dr”,
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another integral equation, to calculate the full Greenrecfion G (r,r’; E) and then substitute
into the solution type Lippmann-Schwinger equation (4.18)

" (r) = l G(r,r;ke+ig)V (r ")dr'.

@ (1) = @ (r) + lim - (r,r;ke+ig)V (r') @ (r')dr
A third option is to solve for the off-shell T-matrir(k,k’; A) using another integral equation
(4.28):

_ ~ V(k —K")
T(k,k/,E) :V(k—k/)—f‘/ﬂ@w

and then calculate the T-matrix immediately by taking lsr{4.26):

T (K", k";E) dk”

t(k,k) = lim 7 (k,k';K?+ig).

45 The Coulomb Potential

We recall that in deriving the above equations rigoroushd(aithout undue fuss), we have
had to make some restrictive assumptions on the potentafygroperator. Specifically, we
have had to assume thdtr) was integrable and square-integrable dér However, these

assumptions exclude the important case of the Coulomb {aitéretween charged particles
which has essentially the form

V(r):F

(yis a constant of proportionality representing the streofthe interaction) and is thus neither
integrable or square-integrable. The Coulomb potentiaini€xample of the class of long-
range potentials for which the interaction is still sigrafi¢ at large separations.

There are two methods of resolving this problem. The firsbisetlise that in a real
scattering experiment, there are never just two particleseality, there are other charged par-
ticles which have the effect of shielding the Coulomb intémms. This effectively means that
the interaction between two particles becomes effectizelp very quickly as they separate.
Mathematically, we can replace the constgmtith a functiony(r) which agrees witty when
r is small but which decays rapidly to zeroramcreases. Then the potential is integrable and
square-integrable so the equations of this chapter becatite v

The second method is more rigorous and is based on the obsertlzat the asymptotic
condition we gave (equation 4.5) is stricter than necessadnyan experiment, one can only
measure observable quantities (corresponding to salfradpperators), not the actual wave-
function itself. Therefore, we should only claim that a quam state is converging asymp-
totically if the expectation values of the relevant obsblea (momentum, angular momentum,
spin, etc...) are converging. Obviously if the wavefuntti® asymptotically converging then
all the expectation values must converge also, but the ceene not necessarily true! It may
thus be possible to definenseakerasymptotic condition which allows one to rigorously work
with long-range potentials.

This approach was successfully pioneered by Dollard. Bsdlie time independent
Schrédinger equation may be solved explicitly for the Coldgpotential, the asymptotic form
of the wavefunction can be found (see [35]) and this sugdlestiorm that anodified wave op-
eratorshould take. Dollard introduced the following modified wayerators for the Coulomb
case:

Q. —s— limeHt g~ i[Hot+vin(4Hot)/(2v/Fo) | _ g _ |jmdHt g—1vIn(4Hot)/(2v/Fo) g-iHot
t—Foo t—Foo
and also showed that with these operators, the scattermiggon for a Coulomb potential
becomes asymptotically complete [3]. The time indepentieedry can then be formulated
accordingly and equations similar to the Lippmann-Schetrgguations can be derived [38].

Discussions of the Coulomb case and general long-rangatitecan be found in [3], [35],
[38] and [41].
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Chapter 5

Three-Body Scattering Theory

“Any formal manipulations that are not obviously wrong arswased to be
correct”
M L Goldberger and K Watson

5.1 Outline

5.1.1 Channels

The scattering experiment where three particles are iebis a more complicated, and there-
fore more interesting, affair. A familiar example of suchexperiment is the scattering of an
electron off a hydrogen atom. A generalisation of this is wheparticle, which we shall call
particle 1, scatters off a bound state of two particles, llade2 and 3 The bound state will
be denoted by2,3). The complications in three-body scattering arise becéuse tare now
different possibilities for the products of the scatteniggction. In the two-body case, the only
reaction possible is the following:

1 + 2 - 1 + 2

wherein the first particle scatters of the second and thdydmyarate. Such a reaction is known
aselastic scatteringas the total kinetic energy of the system is conserved. Irreethody
experiment, however, it is also possible for the bound $@&®) to be raised to an excited state
(2,3)" so the kinetic energy of the system is not conserved in thetiora  This is known as
inelastic scatteringand can occur if the energy of particle 1 is sufficiently highle also have
the possibility that, if the energy is higher still, the bdustate may be raised to a continuum
state 2+ 3 which effectively breaks particles 2 and 3 apart. This Ikedaonisation Finally,
we have the possibility that the incoming particle 1 may Kpip” particle 2 so that the final
state is a bound staté, 2) with particle 3 free. This is termeearrangement Summarising
then, in our example of a three-body scattering experintbete are four possible types of
reactions:

1 + (23 - 1 + (23 (elastic scattering)

1 + 23 — 1 + (23 (inelastic scattering)
1 + (23 - 1 + 2 + 3 (ionisation)

1 + (2,3 — (L,2) + 3 (rearrangement)

each of which can occur if energetically possible.

Each of these possibilities is termed a reactitbanneland correspond to a different out-
come to the same scattering experiment. Of course, beingraum system, we should expect
the final state of a scattering experiment to be some supggoosf all these possibilities, so
each channel has a certain probability or likelihood asdediwith it. We shall see shortly
that the two-body scattering theory (which is a one charresty) discussed in the last chapter

43



is easily generalised to accomodate the extra complicatioat thismulti-channel scattering

introduces. As before, we shall be primarily concerned pittentials which decay rapidly,
again excluding the Coulomb potential. However, it is §tiksible to modify the theory (as
noted in section 4.5) so that this important case can stilldsged (see [12]).

5.1.2 Channel Operators
We shall assume that the potential energy operator of thetgomesystem has the form
V (r1,rz,r3) =Va(Jra—r3|) +Va(Jra —ral) +Va(|ri —rz|) (5.1)

wherery,r,, andrs are the position operators for particle21and 3 respectively. This is
therefore just the sum of the possible two-body potentialis of course possible to include
more general terms [45])V; then represents the interaction between partigksdk (i # | #
k). We now introduce thehannel Hamiltonianslefined by

Hi=Ho+V

fori=2123Hp= p§/2m1 + p%/Zmz + p§/2mg as usual wherg; is the momentum operator
of particlei andm is its mass). If we consider a channel in which particle 1 dedltound
state(2,3) move freely, then the Hamiltonian becomids = Ho + V; for large separations,
sinceV, andVs decay rapidly. We will call this channel-1Similarly, H, represents the
"asymptotic Hamiltonian” for channel-2 in which particleifree and(1,3) is bound, etc...
For an ionisation channel where all three particles are tfe=corresponding Hamiltonian is
of course just the free Hamiltoniaty,. This will therefore be denoted by channel-0

We expect that thasymptotic statesorresponding to channei-to evolve in time accord-
ing to

W, (t) = e Haly, (0)
whereW, (t) is an asymptotic state for which there exists a st#fe) obeying the following
asymptotic condition
|Wo (1) =W ()| — O ast — +co.

Proceeding as in section 4.2.2, we define

M{ = {f 's— limgHtegHat f exists}

—F00
which are the asymptotic states corresponding to chamraatd are closed subspaces of the
Hilbert space. We thus define the channel wave operators

Qf =s—liméHte M Eya

t—Foo
whereEy« are the projection operators ortf. These are partial isometries which obviously
share the same properties as the two-body wave operators.

We now define the analogue of the scattering operator. Siagstam in an initial channel
does not have to end up in the same channel, there will exisattesing operator for every
possible combination. Thus, for every incoming charmeind outgoing channg, there is a
scattering operator

Spa = (QE )Tgi (5.2)

which is such thaBg, W, (t) = W (t) for all asymptotic state¥, (t) € M andWp (1) € mP
[38].
It is also clear that the time independent definition of th@evaperators given in section
4.3.1 can also be generalised to
0 _ ,
Q% = s— Ilms[m et Mte Ml Eyadt

£e—0t

and QY = s—Iims/ e ftdtteMalE o dt
0

e—0t
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and that the proof given there that the time independent apdriient definitions are equiva-
lent can be trivially modified to cover this generalisatiddence, the time independent theory
proceeds as before (see [38]). Problems only arise at tieafeigction expansion stage when
we need to apply Fubini’s theorem and dominated convergenegtract the kernel equations

(section 4.3.4). To do this rigorously, we required the ptét to be square-integrable. Un-

fortunately, this is not true in the three-body case. In,fhetause each term of the potential
is a function of only two particle coordinates, they cannetdguare-integrable in the third

coordinate.

Itis customary in the physical literature to ignore thesigating technicalities however and
assume that the kernel equations are correct (see [35] Yrdal this view does have some
experimental support. These kernel equations are thetasitoi the Lippmann-Schwinger
equations we derived in the last chapter. However, we skallshortly (after tidying up
some of the two body theory) that even if these three body rhgmm-Schwinger equations
are correct, they are not entirely satisfactory for calindpthe wavefunction or T-matrix and
hence the differential cross-sections.

5.2 Why Three-Body Scattering Theory is So Hard!

We now wish to examine the equations of scattering theomyileederived in the last chapter.
Specifically, we shall be looking at the question of whethenat these equations are actually
suitable for determining the quantities of interest. By thie mean, do the equations of scat-
tering theory actually have solutions and if they do, aresiiations unique? Of course from
a physical point of view, the answer to both these questiaushbetter be yes, for otherwise
these equations are not going to be of much use to us! The glarnt integral equation for-
mulation is that the boundary conditions required are iaithji incorporated. If our equations
have many solutions then we would have to explicitly applurmary conditions (which we
may not know!) to determine the correct solution. Howevathwumerical approximations,
uniqueness of solution is vital because we have no way of knpifithe solution we have cal-
culated is correct or is it just a ‘mish-mash’ of many possibblutions. We shall see shortly
that these questions can be answered for two-body scattra@ory affirmatively using the
Fredholm theoryof integral equations.

5.2.1 Compact Operators and Fredholm Theory

We recall that each of the equations we derived to solve tbhebiwdy scattering problem was
an integral equation. In fact, each had the particular form

100 =009+ [ K(xy) f(y)dy (53

wheref (x) was the unknown function. An equation of this kind in the &bkex is known as
anintegral equation of the second kimdth dummy variabley. The functiongg(x) andK (x,y)
are known as théree termand thekernelrespectively. Fredholm theory provides sufficient
conditions for an equation of this type to have a unique swiut To discuss this however, we
shall need to introduce the concept of a compact operator.

There are many equivalent definitions of a compact operateo known as aompletely
continuous operatdr We shall say that an operatkracting on a Hilbert space mompact
if given any sequence of vectof$,) which are bounded (syfi fy|| < ), the sequencéK fy)
has a convergent subsequence. An important spectral pyogfecompact operators is the
following [27]:

Theorem 29 If K is a compact operator and € o (K) for anyA # 0, thenA € o, (K). That
is, any non-zero value of the spectrum of K is an eigenvalue.
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Let us now reconsider equation 5.3. If we are working in thibétt space ?(R") so
f (x) andg(x) can be treated as vectors of this space then we may rewstedhition in the
abstract form
f =g+Kf

whereK is an integral operator (not necessarily self-adjoint)raefiby

:/K(x,y)f

This equation is easily seen to have the unique solution
f=(0-K) g

(wherel is the identity operator) ifl — K)’l exists andg € Q(I_Krl. Recalling section 2.4,
we note that the first condition will be satisfied i#£lo,, (K) and the second condition is only
relevant if 1€ o;(K). This is where compactness comes in. If the opertds compact,
then by theorem 29, & o (K) implies that 1€ g,(K) so we do not need to worry about the
second condition. Therefore, K is compact, then our integral equation has a unique solution
if 1 is not an eigenvalue df. Furthermore, standard Fredholm theory then gives an dtgori
for calculating the solution. This may be found in [6] or [44]

To prove that our scattering equations are actually wortvirsp then, it will be sufficient
to show that they involve a compact integral operator whisksthot have 1 as an eigenvalue.
Therefore, we need a test to determine if an integral operatoompact. The following
theorem gives a sufficient condition for showing this [39]:

Theorem 30 If an integral operator K on B (R") has a kernel Kx,y) which is square-integrable
(K (x,y) € L2(R?")) then K is compact.

The class of compact operators which can be representieti(tvh (1) for some measurable
spaceM with measureu, as integral operators with square-integrable kernels lisccéhe
Hilbert-Schmidt class We shall also say that the kerni€l(x,y) of an integral equation is
compact if the integral operator it induces is compact.

5.2.2 Tidying up the Two-Body Theory

We now show that the integral equations we derived in theclagpter have the compactness
property we would like of them. Recall the second resolvdaiiity in kernel form (equation
4.19):

/. _ /. n. 1 1 /. 1/
G(r,r';E) =Go(r,r ,E)+/RSGO(r,r E)V (r")G(r",r";E) dr”.

If we treat the variable’ as a parameter then this equation is an integral equatide ivetriable
r with dummy variabler” and kernelGo (r,r”;E)V (r”). Since InE # 0 (section 4.1.2), we
have by equation 4.3 th& (r,r’;E) € L2 (R3) for everyr’:

: 1
Go(r.rE)Pdr = ——
/Rs| o(r,rE)|"dr 8rim/E

and ifV (r) € L?(R3) also (as we generally assumed in the last chapter), thenetimelkis
square-integrable ih? (]R{G) hence compact by theorem 30:

[ 1Go(r.r7E)V (1) Parar” = [ v (") V Golr |dr]

8711m\/—/R3|

Therefore, we may treat the second resolvent identity astagral equation in the Hilbert
spacel? (R3) with a compact kernel. Thu§(r,r’;E) exists (inL? (R?)) and is unique if 1

// ‘ dr//<oo
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is not an eigenvalue of the compact integral oper@gfE)V. Let us suppose then that 1 is
an eigenvalue o6 (E)V so there exists afi € L? (R?) such thatGg (E)V f = f. This means
that

(E—Hp) 'Vf=f = Vf=(E—-Hy)f = (Hp+V)f=Ef = Hf=Ef

soE would be an eigenvalue of the Hamiltonian, contradictirgftict thaH is self-adjoint and
ImE # 0. Therefore 1 is not an eigenvalue®g (E)V soG(r,r’; E) exists, is square-integrable
inr, and is unique.
In fact, using a little more Fredholm theory, it can be shohat & (r,r’; E) is symmetric
inr andr’:
G(r,r';E) =G(r',r;E) (5.4)

just asGo (r,r’;E) is [38]. Therefore we have

/Rs‘G(r’r/;Eﬂzdr Z/RS|G(r’,r;E)\2dr’:/Ra‘G(r7r/;E)|2dr/

and since the first expression is a functiom’dfut the last is a function af, it follows that both
are constant (independent of either variable). Using #ssilt we can now finally justify the
use of Fubini’s theorem in interchanging the order of inggign in the eigenfunction expansion
of the second resolvent equation (section 4.3.5). Regalliat we needed to show that the
integrand of the expression:

~/Ié3 Go (r,r";E)V (") [/ﬂ%G(r”,r’;E) £(r) dr’] ar”

was integrable im’ andr” for any f € S(R%), we can now see that

/6 Go (r,r";E)V (r")G(r",r";E) f (r')|dr'dr”
R
< ||f\|/Ra Go(rr BNV ()] [ G (r".r"E) Far'ar”

< f HG(r,r’;E)H/RsGO (r,r";E)V (r") dr”
NG (r.rE) ||| Go (r r s E) || IV ()| < oo

where we have IetG (r,1';E)||* = fps|G(r,r’;E)|*dr and similarly forGo (r,r’;E).

This result then proves the claim we made in section 4.112hledull Green’s operator was
an integral operator with kern& (r,r’;E). The argument is not circular - we have assumed
that the full Green’s operatds (E) is an integral operator with kern€l(r,r’; E) that satisfies
certain properties (allowing us to use Fubini’s theorem)e have shown that if this is all true,
thenG (r,r’; E) satisfies an integral equation of the second kind and tragtpiation admits a
solution with the right properties. Since there are no @ahittions to be found, the solution
of our integral equatiois the kernel ofG (E) which is thus an integral operator.

It is also possible to establish that equation 4.28 for tifisloéll T-matrix:

V(k —K")

T(k,k/;E) :\7(k—k/)+ st

T (K",K';E) dk”

is compact and that this equation has a unique solution Usiegholm theory. The details
may be found in [11].

5.2.3 A Problem with Computation

Let us now reflect. We have now proven that there is a uniqutisolto the kernel form
of the second resolvent equation. Therefore, by solving éguation and substituting into
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the solution type Lippmann Schwinger equations, we haveadnefunction and hence the
T-matrix. However, we recall that when substituti@yr,r’;k?+ig) into the solution type
Lippmann-Schwinger equations, we have to take the limigas 0". This is where the
computation becomes a bit sloppy. We should not, in genexalect to be able to solve the
second resolvent equation analytically so we are restrictealculating approximate solutions
with a computer. But then, to calculate the wavefunctiorueately, we must solve the second
resolvent equatiomanytimes (for differente) in order to take the limit as — 0*. Clearly
it would be better if we could solve an equation wherein thigting procedure was already
incorporated.

Recall the Lippmann-Schwinger equation (4.17):

@ (N =@ (r)+ Iir&/aGO (r,r; ke +ig)V (r') @ (r')dr'.
E— R
Let us now define theutgoing free Green'’s function

+ 2 2., —1ekrr
G(rrk)—EILmGo(rrk i€) = yrT—

for kreal. Then, by taking the limit inside the integral, we have

+ _ + /.1,2 I SR~ !
@) = a0+ [ 6§ (i) () g () (5.5)
To rigorously justify this step, we must assume that the @ksatisfies

V()]

dr' < o
R2 [F— 1|

so that dominated convergence may be applied. This will bedse, for instance, ¥ (r) is
continuous everywhere and decays faster than

For such potentials then, we now have a Lippmann-Schwingeat®n for which thee-
limit has been absorbed and the energy paramé&frig real. However, the kernel of this
equation is not square-integrable G (r,r’; k2) is clearly not square-integrable iin In fact,
the free termg (r) is not a vector from.2 (R3) either so we cannot apply the Hilbert space
Fredholm theory discussed in section 5.2.1.

There is, however, a sneaky little trick first discoveredRmfinik which allows us to rewrite
this equation with a compact kernel for a large class of g@sn We factorise the potential
as

V(r) =V ()2 ()2

where [V (1)]Y2 = |V (r)|¥2sgnV (r)] (the sgn function preserves the sign df(r) every-
where). Inserting this factorisation into the Lippmanri®tger equation and multiplying
each side byV (r)]¥2 gives

[v<r>11/2<n:<r>

VO a0+ [ V265 (k) v ()2 v () g ()

1/2

= @ = (r)+/RS[V()]1/ZG+(rr )V ()2 g ()dr (5.6)

where we have set” (r) = |V (r)]Y2 g (r) and g () = [V (1)) Y2 @ ().
For the class of potentials for whidh(r) is continuous and decays faster than, it is

easily checked thag” (r) and ¢ (r) are square-integrable. Furthermore, the kernel of this
equation is compact:

J.

1 IV ()[V(r)]
1612 Jrs | —r/|?

1/2

vV (N]Y2G§ (v, K2) [V (r drdr’ < oo

‘ drdr’ =
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for such potentials [3]. It can also be shown that the integparator with kernel
V(D)2 65 (r i) v ()72

does not have 1 as an eigenvaluedionost every I R (the set ok for which 1 is an eigenvalue
has Lebesgue measure zero) [41]. Therefore, by restritimgotential as above, it can be
rigorously shown that the Lippmann-Schwinger equatiomwit limit implicitly incorporated
also provides a suitable method for calculating the wawfan for a two-body scattering
process.

5.2.4 The Problem with Three Particles

We are now ready to discuss exactly why the three-body Lippr&chwinger equations that
we alluded to in section 5.1.2 are not suitable for computirggwavefunction. For every
channela, we have defined a channel Hamiltonibelg = Hg + V; which thus gives rise to a
channel Green’s operator

Ga (E)=(E— Ha)il

for ImE # 0. It seems reasonable to assume tBa{E) is an integral operator:
(Ga (E) f](R) = / Ga (R.R;E) f (R)dR’
RO

whereR = (r1,r,r3) refers to the positions of the particles.

Let us suppose that the incoming asymptote of our scattexpgriment is in a definite
channela, and is described by the (known) wavefunctign (R; a) whereK = (kq,kz,k3)
refers to the momenta of the particles. For instance, inmélahwhere particle 1 is initially
free and 2 and 3 are bound, this wavefunction would have time fo

23 (R;a) = ¢k, (rl)sz.ks (r2,r3)

where g, (r1) is a plane wave ang, k, (r2,r3) is a bound state wavefunction for 2 and 3
The actual wavefunction, denoted lgy (R;a), would then obey the following Lippmann-
Schwinger equation [45] (for which interchanging the ordieintegration in the eigenfunction
expansion isot justified by Fubini’s theorem):

o (Rya) =g (R;a)+/RgGa (R,R’;E) Vq (

/ /
rg—ry

) @ (R;a)dR  (5.7)

where(a # B # y). Asin the two-body case, itis only the free Green’s funci@y(R,R;E)
which is known. To calculate the channel Green’s funct®p(R,R’;E), we must appeal to
another version of the second resolvent equation:

Ga (E) = Go (E) + Go (E)VaGa (E) (5.8)

which is in kernel form,

Ga (R,R’;E) = Go (R,R’;E) +/Rg Go (R,R";E) Va (

- 1y|) Ga (R'.RGE)AR" (5.9)
where again{a # 3 #y). Now, it is immediately apparent that the kernel of this egumt
cannot be square-integrablerip andr/,. Therefore, we cannot conclude that this three-body
second resolvent equation is compact. However, in cortivatbe last section, we cannot use
a trick to rewrite this as a compact equation because thewwity theorem [35] asserts that
this equation is in factnot compact. This is sometimes called the failure of the thredyb
Lippmann-Schwinger equations.

Theorem 31 Suppose that A is a self-adjoint operator with(A) = @ (that is, with a purely
continuous spectrum). Then if K is a compact operator thatrooites with AK = 0, the zero
operator.
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Now, we know that

g p%)‘l

GO(E):(E_HO)12<E_2m1 2m,  2mg

soGp (E) is a function of, and hence commutes with, the momentum tgreséparticlea, py
(by the functional calculus). Also, it is clear thag commutes with'g for a #  (though not

for a = B of course) s@, commutes with/, = Vy (‘rb - r’yD . But, py is self-adjoint and

has a purely continuous spectrum (section 3.2.2) so by¢he8d,Go (E)V, is not a compact
operator. Therefore we have no guarantee that the thregedsmibnd resolvent equation has a
unique solution and hence any solution of this equationinbtBnumerically should be treated
as suspect.

5.3 The Faddeev Formulation

When three patrticles are being considered then, the egsaticscattering theory are therefore
not entirely satisfactory for calculating the T-matrix cawvefunction. An alternative approach
which gives equations with unique solutions is needed. @adhpproach was first formulated
by Faddeeun the early sixties [9], [10] and his brilliant method alsielded the first rigorous
proof that the three-body problem was asymptotically catgpl Since then, other formula-
tions along similar lines have been proposed, with varyiegrées of success. Some of these
are discussed in [35] and [16]. Here we shall discuss the pasmises of the Faddeev formu-
lation. However, we will not be able to prove that the equaiderived are compact for lack
of space. The rigorous proof can be found in [11].

5.3.1 Jacobi Coordinates

Recall that in two-body scattering, we worked in the cenfrmass coordinate frame (section
4.2.1) which simplified the equations - instead of two vdgalp, andr,, we only worked in

r (that this assumption does not affect the forms of the opeyds discussed in [35], [38]).
We have not however, made this assumption yet in the thrdg-base. We do so now and
introduce the Jacobi coordinate systems which have be@ud fimbe extremely useful in three-
body scattering.

It is customary to use three different coordinate systemsh ef two variables, to describe
the three-body problem. These shall be denoteXpy= (Xq,Yq) Wherea = 1,2,3. The
origin is the centre of mass of the system and we define oubdacordinates (following [15])
in terms of the particle positions by:

2mgmy . 2Ma (Mg +My) (Mgrg+myry
Xa = (rg=ry) +  VYa= —la
Mg + My My + Mg +my Mg + My

wherea, B andy are distinct and refer to the three particles with respectrasses,, mg and
m,. This defines one coordinate system for each particle. Ineasd (apart from normalising
constants)x, represents the relative vector between the other two pestandy, represents
the vector from the particle to the centre of mass of the dther The three Jacobi coordinates
for the momentun®Py = (pg,qq) Will be defined [11] by:

= myKg —mgky : = Ma kg +ky] — [mg+my] ke ‘
\/2mpmy (mg +m,) \/2Ma (Mg +my) (e +mg +my)

p

Again, p, essentially represents the relative momentum betweerthiee tovo particles whilst

(g represents the momentum of these particles relative ticlgact. Of course, it should be
clear that each pair of coordinates may be expressed asaa tinmbination of any other pair
of coordinates.
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These coordinates, though somewhat complicated, arelusdhree-body scattering be-
cause they simplify the potential energy operator:

V (ri,r2,ra) =Vi(xo) +Va (x2) +V3(x3)
wherex, = |[Xq|. The normalising constants are chosen so that the kinetiggoperator is:
2 2 2 2 2 2
Ho 2 _Dxl - Dyl = _sz - Dyz = _st - DY3
in the coordinate representation, and multiplication ke/ftmction:
Ho(P) = pi+0f = po+ 05 = P3+ 5
in the momentum representation.

5.3.2 Faddeev Equations for the-Operators
Recall that ther-operators satisfied equation 4.27
T(E) =V —I—VGQ(E) T(E) =V +Vo+V3+ (Vl +Vo —|—V3) GO(E) T(E) .

The operatolV Gy is not compact in the three-body case so this is not a suiiplation to
begin calculations with. The problem is essentially thathegerm in the potential is only
dependent on one variable (in Jacobi coordinates). Suafstare known in the physical
literature aglisconnected termisecause in such a term, one of the particles does not interact
it is not ‘connected’ with the other two. If we were to iterdte equation for the-operators
however, we get

T(E) = Vi+Vo+Va+ (Vi+Va+Vs)Go(E) (Vi +Va+Va) +
+ (V1 +Va+V3)Go (E) (V1+Va+V3)Go (E) (V1+Vo+V3) +

This equation still contains terms lik& Gy (E)V, which are disconnected, but also contains
terms of the form oV, Go (E) Vs (B # a) which are connected and thus stand a "better chance”
of being compact. The key to the Faddeev formulation is t@asdp the connected and dis-
connected terms in some way.

Following [11], we decomposg(E) into nine operators defined by

Tap (E) = 0apVa +VaG(E)Vp ; a,=123 (5.10)

whered,g = 1if a = B andd,g = 0 otherwise. We can treat these operators as analogues of
channelr-operators as they correspond to processes in which thensystnitially in channel
B and ends up in channel.

These operators do in fact constitute a decomposition an@tbbecause

3
S Tap(E) = Z 82pVa +VaG (E) V]

a,f=1 a,p=1
3
= Z ZVB =V+VG(E)V=r1(E).
a=1 B 1
Notice that this decomposition partially separates theneoted and disconnected terms. All
of the disconnected terms are found in Tig -operators (with some connected terms) whereas
the terms of thd, g-operators ¢ # ) are all connected.
Using the second resolvent identity on equation 5.10 gives

Tap(E) = OupVa +Va [Go(E) +Go(E)VG(E)]Vp
= 8upVa +VaGo(E) [V +VG(E)Vg]
3

y=1

nMw

3
y=1
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so these operators satisfy a set of three coupled equatioas for each3. The operator
Vo Go (E) is not compact so this system is still unsatisfactory. Harethis system of equa-
tions can be rearranged to give

L —VaGO(E)]TaB (E)= 5aBVa +VaGo (E) z Tys (E). (5.11)
y#a

Now comes the sneaky part. We proceed to use the two-bodyepndb solve the three-body
problem. We define a two-bodyoperator for each channel, denoting themtRyE) , which
acts as if particlex were not present. That is, it acts as if the other two padictmstituted a
two-body scattering problem by themselves. Recallingithtite Jacobi coordinates for parti-
cle a,pq represents the relative momentum of the other two part{thes is, their momentum
if they were treated as a system of their own) whemgasepresents the momentum of this
“two-body system” relative to particle, we define:

[7a (E) f] (Pa0a) = /Rs Ta (Pa.PaiE —05) f (PG, 0a) AP,
wheret, (Pa,Py; E) is theuniquesolution of the two-body off-shell T-matrix equation (4)28

By Va (Pa — Pj)
Ta (pavpiWE) :Va (pa_p/a) +/RsaE_07pgza

We reduce the energy in the kernel of the defining equatiogébyecause this is exactly how
much kinetic energy we would be neglecting if we ignoredipkertr and considered the other
two particles as a two-body system. It also follows from tieiduction that

To (P, Pa; E) dpy.

/. 2\ _\/ / \//;(pa—pg,) "o 2 "
Ta (Pa:PaiE—0g) =Va (Pa —Pa) + | . =55 Ta (P, Pai E—dg) dpy
r3 E—05 — Py
and hence that thg,-operators satisfy
Tq (E) =Va +VaGo (E) Ta (E) = Va + Ta (E) Go (E) Va- (5.12)

We could not have usdtiis relationship to uniquely define thig -operators because the opera-
torVyGop (E) is not compact. Notice also that this equation shows that heperators contain
exactly the disconnected terms of the decomposition of tbperator.

These operators are useful because

(I +Ta (E)Go (E)] [I —VaGo (E)]
=1—-VuGo(E)+ 14 (E)Go(E) — 14 (E) Go (E)Va Go (E)
=14+14(E)Go(E) — Vg + Ta (E)Go (E) V4| Go (E) = |

so by applyind + 14 (E) Go (E) to equation 5.11, we get

Tap (E) = 8ap Va + Ta (E) Go (E) Va] + [Va + Ta (E) Go (E) Va] Go (E) ; Ty (E)
y£a

=  Tug(E) =8upTa (E)+ 14 (E)Go(E) ; T (E). (5.13)
yZ£a

These are théaddeev equation®r the T, g-operators and are a set of three coupled equations
in a, for eachB. In matrix form, these become (f@r= 1)

T11 T 0 1G nuGo Ti1
Toq = 0 + o.Gg 0 Gg To1
T3 1 0 T3 Go T3Go 0 T3 1
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(for B # 1, the first term on the right hand sidetig in the 3-th entry and O elsewhere). Since
we generally begin a scattering experiment in a definite blgh rather than a superposition
of channels, we will lose no generality by defining new opasat

3
T =S Tap
B=1

which obey theT (@)-operator Faddeev equations

T@) — 1, (E) + Tq (E) Go (E) ; TW (5.14)
yZa

derived by summing th&, g-operator equations ov@. The matrix form of these equations is

T 1 0 116Gy 11Go T
T® = [§) + .Gg 0 [PACH T®
T 3 13 3Gy T13Go 0 T 3

so the only difference is in the first term. ThéB&)-equations were first derived by Faddeev
in [9].

Although the ‘matrix kernel’ of this set of equations is Istiisconnected, its square (cor-
responding to an iteration of this equation) and higher pevimave only connected entries so
the only disconnected parts of the iterated equations ateeifirst two terms of the iteration.
Faddeev was able to prove [11] that these equations did hanigae solution by constructing
an appropriat8anach spacén which Fredholm theory could be applied to his formulation
under the following restrictions on the two-body poterstial

\//;(pa)

Va (Pa +h) —Va (pa)

This of course has been extended and modified since then éo other cases (especially the
Coulomb potential) and generalisedNebody scattering problems [12].

< C(l+py) ¥  (C>0e>0)

< C(l+pa) 7fHH  (u>0).

5.3.3 Faddeev Equations for the Full Green’s Operator

The Faddeev equations we have derived are most easily esdnnithe momentum represen-
tation. However, as is noted in [15], it is now possible to teeFaddeev equations in momen-
tum space to study the continuity and asymptotic behavibtlieowavefunction in coordinate
space. That is, the boundary conditions appropriate tohteeibody Schrodinger equation
can now be derived. This is of great importance becausergpihie Faddeev equations in
momentum space often involves evaluating integrals in ke kernel has singularities. It
turns out however, that the boundary conditions for the &tihger equation are much too
complicated to be of any practical use. Instead the wavéfumenay be decomposed into
a sum of functions, each written in terms of a particular Bacoordinate system, to which
somewhat more tractable boundary conditions can be applég will not give the boundary
conditions here, they can be found in [12] or [15].

To derive equations for the components of the wavefunctiem first show that the full
Green'’s operator can be decomposed into component operatwe did for the-operator
in the previous section. Define tltwmponent Green’s operatois terms of the Faddeev
T(@)-operators by

G\ (E) = Go(E) T (E)Go (E).

We therefore have

G(E) = Go(E)+G(E)VGo(E)=Go(E)+Go(E)T(E)Go(E)

= Go(E)+Go(E)

Q
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as required. Furthermore, multiplying the Faddeev eqnatior theT (*)-operators byGo (E)
from the left and the right gives

G (B) = Go(E)Ta (E) Go(E) + Go(E) T (B) 5 G (E)
yZa

= G (E) =[Gy (E)~Go(E)|+Ga (E)Va 5 GY (E), (5.16)
y£a
where we have used equation 5.8 and the easily verifiedowati

This system of equations for the components of the full Gsegjperator is sometimes called
the Faddeev equations for té%)-operators.

5.3.4 The Coordinate Representation

TheseG(?)-operator equations will provide the means to derive a setjoétions for the wave-

function of the system. To do this however, we must introdihecasymptotic wavefunctions

relevant to the three-body problem. For the channel in wthehthree particles are free, the
asymptotic wavefunction is the free plane wave

_ 1 gpx
mﬂx)—(zmgé

and sinceP; - X1 = P, - X, = P3- X3, it doesn’t matter which Jacobi coordinate system we work
in.  Similarly, if the system is initially in the channel in wah particleg is free and the other
two particles form a bound state, then we have the asympt@atiefunctions

Xy (xg) €%

¢h.ap (Xﬁ7y3) - : 3
| (2m)
Where)(én> (XB) is the wavefunction corresponding to the bound state foramebh is a quan-
tum number identifying which bound state is formed (in therguhat there are excited states)
[15]. We will in the following be interested in scatteringopgesses with these initial states, so
we will therefore assume these asymptotic wavefunctions.
Consider the decomposition of the full Green’s operatouétion 5.15):

qa:%®+§dWa.

a=1

Of course, we assume that ti@)-operators are integral operators with kernel functions
G(@) (X4, X% ;E) in their a-Jacobi coordinate system. We note that because the foBy (&)
in the momentum representation is independent of the Jacabdinates used, this must also
be true for its kernel in the coordinate representation. él@# the corresponding statements
are by no means true for tl@&?)-operators. The functional forms of their kernels are depen
dent upon which Jacobi coordinates are used.

Expanding this equation in arbitrary Jacobi coordinatebdlled byf) gives for f <
S(RS):

/H%GG (X X5iE) 1 (Xp) axp = /ﬂ%ﬁ Go (X X5iE) f (X5 ) X+ ai G (E) T (Xp)

Now, since the different Jacobi coordinates are all lineddpendentXg can be written as a
function of X4, Xp(Xq) and vice versa. Therefore, the last term of the previoustegua
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may be rewritten as

3 3
S [c9® 1] () = 3 [6E) 1] Xp(Xa)]
a=1 a=1

3
— Z/RGG(“) (X X E) £ (Xg (Xl)) XL
a=1

It can be readily verified (see [15]) that the Jacobian of therdinate change fro to Xg
is 1 (as one would expect) so

3 6@ 0= 5 [0 (o (Xp) Xe (X5):E) 1 (X5) 865

Therefore, if we extract the kernel of the original equatiae get
G(XB,X’B;E>:GO<XB,XB, ) Z G (X g, XL E). (5.18)
To introduce the wavefunctions into these equations, walrequation 4.9:
Q. —s—lim+ie U G(A iis)dEﬂO} .
R3

-0t

Performing an eigenfunction expansion on this equatioliyithe kernel equation:

s (Xp) = lim '5/ G(Xm ﬁ1E+|5)%qB (X’)dX’ (5.19)

£e—0*

whereE is the energy of the systeng q, (XB) is the incoming asymptotic wavefunction of

the system, andy, (Xp) is the actual wavefunction. Analogously, Wefinethe functions
(a=1,273):

e—0t

@ (Xq) = lim ig RGG(“) (Xa» Xi; E+ig) @ha, (X (X)) dX (5.20)

Multiplying our kernel equation bie g, (X’B) , integrating over all particle positions (chang-

ing the variables of integration where necessary) and tiléng the limit ass — 0", we finally
get the result that the total wavefunction may be expresged b

g, (X z i (5.21)

(For simplicity, we've dropped thg subscripts so our arbitrary Jacobi coordinates are denoted
by X.) That is, the total wavefunction can be decomposed intopcorant wavefunctions
which are nicely expressed in different Jacobi coordinatsithough the kernel equation con-
tained the additional terr®o (X, X’;E), there is nothing in our wavefunction decomposition
corresponding to this term. This is due to the relation

im ie [ Go(Xg.XpiE+i) tha, (Xj) dXj =0 (5.22)

£—0t

the proof of which we shall defer to an appendix (section3).t& avoid disrupting continuity.
We now apply the operatdE —Hg ) to theG(?)-operator Faddeev equations giving

(E—Hq)GY(E) = <E—Ha>[Ga<E>—Go<E)]+<E—Ha)Ga<E>va;GM

= [1—(E—Ho—Va)Go(E)]+Va ¥ GY (E)

y£a
Go(E)+ § GV (E)] .

55

ERVA




Making the familiar eigenfunction expansion of this eqoatihen gives
[E+0% —Va (%a)] @ (Xa) =Va (%a) T @ (X)) (5.23)
yZa
where theGg-term again vanishes (section 5.3.5). These ardifferential Faddeev equations
and are a coupled set of equations which are satisfied by thpameents of the wavefunction,
and may be solved subject to the appropriate boundary conslisee [15]).
5.3.5 Appendix

We now prove that equation 5.22

lim is/RGGo (Xp:XpiE +ie) gha (X)) dX =0

e—0t

holds, as claimed above. We begin by noting that

1 TSV | f(P) ip.
C@NX) = o5 [ [Go@ T (PP =g | e ap

1 eiP-X ' f / —iP‘X'd ! d
- (ZH)G/RGZ—Pz /RG () e x| dp

1 gP-(X-X")
= —(27'[)6 /]RG [/}RG 5 pz dP] f(X/) dx’

S Go(X.XiZ) = /épi(XX/)dP
A, S

It follows then that

1..Go (Xp X5 E+ i) ghay (Xj) dX

1 ein(XB—Xb) /
= 6/6 /G#dpﬁ
(2m)° Jre [ JR Z PB

!

1 eip'B‘(xB—xB> eiq;;-(yg—y;;) -
(2m)° /Rlz Z—pZ—qF Xp
P (%5%3) 5 () ()

ha (x;g) dX/;

/ iqg-Y, / AN /
(xB>e B Pdpgdgzdxsdyy

1 / € 3
(2m)° Jro z—pf—df

i(gg—a3 )y, ! / / /
[/Rse( B) deﬁ} dequde

_ 1 i (Xg=Xg ) (M) (o [ e'%'yﬁ ) / o

el Ve E’ipb‘(xﬁ_xb) ' (n) (o /
— (27.[)715/2/]1@3 |:/1R3 mdpg Xg <X3> dxg

where we have used equation 1.5. Comparing the integralyverith the form of the free
Green’s function we derived earlier, we see that this isgusto-body free Green'’s function.
Therefore,

ddsYs _ei\/ quIZB ‘XB*X}Z
G X ,X/ ; X/ dxl — / (n) / d /
/RG 0( BB Z) th.as < B) B (27_[)9/2 R3 47T‘XB—X23 Xg (XB) Xg
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= X (%)
R

<
(2m)%2

. dx’B.
!
4n‘x3 _XB

= ‘/RGGO <XB,XIB;Z> %,qp (XIB) dX/B

Given thatxé”) xb) is a bound state wavefunction and therefore decreasedyr§pa], it is

easily seen that this integral converges for agyand is independent af Lettingz=E +ie
then, multiplying byie and taking the limit ag — 0" gives

Jim e [ Go(Xg,XpiE+ie) gy (Xp) X =0

as required.
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Chapter 6

A Separable Three-Body Problem

“1 don't even want you to begin to start explainin’ that. Yeusrobably goin’
to go on about the universe bein’ a rubber sheet with weightg again, right?
And the word quantumis hurryin’ towards your lips agairi.

Archchancellor Mustrum Ridcully

6.1 Non-Local Interactions

6.1.1 The Separable Approximation

So far in discussing potentials, we have restricted atiartt potentials of the forrd =V (r)
wherer is the distance between the particles. This representstamadtion where the force
felt by one of the particles essentially emanates from th&tipa of the other particle and
is known in the physical literature asl@cal potential That is, the interaction derives from
point sources. However, we can also envisage scenariosiainvthwould be useful to model
an interaction in other ways. For instance in nucleon sgatfewe could let the interaction
derive from a small non-zero volume of space, the nucleuasgo better account for internal
structure. In any case, these more general interactiomsspmnd to potential energy operators
which are not of the fornv (r). These are known a®on-local interactions

As an important example of a non-local interaction, we stlisituss theseparable poten-
tials. These are defined in operator form for ahin the Hilbert space by

Vi=A(af)a (6.1)

whereais a fixed vector from the Hilbert space (usually chosen shatj|a|| =1) andA € Ris
a constant representing the strength of the interactiayatie for attractive potentials, positive
for repulsive potentials). If we recast this equatioh #{R") , we find that

VH(r)=A Rnmf(r’)dr’a(r):/Rn)\a(r)mf(r’)dr’ (6.2)

soV becomes an integral operator with a separable keta¢t)a(r’). The functiona(r)
is called theform factor for the interaction. Potentials of this kind have been fotmdive
reasonable results in some areas of nuclear physics [45].

Now, V is not a multiplication operator but is bounded since

IVl = 1A @ )l lal <Allall® It = IVI<IAl]al®.

FurthermoreyV is symmetric:

(Vg =A(aflag =A{af)(ag =A(f.aag = (f,A(aga =(fVg

hence self-adjoint. Infact, ¥ =1,V is just the projection operator onto the subspace spanned
by {a}. SinceV is bounded, it ha$lp-bound O (section 3.3.2) and so by theorem 26+
Ho+V is a bona-fide self-adjoint operator.
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In fact, the separable potentials are known to mathematicés theank one compact
operators Compactness is established (recalling the definition atige 5.2.1) by noting
that for any uniformly bounded sequenck), ((a, f,)) is a uniformly bounded sequence of
numbers which must therefore have a convergent subsequémdg, ) — w say, ask — co.
But then,(V f,) has a convergent subsequen¢d,, ) because

I|menk I|m (a, fn,)a= wa

soV is compact. Now, while compactness of integral operatoesnisuch desired property
in mathematical physics (section 5.2), it can be problematihe present case due to a well-
known result of Weyl and Von-Neumann (see [2]). This stdtesin a separable Hilbert space,
there are self-adjoint compact operators which when aduoleoh toperator with a continuous
spectrum, result in an operator with only point spectrui.has a continuous spectrum avid
is self-adjoint and compact, so it is possible tHat Hy +V has only point spectrum. Such a
Hamiltonian has no place in scattering theory as there afeceostates! That this is not the
case for the separable potential is proved in [26] who shbasthe wave operators exist for
these separable potentials and are complete (sectior? lthdorem 4.3).

6.1.2 The Two-Body Problem with a Separable Potential

There is a definite advantage to considering scatteringtiegsavith separable potentials. The
advantage is that the equations are far more tractable dhd two-body case, admit analytical
solutions. Let us illustrate this by considering this caRecall the equation for the-operator
(equation 4.28):

o Vk=K) 0o
T (k,K;E) =V (k —k') +/RS e (K KE) dk.

Recalling the coordinate representation for a separatienpal (equation 6.2), we have that

V (k—K) :/H%qu( WV e (r') dr / {/ Aa(r (r’)dr’] dr
_ 2 [/Rsa(r)qq(—(r)dr} VRSW@/( )dr] Aa(k)a(K).

Substitution into the-operator equation therefore gives

7(k,K;E) = Aa(k)a(k’) +/H%3 Aaflal) (K".K;E)dk” = Aa(K)k (k') (6.3)

E — k2
where
K (k') =aK aKY) (kK E) dk” 6.4
()_()+R3E_k//2(7') . ()
Substituting 6.3 into 6.4 then allows us to solve for thessféll T-matrix:
_ aK’) . - Ak
k(K) = ak)+ [ g alk) K () k" = Ak +Ak (K) /Ra ok
a /
= k(K)= ak) 5
1-2A (k)] dk”
flR3 E_k//2
= (k,k;E) Aa(kja(k) (6.5)
1-2A [ps Bk )| dk”
E — k"2

We note that it may be possible for the denominator of thisesgion to vanish as lEh— 0™,
in which case, the T-matrix does not exist. Itis not hard esthat a consequence of this is that
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lim._o+ G(r,r’;E+ig) does not exist and therefore that we are dealing with ereigi¢he
point spectrum - bound states. In fact (assumingih&tO so we have an attractive potential),
(E— k”z)_1 decreases from 0 tek”~2 asE increases from- to 0 for anyk” € R. Thus

the second term in the denominator must be increasing from|®|ts [a(k”)|? /k"2dk” so
the denominator may only vanish once. Therefore, if theeebsund state corresponding to
an attractive separable potential, there is only one. lagydo see that a repulsive separable
potential does not support any bound states, as one woultexp

Let us now consider the particular case of a separable paitevith form factora(r) =
e N /r (A >0). We have

1 e\ . 2 1
ak) = dordr — /21 6.6
2 (27'[)3/2/R3 r o TV naTTie (6.6)

To calculate the T-matrix, we need to evaluate the follongrgression. This is quite messy
and is best calculated using a computer algebra packageygivi

im | B e im [ 8K"2dK’
e—0" JR3 E+ie—k"? -0t Jo (E+i£—k”2)(/\2—|—k2)2
_ —2m(N*+2VEN-E)  -2m
NN +E)? A(A—iVE)?

whereE =iv/—E if E < 0. Assumingg > 0, we find that the T-matrix is explicitly given by

(k) = el i) = gy A2

(A2 4 K2) (A2 4+ K2) <1+ T /fI—TAik’)2>

so the differential cross-section is given by

do 1612
dQ

271

4
(N+18) AN —ik)?

1+

6.2 Angular Momentum

We have so far completely ignored the important angular tifigsand their role in quantum

mechanics. In fact, one can define an angular momentum opeénathree dimensions by

L =r x p as one does in classical mechanics (thelenotes vector cross-product). This
operator and its component operators may be proven sairadB8] and are as important

in scattering theory as the position operators are. In fawg can derive an eigenfunction
expansion theory based on these operators which leadsitoploetant theory of partial waves

(see [35] for instance). However, itis not this “classidalf orbital) angular momentum which

we wish to discuss here. Rather, we shall need to introdueedhcept of intrinsic particle

spin and how it may affect a scattering process.

6.2.1 Intrinsic Particle Spin

It is an experimentally observed fact that fundamentaliglag possess an intrinsic angular
momentum that is quite different to any orbital angular motam. The basis for this is the
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famousStern-Gerlach experimemind a description of these experiments and their importance
in the development of quantum theory can be found in anydlictory text on quantum theory
(see [31] or [46]). We therefore introduce an intrinsic spperatorS= (S,,S,,S,), analogous

to the orbital angular momentum operator mentioned abowigharepresents the observable
quantity of total intrinsic spin. Particles have been fowxgerimentally to have one of the
total spin values: /2,1,3/2,2,...

It is customary to discuss the component of the spin operattre z-direction, S,. Ex-
periment shows that this observable is quantiseds-sfthe total spin of the particles, may
take any of the &+ 1 values,—s,—s+1,...,s—1,s. That is, for a spin-12 particle (for in-
stance, an electron or a protos),can be—1/2 or 1/2. We therefore construct a spin Hilbert
space,spin, Separate from the usual coordinate Hilbert space, for tinclgaby defining
eigenvectords, which are such that

Sfs, =& fs,
for all allowed values 0§, and letting.7Zin be the space of all linear combinations of the
with an appropriate inner-product. This is thereforesa-24-dimensional Hilbert space. A

convenient choice for this space is the spéd@s+ 1) of sequences of lengtts2- 1.
To account for a particle with spmthen, we introduce the combined Hilbert space

Hotal = Hcoord @ Hspin = L2 (RS) YA (2s+1)

which is the tensor product of the usual coordinate Hilbpece and the spin space. In the
case we have been examining with three particles (each afhwhiay now have spin), the
appropriate Hilbert space is

L2 (R®) ® (2 (2s+ 1) ® (2 (2s+ 1) ® (2 (25+ 1)

after factoring out the centre of mass motion which redubesytimber of coordinates needed
from9to 6

6.2.2 Identical Particles and Symmetrisation

We have introduced the concept of intrinsic spin because tisea fundamental relationship
between the wavefunction of a system of identical partieled the spin of the component
particles. Specifically, the wavefunction of a system ohitl particles with integral spin
(0,1,2,...) has even parity under exchange of two of the particles, fahe particles have non-
integral spin (¥2,3/2,5/2,...) then the wavefunction has odd parity under exchange. That
is,

PP = W for integer spins, ané WY = —W for non-integer spins

wherePy, denotes the interchanging of identical particles 1 andtiese conditions are referred
to as symmetry conditions. Particles with integer spinscafkeed bosons, particles with non-
integer spins are called fermions.

Consider a scattering experiment with two identical pletic There is nothing to say
that solving the scattering equations is guaranteed to giwavefunction that satisfies the
appropriate symmetry condition. However, we note that beeaf the identity of the particles,
if @ is a solution of the scattering equatios;® will be also. Therefore, we can symmetrise
our solution by settingf = @+ P1,® for bosons, an®¥ = ® — P>® for fermions. It is easily
checked then tha¥ obeys the appropriate symmetry condition, so all we havidyrdane is
apply a particular boundary condition stipulating that Wevefunction must have the correct
symmetry.

6.3 A Three-Body Scattering Problem

In this section we shall consider the scattering equati@njming to a system of three parti-
cles, two of which are identical spin/2 fermions (labelled 1 and 2) which we shall assume
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to have mass /2, and particle 3 which is spinless and very heavy by comparisbine inital
deployment of the particles is that of particle 1 incidentdyound staté€2,3) . We might think
of this system as an electron scattering off a hydrogen atblowever, for analytical conve-
nience, we shall later make the approximation that all themté@l interactions are separable,
V1 andV, being attractive antf; repulsive. Because particles 1 and 2 are identical, it igrcle
that thefunctional formsof V; andV; are identical. That is,

Vi(Xa) =Va (Xq) (a=1,2,3). (6.7)

We also expect for the same reason that the total coordinatefunctions should have the
same functional forms in the Jacobi coordinates of paditland 2 That is,

@ (X1) = @ (X2) (6.8)

(we have dropped the subscripbecause separable potentials may only have one bound state)
The Jacobi coordinates have the following simple formstlig $ystem:

X1 =12, y1=-r1 p1 =Kz g1 = —ki1

Xp=—I1 Yo = -T2 ) p2=—kj g2 =—ko (6.9)
rh—ro ri—+ro ! ki—Kko ki+ko - '

T2 T =Tm T

Let us now consider the spin wavefunction of the system. Tie Hilbert space is just
72 (2) ® £ (2) which is easily seen to be isomorphic/(4) (we have of course neglected the
third particle as it is spinless). Now, it is well known thhettotal spin,S of a two spin-}2
particle system can be 1 or 0 depending upon whether the gpthe individual particles are
aligned or not. It is also well known [22] that the spin wavgftion of the system will be
symmetric wher = 1 and antisymmetric whe8= 0. Therefore, since the system consists
of identical fermions (so the total wavefunction must besygmbtmetric), we conclude that the
coordinate wavefunction will be antisymmetric wh8a= 1 and symmetric whe®= 0. In
terms of our interchanging notatioRy6), this becomes

Pogy (Xa) = (—1)%@ (Xa) (0 =1,2,3). (6.10)

Let us now apply this result to the differential Faddeev ¢iqua (5.23). These may be rear-
ranged to give

3

[E+0%] ¢ (Xa) = Va (Xa) > oY (Xy) =Va (Xa) @ (Xa)-
y=1

This is a differential equation fop(?), the homogeneous solution of which is a free plane
wave. However, it is clear (see [12] for a rigorous justifica} that one boundary condition
we should impose upon thg?®) is that they asymptotically approach theund plane wavey,
(defined in section 5.3.4). The homogeneous solution doesatisfy this condition (we are
considering a X(2,3) process) so we need only consider the particular solutithi®équation.
Therefore,

¢ (Xq) = Jim | Go (Xa: X E+ig) Ve (%) @5 (Xy) dXG. (6.11)

For the caser = 1, we interchange particles 1 and 2 to get

£—0t

Plz(p(l) (Xl) = P [ lim /]RG Go (Xl,Xél_; E+ IE) \} (X’l) (R;r (Xg_) ng_

= lim [ Go (X2, X%E+ie)Vi (%) (—1)%q (X5) dX5

£—0t JRE
_ Lr&(_l)S/RG Go (X2, X5;E +i€) Va (%) @ (X5) dX5
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using equations 6.7 and 6.8 and the fact that the free Graercdon has the same functional
form in Jacobi coordinates 1 and 2. Comparing with equatidd,6ve see that this is just

PLg™ (X1) = (—1)%¢1? (X2).

This result is extremely important because it allows us terite our decomposition of the full
wavefunction as

@ (X) = 9V (X2) + 92 (X2) + 9% (Xa) = [1+ (~1)°Piz] o (X1) + 0¥ (X3)  (6.12)

and therefore reduce our differential Faddeev equatiore get oftwo coupled differential
equations:

[E+0%-Va0a)] 9% (X)) = Va(xa) [(~1)°Piag® (Xa) + 9 (X3)
[E+0%-Va06)] 0% (Xa) = Va(xs) [1+ (~1)°Pig] 0¥ (Xa). (6.13)
We have not made the separable approximation yet. Howewereeall that the sepa-
rable two-body problem was easily solved as an integral tasjuan momentum space. Let
us therefore investigate what happens when we convert éhisfdifferential equations into
integral equations. We note that the first equation has adbplame wave as the homogeneous

solution:
[E+ 0% —Vi(xa)] @, (X1) =0

whereas the second has no homogeneous solution ¥indees not support a bound state.
Therefore, we have the integral equations

oY (X1) = @y, (X1) + lim. o G (X1, X E+ig) Vi (%) ¥

x [(—1)SP12¢<1> (X4) + @ (xg)} dx; (6.14)

00 (Xa) = lim | Ga(Xa X4E +i€) V3 (%) [1+ (—1)SP12} oY (X}) dX5.

whereGq (X4, X/ E) is the kernel of the operat@, (E) = (E — Hg—Vq) .
Let us now Fourier transform these equations so that we cak \Wanomentum space.
Since

~ X1(p1)
Py) =

%1( 1) (27_[)3/2

we will now be working in a distributional setting, thoughgis not particularly troublesome.

The operator$s, andV, have complicated forms in momentum space, so we use thatident

GqVa = GoTy (equation 5.17) where, is the two-bodyt-operator defined in section 5.3.2.

Our equations transform to

0 (ql_ qél_) )

_ N . n (py.py;EL
oW (p1,01) = @, (P1,0a) + lim /R E +( ie —af - p)’f "

e—0t

— _ " I onl Al
x [(—1)SP12¢<1> (p1,ch) + ¢ (pijgl, & ﬁplﬂ dp} (6.15)

g3
— 13 (pl&pnge ) — q’ _p” q’ _|_p”
3 (phu) = lim [ = 14 (~1)5Py| o (L2 P2 BT P3) 4

¢ (p3,93) ol R3E+I£—q§2—p§2[ +(-1) 12}4) 2 2 P3
where we have used the explicit forms (6.9) of the Jacobidinates for this system. Notice
that the integration is only over three dimensions - in therdmate representation, we were
facing six-dimensional integrals. The price we pay for gimplification is of course having
such complicated arguments in the component wavefunctions

63



We now make our separable approximation. Recall that faarsdge potentials, the two-
body t-operators have kernels given by equation 6.5:

_ AaBa (K)3 (k') Ay (E)=1—Aq4 7|é\“(k//)|2dk“

/. .
Ta (k7k ,E) Aa (E) ] R3 E _ k//2

wherea, (r) is the form factor foN, andA, represents the strength of that interaction. Substi-
tuting this into our momentum space equations (changingg@appropriate Jacobi coordinates)
gives

—= —~ : A1da (1)
Q) (p' o) — I [ 1
@ (p1,01) = @y, (P1,01) +.m, (Etic—qf—pP) A (Etie— D) X

_ — — //_|_q/ q/ _p//
x [ & (pl) |(=1)5PLe® (p4,qy) + (3)<p1 1A P gpl
/R ,a(p1) {( )"Pi2™ (p7,01) + 9@ ( = N IRV pY

_ _ A383 (p)
3 (p3, ) = |
@ (p3,93) Ratis (E+ie—o2—p2) D3 (E+ie—0?) X

o / "oy "
= (0!) |1+ (—1)SP (1) g3 —P3 Q3+p3> do’.
X /Raaa(p:g) |: +( ) 12:| @ < \/z 9 _\/z p3

Let us now substitute into these equations form factorsogoais to those we derived in section
6.1.2. Thatis, we follow equation 6.6 and let

e /M N 2 1
ai(xy) = = al(pl):\/j

X1 A2+ p?
e/ 2 1
anda. = = a — ]2
3 (X3) % 3(P3) =1/ TN+ 2

whereA > 0, and letA = A3 = —A1 > 0 (corresponding to the identical particles repelling one
another and unlike particles attracting one another). \&fetbre have that

24

An-iVE-G)

Jim Aq (E+ie—03) =1+

where/E -2 =i\/qZ —Eif E—q3 <O.
Substitution then gives the final form for our coupled equrzi

—

o (3, q1) = @y (P, q4) — =1 (P4, dy) x
o0 A<p’1’+q’1 q’l—p’1’>
dp

1 SP (1) //’ l + (3) )
></ (=1)°Pr2¢P (p7,07) + @ 2 /2
R3 N2+ p2

— I Al /+p//

14 (—1)5P;,| @O (qs Ps 9s 3)
[ (-1 12}<P NG 2 o

/\2 + ng

"
1

@3 (p3,03) = =3 (P3.95) /R .
where
2A
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This is about as far as our analysis can take us. We now haved seo coupled, three-
dimensional integral equations for the component wavefong, which do not have singular

kernels (although th&, do have a singularity). In fact, becaug®) is only dependent upon
@), the second equation can in principle be substituted intdfitee leading to one very

complicated six-dimensional equationgf). However we proceed, the equations can now be
subjected to angular analysis and then solved numerically@mputer. The compactness of
the original Faddeev equations guarantees that a uniquécsolvill exist.

Once we have ascertained the Wavefuncq'gp(X), we can calculate the T-matrix appro-
priate to a scattering event initally in change&ind finally in channetr using a generalisation
of equation 4.22 [45]:

tpa (PP) = [ 0 CRaya V'™ () @, (X)0X

where gy is the asymptotic eigenfunction appropriate for charmeindV (?) (X) are all the
potentials which become negligible in the final chanWéF{ = H —H?). For our calculation,
B =1 as the initial deployment was a(2,3) system. The labelr may take the values,@
or 2, corresponding to break-up, elastic scattering and regeraent processes respectively.
Channel-3 is not possible (‘open’) becausgl&) bound state is not possible. Note that be-
cause separable potentials can only support one boundis&#estic scattering is not possible.
It is also apparent that because particles 1 and 2 are idéntie cannot distinguish between
elastic scattering and rearrangement (channels 1 and 2).

Explicitly then, we would calculate

i1 (PP) = /Rsflhl(xl)[Vz(X2)+V3(X3)]<Pq+1(X)dX,
ti2 (P,P) = /RG P, (X2) V1 (x2) + V3 (%)) g, (X) dX

and tuo(P.P) = [ Go(X) Vi 0xe) +Va xe) + Va (xa)) g} (X) X

in whatever Jacobi coordinates are appropriate. ¢4here of course bound plane waves, and
the @b is the free plane wave appropriate for the break-up channel.

The relationship to the experimental cross-section istle lihore complicated than that
of two-body scattering. Each final chanrwelgives rise to a differential cross-section that
is proportional tojt; .4 (P, P’)]z. However, because the momenta and the reduced masses of
any two-body pairs present can all vary, the proportiopatitnstants are different for each
channel. Also, in the break-up channel we can detect more dha particle so there are
several differential cross-sections corresponding td égoe of measurement we choose to
make. Explicit forms for all these quantities may be founffi] or [35]. We note finally that
once these are calculated, they may be integrated to gedlect@nnel cross-sectiom; 4.
Because we cannot distinguish between elastic scattendgearrangement in this process,
the elastic cross-section is the sunoef.; andoi_.,. The total cross-section for the scattering
process is then the sum of the elastic cross-section andeha&-lnp cross-sectioon ..
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Chapter 7

Conclusion

“Quantum theory - the dreams stuff is made’of...
Unknown

We have discussed at some length a rigorous treatment ofitiafhental mathematical
aspects of quantum scattering theory. Our treatment wasdbas thespectral theorem for
unbounded self-adjoint operatovshich was proven here following the original work \@bn
Neumann To discuss scattering theory appropriately, the posittomentum and energy
operators were introduced. Particular attention was maitld results oKato concerning the
self-adjointness of the Hamiltonian operator, using thecept of relative bounds.

Using these results, it was then possible to rigorously tdate the equations of scattering
theory. The Green’s operators, wave operators and theesngttoperator were introduced
in the context of two-body time dependent scattering theony their properties and impor-
tance were briefly surveyed. The time independent defimtiminthe wave operators were
established followingAmrein et al. This led to the standard equations of two-body time in-
dependent scattering theory via thigenfunction expansiotechnique. However, in order
to make the derivations rigorous but reasonably straigiwdrd, the operator equations were
only considered to act upon a “part” of the Hilbert space fbiol the operators had “nice” rep-
resentations. We did not need to presume (as for instar@pd¢@s) that these representations
hold over the whole Hilbert space.

We then considered generalising these results to a thrde-fwattering problem. We
briefly indicated how the theory can be easily extended ®dhse, although the correspond-
ing broadening of the three-body theory was found to be mimttlgtrigorous. Nevertheless,
examination showed that these three-body equations waral ftm be unsatisfactory for (nu-
merical) computation, unlike the two-body equations. Teerdhis deficiency, we followed
the original work ofFaddeey detailing his decomposition method and discussing why thi
technique might be expected to produce more satisfactargtems. We then used his decom-
position to present our own derivation of téferential Faddeev equationghich are stated in
[15].

As an application of this formulation of three-body scatigrtheory, we then derived a set
of equations for a particular three-body problem incorpingathe effects of intrinsic particle
spin and identical particles. However, for convenience ssumed that the potential inter-
actions between the particles weseparable a form which is known to be more amenable
to analytic results. This assumption allowed us to expji@ialuate some of the terms and
therefore to better understand the equation structure.

Future work would of course concentrate on solving thesatiops. This would involve
first subjecting our coupled set of equations to an angulalyais. This standard procedure
is based on the role of thengular momentum operatoia scattering theory which was not
discussed in this thesis (see [35] for instance). After ihiachieved, the result would then
be solved numerically on a computer. The solution obtainedldvthen be of value as a
comparison for evaluating the performance (and practyjatif other three-body scattering
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formulations, as well as being of interest as a three-bodjtexing wavefunction in its own
right.
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